These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Certification of a reference material of metal content in atmospheric particles deposited on filters.  

PubMed

Air quality is one of the areas in Europe where a series of EU Directives have been published with the aim of achieving improved long-term and harmonised air quality objectives across the European Union. This paper describes the production of a certified reference material, aiming to support QA/QC programmes of analytical laboratories in the framework of the air quality monitoring activities. The certified values are the As, Cd, Ni and Pb masses in PM10 particles deposited on quartz filters (CRM SL-MR-2-PSF-01). All the steps of the certification, i.e. the material characterisation, homogeneity and stability evaluation and uncertainty calculation, were performed according to the ISO guide 35 guidelines. The certification was conducted using the characterisation by a single method approach based on isotope dilution for cadmium, nickel, and lead and gravimetric standard addition calibration for arsenic associated with inductively coupled mass spectrometry (ICP-MS). The amounts of the four elements are in the range of the target values regulated by EU Directives. PMID:25260410

Oster, Caroline; Labarraque, Guillaume; Fisicaro, Paola

2015-04-01

2

Atmospheric Tar Balls: Particles From Biomass and Biofuel Burning  

NASA Astrophysics Data System (ADS)

'Tar balls,' amorphous carbonaceous spherules that are locally abundant in the tropospheric aerosol through biomass and biofuel burning, form a distinct group of particles, readily identifiable with electron microscopy. They differ from soot in lacking a turbostratic microstructure, and their morphology and composition (~90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are abundant in slightly aged (minutes to hours) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. Although the material of tar balls is initially hygroscopic, the particles become largely insoluble through free radical polymerization of their organic molecules. Tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When they coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may slightly absorb sunlight. They are a widespread and previously unrecognized type of carbonaceous (organic) atmospheric particle.

Posfai, M.; Gelencser, A.; Simonics, R.; Arato, K.; Li, J.; Hobbs, P. V.; Buseck, P. R.

2003-12-01

3

Genotoxicity of Organic Extracts from Atmospheric Particles  

Microsoft Academic Search

Experiments to evaluate the genotoxic potentialities of urban air particles sampled in Paris (France) after organic solvent extraction have been carried out using four in vitro genotoxicity tests. The two bacterial tests (the Ames test and the SOS Chromotest) demonstrate the genotoxicity of the organic extracts of atmospheric particles; two additional tests (induction of 6-thioguanine mutants and sister chromatid exchanges),

Y. A. Courtois; S. Min; C. Lachenal; J. M. Jacquot-Deschamps; F. Callais; B. Festy

1988-01-01

4

Vapor scavenging by atmospheric aerosol particles  

SciTech Connect

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01

5

Particle Size Distributions in Atmospheric Clouds  

NASA Technical Reports Server (NTRS)

In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

Paoli, Roberto; Shariff, Karim

2003-01-01

6

Nanoporous Materials in Atmosphere Revitalization. Chapter 1  

NASA Technical Reports Server (NTRS)

Atmospheric Revitalization (AR) is the term the National Aeronautics and Space Administration (NASA) uses to encompass the engineered systems that maintain a safe, breathable gaseous atmosphere inside a habitable space cabin. An AR subsystem is a key part of the Environmental Control and Life Support (ECLS) system for habitable space cabins. The ultimate goal for AR subsystem designers is to 'close the loop', that is, to capture gaseous human metabolic products, specifically water vapor (H2O) and Carbon dioxide (CO2), for maximal Oxygen (o2) recovery and to make other useful resources from these products. The AR subsystem also removes trace chemical contaminants from the cabin atmosphere to preserve cabin atmospheric quality, provides O2 and may include instrumentation to monitor cabin atmospheric quality. Long duration crewed space exploration missions require advancements in AR process technologies in order to reduce power consumption and mass and to increase reliability compared to those used for shorter duration missions that are typically limited to Low Earth Orbit. For example, current AR subsystems include separate processors and process air flow loops for removing metabolic CO2 and volatile organic tract contaminants (TCs). Physical adsorbents contained in fixed, packed beds are employed in these processors. Still, isolated pockets of high carbon dioxide have been suggested as a trigger for crew headaches and concern persists about future cabin ammonia (NH3) levels as compared with historical flights. Developers are already focused on certain potential advancements. ECLS systems engineers envision improving the AR subsystem by combining the functions of TC control and CO2 removal into a single regenerable process and moving toward structured sorbents - monoliths - instead of granular material. Monoliths present a lower pressure drop and eliminate particle attrition problems that result from bed containment. New materials and configurations offer promise for lowering cabin levels of CO2 and NH3 as well as reducing power requirements and increasing reliability. This chapter summarizes the challenges faced by ECLS system engineers in pursuing these goals, and the promising materials developments that may be part of the technical solution for challenges of crewed space exploration beyond LEO.

Hernandez-Maldonado, J.; Ishikawa, Yasuyuki; Luna, Bernadette; Junaedi, Christian; Mulloth, Lila; Perry, Jay L.; Raptis, Raphael G.; Roychoudhury, Subir

2012-01-01

7

Particle Suspension Mechanisms - Supplemental Material  

SciTech Connect

This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

Dillon, M B

2011-03-03

8

Laser plasma emission of small particles in different gas atmospheres  

NASA Astrophysics Data System (ADS)

The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

2002-06-01

9

Nucleation and Growth of Atmospheric Particles  

SciTech Connect

New particle formation (NPF) in the atmospheric is a two-step process: Nucleation leads to the birth of stable nuclei that subsequently grow to sizes that can be detected and affect the atmosphere’s radiative properties. Our group is studying both of these processes. Our nucleation research is largely supported by NSF and involves measurements of neutral molecular clusters formed by nucleation with a new custom-designed mass spectrometer (the Cluster-CIMS) and measurements of nanoparticle size distributions as small as 1 nm with a new aerosol spectrometer (the DEG SMPS). These measurements are providing new insights into aspects of cluster behavior that affect nucleation rates. The U.S. DOE supports our research on nanoparticle growth rates. This research couples physical and chemical measurements of aerosol properties and behavior. The TDCIMS, which enables real-time measurements of composition for freshly nucleated particles as small as 8 nm and was developed with support from DOE, is the most important tool in this work. Our most important discoveries about processes that affect growth rates are summarized in a recent PNAS article (doi:10.1073/pnas.0912127107). In short, this work has shown that alkylammonium-carboxylate salts, formed, for example, by reactions between amines and carboxylic acids, account for 20–50% of the mass of freshly nucleated particles in locations that include Atlanta, Mexico City, Boulder, and Hyytiälä, while sulfates account for only about 10%. These newly discovered compounds help to explain the high growth rates of freshly nucleated particles that have been observed around the globe and help to explain why nucleation is an important atmospheric process, not just a scientific curiosity. Our poster will provide an overview of this work.

McMurry, P.; Kuang, C.; Barsanti, K.; Eisele, F.; Friedli, H.; Scheckman, J.; Titcombe, M.; Williams, B.; Zhao, J.; Smith, J.

2010-03-15

10

Atmospheric Tar Balls: Particles from Biomass and Biofuel Burning  

NASA Technical Reports Server (NTRS)

Tar balls are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (approximately 90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

Posfai, Mihaly; Gelencser, Andras; Simonics, Renata; Arato, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

2004-01-01

11

Atmospheric tar balls: Particles from biomass and biofuel burning  

NASA Astrophysics Data System (ADS)

"Tar balls" are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (˜90 mol % carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

Pósfai, MiháLy; GelencséR, AndráS.; Simonics, RenáTa; Arató, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

2004-03-01

12

ATMOSPHERIC PROCESSES AND EFFECTS ON MATERIALS  

EPA Science Inventory

These two chapters summarize the effects expected from the depletion of stratospheric ozone by the presence of CFCs. he two areas considered by these two reports are materials damage and atmospheric processes. ncreased UV can affect materials in the following ways: (1) corrosion ...

13

Chemical mechanisms governing atmospheric new particle formation  

NASA Astrophysics Data System (ADS)

The goal of this dissertation is to understand the chemistry that governs new particle formation, a ubiquitous and important atmospheric process. New particle formation occurs when gas phase precursors condense to create small molecular clusters on the order of 1 nm diameter. Those clusters must then grow rapidly and ultimately may serve as the seeds for cloud droplets. However, modelers have substantial difficulty predicting the frequency and efficiency of new particle formation. This predictive difficulty is an important contributor to the uncertainty in aerosol effects on global climate and therefore also contributes to the large uncertainty in anthropogenic effects on climate. To reduce these uncertainties, a more precise understanding of how particles nucleate and grow in the atmospheric is required. In this dissertation, mass spectrometry is used to determine the chemical processes involved in new particle formation. Gas phase species such as sulfuric acid, ammonia, amines, and organic matter are contributors but exactly how and how much each contributes to the growth of nanoparticles is not well understood. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Nano Aerosol Mass Spectrometry (NAMS) are used to study the chemical composition and reactivity of clusters < 3 nm diameter and nanoparticles 10-20 nm diameter, respectively. The FTICR-MS studies are laboratory based, whereas the NAMS studies are field based. Measurements of cluster composition and reactivity using FTICR-MS permit prediction of the composition of ambient molecular clusters. For ambient molecular clusters to become relevant to climate by serving as cloud condensation nuclei, they must grow rapidly. NAMS measurements at 20 nm diameter permit determination of nanoparticle growth pathways. This dissertation shows that sulfuric acid adds to both clusters and nanoparticles in a collision limited manner. On the other hand, ammonia uptake in both size regimes may not necessarily occur at a collision limited rate. Finally, additional nitrogen containing compounds are important to new particle formation in both size regimes, but the molecular form of these species is different for each size regime. Amines are important contributors to the growth of molecular clusters, whereas other organic nitrogen species are important to the growth of nanoparticles.

Bzdek, Bryan Richard

14

Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate  

Microsoft Academic Search

Recent field studies show that a large fraction of the previously uncategorized organic compounds in atmospheric aerosols are polycarboxylic acids resembling the humic materials (HMs) in soil. The presence of these compounds may alter the water uptake and deliquescence characteristics of particles. We have measured the water uptake by pure HM and by mixed HM\\/ammonium sulfate particles as a function

Sarah D. Brooks; Paul J. DeMott; Sonia M. Kreidenweis

2004-01-01

15

Phase Transitions of Aqueous Atmospheric Particles Scot T. Martin*  

E-print Network

Models 3436 VI. Comparison between Models and Field Measurements 3437 A. Boundary Layer Particles 3438 iPhase Transitions of Aqueous Atmospheric Particles Scot T. Martin* Division of Engineering 3424 E. Heterogeneous Nucleation 3431 i. Nuclei Contained Inside Atmospheric Particles 3431 ii

16

Chemistry and composition of atmospheric aerosol particles.  

PubMed

For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ?10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere. PMID:22404591

Kolb, Charles E; Worsnop, Douglas R

2012-01-01

17

Methodology for studying particle–particle triboelectrification in granular materials  

Microsoft Academic Search

A critical challenge for experimental studies of triboelectric charging is to generate reproducible and unambiguous data that can be linked to theoretical concepts. We have developed a methodology to investigate the triboelectric charging of granular materials due solely to particle–particle interactions (i.e. no particle–wall interactions). The methodology is based on a particle flow apparatus that generates a fountain-like flow in

Keith M. Forward; Daniel J. Lacks; R. Mohan Sankaran

2009-01-01

18

Catching Comet's Particles in the Earth's Atmosphere by Using Balloons  

NASA Astrophysics Data System (ADS)

The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use Indian Space Research Organization experience that launched a balloon to stratosphere in 2009 and successfully caught particles with organics at an altitude of 42 km. The main aim of the project is to catch cometary particles by using balloons and to make this method steady and reliable. Why are the comet particles interesting? The nature of a comet is full of puzzles; many researchers think that comets may give keys to the origin of the Solar System and origin of life on the Earth. 2014 and 2015 are special years for comet science: mission Rozetta will reach the vicinity of the comet 67P/Churyumov-Gerasimenko - 10 years after leaving the Earth. Using astronomic data, one may choose date for ballooning, specify the altitude of comet particles by photometry and laser measurement of particle outburst. After height measurement one may launch a balloon. For example, for Draconids particles (Parent comet: 21PGiacobini-Zinner) the expected time of outburst maximum - hence that for catching is 22:42 UT, October 6, 2014. The best conditions for catching will be in Greenland and extreme north-eastern part of North America. Draconids are very convenient for the initial stage of the project - the altitude of observed Draconids outburst is 10 km. One may catch them above 10 km, e.g. 10500 m. We consider ballooning is quite a good method to get experimental data as an additional technique in comparison with big space missions. Moreover, it might be a part of cosmic mission to other planets such as Mars and Venus. The approach of the project is to make targeting catch of comet particles. The method consists of choosing the right place and time for ballooning.

Potashko, Oleksandr; Viso, Michel

19

Dielectric particle injector for material processing  

NASA Technical Reports Server (NTRS)

A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

Leung, Philip L. (Inventor)

1992-01-01

20

Threshold wind velocity for particle entrainment at sub-atmospheric pressures as on the planet Mars  

Microsoft Academic Search

Low pressure wind tunnel data on particle entrainment were compared with predictions of two entrainment models in an attempt to improve the predictive capability for conditions near the Martian surface, where atmospheric pressure is 100-200 times lower than on earth. Fletcher's (1976) correlation model concerned the erosion of granular materials by atmospheric flows. Phillip's (1980) force balance model defined a

M. Phillips

1984-01-01

21

Images reveal that atmospheric particles can undergo liquid–liquid phase separations  

PubMed Central

A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

2012-01-01

22

Material stability analysis of particle methods  

Microsoft Academic Search

Material instabilities are precursors to phenomena such as shear bands and fracture. There- fore, numerical methods that are intended for failure simulation need to reproduce the onset of material instabilities with reasonable fidelity. Here the effectiveness of particle discretizations in reproducing of the onset of material instabilities is analyzed in two dimensions. For this purpose, a simplified hyperelastic law and

S. P. Xiao; T. Belytschko

2005-01-01

23

Material flammability in space exploration atmospheres  

NASA Astrophysics Data System (ADS)

In order to reduce the risk of decompression sickness associated with extravehicular activity, NASA is designing the next generation of exploration vehicles with a different cabin pressure and oxygen concentration than used previously. This work explores how the flammability of solid materials changes in this new environment. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in a small-scale wind tunnel subject to this new space exploration atmosphere (SEA -- 58.6 kPa and 32% oxygen) and compared to similar tests in standard atmospheric conditions. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. It was found that the ignition time was reduced by 27% in the intended space exploration atmosphere. It was also noted that the critical heat flux for ignition decreases in exploration atmospheres. These results show that materials are more susceptible to ignition than in current spacecraft atmospheres. To further explore the effect of pressure and oxygen concentration, tests were performed for a wide range of pressures and oxygen concentrations. In all oxygen concentrations tested, the ignition delay time was seen to decrease with pressure, reach a minimum, and then increase with further reduction in pressure creating a classic u-shaped curve. No ignition was seen at sufficiently low pressures. The no ignition pressure depended on the oxygen concentration. Increasing the oxygen concentration uniformly decreases the ignition time; however, no significant differences were seen in oxygen concentrations above 24%. These results indicate there are several competing mechanisms controlling the ignition time. By reducing the pressure, the heat transfer coefficient and the mass flow rate of fuel to reach the lean flammability limit are reduced. Conversely, a reduction in pressure increases the gas-phase chemical induction time. The competition between these three mechanisms is responsible for the u-shaped dependence of ignition time on total pressure. In addition to gaining insight into the effect of pressure on piloted ignition, these results have practical applications including high altitude structures and airplane cabins.

McAllister, Sara Suzanne

24

The effect of atmospheric pollution on building materials  

NASA Astrophysics Data System (ADS)

This chapter surveys main effects of atmospheric pollution on building materials. It summarises these effects on stone, bricks, mortar, concrete, glass, metals (iron, zinc, copper, bronze, aluminium, lead and silver), polymers, paints and timber. Special attention is paid to stone because of its extensive use as building material in the cultural heritage. In general, main damaging agent is sulfur dioxide which leads to sulfation of many materials, particularly carbonate-bearing stones. However, the decline of sulfur dioxide in cities means that the recognition of the prime role of this pollutant presents something of a dilemma. It is increasingly necessary to consider other substances that can contribute to material decay e.g. nitrogen oxides, chlorides and ozone, either acting as synergistic to the sulfation reaction or as main decay agents, such as the case of aluminium and polymers. Particulate matter often from diesel vehicles can also accelerate the oxidation of SO2 on the surface (traditionally sulfur dioxide with Fe-rich particles) and blacken the materials surface in the case of soot. These processes contribute to the formation of black-crusts when embedded in the gypsum layer resulting from the material sulfation, but again the rate in the modem atmosphere is a matter of much research.

Grossi, C. M.; Brimblecombe, P.

2002-11-01

25

A Compact, Low-power Spectrometer For Atmospheric Particle Measurements  

NASA Astrophysics Data System (ADS)

A compact, lightweight and relatively robust aerosol spectrometer is under develop- ment for use in a variety of atmospheric particle investigations. This instrument will cover particle sizes in the range from 0.3 to 10µm with a weight of around 0.5kg (depending upon configuration). The low weight and compact size will make this de- vice suitable for balloon-borne atmospheric measurements, and its relatively low cost will encourage deployment in riskier situations, such as close to the ocean surface. The reasonably high volume sampling rate of approximately 50ml/s commends it to applications where high temporal resolution is required such as in particle flux studies. This instrument is based around a small scatter cell unit, measuring approximately 7 x 3 x 3cm, manufactured by Met One (a division of Pacific Scientific). This unit incor- porates a circuit board with solid state laser supply, detector and signal preamplifiers and is built into a number of Met One particle counters which, in their smaller in- struments, generally have only two size channels. Additional circuit boards have been designed and developed in Leeds which, in addition to appropriate control, data stor- age and transmission electronics, contain a multi-channel pulse height analyser. Laser scattering instruments generally exhibit a multi-valued response for particles around the wavelength of the laser illumination, the precise location of which depends upon the refractive index (and hence the composition) of the particulate material. By using a 12-bit A/D converter and full microprocessor control, the operating performance of the instrument may be optimised for particles with differing characteristics, with an output resolution of up to 256 size channels. The prototype is being evaluated and the degree to which its sensitivity and volume sampling rate may be adjusted to extend its operating size range examined. The low- cost and compact dimensions of these instruments allow risks to be taken in their deployment, which would not be practicable with larger aerosol instruments. Further- more, their relatively high volume flow rate means that, in many applications, particle counting statistics will be adequate to permit data sampling at frequencies up to 10Hz, making them well-suited to aerosol flux studies.

Smith, M. H.; Hill, M. K.; Brooks, B. J.

26

Multifractal analysis of atmospheric sub-micron particle data  

NASA Astrophysics Data System (ADS)

Multifractal analysis was used to describe air pollution by sub-micrometric atmospheric particles. Atmospheric particle concentrations were studied from March 31 to April 21, 2006, as part of the MILAGRO campaign at the Jasso Station by means of an SMPS. Sixteen campaign days were selected to carry out the multifractal analysis of the experimental data through Singularity Spectra f(?). In this work, the roughness/smoothness feature of atmospheric particle distributions was studied by means of the Hölder exponent (?), which can be associated with the intensity of particle emissions through time and the randomness of the external emission sources. Multifractal analysis has been found to be a useful tool to establish intensity fluctuations of atmospheric data.

Arizabalo, Rubén Darío; González-Ávalos, Eugenio; Korvin, Gabor

2015-03-01

27

Meteoric Material: An Important Component of Planetary Atmospheres  

NASA Technical Reports Server (NTRS)

Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

2001-01-01

28

Gas Dispersion and Immobile Gas Volume in Solid and Porous Particle Biofilter Materials at Low Air Flow Velocities  

Microsoft Academic Search

Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil

Prabhakar Sharma; Tjalfe G. Poulsen; Linsey Marr; Krzysztof Pikon´; Krzysztof Gaska; Lingjuan Wang; Edgar Oviedo-Rondon; John Small; Zifei Liu; Brian Sheldon; Gerald Havenstein; C. Williams; Di Tian; Daniel Cohan; Sergey Napelenok; Michelle Bergin; Yongtao Hu; Michael Chang; Armistead Russell; Ye Xu; Guohe Huang; Xiaosheng Qin; Kuo-Pin Yu; Grace Lee; Guo-Hao Huang; William Vizuete; Leiran Biton; Harvey Jeffries; Evan Couzo; Yi-Chi Chien; Chenju Liang; Shou-Heng Liu; Shu-Hua Yang; Maciej Kryza; Malgorzata Werner; Marek Blas; Anthony Dore; Mieczyslaw Sobik; Daniel Olsen; Morgan Kohls; Gregg Arney; Kaushlendra Singh; L. Risse; K. C. Das; John Worley; Sidney Thompson; Bryan Comer; James Corbett; J. Hawker; Karl Korfmacher; Earl Lee; Chris Prokop; James Winebrake

2010-01-01

29

[Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].  

PubMed

Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather. PMID:25338351

Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

2014-08-01

30

AstroParticles & Atmosphere, Paris May 2003John Matthews Monitoring the Aerosol Phase  

E-print Network

AstroParticles & Atmosphere, Paris May 2003John Matthews Monitoring the Aerosol Phase Function University of New Mexico #12;AstroParticles & Atmosphere, Paris May 2003John Matthews #12;AstroParticles & Atmosphere, Paris May 2003John Matthews #12;AstroParticles & Atmosphere, Paris May 2003John Matthews #12

31

Discrimination of airborne material particles from light scattering (TAOS) patterns  

NASA Astrophysics Data System (ADS)

Two-dimensional angle-resolved optical scattering (TAOS) is an experimental method which collects the intensity pattern of monochromatic light scattered by a single, micron-sized airborne particle. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. The solution proposed herewith relies on a learning machine (LM): rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified. The LM consists of two interacting modules: a feature extraction module and a linear classifier. Feature extraction relies on spectrum enhancement, which includes the discrete cosine Fourier transform and non-linear operations. Linear classification relies on multivariate statistical analysis. Interaction enables supervised training of the LM. The application described in this article aims at discriminating the TAOS patterns of single bacterial spores (Bacillus subtilis) from patterns of atmospheric aerosol and diesel soot particles. The latter are known to interfere with the detection of bacterial spores. Classification has been applied to a data set with more than 3000 TAOS patterns from various materials. Some classification experiments are described, where the size of training sets has been varied as well as many other parameters which control the classifier. By assuming all training and recognition patterns to come from the respective reference materials only, the most satisfactory classification result corresponds to ? 20% false negatives from Bacillus subtilis particles and <= 11% false positives from environmental and diesel particles.

Crosta, Giovanni F.; Pan, Yong-Le; Videen, Gorden; Aptowicz, Kevin B.; Chang, Richard K.

2013-05-01

32

Relativistic charged particle precipitation into Jupiter's sub-auroral atmosphere  

Microsoft Academic Search

Longitudinal variations of energetic charged particle precipitation into the jovian sub-auroral atmosphere are modeled based on weak diffusion scattering and variations in the local loss-cone size associated with asymmetries in the VIP-4 magnetic field model. Our scattering model solutions suggest that low latitude observations of enhanced H3+ and X-ray emissions are at least partially due to precipitating energetic particles. The

Bob Abel; Richard M. Thorne

2003-01-01

33

Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials  

NASA Astrophysics Data System (ADS)

Atmospheric pressure glow discharge plasma was used to modify spaceport materials to render them compliant with KSC ESD standards. The plasma treatment both inhibited and enhanced the recovery of adhered bacteria depending upon the material.

Trigwell, S.; Schuerger, A. C.; Buhler, C. R.; Calle, C. I.

2006-03-01

34

Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials  

Microsoft Academic Search

Atmospheric pressure glow discharge plasma was used to modify spaceport materials to render them compliant with KSC ESD standards. The plasma treatment both inhibited and enhanced the recovery of adhered bacteria depending upon the material.

S. Trigwell; A. C. Schuerger; C. R. Buhler; C. I. Calle

2006-01-01

35

Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K  

NASA Astrophysics Data System (ADS)

Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

2011-11-01

36

Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K  

NASA Astrophysics Data System (ADS)

Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

2012-09-01

37

Atmospheric New Particle Formation Enhanced by Organic Acids  

Microsoft Academic Search

Atmospheric aerosols often contain a substantial fraction of organic matter, but the role of organic compounds in new nanometer-sized particle formation is highly uncertain. Laboratory experiments show that nucleation of sulfuric acid is considerably enhanced in the presence of aromatic acids. Theoretical calculations identify the formation of an unusually stable aromatic acid-sulfuric acid complex, which likely leads to a reduced

Renyi Zhang; Inseon Suh; Jun Zhao; Dan Zhang; Edward C. Fortner; Xuexi Tie; Luisa T. Molina; Mario J. Molina

2004-01-01

38

Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles  

NASA Technical Reports Server (NTRS)

The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.

Marlow, William H.

1997-01-01

39

Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K  

SciTech Connect

Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice nucleation effciencies and can serve as effcient IN at atmospheric conditions typical for cirrus and mixed phase clouds. This indicates a potential link between human activities and cloud formation, and thus climate.

Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

2012-09-25

40

Particle motion in atmospheric boundary layers of Mars and Earth  

NASA Technical Reports Server (NTRS)

To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

1975-01-01

41

The atmospheric radiation response to solar-particle-events.  

PubMed

High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude. PMID:14727666

O'Brien, K; Sauer, H H

2003-01-01

42

Multiple Accelerating Potential SEM Microanalysis of Individual Atmospheric Particles (Invited)  

NASA Astrophysics Data System (ADS)

There are many significant applications of individual micro- or nano-particle characterization in aerosol and atmospheric sciences, as recent AGU sessions and topical meetings of organizations like the Microbeam Analysis Society have shown. Interpreting the results of individual particle analyses is complicated by the complexity of the matrix corrections involved and the compositional variability of the particles themselves. Even nano-particles can be composites of multiple phases. And due to their large surface areas, particle properties can be dominated by their surface coatings or agglomerations. One way to efficiently characterize such multi-phase objects (for particles larger than ~100 nm) is to utilize multiple accelerating potential (MAP) imaging and x-ray analysis in a high-resolution SEM. Changing the electron beam energy in several steps from 15-20 down to 1-3 keV emphasizes surface features in the electron imaging and reduces the analytical penetration from the µm to nm range. Existing thin-film algorithmic and Monte Carlo microprobe correction procedures can be adapted to correct the analytical data for particle geometric effects. The compositions of surface layers and under-layers can be separated and accurately determined. The results of this non-destructive method compares well in both surface sensitivity and accuracy to other surface-microanalytical techniques involving ion sputtering depth profiling. We have used MAP-SEM analysis to determine the thickness of surface layers thinner than 1 nm and the composition of multi-element surface coatings less than 10 nm thick. We will show examples of multiple accelerating potential analyses for the characterization of complex 1-10 µm atmospheric particles and discuss the practical implementation of algorithmic and Monte Carlo corrections for particle x-ray emission data.

Armstrong, J. T.

2009-12-01

43

Impact of aerosols and atmospheric particles on plant leaf proteins  

NASA Astrophysics Data System (ADS)

Aerosols and atmospheric particles can diffuse and absorb solar radiation, and directly affect plant photosynthesis and related protein expression. In this study, for the first time, we performed an extensive investigation of the effects of aerosols and atmospheric particles on plant leaf proteins by combining Geographic Information System and proteomic approaches. Data on particles with diameters of 0.1-1.0 ?m (PM1) from different locations across the city of Beijing and the aerosol optical depth (AOD) over the past 6 years (2007-2012) were collected. In order to make the study more reliable, we segregated the influence of soil pollution by measuring the heavy metal content. On the basis of AOD and PM1, two regions corresponding to strong and weak diffuse solar radiations were selected for analyzing the changes in the expression of plant proteins. Our results demonstrated that in areas with strong diffuse solar radiations, plant ribulose bisphosphate carboxylase was expressed at higher levels, but oxygen evolved in enhancer protein and light-harvesting complex II protein were expressed at lower levels. The expression of ATP synthase subunit beta and chlorophyll a-b binding protein were similar in both regions. By analyzing the changes in the expression of these leaf proteins and their functions, we conclude that aerosols and atmospheric particles stimulate plant photosynthesis facilitated by diffuse solar radiations.

Yan, Xing; Shi, Wen Z.; Zhao, Wen J.; Luo, Na N.

2014-05-01

44

Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.  

PubMed

Galactic cosmic rays, which are thought to be produced and accelerated by a variety of mechanisms in the Milky Way galaxy, interact with the solar wind, the earth's magnetic field, and its atmosphere to produce hadron, lepton, and photon fields at aircraft altitudes that are quite unlike anything produced in the laboratory. The energy spectra of these secondary particles extend from the lowest possible energy to energies over an EeV. In addition to cosmic rays, energetic particles, generated on the sun by solar flares or coronal mass ejections, bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as cosmic rays. The authors have calculated atmospheric cosmic-ray angular fluxes, spectra, scalar fluxes, and ionization, and compared them with experimental data. Agreement with these data is seen to be good. These data have been used to calculate equivalent doses in a simplified human phantom at aircraft altitudes and the estimated health risks to aircraft crews. The authors have also calculated the radiation doses from several large solar energetic particle events (known as GLEs, or Ground Level Events), which took place in 1989, including the very large event known as GLE 42, which took place on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory. Unfortunately, there are essentially no experimental data with which to compare these calculations. PMID:11542509

O'Brien, K; Friedberg, W; Sauer, H H; Smart, D F

1996-01-01

45

Internally mixed atmospheric aerosol particles: Hygroscopic growth and light scattering  

NASA Astrophysics Data System (ADS)

Internally mixed aerosol particles consisting of one or more hygroscopic compounds can contain both solid and liquid parts, the details depending on the relative humidity (RH). The solid-to-liquid transition of such particles as the RH increases influences their light-scattering properties through changes in particle shape, size, and refractive index. Most techniques used to analyze ambient aerosol particles do not have the ability to view both solid and liquid phases within individual particles. Using a transmission electron microscope fitted with an environmental cell (ETEM), we analyzed laboratory-prepared and ambient aerosol samples. Our results suggest that solid inclusions inside aqueous droplets at high RH values (e.g., >65%) are likely to be common in atmospheric particles. In order to assess the effects of such inclusions, we calculated their combined light-scattering efficiencies using a discrete dipole approximation (DDA). The results show differences compared to those from a core-shell model, with an average increase in light scattering of ˜20%. The results demonstrate that the combination of ETEM measurements of ambient particles with DDA calculations yields new insights into the effects of inclusions on the light-scattering properties of internally mixed particles.

Freney, Evelyn J.; Adachi, Kouji; Buseck, Peter R.

2010-10-01

46

Determining particle density using known material Hugeniot curves  

NASA Technical Reports Server (NTRS)

A method is detailed to determine the density of particles wherein the closing velocity is known between the impacting particles and a plate of known material. Either the shock wave velocity or the material velocity produced in the plate upon impact by an unknown material particle is determined and compared with the corresponding shock wave or material velocity that would by produced by different known material particles having the same closing velocity upon impact with the plate. The unknown material particle density is derived by obtaining a coincidence of the shock wave velocity or material velocity conditions initially produced upon impact between the known material plate and one of the different material particles and from the fact that shock wave velocity and material velocity are ordered on the impacting particle material density alone.

Dibattista, J. D. (inventor)

1974-01-01

47

Modelling of externally mixed particles in the atmosphere  

NASA Astrophysics Data System (ADS)

Particles present in the atmosphere have significant impacts on climate as well as on human health. Thus, it is important to accurately simulate and forecast their concentrations. Most commonly used air quality models assume that particles are internally mixed, largely for computational reasons. However, this assumption is disproved by measurements, especially close to sources. In fact, the externally-mixed properties of particles are important for aerosol source identification, radiative effects and particle evolution. In this study, a new size-composition resolved aerosol model is developed. It can solve the aerosol dynamic evolution for external mixtures taking into account the processes of coagulation, condensation and nucleation. Both the size of particles and the mass fraction of each chemical compound are discretized. For a given particle size, particles of different chemical composition may co-exist. Aerosol dynamics is solved in each grid cell by splitting coagulation and condensation/evaporation-nucleation processes. For the condensation/evaporation, surface equilibrium between gas and aerosol is calculated based on ISORROPIA and the newly developed H2O (Hydrophilic/Hydrophobic Organic) Model. Because size and chemical composition sections evolve during condensation/evaporation, concentrations need to be redistributed on fixed sections after condensation/evaporation to be able to use the model in 3 dimensions. This is done based on the numerical scheme HEMEN, which was initially developed for size redistribution. Chemical components can be grouped into several aggregates to reduce computational cost. The 0D model is validated by comparison to results obtained for internally mixed particles and the effect of mixing is investigated for up to 31 species and 4 aggregates. The model will be integrated into the air quality modeling platform POLYPHEMUS to investigate its performance in modeling air quality by comparing with observations during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) campaign in July 2009.

ZHU, Shupeng; Sartelet, Karine; Seigneur, Christian

2014-05-01

48

[Relationship between atmospheric particles and rain water chemistry character].  

PubMed

Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant. PMID:20063723

Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

2009-11-01

49

Absorption and scattering of light by nonspherical particles. [in atmosphere  

NASA Technical Reports Server (NTRS)

Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.

Bohren, C. F.

1986-01-01

50

Material flammability in space exploration atmospheres  

Microsoft Academic Search

In order to reduce the risk of decompression sickness associated with extravehicular activity, NASA is designing the next generation of exploration vehicles with a different cabin pressure and oxygen concentration than used previously. This work explores how the flammability of solid materials changes in this new environment. One method to evaluate material flammability is by its ease of ignition. To

Sara Suzanne McAllister

2008-01-01

51

Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles  

SciTech Connect

Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

2013-06-25

52

Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry  

NASA Astrophysics Data System (ADS)

Continuous ambient measurement of atmospheric aerosols was performed with a single particle aerosol mass spectrometer (SPAMS) in Guangzhou during summer of 2012. The aerosols mainly consisted of carbonaceous particles as major compositions in submicrometer range, including K-rich (29.8%), internally mixed organics and elemental carbon (ECOC, 13.5%), organic carbon-rich (OC, 18.5%), elemental carbon (EC, 12.3%) and high molecular OC (HMOC, 3.2%), and inorganic types (e.g., Na-rich Na-K, Fe-rich, V-rich, and Cu-rich) as major ones in supermicrometer range. Results show that carbonaceous particles were commonly internally mixed with sulfate and nitrate through atmospheric processing, in particular, with sulfate; inorganic types were dominantly internally mixed with nitrate rather than sulfate, indicative of different evolution processes for carbonaceous and inorganic particles in the atmosphere. It was observed that variations of these particle types were significantly influenced by air mass back trajectories (BTs). Under the influence of continental BTs, carbonaceous types were prevalent, while Na-K and Na-rich types considerably increased when the BTs originated from south marine regions. Number fraction of carbonaceous types exhibited obvious diurnal variation throughout the sampling period, which reflects their relatively stable emission and atmospheric processes. Two EC particle types LC-EC and NaK-EC showed different diurnal distributions, suggesting their different origins. The obtained information on the mixing state and the temporal variation of particle types is essential for developing an understanding on the origin and evolution processes of atmospheric aerosols.

Zhang, Guohua; Han, Bingxue; Bi, Xinhui; Dai, Shouhui; Huang, Wei; Chen, Duohong; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Zhou, Zhen

2015-02-01

53

Measurements of the physical properties of particles in the urban atmosphere  

Microsoft Academic Search

Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with

Roy M Harrison; Marcus Jones; Gareth Collins

1999-01-01

54

Water Absorption by Atmospheric Organic Particles: Evidence, Causes and Simulations  

NASA Astrophysics Data System (ADS)

The optical and chemical properties of atmospheric fine particles and their ability to act as cloud condensation nuclei depend strongly upon their affinity for water. Laboratory experiments have shown that water-soluble sulfates and nitrates, which are major inorganic components of atmospheric fine particles, absorb water in an amount proportional to water vapor pressure. Analogous information about the interactions between water and organics is lacking. Moreover, the molecular composition of atmospheric particulate organics remains poorly characterized; information on the molecular composition of the water-soluble fraction is particularly sparse. Here we first analyze concurrent observations of particle chemical composition and water content from a continental nonurban (Grand Canyon) and an urban (Los Angeles) location to determine whether the water content of atmospheric particles is influenced by the presence of organics. We find that the aggregate hygroscopic properties of inorganic particles are altered substantially when organics are also present. For the nonurban location, organics enhance water absorption by inorganics. For the urban location, on the other hand, the net effect of organics is to diminish water absorption of the inorganics. Second, we identify specific compounds that are likely to contribute to the water-soluble fraction by juxtaposing published observations regarding the extraction characteristics and the molecular composition of atmospheric particulate organics with compound-specific solubility and condensibility for a wide variety of organics. We find that water-soluble organics, which constitute a substantial fraction of the total organic mass, include C2 to C7 multifunctional compounds (e.g. diacids, polyols, amino acids). Third, towards developing a simulation capability, we (1) synthesize published laboratory data to evaluate the water absorption behavior of multifunctional oxygenated organic compounds; and (2) test the reliability of the UNIFAC method for estimating water activities of aqueous organic solutions. Laboratory data show that multifunctional oxygenated compounds can absorb water over the entire range of relative humidities. For a wide variety of compounds (e.g., glycols, dicarboxylic acids, keto acids) and a wide range of solute concentrations (0 to over 90% by wt), we find that in most cases, water activities can be estimated within approximately 15% error.

Saxena, Pradeep

55

Lateral solids mixing behavior of different particles in a riser with FCC particles as fluidized material  

Microsoft Academic Search

An impulse injection phosphor tracer technique is proposed to study the effect of particle properties, including particle size, particle density and particle sphericity, on the lateral mixing behavior in a riser with FCC particles as fluidized materials. The RTD curves of all kinds of particles have one peak, which can be described by a two-dimensional dispersion model. Between 15 and

Bing Du; Fei Wei

2002-01-01

56

Investigations of organic and microbiological atmospheric ice nucleating particles (Invited)  

NASA Astrophysics Data System (ADS)

Measurements in a number of laboratory and field campaigns have offered the opportunity to compare and contrast ice nucleation by soil-and plant-based inorganic, organic, and microbiological particles versus ice nucleating particles (INP) actually sampled in the atmosphere. This presentation reviews these recent studies. Plants support sometimes prodigious populations of INA bacteria as well as fungi and other potential biological ice nucleating particles, such as fragments of plant tissues themselves. The means of release of plant-sourced INP to the atmosphere is not fully documented, but our recent studies have found clear cases of release of ice nuclei from disturbances such as rain, both in forests and over grasslands, and harvesting. Composition of such ice nuclei in air has been inferred at these times based on simultaneous measurements of ice nuclei and biological aerosols. At quiescent times, measurements of the labile fraction of ice nucleating particles in air over agricultural regions suggest that organic and possibly microbiological organisms dominate ice nuclei populations, but INA bacteria are only selective and modest contributors at the warmest activation temperatures. Our results therefore suggest the presence of a spectrum of biological and organic ice nucleating particles over land regions. The ice nucleating activity of mineral soils is well documented and the presence of these particles in air is certain on the basis of many measurement campaigns which identified mineral particles to represent up to half or more of ice nuclei sampled in parts of the free troposphere. Our recent measurements have also documented a clear organic ice nucleating particle source within arable, sagebrush, grassland and forest soils, a source that may dominate over the mineral ice nuclei in such soils. Investigations of their compositions will be described. These ice nuclei are strongly resistant to heat, and may represent a separate population and source compared to the labile ice nuclei found in air over agricultural regions. While these soil-based ice nuclei must at times be lofted into the free troposphere and may represent some proportion of carbonaceous ice nuclei detected via electron microscopy in previous ambient sampling, we have not presently directly confirmed the presence of these ice nuclei in ambient air. Depending on available time, results regarding organic contributions of ice nucleating particles from biomass burning and oceanic sources will also be discussed.

DeMott, P. J.; Hill, T. C.; Tobo, Y.; Prenni, A. J.; McMeeking, G. R.; Levin, E. J.; McCluskey, C.; Huffman, J. A.; Mason, R.; Bertram, A. K.; Kreidenweis, S. M.

2013-12-01

57

Properties of submicron particles in Atmospheric Brown Clouds  

NASA Astrophysics Data System (ADS)

The Atmospheric Brown Clouds (ABC) is an important problem of this century. Investigations of last years and satellite data show that the ABC (or brown gas, smog, fog) cover extensive territories including the whole continents and oceans. The brown gas consists of a mixture of particles of anthropogenic sulfates, nitrates, organic origin, black carbon, dust, ashes, and also natural aerosols such as sea salt and mineral dust. The brown color is a result of absorption and scattering of solar radiation by the anthropogenic black carbon, ashes, the particles of salt dust, and nitrogen dioxide. The investigation of the ABC is a fundamental problem for prevention of degradation of the environment. At present in the CIS in-situ investigations of the ABC are carried out on Lidar Station Teplokluchenka (Kyrgyz Republic). Here, we present the results of experimental investigation of submicron (nanoscale) particles originating from the ABC and the properties of the particles. Samples of dust precipitating from the ABC were obtained at the area of Lidar Station Teplokluchenka as well as scientific station of the Russian Academy of Sciences near Bishkek. The data for determination of the grain composition were obtained with the aid of the scanning electron microscopes JEOL 6460 LV and Philips XL 30 FEG. Analysis of the properties of the particles was performed by means of the X-ray diffraction using diffractometer Siemens D5000. The images of the grains were mapped. The investigation allows us to get (after the image processing) the grain composition within the dust particle size range of 60 nm to 700 ?m. Distributions of nano- and microscale particles in sizes were constructed using Rozin-Rammler coordinates. Analysis of the distributions shows that the ABC contain submicron (nanoscale) particles; 2) at higher altitudes the concentration of the submicron (nanoscale) particles in the ABC is higher than at lower altitudes. The chemical compositions of the particles are shown to be close to those typical for the ABC. We present also the results of the study of morphology and mineralogical composition of the obtained particles as well as their magnetic properties. This study was supported by the Division of Earth Sciences, Russian Academy of Sciences (research program "Nanoscale particles in nature and technogenic products: conditions of existence, physical and chemical properties, and mechanisms of formation") and by ISTC (project No. KR-1522).

Adushkin, V. V.; Chen, B. B.; Dubovskoi, A. N.; Friedrich, F.; Pernik, L. M.; Popel, S. I.; Weidler, P. G.

2010-05-01

58

Wood-based building materials and atmospheric carbon emissions  

Microsoft Academic Search

This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process

Andrew H Buchanan; S. Bry Levine

1999-01-01

59

Energy deposition rates by charged particles. [in upper atmosphere  

NASA Technical Reports Server (NTRS)

A summary of measurements of the precipitation of electrons and positive ions (in the keV-MeV range) detected aboard eight rockets launched within the Energy Budget Campaign from Northern Scandinavia is given, together with corresponding satellite data. In some cases strong temporal variations of the downgoing integral fluxes were observed. The fluxes provide the background for the calculated ion production rates and altitude profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance and cosmic noise absorption. The derived ion production rates by eneretic particles are compared to other night-time ionisation sources.

Torkar, K. M.; Urban, A.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Smith, L. G.; Dumbs, A.; Grandal, B.; Ulwick, J. C.; Vancour, R. P.

1985-01-01

60

Laboratory Studies of Hydrocarbon Nucleation on Tholin Particles and Thin Organic Films: Application to Titan's Atmosphere  

NASA Technical Reports Server (NTRS)

Titan, Saturn's largest satellite, has a thick nitrogen/methane atmosphere. In Titan's lower atmosphere, methane is saturated or supersaturated with respect to nucleation and may form clouds. To better characterize the properties of Titan's methane clouds we have measured the saturation ratio required to obtain butane nucleation, S (sub crit), on Titan tholin material and organic films. We find a critical saturation ratio for butane on tholin particles of S (sub crit) = 1.40, suggesting high supersaturations are required for nucleation. If methane is similar to butane, we expect high supersaturations of methane as well. This could favor the formation of a small number of large particles, consistent with recent measurements of methane rain on Titan.

Curtis, Daniel B.; Glandorf, David L.; Toon, Owen B.; Tolbert, Margaret A.; McKay, Christopher P.; Khare, Bishun N.

2001-01-01

61

Hyperspectral material identification on radiance data using single-atmosphere or multiple-atmosphere modeling  

NASA Astrophysics Data System (ADS)

Reflectance-domain methods convert hyperspectral data from radiance to reflectance using an atmospheric compensation model. Material detection and identification are performed by comparing the compensated data to target reflectance spectra. We introduce two radiance-domain approaches, Single atmosphere Adaptive Cosine Estimator (SACE) and Multiple atmosphere ACE (MACE) in which the target reflectance spectra are instead converted into sensor-reaching radiance using physics-based models. For SACE, known illumination and atmospheric conditions are incorporated in a single atmospheric model. For MACE the conditions are unknown so the algorithm uses many atmospheric models to cover the range of environmental variability, and it approximates the result using a subspace model. This approach is sometimes called the invariant method, and requires the choice of a subspace dimension for the model. We compare these two radiance-domain approaches to a Reflectance-domain ACE (RACE) approach on a HYDICE image featuring concealed materials. All three algorithms use the ACE detector, and all three techniques are able to detect most of the hidden materials in the imagery. For MACE we observe a strong dependence on the choice of the material subspace dimension. Increasing this value can lead to a decline in performance.

Mariano, Adrian V.; Grossmann, John M.

2010-11-01

62

The effects of solar particle events on the middle atmosphere  

NASA Technical Reports Server (NTRS)

Solar particle events (SPEs) have been investigated since the late 1960's for possible effects on the middle atmosphere. Solar protons from SPEs produce ionizations, dissociations, dissociative ionizations, and excitations in the middle atmosphere. The production of HO(x) and NO(x) and their subsequent effects on ozone can also be computed using energy deposition and photochemical models. The effects of SPE-produced HO(x) species on the odd nitrogen abundance of the middle atmosphere as well as the SPE-produced long term effects on ozone. Model computations indicate fairly good agreement with ozone data for the SPE-induced ozone depletion caused by NO(y) species connected with the August 1972 SPE. The model computations indicate that NO(y) will not be substantially changed over a solar cycle by SPEs. The changes are mainly at high latitudes and are on time scales of several months, after which the NO(y) drifts back to its ambient levels.

Jackman, Charles H.; Douglass, Anne R.; Meade, Paul E.

1989-01-01

63

Gas-particle partitioning of pesticides in atmospheric samples  

NASA Astrophysics Data System (ADS)

A filter-XAD-2 resin plug high-volume air sampler was used to collect the particle (P) and vapour (V) phases of 11 pesticides. The atmospheric concentrations were measured simultaneously at three sites characterised as remote (Aubure in the Vosges mountains), rural (Colmar, in the upper Rhine Valley), and urban (Strasbourg, in the upper Rhine Valley). The measured concentrations, which agree with those of literature, were used to study the influence of the physico-chemical parameters on the V/P partitioning. The behaviour observed on two organochlorine pesticides ( ?-HCH and HCB), carbaryl, and trifluraline corresponds to the one presented in literature for organochlorine and PAH. Therefore, the V/P partitioning is mainly controlled by temperature, total suspended particle (TSP), and vapour pressure. Nevertheless, the slope of the regression line of log( A.TSP/ F ) against log P° l (where A and F are, respectively, the gas and particulate concentrations and P° l is the subcooled liquid-vapour pressure) is less compared with that presented in literature (0.36 against approximately 0.85). This difference could possibly result from the low TSP concentrations measured in our study. For some pesticides (trifluraline, ?-HCH, mecoprop, carbofuran and atrazine) the description of the V/P partitioning is improved by using relative humidity in addition to the three previous environmental parameters (temperature, TSP and vapour pressure). There seems to exist a competition mechanism between water molecules in gas phase and pesticides to adsorb on the receiving sites of the particles. By this mechanism increase in the atmospheric relative humidity induces a simultaneous increase of pesticides in the gas phase.

Sanusi, Astrid; Millet, Maurice; Mirabel, Philippe; Wortham, Henri

64

Graphene: from materials science to particle physics  

E-print Network

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaquín E. Drut; Timo A. Lähde; Eero Tölö

2010-11-02

65

A test-particle model of the atmosphere/ionosphere system of Saturn's main rings  

E-print Network

A test-particle model of the atmosphere/ionosphere system of Saturn's main rings M. Bouhram,1 R. E pass of the Cassini orbiter near the A and B rings of Saturn, formed mainly by H2O ice particles. Crary (2006), A test-particle model of the atmosphere/ionosphere system of Saturn's main rings, Geophys

Johnson, Robert E.

66

Water and acid soluble trace metals in atmospheric particles  

NASA Technical Reports Server (NTRS)

Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

Lindberg, S. E.; Harriss, R. C.

1983-01-01

67

Multiscale Modeling of Metallic Materials Containing Embedded Particles  

NASA Technical Reports Server (NTRS)

Multiscale modeling at small length scales (10(exp -9) to 10(exp -3) m) is discussed for aluminum matrices with embedded particles. A configuration containing one particle surrounded by about 50 grains and subjected to uniform tension and lateral constraint is considered. The analyses are performed to better understand the effects of material configuration on the initiation and progression of debonding of the particles from the surrounding aluminum matrix. Configurational parameters considered include particle aspect ratio and orientation within the surrounding matrix. Both configurational parameters are shown to have a significant effect on the behavior of the materials as a whole. For elliptical particles with the major axis perpendicular to the direction of loading, a particle with a 1:1 aspect ratio completely debonds from the surrounding matrix at higher loads than particles with higher aspect ratios. As the particle major axis is aligned with the direction of the applied load, increasing amounts of load are required to completely debond the particles.

Phillips, Dawn R.; Iesulauro, Erin; Glaessgen, Edward H.

2004-01-01

68

Electromagnetic properties of Permendur granular composite materials containing flaky particles  

NASA Astrophysics Data System (ADS)

Electromagnetic properties of Permendur (Fe50Co50 alloy) granular composite materials containing flaky particle have been studied from the RF to microwave frequency range. Properties of the flaky particle composites were compared with the spherical particle ones. The electrical conductivity of the flaky particle composite was higher than that of the spherical particle composite at the same particle content. An insulator to metal transition was observed at the percolation threshold ?c in both composites. The ?c of the flaky particle composite was lower than that of the spherical one. The relative complex permittivity indicates that the insulating state has dielectric properties. For the spherical particle composite, the permittivity enhancement caused by particle cluster formation can be described by the effective cluster model (ECM). The enhancement of the dielectric constant in the flaky particle composite is larger than the ECM prediction. A negative permittivity spectrum indicating a low frequency plasmonic state was observed in the metallic 70 vol. % flaky particle composite. The relative complex permeability spectra of the flaky particle composite are different from those of the spherical one. The flaky particle composite shows a larger permeability value and lower permeability dispersion frequency than the spherical particle composite. Negative permeability spectra were observed in the both composite materials. The negative permeability frequency band of the flaky particle composite is lower than that of the spherical particle composite owing to the demagnetizing field effect.

Kasagi, Teruhiro; Tsutaoka, Takanori; Hatakeyama, Kenichi

2014-10-01

69

Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds  

PubMed Central

The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

2013-01-01

70

Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.  

PubMed

The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

2013-12-17

71

Status and potential of atmospheric plasma processing of materials  

SciTech Connect

This paper is a review of the current status and potential of atmospheric plasma technology for materials processing. The main focus is the recent developments in the area of dielectric barrier discharges with emphasis in the functionalization of polymers, deposition of organic and inorganic coatings, and plasma processing of biomaterials. A brief overview of both the equipment being used and the physicochemical reactions occurring in the gas phase is also presented. Atmospheric plasma technology offers major industrial, economic, and environmental advantages over other conventional processing methods. At the same time there is also tremendous potential for future research and applications involving both the industrial and academic world.

Pappas, Daphne [United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

2011-03-15

72

Generation of nano roughness on fibrous materials by atmospheric plasma  

NASA Astrophysics Data System (ADS)

Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

Kulyk, I.; Scapinello, M.; Stefan, M.

2012-12-01

73

Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry  

SciTech Connect

Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

2014-04-21

74

Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials  

NASA Technical Reports Server (NTRS)

Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

2006-01-01

75

Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation  

SciTech Connect

The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation, but basic species such as ammonia are also important. However, few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation (FTICR-SID) to investigate time- and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: 1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and 2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e. diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.

Bzdek, Bryan R.; Depalma, Joseph W.; Ridge, Douglas P.; Laskin, Julia; Johnston, Murray V.

2013-02-27

76

Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity  

NASA Astrophysics Data System (ADS)

Secondary organic particles are abundant in the troposphere, and may play an important role in climate, air quality, and health. Viscosity is a physical property of particles that is poorly understood and may influence particle sizes and concentrations in the troposphere, as well as reaction rates with various atmospheric oxidants. In order to predict the effects of particle viscosity on various atmospheric processes, the viscosities must be quantified. A major obstacle to measuring viscosities of atmospheric or environmental chamber samples is the small sample volumes (typically on the order of milligrams after long collection times). The minimum sample volumes required for current microviscometry techniques are on the order of 10's of ?L's. Those techniques, however, are limited to measuring viscosities <0.1 Pa s, in the low viscosity liquid regime. The viscometers currently available to measure higher viscosities require much greater sample volumes, which are not realistically achievable in any atmospheric sampling or chamber experiments. Presented here are two novel approaches to measuring the viscosity of environmental chamber and atmospheric samples, which are capable of measuring a wide range of viscosities using significantly less than 1mg of material, and applicable across the ambient tropospheric RH range. The first is a bead-mobility technique, where small (~1?m), insoluble beads are observed as they circulate within 20-50 ?m particles. The second is a poke-flow technique, whereby 20-70 ?m particles are poked with a needle, and the flow rate of these particles after poking is used to determine viscosity. These techniques not only provide visual evidence that the water-soluble fraction of atmospheric samples behave as semi-solids or solids, but also quantitative information as to their viscosities.

Renbaum-Wolff, Lindsay; Grayson, James W.; Kuwata, Mikinori; Bateman, Adam P.; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John; Martin, Scot T.; Bertram, Allan K.

2013-04-01

77

Quantifying the kinetic limitations of atmospheric gas-to-particle conversion  

NASA Astrophysics Data System (ADS)

Atmospheric aerosol particles, from anthropogenic and biogenic sources, remain a major uncertainty in the Earth system: they impact the climate by directly scattering and absorbing solar radiation, as well as regulating the properties of clouds. On regional scales, aerosols are among the main pollutants deteriorating air quality, their impacts on both poorly quantified. Reducing these uncertainties requires accurate knowledge on the composition, concentrations and size distributions of these particles as they reside in the atmosphere. Unfortunately, there are currently huge uncertainties in many fundamental parameters that are required to predict their environmental impacts. This is largely down to the fact that a significant fraction of atmospheric aerosol particles are comprised of organic material (20-90% of particle mass), containing potentially thousands of compounds with largely uncertain properties It is becoming increasingly evident that aerosols exist as metastable amorphous states, rather than simple liquid/solid mixtures. Empirical evidence suggests that particles can form glass like substances. As the glass transition temperature is approached, an increase in viscosity leads to a reduced rate of molecular diffusion and an arrested non-equilibrium structure. Partitioning between the gas and condensed phase is kinetically limited in such amorphous states. Traditional organic aerosol models do not account for this, they assume that 1) the aerosol phase is a well-mixed non-viscous liquid; 2) the aerosol phase instantaneously equilibrates with the gas phase constituents. This adds significant uncertainty to predictions of gas/particle mass transfer as mixing timescales are ultimately governed by the diffusion coefficients of the aerosol constituents in the aerosol, which, on the other hand, are connected to the viscosity of the particulate matter. For typical aerosol sizes, the characteristic time for mixing could increase from a few milliseconds to hours or even days. In this study, we present direct laboratory determination of viscosity/diffusing of atmospherically relevant species along with an evaluation of composition dependent predictive techniques. Output from highly detailed chemical mechanisms are used to probe potential sensitivities of these kinetic limitations and sensitivities to our predictive capability.

Booth, A.; Murphy, B.; Riipinen, I.; Percival, C.; Topping, D. O.

2013-12-01

78

Doped luminescent materials and particle discrimination using same  

DOEpatents

Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

2014-10-07

79

Atmospheric budget of primary biological aerosol particles from fungal spores  

NASA Astrophysics Data System (ADS)

The contribution of primary biological aerosol particles (PBAP) to the global budget of organic aerosol is poorly understood. Concentrations of mannitol, a biotracer for fungal spores, are used here to constrain the first global model (GEOS-Chem) simulation of PBAP from fungi. Emissions are driven by leaf area index and atmospheric water vapor concentrations and are empirically optimized based on the geographical and seasonal variability of observed mannitol concentrations. Optimized global emissions total 28 Tg yr-1, with 25% of that total emitted as fine mode (PM2.5) aerosol. Fungal spores contribute 23% of total primary emissions of organic aerosol, or 7% of the fine-mode source. Annual mean simulated surface concentrations of PBAP over vegetated regions range from 0.1-0.7 ?gm-3 (PM2.5) and 0.4-3.0 ?gm-3 (PM10), with the highest concentrations in the tropics, where PBAP may be the dominant source of organic aerosol. Further validation is required to reduce the substantial uncertainties on this budget.

Heald, Colette L.; Spracklen, Dominick V.

2009-05-01

80

Large area nuclear particle detectors using ET materials  

NASA Technical Reports Server (NTRS)

The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

1987-01-01

81

A criterion for new particle formation in the sulfur-rich Atlanta atmosphere  

Microsoft Academic Search

A simple dimensionless parameter, L, is shown to determine whether or not new particle formation can occur in the atmosphere on a given day. The criterion accounts for the probability that clusters, formed by nucleation, will coagulate with preexisting particles before they grow to a detectable size. Data acquired in an intensive atmospheric measurement campaign in Atlanta, Georgia, during August

P. H. McMurry; M. Fink; H. Sakurai; M. R. Stolzenburg; R. L. Mauldin; J. Smith; F. Eisele; K. Moore; S. Sjostedt; D. Tanner; L. G. Huey; J. B. Nowak; E. Edgerton; D. Voisin

2005-01-01

82

Materials selection for a dry atmospheric mercury deposits sampler.  

PubMed

In order to develop a sampler for measuring dry deposition rates for atmospheric mercury, suitable materials are needed that neither adsorb nor release mercury. In this paper, four materials (polyvinyl chloride (PVC), acrylonitrile-butadiene-styrene (ABS), Teflon and glass) were tested. Each of the materials was placed in a beaker containing mercuric solution under varied conditions for pH, preservative concentration, initial mercuric concentration, temperature, acid type and contact time of the material. The concentrations of the mercuric solutions were determined using the cold-vapor atomic absorption (CVAA) technique. The experimental results show that glass has the lowest absolute net adsorption rates (NARs) of 0.026-1.13 pg/m2 among the materials tested. Teflon, PVC and ABS have NARs ranging from 0.54 to 10.4 microg/M2 over an adsorption duration of one or two weeks. ABS has significantly higher adsorption rates for mercury than PVC and Teflon, indicating its inappropriateness as the material for building the sampler. Teflon and PVC will be the materials of choice for the sampler. The experimental results can also be used in establishing appropriate sampling conditions in the field. PMID:11695581

Rong, X; Waite, D; Huang, G H; Tong, L; Kybett, B

2001-11-01

83

Atmospheric giant particles (iberulites) from African desert soils and human health  

NASA Astrophysics Data System (ADS)

Earth is twice as dusty as in 19th century. The amount of soil dust in the Earth's atmosphere has doubled over the last century. The circum-Mediterranean area has one of the highest dust accretion rates in the world. The larger deserts (Sahara, Gobi, Badai Jaran, etc.) are the primary sources of mobilized desert-dust top soil that move great distances through the troposphere each year. Erosion, atmospheric transport, and dust-sized soil particles deposition to earth's surface are important process in aeolian environments. Atmospheric dust is associated to global climate change. Iberulites are giant microspherulitic particles (87.9 × 27.6 µm) rounded and reddish, generated in the atmosphere (troposphere) by coalescence of smaller particles, finally falling to the earth's surface. The name comes from the Iberian Peninsula where they were discovered. An iberulite is a co-association with axial geometry, consisting of well-defined mineral grains, together with non-crystalline compounds, structured around a coarse-grained core with a smectite rind, only one vortex and pinkish color formed in the troposphere by complex aerosol-water-gas interactions. Sedimentable dust ("dry deposition") in the city of Granada (Spain) for 17 African dust intrusion events occurring in the summer months of 2010 has been studied. In all samples were detected (SEM, stereomicroscope) iberulites. Total dust and the iberulites are composed mainly by mineral particles of different nature (XRD and SEM-EDX) and size less than 10µm (laser technique), implying dangerousness by inhalation. In the total dust the dominant mineral is dolomite [CaMg(CO3)2], abundant in the surroundings of the city; in the iberulites dominates the quartz (SiO2), which indicates Saharan origin. The iberulites and the total dust are associated with metals (ICP-MS) that have a capacity to transport electrons with a high toxic potential in the body. The concentration of Cu and Pb in total dust were 5 and 2.5 times higher than the soil background values of Granada province. In the iberulites we have detected (SEM-EDX) biological material (bacteria, diatoms, nanoplankton, etc.) which allows to emit a hypothesis about their role as vectors (atmospherical "shuttles") for alloctonous diseases. Recently has been observed the role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain).

Párraga, Jesús; Delgado, Gabriel; Bech, Jaume; Martín-García, Juan Manuel; Delgado, Rafael

2013-04-01

84

Plasma-polymerized tetrafluoroethylene coatings on silica particles by atmospheric-pressure glow discharge  

Microsoft Academic Search

This paper presents a method of novel plasma treatment for fine particles by the atmospheric-pressure glow (APG) discharge, in which particles were circulated and repeatedly plasma-treated at atmospheric pressure. Using this method, plasma-polymerized tetrafluoroethylene (TFE) film formations on the porous granulated silica particles of 152 ?m mean diameter were investigated. The XPS C(1s) spectrum of the treated surfaces deconvoluted into

Yasushi Sawada; Masuhiro Kogama

1997-01-01

85

Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols  

SciTech Connect

The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

2007-04-25

86

Direct night-time ejection of particle-phase reduced biogenic sulfur compounds from the ocean to the atmosphere.  

PubMed

The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ?67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden. PMID:25835033

Gaston, Cassandra J; Furutani, Hiroshi; Guazzotti, Sergio A; Coffee, Keith R; Jung, Jinyoung; Uematsu, Mitsuo; Prather, Kimberly A

2015-04-21

87

Efficient Collection of Atmospheric Aerosols with a Particle Concentrator—Electrostatic Precipitator Sampler  

Microsoft Academic Search

A novel particle sampling methodology developed recently by our group (Han et al. 2008) has been extended in this article to collect atmospheric particles in electrostatic precipitators (ESPs) for chemical and biological–toxicological analysis. Particles are grown to super-micron droplets via condensation of ultrapure deionized water, and concentrated by virtual impaction in the versatile aerosol concentration enrichment system (VACES). The grown

Bangwoo Han; Neelakshi Hudda; Zhi Ning; Yong-Jin Kim; Constantinos Sioutas

2009-01-01

88

Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology  

Microsoft Academic Search

Atmospheric particle number size distributions determined over 1.5 years at a central European site were statistically analyzed in terms of their relation to time of day, season, meteorology, and synoptic-scale air masses. All size distributions were decomposed into lognormal particle modes corresponding to the accumulation, Aitken, aged nucleation, and nucleation modes. The concentration of nucleation mode particles (30 nm) lacked

Wolfram Birmili; Alfred Wiedensohler; Jost Heintzenberg; Katrin Lehmann

2001-01-01

89

On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere  

Microsoft Academic Search

Summary By the «limiting sphere» method the combination coefficients for gaseous ions and aerosol particles were calculated, allowing for the jump in ion concentration at the surface of the particles. Hence the stationary charge distribution on aerosol particles in a symmetrical bipolar ionic atmosphere was determined. The use of the Boltzmann equation for this purpose proposed by some authors is

N. A. Fuchs

1963-01-01

90

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.  

PubMed

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations. PMID:24833386

Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E; Dommen, Josef; Ortega, Ismael K; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipilä, Mikko; Spracklen, Dominick V; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S; Curtius, Joachim; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R; Baltensperger, Urs

2014-05-16

91

Study of inlet materials for sampling atmospheric nitric acid  

SciTech Connect

The adsorption of nitric acid (HNO{sub 3}) from a flowing gas stream is studied for a variety of wall materials to determine their suitability for use in atmospheric sampling instruments. Parts per billion level mixtures of HNO{sub 3} in synthetic air flow through tubes of different materials such that >80% of the molecules interact with the walls. A chemical ionization mass spectrometer with a fast time response and high sensitivity detects HNO{sub 3} that is not adsorbed on the tube walls. Less than 5% of available HNO{sub 3} is adsorbed on Teflon fluoropolymer tubing after 1 min of HNO{sub 3} exposure, whereas >70% is lost on walls made of stainless steel, glass, fused silica, aluminum, nylon, silica-steel, and silane-coated glass. Glass tubes exposed to HNO{sub 3} on the order of hours passivate with HNO{sub 3} adsorption dropping to zero. The adsorption of HNO{sub 3} on PFA Teflon tubing (PFA) is nearly temperature-independent from 10 to 80 C, but below {minus}10 C nearly all HNO{sub 3} that interacts with PFA is reversibly adsorbed. In ambient and synthetic air, humidity increases HNO{sub 3} adsorption. The results suggest that Teflon at temperatures above 10 C is an optimal choice for inlet surfaces used for in situ measurements of HNO{sub 3} in the ambient atmosphere.

Neuman, J.A.; Huey, L.G.; Ryerson, T.B.; Fahey, D.W. [NOAA, Boulder, CO (United States)] [NOAA, Boulder, CO (United States); [Univ. of Colorado/NOAA, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences

1999-04-01

92

dose-response functions and mapping of risk for materials in urban polluted atmosphere  

NASA Astrophysics Data System (ADS)

The French field test-site of the United-Nations International Co-operative Programme "Influence of Atmospheric Pollution on Materials, including Historic and Cultural Monuments" (ICP-Materials) located at the top of the Saint-Eustache Church in a pedestrian area in the center of Paris allows to expose various materials (stone, glass, metals, polymers...) and to measure simultaneously the atmospheric parameters (gases, particles, rain, temperature, relative humidity, time of wetness...). The dose-response functions are calculated from the doses recorded on the 30 test-sites of the ICP-Materials network and from the responses analyzed on exposed samples. The critical or acceptable levels and loads are then determined and illustrated by means of mapping. The map of risk for Portland limestone, on the entire French territory and only on Ile-de-France are then given. In conclusion, an improvement of the method is proposed for stone: the mapping of the risk has no meaning except for the area of utilization. Nevertheless, the map of risk for entire Europe concerning materials universally used, like Carrara marble, Portland cement based mortars and Si-Ca-Na modern glass are of better utility.

Laurans, E.; Ausset, P.; Chabas, A.; Lefevre, R.-A.

2003-04-01

93

Erosion of aerospace materials by solid-particle impact  

NASA Astrophysics Data System (ADS)

The degradation of various aerospace window materials by the action of solid particle impact is investigated. Laboratory simulations of high velocity sand, dust and hail impacts have been carried out, and the damage assessed in terms of the reductions in optical and mechanical performance. A new erosion rig has been designed to cover the broad size and velocity range of airborne particulates encountered by moving craft, and an ice-firing gas-gun was used to simulate hail impacts. IR-transmitting materials studied include CVD diamond, sapphire and coated zinc sulphide. A radar-dome composite material was compared with polymethylmethacylate (PMMA) for hail impact. Nylon spheres were assessed as a convenient simulation for ice and were found to cause very similar damage over parts of the velocity range studied. The different damage mechanisms observed in these materials are discussed and the extent of degradation by multi-particle erosion related to the particle size and impact velocity.

Telling, Robert H.; Jilbert, G. H.; Field, John E.

1997-06-01

94

Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere  

USGS Publications Warehouse

As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

1990-01-01

95

Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays  

Microsoft Academic Search

The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London.

Teresa Moreno; Xavier Querol; Andrés Alastuey; Mari Cruz Minguillón; Jorge Pey; Sergio Rodriguez; José Vicente Miró; Carles Felis; Wes Gibbons

2007-01-01

96

Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere  

SciTech Connect

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

Battistoni, G.; /Milan U. /INFN, Milan; Cerutti, F.; /CERN; Fasso, A.; /SLAC; Ferrari, A.; /CERN; Garzelli, M.V.; /Milan U. /INFN, Milan; Lantz, M.; /Goteborg, ITP; Muraro, S. /Milan U. /INFN, Milan; Pinsky, L.S.; /Houston U.; Ranft, J.; /Siegen U.; Roesler, S.; /CERN; Sala, P.R.; /Milan U. /INFN, Milan; ,

2009-06-16

97

Secondary Cosmic Ray Particles due to GCR Interactions in the Earth's Atmosphere  

SciTech Connect

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface.Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

Battistoni, G.; Garzelli, M. V.; Muraro, S.; Sala, P. R. [University of Milano, Department of Physics, and INFN, Milan (Italy); Cerutti, F.; Ferrari, A.; Roesler, S. [CERN, Geneva (Switzerland); Fasso, A. [SLAC, Stanford, CA (United States); Lantz, M. [Chalmers University, Department of Fundamental Physics, Goteborg (Sweden); Pinsky, L. S. [University of Houston, Department of Physics, Houston, TX (United States); Ranft, J. [Siegen University, Fachbereich 7-Physik, Siegen (Germany)

2008-01-24

98

Secondary Cosmic Ray particles due to GCR interactions in the Earth's atmosphere  

E-print Network

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

G. Battistoni; F. Cerutti; A. Fassò; A. Ferrari; M. V. Garzelli; M. Lantz; S. Muraro; L. S. Pinsky; J. Ranft; S. Roesler; P. R. Sala

2007-11-13

99

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere  

E-print Network

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates ...

Almeida, João; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Vehkamaki, Hanna; Kirkby, Jasper

2013-01-01

100

Modeling of the optical properties of nonspherical particles in the atmosphere  

E-print Network

The single scattering properties of atmospheric particles are fundamental to radiative simulations and remote sensing applications. In this study, an efficient technique, namely, the pseudo-spectral time-domain (PSTD) method which was first...

Chen, Guang

2009-05-15

101

Condensational transformation of atmospheric aerosol particle distribution functions  

Microsoft Academic Search

A condensation model is developed which makes it possible to solve inverse problems of the determination of condensation-nuclei size distribution functions according to supersaturation on the basis of a known aerosol particle size distribution function. Also derived are formulas which make it possible to solve the direct problem of determining the particle size distribution functions for arbitrary relative humidity of

A. G. Laktionov

1985-01-01

102

PD-FiTE - an efficient method for calculating gas / liquid equilibria in atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

Assessing the impact of atmospheric aerosol particles on the environment requires adequate representation of appropriate key processes within large scale models. In the absence of primary particulate material, interactions between the atmospheric gaseous components and particles means that the chemical nature of the particles is largely determined by the availability of condensable gaseous material, such as sulphuric and nitric acids, and by the ambient environmental conditions. Gas to particle mass transfer of semi-volatile components,driven by a difference in equilibrium and actual partial pressures above an aerosol particle, is an important factor in determining the evolving chemical composition of the particle and is necessary for predicting aerosol loading and composition. The design of an appropriate framework required for parameterizations of key variables is challenging. These thermodynamic frameworks are often numerically very complex, resulting in significant computational expense. Three dimensional chemical and aerosol transport models demand that computational expense be kept at a minimum,resulting in a trade-off between accuracy and efficiency. To calculate the equilibrium vapour pressure above a solution requires treatment of solution nonideality. This is manifest through activity coefficients of components pertinent to each condensing specie. However, activity coefficients are complex functions of the solution composition. Parameterisation of activity coefficients provides the main focus of this work largely because reducing the numerical complexity whilst retaining a good level of accuracy is very challenging. The approach presented here, the hybrid Partial Derivative Fitted Taylor Expansion (PDFiTE) (Topping et al 2008), builds on previously reported work, with an aim to derive parameters for an accurate and computationally efficient framework through coupling with a complex thermodynamic model. Such a reduction in complexity is important as it is necessary to further include an as yet unspecified number of condensing organic species, thus increasing the computational burden of any existing framework. Using this coupled approach we derive optimised model parameters describing the interaction between different chemical components, resulting in a significant increase in computational performance, in some cases giving a four fold decrease in the required number of floating point operations, whilst remaining accurate. Overall, comparisons with the most accurate inorganic activity coefficient model available (Clegg et al1998) and an existing parameterisation (MTEM) (Zaveri et al 2005) indicate that the methodology behind PD-FiTE gives an increase in accuracy for calculating the vapour pressure of all condensing gases when averaged over the parameterisation space of the system H+-NH4+-Na+-SO42--HSO4--NO3--Cl-. Following this, the reduced parameterisation is coupled into a combined chemistry / microphysical aerosol model in a dynamical simulation of aerosol composition. This demonstrates the robustness of our model and also demonstrates the implications of its use. As a simple test case we investigate the response of a typical marine aerosol passing through a polluted environment. This shows the robustness of PD-FiTE and illustrates its usefulness in capturing the fine details of important phenomena such as the outgassing of HCl in response to HNO3 uptake by sea-salt particles. Further, since semi-volatile organic compounds are ubiquitous and secondary organic aerosol is thought to be a major fraction of submicron aerosol mass, the inclusion of organic compounds into the framework will be reported. References: Clegg, S. L., et al. (1992), Thermodynamics of Multicomponent, Miscible, Ionic-Solutions .2. Mixtures Including Unsymmetrical Electrolytes,Journal of Physical Chemistry, 96, 9470-9479. Topping, D.O. et al (2008). An Efficient and Accurate Scheme for the Partitioning of Atmospheric Semi-Volatile Components - 1 Inorganic Compounds. Submitted to Journal of Geophysical Research. Zaveri, R. A., et al. (2005),

Topping, D.; Lowe, D.; McFiggans, G.; Barley, M.

2009-04-01

103

Surface modification of polymeric materials by cold atmospheric plasma jet  

NASA Astrophysics Data System (ADS)

In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

2014-09-01

104

[Atmospheric particle formation events in Nanjing during summer 2010].  

PubMed

Feature of aerosol particle number concentration, condition and impact factor of new particle formation (NPF) were investigated in Nanjing during summer. In this study, aerosol particle number concentration and gaseous pollutants (O3, SO2 and NO2) measurements were carried out by Wide-Range Particle Spectrometer (WPS) and Differential Optical Absorption Spectroscopy (DOAS) in July 2010. Combining with observations from Automatic Weather Station and Backward Trajectory Simulation, the condition and impact factor of NPF were discussed. Results showed that the averaged 10-500 nm particle number concentration was 1.7 x 10(4) cm(-3), similar to some typical observation values in North American and Europe; the 10-25 nm particle number concentration accounted for 25% of the total number concentration. Six NPF events occurred during observation. We analyzed that stable wind speed and direction, strong solar radiation promoted the NPF. The humidity during NPF event varied from 50% to 70%. Results indicated that clean ocean air mass brought from easterly and southerly wind promoted the NPF by Backward Trajectory Model Simulation. During the NPF event, the 10 - 25 nm particle number concentration positively correlated with the concentration of SO2, and negatively correlated with O3, whereas poorly correlated with NO2. PMID:22624358

Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Kang, Han-Qing; Diao, Yi-Wei

2012-03-01

105

Discrete Particle Swarm Optimization with Scout Particles for Library Materials Acquisition  

PubMed Central

Materials acquisition is one of the critical challenges faced by academic libraries. This paper presents an integer programming model of the studied problem by considering how to select materials in order to maximize the average preference and the budget execution rate under some practical restrictions including departmental budget, limitation of the number of materials in each category and each language. To tackle the constrained problem, we propose a discrete particle swarm optimization (DPSO) with scout particles, where each particle, represented as a binary matrix, corresponds to a candidate solution to the problem. An initialization algorithm and a penalty function are designed to cope with the constraints, and the scout particles are employed to enhance the exploration within the solution space. To demonstrate the effectiveness and efficiency of the proposed DPSO, a series of computational experiments are designed and conducted. The results are statistically analyzed, and it is evinced that the proposed DPSO is an effective approach for the studied problem. PMID:24072983

Lin, Bertrand M. T.

2013-01-01

106

Discrete particle swarm optimization with scout particles for library materials acquisition.  

PubMed

Materials acquisition is one of the critical challenges faced by academic libraries. This paper presents an integer programming model of the studied problem by considering how to select materials in order to maximize the average preference and the budget execution rate under some practical restrictions including departmental budget, limitation of the number of materials in each category and each language. To tackle the constrained problem, we propose a discrete particle swarm optimization (DPSO) with scout particles, where each particle, represented as a binary matrix, corresponds to a candidate solution to the problem. An initialization algorithm and a penalty function are designed to cope with the constraints, and the scout particles are employed to enhance the exploration within the solution space. To demonstrate the effectiveness and efficiency of the proposed DPSO, a series of computational experiments are designed and conducted. The results are statistically analyzed, and it is evinced that the proposed DPSO is an effective approach for the studied problem. PMID:24072983

Wu, Yi-Ling; Ho, Tsu-Feng; Shyu, Shyong Jian; Lin, Bertrand M T

2013-01-01

107

Hydrostatic Hamiltonian particle-mesh (HPM) methods for atmospheric modeling.  

E-print Network

10, D-14469 Potsdam, Germany CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands 1 #12;such Sebastian Reich Jason Frank August 19, 2011 Abstract We develop a hydrostatic Hamiltonian particle-mesh (HPM

Reich, Sebastian

108

Genesis Concentrator Target Particle Contamination Mapping and Material Identification  

NASA Technical Reports Server (NTRS)

The majority of surface particles were found to be < 5 microns in diameter with increasing numbers close to the optical resolution limit of 0.3 microns. Acceleration grid EDS results show that the majority of materials appear to be from the SRC shell and SLA materials which include carbon-carbon fibers and Si-rich microspheres in a possible silicone binder. Other major debris material from the SRC included white paint, kapton, collector array fragments, and Al. Image analysis also revealed that SRC materials were also found mixed with the Utah mud and salt deposits. The EDS analysis of the acceleration grid showed that particles < 1 m where generally carbon based particles. Chemical cleaning techniques with Xylene and HF in an ultrasonic bath are currently being investigated for removal of small particles by the Genesis science team as well as ultra-pure water megasonic cleaning by the JSC team [4]. Removal of organic contamination from target materials is also being investigated by the science team with the use of UV-ozone cleaning devices at JSC and Open University [5]. In preparation for solar wind oxygen analyses at UCLA and Open University [1, 2], surface particle contamination on three Genesis concentrator targets was closely examined to evaluate cleaning strategies. Two silicon carbide (Genesis sample # 60001 and 60003) and one chemical vapor deposited (CVD) 13C concentrator target (60002) were imaged and mosaic mapped with optical microscopes. The resulting full target mosaic images and particle feature maps were subsequently compared with non-flight, but flight-like, concentrator targets and sample return capsule (SRC) materials. Contamination found on the flown concentrator acceleration grid was further examined using a scanning electron microscope (SEM). Energy dispersive X-ray spectroscopy (EDS) for particle identification was subsequently compared with the optical images from the flown targets. Figure 1 show that all three targets imaged in this report are fully intact and do not show any signs of material fractures. However, previous ellipsometry results and overview imaging of both flown SiC targets show a solar wind irradiation gradient from the center focal point to the outer edge [3]. In addition, due to the hard landing, each target has experienced varying degrees of impacts, scratches, and particle debris from the spacecraft and Utah impact site.

Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.

2007-01-01

109

Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California  

E-print Network

Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California Qi nitrogen and amino compounds in fine particles (PM2.5) collected in Davis, California, over a period of 1, peaking during winter and early spring, and typically accounted for $20% of total nitrogen in Davis PM2.5

Zhang, Qi

110

Impact of Solar Energy Protons and Magnetospheric Energetic Particles on the Upper Atmosphere  

Microsoft Academic Search

In addition to solar irradiance, solar and magnetospheric energetic particles are important sources of ionization of nuetral gases in the upper atmosphere. Energetic particles have a significant impact on thermospheric chemistry, energetics, and dynamics, as well as ionospheric electrodynamics. However, due to the difference in their characteristic energies, there are some distinctive differences among solar energetic protons, the ring current

G. Lu; R. Roble; A. Richmond; D. Evans

2007-01-01

111

The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows.  

E-print Network

The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows. Seoleun Shin 15. Feb. 2011 Abstract The Hamiltonian Particle-Mesh (HPM) method is an interesting alternative have developed schemes based on the HPM method for the shallow-water equations on the sphere, nonhydro

Kim, Guebuem

112

A plasma window for transmission of particle beams and radiation from vacuum to atmosphere for various applications  

SciTech Connect

Many industrial and scientific processes like ion material modification, electron beam melting, and welding, as well as generation of synchrotron radiation are performed exclusively in vacuum nowadays, since electron guns, ion guns, their extractors, and accelerators must be kept at a reasonably high vacuum. Consequently, there are numerous limitations, among which are low production rates due to required pumping time, limits on the size of target objects, and degradation of particle beams and radiation through foils or differentially pumped sections. A novel apparatus, which utilized a short plasma arc, was successfully used to provide a vacuum-atmosphere interface as an alternative to differential pumping. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. Included in the article are a theoretical framework, experimental results, and possible applications for this novel interface. {copyright} {ital 1998 American Institute of Physics.}

Hershcovitch, A. [Brookhaven National Laboratory, Upton, New York11973 (United States)] [Brookhaven National Laboratory, Upton, New York11973 (United States)

1998-05-01

113

Detection of special nuclear materials with the associate particle technique  

SciTech Connect

In the frame of the French trans-governmental R and D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

Carasco, Cedric; Deyglun, Clement; Perot, Bertrand; Eleon, Cyrille [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Normand, Stephane; Sannie, Guillaume; Boudergui, Karim; Corre, Gwenole; Konzdrasovs, Vladimir [CEA, DRT, LIST, Saclay, F-91191 Gif-sur-Yvette (France); Pras, Philippe [CEA, DAM, DIF, F-91297 Arpajon (France)

2013-04-19

114

Investigation of the Importance of Atmospheric Dust Content on Particle Spectra on the Surface of Mars  

NASA Astrophysics Data System (ADS)

The Mars Science Laboratory mission successfully landed the Curiosity Rover inside Gale Crater on the surface of Mars on August 6, 2012. The mission's science goals are to determine the past and present habitability of Mars, to search for the building blocks of life, to investigate the surface composition and long-term surface and atmospheric processes and to analyze the Martian radiation environment. For analyzing the radiation environment, Curiosity carries the Radiation Assessment Detector. Its goals are to measure the energetic particle spectra on the surface of Mars, to determine dose and dose equivalent rate, to determine radiation hazard and mutagenic influence, to determine chemical and isotopic effects of energetic particles and to enable validation of atmospheric transmission models. In order to fully understand the influence of the highly variable Martian climate, we simulate the process of particle transportation through the Martian atmosphere. We have applied different atmospheric models available through a climate database which include a widely varying range of conditions. This enables us to study the the effect of atmospheric variables such as air density and dust content on the particle spectra at the surface of Mars. We present a comparison of particle spectra resulting from different atmospheric conditions. The results are discussed and the implications in the context of the MSL mission and possible future missions are presented.

Appel, J.; Lohf, H.; Guo, J.; Kohler, J.; Wimmer-Schweingruber, R. F.; Ehresmann, B.; Zeitlin, C. J.; Rafkin, S. C.; Matthiae, D.; Hassler, D.; Burmeister, S.; Boehm, E.; Boettcher, S.; Brinza, D.; Martin, C.; Reitz, G.

2013-12-01

115

Laser plasma radiation from small solid particle in gas atmosphere  

NASA Astrophysics Data System (ADS)

The problem of small particle size detection is important for industrial and environmental applications. Previous investigations have shown the possibility of using the laser breakdown method to achieve this goal; the sensitivity of this method is a thousand times higher than that of conventional methods. However, for small particle sizes, the damage threshold of the solid target in this case is very close to the breakdown point of pure air. After breakdown, there is a small volume of dense hot plasma that emits radiation. We analyzed this radiation using an analytical model and simulation code as well as by experiment, and found that the emission intensity varied depending on the laser type and plasma parameters including initial particle size.

Andreev, Alexander A.; Ueda, Toshitsugu; Hayashi, Hisanori

2000-03-01

116

Effect of atmospheric conditions on operation of terahertz systems for remote detection of ionizing materials  

SciTech Connect

This study was motivated by a new concept of remote detection of concealed radioactive materials by using a high power terahertz (THz) wave beam, which can be focused in a small spot where the wave electric field exceeds the breakdown threshold. In the presence of seed electrons in such a volume, this focusing can initiate the avalanche breakdown. Typically, an ambient density of free electrons is assumed to be at the level of one particle per cubic centimeter. So, when a breakdown-prone volume is smaller than 1 cm{sup 3}, there should be significant difference between the breakdown rates in the case of presence of additional sources of ionization versus its absence. Since the flux density of gamma rays emitted by radioactive materials rapidly falls with the distance from the source, while the intensity of THz waves also decreases with the distance due to wave attenuation in the atmosphere, it is important to find an optimal location of the breakdown to be initiated for a given distance between a radioactive material and a THz antenna. This problem is analyzed in a given paper with the account for not only atmospheric attenuation of THz waves but also the air turbulence.

Nusinovich, Gregory S.; Kashyn, Dmytro G. [IREAP, University of Maryland, College Park, Maryland 20742-3511 (United States)] [IREAP, University of Maryland, College Park, Maryland 20742-3511 (United States); Tatematsu, Yoshinori; Idehara, Toshitaka [FIR Center, University of Fukui, Fukui 910-8507 (Japan)] [FIR Center, University of Fukui, Fukui 910-8507 (Japan)

2014-01-15

117

Exoelectronic emission of particles of lunar surface material  

NASA Technical Reports Server (NTRS)

A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

1974-01-01

118

Gas-mediated charged particle beam processing of nanostructured materials  

NASA Astrophysics Data System (ADS)

Gas mediated processing under a charged particle (electron or ion) beam enables direct-write, high resolution surface functionalization, chemical dry etching and chemical vapor deposition of a wide range of materials including catalytic metals, optoelectronic grade semiconductors and oxides. Here we highlight three recent developments of particular interest to the optical materials and nanofabrication communities: fabrication of self-supporting, three dimensional, fluorescent diamond nanostructures, electron beam induced deposition (EBID) of high purity materials via activated chemisorption, and post-growth purification of nanocrystalline EBID-grown platinum suitable for catalysis applications.

Lobo, C. J.; Martin, A. A.; Elbadawi, C.; Bishop, J.; Aharonovich, I.; Toth, M.

2014-03-01

119

Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere  

NASA Astrophysics Data System (ADS)

Sea salt is one of the most abundant types of natural aerosol particles and significantly influences local and global climate. It is an important constituent of samples collected between June 10 and 15 in the Los Angeles area during the 2010 CalNex campaign. The sea-salt particles reacted with other species in the atmosphere and became Na-bearing aerosol (NaA) particles. Using transmission electron microscopy, we found that Na occurred in almost half of all analyzed particles (?3500), although commonly only in minor amounts. Almost all the NaA particles contained S but not Cl, suggesting that Cl was depleted through particle formation to sulfate, nitrate, or both in the urban atmosphere. We observed both rounded and euhedral NaA particles. The rounded ones consisted mainly of aged sea salt (>12 h) that had reacted extensively with sulfate, whereas the euhedral ones occurred in samples from relatively fresh marine air. The shapes and compositions of NaA particles changed within 3 h in the urban atmosphere. Moreover, our calculations indicate that light scattering from NaA particles depends on their shapes (e.g., roughly spherical, flat, or elongated). These compositions and shapes affect hygroscopicities and light scattering, respectively, both of which influence their climate effects.

Adachi, Kouji; Buseck, Peter R.

2015-01-01

120

Preparation and characterization of energetic materials coated superfine aluminum particles  

NASA Astrophysics Data System (ADS)

This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20-50 nm. The active aluminum content of different coated samples was measured by means of oxidation-reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG-DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

Liu, Songsong; Ye, Mingquan; Han, Aijun; Chen, Xin

2014-01-01

121

Hydrostatic Hamiltonian particle mesh (HPM) methods for atmospheric modeling.  

E-print Network

Sebastian Reich Jason Frank March 17, 2011 Abstract We develop a hydrostatic Hamiltonian particle mesh (HPM such as Universit¨at Potsdam, Institut f¨ur Mathematik, Am Neuen Palais 10, D-14469 Potsdam, Germany CWI, P.O. Box

Frank, Jason

122

DETERMINATION OF THE STRONG ACIDITY OF ATMOSPHERIC FINE PARTICLES (  

EPA Science Inventory

This report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 microns) in ambient air using annular denuder technology. his methodology description includes two parts: art A - Standard Method and Part B - Enhanced M...

123

[Characterization of ultrafine particle size distribution in the urban atmosphere of Hangzhou in spring].  

PubMed

Continuous measurement and analysis of the atmospheric ultrafine particle number concentration were performed in Hangzhou from March to May, 2012 by using the fast mobility particle sizer (FMPS). The result showed that daily number concentration of nucleation mode (5.6-20 nm), Aitken mode (20-100 nm), and accumulation mode (100-560 nm) particles, and total particles were 0.84 x 10(4), 1.08 x 10(4), 0.47 x 10(4) and 2.38 x 10(4) cm(-3) respectively. The concentration of Aitken mode particles was higher than that of other mode particles in sunny day. The nucleation mode and Aitken mode particles usually started to increase around 10:00-11:00 and ended up after 3-4 h. This indicated the solar radiation promoted the formation of new particles. Human activities caused the concentration distribution of each mode particles having an obvious difference between workdays and weekends. Combined with the meteorological factors, analysis showed that the wind speed and wind direction also directly influenced particulate concentration. The analysis of particulate concentration and visibility showed that the concentration of accumulation mode particles had a negative relationship with the atmospheric visibility, while those of nucleation mode and Aitken mode particles had a slight influence on it. PMID:24812930

Xie, Xiao-Fang; Sun, Zai; Yang, Wen-Jun

2014-02-01

124

Reactor for producing large particles of materials from gases  

NASA Technical Reports Server (NTRS)

A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.

Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)

1987-01-01

125

Energetic particles in the atmosphere: A Monte-carlo simulation J. Schroter, B. Heber *, F. Steinhilber, M.B. Kallenrode  

E-print Network

Energetic particles in the atmosphere: A Monte-carlo simulation J. Schro¨ter, B. Heber *, F Precipitating solar energetic particles (SEPs) ionize the atmosphere. They produce NOx and HOx which in turn destroy ozone. Here, we present Monte-Carlo simulations of the SEP interaction with the atmosphere

Wehrli, Bernhard

126

Development of the Global Atmospheric Transport and Backtracking System Using Lagrangian Particle Dispersion Model  

NASA Astrophysics Data System (ADS)

We developed global atmospheric transport and backtracking system using FLEXPART Lagrangian particle dispersion model for the purpose of predicting radioactive materials movement in case of neighboring country's nuclear accident. In addition, the system can be used to estimate the source location when unusual peak was detected in radiation monitoring stations in Korea. As an input to this system, we can choose two meteorological data, namely the Korea Meteorological Administration(KMA)'s global meteorological data and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. KMA produces global meteorological data using Unified Model system which was introduced from the UK Met Office. Meteorological data's spatial resolution is about 25 km and its temporal resolution is 3 hour. GFS data had 26 model levels and a resolution of 0.5×0.5° globally. Using this system, we can evaluate the characteristics of transport and dispersion of radioactive materials released from the source region. Also, we can estimate the possible source regions using observed data and Source-Receptor Sensitivity Matrix (SRSM). SRSM can be calculated using FLEXPART model in backward mode. We adopted Graphic User Interface (GUI) system, so users can run and check the model results easily.

Lee, Kwan-Hee; Lee, Jin-Hong; Park, Soon-Ung; Cho, Jeong-Hoon; Yun, Ju-Yong; Park, Hong-Mo; Lee, Byoung-Soo

2014-05-01

127

Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits  

NASA Astrophysics Data System (ADS)

A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 ?m diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

2013-08-01

128

Search for Fractional-Charge Particles in Meteoritic Material  

SciTech Connect

We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5 {mu}m with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth's surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3x10{sup -21} particles per nucleon in the meteoritic material and less than 1.9x10{sup -23} particles per nucleon in the mineral oil.

Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Halyo, Valerie; Loomba, Dinesh [Stanford Linear Accelerator Center, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Department of Physics, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

2007-10-19

129

HIGHWAY MOTOR VEHICLES AS SOURCES OF ATMOSPHERIC PARTICLES: PROJECTED TRENDS 1977 TO 2000  

EPA Science Inventory

Highway motor vehicle emissions contribute to the total atmospheric particulate burden. The possible health and welfare effects of these emissions depend upon their composition and concentration in the atmosphere, the exposure of man and materials, and in some instances the lengt...

130

Origin of nitrocatechols and alkylated-nitrocatechols in atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

Biomass burning constitutes one of the major sources of aerosol particles in most of the environments during winter. If a lot of information is available in the literature on the primary fraction of biomass burning aerosol particles, almost nothing is known regarding the formation of Secondary Organic Aerosol (SOA) from the chemical mixture emitted by this source. Recently methylated nitrocatechol have been identified in atmospheric particles collected in winter. These compounds are strongly associated with biomass burning tracers such as levoglucosan and are suspected to be of secondary origin since they can be formed through the oxidation of cresol significantly emitted by biomass burning. However, nitrocatechols are particularly difficult to analyze using classical techniques like HPLC-MS or GC-MS. In the present study, we adopt a new analytical approach. Direct analysis in real time (DART), introduced by Cody et al. (2005), allows direct analysis of gases, liquids, solids and materials on surfaces. Thus, for particles collected onto filters, the sample preparation step is simplified as much as possible, avoiding losses and reducing to the minimum the analytical procedure time. Two analytic modes can be used. In positive mode, [MH]+ ions are formed by proton transfer reaction ; whereas in negative ionization mode, [MH]-, M- and [MO2]- ions are formed. DART source enables soft ionization and produces simple mass spectra suitable for analysis of complex matrices, like organic aerosol, in only a few seconds. For this study, the DART source was coupled to a Q-ToF mass spectrometer (Synapt G2 HDMS, Waters), with a mass resolution up to 40 000. The analysis of atmospheric aerosol samples, collected in Marseille during winter 2011 (APICE project), with the DART/Q-ToF approach highlighted the abundance of nitrocatechols and alkylated nitrocatechols. Their temporal trends were also very similar to those of levoglucosan or dihydroabietic acid well known tracers of biomass burning aerosol. If their biomass burning origin's is clearly established, their secondary origin remains still not totally clear. Smog chamber experiments were then conducted in the PSI facilities to investigate the aging of biomass burning emissions. The analysis of samples collected during these experiments using the DART/Q-ToF approach, confirmed that nitrocatechols and methylated nitrocatechols originate from biomass burning processes. More importantly our results confirm that nitrocatechols and their methylated derivatives are quasi exclusively from secondary origin. Considering the abundance of biomass burning primary aerosol, and the large fraction of unexplained SOA, this result is of prime importance. Cody. R., Laramée J. Nilles J. and Durst H. : Direct Analysis in Real Time (DARTtm) Mass Spectrometry, JOEL news, 2005, 40, 1, 8-12. Kitanovski Z., Grgic I., Yasmeen F., Claeys M. and Cusak A.: Development of a liquid chromatographic method based on ultraviolet-visible and electrospray ionization mass spectrometric detection for the identification of nitrocatechols and related tracers ion biomass burning atmospheric organic aerosol, Rapid Communication in Mass Spectrometry, 2012, 26, 793-804. Iinuma Y., Boge O., Grafe R. and Herrmann H.: Methyl-nitrocatechols : Atmospheric tracer coumpounds for biomass burnig secondary organic aerosols, Environmental Science and Technology, 2010, 44, 8453-8459.

Marchand, Nicolas; Sylvestre, Alexandre; Ravier, Sylvain; Detournay, Anais; Bruns, Emily; Temime-Roussel, Brice; Slowik, Jay; El Haddad, Imad; Prevot, Andre

2013-04-01

131

Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?  

NASA Astrophysics Data System (ADS)

Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image velocimetry (PIV). Scanning Electron Microscopy (SEM) of ash particles collected in localized deposition areas is used to correlate the PIV results to particle shape. In addition, controlled wind tunnel experiments are used to determine particle fate and transport in a turbulent boundary layer for a mixed particle population. Collectively, these studies will provide an improved understanding of the effects of particle shape on sedimentation and dispersion, and foundational data for the predictive modeling of the fate and transport of fine ash particles suspended in the atmosphere.

White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

2013-12-01

132

Particles, environments, and possible ecologies in the Jovian atmosphere  

NASA Technical Reports Server (NTRS)

The possible existence of indigenous Jovian organisms is investigated by characterizing the relevant physical environment of Jupiter, discussing the chromophores responsible for the observed coloration of the planet, and analyzing some permissible ecological niches of hypothetical organisms. Values of the eddy diffusion coefficent are estimated separately for the convective troposphere and the more stable mesosphere, and equilibrium condensation is studied for compounds containing Na, Cl, or both. The photoproduction of chromophores and nonequilibrium organic molecules is analyzed, and the motion of hypothetical organisms is examined along with the diffusion of metabolites and the consequent growth of organisms. Four kinds of organisms are considered: primary photosynthetic autotrophs ('sinkers'), larger autotrophs or heterotrophs that actively maintain their pressure level ('floaters'), organisms that seek out others ('hunters'), and organisms that live at almost pyrolytic depths ('scavengers'). It is concluded that ecological niches for sinkers, floaters, and hunters appear to exist in the Jovian atmosphere.

Sagan, C.; Salpeter, E. E.

1976-01-01

133

Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles  

NASA Technical Reports Server (NTRS)

The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

Dillard, J. G.; Seals, R. D.; Wightman, J. P.

1979-01-01

134

Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity  

PubMed Central

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by ?-pinene ozonolysis is quantified for 20- to 50-?m particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ?30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ? 30%; (ii) at ?30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate. PMID:23620520

Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

2013-01-01

135

Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity.  

PubMed

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a "bead-mobility" technique and a "poke-flow" technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by ?-pinene ozonolysis is quantified for 20- to 50-?m particles at 293-295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ?30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ? 30%; (ii) at ?30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate. PMID:23620520

Renbaum-Wolff, Lindsay; Grayson, James W; Bateman, Adam P; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J; Shilling, John E; Martin, Scot T; Bertram, Allan K

2013-05-14

136

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect

Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

Farquar, G; Leif, R

2009-07-15

137

Materials for Active Engagement in Nuclear and Particle Physics Courses  

NASA Astrophysics Data System (ADS)

Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

Loats, Jeff; Schwarz, Cindy; Krane, Ken

2013-04-01

138

Are coarse particles unexpected common reservoirs for some atmospheric anthropogenic trace elements? A case study  

NASA Astrophysics Data System (ADS)

Without specific experimental equipment, it is very difficult to sample long-term atmospheric deposits on a pure state. That is why the composition of air-transferred solid material accumulated for 40 years in the 2 m-high walls, pierced with numerous holes of an outdoor public shelter, Grenoble city, France, was studied. An appropriate fractionation procedure allowed to obtain several fractions which were i) a sand fraction (8.3%) (fraction A), ii) a large mass of organic matter corresponding mostly to large fragments (>250 ?m) of plant origin (66.7%) (fraction B) or to pollen fraction C (0.4%), iii) a slowly depositing organo-clay fraction (20%) (fractions D1 and D2) and iv) a solution mixed with non-settable particles (4.3%) (fraction E). The composition of each fraction was determined for 20 elements. The sand fraction showed very high concentrations specifically in Cu, Pb and Fe corresponding respectively to 81.5, 48.2 and 35.2% of the samples content in these elements. In contrast, Cd and Zn were mainly accumulated in the fraction B (67.5 and 62.2%, respectively). The scanning electron microscopy coupled to energy dispersive X-ray analysis (SEM-EDX) study of the fraction A showed the presence of large particles bearing Pb and Fe, particles rich in Cu and typical fly ashes originating mostly from iron industry. Most of these particles had a crystalline shape suggesting that they were formed after emission at a high temperature. The Pb-Fe-Cu deposit seen in fraction A likely originates from the neighbouring road surface contaminated by car traffic for several decades. The 206Pb/207Pb ratio (1.146 ± 0.004) showed that in the coarse sandy fraction A, Pb was represented at 65% by non-gasoline lead and 35% by "gasoline" lead emitted before 1999. The fraction A particles can only be transported on a limited distance by high magnitude events. They constitute a large reservoir for Cu and Pb and may play a major role in the long-term contamination of urban soils.

Catinon, Mickaël; Ayrault, Sophie; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel

2013-08-01

139

Contribution of nitrated polycyclic aromatic hydrocarbons to the mutagenicity of ultrafine particles in the roadside atmosphere  

NASA Astrophysics Data System (ADS)

This is the first report of the quantification of nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in ultrafine particles in the roadside atmosphere and their contribution to the direct-acting mutagenicity of ultrafine particles. The detailed size distributions of six nitro-PAHs (2-nitrofluoranthene, 1-nitropyrene, 6-nitrobenzo[a]pyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, and 1,8-dinitropyrene) were measured by highly sensitive gas chromatography-negative ion chemical ionization tandem mass spectrometry. Direct-acting mutagenicity of size-fractionated particulate matter (PM) was determined by the Ames test using Salmonella typhimurium strains TA98 and YG1024. The amounts of nitro-PAHs per unit mass of ultrafine particles (<0.12 ?m) were significantly higher than those of accumulation mode particles (0.12-2.1 ?m) and of coarse particles (>2.1 ?m). Therefore, more than 20% of each nitro-PAH, with the exception of 2-nitrofluoranthene, was observed in the ultrafine particle fraction, although the contribution of ultrafine particles to the total PM mass in the roadside atmosphere was only 2.3%. Also, in both tester strains TA98 and YG1024, the mutagenicity per unit mass of ultrafine particles was significantly higher than those of accumulation mode particles or coarse particles. The contributions of 2-nitrofluoranthene, 1-nitropyrene, 1,3-dinitropyrene, 1,6-dinitropyrene, and 1,8-dinitropyrene to the direct-acting mutagenicity of ultrafine particles were 0.56, 1.5, 0.57, 2.2, and 9.2%, respectively, in the TA98 strain, and 0.54, 1.1, 0.71, 5.0, and 17%, respectively, in the YG1024 strain, while the contribution of 6-nitrobenzo[a]pyrene was less than 0.01% in both strains. 1,8-Dinitropyrene was the largest contributor to the mutagenicity not only of ultrafine particles but also of accumulation mode particles in both strains. Only five nitro-PAHs accounted for as much as 14 and 24% of the direct-acting mutagenicity of ultrafine particles in the roadside atmosphere in the TA98 strain and the YG1024 strain, respectively. This result indicated that nitro-PAHs, especially 1,8-dinitropyrene, were important contributors to the high direct-acting mutagenicity of ultrafine particles in the roadside atmosphere.

Kawanaka, Youhei; Matsumoto, Emiko; Wang, Ning; Yun, Sun-Ja; Sakamoto, Kazuhiko

140

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere  

NASA Astrophysics Data System (ADS)

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K.; Kupiainen-Määttä, Oona; Praplan, Arnaud P.; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M.; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J.; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D.; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S.; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R.; Vehkamäki, Hanna; Kirkby, Jasper

2013-10-01

141

Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations  

NASA Astrophysics Data System (ADS)

An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions.

Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

1996-08-01

142

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.  

PubMed

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. PMID:24097350

Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

2013-10-17

143

Suprathermal Particles in XUV-Heated and Extended Exoplanetary Upper Atmospheres  

NASA Astrophysics Data System (ADS)

The photolysis of hydrogen-rich atmosphere of a close-in exoplanet by the extreme ultraviolet radiation of the parent star leads to the formation of the suprathermal particles (i.e., particles with an excess of kinetic energy), primary photoelectrons in the H2/H/He ionization and hydrogen atoms in the H 2 dissociation and dissociative ionization processes. These particles with excess kinetic energies are an important source of thermal energy in the upper atmosphere of the hydrogen-rich exoplanets. In the contemporary aeronomical models the kinetics and transfer of hot hydrogen atoms and fresh photoelectrons were not calculated in detail, because they require solving of the Boltzmann equation for a non-thermal population of these particles. This chapter estimates the effect of the XUV radiation of the parent star on the production of the suprathermals in the H2 ? H transition region in the upper atmosphere of a hydrogen-rich exoplanet. Partial deposition rates of the stellar XUV radiation due to the photolytic processes in the H2 ? H transition region in the upper atmosphere of HD 209458b were calculated. The Monte Carlo model developed by authors was used to calculate the collisional kinetics and the transport of photoelectrons in the atmosphere of HD209458b. Using this model the partial deposition rates of the stellar XUV radiation due to the electron impact processes in the H2 ? H transition region in the upper atmosphere of HD209458b were calculated. This allowed us to estimate the heating rate of the atmospheric gas by photoelectrons in the upper atmosphere of exoplanet. For the first time the heating efficiency ? with and without taking into account the photoelectron impact processes in the H2 ? H transition region in the hydrogen-rich atmosphere of exoplanet was calculated. Using the numerical stochastic model for a hot planetary corona the kinetics and transfer of suprathermal hydrogen atoms in the upper atmosphere and the emergent flux of atoms evaporating from the atmosphere were investigated. The latter is estimated as 5.8 × 10^{12} cm^{-2}s^{-1} for a moderate stellar activity level of UV radiation, which leads to a planetary atmosphere evaporation rate of 5. 8 × 109 g/s due to the process of the dissociation of H 2. This estimate shows that suprathermal hydrogen atoms provide a significant contribution to the observational estimate of ˜ 1010 g/s for the atmospheric loss rate of HD 209458b.

Shematovich, Valery I.; Bisikalo, Dmitry V.; Ionov, Dmitry E.

144

Novel applications of atmospheric pressure plasma on textile materials  

NASA Astrophysics Data System (ADS)

Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

Cornelius, Carrie Elizabeth

145

A diffusion model for use with directional samplers. [particle dispersion in atmosphere  

NASA Technical Reports Server (NTRS)

The paper presents a mathematical model for describing dispersion processes of airborne particles in the atmosphere. The process is described as a superposition of independent Brownian motion processes with drifts and a boundary at zero. It is assumed that the terrain is flat and of a homogeneous roughness. All sources are assumed to be point sources. The time dependencies of emission rates, wind speed, wind direction, and atmospheric conditions are taken into account.

Anbar, D.

1978-01-01

146

Observations of linear dependence between sulfate and nitrate in atmospheric particles  

NASA Astrophysics Data System (ADS)

Hourly measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

2014-01-01

147

The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles  

NASA Astrophysics Data System (ADS)

Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.

Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

2010-12-01

148

Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires  

NASA Astrophysics Data System (ADS)

An improved understanding of atmospheric ice nucleating particles (INP), including sources and atmospheric abundance, is needed to advance our understanding of aerosol-cloud-climate interactions. This study examines diverse biomass burning events to better constrain our understanding of how fires impact populations of INP. Sampling of prescribed burns and wildfires in Colorado and Georgia, U.S.A., revealed that biomass burning leads to the release of particles that are active as condensation/immersion freezing INP at temperatures from -32 to -12°C. During prescribed burning of wiregrass, up to 64% of INP collected during smoke-impacted periods were identified as soot particles via electron microscopy analyses. Other carbonaceous types and mineral-like particles dominated INP collected during wildfires of ponderosa pine forest in Colorado. Total measured nINP and the excess nINP associated with smoke-impacted periods were higher during two wildfires compared to the prescribed burns. Interferences from non-smoke sources of INP, including long-range transported mineral dust and local contributions of soils and plant materials lofted from the wildfires themselves, presented challenges in using the observations to develop a smoke-specific nINP parameterization. Nevertheless, these field observations suggest that biomass burning may serve as an important source of INP on a regional scale, particularly during time periods that lack other robust sources of INP such as long-range transported mineral dust.

McCluskey, Christina S.; DeMott, Paul J.; Prenni, Anthony J.; Levin, Ezra J. T.; McMeeking, Gavin R.; Sullivan, Amy P.; Hill, Thomas C. J.; Nakao, Shunsuke; Carrico, Christian M.; Kreidenweis, Sonia M.

2014-09-01

149

Model simulations of the impact of energetic particle precipitation onto the upper and middle atmosphere  

NASA Astrophysics Data System (ADS)

Solar eruptions and geomagnetic storms can produce fluxes of high-energy protons and elec-trons, so-called Solar Energetic Particle Events, which can enter the Earth's atmosphere espe-cially in polar regions. These particle fluxes primarily cause ionisation and excitation in the upper atmosphere, and thereby the production of HOx and NOx species, which are catalysts for the reduction of ozone. To simulate such particle events, ionisation rates, calculated by the Atmospheric Ionization Module Osnabrück AIMOS (University of Osnabrück), have been implemented into the Bremen 3D Chemistry and Transport Model. To cover altitudes up to the mesopause, the model is driven by meteorological data, provided by the Leibniz-Institute Middle Atmosphere Model LIMA (IAP Kühlungsborn). For several electron and proton events during the highly solar-active period 2003/2004, model calculations have been carried out. To investigate the accordance of modeled to observed changes for atmospheric constituents like NO, NO2 , HNO3 , N2 O5 , ClO, and O3 , results of these calculations will be compared to measurements by the Michelson Interferometer for Passive Atmospheric Sounding MIPAS (ENVISAT) instrument. Computed model results and comparisons with measurements will be presented.

Wieters, Nadine; Sinnhuber, Miriam; Winkler, Holger; Berger, Uwe; Maik Wissing, Jan; Stiller, Gabriele; Funke, Bernd; Notholt, Justus

150

On the Climatic Impact of CO2 Ice Particles in Atmospheres of Terrestrial Exoplanets  

NASA Astrophysics Data System (ADS)

Clouds play a significant role for the energy budget in planetary atmospheres. They can scatter incident stellar radiation back to space, effectively cooling the surface of terrestrial planets. On the other hand, they may contribute to the atmospheric greenhouse effect by trapping outgoing thermal radiation. For exoplanets near the outer boundary of the habitable zone, condensation of CO2 can occur due to the low atmospheric temperatures. These CO2 ice clouds may play an important role for the surface temperature and, therefore, for the question of habitability of those planets. However, the optical properties of CO2 ice crystals differ significantly from those of water droplets or water ice particles. Except for a small number of strong absorption bands, they are almost transparent with respect to absorption. Instead, they are highly effective scatterers at long and short wavelengths. Therefore, the climatic effect of a CO2 ice cloud will depend on how much incident stellar radiation is scattered to space in comparison to the amount of thermal radiation scattered back towards the planetary surface. This contribution aims at the potential greenhouse effect of CO2 ice particles. Their scattering and absorption properties are calculated for assumed particle size distributions with different effective radii and particle densities. An accurate radiative transfer model is used to determine the atmospheric radiation field affected by such CO2 particles. These results are compared to less detailed radiative transfer schemes employed in previous studies.

Kitzmann, D.; Patzer, A. B. C.; Rauer, H.

2014-04-01

151

The characterization of atmospheric aerosols: Application to heterogeneous gas-particle reactions  

SciTech Connect

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project of the Los Alamos National Laboratory (LANL). The objective of this collaborative research project is the measurement and modeling of atmospheric aerosols and heterogeneous (gas/aerosol) chemical reactions. The two major accomplishments are single particle characterization of tropospheric particles and experimental investigation of simulated stratospheric particles and reactions thereon. Using aerosol time-of-flight mass spectrometry, real-time and composition measurements of single particles are performed on ambient aerosol samples. This technique allows particle size distributions for chemically distinct particle types to be described. The thermodynamics and chemical reactivity of polar stratospheric clouds are examined using vapor deposited thin ice films. Employing nonlinear optical methods, as well as other techniques, phase transitions on both water and acid ices are monitored as a function of temperature or the addition of gases.

Robinson, J.M.; Henson, B.F.; Wilson, K.R. [Los Alamos National Lab., NM (United States); Prather, K.A.; Noble, C.A. [Univ. of California, Riverside, CA (United States)

1998-12-31

152

Occurrence and photostability of 3-nitrobenzanthrone associated with atmospheric particles  

NASA Astrophysics Data System (ADS)

The occurrence of the carcinogenic and extremely mutagenic compound, 3-nitrobenzanthrone, in extracts of ambient particulate matter has been investigated at a semi-rural sampling location. A total of seventeen 24-h samples and fourteen 12-h samples were analyzed for their content of 3-nitrobenzanthrone. 3-Nitrobenzanthrone was unambiguously detected in one-fourth of the samples in the lower pg m -3 range (mean=17.1±14.8 or 9.8±4.2 pg m -3 excluding one high value), but in the majority of the samples no signal due to 3-nitrobenzanthrone was observed. By comparison with the levels of nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) and other air pollution components, it is suggested that 3-nitrobenzanthrone is a directly emitted primary pollutant and that it is not formed in the atmosphere to a significant degree. The photodegradation of 3-nitrobenzanthrone was studied in order to understand the low levels of this compound in ambient air. In the presence of a radical sensitizer, anthraquinone, the degradation rate of 3-nitrobenzanthrone is comparable to that of 1-nitropyrene (NP), a directly emitted nitro-PAH present in ambient air in significantly higher levels than 3-nitrobenzanthrone. The rate of direct photolysis is slightly smaller than that for 1NP. The conclusion of this study is that the dominant sources of 3-nitrobenzanthrone are unidentified combustion processes from which it is emitted in relatively small amounts. Accordingly, 3-nitrobenzanthrone should mainly be considered a health problem at locations close to these sources.

Feilberg, Anders; Ohura, Takeshi; Nielsen, Torben; Poulsen, Morten West Bach; Amagai, Takashi

153

Counterion atmosphere and hydration patterns near a nucleosome core particle.  

PubMed

The chromatin folding problem is an exciting and rich field for modern research. On the most basic level, chromatin fiber consists of a collection of protein-nucleic acid complexes, known as nucleosomes, joined together by segments of linker DNA. Understanding how the cell successfully compacts meters of highly charged DNA into a micrometer size nucleus while still enabling rapid access to the genetic code for transcriptional processes is a challenging goal. In this work we shed light on the way mobile ions condense around the nucleosome core particle, as revealed by an extensive all-atom molecular dynamics simulation. On a hundred nanosecond time scale, the nucleosome exhibited only small conformational fluctuations. We found that nucleosomal DNA is better neutralized by the combination of histone charges and mobile ions compared with free DNA. We provide a detailed physical explanation of this effect using ideas from electrostatics in continuous media. We also discovered that sodium condensation around the histone core is dominated by an experimentally characterized acidic patch, which is thought to play a significant role in chromatin compaction by binding with basic histone tails. Finally, we found that the nucleosome is extensively permeated by over a thousand water molecules, which in turn allows mobile ions to penetrate deeply into the complex. Overall, our work sheds light on the way ionic and hydration interactions within a nucleosome may affect internucleosomal interactions in higher order chromatin fibers. PMID:19778017

Materese, Christopher K; Savelyev, Alexey; Papoian, Garegin A

2009-10-21

154

Characterization of atmospheric aerosol particles in a mountainous region in northern Japan  

NASA Astrophysics Data System (ADS)

In order to shed light on the long-range transport of atmospheric pollutants in the Northeast Asian Regions, we studied a multi-probe, chemical characterization and composition profile of airborne particulate matter (PM) on Mt. Moriyoshi (altitude 1454 m), located on the Sea of Japan side of northern Honshu, Japan. Sampling of size-resolved airborne PM was carried out on Juhyou-Daira (west side near the summit, altitude 1167 m) from February 1-16 (winter period) and July 7-19 (summer period) in 2004. Concentrations of several elemental and ionic species in each size-resolved PM sample were determined by particle-induced X-ray emission (PIXE) and ion chromatography analysis. From the winter period, results suggested that PM was formed from soil and sea salt particle sizes of PM 10-PM 2.5 and from ammonium sulfate particles, secondary particles < PM 1.0. However from the summer period, results suggested that PM was formed from soil and sea salt particles > PM 10-PM 2.5 and secondary particles < PM 1.0. With the aid of SEM-EDX analysis, many cubic particles were observed throughout the winter and summer periods. In particular, particles < PM 1.0 were almost all cubic particles. Small spherical particles were mainly detected in PM 10-PM 2.5 and PM 2.5-PM 1.0 categories of the winter period. These cubic and small spherical particles were the silicon-rich type.

Saitoh, K.; Sera, K.; Shirai, T.

2008-09-01

155

The effect of temperature on the gas-particle partitioning of reactive mercury in atmospheric aerosols  

NASA Astrophysics Data System (ADS)

Measurements of gas-particle-partitioning coefficients for reactive mercury in dry urban and laboratory aerosol were found to strongly depend on ambient temperature. Samples of atmospheric and laboratory aerosols (defined as both the gas and particle phases) were collected using filter and absorbent methods and analyzed for reactive mercury using thermal desorption combined with cold vapor atomic fluorescence spectroscopy. Synthetic ambient aerosols were generated in the laboratory from ammonium sulfate and adipic acid mixed with mercuric chloride in a purpose-built aerosol reactor. The aerosol reactor was operated in a temperature-controlled laboratory. Linear relationships between the logarithm of inverse gas-particle partitioning and inverse temperature were observed and parameterized for use in the atmospheric modeling of reactive mercury. Reactive mercury was observed to partition from the particle to the gas phase as ambient temperature increased. Good agreement between measurements made using urban and laboratory aerosols was seen after gas-particle-partitioning coefficients were normalized for surface area instead of mass. Thermodynamic analyses of the urban and laboratory gas-particle-partitioning measurements revealed that the strength of interaction between reactive mercury and particle surfaces was suggestive of chemisorption. Gas-particle-partitioning coefficients made with the Tekran ambient mercury analyzer (AMA) also showed a dependence on temperature. However, the Tekran AMA partitioning coefficients did not agree well with partitioning coefficients measured using the filter-based methods. The disagreement is consistent with the 50 °C operational temperature of the Tekran AMA.

Rutter, Andrew P.; Schauer, James J.

156

Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

In atmospheric aerosol research, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 ?m size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z > 11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO 4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) soil dust particles; 2) NaCl particles; 3) CaSO 4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO 4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool.

Artaxo, Paulo; Rabello, Marta L. C.; Watt, Frank; Grime, Geoff; Swietlicki, Erik

1993-04-01

157

Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere.  

PubMed

For a better understanding of metal particle morphology and behaviors in China, atmospheric aerosols were sampled in the summer of 2012 in Beijing. The single-particle analysis shows various metal-bearing speciations, dominated by oxides, sulfates and nitrates. A large fraction of particles is soluble. Sources of Fe-bearing particles are mainly steel industries and oil fuel combustion, whereas Zn- and Pb-bearing particles are primarily contributed by waste incineration, besides industrial combustion. Other trace metal particles play a minor rule, and may come from diverse origins. Mineral dust and anthropogenic source like vehicles and construction activities are of less importance to metal-rich particles. Statistics of 1173 analyzed particles show that Fe-rich particles (48.5%) dominate the metal particles, followed by Zn-rich particles (34.9%) and Pb-rich particles (15.6%). Compared with the abundances among clear, haze and fog conditions, a severe metal pollution is identified in haze and fog episodes. Particle composition and elemental correlation suggest that the haze episodes are affected by the biomass burning in the southern regions, and the fog episodes by the local emission with manifold particle speciation. Our results show the heterogeneous reaction accelerated in the fog and haze episodes indicated by more zinc nitrate or zinc sulfate instead of zinc oxide or carbonate. Such information is useful in improving our knowledge of fine airborne metal particles on their morphology, speciation, and solubility, all of which will help the government introduce certain control to alleviate metal pollution. PMID:25555257

Hu, Yunjie; Lin, Jun; Zhang, Suanqin; Kong, Lingdong; Fu, Hongbo; Chen, Jianmin

2015-04-01

158

Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements  

NASA Astrophysics Data System (ADS)

A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multiespectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analysed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.10 ± 0.06 to 3.90 ± 0.03, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the ? exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyse the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.

Granados-Muñoz, M. J.; Navas-Guzmán, F.; Bravo-Aranda, J. A.; Guerrero-Rascado, J. L.; Lyamani, H.; Valenzuela, A.; Titos, G.; Fernández-Gálvez, J.; Alados-Arboledas, L.

2014-10-01

159

Improving Atmospheric Plasma Spraying of Zirconate Thermal Barrier Coatings Based on Particle Diagnostics  

NASA Astrophysics Data System (ADS)

Lanthanum zirconate (La2Zr2O7) has been proposed as a promising material for thermal barrier coatings. During atmospheric plasma spraying (APS) of La2Zr2O7 a considerable amount of La2O3 can evaporate in the plasma flame, resulting in a non-stoichiometric coating. As indicated in the phase diagram of the La2O3-ZrO2 system, in the composition range of pyrochlore structure, the stoichiometric La2Zr2O7 has the highest melting point and other compositions are eutectic. APS experiments were performed with a TriplexPro™-200 plasma torch at different power levels to achieve different degrees of evaporation and thus stoichiometry. For comparison, some investigations on gadolinium zirconate (Gd2Zr2O7) were included, which is less prone to evaporation and formation of non-stoichiometry. Particle temperature distributions were measured by the DPV-2000 diagnostic system. In these distributions, characteristic peaks were detected at specific torch input powers indicating evaporation and solidification processes. Based on this, process parameters can be defined to provide stoichiometric coatings that show good thermal cycling performance.

Mauer, Georg; Sebold, Doris; Vaßen, Robert; Stöver, Detlev

2012-06-01

160

Morphology and Chemical composition of Atmospheric Particles over Semi-Arid region (Jaipur, Rajasthan) of India  

NASA Astrophysics Data System (ADS)

Uncertainties associated with the radiative forcing of atmospheric dust particles is highest, owing to lack of region-specific dust morphology (particle shape, size) and mineralogy (chemical composition) database, needed for modeling their optical properties (Mishra and Tripathi, 2008). To fill this gap for the Indian region, we collected atmospheric particles (with aerodynamic size <5um, PM5 and a few bulk particles; TSP) from seven sites of Jaipur and nearby locales (semi-arid region, in the vicinity of Thar Desert of Rajasthan) at varying altitude, during late winters of ca. 2012. PM5 particles were collected on Teflon filters (for bulk chemical analyses), while pure Tin substrates (~1×1 mm2) were used for investigating individual particle morphology. Using Scanning Electron Microscope equipped with Energy Dispersive X ray (SEM-EDX) facility at NPL, images of individual particles were recorded and the morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001), whereas chemical compositions of individual particles were determined by EDX and bulk samples by X ray fluorescence (XRF). The geometrical size distributions of atmospheric particles were generated for each site. Based on NIST (National Institute of Standard and Technology, USA) morphology database, the site-specific individual particle shapes reveal predominance of "Layered" (calcite and quartz rich), "Angular" structures (quartz rich) and "Flattened" particles over all the sites. Particles were found to be highly non-spherical with irregular shapes (CIR varying from 1 to 0.22 with median value ~0.76; AR varying from 1 to 5.4 with median value ~1.64). Noteworthy to mention, that unit values of AR and CIR represent spherical particles. Chemical analyses of PM5 particles revealed dominance of crustal elements e.g. Si, Al, Fe, Ca, Mg, in general. Particles over Kukas Hill (27.027° N, 75.919° E; ~800 MAGL) showed highest Fe mass fractions (~43%), i.e. a key element (in form of hematite; Fe2O3) for solar (visible) energy absorption and thus heating the atmosphere. The retrieved morphological parameters help to construct particle shape and number size distribution that are highly useful to reduce the uncertainty in radiative forcing of dust particles appreciably when combined with particle chemical composition as suggested by Kalashnikova and Sokolik (2004). References : Mishra, S. K., and S. N. Tripathi (2008), Modeling optical properties of mineral dust over the Indian Desert, J. Geophys. Res., 113, D23201, 19 PP., doi:10.1029/2008JD010048. Okada, K., J. Heintzenberg, K. Kai, and Y. Qin (2001), Shape of atmospheric mineral particles collected in three Chinese arid-regions, Geophys. Res. Lett., 28, 3123-3126 Kalashnikova OV, Sokolik IN. (2004) Modeling the radiative properties of nonspherical soil-derived mineral aerosols, J Quant Spectrosc Radiat Transfer, 87, 137-66.

Mishra, S. K.; Agnihotri, R.; Yadav, P.; Singh, S.; Tawale, J. S.; Rashmi, R.; Prasad, M.; Arya, B. C.; Mishra, N.

2012-12-01

161

Seasonality of the chemistry in atmospheric new particle formation in southern Africa  

NASA Astrophysics Data System (ADS)

Atmospheric new particle formation has been observed in various different environments ranging from remote background regions to polluted megacities. In many environments it has also been shown to increase the concentration of particles in sizes that can act as cloud condensation nuclei and therefore affect the climate. New particle formation is essentially a two-step process, where the first step is nucleation in the nanometer size range, which is followed by a growth phase to climatically relevant sizes. While recent advances in experimental methods have enabled direct observations of atmospheric nucleation, aerosol particle chemistry during the growth phase following nucleation has been characterised in relatively few studies and never covered a full seasonal cycle. In this study we utilized one year of continuous online chemical composition measurements of submicron aerosol particles with an Aerosol Chemical Speciation Monitor (ACSM) together with concurrent size distribution measurements from 12 to 840 nm with a Differential Mobility Particle Sizer (DMPS). The measurements were carried out at Welgegund measurement station in South Africa, which is approximately 100 km west of Johannesburg from September 2010 to August 2011. During this period the frequency of new particle formation events was 78 % with 90 % data coverage. The high frequency of new particle formation events enabled us to study the chemistry of aerosol particle growth in 89 new particle formation events during the one year period. Organic aerosol and sulphate were the dominant constituents in the growth of newly formed particles at Welgegund. On average, organic aerosol constituted 49 % of the growth and sulphate 36 %. However, the ratio of organic aerosol and sulphate varied widely depending on whether the air masses originated in the clean sector or in the anthropogenic sector. Ammonium correlated with sulphate (correlation coefficient 0.83) and constituted on average 11 % of the growth, while nitrate was a minor constituent with a 4 % average fraction. We observed a clear seasonal pattern in the organic aerosol source rate with the highest values occurring during the local spring and summer.

Vakkari, Ville; Tiitta, Petri; Beukes, Johan P.; van Zyl, Pieter G.; Josipovic, Miroslav; Venter, Andrew D.; Jaars, Kerneels; Worsnop, Douglas R.; Kulmala, Markku; Laakso, Lauri

2014-05-01

162

Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations  

Microsoft Academic Search

An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped diesel trucks, paved road dust,

Wolfgang F. Rogge; Lynn M. Hildemann; Monica A. Mazurek; Glen R. Cass; Bernd R. T. Simoneit

1996-01-01

163

Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations  

Microsoft Academic Search

An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road

Wolfgang F. Rogge; Lynn M. Hildemann; Monica A. Mazurek; Glen R. Cass; Bernd R. T. Simoneit

1996-01-01

164

A fast atmospheric turbulent parameters estimation using particle filtering. Application to LIDAR  

E-print Network

A fast atmospheric turbulent parameters estimation using particle filtering. Application to LIDAR. Doppler LIDAR, is typically used to get this kind of information because it can make fast, distant on simulated Doppler LIDAR measurements, in tree-dimensional modeling. 1. Introduction In various activities

Baehr, Christophe

165

Aging of organic materials around high-energy particle accelerators  

NASA Astrophysics Data System (ADS)

Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

Tavlet, Marc

1997-08-01

166

Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing  

NASA Astrophysics Data System (ADS)

In the present work, we aim to elucidate the roles of low-volatility organic vapors in atmospheric new particle formation in urban Beijing. Proposed organic molecules are derived from both the ambient measurement and the reasonable proxy. Several representations for the nucleation theories involving sulfuric acid and organic vapors are evaluated. The particle nucleation rates show good correlations both with sulfuric acid and organic vapors, suggesting that both play an important role in the atmospheric new particle formation. For the entire data set, the best fit (R = 0.79, slope = 1.1) between the observed and modeled particle nucleation rates is achieved with the homogenous nucleation theory of sulfuric acid (both homomolecularly and heteromolecularly) with separate coefficients in J = KSA1[H2SO4]2 + KSA2[H2SO4][Org]. In addition, sulfuric acid concentration only contributes a small fraction (<15%) to the total observed growth rate. The growth rates of 7-30 nm particles show positive correlation with the organic vapors oxidized by ozone, suggesting that particle nucleation may be controlled by the light intensity or OH concentration, while the growth of nucleation mode particles seems to be limited more by the concentrations of the organic precursors.

Wang, Z. B.; Hu, M.; Pei, X. Y.; Zhang, R. Y.; Paasonen, P.; Zheng, J.; Yue, D. L.; Wu, Z. J.; Boy, M.; Wiedensohler, A.

2015-02-01

167

Large-eddy simulation of particle-laden atmospheric boundary layer  

NASA Astrophysics Data System (ADS)

Pollen dispersion in the atmospheric boundary layer (ABL) is numerically investigated using a hybrid large-eddy simulation (LES) Lagrangian approach. Interest in prediction of pollen dispersion stems from two reasons, the allergens in the pollen grains and increasing genetic manipulation of plants leading to the problem of cross pollination. An efficient Eulerian-Lagrangian particle dispersion algorithm for the prediction of pollen dispersion in the atmospheric boundary layer is outlined. The volume fraction of the dispersed phase is assumed to be small enough such that particle-particle collisions are negligible and properties of the carrier flow are not modified. Only the effect of turbulence on particle motion has to be taken into account (one-way coupling). Hence the continuous phase can be treated separate from the particulate phase. The continuous phase is determined by LES in the Eulerian frame of reference whereas the dispersed phase is simulated in a Lagrangian frame of reference. Numerical investigations are conducted for the convective, neutral and stable boundary layer as well different topographies. The results of the present study indicate that particles with small diameter size follow the flow streamlines, behaving as tracers, while particles with large diameter size tend to follow trajectories which are independent of the flow streamlines. Particles of ellipsoidal shape travel faster than the ones of spherical shape.

Ilie, Marcel; Smith, Stefan Llewellyn

2008-11-01

168

Determination of functionalised carboxylic acids in atmospheric particles and cloud water using capillary electrophoresis/mass spectrometry.  

PubMed

A capillary electrophoresis/electrospray ionisation mass spectrometry (CE/ESI-MS) method was developed for the determination of 38 organic acids in atmospheric particles and cloud water. The target analytes include many functionalised carboxylic acids, such as carboxylic acids with additional oxo-, hydroxy- or nitro-groups. These compounds are of large interest as their determination might give new insights into the atmospheric multiphase chemistry. OASIS HLB sorbent material (Waters) was used to extract and enrich polar carboxylic acids from aqueous solutions with recoveries greater than 80% for most analytes. Relative standard deviations in the range of 4-20% for peak areas (n=5), including the SPE step, and 0.2-0.5% (n=8) for migration times were found. The limits of detection (S/N=3) ranged from 0.005 to 0.6 micromol l(-1) for an ion-trap mass spectrometer and from 0.0004 to 0.08 micromol l(-1) for a time-of-flight mass spectrometer. These detection limits translate into atmospheric concentrations in the low pg m(-3) range based on the experimental conditions in this study. Severe matrix effects were observed for real samples, arising from complex co-extracted organic material. However, using the method of standard addition, most of the analytes could successfully be quantified in samples of ambient particles and cloud water with concentrations in the low ng m(-3) to high pg m(-3) range. These results demonstrate the suitability of the proposed method for the determination of a wide range of polar carboxylic acids at low concentrations in complex samples of different atmospheric phases. PMID:17920610

van Pinxteren, Dominik; Herrmann, Hartmut

2007-11-01

169

Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation  

NASA Technical Reports Server (NTRS)

Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

Marble, Elizabeth

1996-01-01

170

UV polarization lidar for remote sensing new particles formation in the atmosphere.  

PubMed

Understanding new particles formation in the free troposphere is key for air quality and climate change, but requires accurate observation tools. Here, we discuss on the optical requirements ensuring a backscattering device, such as a lidar, to remotely observe nucleation events promoted by nonspherical desert dust or volcanic ash particles. By applying the Mie theory and the T-matrix code, we numerically simulated the backscattering coefficient of spherical freshly nucleated particles and nonspherical particles. We hence showed that, to remotely observe such nucleation events with an elastic lidar device, it should operate in the UV spectral range and be polarization-resolved. Two atmospheric case studies are proposed, on nucleation events promoted by desert dust, or volcanic ash particles. This optical pathway might be useful for climate, geophysical and fundamental purposes, by providing a range-resolved remote observation of nucleation events. PMID:24922365

David, Grégory; Thomas, Benjamin; Dupart, Yoan; D'Anna, Barbara; George, Christian; Miffre, Alain; Rairoux, Patrick

2014-05-01

171

Studies on nanosecond pulsed atmospheric pressure discharge with particle-in-cell Monte Carlo collision simulation  

SciTech Connect

Nanosecond pulsed atmospheric pressure discharge becomes an active research topic because of its promising prospect of applications in many areas. To understand its dynamics, the discharge process was studied by one-dimensional implicit particle-in-cell Monte Carlo collision (PIC-MCC) simulation coupled with a particle renormalization algorithm, in which multiple electron Monte Carlo collisions per step were considered to improve the computation efficiency. In the simulation, the effects of discharge conditions such as plateau voltage, pulse rise time, and initial charged particle density were investigated. It is found that the plateau voltage in the pulse waveform is a major factor controlling the final charged particle density in the plasma bulk, and the built-up time and steady thickness of cathode sheath are proportional to the pulse rise time, whereas reversely proportional to the initial charged particle density.

Yang Chenguang; Duan Lian; Xu Yongyue; Wang Xinbing; Zuo Duluo [Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

2012-09-15

172

EXPERIMENTAL STUDIES ON PARTICLE IMPACTION AND BOUNCE: EFFECTS OF SUBSTRATE DESIGN AND MATERIAL. (R825270)  

EPA Science Inventory

This paper presents an experimental investigation of the effects of impaction substrate designs and material in reducing particle bounce and reentrainment. Particle collection without coating by using combinations of different impaction substrate designs and surface materials was...

173

The effect of precipitating particles on middle atmospheric night time ozone during enhanced geomagnetic activity  

NASA Astrophysics Data System (ADS)

We have investigated the effect of precipitating particles on middle atmospheric ozone during a moderate geomagnetic storm in July 2009. It is expected that the number of precipitating particles increases with increasing geomagnetic activity, and that these precipitated particles will subsequently enhance the production of nitrosonium (NO+) and odd hydrogen (HOx) in the upper atmosphere. The lifetime of HOx and its associated ozone (O3) destruction is short, whilst NO+ can form long-lived odd nitrogen during times of high geomagnetic activity, (NOx), which can affect ozone over a longer time span, and hence a wider spatial range due to transport. We use the National Oceanic and Atmospheric Administration (NOAA) satellite data to identify and analyze the particles that precipitated over Antarctica during the moderate geomagnetic storm. To analyze the subsequent nitric oxide (NO) enhancement and O3 depletion we use a microwave radiometer stationed at Troll, Antarctica (72°S, 2.5°E, L=4.76). This microwave radiometer operating at 250 GHz gives high temporal and vertical resolution of the NO and O3 column. The Atmospheric Radiation Transfer Simulator (ARTS) and QPack have been employed to perform the inversions of the spectra. During the July storm that reached -79 nT on the Dst index, we observe radiation-belt particle precipitation over Troll, an NO increase, and a direct O3 depletion of 30% between 60 and 80 km altitude. This O3 depletion lasted for 9 days, and its centroid descended to 55 km altitude at a vertical velocity of 1-3 m/s. This work shows that moderate storms, which are common-place and occur even during solar minimum, can cause a significant and direct effect in the middle atmospheric ozone distribution.

Daae, M.; Espy, P. J.; Newnham, D.; Kleinknecht, N.; Clilverd, M.

2010-12-01

174

Development progress of the Materials Analysis and Particle Probe.  

PubMed

The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques. PMID:25430248

Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

2014-11-01

175

Development progress of the Materials Analysis and Particle Probe  

NASA Astrophysics Data System (ADS)

The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.

2014-11-01

176

Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials  

SciTech Connect

This patent describes a method of fabricating oriented compacts of superconducting and/or permanent magnetic material. It comprises: providing a base layer of support material, mechanically orienting aligned superconducting or permanently magnetic particles into the desired orientation on the base layer, without mixing the particles with a liquid, optionally covering the particles with a support material, fabricating the base layer and oriented particles assemblage into a desired construct and recovering the resulting fabricated material.

Nellis, W.J.; Maple, M.B.

1992-05-12

177

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2010-07-01

178

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2011-07-01

179

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2014 CFR

... 2014-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2014-07-01

180

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2013-07-01

181

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2012-07-01

182

Single-particle tracking: Brownian dynamics of viscoelastic materials.  

PubMed Central

A unifying theoretical framework for analyzing stochastic data from single-particle tracking (SPT) in viscoelastic materials is presented. A generalization of the bead-spring model for linear polymers is developed from a molecular point of view and from the standpoint of phenomenological linear viscoelasticity. The hydrodynamic interaction in the former is identified as the dashpots in the latter. In elementary terms, the intimate correspondence between time-correlation of the fluctuation measurements and transient relaxation kinetics after perturbation is discussed, and the central role of the fluctuation-dissipation relation is emphasized. The work presented here provides a bridge between the microscopic and the macroscopic views of linear viscoelastic biological materials, and is applicable to membrane protein diffusion, linear DNA chain dynamics, and mechanics of intracellular cytoskeletal networks. PMID:10866942

Qian, H

2000-01-01

183

Field and laboratory studies of atmospheric reactive mercury: Gas-particle partitioning and sources  

NASA Astrophysics Data System (ADS)

Certain aspects of atmospheric reactive mercury (RM) source-receptor relationships are not well understood. The objective of this dissertation was to improve the understanding of these relationships in the following areas: (i) gas-particle partitioning, and; (ii) the local impacts of RM source emissions. A novel aerosol reactor was developed to study gas-particle partitioning of RM using synthetic atmospheric aerosol containing picogram concentrations of RM. The RM in the aerosol was collected in an offline mode with filters and sorbent, and analyzed with Thermal Desorption Analysis (TDA). The offline-TDA collection and analysis method was compared with a commercial real time ambient mercury analyzer and two wet analysis methods using ambient measurements. The offline-TDA method performed well in comparison to the established techniques. The dependencies of gas-particle partitioning coefficients upon temperature and particle composition were determined and parameterized from field studies and laboratory experiments. The volatility of RM increased with ambient temperature in urban aerosol and laboratory aerosol of ammonium sulfate and adipic acid. The dependence of RM gas-particle partitioning on particle composition were determined using synthetic atmospheric aerosol generated in the laboratory. RM partitioned predominantly to the particle phase in particles of sodium nitrate, sodium chloride and potassium chloride, but was much more volatile in particles made of ammonium sulfate, levoglucosan and adipic acid. The impacts of RM sources on local receptors were studied in southern Wisconsin and Mexico City. RM measurements were made over a year in Milwaukee, WI (urban) and Devil's Lake State Park, WI (rural). An urban excess of all three mercury species was detected in Milwaukee, WI. The urban excess was attributed to a higher density of mercury emissions in the Milwaukee, WI-Chicago, IL area. The impact of local sources of RM on both sites was found to dominate the atmospheric concentrations. PHg and RGM measurements were made in Mexico City over 2.5 weeks. Diurnal concentration variations with nocturnal maxima pointed to nightly transport of air into the city from the industrial area to the north. RM partitioned predominantly to the particle phase in most of the plumes.

Rutter, Andrew Philip

184

The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles  

PubMed Central

The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

Cooney, Daniel J; Hickey, Anthony J

2008-01-01

185

Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N 2O 5 on atmospheric particles  

NASA Astrophysics Data System (ADS)

The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N 2O 5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with˜10ppm of N 2O 5 in a 200 ? continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m 3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N 2O 5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10 -18to5 × 10 -18 cm 3 molecules -1 s -1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10 -18to30 × 10 -18 cm 3 molecules -1 s -1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO 2, N 2O 5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N 2O 5 were of the order of1 × 10 -19-1 × 10 -18 molecules -1s -1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N 2O 5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N 2O 5 degrade particle-bound PAH or to form nitro-PAH from PAH are not very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)

Kamens, Richard M.; Guo, Jiazhen; Guo, Zhishi; McDow, Stephen R.

186

Heterogeneous Chemical Transformation of Incident Exogenous Organic Material in Earth's Upper Atmosphere  

Microsoft Academic Search

On average, 10^8 g of solar system debris impinges on the Earth system each day. It is estimated that a few percent of this material is carbonaceous in nature, yet the fate of this organic material once it enters our atmosphere is unexplored. Much of this incoming material arrives in the form of micrometeoroids which are large enough to suffer

C. L. Belle; M. E. Kress; L. T. Iraci

2009-01-01

187

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect

Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

farquar, G; Leif, R

2008-09-12

188

Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere.  

PubMed

Ultrafine particles (UFPs, diameter<100nm) have gained major attention in the environmental health discussion due to a number of suspected health effects. Observations of UFPs in urban air reveal the presence of several, time-dependent particle sources. In order to attribute measured UFP number concentrations to different source type contributions, we analyzed observations collected at a triplet of observation sites (roadside, urban background, rural) in the city of Leipzig, Germany. Photochemical new particle formation (NPF) events can be the overwhelming source of UFP particles on particular days, and were identified on the basis of characteristic patterns in the particle number size distribution data. A subsequent segmentation of the diurnal cycles of UFP concentration yielded a quantitative contribution of NPF events to daily, monthly, and annual mean values. At roadside, we obtained source contributions to the annual mean UFP number concentration (diameter range 5-100nm) for photochemical NPF events (7%), local traffic (52%), diffuse urban sources (20%), and regional background (21%). The relative contribution of NPF events rises when moving away from roadside to the urban background and rural sites (14 and 30%, respectively). Their contribution also increases when considering only fresh UFPs (5-20nm) (21% at the urban background site), and conversely decreases when considering UFPs at bigger sizes (20-100nm) (8%). A seasonal analysis showed that NPF events have their greatest importance on UFP number concentration in the months May-August, accounting for roughly half of the fresh UFPs (5-20nm) at the urban background location. The simplistic source apportionment presented here might serve to better characterize exposure to ambient UFPs in future epidemiological studies. PMID:25617781

Ma, N; Birmili, W

2015-04-15

189

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

Code of Federal Regulations, 2011 CFR

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2011-10-01

190

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

Code of Federal Regulations, 2010 CFR

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2010-10-01

191

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

SciTech Connect

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01

192

Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts  

NASA Astrophysics Data System (ADS)

The photooxidation of ?-pinene in the presence of NO 2, with and without added NaNO 3 seed particles, has been studied in a large-diameter flow tube. Particles formed by homogeneous nucleation and by condensation on the pre-existing seeds were sampled at various stages of the reaction, dried using four diffusion dryers, size selected at different mobility diameters ( dm) using a differential mobility analyzer (DMA), and characterized with a single particle mass spectrometer (SPLAT II). It was found that homogeneously nucleated particles are spherical, have a density ( ?) of 1.25 ± 0.02 g cm -3 (±2 ?) and contain a significant amount of organic nitrates. The mass spectra of the low volatility products condensed on the NaNO 3 seed particles were found to be virtually the same as in the case of homogeneous nucleation. The data show that the presence of even a submonolayer of organics on the NaNO 3 particles causes water retention that leads to a decrease in particle density and that the amount of water retained increases with organic coating thickness. Thicker coatings appear to inhibit water evaporation from the particle seeds altogether. This suggests that in the atmosphere, where low volatility organics are plentiful, some hygroscopic salts will retain water and have different densities and refractive indices than expected in the absence of the organic coating. This water retention combined with the organic shell on the particles can potentially impact light scattering by these particles and activity as cloud condensation nuclei (CCN), as well as heterogeneous chemistry and photochemistry on the particles.

Zelenyuk, Alla; Ezell, Michael J.; Perraud, Véronique; Johnson, Stanley N.; Bruns, Emily A.; Yu, Yong; Imre, Dan; Alexander, M. Liz; Finlayson-Pitts, Barbara J.

2010-03-01

193

Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX  

NASA Astrophysics Data System (ADS)

A study was conducted in Houston, TX focusing on rare earth elements (REEs) in atmospheric fine particles and their sources. PM 2.5 samples were collected from an ambient air quality monitoring site (HRM3) located in the proximity of a large number of oil refineries and petrochemical industries to estimate the potential contributions of emissions from fluidized-bed catalytic cracking operations to ambient fine particulate matter. The elemental composition of ambient PM 2.5, several commercially available zeolite catalysts, and local soil was measured after microwave assisted acid digestion using inductively coupled plasma—mass spectrometry. Source identification and apportionment was performed by principal component factor analysis (PCFA) in combination with multiple linear regression. REE relative abundance sequence, ratios of La to light REEs (Ce, Pr, Nd, and Sm), and enrichment factor analysis indicated that refining and petrochemical cat cracking operations were predominantly responsible for REE enrichment in ambient fine particles. PCFA yielded five physically meaningful PM 2.5 sources: cat cracking operations, a source predominantly comprised of crustal material, industrial high temperature operations, oil combustion, and sea spray. These five sources accounted for 82% of the total mass of atmospheric fine particles (less carbon and sulfate). Factor analysis confirmed that emissions from cat cracking operations primarily contributed to REE enrichment in PM 2.5 even though they comprised only 2.0% of the apportioned mass. Results from this study demonstrate the need to characterize catalysts employed in the vicinity of the sampling stations to accurately determine local sources of atmospheric REEs.

Kulkarni, Pranav; Chellam, Shankararaman; Fraser, Matthew P.

194

Particle densities of the pulsed dielectric barrier discharges in nitrogen at atmospheric pressure  

NASA Astrophysics Data System (ADS)

Pulsed dielectric barrier discharges (DBDs) have become a promising solution to generate atmospheric-pressure non-equilibrium plasmas. In this work, a one-dimensional fluid model is carried out to research particle densities of the pulsed nitrogen DBDs at atmospheric pressure. Averaged particle densities, time evolutions of axial distributions of particle densities and influences of discharge gap distance dg on the particle densities are systematically illustrated and discussed. The calculation results show that averaged electron densities are lower than averaged N2+ densities, but higher than other averaged ion densities. Time evolutions of axial distributions of electron, N+ and N2+ densities show two peaks during rising and falling phases of applied voltage when dg is 0.2?cm but present gradual increases during pulse width when dg is 0.6?cm, which are similar to those of N2(a?) and N2(B). Maximums of N3+ densities are close to the momentary cathode under dg of 0.2?cm but locate near the grounded electrode under dg of 0.6?cm, which are alike to those of N2(A) and N2(C). Besides, N4+ densities nearby the momentary anode are higher than those nearby the momentary cathode when dg is 0.2?cm. N(2D) has low averaged particle densities and complex time evolutions compared to N.

Pan, Jie; Li, Li

2015-02-01

195

Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth  

PubMed Central

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

2013-01-01

196

Reports of workshops on Probe Measurements of Particles and Radiation in the Atmosphere of Titan  

NASA Technical Reports Server (NTRS)

The planned 1995 joint ESA-NASA Cassini mission to the Saturnian system will include an atmospheric probe to be dropped into the atmosphere of Titan for in situ measurements during descent. Because of the unique properties of the Titan atmosphere it is necessary to consider the peculiar requirements for such measurements and applicable techniques. The proceedings of two workshops dealing with the measurement of particles and radiation in the atmosphere of Titan are presented in two parts. The first part dealt with the measurement of particulate matter in the atmosphere of Titan. The second part dealt with the measurement of radiation in the atmosphere of Titan. The proceedings were first published and distributed informally, and are presented with only minor editorial changes. In the report of the particulate matter workshop, discussions of the mission background, the importance of the measurements, and descriptions of the desired information are followed by a description of appropriate measurement techniques and conclusions and recommendations. The proceeding for the workshop on radiation measurement and imaging contains a discussion of the importance of radiation measurements and imaging, and presents a summary of participants' experience with such measurements made from entry probes. This is followed by a description of appropriate measurement techniques and conclusions and recommendations.

Ragent, Boris (comp. and ed.); Swenson, Byron L. (comp. and ed.)

1990-01-01

197

Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity  

SciTech Connect

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by ?-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ? 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ? 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ? 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ? 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

2013-05-14

198

Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere  

E-print Network

Twisted coronal loops should be ubiquitous in the solar corona. Twisted magnetic fields contain excess magnetic energy, which can be released during magnetic reconnection, causing solar flares. The aim of this work is to investigate magnetic reconnection, and particle acceleration and transport in kink-unstable twisted coronal loops, with a focus on the effects of resistivity, loop geometry and atmospheric stratification. Another aim is to perform forward-modelling of bremsstrahlung emission and determine the structure of hard X-ray sources. We use a combination of magnetohydrodynamic (MHD) and test-particle methods. First, the evolution of the kinking coronal loop is considered using resistive MHD model, incorporating atmospheric stratification and loop curvature. Then, the obtained electric and magnetic fields and density distributions are used to calculate electron and proton trajectories using a guiding-centre approximation, taking into account Coulomb collisions. It is shown that electric fields in twist...

Gordovskyy, Mykola; Kontar, Eduard; Bian, Nicolas

2015-01-01

199

Evidence for propagation of aerobic bacteria in particles suspended in gaseous atmospheres. [Terrestrial microorganism contamination of Jupiter atmosphere  

NASA Technical Reports Server (NTRS)

One factor involved in the possibility that airborne microbes might contaminate the Jovian atmosphere is whether microbes have the capacity to propagate in air. Prior to these studies, the evidence was that the airborne state was lethal to microbes. An aerosol of aerobic bacteria was mixed with another containing C-14-glucose, and the presence of C-14-CO2 was subsequently detected, which indicates that the airborne cells were metabolically active. In the same type of experiment, it was shown that thymidine was incorporated into the acid-insoluble fraction of samples, indicating the formation of DNA. It was also shown, both by an increase in the numbers of viable cells and a parallel increase in particle numbers, that at least two new generations of cells could occur. Evidence for propagation of anaerobic bacteria has so far been negative.

Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.; Straat, P.

1977-01-01

200

Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics  

SciTech Connect

Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81% to 870% for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

2013-06-04

201

Climatic effects of cloud particles in the atmospheres of Earth-like extrasolar planets  

NASA Astrophysics Data System (ADS)

ABSTRACT Clouds can have an important effect on the climate (and thereby also on the habitability) of terrestrial planets. While clouds in the upper atmosphere increase atmospheric cooling by scattering of the incoming stellar radiation, clouds in the lower atmosphere are leading to an enhanced greenhouse effect, resulting in higher surface temperatures. Due to the shortage of observational detail regarding the atmospheres of terrestrial extrasolar planets, particular studies of clouds are limited to basic questions about the predominant processes at work, which have to be adressed. In this contribution we focus on the climatic effects of water droplet distributions in the lower tropospheres of Earth-like extrasolar planets. As a first approximation, parametrized distribution functions are used in our study for the description of the cloud particles. The distribution function used here is the log-normal distribution, which is known to be a good approximation to observed size spectra of cumulus clouds in the Earths atmosphere (cf. [3]). This size distribution function is given by the expression f(a) = N p 2? a ln ?g exp ? -(ln a - ln an)2 2(ln ?g)2 ? (1) and depends on the three parameters: particle number concentration N, geometric standard deviation ?g and the median radius an. The particle radius is denoted by a, respectively. Our simplified cloud description scheme is coupled with a one-dimensional radiative-convective climate-model (see e.g. [4] and [2] for a general overview of the model) in order to study the basic effects on the climate. Optical properties of the cloud particles are, thereby, calculated by Mie-theory (cf. e.g. [1]), assuming spherical particles composed of pure liquid water and have been included in the models radiative transfer scheme. Results for e.g. different types of central stars are presented and compared with the respective cloud-free situations. References [1] C.F. Bohren and D.R. Huffman, Absorption and scattering of light by small particles, 1983, Wiley [2] Grenfell et al. (2007) Planetary and Space Science, Vol. 55, Issue 5, 661-671 [3] A. A. Kokhanovsky, Cloud Optics, 2006, Springer [4] Segura et al. (2003) Astrobiology, Vol. 3, No. 4, 689- 708

Kitzmann, D.; Patzer, A. B. C.; von Paris, P.; Grenfell, L.; Rauer, H.

2008-09-01

202

Condensation-nuclei (Aitken Particle) measurement system used in NASA global atmospheric sampling program  

NASA Technical Reports Server (NTRS)

The condensation-nuclei (Aitken particle) measuring system used in the NASA Global Atmospheric Sampling Program is described. Included in the paper is a description of the condensation-nuclei monitor sensor, the pressurization system, and the Pollack-counter calibration system used to support the CN measurement. The monitor has a measurement range to 1000 CN/cm cubed and a noise level equivalent to 5 CN/cm cubed at flight altitudes between 6 and 13 km.

Nyland, T. W.

1979-01-01

203

Modelling new particle formation from Jülich plant atmosphere chamber and CERN CLOUD chamber measurements  

NASA Astrophysics Data System (ADS)

An MALTE-BOX model is used to study the effects of oxidation of SO2 and BVOCs to new particle formation from Jülich Plant Atmosphere Chamber and CERN CLOUD chamber measurements. Several days of continuously measurements were chosen for the simulation. Our preliminary results show that H2SO4 is one of the critical compounds in nucleation process. Nucleation involving the oxidation of BVOCs shows better agreements with measurements.

Liao, Li; Boy, Michael; Mogensen, Ditte; Schobesberger, Siegfried; Franchin, Alessandro; Mentel, Thomas F.; Kleist, Einhard; Kiendler-Scharr, Astrid; Kulmala, Markku; dal Maso, Miikka

2013-05-01

204

Loss of nitric acid within inlet devices intended to exclude coarse particles during atmospheric sampling  

NASA Astrophysics Data System (ADS)

Seven inlet devices for removal of coarse particles, primarily cyclones, were evaluated for nitric acid (HNO 3) transmission efficiency under simulated day- and night-time conditions, at concentrations encountered in polluted urban atmospheres. The units employed were fabricated from solid polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA)-coated aluminum, flurorinated ethylene-propylene-coated glass, and stainless steel. Measured transmission efficiencies for precleaned units ranged from 18 to > 100%, and were generally lower under simulated night-time conditions. Residence time, surface composition and conditioning by HNO 3 were the principal parameters influencing HNO 3 transmission. Devices with calculated HNO 3 residence times ? 0.2s exhibited minimal HNO 3 loss. Solid PTFE or FEP-coated glass inlet devices are preferable to the coated aluminum cyclone for atmospheric HNO 3 sampling. Atmospheric sampling provided more effective conditioning of the PFA-coated aluminum cyclone than did laboratory sampling of HNO 3 in purified air.

Appel, B. R.; Povard, V.; Kothny, E. L.

205

Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.  

PubMed

Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols. PMID:25836102

Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick

2015-02-01

206

Gas/particle partitioning of PAHs and PCBs in the Arctic atmosphere  

SciTech Connect

As part of an ongoing Arctic atmospheric sampling campaign to study persistent organic pollutants, weekly air samples have been collected at Alert on Ellesmere Island and at Tagish in the Yukon since 1992. For each High-Volume air sample, the particulate fraction (F) was collected on a glass fiber filter while the vapor phase (A) was trapped on polyurethane foam (PUF) adsorbents. The semi-volatile PAHs and PCBs, partition between the vapor and particle phases in the atmosphere. In the Arctic atmosphere, both PAHs and PCBs showed increased particulate phase loading relative to warmer temperate regions. During the colder months, significant fractions of the lighter more volatile PAH were present on particles. Particulate sulfate concentrations measured routinely at Alert are shown to be a good surrogate for total suspended particulate (TSP) and aerosol surface area. During the haze period, sulfate made up the highest proportion of the aerosol mass and an excellent correlation (r{sup 2} = 0.94) was observed between sulfate particulate and total aerosol surface area. Using the aerosol surface area derived from sulfate concentrations, the Junge-Pankow model reasonably predicts the particulate fraction for individual compounds in the Arctic atmosphere, for vapor pressures derived at {minus}30 C and {minus}9 C respectively. TSP (sulfate) normalized partition coefficients of the form long A(TSP)/F were strongly correlated with those coefficients derived from temperate remote studies, where TSP was measured directly or assumed.

Halsall, C.J.; Barrie, L.A. [Atmospheric Environment Service, Toronto, Ontario (Canada); Fellin, P.; Dougherty, D. [Bovar Environmental, Toronto, Ontario (Canada); Muir, D.; Grift, N.; Lockhart, L. [Freshwater Inst., Winnipeg, Manitoba (Canada)

1995-12-31

207

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21

208

Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin  

NASA Astrophysics Data System (ADS)

One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiabá and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr and Pb. The elemental composition was measured at the new PIXE facility from the University of São Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br and FPM. Three components dominate the aerosol composition: soil dust particles, the natural biogenic release by the forest and a marine aerosol component. At the Cuiabá site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 ?g/m 3 was measured. APFA showed three components: soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes.

Artaxo, Paulo; Gerab, Fábio; Rabello, Marta L. C.

1993-04-01

209

Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere  

NASA Astrophysics Data System (ADS)

Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits and analyzed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometers in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should to be assessed.

Cao, J.; Li, Y.; Jiang, T.; Hu, G.

2014-11-01

210

Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos  

SciTech Connect

As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

Ando, Shin'ichiro; Profumo, Stefano [California Institute of Technology, Pasadena, CA 91125 (United States); Beacom, John F [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Rainwater, David, E-mail: ando@tapir.caltech.edu, E-mail: beacom@mps.ohio-state.edu, E-mail: profumo@caltech.edu, E-mail: rain@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

2008-04-15

211

Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos  

NASA Astrophysics Data System (ADS)

As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

Ando, Shin'ichiro; Beacom, John F.; Profumo, Stefano; Rainwater, David

2008-04-01

212

Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere  

NASA Astrophysics Data System (ADS)

Context. Twisted coronal loops should be ubiquitous in the solar corona. Twisted magnetic fields contain excess magnetic energy, which can be released during magnetic reconnection, causing solar flares. Aims: The aim of this work is to investigate magnetic reconnection, and particle acceleration and transport in kink-unstable twisted coronal loops, with a focus on the effects of resistivity, loop geometry and atmospheric stratification. Another aim is to perform forward-modelling of bremsstrahlung emission and determine the structure of hard X-ray sources. Methods: We use a combination of magnetohydrodynamic (MHD) and test-particle methods. First, the evolution of the kinking coronal loop is considered using resistive MHD model, incorporating atmospheric stratification and loop curvature. Then, the obtained electric and magnetic fields and density distributions are used to calculate electron and proton trajectories using a guiding-centre approximation, taking into account Coulomb collisions. Results: It is shown that electric fields in twisted coronal loops can effectively accelerate protons and electrons to energies up to 10 MeV. High-energy particles have hard, nearly power-law energy spectra. The volume occupied by high-energy particles demonstrates radial expansion, which results in the expansion of the visible hard X-ray loop and a gradual increase in hard X-ray footpoint area. Synthesised hard X-ray emission reveals strong footpoint sources and the extended coronal source, whose intensity strongly depends on the coronal loop density.

Gordovskyy, M.; Browning, P. K.; Kontar, E. P.; Bian, N. H.

2014-01-01

213

Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles  

NASA Astrophysics Data System (ADS)

The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (< 2.5 ?m) and coarse (2.5-10 ?m) atmospheric particles in an urban and industrial area located in the Metropolitan Area of Porto Alegre (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

2011-08-01

214

Gas/particle partitioning of PCDD/F compounds in the atmosphere of Istanbul.  

PubMed

Gas/particle partitioning of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) compounds in the ambient atmosphere were investigated at three different sites (urban-industrial, urban and sub-urban) in ?stanbul. Average gas and particle phase concentrations were measured as 133fgm(-3) and 1605fgm(-3), respectively. Gas phase concentrations of polychlorinated dibenzo-p-dioxin/furan (PCDD/F) compounds were determined to be 128fgm(-3), 50fgm(-3), 153fgm(-3) during summer season and 204fgm(-3), 164fgm(-3), 154fgm(-3) during winter season for the respective three sampling sites. Particle phase concentrations were determined to be 287fgm(-3), 176fgm(-3), 160fgm(-3) during summer and 6586fgm(-3), 2570fgm(-3) and 1861fgm(-3) during winter season for those three sampling sites. Chlorination level and molecular weight of congeners affected gas/particle partitioning of PCDD/F compounds. Gas phase percentages of 2,3,7,8-TCDD and OCDD concentrations were determined to be 47% and 1% respectively. A relatively high correlation was found between total particle matter (TPM) and particle phase PCDD/F concentration during winter season. PMID:25290170

Saral, Arslan; Gunes, Gulten; Karadeniz, Aykut; Goncaloglu, Bulent Ilhan

2015-01-01

215

Challenges in Simulating the Indirect Effect of Energetic Particle Precipitation on the Atmosphere  

NASA Astrophysics Data System (ADS)

A comprehensive description of Sun-Earth connections requires quantifying the atmospheric processes that indirectly amplify the effects of solar and magnetospheric input. The atmospheric response to energetic particle precipitation (EPP) is a key driver of these processes. EPP during the 2003-2004 Arctic winter led to the production and subsequent descent of reactive odd nitrogen (NOx) from the mesosphere and lower thermosphere (MLT) into the stratosphere. This caused NOx enhancements in the polar upper stratosphere in April 2004 that were unprecedented in the satellite record. Simulations of the 2003-2004 Arctic winter with the Whole Atmosphere Community Climate Model using Specified Dynamics (SD-WACCM) are compared to satellite measurements to assess how well SD-WACCM captures the observed NOx enhancements. The comparisons show that SD-WACCM clearly displays the descent of NOx produced by EPP, but underestimates the enhancements by a factor of four. The results suggest that problems simulating the atmosphere's recovery from a sudden stratospheric warming, as well as the lack of high energy electron precipitation in the model, both contribute to the inability of SD-WACCM to simulate the NOx enhancements. The work highlights the importance of measuring the full spectrum of precipitating electrons in order to understand the impact of EPP on the atmosphere, and suggests a need for more and higher quality meteorological data and measurements of NOx throughout the polar winter MLT.

Randall, Cora; Bailey, Scott; Harvey, V. Lynn; Marsh, Daniel

2015-04-01

216

Predictions of the electrical conductivity and charging of the cloud particles in Jupiter's atmosphere  

NASA Astrophysics Data System (ADS)

The electrical conductivity and electrical charge on cloud particles (composed of ammonia, ammonium hydrosulfide, and water) in the atmosphere of Jupiter are computed for pressures between 5.5 and 0.1 bars. The source of ionization is galactic cosmic rays (GCR). The distribution of charge among the various reservoirs is a function of altitude and the total area of the aerosol particles. For pressures below 4 bars, the electrons are scavenged efficiently by the cloud particles, decreasing the electron-ion recombination rate and resulting in increased positive ion abundance over that in the absence of the particles. For the upper regions of each cloud layer, the area of the aerosols and the large diffusion rate of the electrons cause most aerosol particles to be negatively charged. Near the bases of the cloud layers, the larger total area of the aerosols causes most of the charge, positive and negative, to reside on particles. Where clouds are present, the reduction of the electron conductivity ranges from a factor of 30 at 0.1 bar to 104 at 4 bars. At pressures near 1 bar and 4 bars, the positive ion conductivity increases by a factor of 10 over that expected for the clear atmosphere. A parametric study of negative ions shows that they are likely to be insignificant. For altitudes below the 0.3-bar level the predicted positive and negative conductivities are well below the detection limit of the relaxation and mutual impedance instruments such as those employed on the Huygens entry probe.

Whitten, R. C.; Borucki, W. J.; O'Brien, K.; Tripathi, S. N.

2008-04-01

217

In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds  

PubMed Central

An understanding of the gas/particle-phase partitioning of semivolatile compounds is critical in determining atmospheric aerosol formation processes and growth rates, which in turn affect global climate and human health. The Study of Organic Aerosol at Riverside 2005 campaign was performed to gain a better understanding of the factors responsible for aerosol formation and growth in Riverside, CA, a region with high concentrations of secondary organic aerosol formed through the phase transfer of low-volatility reaction products from the oxidation of precursor gases. We explore the ability of the thermal desorption aerosol gas chromatograph (TAG) to measure gas-to-particle-phase transitioning for several organic compound classes (polar and nonpolar) found in the ambient Riverside atmosphere by using in situ observations of several hundred semivolatile organic compounds. Here we compare TAG measurements to modeled partitioning of select semivolatile organic compounds. Although TAG was not designed to quantify the vapor phase of semivolatile organics, TAG measurements do distinguish when specific compounds are dominantly in the vapor phase, are dominantly in the particle phase, or have both phases present. Because the TAG data are both speciated and time-resolved, this distinction is sufficient to see the transition from vapor to particle phase as a function of carbon number and compound class. Laboratory studies typically measure the phase partitioning of semivolatile organic compounds by using pure compounds or simple mixtures, whereas hourly TAG phase partitioning measurements can be made in the complex mixture of thousands of polar/nonpolar and organic/inorganic compounds found in the atmosphere. PMID:20142511

Williams, Brent J.; Goldstein, Allen H.; Kreisberg, Nathan M.; Hering, Susanne V.

2010-01-01

218

Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber  

NASA Astrophysics Data System (ADS)

Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict new aerosol formation in the lower troposphere, developed by Boy, et al. (2006). We first evaluate the modelled results with measurements, and further we investigate the influence of different order of magnitude of terpene mixing ratios, especially isoprene and monoterpenes to the most important parameter of new particles formation, i.e. the formation rate (J1). Also, the influence of varying organic source rates on the sulphuric acid concentration available for particle formation is discussed. M. Boy et al., (2006). Atmos. Chem. Phys., 6, 4499-4517. M. Kulmala et al., (2004). Atmos. Chem. Phys., 4, 557-562. P. Tunved et al., (2006). Science, 14, 261-263. Th. F. Mentel et al., (2009). Atmos. Chem. Phys., 9, 4387-4406.

Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

2012-12-01

219

Soft materials design via self assembly of functionalized icosahedral particles  

NASA Astrophysics Data System (ADS)

In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

Muthukumar, Vidyalakshmi Chockalingam

220

Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry.  

PubMed

Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods. PMID:16131082

Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René

2005-09-01

221

Students 'Weigh' Atmospheric Pollution.  

ERIC Educational Resources Information Center

Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

Caporaloni, Marina

1998-01-01

222

Investigation of atmospheric particle-bound reactive oxidative species (ROS): Their sources, characterization, and measurement  

NASA Astrophysics Data System (ADS)

The relationships between the observed ROS concentrations in the New York City PMTACS study and various other atmospheric indicator species such as O3, HOx radicals, organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC), as well as the statistical significance of any observable correlations were explored. A statistically significant moderate positive correlation between the O3 and the ROS concentrations, that indicated the local intensity of photochemistry was a moderate factor affecting the formation of particulate ROS in the daytime atmosphere, was observed. The results of the comparison between ROS and HO x concentrations indicated the existence of, at best, a weak positive correlation. The lack of a more positive correlation of the particle-bound ROS, both with ozone as well as other gas phase oxidants, showed the decoupling of the particulate matter ROS from the gas phase oxidants. The comparison of ROS concentrations with OC, EC, and SOC concentrations revealed a statistically significant relationship (P-value < 0.05) only in the case of ROS and SOC. EC and OC, in general exhibited weak, negative correlations with the observed ROS concentrations. The consistency of the positive relationships between ROS and SOC for all the periods suggested that the measured ROS was photochemically driven. The absence of any statistical relevance of primary EC and OC concentrations on the ROS concentrations suggested that primary emissions, especially from motor vehicles, were not a major source of the measured particle-bound ROS. An important objective of this work was to develop a system that could provide a stable throughput of particle-bound ROS, and characterize it in terms of particle size distribution, concentrations, and formed products, such that the results obtained could be viewed in the perspective of atmospheric processes and measurements. A ROS-bearing particle generator was developed, that could deliver known exposures of ROS. It was seen that the system was generally stable with an average ROS generation capability of 5.6 nanomoles of equivalent H2O2/m3 of (aerosol+ozone) flow sampled. Additionally, the alpha-pinene-O3 oxidation chemical system, used in the ROS generator, was studied to elucidate the structures of reaction products using liquid chromatography-multiple stage mass spectrometry (LC/MSn). The classes of compounds identified based on their multiple stage-MS fragmentation patterns, mechanistic considerations of alpha-pinene-O 3 oxidation, and general fragmentation rules, of the products from this reaction system were highly oxygenated species, predominantly containing hydroperoxide and peroxide functional groups. The oxidant species observed were clearly stable for the 1-3 hrs that elapsed during aerosol collection and analysis, and probably for much longer, thus rendering it possible for these species to bind onto particles forming fine particulate organic peroxides that concentrate on the particles and could deliver concentrated doses of ROS in vivo to tissue. The lack of a suitable method to measure ROS on a routine basis has resulted in no work being undertaken to assess the effects of particle-bound ROS on health effects. In order to fill this need, an automated monitor for the sampling of ambient aerosol and the measurement of concentrations of ROS on the sampled aerosol was developed. Potential methods to quantify ROS were compared in order to arrive at a suitable method to automate. The Dichlorofluorescein (DCFH) fluorescence method was found to be the most non-specific, and hence the best suited method for the automated monitor. An integrated sampling-analysis system was designed and constructed based on collection of atmospheric particles in an aqueous slurry, and subsequent detection of the ROS concentration of the slurry using the DCFH fluorescence method. The results of the lab-scale investigation of the ROS sampling-analysis system suggested that the prototype continuous system was capable of detecting particle-bound ROS, and accounting for short-term variabilitie

Venkatachari, Prasanna

223

Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions  

PubMed Central

The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth’s climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl] >  ? 1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl] <  ? 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions. PMID:20921372

Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

2010-01-01

224

SiC particle cracking in powder metallurgy processed aluminum matrix composite materials  

Microsoft Academic Search

Particle cracking is one of the key elements in the fracture process of particulate-reinforced metal-matrix composite (MMC)\\u000a materials. The present study quantitatively examined the amount of new surface area created by particle cracking and the number\\u000a fraction of cracked particles in a series of SiC-reinforced aluminum-matrix composite materials. These composite materials\\u000a were fabricated by liquid-phase sintering and contained 9 vol

B. Wang; G. M. Janowski; B. R. Patterson

1995-01-01

225

Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests  

NASA Astrophysics Data System (ADS)

Oxidation of isoprene is an important source of secondary organic material (SOM) in atmospheric particles, especially in areas such as the Amazon Basin. Information on the viscosities, diffusion rates, and mixing times within isoprene-derived SOM is needed for accurate predictions of air quality, visibility, and climate. Currently, however, this information is not available. Using a bead-mobility technique and a poke-flow technique combined with fluid simulations, the relative humidity (RH)-dependent viscosities of SOM produced from isoprene photo-oxidation were quantified for 20-60 ?m particles at 295 ± 1 K. From 84.5 to 0% RH, the viscosities for isoprene-derived SOM varied from ~2 × 10-1 to ~3 × 105 Pa s, implying that isoprene-derived SOM ranges from a liquid to a semisolid over this RH range. These viscosities correspond to diffusion coefficients of ~2 × 10-8 to ~2 × 10-14 cm2 s-1 for large organic molecules that follow the Stokes-Einstein relation. Based on the diffusion coefficients, the mixing time of large organic molecules within 200 nm isoprene-derived SOM particles ranges from approximately 0.1 h to less than 1 s. To illustrate the atmospheric implications of this study's results, the Amazon Basin is used as a case study for an isoprene-dominant forest. Considering the RH range observed and with some assumptions about the dominant chemical compositions of SOM particles in the Amazon Basin, it is likely that SOM particles in this region are liquid and reach equilibrium with large gas-phase organic molecules on short time scales, less than or equal to approximately 0.1 h.

Song, M.; Liu, P. F.; Hanna, S. J.; Martin, S. T.; Bertram, A. K.

2015-01-01

226

The Effect of Particle Size on Iron Solubility in Atmospheric Aerosols  

NASA Astrophysics Data System (ADS)

The long range transport of mineral dust aerosols, which contain approximately 3% iron by mass, results in an estimated 14-16 Tg of iron deposited into the oceans annually; however, only a small percentage of the deposited iron is soluble. In high-nutrient, low chlorophyll ocean regions iron solubility may limit phytoplankton primary productivity. Although the atmospheric transport processes of mineral dust aerosols have been well studied, the role of particle size has been given little attention. In this work, the effect of particle size on iron solubility in atmospheric aerosols is examined. Iron-containing minerals (illite, kaolinite, magnetite, goethite, red hematite, black hematite, and quartz) were separated into five size fractions (10-2.5, 2.5-1, 1-0.5, 0.5-0.25, and <0.25?m) and extracted into buffer solutions simulating environments in the transport of aerosol particles for 150 minutes. Particle size was confirmed by scanning electron microscopy (SEM). Soluble iron content of the extracted mineral solutions was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Extracted mineral solutions were also analyzed for Fe(II) and Fe(III) content using a ferrozine/UV-VIS method. Preliminary results show that differences in solution composition are more important than differences in size. When extracted into acetate and cloudwater buffers (pH 4.25-4.3), < 0.3% of the Fe in iron oxides (hematite, magnetite, and goethite) is transferred to solution as compared to ~0.1-35% for clays (kaolinite and illite). When extracted into a marine aerosol solution (pH 1.7), the percentage of Fe of the iron oxides and clays transferred to solution increases to approximately 0.5-3% and 5-70%, respectively. However, there is a trend of increased %Fe in the minerals transferred to solution in the largest and smallest size fractions (~0.01-0.3% and ~0.5-35% for iron oxides and clays, respectively), and decreased %Fe in the minerals transferred to solution in the mid-range size fraction (~0.01-0.08% and ~0.1-1% for iron oxides and clays, respectively) when extracted into the acetate and cloudwater buffers. When extracted into the marine aerosol solution the %Fe in the minerals transferred to solution increases with decreasing particle size (from ~0.7% to ~2% and ~10 to 70% in iron oxides and clays, respectively). By examining the role of particle size, this work will provide a more complete understanding of iron dissolution during atmospheric transport of mineral dust aerosols.

Marcotte, A. R.; Majestic, B. J.; Anbar, A. D.; Herckes, P.

2012-12-01

227

(Bio)hybrid materials based on optically active particles  

NASA Astrophysics Data System (ADS)

In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

2014-03-01

228

“Waves” vs. “particles” in the atmosphere's phase space: A pathway to long-range forecasting?  

PubMed Central

Thirty years ago, E. N. Lorenz provided some approximate limits to atmospheric predictability. The details—in space and time—of atmospheric flow fields are lost after about 10 days. Certain gross flow features recur, however, after times of the order of 10–50 days, giving hope for their prediction. Over the last two decades, numerous attempts have been made to predict these recurrent features. The attempts have involved, on the one hand, systematic improvements in numerical weather prediction by increasing the spatial resolution and physical faithfulness in the detailed models used for this prediction. On the other hand, theoretical attempts motivated by the same goal have involved the study of the large-scale atmospheric motions' phase space and the inhomogeneities therein. These “coarse-graining” studies have addressed observed as well as simulated atmospheric data sets. Two distinct approaches have been used in these studies: the episodic or intermittent and the oscillatory or periodic. The intermittency approach describes multiple-flow (or weather) regimes, their persistence and recurrence, and the Markov chain of transitions among them. The periodicity approach studies intraseasonal oscillations, with periods of 15–70 days, and their predictability. We review these two approaches, “particles” vs. “waves,” in the quantum physics analogy alluded to in the title of this article, discuss their complementarity, and outline unsolved problems. PMID:11875201

Ghil, Michael; Robertson, Andrew W.

2002-01-01

229

Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment  

NASA Astrophysics Data System (ADS)

Number concentrations of atmospheric aerosol particles were measured by a flow-switching type differential mobility particle sizer in an electrical mobility diameter range of 6-1000 nm in 30 channels near central Budapest with a time resolution of 10 min continuously from 3 November 2008 to 2 November 2009. Daily median number concentrations of particles varied from 3.8 × 103 to 29 ×103 cm-3 with a yearly median of 11.8 × 103 cm-3. Contribution of ultrafine particles to the total particle number ranged from 58 to 92% with a mean ratio and standard deviation of (79 ± 6)%. Typical diurnal variation of the particle number concentration was related to the major emission patterns in cities, new particle formation, sinks of particles and meteorology. Shapes of the monthly mean number size distributions were similar to each other. Overall mean for the number median mobility diameter of the Aitken and accumulation modes were 26 and 93 nm, respectively, which are substantially smaller than for rural or background environments. The Aitken and accumulation modes contributed similarly to the total particle number concentrations at the actual measurement location. New particle formation and growth unambiguously occurred on 83 days, which represent 27% of all relevant days. Hence, new particle formation and growth are not rare phenomena in Budapest. Their frequency showed an apparent seasonal variation with a minimum of 7.3% in winter and a maximum of 44% in spring. New particle formation events were linked to increased gas-phase H2SO4 concentrations. In the studied area, new particle formation is mainly affected by condensation sink and solar radiation. The formation process seems to be not sensitive to SO2, which was present in a yearly median concentration of 6.7 ?g m-3. This suggests that the precursor gas was always available in excess. Formation rate of particles with a diameter of 6 nm varied between 1.65 and 12.5 cm-3 s-1 with a mean and standard deviation of (4.2 ± 2.5) cm-3 s-1. Seasonal dependency for the formation rate could not be identified. Growth curves of nucleated particles were usually superimposed on the characteristic diurnal pattern of road traffic direct emissions. The growth rate of the nucleation mode with a median diameter of 6 nm varied from 2.0 to 13.3 nm h-1 with a mean and standard deviation of (7.7 ± 2.4) nm h-1. There was an indicative tendency for larger growth rates in summer and for smaller values in winter. New particle formation events increased the total number concentration by a mean factor and standard deviation of 2.3 ± 1.1 relative to the concentration that occurred immediately before the event. Several indirect evidences suggest that the new particle formation events occurred at least over the whole city, and were of regional type. The results and conclusions presented are the first information of this kind for the region over one-year long time period.

Salma, I.; Borsós, T.; Weidinger, T.; Aalto, P.; Hussein, T.; Dal Maso, M.; Kulmala, M.

2011-02-01

230

Transient luminous event phenomena and energetic particles impacting the upper atmosphere: Russian space experiment programs  

NASA Astrophysics Data System (ADS)

In Russia several space missions are now planned to study transient luminous events in the atmosphere and high-energy charged particles at satellite altitudes. The experimental goal is to investigate the origin of the high-energy electrons and gamma ray quanta for specific transient luminous events (TLEs) and their role in the ionosphere-magnetosphere system. Simultaneous measurements of electrons at the orbit of the satellite and TLE atmospheric radiation in many wavelength bands will be performed in two missions, Tatiana-2 and RELEC. In the TUS mission UV transient event detection will be accompanied by measurements of the weak UV emission from the “seed” electrons of extensive air showers of extremely high-primary energies.

Panasyuk, M. I.; Bogomolov, V. V.; Garipov, G. K.; Grigoryan, O. R.; Denisov, Y. I.; Khrenov, B. A.; Klimov, P. A.; Lazutin, L. L.; Svertilov, S. I.; Vedenkin, N. N.; Yashin, I. V.; Klimov, S. I.; Zeleny, L. M.; Makhmutov, V. S.; Stozkov, Y. I.; Svirzhevsky, N. S.; Klimenko, V. V.; Mareev, E. A.; Shlyugaev, Y. V.; Korepanov, V. E.; Park, I. H.; Salazar, H. I.; Rothkaehl, H.

2010-06-01

231

Microstructural design for large superplastic elongations in aluminum-base materials containing particles  

Microsoft Academic Search

The microstructural features (grain size, particle size, and volume fraction of particles) for large superplastic elongations\\u000a in aluminum-base materials that contain particles were designed from the viewpoint of the superplastic region and the inhibition\\u000a of cavity nucleation, where the size of the grains is larger than that of the particles and the particles are particulates.\\u000a These features were derived from

H. Hosokawa; K. Higashi

2006-01-01

232

Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.  

PubMed

The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 ?m. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. PMID:24793329

Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim

2014-07-15

233

Space Systems - Safety and Compatibility of Materials - Method to Determine the Ignition Susceptibility of Materials or Components to Particle Impact  

NASA Technical Reports Server (NTRS)

The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.

Hirsch, David B.

2011-01-01

234

An improved pulse-height analyzer for energetic particle measurements in the upper atmosphere  

NASA Technical Reports Server (NTRS)

An energetic particle spectrometer for measurements in the upper atmosphere by rocket is described. The system has two methods of processing data. One is a staircase generator using threshold detectors; the other is a peak detector. The system incorporates a logarithmic converter for better resolution at low amplitudes and better use of telemetry channels. The circuits are described and calibration procedures are given. Modifications are recommended for high flux environments. Appendices cover sampling error in the peak detector and modifications made to the receiver of the propagation experiment.

Dean, L.; Smith, L. G.

1982-01-01

235

Experimental study of the modification process of aerosol particles in the atmosphere  

NASA Astrophysics Data System (ADS)

In the present experimental study of the modification process of aerosol particles in the atmosphere in a freezing chamber filled with fog, the selection of a vapor-admittance regime allowed a variation of the electrical sign and magnitude of the fog charge. Results are presented for tests in which lycopodium, a widely-distributed natural aerosol of soil origin, was used as a solid aerosol, and water as a liquid aerosol. Attention was given to the electrification process for water drops during their fall in the artificial cloud medium, and to the variation of the speed of ozone concentration decrease with time.

Amiranashvili, A. G.; Gzirishvili, T. G.; Mirtskhulava, M. D.; Nekhotina, L. M.; Trofimenko, L. T.

236

Exploring the Origin of High-Energy Particle Beams in the Atmosphere  

NASA Astrophysics Data System (ADS)

High-energy processes in the magnetosphere and atmosphere such as thunderstorm ground enhancements (TGEs), terrestrial gamma ray flashes (TGFs), and transient luminous events (TLEs) and recently discovered relativistic electron acceleration in the Earth's outer radiation belt trigger various dynamic processes in the Earth's environments and have broad astrophysical relevance. Investigation of the accelerated structures in the geospace plasmas can shed light on particle acceleration to much higher energy in the similar structures of space plasmas in the most distant objects in the universe. The Earth's broad environment is a real laboratory for high-energy astrophysics.

Chilingarian, Ashot A.

2014-11-01

237

Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community  

PubMed Central

The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3–4 weeks each) were conducted in 8–11 locations 200–800 m downwind of the facility. Background samples were concurrently collected in a remote area located ~2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the <38 ?m fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24–83 mg/m2 day) than at the background sites (13–17 mg/m2·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8–7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0–11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6–13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. PMID:22070034

Yu, Chang Ho; Fan, Zhihua (Tina); McCandlish, Elizabeth; Stern, Alan H.; Lioy, Paul J.

2014-01-01

238

Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere  

SciTech Connect

Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to adversely affect human health (Lighty et al., 2000; Pope and Dockery, 2006). Gan et al. (Gan et al., accepted) examined the indoor air quality aboard submarines and found that the diesel particulate matter concentrations exceeded the EPA 24 hour standard. Claeys et al. (Claeys et al., accepted) studied the importance and sources of secondary organic aerosol (SOA) in remote marine environment during a period of high biological activity. Methanesulphonate was the major SOA compound detected and there was no evidence for SOA from isoprene. The optical properties of gasoline and diesel vehicle particulate emissions and their relative contribution to radiative forcing was studied by Strawa et al. (Strawa et al., accepted).

Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

2009-12-11

239

COMPASS - COMparative Particle formation in the Atmosphere using portable Simulation chamber Study techniques  

NASA Astrophysics Data System (ADS)

In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes, such as particle formation online, and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically, with a residence time xT (COMPASS1) = 26.5 ± 0.3 min and xT (COMPASS2) = 26.6 ± 0.4 min, at a typical flow rate of 15 L min-1 and a gas leak rate of (1.6 ± 0.8) × 10-5 s-1. Particle loss rates were found to be larger (due to the particles' stickiness to the chamber walls), with an extrapolated maximum of 1.8 × 10-3 s-1 at 1 nm, i.e. a hundredfold of the gas leak rate. This latter value is associated with sticky non-volatile gaseous compounds, too. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system, a set of experiments was conducted under different conditions, i.e. urban and remote, enhanced ozone and terpenes as well as reduced sunlight. In order to do so, an ozone lamp was applied to enhance ozone in one of two chambers; the measurement chamber was protected from radiation by a first-aid cover and volatile organic compounds (VOCs) were added using a small additional flow and a temperature-controlled oven. During the elevated ozone period, ambient particle number and volume increased substantially at urban and remote conditions, but by a different intensity. Protection of solar radiation displayed a clear negative effect on particle number, while terpene addition did cause a distinct daily pattern. E.g. adding ? pinene particle number concentration rose by 13% maximum at noontime, while no significant effect was observable during darkness. Therefore, the system is a useful tool for investigating local precursors and the details of ambient particle formation at surface locations as well as potential future feedback processes.

Bonn, B.; Sun, S.; Haunold, W.; Sitals, R.; van Beesel, E.; dos Santos, L.; Nillius, B.; Jacobi, S.

2013-12-01

240

The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany  

NASA Astrophysics Data System (ADS)

It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.

Bonn, B.; Bourtsoukidis, E.; Sun, T. S.; Bingemer, H.; Rondo, L.; Javed, U.; Li, J.; Axinte, R.; Li, X.; Brauers, T.; Sonderfeld, H.; Koppmann, R.; Sogachev, A.; Jacobi, S.; Spracklen, D. V.

2014-10-01

241

Carbohydrate-like composition of submicron atmospheric particles and their production from ocean bubble bursting  

PubMed Central

Oceans cover over two-thirds of the Earth’s surface, and the particles emitted to the atmosphere by waves breaking on sea surfaces provide an important contribution to the planetary albedo. During the International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT) cruise on the R/V Knorr in March and April of 2008, organic mass accounted for 15–47% of the submicron particle mass in the air masses sampled over the North Atlantic and Arctic Oceans. A majority of this organic component (0.1 - 0.4 ? m-3) consisted of organic hydroxyl (including polyol and other alcohol) groups characteristic of saccharides, similar to biogenic carbohydrates found in seawater. The large fraction of organic hydroxyl groups measured during ICEALOT in submicron atmospheric aerosol exceeded those measured in most previous campaigns but were similar to particles in marine air masses in the open ocean (Southeast Pacific Ocean) and coastal sites at northern Alaska (Barrow) and northeastern North America (Appledore Island and Chebogue Point). The ocean-derived organic hydroxyl mass concentration during ICEALOT correlated strongly to submicron Na concentration and wind speed. The observed submicron particle ratios of marine organic mass to Na were enriched by factors of ?102–?103 over reported sea surface organic to Na ratios, suggesting that the surface-controlled process of film bursting is influenced by the dissolved organic components present in the sea surface microlayer. Both marine organic components and Na increased with increasing number mean diameter of the accumulation mode, suggesting a possible link between organic components in the ocean surface and aerosol–cloud interactions. PMID:20080571

Russell, Lynn M.; Hawkins, Lelia N.; Frossard, Amanda A.; Quinn, Patricia K.; Bates, Tim S.

2010-01-01

242

Future monitoring of charged particle energy deposition into the upper atmosphere and comments on possible relationships between atmospheric phenomena and solar and/or geomagnetic activity  

NASA Technical Reports Server (NTRS)

The charged particle observations proposed for the new low altitude weather satellites, TIROS-N, are described that will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance in distinguishing between solar and geomagnetic activity as possible causative sources.

Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.

1974-01-01

243

Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma.  

PubMed

Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica=1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica=7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as ?, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in ?. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment. PMID:21962864

Averroes, A; Sekiguchi, H; Sakamoto, K

2011-11-15

244

?-Scale Variations Of Elemental Composition In Individual Atmospheric Particles By Means Of Synchrotron Radiation Based ?-XRF Analysis  

NASA Astrophysics Data System (ADS)

Atmospheric pollution poses a huge challenge especially for densely populated urban areas. Although a tremendous knowledge already exists on atmospheric particulate pollution, only very limited knowledge is available on mineral and chemical composition of single atmospheric particles because most studies on air pollution focus on total mass concentrations or bulk elemental analysis. However, it is of particular importance to investigate the properties of single particles since according to their individually composition they differ in their specific impact on climate change, negative environment and health effects, as well as accelerating the weathering of stone buildings in urban areas. Particles with sulfate and nitrate coatings together with sufficient moisture increase metal solubility and possibly catalyze further surface reactions on stone facades of buildings. From the viewpoint of health effects of aerosols it is important to consider agglomerations processes of fine anthropogenic and highly toxic particles with coarse geogenic and less toxic particles. With respect to fundamental research in mineralogy, processes forming composed coarse particles consisting of geogenic and anthropogenic substances are valuable to study since a new type of particle is produced. In this context, the important and still in detail unknown role of geogenic particles as catchers for anthropogenic aerosols can be investigated more closely. Coarse particles can provide a possible sink for fine particles. Moreover, the intermixture of particles from geogenic and anthropogenic sources and the spatial and temporal variations of contributions from different sources, which plays a decisive role in the study area of Beijing, can be clarified with this approach. For this study, particles were collected with the passive sampling device Sigma-2 and analyzed for particles from 3 to 96 ?m. The analyzed particles showed a very inhomogeneous distribution in their elemental composition. For this study, synchrotron radiation based ?-X-ray fluorescence analysis (?-SXRF) proved to be an excellent tool to investigate ?-scalic distributions of main and trace element concentrations within individual airborne particles.

Schleicher, N.; Kramar, U.; Norra, S.; Dietze, V.; Kaminski, U.; Cen, K.; Yu, Y.

2010-04-01

245

Ideas and Perspectives: On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation  

NASA Astrophysics Data System (ADS)

In this article we summarise recent science, which shows how airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

Sintermann, J.; Neftel, A.

2015-02-01

246

Dry deposition, concentration and gas/particle partitioning of atmospheric carbazole  

NASA Astrophysics Data System (ADS)

The atmospheric concentrations and dry deposition of carbazole were measured to present the temporal changes, gas/particle partitioning and magnitude of fluxes. Atmospheric samples were collected from July 2004 to May 2005 at four different sites in Bursa, Turkey. The average total (gas and particulate) carbazole concentrations were 7.6 ± 9.9 ng m - 3 in Gulbahce (Residential), 1.1 ± 1.2 ng m - 3 in BUTAL (Traffic), 3.3 ± 5.0 ng m - 3 in BOID (Industrial), and 1.2 ± 0.7 ng m - 3 in the Uludag University Campus (UU) (Suburban). Experimental gas/particle partition coefficient ( Kp) was determined using the study results and compared with Kp values calculated from octanol-air and soot-air + octanol partitioning models. Total dry deposition fluxes of carbazole were 290 ± 484 ng m - 2 d - 1 in BUTAL and 72 ± 67 ng m - 2 d - 1 in the UU Campus. Particulate phase dry deposition velocities were 0.81 ± 0.78 cm s - 1 and 0.90 ± 1.53 cm s - 1 for BUTAL and the UU Campus, respectively. On the other hand, gas-phase mass transfer coefficients were calculated to be 0.34 ± 0.29 cm s - 1 and 0.26 ± 0.17 cm s - 1 for BUTAL and the UU Campus, respectively.

Esen, Fatma; Tasdemir, Yücel; Cindoruk, S. S?dd?k

2010-03-01

247

Aerosol Measurements in the Atmospheric Surface Layer at L'Aquila, Italy: Focus on Biogenic Primary Particles  

NASA Astrophysics Data System (ADS)

Two year measurements of aerosol concentration and size distribution (0.25 ?m < d < 30 ?m) in the atmospheric surface layer, collected in L'Aquila (Italy) with an optical particle counter, are reported and analysed for the different modes of the particle size distribution. A different seasonal behaviour is shown for fine mode aerosols (largely produced by anthropogenic combustion), coarse mode and large-sized aerosols, whose abundance is regulated not only by anthropogenic local production, but also by remote natural sources (via large scale atmospheric transport) and by local sources of primary biogenic aerosols. The observed total abundance of large particles with diameter larger than 10 ?m is compared with a statistical counting of primary biogenic particles, made with an independent technique. Results of these two observational approaches are analysed and compared to each other, with the help of a box model driven by observed meteorological parameters and validated with measurements of fine and coarse mode aerosols and of an atmospheric primary pollutant of anthropogenic origin (NOx). Except in winter months, primary biogenic particles in the L'Aquila measurement site are shown to dominate the atmospheric boundary layer population of large aerosol particles with diameter larger than 10 ?m (about 80 % of the total during summer months), with a pronounced seasonal cycle, contrary to fine mode aerosols of anthropogenic origin. In order to explain these findings, the main mechanisms controlling the abundance and variability of particulate matter tracers in the atmospheric surface layer are analysed with the numerical box-model.

Pitari, Giovanni; Coppari, Eleonora; De Luca, Natalia; Di Carlo, Piero; Pace, Loretta

2014-09-01

248

An absorption model of gas\\/particle partitioning of organic compounds in the atmosphere  

Microsoft Academic Search

An equation that can successfully parameterize gas-particle partitioning is Kp(m3\\/~g -1) =(F\\/TSP)\\/A, where Kp is a partitioning constant, TSP (pgm -3) is the concentration of total suspended particulate material, and F (ngm -3) and A (ngm-3), respectively, are the particulate-associated and gaseous concentrations of the compound of interest. By itself, this equation does not indicate whether the partitioning is primarily

JAMES F. PANKOW

1994-01-01

249

Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge  

DOEpatents

Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.

Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

2006-04-11

250

Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles Ullrich, R., Hiranuma, N., Hoose, C., Möhler, O., Niemand, M., Steinke, I., Wagner, R. Aerosols of different nature induce microphysical processes of importance for the Earth's atmosphere. They affect not only directly the radiative budget, more importantly they essentially influence the formation and life cycles of clouds. Hence, aerosols and their ice nucleating ability are a fundamental input parameter for weather and climate models. During the previous years, the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber was used to extensively measure, under nearly realistic conditions, the ice nucleating properties of different aerosols. Numerous experiments were performed with a broad variety of aerosol types and under different freezing conditions. A reanalysis of these experiments offers the opportunity to develop a uniform parameterization framework of ice formation for many atmospherically relevant aerosols in a broad temperature and humidity range. The analysis includes both deposition nucleation and immersion freezing. The aim of this study is to develop this comprehensive parameterization for heterogeneous ice formation mainly by using the ice nucleation active site (INAS) approach. Niemand et al. (2012) already developed a temperature dependent parameterization for the INAS- density for immersion freezing on desert dust particles. In addition to a reanalysis of the ice nucleation behaviour of desert dust (Niemand et al. (2012)), volcanic ash (Steinke et al. (2010)) and organic particles (Wagner et al. (2010,2011)) this contribution will also show new results for the immersion freezing and deposition nucleation of soot aerosols. The next step will be the implementation of the parameterizations into the COSMO- ART model in order to test and demonstrate the usability of the framework. Hoose, C. and Möhler, O. (2012) Atmos. Chem. Phys. 12, 9817-9854 Niemand, M., Möhler, O., Vogel, B., Hoose, C., Connolly, P., Klein, H., Bingemer, H., DeMott, P.J., Skrotzki, J. and Leisner, T. (2012) J. Atmos. Sci. 69, 3077-3092 Steinke, I., Möhler, O., Kiselev, A., Niemand, M., Saathoff, H., Schnaiter, M., Skrotzki, J., Hoose, C. and Leisner, T. (2011) Atmos. Chem. Phys. 11, 12945-12958 Wagner, R., Möhler, O., Saathoff, H., Schnaiter, M. and Leisner, T. (2010) Atmos. Chem. Phys. 10, 7617-7641 Wagner, R., Möhler, O., Saathoff, H., Schnaiter, M. and Leisner, T. (2011) Atmos. Chem. Phys. 11, 2083-2110

Ullrich, Romy; Hiranuma, Naruki; Hoose, Corinna; Möhler, Ottmar; Niemand, Monika; Steinke, Isabelle; Wagner, Robert

2014-05-01

251

Atmosphere  

NSDL National Science Digital Library

What is this atmosphere that surrounds the Earth? This instructional tutorial, part of an interactive laboratory series for grades 8-12, introduces students to the structure, effects, and components of the atmosphere. Here students investigate the composition of the atmosphere; effects of temperature, pressure, and ozone; the greenhouse effect; and how Earth compares with other planets. Interactive activities present students with opportunities to explore ideas and answer questions about the atmosphere, including its structure, the making of ozone, rocket launching, and measuring the atmosphere. Pop-up boxes provide additional information on topics such as dust, rain, and atmospheric composition. Students complete a final written review of six questions about the atmosphere. Copyright 2005 Eisenhower National Clearinghouse

University of Utah. Astrophysics Science Project Integrating Research and Education (ASPIRE)

2003-01-01

252

Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles  

NASA Astrophysics Data System (ADS)

Humic-like Substances (HULIS) comprise a significant fraction of the water-soluble organic aerosol mass and influence the cloud microphysical properties and climate effects of aerosols in the atmosphere. In this work, the most frequently used HULIS isolation and quantification methods including ENVI-18, HLB, XAD-8 and DEAE were comparatively characterized with two model standards, ten interfering compounds, and five ambient aerosol samples. Quantification of HULIS is performed with a TOC analyzer, complemented by an investigation of the chemical structure of the extracted fractions by UV-Vis spectroscopy. The results show that the four isolation methods were all characterized by high reliability, high reproducibility, and low limit of detection (LOD), indicating that each method can be used to efficiently recover Suwannee River Fulvic Acid (SRFA) and be applied to the quantification of the lower amount of HULIS in atmospheric particles. The analytical results of the UV-Vis spectra of HULIS fractions isolated also indicate that they are all favorable for extraction of compounds of high UV absorbance, high MW, and high aromaticity and that the DEAE protocol is the most significant one. Compared with the DEAE method that favors extraction of highly UV-absorbing and more aromatic compounds, SRFA isolated by the ENVI-18, HLB, and XAD-8 protocols were more representative of the global matrix. Each method has its own advantages and disadvantages and is suitable for a particular application. No single method is ideal for both isolation and quantification of HULIS in atmospheric samples.

Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

2012-12-01

253

Viscosity of -pinene secondary organic material and implications for particle growth and reactivity  

E-print Network

Viscosity of -pinene secondary organic material and implications for particle growth and reactivity of secondary organic material (SOM) are abun- dant in the lower troposphere. The viscosity of these particles-mobility" technique and a "poke-flow" technique, in conjunction with simulations of fluid flow, the viscosity

254

The effect of atmospheric aerosol particles and clouds on Net Ecosystem Exchange in Amazonia  

NASA Astrophysics Data System (ADS)

Carbon cycling in Amazonia is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the Net Ecosystem Exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the TERRA and AQUA satellites, and was validated with ground-based AOD measurements from AERONET sun photometers. Carbon fluxes were measured using eddy-correlation techniques at LBA (The Large Scale Biosphere-Atmosphere Experiment in Amazonia) flux towers. Two sites were studied: the Biological Reserve of Jaru (located in Rondonia) and the Cuieiras Biological Reserve (located in a preserved region in central Amazonia). In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5. In the Cuieiras Biological Reserve, this effect was smaller, accounting for an approximately 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches 0. The observed increase in NEE is attributed to an enhancement (~50%) in the diffuse fraction of photosynthetic active radiation (PAR). Significant changes in air temperature and relative humidity resulting from changes in solar radiation fluxes under high aerosol loading were also observed at both sites. Considering the long-range transport of aerosols in Amazonia, the observed changes in NEE for these two sites may occur over large areas in Amazonia, significantly altering the carbon balance in the largest rainforest of the world.

Cirino, G. G.; Souza, R. F.; Adams, D. K.; Artaxo, P.

2013-11-01

255

The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon  

NASA Astrophysics Data System (ADS)

Carbon cycling in the Amazon is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the net ecosystem exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity, were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance, f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the Terra and Aqua satellites, and was validated with ground-based AOD measurements from AERONET (Aerosol Robotic Network) sun photometers. Carbon fluxes were measured using eddy covariance technique at the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) flux towers. Two sites were studied: the Jaru Biological Reserve (RBJ), located in Rondonia, and the Cuieiras Biological Reserve at the K34 LBA tower (located in a preserved region in the central Amazon). Analysis was performed continuously from 1999 to 2009 at K34 and from 1999 to 2002 at RBJ, and includes wet, dry and transition seasons. In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5 at 550 nm. In the Cuieiras Biological Reserve, the aerosol effect on NEE was smaller, accounting for an approximate 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or high cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches zero. The observed increase in NEE is attributed to an enhancement (~50%) in the diffuse fraction of photosynthetic active radiation (PAR). The enhancement in diffuse PAR can be done through increases in aerosols and/or clouds. In the present study, it was not possible to separate these two components. Significant changes in air temperature and relative humidity resulting from changes in solar radiation fluxes under high aerosol loading were also observed at both sites. Considering the long-range transport of aerosols in the Amazon, the observed changes in NEE for these two sites may occur over large areas in the Amazon, significantly altering the carbon balance in the largest rainforest in the world.

Cirino, G. G.; Souza, R. A. F.; Adams, D. K.; Artaxo, P.

2014-07-01

256

Acoustic properties and durability of liner materials at non-standard atmospheric conditions  

Microsoft Academic Search

This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and\\/or low pressure capabilities. The study consisted of three phases: 1)

K. K. Ahuja; R. J. Gaeta Jr.; J. S. Hsu

1994-01-01

257

Supplementary Material1 "The Atmospheric Potential of Biogenic Volatile Organic Compounds from Needles of2  

E-print Network

1 Supplementary Material1 "The Atmospheric Potential of Biogenic Volatile Organic Compounds from degradation of volatile organic compounds, Chem. Rev., 103,26 4605-4638, 2003.27 Hoskovec, M., Grygarova, D. The retention time and8 mass spectrum of -phellandrene were obtained using Angelica seed oil (Shiono Koryo9

Meskhidze, Nicholas

258

Modelling the contribution of biogenic VOCs to new particle formation in the Jülich plant atmosphere chamber  

NASA Astrophysics Data System (ADS)

We used the MALTE-BOX model including near-explicit air chemistry and detailed aerosol dynamics to study the mechanisms of observed new particle formation events in the Jülich Plant Atmosphere Chamber. The modelled and measured H2SO4 (sulfuric acid) concentrations agreed within a factor of two. The modelled total monoterpene concentration was in line with PTR-MS observations, and we provided the distributions of individual isomers of terpenes, when no measurements were available. The aerosol dynamic results supported the hypothesis that H2SO4 is one of the critical compounds in the nucleation process. However, compared to kinetic H2SO4 nucleation, nucleation involving OH oxidation products of monoterpenes showed a better agreement with the measurements, with R2 up to 0.97 between modelled and measured total particle number concentrations. The nucleation coefficient for kinetic H2SO4 nucleation was 2.1 × 10-11 cm3 s-1, while the organic nucleation coefficient was 9.0 × 10-14 cm3 s-1. We classified the VOC oxidation products into two sub-groups including extremely low-volatility organic compounds (ELVOCs) and semi-volatile organic compounds (SVOCs). These ELVOCs and SVOCs contributed approximately equally to the particle volume production, whereas only ELVOCs made the smallest particles to grow in size. The model simulations revealed that the chamber walls constitute a major net sink of SVOCs on the first experiment day. However, the net wall SVOC uptake was gradually reduced because of SVOC desorption during the following days. Thus, in order to capture the observed temporal evolution of the particle number size distribution, the model needs to consider reversible gas-wall partitioning.

Liao, L.; Dal Maso, M.; Mogensen, D.; Roldin, P.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

2014-11-01

259

Retrieving of Microphysical Properties of Spheroidal Particles in the Atmosphere-Surface System  

NASA Astrophysics Data System (ADS)

In this presentation, we continue our study of the Levenberg-Marquardt algorithm [1, 2] as a tool for retrieval of properties of particles, suspended in the plane-parallel atmosphere coupled with the reflecting surface [3]. The effect of polarization of light is included. The Levenberg-Marquardt algorithm provides an iterative solution to the problem of minimization of a function over a space of its parameters. Each iteration involves solution of the forward problem and computation of the Jacobian matrix (the derivatives of signal over optical parameters). The recently developed code APC (Atmospheric Polarization Computations) is used to solve the forward problem [4, 5]. We use O.Dubovik's et al. [6] package to simulate scattering by spheroidal particles. Unlike for the purely spherical particles (Mie scattering), the Jacobian matrix for spheroids is computed numerically. We will consider retrievals over the land and the ocean with the bidirectional polarization distribution functions from [7-8]. Using MISR observation geometry and spectral bands [9] as an example, we will discuss the problem of convergence of iterations, sensitivity of the algorithm to the initial guess, the signal-to-noise ratio, and the geometry of observation. Possible ways of acceleration of iterations will be discussed, as well as the role of polarization in the retrieval process. References: 1. Levenberg K, Q. App. Math., 1944, V.2, P.164. 2. Marquardt D, J. Appl. Math., 1963, V.11, N.2, P.431. 3. Korkin S, Lyapustin A, AGU 2012, A23A-011. 4. Korkin S et al., JQSRT, 2013, V.127, P.1 5. ftp://climate1.gsfc.nasa.gov/skorkin/ 6. Dubovik O et al., Geophys. Res. Letters, 2006, V.111, D11208. 7. Ota Y, et al., JQSRT, 2010, V.111, P.878. 8. Nadal F, Breon F-M, IEEE Trans. Geos. Rem. Sens., 1999, V.37, N.3, P.1709. 9. http://www-misr.jpl.nasa.gov/Mission/misrInstrument/

Korkin, S.; Lyapustin, A.

2013-12-01

260

Particle-induced damage and subsequent healing of materials: Erosion, corrosion and self-healing coatings  

Microsoft Academic Search

This review summarizes research on particle-induced damage and the subsequent repair of metallic materials. Metallic materials are damaged by solid particle impact via two damage processes: repeated plastic deformation and cutting. At a certain low-impact velocity, the particle does not skid, resulting in only plastic deformation with no damage by cutting. The critical impact velocity has been theoretically derived. Self-healing

Akihiro Yabuki

2011-01-01

261

Atmospheric trace element concentrations in total suspended particles near Paris, France  

NASA Astrophysics Data System (ADS)

To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

2010-09-01

262

Children exposure to atmospheric particles in indoor of Lisbon primary schools  

NASA Astrophysics Data System (ADS)

Evidence continues to emerge showing that poor Indoor Air Quality (IAQ) can cause illness requiring absence from schools, and can cause acute health symptoms that decrease students' performance. Since children spend on average 7-11 h per weekday at school, the IAQ in classrooms is expected to play a key role in the assessment of the effects of their personal exposure to air pollution. Within this context the present study was conducted in order to fulfill three primary objectives 1) to measure the levels and the element composition of PM 2.5 and PM 2.5-10, in three primary schools placed in Lisbon, in order to assess the children exposure to these pollutants; 2) to study the relationship between indoor and outdoor atmospheric particles concentrations and 3) to investigate the sources of high aerosols concentrations in classrooms. In the studied classrooms, the concentrations of coarse particles significantly exceeded the ambient levels. Element concentrations suggested that the physical activity of students highly contributed to the re-suspension of sedimented particles. The high levels of CO 2 indicated that in these schools the ventilation was inadequate. This fact contributed to the establishment of poor IAQ.

Almeida, Susana Marta; Canha, Nuno; Silva, Ana; Freitas, Maria do Carmo; Pegas, Priscilla; Alves, Célia; Evtyugina, Margarita; Pio, Casimiro Adrião

2011-12-01

263

Microgel particles for the delivery of bioactive materials  

DOEpatents

Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

Frechet, Jean M.; Murthy, Niren

2006-06-06

264

Microgel particles for the delivery of bioactive materials  

DOEpatents

Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

Frechet, Jean M. J. (Oakland, CA); Murthy Niren (Atlanta, GA)

2010-03-23

265

Development of a computer model for calculation of radioactive materials into the atmosphere after an accident  

SciTech Connect

Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

Schershakov, V. [Federal Information Analytical Centre, Obinski (Russia)

1997-11-01

266

Effects of Sintering Atmosphere on the Mechanical Properties of Al-Fe Particle-Reinforced Al-Based Composites  

NASA Astrophysics Data System (ADS)

Al-based composites reinforced by Al-Fe intermetallic compounds have been fabricated by powder metallurgy technique. The reinforcements were formed in the aluminum matrix by in situ solid-state reaction between pure Al and pure Fe powders. The effects of sintering atmosphere on the microstructures and mechanical properties of the composites were systematically studied by scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction analysis, and compressive tests. It has been shown that Al-Fe intermetallic particles (including a large number of the Fe-Al5Fe2 core-shell structured particles) were the dominant reinforcements in the composites sintered under Ar atmosphere, while pure Fe particles were the dominant reinforcements in the composites sintered under N2 atmosphere. N2 atmosphere is more effective than Ar atmosphere in increasing the sintered density of the composites due to the formation of aluminum nitride, which can effectively fill the pores. Thus, the compressive mechanical properties of the composites sintered under N2 atmosphere are higher than those of the composites sintered under Ar atmosphere.

Xue, Yang; Shen, Rujuan; Ni, Song; Xiao, Daihong; Song, Min

2015-03-01

267

Atmospheric new particle formation and the potential role of organic peroxides  

NASA Astrophysics Data System (ADS)

New particle formation in the atmosphere belongs to the currently most discussed aspects of atmospheric aerosols with significant implications for cloud formation and microphysics, once these particles have grown beyond about 50 nm in particle diameter. If these particles act as cloud condensation or ice nuclei they can affect the radiation budget at the Earths surface and cause climate couplings important to understand when aiming to predict climate change scenarios. One aspect widely discussed is the potential contribution of organic trace gases from anthropogenic and biogenic sources. In this study we analysed datasets from a Central European measurement station in Germany in a spruce forest approximately 800 m above sea level and a distance of about 20 km to Frankfurt (southeast). Continuous particle size distribution measurements were classified in nucleation-event or not and unidentified and intercompared to meteorological and basic trace gas observations. Additionally meteorological backtrajektories calculated by the German Weather Service for the station every 12 hours have been considered. These led to the following conclusions: Nucleation was most likely if (A) the air has not get significantly into touch with the surface within the last days, or if (B) at least human impact was minor and the air faced forest surfaces mainly (northwest). As observed already in Hyytiälä (Finland) nucleation appeared, when the relative humidity and ambient water vapour mixing ratio were low, ozone was high and the condensation sink was small. A further important point was the amount of global radiation measured at the Taunus Observatory (Mt. Kleiner Feldberg). The higher the radiation, the more likely a nucleation event and the more intense. Temperature impacted on the intensity of nucleation, i.e. the higher the temperature the more intense the event, but did not directly affect the occurrence of an event or not, if a threshold value of ca. -6 °C was exceeded. This latter observation indicates a potential role of biogenic volatile organic compounds (VOCs) as their emission is strongly coupled to temperature. Because of our observations in the laboratory and beacuse of observed nighttime events, we approximated the concentration of different radicals, e.g. OH, HO2 and RO2. The values of RO2 and especially the ones of biogenic (e.g. terpene) origin showed a good correlation with new particle formation occurrence and seemed to be one essential point of several to allow new particle formation to occur. This might be an indication of the important role of the biosphere and its stress effects for the particle formation process. The seasonality observed for the time period since February 2008 displayed two maxima in May and August, September with a minimum in June, when the weather conditions were more humid and is in line with the observations made above. July and August displayed the higest HO2 concentrations, which will act as a sink for the organic peroxy radicals. In connection to the supressive effect of water vapour on terpene induced nucleating molecules (secondary ozonides) this might serve as an explanation for the commonly observed summer minimum in nucleation events.

Trawny, Katrin; Bonn, Boris; Jacobi, Stefan

2010-05-01

268

Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China.  

PubMed

Atmospheric particles (total suspended particles (TSPs); particulate matter (PM) with particle size below 10?m, PM10; particulate matter with particle size below 2.5?m, PM2.5) were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5 were identified by the chemical mass balance (CMB) receptor model. Results indicated that PM2.5/TSP was the most prevalent and PM2.5 was the main component of PM10, while the presence of PM10-100 was relatively weak. SO4(2-) and NO3(-) concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5 were obviously higher during the heating period. Organic carbon (OC) in the heating period was 2-5 times higher than in the non-heating period. Elemental carbon (EC) did not change much. OC/EC ratios were 8-11 during the heating period, which was much higher than in other Chinese cities (OC/EC: 4-6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5 were higher than in PM10, because PM2.5 has a higher ability to absorb toxic substances. Thus PM2.5 pollution is more significant regarding human health effects in the heating period. PMID:25499495

Huang, Likun; Wang, Guangzhi

2014-12-01

269

Promoted cell and material interaction on atmospheric pressure plasma treated titanium  

NASA Astrophysics Data System (ADS)

Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

Han, Inho; Vagaska, Barbora; Seo, Hyok Jin; Kang, Jae Kyeong; Kwon, Byeong-Ju; Lee, Mi Hee; Park, Jong-Chul

2012-03-01

270

The origins of liner material in a shaped charge jet particle  

SciTech Connect

An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

Zernow, L. (Zernow Technical Services, Inc., San Dimas, CA (United States)); Chapyak, E.J.; Meyer, K.A. (Los Alamos National Lab., NM (United States)); Zernow, R.H. (Applied Research Associates, Inc., Lakewood, CO (United States))

1992-01-01

271

The origins of liner material in a shaped charge jet particle  

SciTech Connect

An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

Zernow, L. [Zernow Technical Services, Inc., San Dimas, CA (United States); Chapyak, E.J.; Meyer, K.A. [Los Alamos National Lab., NM (United States); Zernow, R.H. [Applied Research Associates, Inc., Lakewood, CO (United States)

1992-02-01

272

Atmospheric Ions: Chemical Composition, Diurnal Variation, and Insights into New Particle Formation  

NASA Astrophysics Data System (ADS)

Ions in the atmosphere are mainly produced by cosmic radiation (CR) and radioactive decay of radon. To a first approximation, when an ion collides with a neutral molecule, the charge will be transferred if energetically favorable. Typical lifetimes of ions are on the order of several minutes, giving the ions time to reach a pseudo steady state with most of the negative charges on the strongest acids (e.g. sulfuric, nitric, malonic acid), and the positive charges on the strongest bases (e.g. ammonia, amines, pyridines, quinolines), although these species may only be present in trace amounts. This feature makes the analysis of the ambient ions particularly interesting, as sulfuric acid, amines and organic acids are often mentioned as precursors for new atmospheric new particle formation. In this study, a recently developed high-resolution mass spectrometer (APi-TOF) has been deployed in spring at the SMEAR II station in Hyytiälä, Finland. The chemical composition and temporal behavior of both ambient negative and positive ions were measured with higher sensitivity and mass resolution than in previous studies. Several new molecules and clusters were identified, utilizing the high mass accuracy and the time behavior of the ion peaks. The negative ion spectrum is dominated by highly oxygenated species, both inorganic and organic, consistent with by photo-chemical production, leading to strong diurnal cycles. At high H2SO4 concentrations, HSO4- and its clusters with one and two neutral H2SO4 molecules dominate the negative ion spectrum. These periods occur simultaneously with new particle formation events in Hyytiälä, suggesting that the sulfuric acid clusters play an important role in the initial formation of new particles. At the highest H2SO4 concentrations, larger H2SO4 clusters contain ammonia and amine molecules. Other peaks, likely organic acids containing sulfate and/or nitrate species, are also observed with distinct diurnal cycles. New results from both ambient observations and laboratory experiments will be discussed in relation to understanding chemical composition of cluster formation and new particle formation.

Worsnop, D. R.; Schobesberger, S.; Ehn, M.; Junninen, H.; Sipila, M.; Petaja, T.; Kulmala, M. T.

2011-12-01

273

Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition  

NASA Technical Reports Server (NTRS)

Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

2001-01-01

274

Risk Assessment Related to Atmospheric Polycyclic Aromatic Hydrocarbons in Gas and Particle Phases near Industrial Sites  

PubMed Central

Background: Inhalation is one of the main means of human exposure to polycyclic aromatic hydrocarbons (PAHs) because of their ubiquitous presence in the atmosphere. However, most studies have considered only PAHs found in the particle phase and have omitted the contribution of the gas-phase PAHs to the risk. Objective: We estimated the lifetime lung cancer risk from PAH exposure by inhalation in people living next to the largest chemical site in Southern Europe and the Mediterranean area. Methods: We determined 18 PAHs in the atmospheric gas and particle phase. We monitored the PAHs for 1 year in three locations near the chemical site in different seasons. We used toxic equivalence factors to calculate benzo[a]pyrene (BaP) equivalents (BaP-eq) for individual PAHs and applied the World Health Organization unit risk (UR) for BaP (UR = 8.7 × 10–5) to estimate lifetime cancer risks due to PAH exposures. Results: We observed some spatial and seasonal variability in PAH concentrations. The contribution of gas-phase PAHs to the total BaP-eq value was between 34% and 86%. The total estimated average lifetime lung cancer risk due to PAH exposure in the study area was 1.2 × 10–4. Conclusions: The estimated risk was higher than values recommended by the World Health Organization and U.S. Environmental Protection Agency but lower than the threshold value of 10–3 that is considered an indication of definite risk according to similar risk studies. The results also showed that risk may be underestimated if the contributions of gas-phase PAHs are not considered. PMID:21478082

Ramírez, Noelia; Cuadras, Anna; Marcé, Rosa Maria

2011-01-01

275

An overview of results from the ECOMA-project: in situ studies of meteor smoke particles in the middle atmosphere  

NASA Astrophysics Data System (ADS)

The ECOMA-project is dedicated to the study of the ‘Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere'. The project is led by the Leibniz Institute of Atmospheric Physics, Germany, and the Norwegian Defence Research Establishment, Norway, and utilizes rocket borne in situ measurements as well as ground based observations with radars and lidars to characterize meteor smoke particles and their atmospheric and ionospheric environment. The prime instrument of the ECOMA payload is a new particle detector which combines a classical Faraday cup-design with a xenon-flashlamp for the active photoionization of mesospheric aerosol particles and the subsequent detection of corresponding photoelectrons. Other instruments are a swept Langmuir probe, two fixed biased probes and a wave propagation experiment to measure plasma parameters. In addition, an ionization gauge and two simple Pirani gauges are used for neutral density measurements, and a particle sampler is applied for the in flight collection of meteor smoke particles and their return to the ground. Two campaigns have been conducted to date: the first in September 2006 comprising two rocket launches and one in August 2007 where one sounding rocket was launched under conditions of noctilucent clouds and polar mesosphere summer echoes. A third campaign is currently planned for early July 2008. In the present paper we will present results from these campaigns. We will show that the ECOMA particle detector allows to detect meteor smoke particles throughout the mesosphere and that our measurements in autumn 2006 basically confirm expectations regarding the abundance of meteor smoke particles in the mesosphere from microphysical models. We will further compare measurements from autumn and summer conditions, where the most striking finding is that significantly less particles were observed in summer 2007 as compared to autumn 2006. The latter result will be critically discussed with respect to its implications for ice particle nucleation at the polar summer mesopause.

Rapp, Markus; Strelnikova, Irina; Strelnikov, Boris; Baumgarten, Gerd; Latteck, Ralph; Brattli, Alvin; Svenes, Knut; Hoppe, Ulf-Peter; Friedrich, Martin; Gumbel, Jorg

276

Heterogeneous Combustion Particles with Distinctive Light-Absorbing and Light-Scattering Phases as Mimics of Internally-Mixed Ambient Atmospheric Particles  

NASA Astrophysics Data System (ADS)

Particles with heterogeneously-distributed light-absorbing and light-scattering phases were generated from incomplete combustion or thermal decomposition to mimic real atmospheric particles with distinctive optical properties. Individual particles and particle populations were characterized microscopically. The purpose was to examine how optical property measurements of internally-mixed ambient air particles might vary based on the properties of laboratory-generated particles produced under controlled conditions. The project is an initial stage in producing reference samples for calibrating instrumentation for monitoring climatically-important atmospheric aerosols. Binary-phase particles containing black carbon (BC) and a metal or a metal oxide phase were generated from the thermal decomposition or partial combustion of liquid fuels at a variety of temperatures from 600 °C to 1100 °C. Fuels included mixtures of toluene or isooctane and iron pentacarbonyl or titanium tetrachloride. Scanning electron microscopy with energy-dispersive x-ray spectroscopy revealed that burning the fuels at different temperatures resulted in distinctive differences in morphology and carbon vs. metal/metal oxide composition. Particles from toluene/Fe(CO)5 thermal decomposition exhibited aggregated morphologies that were classified as dendritic, soot-like, globular, or composited (dendritic-globular). Particles from isooctane/TiCl4 combustion were typically spherical with surface adducts or aggregates. Diameters of the BC/TiO2 particles averaged 0.68 ?m to 0.70 ?m. Regardless of combustion temperature, the most abundant particles in each BC/TiO2 sample had an aspect ratio of 1.2. However, for the 600 °C and 900 °C samples the distribution of aspect ratios was skewed toward much larger ratios suggesting significant chainlike aggregation. Carbon and titanium compositions (wt.) for the 600 °C sample were 12 % and 53 %, respectively. In contrast, the composition trended in the opposite direction for the 900 °C sample with carbon at 57 % and titanium at 27 %.

Conny, J. M.; Ma, X.; Gunn, L. R.

2011-12-01

277

Influence of secondary formation on atmospheric occurrences of oxygenated polycyclic aromatic hydrocarbons in airborne particles  

NASA Astrophysics Data System (ADS)

Temporal and spatial variations in concentrations of particle-associated polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives (nitro-PAHs and oxy-PAHs) were investigated to assess the influence of secondary formation on atmospheric occurrences of oxy-PAHs associated with particulate matter in downtown Tokyo, Japan. The daily variation in concentration of 1,8-naphthalic anhydride (1,8-NA) in summer 2007 was similar to that for 2-nitrofluoranthene (2-NF), a representative secondary formed nitro-PAH, while the variation for benzanthrone (BA) was similar to PAHs. In addition, the concentrations of polycyclic aromatic compounds (PACs) associated with airborne particulate matter decreased in the order of PAHs > BA > 9-fluorenone (9-FO) or 9,10-anthraquinone (9,10-AQ) > 1,8-NA with an increase in distance from the roadside, whereas 2-NF was constant. These results suggest that a considerable fraction of some oxy-PAHs such as 1,8-NA associated with airborne particulate matter in downtown Tokyo originates from atmospheric secondary formation.

Kojima, Yuki; Inazu, Koji; Hisamatsu, Yoshiharu; Okochi, Hiroshi; Baba, Toshihide; Nagoya, Toshio

2010-08-01

278

Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.  

PubMed

Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 ?g m(-3)) was 2.7 times higher than nitrous acid (1.0 ?g m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 ?g m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area. PMID:22358115

Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

2012-05-01

279

Detection of preferential particle orientation in the atmosphere: Development of an alternative polarization lidar system  

NASA Astrophysics Data System (ADS)

Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. These Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linear or a circular polarized incident laser beam). The conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. The expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. The theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions.

Geier, Manfred; Arienti, Marco

2014-12-01

280

Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan  

NASA Astrophysics Data System (ADS)

Evidence shows a strong association among air pollution, oxidative stress (OS), deoxyribonucleic acid (DNA) damage, and diseases. Recent studies indicated that the aging, human neurodegenerative diseases and cancers resulted from mitochondrial dysfunction and OS. The purpose of this study is to provide a probabilistic risk assessment model to quantify the atmospheric diesel exhaust particles (DEP)-induced pre-cancer biomarker response and cancer incidence risk for residents in south Taiwan. We conducted entirely monthly particulate matter sampling data at five sites in Kaohsiung of south Taiwan in the period 2002-2003. Three findings were found: (i) the DEP dose estimates and cancer risk quantification had heterogeneously spatiotemporal difference in south Taiwan, (ii) the pre-cancer DNA damage biomarker and cancer incidence estimates had a positive yet insignificant association, and (iii) all the estimates of cancer incidence in south Taiwan populations fell within and slight lower than the values from previous cancer epidemiological investigations. In this study, we successfully assessed the tumor incidence for residents posed by DEP exposure in south Taiwan compared with the epidemiological approach. Our approach provides a unique way for assessing human health risk for residences exposed to atmospheric DEP depending on specific combinations of local and regional conditions. Our work implicates the importance of incorporating both environmental and health risk impacts into models of air pollution exposure to guide adaptive mitigation strategies.

Chio, Chia-Pin; Liao, Chung-Min; Tsai, Ying-I.; Cheng, Man-Ting; Chou, Wei-Chun

2014-03-01

281

Absorption of Beta Particles in Different Materials: An Undergraduate Experiment  

ERIC Educational Resources Information Center

The absorption of beta rays from a radioactive source in different materials was investigated by the use of a simple setup based on a Geiger counter and a set of absorber sheets. The number of electrons traversing the material was measured as a function of its thickness. Detailed GEANT simulations were carried out to reproduce the obtained…

La Rocca, Paola; Riggi, Francesco

2009-01-01

282

The stable isotope compositions of mercury in atmospheric particles (PM10) from Paris (France) and vicinity  

NASA Astrophysics Data System (ADS)

Solid mercury (Hg) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and vicinity, we investigated the possibility that Hg stable isotope compositions could help identify the origins of atmospheric Hg and processes affecting the atmospheric Hg budget. Characterization of Hg isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic, heating sources and volcanic gases) shows that those containing Hg are clearly discriminated by specific Hg isotope signatures. PM10 were sampled in three different locations: A) downtown Paris, characterized by diffuse pollution, B) nearby suburb of the city, close to suspected Hg emitters, and C) in distant suburb of the city, having only a few industrial activities in the area. Results indicate that Hg in most of the PM10 samples is explained by binary mixings. The mixing end-members include at least two distinct sources at low Hg concentrations in the aerosols, compatible with industrial activity. At high Hg concentration in the aerosols, the isotopes may likewise indicate two distinct sources with ?202Hg compositions of -4.1 and -11.4 ‰. This range is significantly less than that measured on the potential sources of Hg pollution, and may indicate secondary processes, such as gas to solid phase transfers. The occurrence of post-emission processes is reinforced by the strong correlations existing between these low ?202Hg and MIF ?201Hg values.

Widory, D.; Petelet-Giraud, E.; Johnson, T.; Quétel, C.; Snell, J.; van Bocxstaele, M.; Bullen, T. D.

2010-12-01

283

Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles  

NASA Astrophysics Data System (ADS)

In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

2015-03-01

284

Solid spherical glass particle impingement studies of plastic materials  

NASA Technical Reports Server (NTRS)

Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.

Rao, P. V.; Young, S. G.; Buckley, D. H.

1983-01-01

285

Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea.  

PubMed

Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (?OPEs) was 47.1-160.9pgm(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ?OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8ngm(-2)d(-1) for the ?OPEs. Moreover, the dry deposition input of the ?OPEs was estimated to be 4.98tony(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China. PMID:25732631

Lai, Senchao; Xie, Zhiyong; Song, Tianli; Tang, Jianhui; Zhang, Yingyi; Mi, Wenying; Peng, Jinhu; Zhao, Yan; Zou, Shichun; Ebinghaus, Ralf

2015-05-01

286

Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.  

PubMed

The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant. PMID:23712117

Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

2013-09-01

287

An Overview of Energetic Particle Precipitation Effects on the Earth's Atmosphere and (Potentially) Climate  

NASA Technical Reports Server (NTRS)

Energetic precipitating particles (EPPs) can cause significant constituent changes in the polar mesosphere and stratosphere (middle atmosphere) during certain periods. Both protons and electrons can influence the polar middle atmosphere through ionization and dissociation processes. EPPs can enhance HOx (H, OH, HO2) through the formation of positive ions followed by complex ion chemistry and NOx (N, NO, NO2) through the dissociation of molecular nitrogen. The solar EPP-created HOx increases can lead to ozone destruction in the mesosphere and upper stratosphere via several catalytic loss cycles. Such middle atmospheric HOx-caused ozone loss is rather short-lived due to the relatively short lifetime (hours) of the HOx constituents. The HOx-caused ozone depletion of greater than 30% has been observed during several large solar proton events (SPEs) in the past 50 years. HOx enhancements due to SPEs were confirmed by observations in solar cycle 23. A number of modeling studies have been undertaken over this time period that show predictions of enhanced HOx accompanied by decreased ozone due to energetic particles. The solar EPP-created NOx family has a longer lifetime than the HOx family and can also lead to catalytic ozone destruction. EPP-caused enhancements of the NOx family can affect ozone promptly, if produced in the stratosphere, or subsequently, if produced in the lower thermosphere or mesosphere and transported to the stratosphere. NOx enhancements due to auroral electrons, medium and high energy electrons, relativistic electron precipitation (REP) events, and SPEs have been measured and/or modeled for decades. Model predictions and measurements show that certain years have significant winter-time meteorological events, which result in the transport of EPP-caused NOx enhancements in the upper mesosphere and lower thermosphere to lower altitudes. The NOx-caused ozone depletion has also been observed during several solar proton events (SPEs) in the past 50 years. Model predictions indicate that the longer-lived SPE-caused polar stratospheric and mesospheric ozone decrease can be >10% for up to five months past the largest events and is statistically significant; however, total ozone measurements do not indicate any long-term SPE impact.

Jackman, Charles H.

2012-01-01

288

Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions  

NASA Astrophysics Data System (ADS)

Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration when all settings were done carefully. The consistency of these reference instruments to the total particle number concentration was demonstrated to be less than 5%. Additionally, a new data structure for particle number size distributions was introduced to store and disseminate the data at EMEP (European Monitoring and Evaluation Program). This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

2012-03-01

289

Coupling of Particle Acceleration and Atmospheric Dynamic Response to Impulsive Energy Release in Solar Flares  

NASA Astrophysics Data System (ADS)

In solar flares, acceleration and transport of high-energy particles and fluid dynamics of the atmospheric plasma are interrelated processes coupled in a circular chain. Chromospheric evaporation, for example, can alter the density and temperature distribution along the flare loop, in particular in the acceleration site near the loop-top source. This produces a feedback on particle collisional heating, and more importantly on the energy release and acceleration process. This in turn will change the heating of the chromosphere and mass flows in the corona. In recent years, there have been increasing theoretical and observational motivations to investigate these coupled processes together in a self-consistent manner. We present here combined Fokker-­Planck modeling of particles and hydrodynamic simulation of flare plasma. We extended our earlier hybrid simulation (Liu, Petrosian, Mariska 2009) by feeding the updated plasma density and temperature at the loop-top source to the stochastic acceleration process. We find that the density enhancement causes the ratio of the electron plasma frequency to gyro-frequency to increase. This can lead to the reduction of the efficiency of electron acceleration and thus the quenching or spectral softening of nonthermal hard X-ray tails observed during the late stages of flares. This also affects the relative production of energetic electrons vs. protons (Petrosian and Liu 2004). We will compare our results with recent observations from RHESSI, SDO, and Hinode. We will also discuss their implications for cyclic spectral hardening, quasi-periodic flare pulsations, and recently imaged super-fast quasi-periodic coronal waves originating from flare kernels.

Liu, Wei; Petrosian, V.; Chen, Q.; Mariska, J.

2012-05-01

290

Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules, biological standard particles and potential interferences  

NASA Astrophysics Data System (ADS)

Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard bioparticles (pollen, fungal spores, and bacteria) as well as atmospherically relevant chemical substances. We found varying levels of fluorescent emission and significant differences in the spectral properties of major PBAP classes. The combination will support the quantitative interpretation of data obtained by real-time FBAP instrumentation [5]. [1] Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Atmos. Chem. Phys., 7, 4569-4588. [2] Huffman, J. A., Treutlein, B., & Pöschl, U. (2010). Atmos. Chem. Phys., 10, 3215-3233. [3] Pöschl, U., et al. (2010). Science, 329, 1513-1516. [4] Lakowicz, J., Principles of fluorescence spectroscopy, Plenum publishers, New York, 1999. [5] Pöhlker, C., Huffman, J. A., & Pöschl, U., (2012). Atmos. Meas. Tech., 5, 37-71.

Pöhlker, C.; Huffmann, J. A.; Pöschl, U.

2012-04-01

291

Materials with a desired refraction coefficient can be made by embedding small particles  

E-print Network

A method is proposed to create materials with a desired refraction coefficient, possibly negative one. The method consists of embedding into a given material small particles. Given $n_0(x)$, the refraction coefficient of the original material in a bounded domain $D \\subset \\R^3$, and a desired refraction coefficient $n(x)$, one calculates the number $N(x)$ of small particles, to be embedded in $D$ around a point $x \\in D$ per unit volume of $D$, in order that the resulting new material has refraction coefficient $n(x)$.

A. G. Ramm

2007-06-15

292

Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.  

PubMed

A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the concentrations of 1,2-benzenedicarboxylic acid in the atmospheric fine particle mass, indicating that aromatic diacids may be useful in the quantification of certain sources of secondary organic aerosol in the atmosphere. PMID:12322754

Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

2002-09-01

293

The role of new particle surfaces in synthesizing bulk nanostructured metallic materials by powder metallurgy  

Microsoft Academic Search

The role of new particle surfaces in synthesizing bulk nanostructured metallic materials by consolidation of nanostructured powders and nanopowders is analysed by developing three simple mathematical equations for calculating the ? factor for different thermomechanical powder consolidation processes such as hot pressing, high pressure torsion and extrusion. The ? factor is the fraction of the area of the powder particle

D. L. Zhang; C. C. Koch; R. O. Scattergood

2009-01-01

294

The size effect of zircon particles on the friction characteristics of brake lining materials  

Microsoft Academic Search

This work investigated the effect of zircon particle size on the friction characteristics of brake lining materials. Four different sizes of commercially used zircon particles (nominally 1?m, 6?m, 75?m, and 150?m in diameter) were used to produce non-steel type lining materials. We focused on the level of the friction coefficient, the oscillation of friction force, and wear resistance of the

K. H. Cho; H. Jang; Y.-S. Hong; S. J. Kim; R. H. Basch; J. W. Fash

2008-01-01

295

Effect of wall surface materials on deposition of particles with the aid of negative air ions  

Microsoft Academic Search

This work studied how wall surface materials influence the removal of airborne particles with negative air ions (NAIs) in indoor environments. Five wall surface materials—stainless steel, wood, PVC (polyvinyl chloride), wallpaper and cement paint—were applied to the inner surface of a test chamber. Two monodispersed solid NaCl particle sizes, 300 and 30nm, were tested. The NAIs in the chamber were

Chih Cheng Wu; Grace W. M. Lee; Pojen Cheng; Shinhao Yang; Kuo Pin Yu

2006-01-01

296

Interaction of metallic SOFC interconnect materials with glass-ceramic sealant in various atmospheres  

NASA Astrophysics Data System (ADS)

The interaction of the metallic parts of a solid oxide fuel cell (SOFC) and the glass-ceramic sealant was characterized under various atmospheric conditions by a quick and simple test method. The metallic material used was a high-chromium steel specially developed for SOFC applications (two different compositions) designated Crofer22APU 1st and JS-3 while the glass-ceramic composed of BaO-CaO-Al 2O 3-SiO 2 (BCAS, known as glass A) was also designed for SOFC use. Air, humidified air and humidified hydrogen were used as atmospheres. The tests were carried out at an SOFC operating temperature of 800 °C for times varying from 1 to 500 h. The results show that air or humidified air does not lead to enhance negative interaction effects, neither in the metallic nor in the glass-ceramic material. In contrast interaction under humidified hydrogen causes internal oxidation in the steel. However, the corrosion intensity is much higher in the steel material where some special minor constituents were added, especially aluminium and silicon, than in the Al- and Si-free steel material. Thus the final purity of the metallic material is of crucial importance for long-term use in SOFCs. Additionally, the presence of either humid hydrogen or humid hydrogen and a low oxygen partial pressure in the surrounding atmosphere has a detrimental effect on the interaction behaviour of the glass-ceramic and metallic parts of the SOFC. The test method presented here can act as a first fast and simple screening test to characterize the interaction of the metallic and glass-ceramic parts of an SOFC.

Menzler, Norbert H.; Sebold, Doris; Zahid, Mohsine; Gross, Sonja M.; Koppitz, Thomas

297

Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)  

NASA Astrophysics Data System (ADS)

Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary biological aerosol particles in the coarse mode (Pöhlker et al. 2012). We applied STXM-NEXAFS analysis, SEM-EDX analysis and NanoSIMS analysis to investigate the morphology, chemical composition and isotopic composition of aerosol samples. Biogenic salt particles emitted from active biota in the rainforest were found to be enriched in the heavier sulphur isotope, whereas particles with a high organic mass fraction modified by condensation of VOC oxidation products and/or cloud processing were significantly depleted in the heavier sulphur isotope compared to the seed particles. This indicates either a depleted gas phase source of sulphur dioxide contributed to the sulphate formation via the H2O2, O3 or OH oxidation pathway or an unaccounted reaction pathway which depletes the heavier isotope in the product sulphate contributes to the secondary sulphate formation in the pristine Amazon rainforest. Harris, E., et al., Science 340, 727-730, 2013 Pöhlker, C., Science 337, 1075-1078, 2012

Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

2013-12-01

298

Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles - Laboratory experiments and modeling studies  

NASA Astrophysics Data System (ADS)

Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial Iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate, glutarate and gluconate complexes lie in the range of 0.02 < ? < 0.10, whereas succinate, tartronate, pyruvate and glyoxalate systems have values between 0.16 < ? < 1.26. All quantum yields include contributions from secondary thermal reactions. Furthermore, an attempt was made to differentiate between contributions of individual iron-oxalato complexes to the overall measured quantum yield. The formation and photolysis of the iron-carboxylate complexes and the subsequent reactions of the resulting compounds have been implemented in CAPRAM 3.0 (Chemical Aqueous Phase Radical Mechanism). Modeling studies were performed to investigate the effects of the expanded iron photochemistry on oxidant budgets, the iron redox-cycling and the processing of secondary organic acids in cloud droplets and deliquescent particles under different environmental conditions. The model studies have shown that, i.e. for pyruvic acid under urban conditions, the photolysis of the iron-pyruvate complex can contribute with about 40 % significantly to the overall degradation flux and represents thus an important loss pathway beside the radical oxidation pathways.

Weller, C.; Tilgner, A.; Herrmann, H.

2010-12-01

299

Autofluorescence of atmospheric bioaerosols - Biological standard particles and the influence of environmental conditions  

NASA Astrophysics Data System (ADS)

Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP can account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard bioparticles (pollen, fungal spores, and bacteria) as well as atmospherically relevant chemical substances. We addressed the sensitivity and selectivity of autofluorescence based online techniques. Moreover, we investigated the influence of environmental conditions, such as relative humidity and oxidizing agents in the atmosphere, on the autofluorescence signature of standard bioparticles. Our results will support the molecular understanding and quantitative interpretation of data obtained by real-time FBAP instrumentation [5,6]. [1] Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Atmos. Chem. Phys., 7, 4569-4588. [2] Huffman, J. A., Treutlein, B., & Pöschl, U. (2010). Atmos. Chem. Phys., 10, 3215-3233. [3] Pöschl, U., et al. (2010). Science, 329, 1513-1516. [4] Lakowicz, J., Principles of fluorescence spectroscopy, Plenum publishers, New York, 1999. [5] Pöhlker, C., Huffman, J. A., & Pöschl, U., (2012). Atmos. Meas. Tech., 5, 37-71. [6] Pöhlker, C., Huffman, J. A., Förster J.-D., & Pöschl, U., (2012) in preparation.

Pöhlker, Christopher; Huffman, J. Alex; Förster, Jan-David; Pöschl, Ulrich

2013-04-01

300

Assembling and properties of the polymer-particle nanostructured materials  

Microsoft Academic Search

Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of

Roman Sheparovych

2010-01-01

301

Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources  

NASA Astrophysics Data System (ADS)

Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic acids. The high concentrations in summer could lead to the conclusion that these acids are mostly formed during photochemical processes in the atmosphere. However, the concentrations in autumn were often exceeded by the ones in winter. Therefore probably other sources beside photochemical processes have to be considered. The second group consists of aromatic compounds. Because of the high concentrations in winter it can be concluded that photochemical formation plays a minor role and primary emission sources e.g., wood combustion are likely. Further evidence in determining sources of the carboxylic acids could be obtained from the air mass origin. In general, air masses transported from East have a more anthropogenic influence than the air mass inflow from West. For all aromatic carboxylic acids higher concentrations were determined during eastern inflow, indicating anthropogenic sources. This presumption is supported by high correlations with the elemental carbon (EC). Regarding the aliphatic carboxylic there is one group with higher concentrations when the air mass is transported from West and one with higher concentrations when air mass is transported from East. In summary the findings of this study reveal a clear difference in the seasonal trends of the single target acids indicating a variety of different sources.

Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

2013-04-01

302

The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. II - Odd hydrogen  

Microsoft Academic Search

A one dimensional time-dependent model of the neutral and ion chemistry of the middle atmosphere has been used to examine the production of odd hydrogen (H, OH, and HO2) during charged particle precipitation. At altitudes above about 65 km, odd hydrogen production depends on the ionization rate, and the atomic oxygen and water vapor densities. Odd hydrogen production is shown

S. Solomon; D. W. Rusch; J.-C. Gerard; G. C. Reid; P. J. Crutzen

1981-01-01

303

VIABLE BACTERIAL AEROSOL PARTICLE SIZE DISTRIBUTIONS IN THE MIDSUMMER ATMOSPHERE AT AN ISOLATED LOCATION IN THE HIGH DESERT CHAPARRAL  

EPA Science Inventory

The viable bacterial particle size distribution in the atmosphere at the Hanford Nuclear Reservation, Richland, WA during two 1-week periods in June 1992, was observed at three intervals during the day (morning, midday and evening) and at three heights (2, 4, and 8 m) above groun...

304

Atmospheric Effects of Energetic Particle Precipitation in the Arctic Winter 1978-1979 Revisited  

NASA Technical Reports Server (NTRS)

The Limb Infrared Monitor of the Stratosphere (LIMS) measured polar stratospheric enhancements of NO2 mixing ratios due to energetic particle precipitation (EPP) in the Arctic winter of 1978-1979. Recently reprocessed LIMS data are compared to more recent measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) to place the LIMS measurements in the context of current observations. The amount of NOx (NO + NO2) entering the stratosphere that has been created by EPP in the mesosphere and lower thermosphere (EPP-NOx) has been quantified for the 1978-1979 and 2002-2003 through 2008-2009 Arctic winters. The NO2 enhancements in the LIMS data are similar to those in MIPAS and ACE-FTS data in the Arctic winters of 2002-2003, 2004-2005, 2006-2007, and 2007-2008. The largest enhancement by far is in 2003-2004 (approximately 2.2 Gmol at 1500 K), which is attributed to a combination of elevated EPP and unusual dynamics that led to strong descent in the upper stratosphere/lower mesosphere in late winter. The enhancements in 2005-2006 and 2008-2009, during which large stratospheric NOx enhancements were caused by a dynamical situation similar to that in 2003 2004, are larger than in all the other years (except 2003-2004) at 3000 K. However, by 2000 K the enhancements in 2005-2006 (2008-2009) are on the same order of magnitude as (smaller than) all other years. These results highlight the importance of the timing of the descent in determining the potential of EPP-NOx for reaching the middle stratosphere.

Holt, L. A.; Randall, C. E.; Harvey, V. L.; Remsberg, E. E.; Stiller, G. P.; Funke, B.; Bernath, P. F.; Walker, K. A.

2012-01-01

305

Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions  

NASA Astrophysics Data System (ADS)

Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between different networks and sites, and their transparency and traceability back to raw data.

Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.

2010-12-01

306

Acoustic properties and durability of liner materials at non-standard atmospheric conditions  

NASA Astrophysics Data System (ADS)

This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

1994-11-01

307

Acoustic properties and durability of liner materials at non-standard atmospheric conditions  

NASA Technical Reports Server (NTRS)

This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

1994-01-01

308

Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.  

PubMed

Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (?-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the ?-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment. PMID:25491854

Beutel, Bryan G; Danna, Natalie R; Gangolli, Riddhi; Granato, Rodrigo; Manne, Lakshmiprada; Tovar, Nick; Coelho, Paulo G

2014-12-01

309

A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles  

NASA Astrophysics Data System (ADS)

Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the MILAGRO study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+; and that a higher H+ loading and lower cation/anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and ammonia-ammonium (NH3-NH4+) partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the Extended Aerosol Inorganics Model (E-AIM) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both models run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements, and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and published studies to date with conclusions based on such acidity proxies may need to be reevaluated. Given the significance of acidity for chemical processes in the atmosphere, the implications of this study are important and far reaching.

Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

2014-11-01

310

A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles  

NASA Astrophysics Data System (ADS)

Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the Megacity Initiative: Local and Global Research Objectives (MILAGRO) study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+ and that a higher H+ loading and lower cation / anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and NH3-NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the E-AIM (Extended Aerosol Inorganics Model) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and previously published studies with conclusions based on such acidity proxies may need to be reevaluated. Given the significance of acidity for chemical processes in the atmosphere, the implications of this study are important and far reaching.

Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

2015-03-01

311

Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials  

NASA Technical Reports Server (NTRS)

Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micron and 2.75 microns remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

Bishop, Janice L.; Pieters, Carle M.

1995-01-01

312

Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials  

NASA Technical Reports Server (NTRS)

Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

Bishop, Janice L.; Pieters, Carle M.

1995-01-01

313

Regression modeling of gas-particle partitioning of atmospheric oxidized mercury from temperature data  

NASA Astrophysics Data System (ADS)

Models describing the partitioning of atmospheric oxidized mercury (Hg(II)) between the gas and fine particulate phases were developed as a function of temperature. The models were derived from regression analysis of the gas-particle partitioning parameters, defined by a partition coefficient (Kp) and Hg(II) fraction in fine particles (fPBM) and temperature data from 10 North American sites. The generalized model, log(1/Kp) = 12.69-3485.30(1/T) (R2 = 0.55; root-mean-square error (RMSE) of 1.06 m3/µg for Kp), predicted the observed average Kp at 7 of the 10 sites. Discrepancies between the predicted and observed average Kp were found at the sites impacted by large Hg sources because the model had not accounted for the different mercury speciation profile and aerosol compositions of different sources. Site-specific equations were also generated from average Kp and fPBM corresponding to temperature interval data. The site-specific models were more accurate than the generalized Kp model at predicting the observations at 9 of the 10 sites as indicated by RMSE of 0.22-0.5 m3/µg for Kp and 0.03-0.08 for fPBM. Both models reproduced the observed monthly average values, except for a peak in Hg(II) partitioning observed during summer at two locations. Weak correlations between the site-specific model Kp or fPBM and observations suggest the role of aerosol composition, aerosol water content, and relative humidity factors on Hg(II) partitioning. The use of local temperature data to parameterize Hg(II) partitioning in the proposed models potentially improves the estimation of mercury cycling in chemical transport models and elsewhere.

Cheng, Irene; Zhang, Leiming; Blanchard, Pierrette

2014-10-01

314

Automated technologies needed to prevent radioactive materials from reentering the atmosphere  

NASA Astrophysics Data System (ADS)

Project SIREN (Search, Intercept, Retrieve, Expulsion Nuclear) has been created to identify and evaluate the technologies and operational strategies needed to rendezvous with and capture aerospace radioactive materials (e.g., a distressed or spent space reactor core) before such materials can reenter the terrestrial atmosphere and then to safely move these captured materials to an acceptable space destination for proper disposal. A major component of the current Project SIREN effort is the development of an interactive technology model (including a computerized data base) that explores in building block fashion the interaction of the technologies and procedures needed to successfully accomplish a SIREN mission. This SIREN model will include appropriate national and international technology elements-both contemporary and projected into the next century. To permit maximum flexibility and use, the SIREN technology data base is being programmed for use on 386-class PC's.

Buden, David; Angelo, Joseph A., Jr.

315

Micromechanics-based elastic model for functionally graded materials with particle interactions  

SciTech Connect

A micromechanics-based elastic model is developed for two-phase functionally graded materials with locally pair-wise interactions between particles. While the effective material properties change gradually along the gradation direction, there exist two microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix zone, pair-wise interactions between particles are employed using a modified Green's function method. By integrating the interactions from all other particles over the representative volume element, the homogenized elastic fields are obtained. The effective stiffness distribution over the gradation direction is further derived. In the transition zone, a transition function is constructed to make the homogenized elastic fields continuous and differentiable in the gradation direction. The model prediction is compared with other models and experimental data to demonstrate the capability of the proposed method.

Yin, H.M.; Sun, L.Z.; Paulino, G.H

2004-07-12

316

Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine  

NASA Astrophysics Data System (ADS)

Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

Rodríguez-Fernández, Luis

2010-09-01

317

First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events  

SciTech Connect

Recent observations throughout the atmosphere have shown that nucleation occurs frequently (Kulmala et al. 2004). Modeling studies and observations have shown that nucleated particles contribute significantly to concentrations of cloud condensation nuclei (Spracklen et al. 2008), thereby affecting climate (IPCC 2007). Size-resolved measurements extending down to molecular dimensions can provide information on processes that lead to nucleation and would enable development and verification of theories for particle nucleation and growth in the atmosphere and other aerosol systems. This article describes measurements of the complete number size distribution, spanning the size range from vapor molecules and molecular clusters to submicrometer particles, during atmospheric nucleation events. The measurements used two new instruments, the cluster chemical ionization mass spectrometer (Cluster CIMS) and the DEG SMPS. The Cluster CIMS measures neutral molecular clusters from 50 to 900 amu. The DEG SMPS is a scanning mobility particle spectrometer (SMPS) equipped with a diethylene glycol (DEG)-based condensation particle counter (CPC) capable of 1.1 nm mobility diameter particle detection, and overlapping the sizes detected by the Cluster CIMS (Iida et al. 2009; Jiang et al. 2011). The Cluster CIMS distinguishes neutral clusters from ions formed by ion-induced clustering by varying the reaction time for ions with the sampled air (Zhao et al. 2010). It distinguishes clusters from high molecular weight gases by measuring the incremental signal at a specified mass detected during nucleation events. The clusters that were measured in this study contain sulfuric acid, which is known to participate in atmospheric nucleation (Kuang et al. 2008).

Jiang, J.; Kuang, C.; Zhao, J.; Chen, M.; Eisele, F. L.; Scheckman, J.; Williams, B. J.; McMurry, P. H.

2011-02-01

318

Squeeze flow characterization of particle-filled polymeric materials through image correlation  

Microsoft Academic Search

Particle-filled polymeric materials are common choices for thermal interface materials (TIMs). During assembly, TIMs are applied between the surfaces across which heat must be transported. The goal of the present work is to develop a test procedure that is consistent with the length scales characteristic of real thermal interfaces. A mechanical tester (Instron 5848 Micromechanical Tester) is employed with closed-loop

Nikhil Bajaj; Ganesh Subbarayan; Suresh V. Garimella

2010-01-01

319

The simulation of particulate materials packing using a particle suspension model  

Microsoft Academic Search

The behavior of particulate composite materials, such as portland cement concrete, depends to a large extent on the properties of their main constituent—the aggregates. Among the most important parameters affecting the performance of concrete are the packing density and corresponding particle size distribution (PSD) of aggregates. Better packing of aggregates improves the main engineering properties of composite materials: strength, modulus

Konstantin Sobolev; Adil Amirjanov

2007-01-01

320

Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study  

NASA Astrophysics Data System (ADS)

Processes on icy particles attract much attention due to their importance for atmospheric science, ecology and astrophysics. In this work, adsorption and ecologically important reactions of some molecules on pure and mixed water icy films by means of FTIR spectroscopy have been investigated. The cell for spectral studies of adsorbed molecules at variable temperatures (55-370 K), described elsewhere1, enables one to run the spectra in the presence of gaseous adsorbate, and even to perform adsorption from the solution in some cryogenic solvents. For the studies of ice films, it was equipped with a device for water vapour sputtering from the heated capillaries and deposition onto the inner BaF2 or ZnSe windows of the cell, cooled by liquid nitrogen. Lower temperatures were obtained by pumping off evaporating nitrogen from the coolant volume. The estimated specific surface area of freshly deposited at 77 K water ice film was about 160 m2/g and decreases on raising the temperature together with the diminishing intensity of the bands of dangling OH (OD) groups at 3696 (2727) cm-1 until the latter disappear at 130 - 160 K when the changes of bulk absorption provide evidence for a phase transition from amorphous to polycrystalline ice. CO adsorption at 77 K results in two bands at 2153 and 2137 cm-1 assigned to molecules forming weak H-bond with the dangling hydroxyl groups and bound to unsaturated surface oxygen atoms, respectively2. The band of dangling hydroxyl groups moves to lower wavenumbers on adsorption of different molecules (hydrogen, nitrogen, methane, ozone, NO, ethane or chlorinated ethenes, etc.). The shift value depends on the nature of adsorbate. Besides this shift, spectra of adsorbed nitrogen and methane registered at 55 K reveal the adsorption intensity decrease at ~ 2650 cm-1 at the high-frequency slope of bulk adsorption, and increase at about 25 cm-1 below. We interpret this perturbation as a strengthening of H-bonds between surface water molecules, which act as adsorption sites either as a proton-donor or as a donor of the lone pair of electrons. Such adsorption-induced relaxation explains the dependence of physico-chemical properties of icy particles on the presence of atmospheric gases. Spectra HCN/D2O and ND3/D2O mixed icy films with low (1:10) dopant/water ratios do not manifest any changes in the acidic or basic properties of dangling hydroxyl groups or surface oxygen atoms, but reveal a difference in the proportion between the concentrations of these sites as compared with that for pure water ice. For high dopant concentrations (1:1), the dangling hydroxyls were not observed; the dominant adsorption sites for CO are likely to be the unsaturated oxygen atoms, while serious structural changes occur in the bulk of ices. Ecologically important reactions of atmospheric pollutants such as ozonolysis of ethene, chlorinated ethenes, hydrogen cyanide, and methyl bromide adsorbed on water ice film as well as the influence of UV radiation on this process have been studied in 77 - 200 K temperature range by FTIR spectroscopy. Ozone co-adsorption with ethene or C2H3Cl readily leads to ozonolysis reaction, which also starts for C2H2Cl2 isomers but only at temperatures elevated up to 120 - 150 K. Co-adsorption of O3 with HCN or CH3Br molecules in the dark does not lead to any noticeable spectral changes. Irradiation of HCN or CH3Br deposited on ice films in the presence of ozone leads to appearance of new bands revealing the formation of ozonolysis products. The same "synergetic effect" of simultaneous action of ozone and UV radiation at 77 K, was found for C2H2Cl2 isomers and C2Cl4, which are resistant against O3 even at higher temperatures. The obtained spectral dependence of photo-ozonolysis of C2Cl4 and HCN at 77 K shows that photoexcitation or photodissociation of ozone, evidently, accounts for the observed processes. The surface of ice particles, thus, plays the role of a condenser of atmospheric pollutants and acts as a micro- photoreactor in the atmospheric chemistry. Acknowledgments. The work was

Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

2009-04-01

321

Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles  

PubMed Central

Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

2011-01-01

322

The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials  

NASA Technical Reports Server (NTRS)

This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.

Barghouty, A. F.; Thibeault, S. A.

2006-01-01

323

Hybrid metal organic scintillator materials system and particle detector  

DOEpatents

We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

2011-07-26

324

Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment  

SciTech Connect

The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

1991-02-01

325

Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically  

PubMed Central

Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma. PMID:24068175

Lackmann, Jan-Wilm; Schneider, Simon; Edengeiser, Eugen; Jarzina, Fabian; Brinckmann, Steffen; Steinborn, Elena; Havenith, Martina; Benedikt, Jan; Bandow, Julia E.

2013-01-01

326

Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.  

PubMed

Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of ?-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models. PMID:23748935

Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

2013-07-21

327

Monitor of the concentration of particles of dense radioactive materials in a stream of air  

DOEpatents

A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

Yule, Thomas J. (West Chigago, IL)

1979-01-01

328

Analysis results of micron-sized particles captured by space material exposure experiment  

NASA Astrophysics Data System (ADS)

Space material exposure experiments were performed on the International Space Station (ISS) using the Micro-Particles Capturer and the Space Environment Exposure Device (MPAC&SEED) developed by the Japan Aerospace Exploration Agency (JAXA). MPAC is a passive experiment designed to evaluate the dust (micrometeoroid and space debris) environment and to capture particle residues for subsequent chemical analysis. We found many unexpected micron-sized particles that did not make impact with hypervelocity. The diameter of these particles is in the order of micrometers. It is difficult to analyze these particles because they are too small to handle from aerogels. Also, their colorless and transparent nature prevents us from handling them after extraction. In final paper, I present the analysis results of this micron-sized particles

Kimoto, Yugo

329

Large area nuclear particle detectors using ET materials, phase 2  

NASA Technical Reports Server (NTRS)

This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

1990-01-01

330

ACIDIC DEPOSITION AND THE CORROSION AND DETERIORATION OF MATERIALS IN THE ATMOSPHERE: A BIBLIOGRAPHY, 1880-1982  

EPA Science Inventory

The bibliography contains more than 1300 article citations and abstracts on the effects of acidic deposition, air pollutants, and biological and meteorological factors on the corrosion and deterioration of materials in the atmosphere. The listing includes citations for the years ...

331

Abundances of heavy elements in metal deficient stars I. Observational material and model atmospheres  

NASA Astrophysics Data System (ADS)

In this paper, we present the observational material of high resolution, high signal-to-noise spectra for a sample of 27 metal deficient dwarfs and subgiants. The atmospheric parameters of these program stars have been determined. Effective temperatures were derived from b — y and V — K color indices by using the calibration of Magain. Surface gravities were determined by forcing the Fell lines to indicate the same abundance as the high excitation FeI lines. Metallicities were derived from Strömgren m1 indices. These results will be used in a subsequent paper to derive heavy element abundances for these program stars.

Zhao, Gang

1993-07-01

332

Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere  

DOEpatents

We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

Allendorf, Mark D; Robinson, Alex L

2014-12-09

333

Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia  

NASA Astrophysics Data System (ADS)

Aerosol particles from desert dust interact with clouds and influence climate on regional and global scales. The Riyadh (Saudi Arabia) aerosol campaign was initiated to study the effects of dust particles on cloud droplet nucleation and cloud properties. Here we report the results of individual-particle studies of samples that were collected from an aircraft in April 2007. We used analytical transmission electron microscopy, including energy-dispersive X-ray spectrometry, electron diffraction, and imaging techniques for the morphological, chemical, and structural characterization of the particles. Dust storms and regional background conditions were encountered during four days of sampling. Under dusty conditions, the coarse (supermicrometer) fraction resembles freshly crushed rock. The particles are almost exclusively mineral dust grains and include common rock-forming minerals, among which clay minerals, particularly smectites, are most abundant. Unaltered calcite grains also occur, indicating no significant atmospheric processing. The particles have no visible coatings but some contain traces of sulfur. The fine (submicrometer) fraction is dominated by particles of anthropogenic origin, primarily ammonium sulfate (with variable organic coating and some with soot inclusions) and combustion-derived particles (mostly soot). In addition, submicrometer, iron-bearing clay particles also occur, many of which are internally mixed with ammonium sulfate, soot, or both. We studied the relationships between the properties of the aerosol and the droplet microphysics of cumulus clouds that formed above the aerosol layer. Under dusty conditions, when a large concentration of coarse-fraction mineral particles was in the aerosol, cloud drop concentrations were lower and droplet diameters larger than under regional background conditions, when the aerosol was dominated by submicrometer sulfate particles.

Pósfai, Mihály; Axisa, Duncan; Tompa, Éva; Freney, Evelyn; Bruintjes, Roelof; Buseck, Peter R.

2013-03-01

334

The Stopping Power of Asteroidal Materials as High-Energy Charged Particle Shielding  

NASA Astrophysics Data System (ADS)

Extended human missions in deep space face a challenging radiation environment from high-energy galactic cosmic rays and solar energetic particles generated by solar flares and related coronal mass ejections. Shielding to attenuate these high-energy particles will require significant mass and volume, and would be extremely expensive launch from the surface of the earth. One possible solution could be the use of asteroidal resources as shielding for these high-energy particles. The effectiveness of shielding material for moderately relativistic charged particles is a function of the mean rate of energy loss, primarily to ionization and atomic excitation and is termed stopping power. In general, low atomic number elements are more effective per unit volume. We have calculated the stopping power for the average compositions of all major meteorite groups and will compare these data with typical spacecraft materials.

Pohl, Leos; Johnson, Daniel; Britt, Daniel

2014-11-01

335

An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)  

NASA Astrophysics Data System (ADS)

A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (<1 ns), inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

2005-12-01

336

Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site.  

PubMed

Levels of 13 organophosphate esters (OPEs) and 45 brominated and chlorinated flame retardants (BFRs) were measured in particle phase atmospheric samples collected at Longyearbyen on Svalbard in the European Arctic from September 2012 to May 2013. Total OPE (?OPEs) concentrations ranged from 33 to 1450 pg/m3, with the mean ?OPE concentration of 430±57 pg/m3. The nonchlorinated tri-n-butyl phosphate (TnBP) and 2-ethylhexyl-diphenyl phosphate (EHDPP) were the most abundant OPE congeners measured, and the sum of all nonchlorinated OPE concentrations comprised ?75% of the ?OPE concentrations. The most abundant chlorinated OPE was tris(1-chloro-2-propyl) phosphate (TCPP). Total BFR concentrations (?BFRs) were in the range of 3-77 pg/m3, with a mean concentration of 15±3 pg/m3. 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl)tetrabromophthalate (TBPH) were among the relatively abundant BFRs measured in these samples and comprised ?46% and 17% of ?BFR concentrations, respectively. Total PBDE (?PBDE) concentrations constituted ?37% of ?BFR concentrations on average and ranged from 1 to 31 pg/m3. The most abundant PBDE congener was BDE-209, which contributed 24% to ?PBDE concentrations. Dechlorane Plus (DP) was detected in all of the samples, and ?DP concentrations (syn-+anti-DP concentrations) ranged from 0.05 to 5 pg/m3. Overall, ?OPE concentrations were 1-2 orders of magnitude higher than the ?BFR concentrations. PMID:24848787

Salamova, Amina; Hermanson, Mark H; Hites, Ronald A

2014-06-01

337

A plasma window for vacuum-atmosphere interface and focusing lens of sources for non-vacuum ion material modification  

SciTech Connect

Material modifications by ion implantation, dry etching, and micro-fabrication are widely used technologies, all of which are performed in vacuum, since ion beams at energies used in these applications are completely attenuated by foils or by long differentially pumped sections, which are currently used to interface between vacuum and atmosphere. A novel plasma window, which utilizes a short arc for vacuum-atmosphere interface has been developed. This window provides for sufficient vacuum atmosphere separation, as well as for ion beam propagation through it, thus facilitating non-vacuum ion material modification.

Hershcovitch, A. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.

1997-11-01

338

A plasma window for vacuum{endash}atmosphere interface and focusing lens of sources for nonvacuum ion material modification (invited)  

SciTech Connect

Material modifications by ion implantation, dry etching, and microfabrication are widely used technologies, all of which are performed in vacuum, since ion beams at energies used in these applications are completely attenuated by foils or by long differentially pumped sections, which are currently used to interface between vacuum and atmosphere. A novel plasma window, which utilizes a short arc for vacuum{endash}atmosphere interface, has been developed. This window provides for sufficient vacuum atmosphere separation, as well as for ion beam propagation through it, thus facilitating nonvacuum ion material modification. {copyright} {ital 1998 American Institute of Physics.}

Hershcovitch, A. [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)] [AGS Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

1998-02-01

339

The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere. II - Odd hydrogen  

NASA Technical Reports Server (NTRS)

A one dimensional time-dependent model of the neutral and ion chemistry of the middle atmosphere has been used to examine the production of odd hydrogen (H, OH, and HO2) during charged particle precipitation. At altitudes above about 65 km, odd hydrogen production depends on the ionization rate, and the atomic oxygen and water vapor densities. Odd hydrogen production is shown to exhibit diurnal and other time dependent variations during such an event at these altitudes, and the assumption that two odd hydrogen particles are always produced per ionization is reexamined.

Solomon, S.; Rusch, D. W.; Gerard, J.-C.; Reid, G. C.; Crutzen, P. J.

1981-01-01

340

Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material  

NASA Astrophysics Data System (ADS)

Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air humidity was probably rather high, up to 77%. The combined results of the three selected plant taxa indicate values for atmospheric carbon dioxide concentration between 700 and 1100 ppm (probably about 900 ppm). Reference: Konrad, W., Roth-Nebelsick, A., Grein, M. (2008). Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology 253(4): 638-658.

Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

2010-05-01

341

Rice straw–wood particle composite for sound absorbing wooden construction materials  

Microsoft Academic Search

In this study, rice straw–wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10\\/90, 20\\/80, and 30\\/70 weight of rice straw\\/wood particle) of

Han-Seung Yang; Dae-Jun Kim; Hyun-Joong Kim

2003-01-01

342

Demonstration of papilloma virus particles in cervical and vaginal scrape material: a report of 10 cases.  

PubMed Central

The finding of virus particles by transmission electron microscopy (TEM) in fixed cervical and vaginal scrape material and their identification as papilloma viruses by negative staining is described. The colposcopic, cytological, and histological appearances in a group of 10 patients in whom virus particles were seen are discussed and the possibly considered of an association between papilloma virus infection and the development of cervical intraepithelial neoplasia (CIN) and multifocal intraepithelial neoplasia of the female lower genital tract. Images PMID:6265502

Stanbridge, C M; Mather, J; Curry, A; Butler, E B

1981-01-01

343

Mechanical properties and corrosion behavior of materials exposed to an experimental, atmospheric fluidized-bed combustor  

SciTech Connect

A joint materials test program developed by the Institute for Mining and Minerals Research (IMMR) and the Tennessee Valley Authority (TVA) involved the postexposure mechanical properties and corrosion behavior of candidate structural materials in an experimental, atmospheric fluidized-bed combustor (AFBC). This combustor was operated by Accurex Corporation at Research Triangle Park, North Carolina, under the direction of TVA. The materials studied were Type 304, Type 310, and INCOLOY alloy 800 in the form of disc coupons with and without crevice configurations. Type 304 was also used for mechanical property measurements. The alloys were exposed to the combustor environment at about840/sup 0/C for approximately 330 hours. The ranking in terms of decreasing weight loss was: (1) Type 304, (2) Type 310, and (3) INCOLOY alloy 800. The presence of tight crevices did not enhance the corrosion rate. In addition, the corrosion rates, based on the weight loss (typically 1 to 6 mpy), indicated that the alloys performed reasonably well when considering materials wastage. However, optical microscopy observations showed intergranular corrosion penetration in INCOLOY alloy 800 and Type 304. The mechanical properties of Type 304 were inferior to the unexposed alloy. A comparison of the data obtained from the combustor-exposed 304ss tensile samples with data from control samples exposed in vacuum to a similar thermal history indicated that the chemistry of the AFBC environment did not play a major role in the observed degradation of the mechanical properties.

Ganesan, P.; Sagues, A.; Sethi, V.

1984-06-01

344

Nanostructured coatings by adhesion of phosphonated polystyrene particles onto titanium surface for implant material applications.  

PubMed

Titanium that is covered with a native oxide layer is widely used as an implant material; however, it is only passively incorporated in the human bone. To increase the implant-bone interaction, one can graft multifunctional phosphonic compounds onto the implant material. Phosphonate groups show excellent adhesion properties onto metal oxide surfaces such as titanium dioxide, and therefore, they can be used as anchor groups. Here, we present an alternative coating material composed of phosphonate surface-functionalized polystyrene nanoparticles synthesized via free radical copolymerization in a direct (oil-in-water) miniemulsion process. Two types of functional monomers, namely, vinylphosphonic acid (VPA) and vinylbenzyl phosphonic acid (VBPA), were employed in the copolymerization reaction. Using VBPA as a comonomer leads to particles with a higher density of surface phosphonate groups in comparison to those obtained with VPA. VBPA-functionalized particles were used for the coating formation on the titanium surface. The particles monolayer was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) employing titanium and silicium tip with the native OH groups. Force versus distance curves proves the strong adhesion between the phosphonated particles and the titanium (or silicium) surfaces in contrast to the nonfunctionalized polystyrene particles. Finally, as a proof of concept, the particles adhered to the surface were further used to nucleate hydroxyapatite, which has high potential for bioimplants. PMID:20690639

Zeller, Anke; Musyanovych, Anna; Kappl, Michael; Ethirajan, Anitha; Dass, Martin; Markova, Dilyana; Klapper, Markus; Landfester, Katharina

2010-08-01

345

Study of the effect of particle characteristics on the flow behavior and strength properties of particulate materials  

Microsoft Academic Search

The effect of inherent particle characteristics on the undrained and drained shear strength of sands was studied. Inherent particle characteristics, namely particle size and size distribution, surface texture, shape, hardness, and specific gravity are the factors considered.^ The flow rate of material through the flow cone tests are a measure of these inherent particle characteristics. Therefore, possible correlations of the

Beena Sukumaran

1995-01-01

346

Crystallization of atmospheric sulfate-nitrate-ammonium particles Scot T. Martin, Julie C. Schlenker, Adam Malinowski, and Hui-Ming Hung  

E-print Network

Crystallization of atmospheric sulfate-nitrate-ammonium particles Scot T. Martin, Julie C the crystallization RH (CRH) at 293 K of particles throughout the entire sulfate-nitrate-ammonium composition space to ammonium sulfate crystallize near 30% RH. Such particles are common in the boundary layer, including

347

Growth of new particle in less and highly polluted atmosphere: Implication for an important role of NH4NO3 in growing new particles to CCN size  

NASA Astrophysics Data System (ADS)

When new particles formed in the atmosphere grow over 50-80 nm, they will activate as cloud condensation nuclei (CCN) and lead to an increase of cloud albedo. Knowledge gaps still existed, e.g., 1) new particles under which conditions can grow to CCN size? 2) which chemicals determine the growth of new particles to CCN size? In this study, new particle formation (NPF) events were investigated at two urban sites, in Qingdao during 23 April and 31 May, 2010, and in Toronto during 1 May and 31 May, 2009, using two identical Fast Mobility Particle Sizer (FMPS). Based on the satellite column densities of air pollutants and the particulate chemical concentration in PM2.5, the site in Qingdao suffered severe air pollution while the site in Toronto is less polluted. NPF events were observed in 16 days out of 39 sampling days in Qingdao and 13 days out of 31 sampling days in Toronto. The occurrence frequency of NPF events between Qingdao (41%) and Toronto (42%) was comparable to each other. In Qingdao, the geometric mean diameter of grown nucleated particles (Dpg,i) in 15 days grew to larger than 40 nm except in one day when the growth of new particles terminated at ~20 nm. In addition, the Dpg,i in 8 days out of the 15 days grew over 50 nm and it reached ~100 nm in two days. Two-phase growth of new particles was generally observed in these NPF events of Qingdao. The first-phase growth occurred in daytime and the CMAQ modeling results showed that formation of secondary organics was likely an important cause for the growth. The second-phase growth was observed at night and was associated with the increased concentrations of NH4+ and NO3-, implying that NH4NO3 condensation played an important role in the growth. In Toronto, NPF events in 4 days followed with the growth of new particles <~20 nm while new particles grew up to ~40 nm in the remaining NPF events. A slight growth of new particles at night was observed only in 3-day NPF events when the increased concentrations of NH4+, NO3- or the increased relative humidity were observed. However, the calculated Dpg,i was less than 45 nm for all NPF events in Toronto, implying a negligible contribution of new particles to the population of CCN.

Zhu, Y.; Gao, H.; Duan, Z. Q.; Evans, G. J.; Yao, X.

2013-12-01

348

Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX  

Microsoft Academic Search

A study was conducted in Houston, TX focusing on rare earth elements (REEs) in atmospheric fine particles and their sources. PM2.5 samples were collected from an ambient air quality monitoring site (HRM3) located in the proximity of a large number of oil refineries and petrochemical industries to estimate the potential contributions of emissions from fluidized-bed catalytic cracking operations to ambient

Pranav Kulkarni; Shankararaman Chellam; Matthew P. Fraser

2006-01-01

349

Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials  

NASA Astrophysics Data System (ADS)

Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The proposed reactions may result in the formation of organic salts and production of HCl from sea salt particles that become mixed with organic acids during atmospheric aging that occurs with transport. The process of hydration/dehydration and these reactions may modify the physical and chemical properties of aged sea salt particles.

Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

2012-12-01

350

Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain  

NASA Astrophysics Data System (ADS)

A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60-90 and 40-83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the ? exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.

Granados-Muñoz, M. J.; Navas-Guzmán, F.; Bravo-Aranda, J. A.; Guerrero-Rascado, J. L.; Lyamani, H.; Valenzuela, A.; Titos, G.; Fernández-Gálvez, J.; Alados-Arboledas, L.

2015-02-01

351

Atmospheres  

NASA Astrophysics Data System (ADS)

When high Al containing Fe alloys such as TRIP steels are exposed to atmospheres that contain N2 during re-heating, sub-surface nitrides form and these can be detrimental to mechanical properties. Nitride precipitation can be controlled by minimizing the access of the gaseous atmosphere to the metal surface, which can be achieved by a rapid growth of a continuous and adherent surface scale. This investigation utilizes a Au-image furnace attached to a confocal scanning microscope to simulate the annealing temperature vs time while Fe-Al alloys (with Al contents varying from 1 to 8 wt pct) are exposed to a O2-N2 atm with 10-6 atm O2. The heating times of 1, 10, and 100 minutes to the isothermal temperature of 1558 K (1285 °C) were used. It was found that fewer sub-surface nitride precipitates formed when the heating time was lowered and when Al content in the samples was increased. In the 8 wt pct samples, no internal nitride precipitates were present regardless of heating time. In the 3 and 5 wt pct samples, internal nitride precipitates were nearly more or less absent at heating times less than 10 minutes. The decrease in internal precipitates was governed by the evolving structure of the external oxide-scale. At low heating rates and/or low Al contents, significant Fe-oxide patches formed and these appeared to allow for ingress of gaseous N2. For the slow heating rates, ingress could have happened during the longer time spent in lower temperatures where non-protective alumina was present. As Al content in the alloy was increased, the external scale was Al2O3 and/or FeAl2O4 and more continuous and consequently hindered the N2 from accessing the metal surface. Increasing the Al content in the alloy had the effect of promoting the outward diffusion of Al in the alloy and thereby assisting the formation of the continuous external layer of Al2O3 and/or FeAl2O4.

Bott, June; Yin, Hongbin; Sridhar, Seetharaman

2014-12-01

352

New applications of particle accelerators in medicine, materials science, and industry  

SciTech Connect

Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

Knapp, E.A.

1981-01-01

353

Characteristics and morphology of wear particles from laboratory testing of disk brake materials  

Microsoft Academic Search

The geometrical characteristics and morphology of wear particles generated from brake materials are important for environmental and tribological reasons. Low- and high-speed, pin-on-disk friction and wear testing of a commercial truck brake pad material against cast iron was conducted in which wear debris was collected. The sliding speed was held constant either at 0.275 or at 5m\\/s, and the nominal

Mohsen Mosleh; Peter J Blau; Delia Dumitrescu

2004-01-01

354

Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles  

NASA Astrophysics Data System (ADS)

On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 ?g/m3-12.6 ?g/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 ?g/m3 to 9.3 ?g/m3 and 3.1 ?g/m3 to 6.4 ?g /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these species. The secondary aerosol represented an important fraction of total compounds in PM2.5 ranged from 16 to 18% for (NH4)2SO4 and 6 to 8% for NH4NO3. The values for TWSC ranged from 0.28 to 6.35 ?g/m3 in the industrial area and 0.12 to 7.49 ?g/m3 for rural area. The similarity between the areas regarding secondary aerosols formation and water-soluble carbon compounds is probably due to the particle size.

Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

2013-04-01

355

Control of TTIP Solution for Atmospheric Pressure Plasma Jet and Deposition of TiO2 Micro-particles  

NASA Astrophysics Data System (ADS)

TiO2 deposition-methods are versatile and are expected to be more simple and easy, however, in recent years the industrial photocatalytic products have been developed enormously. In this work, photocatalytic TiO2 micro-particles are deposited using the atmospheric pressure plasma jet device. Here, deposition-method is carried out in two steps, at first, the hydrolysis reaction time has been able to control which will resolve the TTIP coagulating trouble during the transportation, by acidifying the solution with AA (Acetic acid) and DEA (Diethanolamine). An experiment was performed to measure the hydrolysis reaction time of TTIP (Titanium tetraisopropoxide) solution by He-Ne laser. Secondly, the deposition of TiO2 micro-particles was carried out using the atmospheric pressure plasma jet with the controlled TTIP solution in reaction time. Based on SEM and water contact angle measurement, it is found that the smaller the mixing ratios of TTIP and DEA the smaller the TiO2 particle size. Also, the smaller the TiO2 particles the smaller the contact angle under the UV irradiation which suffices the photocatalytic behavior.

Hayakawa, Masahiro; Parajulee, Shankar; Ikezawa, Shunjiro

356

Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning.  

PubMed

57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, ?-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m(3) and 180 pg/m(3), respectively. BDE 209 and ?-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, ?-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas-particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas-particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPL(o)). Our results indicated that absorption into organic matter is the main control mechanism for the gas-particle partitioning of atmospheric PBDEs. PMID:24661943

Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li; Li, Yi-Fan

2014-09-01

357

Particle size effect of Ni-rich cathode materials on lithium ion battery performance  

SciTech Connect

Graphical abstract: The preparation condition of Ni-rich cathode materials was investigated. When the retention time was short, a poor cathode performance was observed. For long retention time condition, cathode performance displayed a best result at pH 12. Highlights: Black-Right-Pointing-Pointer Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) were prepared by co-precipitation method using separate addition of Al salt. Black-Right-Pointing-Pointer Particle size of Ni-rich cathode materials became larger with increase of retention time and solution pH. Black-Right-Pointing-Pointer Cathode performance was poor for low retention time. Black-Right-Pointing-Pointer Optimal pH for co-precipitation was 12. -- Abstract: Herein, Ni-rich cathode materials (LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}) in lithium ion batteries are prepared by a separate addition of Ni/Co salt and Al sol solution using a continuously stirred tank reactor. Retention time and solution pH were controlled in order to obtain high performance cathode material. Particle size increase was observed with a higher retention time of the reactants. Also, primary and secondary particles became smaller according to an increase of solution pH, which was probably due to a decrease of growth rate. From the cathode application, a high discharge capacity (175 mAh g{sup -1}), a high initial efficiency (90%) and a good cycleability were observed in the cathode material prepared under pH 12 condition, which was attributed to its well-developed layered property and the optimal particle size. However, rate capability was inversely proportional to the particle size, which was clarified by a decrease of charge-transfer resistance measured in the electrochemical impedance spectroscopy.

Hwang, Ilkyu [Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of) [Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Department of Chemical Engineering, Kyungppok National University, Daegu 702-701 (Korea, Republic of); Lee, Chul Wee [Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of)] [Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of); Kim, Jae Chang [Department of Chemical Engineering, Kyungppok National University, Daegu 702-701 (Korea, Republic of)] [Department of Chemical Engineering, Kyungppok National University, Daegu 702-701 (Korea, Republic of); Yoon, Songhun, E-mail: yoonshun@krict.re.kr [Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of)] [Green Chemistry Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600 (Korea, Republic of)

2012-01-15

358

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

SciTech Connect

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16

359

Sieveless particle size distribution analysis of particulate materials through computer vision  

SciTech Connect

This paper explores the inconsistency of length-based separation by mechanical sieving of particulate materials with standard sieves, which is the standard method of particle size distribution (PSD) analysis. We observed inconsistencies of length-based separation of particles using standard sieves with manual measurements, which showed deviations of 17 22 times. In addition, we have demonstrated the falling through effect of particles cannot be avoided irrespective of the wall thickness of the sieve. We proposed and utilized a computer vision with image processing as an alternative approach; wherein a user-coded Java ImageJ plugin was developed to evaluate PSD based on length of particles. A regular flatbed scanner acquired digital images of particulate material. The plugin determines particles lengths from Feret's diameter and width from pixel-march method, or minor axis, or the minimum dimension of bounding rectangle utilizing the digital images after assessing the particles area and shape (convex or nonconvex). The plugin also included the determination of several significant dimensions and PSD parameters. Test samples utilized were ground biomass obtained from the first thinning and mature stand of southern pine forest residues, oak hard wood, switchgrass, elephant grass, giant miscanthus, wheat straw, as well as Basmati rice. A sieveless PSD analysis method utilized the true separation of all particles into groups based on their distinct length (419 639 particles based on samples studied), with each group truly represented by their exact length. This approach ensured length-based separation without the inconsistencies observed with mechanical sieving. Image based sieve simulation (developed separately) indicated a significant effect (P < 0.05) on number of sieves used in PSD analysis, especially with non-uniform material such as ground biomass, and more than 50 equally spaced sieves were required to match the sieveless all distinct particles PSD analysis. Results substantiate that mechanical sieving, owing to handling limitations and inconsistent length-based separation of particles, is inadequate in determining the PSD of non-uniform particulate samples. The developed computer vision sieveless PSD analysis approach has the potential to replace the standard mechanical sieving. The plugin can be readily extended to model (e.g., Rosin Rammler) the PSD of materials, and mass-based analysis, while providing several advantages such as accuracy, speed, low cost, automated analysis, and reproducible results.

Igathinathane, C. [Mississippi State University (MSU); Pordesimo, L. O. [Mississippi State University (MSU); Columbus, Eugene P [ORNL; Batchelor, William D [ORNL; Sokhansanj, Shahabaddine [ORNL

2009-05-01

360

Harnessing Labile Bonds between Nanogels Particles to Create Self-Healing Materials  

Microsoft Academic Search

Using computational modeling, we demonstrate the self-healing behavior of novel materials composed of nanoscopic gel particles that are interconnected into a macroscopic network by both stable and labile bonds. Under mechanical stress, the labile bonds between the nanogels can break and readily reform with reactive groups on neighboring units. This breaking and reforming allows the units in the network to

German V. Kolmakov; Krzysztof Matyjaszewski; Anna C. Balazs

2009-01-01

361

Material removal mechanism of ceria particles with different sizes in glass polishing  

NASA Astrophysics Data System (ADS)

A material removal mechanism of ceria particles with different sizes in a glass polishing process was investigated in detail. Contrast polishing experiments were carried out using ceria slurries with two kinds of particle sizes and different amounts of hydrogen peroxide (H2O2) added in the slurries. The Ce3+ ions on the surface of the ceria particles were gradually oxidized to Ce with increased H2O2 concentration. It was found that the material removal rate (MRR) decreased sharply with an increasing concentration of H2O2. There was no material removal when the concentration reached 2.0% for nanoparticle slurry. Nevertheless, the application of microparticles made the MRR decrease to a constant value when excessive H2O2 was added. By comparison, we conclude that the material is removed by chemical reaction for ceria nanoparticles, while chemical reaction and mechanical abrasion simultaneously take place for ceria particles with sizes at scale of micrometers in the glass polishing process. It is clearly demonstrated from the experimental results that Ce instead of Ce ions play an important role in chemically reacting with the glass surface. An ultrasmooth surface with root-square-mean roughness of 0.272 nm was obtained after being polished by ceria nanoparticles.

Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi

2014-03-01

362

Study on Preparation of Zeolite\\/Ag+ Composite Particles Material and Its Air Purification Property  

Microsoft Academic Search

Zeolit\\/Ag+ composite particles material (ZACPM) had been prepared using zeolite as carrier by carrying Ag+, solidifying Ag+ stably in the holes of zeolite and enhancing the adsorption property of zeolite. The effects of technological parameters on preparation of ZACPM, the air purification properties such as antibacterial property and the function of eliminating harmful gases and the microstructure of ZACPM were

Hao Ding; Ning Liang; Bai Kun Wang; Hong Zhou

2010-01-01

363

On Efficient Multigrid Methods for Materials Processing Flows with Small Particles  

NASA Technical Reports Server (NTRS)

Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.

Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael

2004-01-01

364

High frequency atmospheric cold plasma treatment system for materials surface processing  

NASA Astrophysics Data System (ADS)

The paper presents a new laboratory-made plasma treatment system. The power source which generates the plasma is based on a modern half-bridge type inverter circuit working at a frequency of 4 MHz, and giving an output power of about 200 W. The inverter is fed directly from the mains voltage and features high speed protection circuits for both over voltage and over current protection, making the system light and easy to operate. The output of the inverter is connected to the resonant circuit formed by a Tesla coil and the dielectric barrier discharge plasma chamber. The plasma is generated at atmospheric pressure in argon, helium or mixtures of helium and small quantities of argon. It is a cold discharge (Tgas < 150°C) with a homogeneous structure. The plasma generates chemically active species, especially O and OH, which could be important in various applications such as the treatment and processing of materials surfaces.

Tudoran, Cristian D.; Surducan, Vasile; Anghel, Sorin D.

2012-02-01

365

ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer  

NASA Astrophysics Data System (ADS)

This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few meters. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location, shows comparable values. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m altitude indicate a high variability with distinct layers of aerosol especially for the small particles of a few nanometers in diameter. Particle bursts were observed on one day during the boundary layer development in the morning.

Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

2014-12-01

366

Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry.  

PubMed

Particle size is a fundamental property of any sediment, soil or dust deposit which can provide important clues to nature and provenance. For forensic work, the particle size distribution of sometimes very small samples requires precise determination using a rapid and reliable method with a high resolution. The Coulter trade mark LS230 laser granulometer offers rapid and accurate sizing of particles in the range 0.04-2000 microm for a variety of sample types, including soils, unconsolidated sediments, dusts, powders and other particulate materials. Reliable results are possible for sample weights of just 50 mg. Discrimination between samples is performed on the basis of the shape of the particle size curves and statistical measures of the size distributions. In routine forensic work laser granulometry data can rarely be used in isolation and should be considered in combination with results from other techniques to reach an overall conclusion. PMID:15240017

Pye, Kenneth; Blott, Simon J

2004-08-11

367

Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates  

NASA Astrophysics Data System (ADS)

Marine aerosol composition continues to represent a large source of uncertainty in the study of climate and atmospheric chemistry. In addition to their physical size and chemical composition, hygroscopicity plays a significant role, increasing the particles' surface areas and scattering potential. Simultaneous aerosol measurements were performed on board the RRS Discovery and at the Cape Verde atmospheric observatory during the Aerosol Composition and Modelling in the Marine Environment (ACMME) and Reactive Halogens in the Marine Boundary Layer (RHAMBLE) experiments. These included online measurements of number and dry size and bulk collection for offline analysis of aqueous ions. In addition, the measurements on board the Discovery included online measurements of composition using an Aerodyne Aerosol Mass Spectrometer, optical absorption using a Multi Angle Absorption Photometer, ambient humidity size distribution measurements using a humidified differential mobility particle sizer (DMPS) and optical particle counter (OPC) and hygroscopicity measurements with a hygroscopicity tandem differential mobility analyser (HTDMA). Good agreement between platforms in terms of the sea salt (ss) and non sea salt (nss) modes was found during the period when the Discovery was in close proximity to Cape Verde and showed a composition consistent with remote marine air. As the Discovery approached the African coast, the aerosol showed signs of continental influence such as an increase in particle number, optical absorption, enhancement of the nss mode and dust particles. The Cape Verde site was free of this influence during this period. Chloride and bromide showed concentrations with significant deviations from seawater relative to sodium, indicating that atmospheric halogen processing (and/or acid displacement for chloride) had taken place. The time dependent ambient size distribution was synthesised using humidified DMPS and OPC data, corrected to ambient humidity using HTDMA data. Heterogeneous uptake rates of hypoiodous acid (HOI) were also predicted and the nss accumulation mode was found to be the most significant part of the size distribution, which could act as an inert sink for this species. The predicted uptake rates were enhanced by around a factor of 2 during the African influence period due to the addition of both coarse and fine particles. The hygroscopicity of the nss fraction was modelled using the Aerosol Diameter Dependent Equilibrium Model (ADDEM) using the measured composition and results compared with the HTDMA data. This was the first time such a reconciliation study with this model has been performed with marine data and good agreement was reached within the resolution of the instruments. The effect of hygroscopic growth on HOI uptake was also modelled and ambient uptake rates were found to be approximately doubled compared to equivalent dry particles.

Allan, J. D.; Topping, D. O.; Good, N.; Irwin, M.; Flynn, M.; Williams, P. I.; Coe, H.; Baker, A. R.; Martino, M.; Niedermeier, N.; Wiedensohler, A.; Lehmann, S.; Müller, K.; Herrmann, H.; McFiggans, G.

2009-12-01

368

Composition and properties of atmospheric particles in the eastern Atlantic and impacts on gas phase uptake rates  

NASA Astrophysics Data System (ADS)

Marine aerosol composition continues to represent a large source of uncertainty in the study of climate and atmospheric chemistry. In addition to their physical size and chemical composition, hygroscopicity plays a significant role, increasing the particles' surface areas and scattering potential. Simultaneous aerosol measurements were performed on board the RRS Discovery and at the Cape Verde atmospheric observatory during the Aerosol Composition and Modelling in the Marine Environment (ACMME) and Reactive Halogens in the Marine Boundary Layer (RHAMBLE) experiments. These included online measurements of number and dry size and bulk collection for offline analysis of aqueous ions. In addition, the measurements on board the Discovery included online measurements of composition using an Aerodyne Aerosol Mass Spectrometer, optical absorption using a Multi Angle Absorption Photometer, ambient humidity size distribution measurements using a humidified differential mobility particle sizer (DMPS) and optical particle counter (OPC) and hygroscopicity measurements with a hygroscopicity tandem differential mobility analyser (HTDMA). Good agreement between platforms in terms of the sea salt (ss) and non sea salt (nss) modes was found during the period when the Discovery was in close proximity to Cape Verde and showed a composition consistent with remote marine air. As the Discovery approached the African coast, the aerosol showed signs of continental influence such as an increase in particle number, optical absorption, enhancement of the nss mode and dust particles. The Cape Verde site was free of this influence during this period. Chloride and bromide showed concentrations with significant deviations from seawater relative to sodium, indicating t