These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Degradation of materials in the atmosphere  

Microsoft Academic Search

This paper provides a perspective on the potential for materials degradation as a consequence of atmospheric exposure. Ferrous metals, masonry, zinc, copper, and perhaps some paints appear most likely to be degraded. The regimes of greatest concern vary with different materials, but they include dew, fog, airborne particles, and indoor air. The results, however, rest on a rather sparse data

T. E. Graedel; R. McGill

1986-01-01

2

The atmosphere as particle detector  

NASA Technical Reports Server (NTRS)

The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.

Stanev, Todor

1990-01-01

3

Mapping Organic Composition in Individual Atmospheric Particles  

NASA Astrophysics Data System (ADS)

The organic composition of aerosols can play an important role in determining the amount of water taken up by particles, the fraction of light absorbed in particles, and the heterogeneous reactions catalyzed on particles. While identifying individual organic compounds is impractical for many atmospheric applications, the characterization of organic functional groups provides critical information about compound polarity and solubility. Sampling organic particles from aircraft requires innovative techniques to collect sufficient sample mass for analysis. The technique proposed here requires highly sensitive detection of a small number of organic molecules in order to identify functional groups in individual aerosol particles. Particles are collected by impaction on a thin film, using a 15-minute sampling period. The impacted particles are analyzed at atmospheric pressure with soft X-ray spectroscopy at the Advanced Light Source to characterize the presence of different functional groups on individual particles as small as 0.1 micron diameter. Spatial resolution of the spectroscopic images also allows mapping of heterogeneities within the particle. Particle samples taken aboard the NCAR C130 research aircraft near Japan during ACE-Asia and near St. Croix during PELTI illustrate important differences between the relative amounts of carbonyls, aromatics, and other organic compounds present in particles in clean and polluted air masses. Spatial resolution of 0.1 micron allows us to map the particle organic composition, revealing complex inorganic and organic internal mixtures and heterogeneous structures.

Russell, L. M.; Maria, S. F.; Myneni, S.

2001-12-01

4

Alternative pathway for atmospheric particles growth  

PubMed Central

Credible climate change predictions require reliable fundamental scientific knowledge of the underlying processes. Despite extensive observational data accumulated to date, atmospheric aerosols still pose key uncertainties in the understanding of Earth’s radiative balance due to direct interaction with radiation and because they modify clouds’ properties. Specifically, major gaps exist in the understanding of the physicochemical pathways that lead to aerosol growth in the atmosphere and to changes in their properties while in the atmosphere. Traditionally, the driving forces for particle growth are attributed to condensation of low vapor pressure species following atmospheric oxidation of volatile compounds by gaseous oxidants. The current study presents experimental evidence of an unaccounted-for new photoinduced pathway for particle growth. We show that heterogeneous reactions activated by light can lead to fast uptake of noncondensable Volatile Organic Compounds (VOCs) at the surface of particles when only traces of a photosensitizer are present in the seed aerosol. Under such conditions, size and mass increase; changes in the chemical composition of the aerosol are also observed upon exposure to volatile organic compounds such as terpenes and near-UV irradiation. Experimentally determined growth rate values match field observations, suggesting that this photochemical process can provide a new, unaccounted-for pathway for atmospheric particle growth and should be considered by models. PMID:22517749

Monge, Maria Eugenia; Rosenørn, Thomas; Favez, Olivier; Müller, Markus; Adler, Gabriela; Abo Riziq, Ali; Rudich, Yinon; Herrmann, Hartmut; George, Christian; D’Anna, Barbara

2012-01-01

5

Particle Size Distributions in Atmospheric Clouds  

NASA Technical Reports Server (NTRS)

In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

Paoli, Roberto; Shariff, Karim

2003-01-01

6

Phase of atmospheric secondary organic material affects its reactivity  

PubMed Central

The interconversion of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest, especially for particles of secondary organic material (SOM). Herein, the influence of phase on ammonia uptake and subsequent particle-phase reactions was investigated for aerosol particles of adipic acid and ?-pinene ozonolysis SOM. The nitrogen content of the particles was monitored by online mass spectrometry for increasing ammonia exposure. Solid and semisolid adipic acid particles were inert to the ammonia uptake for low RH (< 5%). For the solid particles, ammonia exposure at high relative humidity (RH; > 94%) induced a first-order deliquescence phase transition into aqueous particles. Solid particles exposed to supersaturated (RH > 100%) conditions and cycled back to high RH (> 94%), thereby becoming acidic metastable particles, underwent a gradual second-order transition upon ammonia exposure to form aqueous, partially neutralized particles. For ?-pinene SOM, ammonia exposure at low RH increased the particle-phase ammonium content by a small amount. Mass spectrometric observations suggest a mechanism of neutralization and co-condensation of acidic gas-phase species, consistent with a highly viscous semisolid upon which adsorption occurs. At high RH the ammonium content increased greatly, indicative of rapid diffusion and absorption in a liquid environment. The mass spectra indicated the production of organonitrogen compounds, possibly by particle-phase reactive chemistry. The present results demonstrate that phase can be a key regulator of the reactivity of atmospheric SOM particles. PMID:23045632

Kuwata, Mikinori; Martin, Scot T.

2012-01-01

7

Phase of atmospheric secondary organic material affects its reactivity.  

PubMed

The interconversion of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest, especially for particles of secondary organic material (SOM). Herein, the influence of phase on ammonia uptake and subsequent particle-phase reactions was investigated for aerosol particles of adipic acid and ?-pinene ozonolysis SOM. The nitrogen content of the particles was monitored by online mass spectrometry for increasing ammonia exposure. Solid and semisolid adipic acid particles were inert to the ammonia uptake for low RH (< 5%). For the solid particles, ammonia exposure at high relative humidity (RH; > 94%) induced a first-order deliquescence phase transition into aqueous particles. Solid particles exposed to supersaturated (RH > 100%) conditions and cycled back to high RH (> 94%), thereby becoming acidic metastable particles, underwent a gradual second-order transition upon ammonia exposure to form aqueous, partially neutralized particles. For ?-pinene SOM, ammonia exposure at low RH increased the particle-phase ammonium content by a small amount. Mass spectrometric observations suggest a mechanism of neutralization and co-condensation of acidic gas-phase species, consistent with a highly viscous semisolid upon which adsorption occurs. At high RH the ammonium content increased greatly, indicative of rapid diffusion and absorption in a liquid environment. The mass spectra indicated the production of organonitrogen compounds, possibly by particle-phase reactive chemistry. The present results demonstrate that phase can be a key regulator of the reactivity of atmospheric SOM particles. PMID:23045632

Kuwata, Mikinori; Martin, Scot T

2012-10-23

8

Images reveal that atmospheric particles can undergo liquid-liquid phase separations  

Microsoft Academic Search

A large fraction of submicron atmospheric particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake

Yuan You; Lindsay Renbaum-Wolff; Marc Carreras-Sospedra; Sarah Hanna; Naruki Hiranuma; Saeid Kamal; Mackenzie L. Smith; Xiaolu Zhang; Rodney Weber; John E. Shilling; Donald Dabdub; Scot T. Martin; Allan K. Bertram

2012-01-01

9

Particle Suspension Mechanisms - Supplemental Material  

SciTech Connect

This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

Dillon, M B

2011-03-03

10

Oxodicarboxylic acids in atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

Fine mode aerosol was collected on quartz fiber filters at several sites across Europe. These samples were analyzed for carboxylic acids by liquid chromatography coupled to a hybrid (quadrupole and time-of-flight) mass spectrometer (LC/MS/MS-TOF). A series of oxodicarboxylic acids (C 7-C 11) was detected. Oxodicarboxylic acids are linear dicarboxylic acids with an additional carbonyl group. Previous measurements of these acids are scarce and their sources are largely unknown. Several structural isomers (different positions of the carbonyl group within the molecule) could be identified and differentiated by the combination of laboratory experiments and high mass accuracy measurements. The homologs with 9-11 carbon atoms were identified for the first time in atmospheric aerosol particles. The concentrations of oxodicarboxylic acids in ambient aerosol samples frequently exceeded those of the corresponding unsubstituted dicarboxylic acids. Oxodicarboxylic acids have been shown to be products of the reaction of dicarboxylic acids with OH radicals in chamber experiments and a reaction mechanism is proposed. Good correlation of oxodicarboxylic acid and hydroxyl radical concentrations was found at two measurement sites (Finland and Crete) of different geographic location and meteorological conditions. The ratios of individual isomers from the field samples are comparable to those of the laboratory experiments. The results of this study imply that the reaction of OH radicals and dicarboxylic acids is an important pathway for the production of oxodicarboxylic acids in the atmosphere. Oxodicarboxylic acids seem to be important intermediates in atmospheric oxidation processes of organic compounds.

Römpp, Andreas; Winterhalter, Richard; Moortgat, Geert K.

11

Phase Transitions of Aqueous Atmospheric Particles Scot T. Martin*  

E-print Network

Models 3436 VI. Comparison between Models and Field Measurements 3437 A. Boundary Layer Particles 3438 iPhase Transitions of Aqueous Atmospheric Particles Scot T. Martin* Division of Engineering 3424 E. Heterogeneous Nucleation 3431 i. Nuclei Contained Inside Atmospheric Particles 3431 ii

12

Chemistry and Composition of Atmospheric Aerosol Particles  

NASA Astrophysics Data System (ADS)

For more than two decades a cadre of physical chemists has focused on understanding the formation processes, chemical composition, and chemical kinetics of atmospheric aerosol particles and droplets with diameters ranging from a few nanometers to ˜10,000 nm. They have adapted or invented a range of fundamental experimental and theoretical tools to investigate the thermochemistry, mass transport, and chemical kinetics of processes occurring at nanoscale gas-liquid and gas-solid interfaces for a wide range of nonideal, real-world substances. State-of-the-art laboratory methods devised to study molecular spectroscopy, chemical kinetics, and molecular dynamics also have been incorporated into field measurement instruments that are deployed routinely on research aircraft, ships, and mobile laboratories as well as at field sites from megacities to the most remote jungle, desert, and polar locations. These instruments can now provide real-time, size-resolved aerosol particle physical property and chemical composition data anywhere in Earth's troposphere and lower stratosphere.

Kolb, Charles E.; Worsnop, Douglas R.

2012-05-01

13

Detection of tracer materials in the atmosphere  

SciTech Connect

As oxygen is an electron absorber it is desirable, when monitoring an atmospheric flow for the presence of tracer materials capable of detection in an electron capture detector, to remove the oxygen from the flow to the detector. The invention introduces a hydrogen supply directly into the atmospheric flow to allow the hydrogen to combine catalytically with the oxygen content of the flow to form water or water vapor. The thus formed water or water vapor is extracted from the flow proceeding to the detector. The reaction can occur within a palladium or palladium alloy conduit forming a part of the flow path to the detector.

Jenkins, A.; Lovelock, J.E.

1981-12-08

14

Hydrostatic Hamiltonian particle-mesh (HPM) methods for atmospheric modeling.  

E-print Network

Hydrostatic Hamiltonian particle-mesh (HPM) methods for atmospheric modeling. Seoleun Shin Sebastian Reich Jason Frank August 19, 2011 Abstract We develop a hydrostatic Hamiltonian particle-mesh (HPM) method for efficient long-term numerical integration of the atmosphere. In the HPM method, the hydro

Reich, Sebastian

15

Hydrostatic Hamiltonian particle mesh (HPM) methods for atmospheric modeling.  

E-print Network

Hydrostatic Hamiltonian particle mesh (HPM) methods for atmospheric modeling. Seoleun Shin Sebastian Reich Jason Frank March 17, 2011 Abstract We develop a hydrostatic Hamiltonian particle mesh (HPM) method for efficient long-term numerical integration of the atmosphere. In the HPM method, the hydro

Frank, Jason

16

Images reveal that atmospheric particles can undergo liquid–liquid phase separations  

PubMed Central

A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid–liquid phase separation. If liquid–liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid–liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid–liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid–liquid phase separation can result in increased concentrations of gas-phase NO3 and N2O5 due to decreased particle uptake of N2O5. PMID:22847443

You, Yuan; Renbaum-Wolff, Lindsay; Carreras-Sospedra, Marc; Hanna, Sarah J.; Hiranuma, Naruki; Kamal, Saeid; Smith, Mackenzie L.; Zhang, Xiaolu; Weber, Rodney J.; Shilling, John E.; Dabdub, Donald; Martin, Scot T.; Bertram, Allan K.

2012-01-01

17

Dielectric particle injector for material processing  

NASA Technical Reports Server (NTRS)

A device for use as an electrostatic particle or droplet injector is disclosed which is capable of injecting dielectric particles or droplets. The device operates by first charging the dielectric particles or droplets using ultraviolet light induced photoelectrons from a low work function material plate supporting the dielectric particles or droplets, and then ejecting the charged particles or droplets from the plate by utilizing an electrostatic force. The ejected particles or droplets are mostly negatively charged in the preferred embodiment; however, in an alternate embodiment, an ion source is used instead of ultraviolet light to eject positively charged dielectric particles or droplets.

Leung, Philip L. (Inventor)

1992-01-01

18

Material flammability in space exploration atmospheres  

NASA Astrophysics Data System (ADS)

In order to reduce the risk of decompression sickness associated with extravehicular activity, NASA is designing the next generation of exploration vehicles with a different cabin pressure and oxygen concentration than used previously. This work explores how the flammability of solid materials changes in this new environment. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in a small-scale wind tunnel subject to this new space exploration atmosphere (SEA -- 58.6 kPa and 32% oxygen) and compared to similar tests in standard atmospheric conditions. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. It was found that the ignition time was reduced by 27% in the intended space exploration atmosphere. It was also noted that the critical heat flux for ignition decreases in exploration atmospheres. These results show that materials are more susceptible to ignition than in current spacecraft atmospheres. To further explore the effect of pressure and oxygen concentration, tests were performed for a wide range of pressures and oxygen concentrations. In all oxygen concentrations tested, the ignition delay time was seen to decrease with pressure, reach a minimum, and then increase with further reduction in pressure creating a classic u-shaped curve. No ignition was seen at sufficiently low pressures. The no ignition pressure depended on the oxygen concentration. Increasing the oxygen concentration uniformly decreases the ignition time; however, no significant differences were seen in oxygen concentrations above 24%. These results indicate there are several competing mechanisms controlling the ignition time. By reducing the pressure, the heat transfer coefficient and the mass flow rate of fuel to reach the lean flammability limit are reduced. Conversely, a reduction in pressure increases the gas-phase chemical induction time. The competition between these three mechanisms is responsible for the u-shaped dependence of ignition time on total pressure. In addition to gaining insight into the effect of pressure on piloted ignition, these results have practical applications including high altitude structures and airplane cabins.

McAllister, Sara Suzanne

19

Meteoric Material: An Important Component of Planetary Atmospheres  

NASA Technical Reports Server (NTRS)

Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

2001-01-01

20

Calculation Of Secondary Particles In Atmosphere And Hadronic Interactions  

E-print Network

Calculation of secondary particles produced by the interaction of cosmic rays with the nuclei of Earth's atmosphere pose important requirements to particle production models. Here we summarize the important features of hadronic simulations, stressing the importance of the so called ``microscopic'' approach, making explicit reference to the case of the FLUKA code. Some benchmarks are also presented.

G. Battistoni; A. Ferrari; P. R. Sala

2002-02-19

21

AstroParticles & Atmosphere, Paris May 2003John Matthews Monitoring the Aerosol Phase  

E-print Network

AstroParticles & Atmosphere, Paris May 2003John Matthews Monitoring the Aerosol Phase Function University of New Mexico #12;AstroParticles & Atmosphere, Paris May 2003John Matthews #12;AstroParticles & Atmosphere, Paris May 2003John Matthews #12;AstroParticles & Atmosphere, Paris May 2003John Matthews #12

22

Water uptake characteristics of individual atmospheric particles having coatings  

NASA Astrophysics Data System (ADS)

We used an environmental transmission electron microscope to observe deliquescence and hygroscopic growth of atmospheric particles with hygroscopic coatings over the range 0-100% relative humidity (RH). The particles were collected from polluted and clean environments. Types included a sulfate-coated NaCl/silicate aggregate particle, a sulfate-coated sea-salt particle, and a Mg-rich, chloride-coated sea-salt particle. They all exhibited initial water uptake between 50% and 60% RH, although the first major morphological changes occurred at 70% RH. A deliquescence sphere, adjacent to the core particle, formed between 70% and 76% RH when deliquescence occurred or when the liquid phase was able to break out of the solid exterior coating. The deliquescence sphere grew to engulf the particle with increasing RH. Some particles developed a splatter zone associated with a particle coating. Efflorescence occurred over the range 49-44% RH. Our results indicate that some coated particles undergo a multi-step deliquescence process and that composition of the different phases within the coating affects deliquescence and hygroscopic growth below 76% RH. Above 76% RH, the dominant hygroscopic growth was due to water uptake by NaCl. Efflorescence of these particles also was strongly linked to NaCl, although the presence of other phases inhibited formation of a single NaCl crystal. Our results show that the observed coatings can both enhance particle solubility and lower the effective deliquescence RH of the particle. Thus, these coatings cause important phase and size changes for aerosol particles that could feed back into many other chemical and physical processes that contribute to radiative forcing within the atmosphere.

Semeniuk, Trudi A.; Wise, Matthew E.; Martin, Scot T.; Russell, Lynn M.; Buseck, Peter R.

23

Covalent porous materials from hybrid silica particles.  

PubMed

Three-dimensional porous materials are routinely prepared from molecular precursors. We describe here a study of a much less explored route, namely of using of sub-micron particles as building blocks which are reacted with each other to form covalent porous materials. The motivation for such an approach is the expectation that shifting from molecules to particles is a potential source of new type of 3D-covalent porosity. This was indeed proven by employing two covalent linking reactions: Radical-initiated cross-linking of hybrid particles of polyethylene@silica (PE@silica), and the bridging of PE@aminosilica particles with the bi-functional suberoyl dichloride in a condensation-aggregation reaction. These resulted in the mesoporous materials (XPE@SiO2)n and (PE@amidosilica)n, respectively. The resulting mesoporous materials were investigated in detail, and the kinetics of their formation was followed by various methodologies. SEM shows that the geometry of the covalently aggregated particles is different from simple physical aggregation, and these stable structures could be achieved only through the strong covalent bonds. Real-time movies monitoring (links are provided) allowed the direct follow-up of the radical processes and condensation-polymerizations and identify their different routes. Applications in the fields of separation, supports for catalysis, and matrices for release, are envisaged. PMID:24996025

Elimelech, Hila; Avnir, David

2014-10-01

24

Atmospheric New Particle Formation Enhanced by Organic Acids  

Microsoft Academic Search

Atmospheric aerosols often contain a substantial fraction of organic matter, but the role of organic compounds in new nanometer-sized particle formation is highly uncertain. Laboratory experiments show that nucleation of sulfuric acid is considerably enhanced in the presence of aromatic acids. Theoretical calculations identify the formation of an unusually stable aromatic acid-sulfuric acid complex, which likely leads to a reduced

Renyi Zhang; Inseon Suh; Jun Zhao; Dan Zhang; Edward C. Fortner; Xuexi Tie; Luisa T. Molina; Mario J. Molina

2004-01-01

25

SURFACE ANALYSIS OF PARTICLES EMITTED TO THE ATMOSPHERE (JOURNAL VERSION)  

EPA Science Inventory

A number of potentially toxic trace metal and organic species have been shown to be preferentially enriched on the surfaces of most types of anthropogenic particles which are emitted to the atmosphere. The use of several surface analytical techniques including ion microprobe mass...

26

Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K  

SciTech Connect

Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice nucleation effciencies and can serve as effcient IN at atmospheric conditions typical for cirrus and mixed phase clouds. This indicates a potential link between human activities and cloud formation, and thus climate.

Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

2012-09-25

27

Particle motion in atmospheric boundary layers of Mars and Earth  

NASA Technical Reports Server (NTRS)

To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

1975-01-01

28

Impact of aerosols and atmospheric particles on plant leaf proteins  

NASA Astrophysics Data System (ADS)

Aerosols and atmospheric particles can diffuse and absorb solar radiation, and directly affect plant photosynthesis and related protein expression. In this study, for the first time, we performed an extensive investigation of the effects of aerosols and atmospheric particles on plant leaf proteins by combining Geographic Information System and proteomic approaches. Data on particles with diameters of 0.1-1.0 ?m (PM1) from different locations across the city of Beijing and the aerosol optical depth (AOD) over the past 6 years (2007-2012) were collected. In order to make the study more reliable, we segregated the influence of soil pollution by measuring the heavy metal content. On the basis of AOD and PM1, two regions corresponding to strong and weak diffuse solar radiations were selected for analyzing the changes in the expression of plant proteins. Our results demonstrated that in areas with strong diffuse solar radiations, plant ribulose bisphosphate carboxylase was expressed at higher levels, but oxygen evolved in enhancer protein and light-harvesting complex II protein were expressed at lower levels. The expression of ATP synthase subunit beta and chlorophyll a-b binding protein were similar in both regions. By analyzing the changes in the expression of these leaf proteins and their functions, we conclude that aerosols and atmospheric particles stimulate plant photosynthesis facilitated by diffuse solar radiations.

Yan, Xing; Shi, Wen Z.; Zhao, Wen J.; Luo, Na N.

2014-05-01

29

DERIVATION OF DAMAGE FUNCTIONS FOR ATMOSPHERIC DEGRADATION OF MATERIALS  

EPA Science Inventory

The information in the pape is directed to those who develop and use damage functions which relate atmospheric degradation of materials to various causal agents in the atmosphere. Such relationships must be quantified mathematically as part of the overall cost-benefit considerati...

30

Propagation of charged particle beams in the atmosphere  

NASA Astrophysics Data System (ADS)

The basic physical processes is reviewed involved in charge particle beam propagation, in a self-pinched mode, in the atmosphere or other dense neutral gases. These processes include single-particle collisional and radiative energy losses, collective energy loss, radial expansion due to scattering, and instabilities. Each of these imposes requirements and limitations on beam propagation. Highly relativistic electron beams are the main subject. Ion beam physics is similar but more complex (because ultra-relativistic approximations are inappropriate), and has been less studied.

Lampe, Martin

1988-03-01

31

Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles  

SciTech Connect

Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

2013-06-25

32

Field and laboratory studies of reactions between atmospheric water soluble organic acids and inorganic particles  

NASA Astrophysics Data System (ADS)

Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel; Shilling, John; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

2013-05-01

33

Spatial and temporal variation of atmospheric particle in local scale  

NASA Astrophysics Data System (ADS)

This work intends to demonstrate the spatial and temporal variation of atmospheric particles around AERONET/Osaka site. Osaka is the second big city in Japan and a typical Asian urban area. It is well known that the aerosol distribution in Asia is complicated due to the increasing emissions of anthropogenic aerosols in association with economic growth and in addition behavior of natural dusts significantly varies with the seasons. Therefore local spatially and temporally resolved measurements of atmospheric particles in Asian urban city are meaningful. The sampling of PM2.5, PM10 and OBC have been undertaken using an Kimoto/SPM sampler at the AERONET/Osaka site since 2004. It is noted that a portable multi-spectral sun-photometer (Solar-Light Company Microtops-II) has been employed since 2010. It is found from the simultaneous measurements of AOT (aerosol optical thickness) at AERONET/Osaka site and several locations in the neighborhood and PM sampling that the local scale spatial and temporal factors influence the characterization of atmospheric particles for sure and vice versa.

Mukai, S.; Nakata, M.; Sano, I.; Nakano, T.; Okuhara, T.

2011-12-01

34

Determining particle density using known material Hugeniot curves  

NASA Technical Reports Server (NTRS)

A method is detailed to determine the density of particles wherein the closing velocity is known between the impacting particles and a plate of known material. Either the shock wave velocity or the material velocity produced in the plate upon impact by an unknown material particle is determined and compared with the corresponding shock wave or material velocity that would by produced by different known material particles having the same closing velocity upon impact with the plate. The unknown material particle density is derived by obtaining a coincidence of the shock wave velocity or material velocity conditions initially produced upon impact between the known material plate and one of the different material particles and from the fact that shock wave velocity and material velocity are ordered on the impacting particle material density alone.

Dibattista, J. D. (inventor)

1974-01-01

35

Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry  

NASA Astrophysics Data System (ADS)

Continuous ambient measurement of atmospheric aerosols was performed with a single particle aerosol mass spectrometer (SPAMS) in Guangzhou during summer of 2012. The aerosols mainly consisted of carbonaceous particles as major compositions in submicrometer range, including K-rich (29.8%), internally mixed organics and elemental carbon (ECOC, 13.5%), organic carbon-rich (OC, 18.5%), elemental carbon (EC, 12.3%) and high molecular OC (HMOC, 3.2%), and inorganic types (e.g., Na-rich Na-K, Fe-rich, V-rich, and Cu-rich) as major ones in supermicrometer range. Results show that carbonaceous particles were commonly internally mixed with sulfate and nitrate through atmospheric processing, in particular, with sulfate; inorganic types were dominantly internally mixed with nitrate rather than sulfate, indicative of different evolution processes for carbonaceous and inorganic particles in the atmosphere. It was observed that variations of these particle types were significantly influenced by air mass back trajectories (BTs). Under the influence of continental BTs, carbonaceous types were prevalent, while Na-K and Na-rich types considerably increased when the BTs originated from south marine regions. Number fraction of carbonaceous types exhibited obvious diurnal variation throughout the sampling period, which reflects their relatively stable emission and atmospheric processes. Two EC particle types LC-EC and NaK-EC showed different diurnal distributions, suggesting their different origins. The obtained information on the mixing state and the temporal variation of particle types is essential for developing an understanding on the origin and evolution processes of atmospheric aerosols.

Zhang, Guohua; Han, Bingxue; Bi, Xinhui; Dai, Shouhui; Huang, Wei; Chen, Duohong; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Zhou, Zhen

2015-02-01

36

Quantitative ED-EPMA of Individual Particles and its Application for Characterization of Atmospheric Aerosol Particles  

NASA Astrophysics Data System (ADS)

An electron probe X-ray microanalysis (EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, named low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N, and O, as well as higher-Z elements that can be analyzed by conventional energy-dispersive EPMA (ED-EPMA). The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual environmental particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulfates, nitrates, ammonium, and carbonaceous particles, contain low-Z elements. In addition, an expert system that can perform chemical speciation from the elemental composition data obtained by the low-Z particle EPMA has been developed. The low-Z particle EPMA was applied to characterize K-feldspar particle samples of which the chemical compositions are well defined by the use of various bulk analytical methods. Chemical compositions of the K-feldspar samples obtained from the low-Z particle EPMA turn out to be very close to those from bulk analyses. The low-Z particle EPMA technique has been applied for the characterization of atmospheric aerosol particle samples, including Asian dust, urban, and indoor particulate samples: (1) The extent of chemical modification of Asian dust particles sampled in Chuncheon and Incheon, Korea, during several Asian dust storm events occurred in 2002-2006 was investigated. Mixing of Asian dust with air pollutants and sea-salts strongly depends on the characteristics of Asian dust storm events such as air-mass backward trajectories. For instance, no significant chemical modification of mineral dust corresponded to fast moving air-masses at high altitudes. Inversely, extensive chemical modification was correlated with longer residence times over the continent (interaction with anthropogenic emissions) and in marine atmosphere (coagulation with deliquesced sea-salts). (2) Six urban aerosol samples collected in a megacity of Korea, namely Incheon, during a period of March 9-15, 2006 were characterized. Many different particle types, such as "soil-derived particles", "reacted sea-salts", "reacted CaCO3-containing particles", "genuine sea-salts", "reacted sea-salts + others", "Fe-containing particles", "anthropogenic organics", (NH4)2SO4, "K-containing particles", and "fly ashes", can be identified and their emission source, transport, and reactivity in the air can be elucidated. Also, different characteristics of the samples were clearly revealed. (3) When the technique was applied for the characterization of indoor subway station aerosols, it was observed that iron-containing particles are predominant. Agglomerated iron-containing particles, nano-size particles adsorbed on the other particles, and partially oxidized iron particles were frequently encountered, which implies that Iron-containing particles are generated mainly by the friction between break pad, wheel, and rails.

Ro, C.

2008-12-01

37

How quickly do cloud droplets form on atmospheric particles?  

NASA Astrophysics Data System (ADS)

The influence of aerosols on cloud properties is an important modulator of the climate system. Traditional Köhler theory predicts the equilibrium concentration of cloud condensation nuclei (CCN); however, it is not known to what extent particles exist in the atmosphere that may be prevented from acting as CCN by kinetic limitations. We measured the rate of cloud droplet formation on atmospheric particles sampled at four sites across the United States during the summer of 2006: Great Smoky Mountain National Park, TN; Bondville, IL; Houston, TX; and the Atmospheric Radiation Measurement Program Southern Great Plains site near Lamont, OK. We express droplet growth rates with the mass accommodation coefficient (?), and report values of ? measured in the field normalized to the mean ? measured for lab-generated ammonium sulfate (AS) particles (i.e., ?'=?/?AS). Overall, 59% of ambient CCN grew at a rate similar to AS. We report the fraction of CCN that were "low-?' " (?'<10-1, corresponding to ?<1.5×10-2). Of the 16 days during which these measurements were made, 8 had relatively few low-?' CCN (<16%), 6 had moderate low-?' fractions (27% to 59%), and 2 had large low-?' fractions (>82% during at least one ~30 min period). Day to day variability was greatest in Tennessee and Illinois, and low-?' particles were most prevalent on days when back trajectories suggested that air was arriving from aloft. The highest fractions of low-?' CCN in Houston and Illinois occurred around local noon, and decreased later in the day. These results suggest that for some air masses, accurate quantification of CCN concentrations may need to account for kinetic limitations.

Ruehl, C. R.; Chuang, P. Y.; Nenes, A.

2008-02-01

38

Study of inlet materials for sampling atmospheric nitric acid  

Microsoft Academic Search

The adsorption of nitric acid (HNOâ) from a flowing gas stream is studied for a variety of wall materials to determine their suitability for use in atmospheric sampling instruments. Parts per billion level mixtures of HNOâ in synthetic air flow through tubes of different materials such that >80% of the molecules interact with the walls. A chemical ionization mass spectrometer

J. A. Neuman; L. G. Huey; T. B. Ryerson; D. W. Fahey

1999-01-01

39

Wood-based building materials and atmospheric carbon emissions  

Microsoft Academic Search

This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process

Andrew H Buchanan; S. Bry Levine

1999-01-01

40

Compound identification of atmospheric particles. Final report, October 1980  

SciTech Connect

This study tested the usefulness of several modern surface analytic techniques for compound identification of atmospheric particles, emphasis being on sulfur species. Using scanning electron microscopy (SEM) and x-ray fluorescence (energy dispersive x-ray: EDX) morphology and bulk elemental composition measurements of individual particles were obtained. A certain amount of chemical information was obtained from the analysis of Auger electron spectroscopy (AES) sulfur peaks. Samples were transferred from the SEM to the scanning AES systems, specific particles relocated and surface composition and depth profile information obtained using AES and ion bombardment. Finally, electron spectroscopy for chemical analysis (ESCA) was used to obtain sulfur peaks for all the compounds used in the AES calibration, making possible the correlation of information with that obtained with the high spatial resolution scanning Auger system. The overall approach and feasibility studies of the various technical procedures all showed positive results. It is indicated that a combination of techniques can be used successfully for compound identification of individual particles, even for particles in the 1 to 10 micrometer range or smaller.

Lichtman, D.

1980-10-01

41

How quickly do cloud droplets form on atmospheric particles?  

NASA Astrophysics Data System (ADS)

The influence of aerosols on cloud properties is an important modulator of the climate system. Traditional Köhler theory predicts the equilibrium concentration of cloud condensation nuclei (CCN); however, it is not known to what extent particles exist in the atmosphere that may be prevented from acting as CCN by kinetic limitations. We measured the rate of cloud droplet formation on atmospheric particles sampled at four sites across the United States during the summer of 2006: Great Smoky Mountain National Park, TN; Bondville, IL; Houston, TX; and the Atmospheric Radiation Measurement Program Southern Great Plains site near Lamont, OK. We express droplet growth rates with the mass accommodation coefficient (?), and report values of ? measured in the field normalized to the mean ? measured for lab-generated ammonium sulfate (AS) particles (i.e., ?'=?/?AS). Overall, 61% of ambient CCN grew at a rate similar to AS. We report the fraction of CCN that were "low-?'" (?'<10-0.33). Of the 16 days during which these measurements were made, 7 had relatively few low-?'CCN (<16%), 7 had moderate low-?' fractions (31% to 62%), and 2 had large low-?' fractions (>77% during at least one ~30 min period). Day to day variability was greatest in Tennessee and Illinois, and low-?' CCN were most prevalent on days when back trajectories suggested that air was arriving from aloft. The highest fractions of low-?' CCN in Houston and Illinois occurred around local noon, and decreased later in the day. These results suggest that for some air masses, accurate quantification of CCN concentrations may need to account for kinetic limitations.

Ruehl, C. R.; Chuang, P. Y.; Nenes, A.

2007-10-01

42

Energy deposition rates by charged particles. [in upper atmosphere  

NASA Technical Reports Server (NTRS)

A summary of measurements of the precipitation of electrons and positive ions (in the keV-MeV range) detected aboard eight rockets launched within the Energy Budget Campaign from Northern Scandinavia is given, together with corresponding satellite data. In some cases strong temporal variations of the downgoing integral fluxes were observed. The fluxes provide the background for the calculated ion production rates and altitude profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance and cosmic noise absorption. The derived ion production rates by eneretic particles are compared to other night-time ionisation sources.

Torkar, K. M.; Urban, A.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Smith, L. G.; Dumbs, A.; Grandal, B.; Ulwick, J. C.; Vancour, R. P.

1985-01-01

43

Ozonation of isoproturon adsorbed on silica particles under atmospheric conditions  

NASA Astrophysics Data System (ADS)

The results on heterogeneous ozonation of a phenylurea pesticide, isoproturon, under atmospheric conditions are presented for the first time in the present study. The study was carried out using an experimental device previously adopted and validated for the heterogeneous reactivity of organics toward ozone (Pflieger et al., 2011). Isoproturon was adsorbed on silica particles via a liquid-to-solid equilibrium with a load far below a monolayer (0.02% by weight/surface coverage of 0.5%). The rate constants were estimated by measuring the consumption of the organic (dark, T = 26 °C, RH < 1%). The experimental data were fitted by both the modified Langmuir-Hinshelwood and the Eley-Rideal patterns, resulting in atmospheric lifetimes of heterogeneous ozonation of 4 and 6 days, respectively (for 40 ppb of O3). Parameters, such as the number and the quantity of pesticides adsorbed on the solid support, which can significantly influence the heterogeneous kinetics, were investigated as well. The results obtained suggest that the organic compound is adsorbed in multilayer aggregates on the aerosol even though submonolayer coverage is assumed. The presence of a second herbicide, trifluralin, together with isoproturon on the aerosol surface does not affect the kinetics of ozonation, indicating that both compounds are adsorbed on different surface sites of silica particles.

Pflieger, Maryline; Grgi?, Irena; Kitanovski, Zoran

2012-12-01

44

Nature and evolution of ultrafine aerosol particles in the atmosphere  

NASA Astrophysics Data System (ADS)

Results of experimental and theoretical studies of a poorly understood phenomenon, an intense emission of ultrafine (nanometer) aerosols (ENA), are reviewed. In the English-language literature, this phenomenon is commonly referred to as a nucleation burst. ENA events have been observed on all the continents and throughout the depth of the troposphere, with the number of corresponding publications growing steadily. Intense and long-lasting ENA events have been studied more or less comprehensively and in full detail for Northern Europe, with 60 to 70% of observations taken in a forest area in the presence of snow cover and 10 to 20% in coastal marine areas. Most often, ENA events occur during spring and fall, with 95% of cases in the daytime and under sunny calm conditions, typical of anticyclones. In ENA events, the concentration of nanoparticles initially grows rapidly to values of 103-105 cm-3. One or two hours later, the so-called nuclei fraction with diameters D = 3-15 nm is produced. The appearance of the Aitken fraction D = 20-80 nm and the enlargement of aerosol particles inside the accumulation fraction D = 80-200 nm may occur during the following 4-6 h. Thus, the cycle of formation and growth of atmospheric aerosol particles in the size range from a few to hundreds of nanometers is reproduced over 6-8 h. A specific synoptic feature of ENA events over land is that they occur when the polar air is transported to measuring sites and the temperature difference between day and light is large. During ENA periods, the formation rate of condensation nuclei with a diameter of 100 nm increases 10-to 100-fold. Important factors of ENA genesis are the “aerosol” and “electric” states of the atmosphere. More intense ENA events occur at low concentrations of background aerosols in the presence of atmospheric ions of medium mobility with D = 2-3 nm. The international experiments ACE 1 and 2, BIOFOR 1, 2, and 3, ESUP 2000, QUEST, etc., have not yet provided any clear answers to the questions about physical and statistical dependences of the time of origin and duration of ENA and new particle characteristics on the solar and ionized radiation intensity and on the content of minor and biogenic gases. Models of new particle formation are discussed in the review.

Smirnov, V. V.

2006-12-01

45

A test-particle model of the atmosphere/ionosphere system of Saturn's main rings  

E-print Network

A test-particle model of the atmosphere/ionosphere system of Saturn's main rings M. Bouhram,1 R. E pass of the Cassini orbiter near the A and B rings of Saturn, formed mainly by H2O ice particles. Crary (2006), A test-particle model of the atmosphere/ionosphere system of Saturn's main rings, Geophys

Johnson, Robert E.

46

Microbiology and atmospheric processes: the role of biological particles in cloud physics  

Microsoft Academic Search

As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN) and heterogeneous ice nuclei (IN) and thereby can contribute to the

O. Möhler; P. J. Demott; G. Vali; Z. Levin

2007-01-01

47

Decomposition of atmospheric aerosol phase function by particle size and asphericity from measurements of single particle optical scattering patterns  

NASA Astrophysics Data System (ADS)

We demonstrate an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. We captured over 30 000 scattering patterns during winter (January 2007) at an urban site in Las Cruces, NM. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found that the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 ?m to less than 1% for particles over 5 ?m. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor. Our results support the current remote sensing practice of characterizing atmospheric aerosol particles as a composition of spherical and non-spherical particles with less concern about the diversity of morphology within non-spherical particles. In addition, our results suggest that assuming a constant spherical fraction independent of particle size may not accurately reflect the real morphological distribution of atmospheric aerosol particles.

Aptowicz, Kevin B.; Pan, Yong-Le; Martin, Sean D.; Fernandez, Elena; Chang, Richard K.; Pinnick, Ronald G.

2013-12-01

48

Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds  

PubMed Central

The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

2013-01-01

49

Graphene: from materials science to particle physics  

E-print Network

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaquín E. Drut; Timo A. Lähde; Eero Tölö

2010-11-02

50

Particle beams in the solar atmosphere - General overview  

NASA Astrophysics Data System (ADS)

An overview of particle beams in the solar atmosphere is separated into discussions of (1) current-carrying beams, (2) current-neutralized electron beams, and (3) ion beams. The Alfven-Lawson limit on an electric current implies some severe limitations. Considerable progress has been made in understanding how electron beams in type III solar radio events propagate in a way that is consistent with the generation of Langmuir waves, but a completely consistent picture has not yet emerged. Such beams, and more importantly the electron beams that generate hard X-ray bursts require current neutralization; how the required return current is set up is still not entirely clear. There is direct evidence for ion beams with energies above about 10 MeV per nucleon from gamma-ray line emission; there is no unambiguous evidence for ion beams of lower energy. A mechanism is suggested for bulk energization of electrons due to dissipation of a parallel current in solar flares. Some outstanding problems concerning particle beams are identified.

Melrose, D. B.

1990-12-01

51

Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan.  

PubMed

We compared the effect of ambient temperature observed in two different seasons on the size distribution and particle number concentration (PNC) as a function of distance (up to ~250 m) from a major traffic road (25% of the vehicles are heavy-duty diesel vehicles). The modal particle diameter was found between 10 and 30 nm at the roadside in the winter. However, there was no peak for this size range in the summer, even at the roadside. Ambient temperature affects both the atmospheric dilution ratio (DR) and the evaporation rate of particles, thus it affects the decay rate of PNC. We corrected the DR effect in order to focus on the effect of particle evaporation on PNC decay. The decay rate of PNC with DR was found to depend on the season and particle diameter. During the winter, the decay rate for smaller particles (<30 nm) was much higher (i.e., the concentration decreased significantly against DR), whereas it was low during the summer. In contrast, for particles >30 nm in diameter, the decay rate was nearly the same during both seasons. This distinction between particles less than or greater than 30 nm in diameter reflects differences in particle volatility properties. Mass-transfer theory was used to estimate evaporation rates of C20-C36 n-alkane particles, which are the major n-alkanes in diesel exhaust particles. The C20-C28 n-alkanes of 30-nm particles completely evaporate at 31.2 °C (summer), and their lifetime is shorter than the transport time of air masses in our region of interest. Absence of the peak at 10-30 nm and the low decay rate of PNC <30 nm in diameter in the summer were likely due to the evaporation of compounds of similar volatilities comparable to the C20-C36 n-alkanes from particles near the exhaust pipes of vehicles, and complete evaporation of semivolatile materials before they reached the roadside. These results suggest that the lifetime of particles <30 nm in diameter depends on the ambient temperature, which differs between seasons. This leads us to conclude that these particles show distinctly different spatial distributions depending on the season. PMID:22960110

Fujitani, Yuji; Kumar, Prashant; Tamura, Kenji; Fushimi, Akihiro; Hasegawa, Shuich; Takahashi, Katsuyuki; Tanabe, Kiyoshi; Kobayashi, Shinji; Hirano, Seishiro

2012-10-15

52

Multiscale Modeling of Metallic Materials Containing Embedded Particles  

NASA Technical Reports Server (NTRS)

Multiscale modeling at small length scales (10(exp -9) to 10(exp -3) m) is discussed for aluminum matrices with embedded particles. A configuration containing one particle surrounded by about 50 grains and subjected to uniform tension and lateral constraint is considered. The analyses are performed to better understand the effects of material configuration on the initiation and progression of debonding of the particles from the surrounding aluminum matrix. Configurational parameters considered include particle aspect ratio and orientation within the surrounding matrix. Both configurational parameters are shown to have a significant effect on the behavior of the materials as a whole. For elliptical particles with the major axis perpendicular to the direction of loading, a particle with a 1:1 aspect ratio completely debonds from the surrounding matrix at higher loads than particles with higher aspect ratios. As the particle major axis is aligned with the direction of the applied load, increasing amounts of load are required to completely debond the particles.

Phillips, Dawn R.; Iesulauro, Erin; Glaessgen, Edward H.

2004-01-01

53

Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials  

NASA Technical Reports Server (NTRS)

Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

2006-01-01

54

Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry  

SciTech Connect

Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

2014-04-21

55

Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation  

SciTech Connect

The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation, but basic species such as ammonia are also important. However, few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation (FTICR-SID) to investigate time- and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: 1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and 2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e. diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.

Bzdek, Bryan R.; Depalma, Joseph W.; Ridge, Douglas P.; Laskin, Julia; Johnston, Murray V.

2013-02-27

56

Tests of candidate materials for particle bed reactors  

SciTech Connect

Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (approx.500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength.

Horn, F.L.; Powell, J.R.; Wales, D.

1987-01-01

57

A criterion for new particle formation in the sulfur-rich Atlanta atmosphere  

Microsoft Academic Search

A simple dimensionless parameter, L, is shown to determine whether or not new particle formation can occur in the atmosphere on a given day. The criterion accounts for the probability that clusters, formed by nucleation, will coagulate with preexisting particles before they grow to a detectable size. Data acquired in an intensive atmospheric measurement campaign in Atlanta, Georgia, during August

P. H. McMurry; M. Fink; H. Sakurai; M. R. Stolzenburg; R. L. Mauldin; J. Smith; F. Eisele; K. Moore; S. Sjostedt; D. Tanner; L. G. Huey; J. B. Nowak; E. Edgerton; D. Voisin

2005-01-01

58

Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver  

E-print Network

Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion The corrosion of Ag contaminated with NaCl particles in gaseous environments containing humidity and ozone analyzed using a coulometric reduction technique. The atmospheric corrosion of Ag was greatly accelerated

59

Atmospheric giant particles (iberulites) from African desert soils and human health  

NASA Astrophysics Data System (ADS)

Earth is twice as dusty as in 19th century. The amount of soil dust in the Earth's atmosphere has doubled over the last century. The circum-Mediterranean area has one of the highest dust accretion rates in the world. The larger deserts (Sahara, Gobi, Badai Jaran, etc.) are the primary sources of mobilized desert-dust top soil that move great distances through the troposphere each year. Erosion, atmospheric transport, and dust-sized soil particles deposition to earth's surface are important process in aeolian environments. Atmospheric dust is associated to global climate change. Iberulites are giant microspherulitic particles (87.9 × 27.6 µm) rounded and reddish, generated in the atmosphere (troposphere) by coalescence of smaller particles, finally falling to the earth's surface. The name comes from the Iberian Peninsula where they were discovered. An iberulite is a co-association with axial geometry, consisting of well-defined mineral grains, together with non-crystalline compounds, structured around a coarse-grained core with a smectite rind, only one vortex and pinkish color formed in the troposphere by complex aerosol-water-gas interactions. Sedimentable dust ("dry deposition") in the city of Granada (Spain) for 17 African dust intrusion events occurring in the summer months of 2010 has been studied. In all samples were detected (SEM, stereomicroscope) iberulites. Total dust and the iberulites are composed mainly by mineral particles of different nature (XRD and SEM-EDX) and size less than 10µm (laser technique), implying dangerousness by inhalation. In the total dust the dominant mineral is dolomite [CaMg(CO3)2], abundant in the surroundings of the city; in the iberulites dominates the quartz (SiO2), which indicates Saharan origin. The iberulites and the total dust are associated with metals (ICP-MS) that have a capacity to transport electrons with a high toxic potential in the body. The concentration of Cu and Pb in total dust were 5 and 2.5 times higher than the soil background values of Granada province. In the iberulites we have detected (SEM-EDX) biological material (bacteria, diatoms, nanoplankton, etc.) which allows to emit a hypothesis about their role as vectors (atmospherical "shuttles") for alloctonous diseases. Recently has been observed the role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain).

Párraga, Jesús; Delgado, Gabriel; Bech, Jaume; Martín-García, Juan Manuel; Delgado, Rafael

2013-04-01

60

Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols  

SciTech Connect

The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

2007-04-25

61

Doped luminescent materials and particle discrimination using same  

DOEpatents

Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

2014-10-07

62

Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles  

E-print Network

Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

Riccobono, Francesco; Baltensperger, Urs; Worsnop, Douglas R; Curtius, Joachim; Carslaw, Kenneth S; Wimmer, Daniela; Wex, Heike; Weingartner, Ernest; Wagner, Paul E; Vrtala, Aron; Viisanen, Yrjö; Vaattovaara, Petri; Tsagkogeorgas, Georgios; Tomé, Antonio; Stratmann, Frank; Stozhkov, Yuri; Spracklen, Dominick V; Sipilä, Mikko; Praplan, Arnaud P; Petäjä, Tuukka; Onnela, Antti; Nieminen, Tuomo; Mathot, Serge; Makhmutov, Vladimir; Lehtipalo, Katrianne; Laaksonen, Ari; Kvashin, Alexander N.; Kürten, Andreas; Kupc, Agnieszka; Keskinen, Helmi; Kajos, Maija; Junninen, Heikki; Hansel, Armin; Franchin, Alessandro; Flagan, Richard C; Ehrhart, Sebastian; Duplissy, Jonathan; Dunne, Eimear M; Downard, Andrew; David, André; Breitenlechner, Martin; Bianchi, Federico; Amorim, Antonio; Almeida, João; Rondo, Linda; Ortega, Ismael K; Dommen, Josef; Scott, Catherine E; Vrtala, Aron; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipila, Mikko; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku

2014-01-01

63

Large area nuclear particle detectors using ET materials  

NASA Technical Reports Server (NTRS)

The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

1987-01-01

64

Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology  

Microsoft Academic Search

Atmospheric particle number size distributions determined over 1.5 years at a central European site were statistically analyzed in terms of their relation to time of day, season, meteorology, and synoptic-scale air masses. All size distributions were decomposed into lognormal particle modes corresponding to the accumulation, Aitken, aged nucleation, and nucleation modes. The concentration of nucleation mode particles (30 nm) lacked

Wolfram Birmili; Alfred Wiedensohler; Jost Heintzenberg; Katrin Lehmann

2001-01-01

65

Energetic particles in the atmosphere: A Monte-carlo simulation J. Schroter, B. Heber *, F. Steinhilber, M.B. Kallenrode  

E-print Network

Energetic particles in the atmosphere: A Monte-carlo simulation J. Schro¨ter, B. Heber *, F Precipitating solar energetic particles (SEPs) ionize the atmosphere. They produce NOx and HOx which in turn by Elsevier Ltd. All rights reserved. Keywords: Atmosphere; Ionization; Solar energetic particles; Monte

Wehrli, Bernhard

66

Erosion tests of materials by energetic particle beams  

SciTech Connect

The internal components of magnetic fusion devices must withstand erosion from and high heat flux of energetic plasma particles. The selection of materials for the construction of these components is important to minimize contamination of the plasma. In order to study various materials' comparative resistance to erosion by energetic particles and their ability to withstand high heat flux, water-cooled copper swirl tubes coated or armored with various materials were subjected to bombardment by hydrogen and helium particle beams. Materials tested were graphite, titanium carbide (TiC), chromium, nickel, copper, silver, gold, and aluminum. Details of the experimental arrangement and methods of application or attachment of the materials to the copper swirl tubes are presented. Results including survivability and mass losses are discussed.

Schechter, D.E.; Tsai, C.C.; Sluss, F.; Becraft, W.R.; Hoffman, D.J.

1985-01-01

67

Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere  

SciTech Connect

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

Battistoni, G.; /Milan U. /INFN, Milan; Cerutti, F.; /CERN; Fasso, A.; /SLAC; Ferrari, A.; /CERN; Garzelli, M.V.; /Milan U. /INFN, Milan; Lantz, M.; /Goteborg, ITP; Muraro, S. /Milan U. /INFN, Milan; Pinsky, L.S.; /Houston U.; Ranft, J.; /Siegen U.; Roesler, S.; /CERN; Sala, P.R.; /Milan U. /INFN, Milan; ,

2009-06-16

68

Secondary Cosmic Ray Particles due to GCR Interactions in the Earth's Atmosphere  

SciTech Connect

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface.Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

Battistoni, G.; Garzelli, M. V.; Muraro, S.; Sala, P. R. [University of Milano, Department of Physics, and INFN, Milan (Italy); Cerutti, F.; Ferrari, A.; Roesler, S. [CERN, Geneva (Switzerland); Fasso, A. [SLAC, Stanford, CA (United States); Lantz, M. [Chalmers University, Department of Fundamental Physics, Goteborg (Sweden); Pinsky, L. S. [University of Houston, Department of Physics, Houston, TX (United States); Ranft, J. [Siegen University, Fachbereich 7-Physik, Siegen (Germany)

2008-01-24

69

Secondary Cosmic Ray particles due to GCR interactions in the Earth's atmosphere  

E-print Network

Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

G. Battistoni; F. Cerutti; A. Fassò; A. Ferrari; M. V. Garzelli; M. Lantz; S. Muraro; L. S. Pinsky; J. Ranft; S. Roesler; P. R. Sala

2007-11-13

70

Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence  

NASA Astrophysics Data System (ADS)

This paper offers a brief review on the detection and characterization of biological and other organic-carbon (OC) aerosol particles in atmosphere using laser-induced-fluorescence (LIF) signatures. It focuses on single individual particles or aggregates in the micron and super-micron size range when they are successively drawn through the interrogation volume of a point detection system. Related technologies for these systems that have been developed in last two decades are also discussed. These results should provide a complementary view for studying atmospheric aerosol particles, particularly bioaerosol and OC aerosol particles from other analytical technologies.

Pan, Yong-Le

2015-01-01

71

Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere  

USGS Publications Warehouse

As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

1990-01-01

72

Surface modification of polymeric materials by cold atmospheric plasma jet  

NASA Astrophysics Data System (ADS)

In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

2014-09-01

73

Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays  

Microsoft Academic Search

The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L’Alcora, and Borriana) and during the Guy Fawkes celebrations in London.

Teresa Moreno; Xavier Querol; Andrés Alastuey; Mari Cruz Minguillón; Jorge Pey; Sergio Rodriguez; José Vicente Miró; Carles Felis; Wes Gibbons

2007-01-01

74

Simulation on particle crushing of tailings material under high pressure  

NASA Astrophysics Data System (ADS)

With continuous increase of the high tailings dam, it has an important practical and theoretical significance to study the mechanical characteristics of the tailings material under high pressures. It is indicated that strength envelopes of the tailings material have a remarkable nonlinear characteristics through the triaxial test under high pressures. A further study stated that the particle crushing has a critical effect on the mechanical behavior of the tailings material. In order to quantitatively research its influence, the grain size distribution of the tailings material is analyzed for pre-and post-test and the particle crushing of the tailings material is measured. The particle flow code is employed to simulate and monitor the sample during testing. Firstly, a model which considers the particle crushing is built under the plane strain condition. Then, a series of biaxial numerical tests of the tailings specimen are simulated by using the model. It is found that the simulation result agrees with the triaxial test. Finally, a law between the particle crushing and strain of the tailings material under different confining pressures is obtained.

Liu, Hai-ming; Liu, Yi-ming; Yang, Chun-he; Cao, Jing

2013-06-01

75

Studies of meteoric smoke particles in the middle and upper atmosphere using a Whole Atmosphere Community Climate Model  

NASA Astrophysics Data System (ADS)

We have developed the first global model of meteoric metals in the atmosphere by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of six metals (Na, Fe, K, Mg, Si and Ca) based on ~200 chemical reactions, and a treatment of the injection of meteoric constituents into the atmosphere by considering the astronomical properties of the meteoric influx. This model performs reasonably well in simulating the main features of the atomic metal layers (i.e., peak densities, total column abundances, seasonal variability) in the mesosphere/lower thermosphere region compared with the currently available measurements made by satellite and lidar. The WACCM model including these six metals also simulates the neutral and ionized metal--containing species as well as individual dominant reservoir species (FeOH, Mg(OH)2, NaHCO3 and Si(OH)4) below 90 km. Therefore, the self-consistent model is able to generate meteoric smoke particles (MSPs) explicitly because these are predominantly composed of ablated Fe, Mg, Na and Si. The microphysical processes of the MSPs are calculated by the CARMA (Community Aerosol and Radiation Model for Atmosphere) module in WACCM to allow for the coagulation of aerosol/dust particles. We will present the modelled global distribution of MSPs and discuss some key dynamical and chemical processes controlling the distribution of MSPs in the middle and upper atmosphere.

FENG, W.; Plane, J. M.; Chipperfield, M.; Marsh, D. R.; Janches, D.; Bardeen, C.

2013-12-01

76

The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows.  

E-print Network

The Hamiltonian Particle-Mesh (HPM) method for numerical modeling of atmospheric flows. Seoleun Shin 15. Feb. 2011 Abstract The Hamiltonian Particle-Mesh (HPM) method is an interesting alternative have developed schemes based on the HPM method for the shallow-water equations on the sphere, nonhydro

Kim, Guebuem

77

Particle size distribution of major inorganic species in atmospheric aerosols from Majorca (Spain)  

Microsoft Academic Search

Atmospheric aerosols collected by means of a cascade impaction system at the campus of the University of the Balearic Islands (Majorca, Spain) from November 1993 to February 1994 were analysed for chloride, nitrate, sulphate, ammonium, calcium, magnesium, sodium and potassium. Based on particle size distribution, the species studied were classified into three groups: (a) concentration decrease with particle size (sulphate

J. Mateu; R. Forteza; V. Cerdà; M. Colom-Altés

1995-01-01

78

Scanning Electron Microanalysis and Analytical Challenges of Mapping Elements in Urban Atmospheric Particles  

EPA Science Inventory

Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...

79

Evidence for the role of organics in aerosol particle formation under atmospheric conditions  

PubMed Central

New particle formation in the atmosphere is an important parameter in governing the radiative forcing of atmospheric aerosols. However, detailed nucleation mechanisms remain ambiguous, as laboratory data have so far not been successful in explaining atmospheric nucleation. We investigated the formation of new particles in a smog chamber simulating the photochemical formation of H2SO4 and organic condensable species. Nucleation occurs at H2SO4 concentrations similar to those found in the ambient atmosphere during nucleation events. The measured particle formation rates are proportional to the product of the concentrations of H2SO4 and an organic molecule. This suggests that only one H2SO4 molecule and one organic molecule are involved in the rate-limiting step of the observed nucleation process. Parameterizing this process in a global aerosol model results in substantially better agreement with ambient observations compared to control runs. PMID:20133603

Metzger, Axel; Verheggen, Bart; Dommen, Josef; Duplissy, Jonathan; Prevot, Andre S. H.; Weingartner, Ernest; Riipinen, Ilona; Kulmala, Markku; Spracklen, Dominick V.; Carslaw, Kenneth S.; Baltensperger, Urs

2010-01-01

80

Effect of atmospheric conditions on operation of terahertz systems for remote detection of ionizing materials  

SciTech Connect

This study was motivated by a new concept of remote detection of concealed radioactive materials by using a high power terahertz (THz) wave beam, which can be focused in a small spot where the wave electric field exceeds the breakdown threshold. In the presence of seed electrons in such a volume, this focusing can initiate the avalanche breakdown. Typically, an ambient density of free electrons is assumed to be at the level of one particle per cubic centimeter. So, when a breakdown-prone volume is smaller than 1 cm{sup 3}, there should be significant difference between the breakdown rates in the case of presence of additional sources of ionization versus its absence. Since the flux density of gamma rays emitted by radioactive materials rapidly falls with the distance from the source, while the intensity of THz waves also decreases with the distance due to wave attenuation in the atmosphere, it is important to find an optimal location of the breakdown to be initiated for a given distance between a radioactive material and a THz antenna. This problem is analyzed in a given paper with the account for not only atmospheric attenuation of THz waves but also the air turbulence.

Nusinovich, Gregory S.; Kashyn, Dmytro G. [IREAP, University of Maryland, College Park, Maryland 20742-3511 (United States)] [IREAP, University of Maryland, College Park, Maryland 20742-3511 (United States); Tatematsu, Yoshinori; Idehara, Toshitaka [FIR Center, University of Fukui, Fukui 910-8507 (Japan)] [FIR Center, University of Fukui, Fukui 910-8507 (Japan)

2014-01-15

81

Non-ammonium reduced nitrogen species in atmospheric aerosol particles  

SciTech Connect

The traditional belief that ambient aerosol particles contain nitrogen predominantly in the form of inorganic ionic species such as NH/sub 4//sup +/ and NO/sub 3//sup -/ was challenged about 10 years ago by results from x-ray photoelectron spectroscopic analysis (ESCA) of California aerosol particles. A significant fraction (approx. 50%) of the reduced nitrogen was observed to have an oxidation state more reduced than ammonium, characteristic of organic nitrogen species. We have used a recently developed thermal evolved gas analysis method (NO/sub x/) in conjunction with ESCA to confirm the existence of these species in aerosol particles collected in both the United States and Europe. The agreement of EGA and ESCA analyses indicates that these species are found not only on the surface but also throughout the particles. 9 references, 6 figures.

Dod, R.L.; Gundel, L.A.; Benner, W.H.; Novakov, T.

1983-08-01

82

Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere  

NASA Astrophysics Data System (ADS)

Sea salt is one of the most abundant types of natural aerosol particles and significantly influences local and global climate. It is an important constituent of samples collected between June 10 and 15 in the Los Angeles area during the 2010 CalNex campaign. The sea-salt particles reacted with other species in the atmosphere and became Na-bearing aerosol (NaA) particles. Using transmission electron microscopy, we found that Na occurred in almost half of all analyzed particles (?3500), although commonly only in minor amounts. Almost all the NaA particles contained S but not Cl, suggesting that Cl was depleted through particle formation to sulfate, nitrate, or both in the urban atmosphere. We observed both rounded and euhedral NaA particles. The rounded ones consisted mainly of aged sea salt (>12 h) that had reacted extensively with sulfate, whereas the euhedral ones occurred in samples from relatively fresh marine air. The shapes and compositions of NaA particles changed within 3 h in the urban atmosphere. Moreover, our calculations indicate that light scattering from NaA particles depends on their shapes (e.g., roughly spherical, flat, or elongated). These compositions and shapes affect hygroscopicities and light scattering, respectively, both of which influence their climate effects.

Adachi, Kouji; Buseck, Peter R.

2015-01-01

83

Discrete Particle Swarm Optimization with Scout Particles for Library Materials Acquisition  

PubMed Central

Materials acquisition is one of the critical challenges faced by academic libraries. This paper presents an integer programming model of the studied problem by considering how to select materials in order to maximize the average preference and the budget execution rate under some practical restrictions including departmental budget, limitation of the number of materials in each category and each language. To tackle the constrained problem, we propose a discrete particle swarm optimization (DPSO) with scout particles, where each particle, represented as a binary matrix, corresponds to a candidate solution to the problem. An initialization algorithm and a penalty function are designed to cope with the constraints, and the scout particles are employed to enhance the exploration within the solution space. To demonstrate the effectiveness and efficiency of the proposed DPSO, a series of computational experiments are designed and conducted. The results are statistically analyzed, and it is evinced that the proposed DPSO is an effective approach for the studied problem. PMID:24072983

Lin, Bertrand M. T.

2013-01-01

84

Optical properties of particles in planetary atmospheres - Laboratory studies  

NASA Technical Reports Server (NTRS)

The laboratory techniques employed for the determination of optical constants are discussed briefly. The values obtained for the real n and imaginary k parts of the refractive indices of water, ice, and liquid ammonia are presented graphically. Work currently in progress on solid ammonia and on sulphuric acid is discussed. Other approaches to studies of the properties of aerosols in planetary atmospheres are presented briefly.

Williams, D.

1974-01-01

85

Genesis Concentrator Target Particle Contamination Mapping and Material Identification  

NASA Technical Reports Server (NTRS)

The majority of surface particles were found to be < 5 microns in diameter with increasing numbers close to the optical resolution limit of 0.3 microns. Acceleration grid EDS results show that the majority of materials appear to be from the SRC shell and SLA materials which include carbon-carbon fibers and Si-rich microspheres in a possible silicone binder. Other major debris material from the SRC included white paint, kapton, collector array fragments, and Al. Image analysis also revealed that SRC materials were also found mixed with the Utah mud and salt deposits. The EDS analysis of the acceleration grid showed that particles < 1 m where generally carbon based particles. Chemical cleaning techniques with Xylene and HF in an ultrasonic bath are currently being investigated for removal of small particles by the Genesis science team as well as ultra-pure water megasonic cleaning by the JSC team [4]. Removal of organic contamination from target materials is also being investigated by the science team with the use of UV-ozone cleaning devices at JSC and Open University [5]. In preparation for solar wind oxygen analyses at UCLA and Open University [1, 2], surface particle contamination on three Genesis concentrator targets was closely examined to evaluate cleaning strategies. Two silicon carbide (Genesis sample # 60001 and 60003) and one chemical vapor deposited (CVD) 13C concentrator target (60002) were imaged and mosaic mapped with optical microscopes. The resulting full target mosaic images and particle feature maps were subsequently compared with non-flight, but flight-like, concentrator targets and sample return capsule (SRC) materials. Contamination found on the flown concentrator acceleration grid was further examined using a scanning electron microscope (SEM). Energy dispersive X-ray spectroscopy (EDS) for particle identification was subsequently compared with the optical images from the flown targets. Figure 1 show that all three targets imaged in this report are fully intact and do not show any signs of material fractures. However, previous ellipsometry results and overview imaging of both flown SiC targets show a solar wind irradiation gradient from the center focal point to the outer edge [3]. In addition, due to the hard landing, each target has experienced varying degrees of impacts, scratches, and particle debris from the spacecraft and Utah impact site.

Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.

2007-01-01

86

[Characterization of ultrafine particle size distribution in the urban atmosphere of Hangzhou in spring].  

PubMed

Continuous measurement and analysis of the atmospheric ultrafine particle number concentration were performed in Hangzhou from March to May, 2012 by using the fast mobility particle sizer (FMPS). The result showed that daily number concentration of nucleation mode (5.6-20 nm), Aitken mode (20-100 nm), and accumulation mode (100-560 nm) particles, and total particles were 0.84 x 10(4), 1.08 x 10(4), 0.47 x 10(4) and 2.38 x 10(4) cm(-3) respectively. The concentration of Aitken mode particles was higher than that of other mode particles in sunny day. The nucleation mode and Aitken mode particles usually started to increase around 10:00-11:00 and ended up after 3-4 h. This indicated the solar radiation promoted the formation of new particles. Human activities caused the concentration distribution of each mode particles having an obvious difference between workdays and weekends. Combined with the meteorological factors, analysis showed that the wind speed and wind direction also directly influenced particulate concentration. The analysis of particulate concentration and visibility showed that the concentration of accumulation mode particles had a negative relationship with the atmospheric visibility, while those of nucleation mode and Aitken mode particles had a slight influence on it. PMID:24812930

Xie, Xiao-Fang; Sun, Zai; Yang, Wen-Jun

2014-02-01

87

Detection of special nuclear materials with the associate particle technique  

NASA Astrophysics Data System (ADS)

In the frame of the French trans-governmental R&D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

2013-04-01

88

DETERMINATION OF THE STRONG ACIDITY OF ATMOSPHERIC FINE PARTICLES (  

EPA Science Inventory

This report is a standardized methodology description for the determination of strong acidity of fine particles (less than 2.5 microns) in ambient air using annular denuder technology. his methodology description includes two parts: art A - Standard Method and Part B - Enhanced M...

89

Method and apparatus for making articles from particle based materials  

DOEpatents

A method and apparatus for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product.

Moorhead, Arthur J. (Knoxville, TN); Menchhofer, Paul A. (Oak Ridge, TN)

1995-01-01

90

Method and apparatus for making articles from particle based materials  

DOEpatents

A method and apparatus are disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product. 10 figs.

Moorhead, A.J.; Menchhofer, P.A.

1995-12-19

91

Strong atmospheric new particle formation in winter, urban Shanghai, China  

NASA Astrophysics Data System (ADS)

Particle size distributions in the range of 1.34-615.3 nm were recorded from 25 November 2013 to 25 January 2014 in urban Shanghai, using a combination of one nano Condensation Nucleus Counter system (nCNC), one nano-Scanning Mobility Particle Sizer (SMPS), and one long-SMPS. Measurements of sulfur dioxide by an SO2 analyzer with pulsed UV fluorescence technique allowed calculation of sulfuric acid proxy. In addition, concentrations of ammonia were recorded with a Differential Optical Absorption Spectroscopy (DOAS). During this 62-day campaign, 13 NPF events were identified with strong burst of sub-3 nm particles and subsequent fast growth of newly formed particles. The observed nucleation rate (J1.34), formation rate of 3 nm particles (J3), and condensation sink (CS) were 112.4-271.0 cm-3 s-1, 2.3-19.2 cm-3 s-1, and 0.030-0.10 s-1, respectively. Subsequent cluster/nanoparticle growth showed a clear size dependence, with average values of GR1.35~1.39 (from the bin of 1.34-1.37 nm to the bin of 1.37-1.41 nm), GR1.39~1.46 (from 1.37-1.41 to 1.41-1.52 nm), GR1.46~1.70 (from 1.41-1.52 to 1.52-1.89 nm), GR1.70~2.39 (from 1.52-1.89 to 1.89-3.0 nm), GR2.39~7 (from 1.89-3.0 to 7 nm), and GR7~20 (from 7 to 20 nm) being 1.6 ± 1.0, 1.4 ± 2.2, 7.2 ± 7.1, 9.0 ± 11.4, 10.9 ± 9.8, and 11.4 ± 9.7 nm h-1, respectively. Correlation between nucleation rate (J1.34) and sulfuric acid proxy indicates that nucleation rate J1.34 was proportional to a 0.64 power of sulfuric acid proxy. Correlation between nucleation rate (J1.34) and gas-phase ammonia suggests that ammonia was associated with NPF events. The calculated sulfuric acid proxy was sufficient to explain the subsequent growth of 1.34-3 nm particles, but insufficient for particles exceeding this size range. Qualitatively, NPF events in urban Shanghai likely occur on days with low levels of PM2.5.

Xiao, S.; Wang, M. Y.; Yao, L.; Kulmala, M.; Zhou, B.; Yang, X.; Chen, J. M.; Wang, D. F.; Fu, Q. Y.; Worsnop, D. R.; Wang, L.

2014-10-01

92

Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits  

NASA Astrophysics Data System (ADS)

A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 ?m diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

2013-08-01

93

Gas-mediated charged particle beam processing of nanostructured materials  

NASA Astrophysics Data System (ADS)

Gas mediated processing under a charged particle (electron or ion) beam enables direct-write, high resolution surface functionalization, chemical dry etching and chemical vapor deposition of a wide range of materials including catalytic metals, optoelectronic grade semiconductors and oxides. Here we highlight three recent developments of particular interest to the optical materials and nanofabrication communities: fabrication of self-supporting, three dimensional, fluorescent diamond nanostructures, electron beam induced deposition (EBID) of high purity materials via activated chemisorption, and post-growth purification of nanocrystalline EBID-grown platinum suitable for catalysis applications.

Lobo, C. J.; Martin, A. A.; Elbadawi, C.; Bishop, J.; Aharonovich, I.; Toth, M.

2014-03-01

94

Preparation and characterization of energetic materials coated superfine aluminum particles  

NASA Astrophysics Data System (ADS)

This work is devoted to protect the activity of aluminum in solid rocket propellants by means of solvent/non-solvent method in which nitrocellulose (NC) and Double-11 (shortened form of double-base gun propellant, model 11) have been used as coating materials. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the morphology of coated Al particles. Other characterization data of coated and uncoated Al particles, such as infrared absorption spectrum, laser particle size analysis and the active aluminum content were also studied. The thermal behavior of pure and coated aluminum samples have also been studied by simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC). The results indicated that: superfine aluminum particles could be effectively coated with nitrocellulose and Double-11 through a solvent/non-solvent method. The energetic composite particles have core-shell structures and the thickness of the coating film is about 20-50 nm. The active aluminum content of different coated samples was measured by means of oxidation-reduction titration method. The results showed that after being stored in room temperature and under 50% humidity condition for about 4months the active aluminum content of coated Al particles decreased from 99.8 to 95.8% (NC coating) and 99.2% (Double-11 coating) respectively. Double-11 coating layer had a much better protective effect. The TG-DTA and DSC results showed that the energy amount and energy release rate of NC coated and Double-11 coated Al particles were larger than those of the raw Al particles. Double-11 coated Al particles have more significant catalytic effect on the thermal decomposition characters of AP than that of NC coated Al particles. These features accorded with the energy release characteristics of solid propellant.

Liu, Songsong; Ye, Mingquan; Han, Aijun; Chen, Xin

2014-01-01

95

Origin of nitrocatechols and alkylated-nitrocatechols in atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

Biomass burning constitutes one of the major sources of aerosol particles in most of the environments during winter. If a lot of information is available in the literature on the primary fraction of biomass burning aerosol particles, almost nothing is known regarding the formation of Secondary Organic Aerosol (SOA) from the chemical mixture emitted by this source. Recently methylated nitrocatechol have been identified in atmospheric particles collected in winter. These compounds are strongly associated with biomass burning tracers such as levoglucosan and are suspected to be of secondary origin since they can be formed through the oxidation of cresol significantly emitted by biomass burning. However, nitrocatechols are particularly difficult to analyze using classical techniques like HPLC-MS or GC-MS. In the present study, we adopt a new analytical approach. Direct analysis in real time (DART), introduced by Cody et al. (2005), allows direct analysis of gases, liquids, solids and materials on surfaces. Thus, for particles collected onto filters, the sample preparation step is simplified as much as possible, avoiding losses and reducing to the minimum the analytical procedure time. Two analytic modes can be used. In positive mode, [MH]+ ions are formed by proton transfer reaction ; whereas in negative ionization mode, [MH]-, M- and [MO2]- ions are formed. DART source enables soft ionization and produces simple mass spectra suitable for analysis of complex matrices, like organic aerosol, in only a few seconds. For this study, the DART source was coupled to a Q-ToF mass spectrometer (Synapt G2 HDMS, Waters), with a mass resolution up to 40 000. The analysis of atmospheric aerosol samples, collected in Marseille during winter 2011 (APICE project), with the DART/Q-ToF approach highlighted the abundance of nitrocatechols and alkylated nitrocatechols. Their temporal trends were also very similar to those of levoglucosan or dihydroabietic acid well known tracers of biomass burning aerosol. If their biomass burning origin's is clearly established, their secondary origin remains still not totally clear. Smog chamber experiments were then conducted in the PSI facilities to investigate the aging of biomass burning emissions. The analysis of samples collected during these experiments using the DART/Q-ToF approach, confirmed that nitrocatechols and methylated nitrocatechols originate from biomass burning processes. More importantly our results confirm that nitrocatechols and their methylated derivatives are quasi exclusively from secondary origin. Considering the abundance of biomass burning primary aerosol, and the large fraction of unexplained SOA, this result is of prime importance. Cody. R., Laramée J. Nilles J. and Durst H. : Direct Analysis in Real Time (DARTtm) Mass Spectrometry, JOEL news, 2005, 40, 1, 8-12. Kitanovski Z., Grgic I., Yasmeen F., Claeys M. and Cusak A.: Development of a liquid chromatographic method based on ultraviolet-visible and electrospray ionization mass spectrometric detection for the identification of nitrocatechols and related tracers ion biomass burning atmospheric organic aerosol, Rapid Communication in Mass Spectrometry, 2012, 26, 793-804. Iinuma Y., Boge O., Grafe R. and Herrmann H.: Methyl-nitrocatechols : Atmospheric tracer coumpounds for biomass burnig secondary organic aerosols, Environmental Science and Technology, 2010, 44, 8453-8459.

Marchand, Nicolas; Sylvestre, Alexandre; Ravier, Sylvain; Detournay, Anais; Bruns, Emily; Temime-Roussel, Brice; Slowik, Jay; El Haddad, Imad; Prevot, Andre

2013-04-01

96

Suprathermal Particles in XUV-Heated and Extended Exoplanetary Upper Atmospheres  

NASA Astrophysics Data System (ADS)

The photolysis of hydrogen-rich atmosphere of a close-in exoplanet by the extreme ultraviolet radiation of the parent star leads to the formation of the suprathermal particles (i.e., particles with an excess of kinetic energy), primary photoelectrons in the H2/H/mathit{He} ionization and hydrogen atoms in the H 2 dissociation and dissociative ionization processes. These particles with excess kinetic energies are an important source of thermal energy in the upper atmosphere of the hydrogen-rich exoplanets. In the contemporary aeronomical models the kinetics and transfer of hot hydrogen atoms and fresh photoelectrons were not calculated in detail, because they require solving of the Boltzmann equation for a non-thermal population of these particles. This chapter estimates the effect of the XUV radiation of the parent star on the production of the suprathermals in the H2 rightarrow H transition region in the upper atmosphere of a hydrogen-rich exoplanet. Partial deposition rates of the stellar XUV radiation due to the photolytic processes in the H2 rightarrow H transition region in the upper atmosphere of HD 209458b were calculated. The Monte Carlo model developed by authors was used to calculate the collisional kinetics and the transport of photoelectrons in the atmosphere of HD209458b. Using this model the partial deposition rates of the stellar XUV radiation due to the electron impact processes in the H2 rightarrow H transition region in the upper atmosphere of HD209458b were calculated. This allowed us to estimate the heating rate of the atmospheric gas by photoelectrons in the upper atmosphere of exoplanet. For the first time the heating efficiency ? with and without taking into account the photoelectron impact processes in the H2 rightarrow H transition region in the hydrogen-rich atmosphere of exoplanet was calculated. Using the numerical stochastic model for a hot planetary corona the kinetics and transfer of suprathermal hydrogen atoms in the upper atmosphere and the emergent flux of atoms evaporating from the atmosphere were investigated. The latter is estimated as 5.8 × 10^{12} text{cm}^{-2}text{s}^{-1} for a moderate stellar activity level of UV radiation, which leads to a planetary atmosphere evaporation rate of 5. 8 × 109 g/s due to the process of the dissociation of H 2. This estimate shows that suprathermal hydrogen atoms provide a significant contribution to the observational estimate of ˜ 1010 g/s for the atmospheric loss rate of HD 209458b.

Shematovich, Valery I.; Bisikalo, Dmitry V.; Ionov, Dmitry E.

97

Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?  

NASA Astrophysics Data System (ADS)

Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image velocimetry (PIV). Scanning Electron Microscopy (SEM) of ash particles collected in localized deposition areas is used to correlate the PIV results to particle shape. In addition, controlled wind tunnel experiments are used to determine particle fate and transport in a turbulent boundary layer for a mixed particle population. Collectively, these studies will provide an improved understanding of the effects of particle shape on sedimentation and dispersion, and foundational data for the predictive modeling of the fate and transport of fine ash particles suspended in the atmosphere.

White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

2013-12-01

98

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.  

PubMed

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation. PMID:24097350

Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

2013-10-17

99

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere  

NASA Astrophysics Data System (ADS)

Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K.; Kupiainen-Määttä, Oona; Praplan, Arnaud P.; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M.; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J.; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D.; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S.; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R.; Vehkamäki, Hanna; Kirkby, Jasper

2013-10-01

100

A diffusion model for use with directional samplers. [particle dispersion in atmosphere  

NASA Technical Reports Server (NTRS)

The paper presents a mathematical model for describing dispersion processes of airborne particles in the atmosphere. The process is described as a superposition of independent Brownian motion processes with drifts and a boundary at zero. It is assumed that the terrain is flat and of a homogeneous roughness. All sources are assumed to be point sources. The time dependencies of emission rates, wind speed, wind direction, and atmospheric conditions are taken into account.

Anbar, D.

1978-01-01

101

Observations of linear dependence between sulfate and nitrate in atmospheric particles  

NASA Astrophysics Data System (ADS)

measurements of water-soluble inorganic ionic species in ambient atmospheric particles were conducted at Shanghai, Hangzhou, and Guangzhou sampling sites in China during the period of 2009-2011. The relation between sulfate and nitrate in particulate matter (PM10 and PM2.5) was examined based on these measurements. Results showed that the mass fraction of sulfate was strongly negatively correlated with that of nitrate in atmospheric particles on most of the sampling days, especially when sulfate and nitrate made up the vast majority of the total soluble anions and cations (Na+, K+, Ca2+, and Mg2+) made a small contribution to the total water-soluble ions, revealing that the formation mechanisms of sulfate and nitrate in the atmosphere are highly correlated, and there exists a significant negative correlation trend between sulfate and nitrate mass fractions in the atmospheric particles. We found that local meteorological conditions presented opposite influences on the mass fractions of sulfate and nitrate. Further analysis indicated that the two mass fractions were modulated by the neutralizing level of atmospheric aerosols, and the negative correlation could be found in acidic atmospheric particles. Strong negative correlation was usually observed on clear days, hazy days, foggy days, and respirable particulate air pollution days, whereas poor negative correlation was often observed during cloud, rain, snow, dust storm, and suspended dust events. The results can help to better understand the formation mechanisms of atmospheric sulfate and nitrate during air pollution episodes and to better explain field results of atmospheric chemistry concerning sulfate and nitrate.

Kong, Lingdong; Yang, Yiwei; Zhang, Shuanqin; Zhao, Xi; Du, Huanhuan; Fu, Hongbo; Zhang, Shicheng; Cheng, Tiantao; Yang, Xin; Chen, Jianmin; Wu, Dui; Shen, Jiandong; Hong, Shengmao; Jiao, Li

2014-01-01

102

Decreasing particle number concentrations in a warming atmosphere and implications  

NASA Astrophysics Data System (ADS)

New particle formation contributes significantly to the number concentration of condensation nuclei (CN) as well as cloud CN (CCN), a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends consistent with these predictions. The analysis also suggests, owing to larger observed CN reductions at remote sites than can be explained by the basic nucleation mechanism, that dimethylsulphide (DMS) emissions may be decreasing worldwide with increasing global temperatures, implying a positive DMS-based cloud feedback forcing of the climate ("CLAW"). The combined effects of rising temperatures on aerosol nucleation rates, and possibly on DMS emissions, may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

Yu, F.; Luo, G.; Turco, R. P.; Ogren, J. A.; Yantosca, R. M.

2011-10-01

103

Qualitative multiplatform microanalysis of individual heterogeneous atmospheric particles from high-volume air samples.  

PubMed

High-resolution microscopic analysis of individual atmospheric particles can be difficult, because the filters upon which particles are captured are often not suitable as substrates for microscopic analysis. Described here is a multiplatform approach for microscopically assessing chemical and optical properties of individual heterogeneous urban dust particles captured on fibrous filters during high-volume air sampling. First, particles embedded in fibrous filters are transferred to polished silicon or germanium wafers with electrostatically assisted high-speed centrifugation. Particles are clustered in an array of deposit areas, which allows for easily locating the same particle with different microscopy instruments. Second, particles with light-absorbing and/or light-scattering behavior are identified for further study from bright-field and dark-field light-microscopy modes, respectively. Third, particles identified from light microscopy are compositionally mapped at high definition with field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Fourth, compositionally mapped particles are further analyzed with focused ion-beam (FIB) tomography, whereby a series of thin slices from a particle are imaged, and the resulting image stack is used to construct a three-dimensional model of the particle. Finally, particle chemistry is assessed over two distinct regions of a thin FIB slice of a particle with energy-filtered transmission electron microscopy (TEM) and electron energy-loss spectroscopy associated with scanning transmission electron microscopy (STEM). PMID:25220253

Conny, Joseph M; Collins, Sean M; Herzing, Andrew A

2014-10-01

104

Characterizing Biological Particles in the Atmosphere at two Sites in Colorado  

NASA Astrophysics Data System (ADS)

The composition and distribution of primary biological aerosol particles (PBAPs) in the atmosphere is constantly changing due to both natural and anthropogenic activities. In this presentation, we will describe measurements aimed at better characterizing this population at Manitou Experimental Forest, in Pike National Forest in Colorado and in Fort Collins, CO. This work is part of the larger Biosphere-atmosphere Exchange of Aerosols within Cloud, Carbon and Hydrologic cycles, including Organics and Nitrogen (BEACHON) field study program, which is aimed at studying the connections between the biogeochemical cycling of carbon and water in semi-arid regions of the Western U.S. To this end, we are collecting PBAP with SKC impingers into water, which are subsequently analyzed by flow cytometery to determine the atmospheric biological particle concentration. Further, we are generating a gene library of the small subunit RNA genes to speciate the PBAPs in our collected samples using Sanger sequencing. These experiments are performed throughout the year to better understand seasonal variability of atmospheric microbial communities at the selected sites. A small handful of PBAPs have been found to be some of the best ice nucleators in the atmosphere, inducing ice nucleation as high as -2oC; these particles may play pivotal roles in influencing ice formation in cold clouds and, thereby, climate. Preliminary data will be presented aimed at better characterizing this important subset of biological particles.

Garcia, E.; Prenni, A. J.; Prenni, J.; Rivest, J.; Demott, P. J.; Kreidenweis, S. M.

2010-12-01

105

Model studies of the formation and growth of atmospheric sulphuric acid/water particles  

NASA Astrophysics Data System (ADS)

The formation and growth of new aerosol particles in the lower atmosphere are important processes in studying the climate change and health effects of pollutants. Recent investigations show that aerosols can cool the climate directly by scattering solar radiation back to space or indirectly by changing the cloud albedo. In this thesis, a model which combines gas-phase chemistry and aerosol dynamics has been developed for the formation of sulphuric acid/water particles. The model includes the formation of sulphuric acid in the gas phase, gas-to-particle conversion of sulphuric acid and water (homogeneous nucleation and condensation onto pre- existing particles), coagulation and deposition of particles. Condensation and coagulation determine the growth of particles. The particle size distribution is presented by monodisperse and sectional approaches. To save computer time, the nucleation rate is parameterized. The models can be applied as box models or by using a Lagrangian approach when meteorological trajectories are employed. The formation of new suphate particles is examined using trajectories arriving at Värriö, northeastern Finland. In cases where the trajectories come from the east carrying a lot of sulphur dioxide the homogeneous sulphuric acid/water nucleation can explain the observed nucleation events well. However, in marine cases where the air mass comes from the Arctic Ocean the particles are probably formed via a different nucleation route. The effects of different factors on ultrafine aerosol formation are investigated by applying the model as a box model under idealized atmospheric conditions. Enhanced UV irradiation increases the particle concentration while increased natural organic vapour emissions reduce it. The higher the pre-existing particle concentration the less probable the nucleation due to the stronger condensation. The atmospheric conditions where sulphuric acid/water nucleation has significant effects on aerosol and cloud condensation nuclei populations are predicted.

Pirjola, Liisa Helena

106

High energy cosmic ray particles and the most powerful new type discharges in thunderstorm atmosphere  

E-print Network

The runaway breakdown -- extensive atmospheric shower discharge (RB - EAS) excited in thunderstorm atmosphere by high energy cosmic ray particles ($\\epsilon_p>10^{17} - 10^{19}$ eV) generate very powerful radio pulse. The RB - EAS theory is compared with observations of radio pulses. An agreement between the theory and experiment is established. The existence of nowaday satellite and ground based systems which obtain regularly a large amount of observational radio data could allow to use them in combination with other methods for effective study of high energy cosmic ray particles

Gurevich, A V

2004-01-01

107

High energy cosmic ray particles and the most powerful new type discharges in thunderstorm atmosphere  

E-print Network

The runaway breakdown -- extensive atmospheric shower discharge (RB - EAS) excited in thunderstorm atmosphere by high energy cosmic ray particles ($\\epsilon_p>10^{17} - 10^{19}$ eV) generate very powerful radio pulse. The RB - EAS theory is compared with observations of radio pulses. An agreement between the theory and experiment is established. The existence of nowaday satellite and ground based systems which obtain regularly a large amount of observational radio data could allow to use them in combination with other methods for effective study of high energy cosmic ray particles

A. V. Gurevich; K. P. Zybin

2004-03-30

108

Reactor for producing large particles of materials from gases  

NASA Technical Reports Server (NTRS)

A method and apparatus is disclosed for producing large particles of material from gas, or gases, containing the material (e.g., silicon from silane) in a free-space reactor comprised of a tube (20) and controlled furnace (25). A hot gas is introduced in the center of the reactant gas through a nozzle (23) to heat a quantity of the reactant gas, or gases, to produce a controlled concentration of seed particles (24) which are entrained in the flow of reactant gas, or gases. The temperature profile (FIG. 4) of the furnace is controlled for such a slow, controlled rate of reaction that virtually all of the material released condenses on seed particles and new particles are not nucleated in the furnace. A separate reactor comprised of a tube (33) and furnace (30) may be used to form a seed aerosol which, after passing through a cooling section (34) is introduced in the main reactor tube (34) which includes a mixer (36) to mix the seed aerosol in a controlled concentration with the reactant gas or gases.

Flagan, Richard C. (Inventor); Alam, Mohammed K. (Inventor)

1987-01-01

109

Novel applications of atmospheric pressure plasma on textile materials  

NASA Astrophysics Data System (ADS)

Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

Cornelius, Carrie Elizabeth

110

Particles, environments, and possible ecologies in the Jovian atmosphere  

NASA Technical Reports Server (NTRS)

The possible existence of indigenous Jovian organisms is investigated by characterizing the relevant physical environment of Jupiter, discussing the chromophores responsible for the observed coloration of the planet, and analyzing some permissible ecological niches of hypothetical organisms. Values of the eddy diffusion coefficent are estimated separately for the convective troposphere and the more stable mesosphere, and equilibrium condensation is studied for compounds containing Na, Cl, or both. The photoproduction of chromophores and nonequilibrium organic molecules is analyzed, and the motion of hypothetical organisms is examined along with the diffusion of metabolites and the consequent growth of organisms. Four kinds of organisms are considered: primary photosynthetic autotrophs ('sinkers'), larger autotrophs or heterotrophs that actively maintain their pressure level ('floaters'), organisms that seek out others ('hunters'), and organisms that live at almost pyrolytic depths ('scavengers'). It is concluded that ecological niches for sinkers, floaters, and hunters appear to exist in the Jovian atmosphere.

Sagan, C.; Salpeter, E. E.

1976-01-01

111

Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles  

NASA Technical Reports Server (NTRS)

The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

Dillard, J. G.; Seals, R. D.; Wightman, J. P.

1979-01-01

112

Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires  

NASA Astrophysics Data System (ADS)

improved understanding of atmospheric ice nucleating particles (INP), including sources and atmospheric abundance, is needed to advance our understanding of aerosol-cloud-climate interactions. This study examines diverse biomass burning events to better constrain our understanding of how fires impact populations of INP. Sampling of prescribed burns and wildfires in Colorado and Georgia, U.S.A., revealed that biomass burning leads to the release of particles that are active as condensation/immersion freezing INP at temperatures from -32 to -12°C. During prescribed burning of wiregrass, up to 64% of INP collected during smoke-impacted periods were identified as soot particles via electron microscopy analyses. Other carbonaceous types and mineral-like particles dominated INP collected during wildfires of ponderosa pine forest in Colorado. Total measured nINP and the excess nINP associated with smoke-impacted periods were higher during two wildfires compared to the prescribed burns. Interferences from non-smoke sources of INP, including long-range transported mineral dust and local contributions of soils and plant materials lofted from the wildfires themselves, presented challenges in using the observations to develop a smoke-specific nINP parameterization. Nevertheless, these field observations suggest that biomass burning may serve as an important source of INP on a regional scale, particularly during time periods that lack other robust sources of INP such as long-range transported mineral dust.

McCluskey, Christina S.; DeMott, Paul J.; Prenni, Anthony J.; Levin, Ezra J. T.; McMeeking, Gavin R.; Sullivan, Amy P.; Hill, Thomas C. J.; Nakao, Shunsuke; Carrico, Christian M.; Kreidenweis, Sonia M.

2014-09-01

113

On the Climatic Impact of CO2 Ice Particles in Atmospheres of Terrestrial Exoplanets  

NASA Astrophysics Data System (ADS)

Clouds play a significant role for the energy budget in planetary atmospheres. They can scatter incident stellar radiation back to space, effectively cooling the surface of terrestrial planets. On the other hand, they may contribute to the atmospheric greenhouse effect by trapping outgoing thermal radiation. For exoplanets near the outer boundary of the habitable zone, condensation of CO2 can occur due to the low atmospheric temperatures. These CO2 ice clouds may play an important role for the surface temperature and, therefore, for the question of habitability of those planets. However, the optical properties of CO2 ice crystals differ significantly from those of water droplets or water ice particles. Except for a small number of strong absorption bands, they are almost transparent with respect to absorption. Instead, they are highly effective scatterers at long and short wavelengths. Therefore, the climatic effect of a CO2 ice cloud will depend on how much incident stellar radiation is scattered to space in comparison to the amount of thermal radiation scattered back towards the planetary surface. This contribution aims at the potential greenhouse effect of CO2 ice particles. Their scattering and absorption properties are calculated for assumed particle size distributions with different effective radii and particle densities. An accurate radiative transfer model is used to determine the atmospheric radiation field affected by such CO2 particles. These results are compared to less detailed radiative transfer schemes employed in previous studies.

Kitzmann, D.; Patzer, A. B. C.; Rauer, H.

2014-04-01

114

The role of biogenic, biomass burning and urban pollution aerosol particles in controlling key atmospheric processes in Amazonia  

NASA Astrophysics Data System (ADS)

As part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment, a research program run in the last 10 years had help to understand critical atmospheric processes in Amazonia. The vegetation in Amazonia is a direct source of aerosol particles to the atmosphere as well as a source of biogenic trace gases that generates particles trough gas-to-particle conversion. Biomass burning is also a large source of particles and trace gases to the atmosphere. Over the last 10 years, the LBA experiment has unveiled several key processes that control Amazonian composition and influence regional climate. A significant fraction (60-80%) of airborne particles can act as Cloud Condensation Nuclei (CCN), influencing cloud formation and development. The radiation balance is strongly influenced by biomass burning particles, and surface radiative forcing up to -250 w/m2 is measured. A network of 8 sites with AERONET sunphotometers measures aerosol optical depth (AOD) and derive aerosol size distribution and optical properties. Aerosols are composed of more than 70% of organic material, with significant absorption characteristics. The aerosol radiative forcing during the biomass burning season can reach very high values, and the increase in diffuse radiation increases the carbon uptake by the forest for AOD values smaller than 1.2 at 500nm. For large AOD, the solar flux is strongly reduced making the carbon uptake approach zero for AOD larger than 3.0. The composition of aerosols is mostly organic, with contribution of K, Ca, Si, and other trace elements. The aerosol has high capability to serve as Cloud Condensation Nuclei (CCN), contributing with high water vapor amounts to the significant cloud cover over the region. In the last 20 years, an urbanization process took over for most of the Amazonian region, increasing urban pollution that interacts with forest emissions to produce a quite unique pattern of aerosols and pollutants around large urban areas such as Manaus. Emissions from biomass burning travel over long distances and have significant impacts on radiation and precipitation over the South American continent. Precipitation is influenced by land use change as well as by the aerosol loading in the atmosphere, but no changes have been observed when rain rate is integrated over the Basin.

Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Sena, E. T.; Cirino, G.; Arana, A.; Yanez-Serrano, A. M.

2013-05-01

115

Are coarse particles unexpected common reservoirs for some atmospheric anthropogenic trace elements? A case study  

NASA Astrophysics Data System (ADS)

Without specific experimental equipment, it is very difficult to sample long-term atmospheric deposits on a pure state. That is why the composition of air-transferred solid material accumulated for 40 years in the 2 m-high walls, pierced with numerous holes of an outdoor public shelter, Grenoble city, France, was studied. An appropriate fractionation procedure allowed to obtain several fractions which were i) a sand fraction (8.3%) (fraction A), ii) a large mass of organic matter corresponding mostly to large fragments (>250 ?m) of plant origin (66.7%) (fraction B) or to pollen fraction C (0.4%), iii) a slowly depositing organo-clay fraction (20%) (fractions D1 and D2) and iv) a solution mixed with non-settable particles (4.3%) (fraction E). The composition of each fraction was determined for 20 elements. The sand fraction showed very high concentrations specifically in Cu, Pb and Fe corresponding respectively to 81.5, 48.2 and 35.2% of the samples content in these elements. In contrast, Cd and Zn were mainly accumulated in the fraction B (67.5 and 62.2%, respectively). The scanning electron microscopy coupled to energy dispersive X-ray analysis (SEM-EDX) study of the fraction A showed the presence of large particles bearing Pb and Fe, particles rich in Cu and typical fly ashes originating mostly from iron industry. Most of these particles had a crystalline shape suggesting that they were formed after emission at a high temperature. The Pb-Fe-Cu deposit seen in fraction A likely originates from the neighbouring road surface contaminated by car traffic for several decades. The 206Pb/207Pb ratio (1.146 ± 0.004) showed that in the coarse sandy fraction A, Pb was represented at 65% by non-gasoline lead and 35% by "gasoline" lead emitted before 1999. The fraction A particles can only be transported on a limited distance by high magnitude events. They constitute a large reservoir for Cu and Pb and may play a major role in the long-term contamination of urban soils.

Catinon, Mickaël; Ayrault, Sophie; Boudouma, Omar; Bordier, Louise; Agnello, Gregory; Reynaud, Stéphane; Tissut, Michel

2013-08-01

116

Behaviour of advanced materials impacted by high energy particle beams  

NASA Astrophysics Data System (ADS)

Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

2013-07-01

117

Search for Fractional-Charge Particles in Meteoritic Material  

SciTech Connect

We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5 {mu}m with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth's surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3x10{sup -21} particles per nucleon in the meteoritic material and less than 1.9x10{sup -23} particles per nucleon in the mineral oil.

Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Halyo, Valerie; Loomba, Dinesh [Stanford Linear Accelerator Center, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States); Department of Physics, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

2007-10-19

118

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2013 CFR

... 2013-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2013-07-01

119

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2010-07-01

120

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

... 2014-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2014-07-01

121

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2011 CFR

... 2011-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2011-07-01

122

29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...  

Code of Federal Regulations, 2012 CFR

... 2012-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23...Operations § 1917.23 Hazardous atmospheres and substances (see also §...

2012-07-01

123

Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation  

NASA Technical Reports Server (NTRS)

Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

Marble, Elizabeth

1996-01-01

124

The effect of temperature on the gas-particle partitioning of reactive mercury in atmospheric aerosols  

NASA Astrophysics Data System (ADS)

Measurements of gas-particle-partitioning coefficients for reactive mercury in dry urban and laboratory aerosol were found to strongly depend on ambient temperature. Samples of atmospheric and laboratory aerosols (defined as both the gas and particle phases) were collected using filter and absorbent methods and analyzed for reactive mercury using thermal desorption combined with cold vapor atomic fluorescence spectroscopy. Synthetic ambient aerosols were generated in the laboratory from ammonium sulfate and adipic acid mixed with mercuric chloride in a purpose-built aerosol reactor. The aerosol reactor was operated in a temperature-controlled laboratory. Linear relationships between the logarithm of inverse gas-particle partitioning and inverse temperature were observed and parameterized for use in the atmospheric modeling of reactive mercury. Reactive mercury was observed to partition from the particle to the gas phase as ambient temperature increased. Good agreement between measurements made using urban and laboratory aerosols was seen after gas-particle-partitioning coefficients were normalized for surface area instead of mass. Thermodynamic analyses of the urban and laboratory gas-particle-partitioning measurements revealed that the strength of interaction between reactive mercury and particle surfaces was suggestive of chemisorption. Gas-particle-partitioning coefficients made with the Tekran ambient mercury analyzer (AMA) also showed a dependence on temperature. However, the Tekran AMA partitioning coefficients did not agree well with partitioning coefficients measured using the filter-based methods. The disagreement is consistent with the 50 °C operational temperature of the Tekran AMA.

Rutter, Andrew P.; Schauer, James J.

125

Materials for Active Engagement in Nuclear and Particle Physics Courses  

NASA Astrophysics Data System (ADS)

Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

Loats, Jeff; Schwarz, Cindy; Krane, Ken

2013-04-01

126

Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements  

NASA Astrophysics Data System (ADS)

A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multiespectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analysed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.10 ± 0.06 to 3.90 ± 0.03, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the ? exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyse the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.

Granados-Muñoz, M. J.; Navas-Guzmán, F.; Bravo-Aranda, J. A.; Guerrero-Rascado, J. L.; Lyamani, H.; Valenzuela, A.; Titos, G.; Fernández-Gálvez, J.; Alados-Arboledas, L.

2014-10-01

127

Atmospheric Refractivity Tracking From Radar Clutter Using Kalman and Particle Filters  

E-print Network

Atmospheric Refractivity Tracking From Radar Clutter Using Kalman and Particle Filters Caglar the sea clutter measured from sea-borne radars operating in the region. A split-step fast Fourier transform based parabolic equation approximation to the wave equation is used to compute the clutter return

Gerstoft, Peter

128

Morphology and Chemical composition of Atmospheric Particles over Semi-Arid region (Jaipur, Rajasthan) of India  

NASA Astrophysics Data System (ADS)

Uncertainties associated with the radiative forcing of atmospheric dust particles is highest, owing to lack of region-specific dust morphology (particle shape, size) and mineralogy (chemical composition) database, needed for modeling their optical properties (Mishra and Tripathi, 2008). To fill this gap for the Indian region, we collected atmospheric particles (with aerodynamic size <5um, PM5 and a few bulk particles; TSP) from seven sites of Jaipur and nearby locales (semi-arid region, in the vicinity of Thar Desert of Rajasthan) at varying altitude, during late winters of ca. 2012. PM5 particles were collected on Teflon filters (for bulk chemical analyses), while pure Tin substrates (~1×1 mm2) were used for investigating individual particle morphology. Using Scanning Electron Microscope equipped with Energy Dispersive X ray (SEM-EDX) facility at NPL, images of individual particles were recorded and the morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001), whereas chemical compositions of individual particles were determined by EDX and bulk samples by X ray fluorescence (XRF). The geometrical size distributions of atmospheric particles were generated for each site. Based on NIST (National Institute of Standard and Technology, USA) morphology database, the site-specific individual particle shapes reveal predominance of "Layered" (calcite and quartz rich), "Angular" structures (quartz rich) and "Flattened" particles over all the sites. Particles were found to be highly non-spherical with irregular shapes (CIR varying from 1 to 0.22 with median value ~0.76; AR varying from 1 to 5.4 with median value ~1.64). Noteworthy to mention, that unit values of AR and CIR represent spherical particles. Chemical analyses of PM5 particles revealed dominance of crustal elements e.g. Si, Al, Fe, Ca, Mg, in general. Particles over Kukas Hill (27.027° N, 75.919° E; ~800 MAGL) showed highest Fe mass fractions (~43%), i.e. a key element (in form of hematite; Fe2O3) for solar (visible) energy absorption and thus heating the atmosphere. The retrieved morphological parameters help to construct particle shape and number size distribution that are highly useful to reduce the uncertainty in radiative forcing of dust particles appreciably when combined with particle chemical composition as suggested by Kalashnikova and Sokolik (2004). References : Mishra, S. K., and S. N. Tripathi (2008), Modeling optical properties of mineral dust over the Indian Desert, J. Geophys. Res., 113, D23201, 19 PP., doi:10.1029/2008JD010048. Okada, K., J. Heintzenberg, K. Kai, and Y. Qin (2001), Shape of atmospheric mineral particles collected in three Chinese arid-regions, Geophys. Res. Lett., 28, 3123-3126 Kalashnikova OV, Sokolik IN. (2004) Modeling the radiative properties of nonspherical soil-derived mineral aerosols, J Quant Spectrosc Radiat Transfer, 87, 137-66.

Mishra, S. K.; Agnihotri, R.; Yadav, P.; Singh, S.; Tawale, J. S.; Rashmi, R.; Prasad, M.; Arya, B. C.; Mishra, N.

2012-12-01

129

Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere.  

PubMed

For a better understanding of metal particle morphology and behaviors in China, atmospheric aerosols were sampled in the summer of 2012 in Beijing. The single-particle analysis shows various metal-bearing speciations, dominated by oxides, sulfates and nitrates. A large fraction of particles is soluble. Sources of Fe-bearing particles are mainly steel industries and oil fuel combustion, whereas Zn- and Pb-bearing particles are primarily contributed by waste incineration, besides industrial combustion. Other trace metal particles play a minor rule, and may come from diverse origins. Mineral dust and anthropogenic source like vehicles and construction activities are of less importance to metal-rich particles. Statistics of 1173 analyzed particles show that Fe-rich particles (48.5%) dominate the metal particles, followed by Zn-rich particles (34.9%) and Pb-rich particles (15.6%). Compared with the abundances among clear, haze and fog conditions, a severe metal pollution is identified in haze and fog episodes. Particle composition and elemental correlation suggest that the haze episodes are affected by the biomass burning in the southern regions, and the fog episodes by the local emission with manifold particle speciation. Our results show the heterogeneous reaction accelerated in the fog and haze episodes indicated by more zinc nitrate or zinc sulfate instead of zinc oxide or carbonate. Such information is useful in improving our knowledge of fine airborne metal particles on their morphology, speciation, and solubility, all of which will help the government introduce certain control to alleviate metal pollution. PMID:25555257

Hu, Yunjie; Lin, Jun; Zhang, Suanqin; Kong, Lingdong; Fu, Hongbo; Chen, Jianmin

2015-04-01

130

Large-eddy simulation of particle-laden atmospheric boundary layer  

NASA Astrophysics Data System (ADS)

Pollen dispersion in the atmospheric boundary layer (ABL) is numerically investigated using a hybrid large-eddy simulation (LES) Lagrangian approach. Interest in prediction of pollen dispersion stems from two reasons, the allergens in the pollen grains and increasing genetic manipulation of plants leading to the problem of cross pollination. An efficient Eulerian-Lagrangian particle dispersion algorithm for the prediction of pollen dispersion in the atmospheric boundary layer is outlined. The volume fraction of the dispersed phase is assumed to be small enough such that particle-particle collisions are negligible and properties of the carrier flow are not modified. Only the effect of turbulence on particle motion has to be taken into account (one-way coupling). Hence the continuous phase can be treated separate from the particulate phase. The continuous phase is determined by LES in the Eulerian frame of reference whereas the dispersed phase is simulated in a Lagrangian frame of reference. Numerical investigations are conducted for the convective, neutral and stable boundary layer as well different topographies. The results of the present study indicate that particles with small diameter size follow the flow streamlines, behaving as tracers, while particles with large diameter size tend to follow trajectories which are independent of the flow streamlines. Particles of ellipsoidal shape travel faster than the ones of spherical shape.

Ilie, Marcel; Smith, Stefan Llewellyn

2008-11-01

131

Connection of organics to atmospheric new particle formation and growth at an urban site of Beijing  

NASA Astrophysics Data System (ADS)

In the present work, we aim to elucidate the roles of low-volatility organic vapors in atmospheric new particle formation in urban Beijing. Proposed organic molecules are derived from both the ambient measurement and the reasonable proxy. Several representations for the nucleation theories involving sulfuric acid and organic vapors are evaluated. The particle nucleation rates show good correlations both with sulfuric acid and organic vapors, suggesting that both play an important role in the atmospheric new particle formation. For the entire data set, the best fit (R = 0.79, slope = 1.1) between the observed and modeled particle nucleation rates is achieved with the homogenous nucleation theory of sulfuric acid (both homomolecularly and heteromolecularly) with separate coefficients in J = KSA1[H2SO4]2 + KSA2[H2SO4][Org]. In addition, sulfuric acid concentration only contributes a small fraction (<15%) to the total observed growth rate. The growth rates of 7-30 nm particles show positive correlation with the organic vapors oxidized by ozone, suggesting that particle nucleation may be controlled by the light intensity or OH concentration, while the growth of nucleation mode particles seems to be limited more by the concentrations of the organic precursors.

Wang, Z. B.; Hu, M.; Pei, X. Y.; Zhang, R. Y.; Paasonen, P.; Zheng, J.; Yue, D. L.; Wu, Z. J.; Boy, M.; Wiedensohler, A.

2015-02-01

132

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2014-10-01

133

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

Code of Federal Regulations, 2010 CFR

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2010-10-01

134

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

Code of Federal Regulations, 2011 CFR

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2011-10-01

135

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

Code of Federal Regulations, 2012 CFR

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2012-10-01

136

49 CFR 195.581 - Which pipelines must I protect against atmospheric corrosion and what coating material may I use?  

Code of Federal Regulations, 2013 CFR

...must I protect against atmospheric corrosion and what coating material may I...HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.581 Which pipelines...must I protect against atmospheric corrosion and what coating material may...

2013-10-01

137

Studies on nanosecond pulsed atmospheric pressure discharge with particle-in-cell Monte Carlo collision simulation  

SciTech Connect

Nanosecond pulsed atmospheric pressure discharge becomes an active research topic because of its promising prospect of applications in many areas. To understand its dynamics, the discharge process was studied by one-dimensional implicit particle-in-cell Monte Carlo collision (PIC-MCC) simulation coupled with a particle renormalization algorithm, in which multiple electron Monte Carlo collisions per step were considered to improve the computation efficiency. In the simulation, the effects of discharge conditions such as plateau voltage, pulse rise time, and initial charged particle density were investigated. It is found that the plateau voltage in the pulse waveform is a major factor controlling the final charged particle density in the plasma bulk, and the built-up time and steady thickness of cathode sheath are proportional to the pulse rise time, whereas reversely proportional to the initial charged particle density.

Yang Chenguang; Duan Lian; Xu Yongyue; Wang Xinbing; Zuo Duluo [Wuhan National Laboratory for Optoelectronics and College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

2012-09-15

138

Fine particle receptor modeling in the atmosphere of Mexico City.  

PubMed

Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass. PMID:20066907

Vega, Elizabeth; Lowenthal, Douglas; Ruiz, Hugo; Reyes, Elizabeth; Watson, John G; Chow, Judith C; Viana, Mar; Querol, Xavier; Alastuey, Andrés

2009-12-01

139

Investigation of surface discharges on different polymeric materials under HVAC in atmospheric air  

Microsoft Academic Search

Surface discharge on dielectric materials seriously restricts the performance of many electrical and electronic systems. Based on Pockels electro-optic effect, the surface discharge on polymeric insulating materials has been investigated under HVAC in Atmospheric Air. Different polymer materials such as polyimide (PI), polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF) films are employed. One single cycle of sinusoidal HVAC with peak

Hai-Bao Mu; Guan-Jun Zhang; Y. Komiyama; S. Suzuki; H. Miyake; Y. Tanaka; T. Takada

2011-01-01

140

Field and laboratory studies of atmospheric reactive mercury: Gas-particle partitioning and sources  

NASA Astrophysics Data System (ADS)

Certain aspects of atmospheric reactive mercury (RM) source-receptor relationships are not well understood. The objective of this dissertation was to improve the understanding of these relationships in the following areas: (i) gas-particle partitioning, and; (ii) the local impacts of RM source emissions. A novel aerosol reactor was developed to study gas-particle partitioning of RM using synthetic atmospheric aerosol containing picogram concentrations of RM. The RM in the aerosol was collected in an offline mode with filters and sorbent, and analyzed with Thermal Desorption Analysis (TDA). The offline-TDA collection and analysis method was compared with a commercial real time ambient mercury analyzer and two wet analysis methods using ambient measurements. The offline-TDA method performed well in comparison to the established techniques. The dependencies of gas-particle partitioning coefficients upon temperature and particle composition were determined and parameterized from field studies and laboratory experiments. The volatility of RM increased with ambient temperature in urban aerosol and laboratory aerosol of ammonium sulfate and adipic acid. The dependence of RM gas-particle partitioning on particle composition were determined using synthetic atmospheric aerosol generated in the laboratory. RM partitioned predominantly to the particle phase in particles of sodium nitrate, sodium chloride and potassium chloride, but was much more volatile in particles made of ammonium sulfate, levoglucosan and adipic acid. The impacts of RM sources on local receptors were studied in southern Wisconsin and Mexico City. RM measurements were made over a year in Milwaukee, WI (urban) and Devil's Lake State Park, WI (rural). An urban excess of all three mercury species was detected in Milwaukee, WI. The urban excess was attributed to a higher density of mercury emissions in the Milwaukee, WI-Chicago, IL area. The impact of local sources of RM on both sites was found to dominate the atmospheric concentrations. PHg and RGM measurements were made in Mexico City over 2.5 weeks. Diurnal concentration variations with nocturnal maxima pointed to nightly transport of air into the city from the industrial area to the north. RM partitioned predominantly to the particle phase in most of the plumes.

Rutter, Andrew Philip

141

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

SciTech Connect

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01

142

Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics  

NASA Astrophysics Data System (ADS)

Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Source estimation via Markov Chain Monte Carlo is applied to a suite of sensitivity simulations, and the global mean emissions are estimated for the example problem of bacteria-containing aerosol particles. We present an analysis of the uncertainties in the global mean emissions, and a partitioning of the uncertainties that are attributable to particle size, activity as cloud condensation nuclei (CCN), the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. For this example, uncertainty due to CCN activity or to a 1 ?m error in particle size is typically between 10% and 40% of the uncertainty due to observation uncertainty, as measured by the 5-95th percentile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mixed-phase clouds is as high as 10-20% of that attributable to observation uncertainty. Taken together, the four model parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the observations. This was a surprisingly large contribution from model uncertainty in light of the substantial observation uncertainty, which ranges from 81-870% of the mean for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

Burrows, S. M.; Rayner, P. J.; Butler, T.; Lawrence, M. G.

2013-06-01

143

Aging of organic materials around high-energy particle accelerators  

NASA Astrophysics Data System (ADS)

Around particle accelerators used for fundamental research on the basic structure of matter, materials and components are exposed to ionizing radiation caused by beam losses in the proton machines and by synchrotron radiation in the lepton machines. Furthermore, with the high-energy and high-intensity collisions produced from future colliders, radiation damage is also to be expected in particle-physics detectors. Therefore, for a safe and reliable operation, the radiation aging of most of the components has to be assessed prior to their selection. An extensive radiation-damage test program has been carried out at CERN for decades on a routine basis and many results have been published. The tests have mainly concentrated on magnet-coil insulations and cable-insulating materials; they are carried out in accordance with the IEC 544 standard which defines the mechanical tests to be performed and the methods of degradation evaluation. The mechanical tests are also used to assess the degradation of composite structural materials. Moreover, electrical properties of high-voltage insulations and optical properties of organic scintillators and wave guides have also been studied. Our long-term experience has pointed out many parameters to be taken into account for the estimate of the lifetime of components in the radiation environment of our accelerators. One of the main parameters is the dose-rate effect, but the influence of other parameters has sometimes to be taken into account.

Tavlet, Marc

1997-08-01

144

Processing of atmospheric particles caught in the act via STXM/NEXAFS  

NASA Astrophysics Data System (ADS)

Atmospheric aerosols are an important focus of environmental research due to their effect on climate and human health. Among their main constituents are mineral dust and organic particles. Both types of particles directly and indirectly affect our climate through scattering and absorption of radiation and through acting as cloud condensation nuclei respectively. Organic particles are also of significant concern with respect to their health effects. Mineral dust particles in addition serve as a primary external iron source to the open ocean and the bioavailability of iron from these particles is highly dependent on the oxidation state of the metal. The environmental impact of atmospheric particles depends on their physical and chemical properties, which might change upon chemical ageing. In this study we therefore investigated the changes in chemical composition and morphology of mineral dust and organic particle proxies (Arizona test dust and shikimic acid, respectively) upon in situ exposure to ozone or nitrogen oxides in presence of humidity. This was achieved by monitoring changes at the C and O K-edges as well as the metal L-edges via scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Measurements were conducted at the PolLux beamline at Swiss Light Source. All experiments were conducted in an environmental micro reactor, designed specifically for the end station, to enable the investigation in situ. We observed oxidation of shikimic acid particles in situ during exposure to ozone at different humidities, whereby humidity was found to be a critical factor controlling the rate of the reaction. We also obtained well resolved iron distribution maps from the individual submicrometer size mineral dust particles before and after exposure to nitrogen oxides.

Steimer, S.; Lampimäki, M.; Grzinic, G.; Coz, E.; Watts, B.; Raabe, J.; Ammann, M.

2012-12-01

145

The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles.  

PubMed

The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

Cooney, Daniel J; Hickey, Anthony J

2008-01-01

146

Force models for particle-dynamics simulations of granular materials  

SciTech Connect

Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.

Walton, O.R.

1994-12-01

147

Development progress of the Materials Analysis and Particle Probe.  

PubMed

The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques. PMID:25430248

Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St

2014-11-01

148

Development progress of the Materials Analysis and Particle Probea)  

NASA Astrophysics Data System (ADS)

The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.

Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.

2014-11-01

149

Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX  

NASA Astrophysics Data System (ADS)

A study was conducted in Houston, TX focusing on rare earth elements (REEs) in atmospheric fine particles and their sources. PM 2.5 samples were collected from an ambient air quality monitoring site (HRM3) located in the proximity of a large number of oil refineries and petrochemical industries to estimate the potential contributions of emissions from fluidized-bed catalytic cracking operations to ambient fine particulate matter. The elemental composition of ambient PM 2.5, several commercially available zeolite catalysts, and local soil was measured after microwave assisted acid digestion using inductively coupled plasma—mass spectrometry. Source identification and apportionment was performed by principal component factor analysis (PCFA) in combination with multiple linear regression. REE relative abundance sequence, ratios of La to light REEs (Ce, Pr, Nd, and Sm), and enrichment factor analysis indicated that refining and petrochemical cat cracking operations were predominantly responsible for REE enrichment in ambient fine particles. PCFA yielded five physically meaningful PM 2.5 sources: cat cracking operations, a source predominantly comprised of crustal material, industrial high temperature operations, oil combustion, and sea spray. These five sources accounted for 82% of the total mass of atmospheric fine particles (less carbon and sulfate). Factor analysis confirmed that emissions from cat cracking operations primarily contributed to REE enrichment in PM 2.5 even though they comprised only 2.0% of the apportioned mass. Results from this study demonstrate the need to characterize catalysts employed in the vicinity of the sampling stations to accurately determine local sources of atmospheric REEs.

Kulkarni, Pranav; Chellam, Shankararaman; Fraser, Matthew P.

150

Reports of workshops on Probe Measurements of Particles and Radiation in the Atmosphere of Titan  

NASA Technical Reports Server (NTRS)

The planned 1995 joint ESA-NASA Cassini mission to the Saturnian system will include an atmospheric probe to be dropped into the atmosphere of Titan for in situ measurements during descent. Because of the unique properties of the Titan atmosphere it is necessary to consider the peculiar requirements for such measurements and applicable techniques. The proceedings of two workshops dealing with the measurement of particles and radiation in the atmosphere of Titan are presented in two parts. The first part dealt with the measurement of particulate matter in the atmosphere of Titan. The second part dealt with the measurement of radiation in the atmosphere of Titan. The proceedings were first published and distributed informally, and are presented with only minor editorial changes. In the report of the particulate matter workshop, discussions of the mission background, the importance of the measurements, and descriptions of the desired information are followed by a description of appropriate measurement techniques and conclusions and recommendations. The proceeding for the workshop on radiation measurement and imaging contains a discussion of the importance of radiation measurements and imaging, and presents a summary of participants' experience with such measurements made from entry probes. This is followed by a description of appropriate measurement techniques and conclusions and recommendations.

Ragent, Boris (comp. and ed.); Swenson, Byron L. (comp. and ed.)

1990-01-01

151

Materials with a desired refraction coefficient can be created by embedding small particles into a given material  

E-print Network

Materials with a desired refraction coefficient can be created by embedding small particles-2602, USA Abstract A method is given for creating material with a desired refraction coefficient. The method consists of embedding into a material with known refraction coefficient many small particles of size a, ka

152

Particle densities of the pulsed dielectric barrier discharges in nitrogen at atmospheric pressure  

NASA Astrophysics Data System (ADS)

Pulsed dielectric barrier discharges (DBDs) have become a promising solution to generate atmospheric-pressure non-equilibrium plasmas. In this work, a one-dimensional fluid model is carried out to research particle densities of the pulsed nitrogen DBDs at atmospheric pressure. Averaged particle densities, time evolutions of axial distributions of particle densities and influences of discharge gap distance dg on the particle densities are systematically illustrated and discussed. The calculation results show that averaged electron densities are lower than averaged N2+ densities, but higher than other averaged ion densities. Time evolutions of axial distributions of electron, N+ and N2+ densities show two peaks during rising and falling phases of applied voltage when dg is 0.2?cm but present gradual increases during pulse width when dg is 0.6?cm, which are similar to those of N2(a?) and N2(B). Maximums of N3+ densities are close to the momentary cathode under dg of 0.2?cm but locate near the grounded electrode under dg of 0.6?cm, which are alike to those of N2(A) and N2(C). Besides, N4+ densities nearby the momentary anode are higher than those nearby the momentary cathode when dg is 0.2?cm. N(2D) has low averaged particle densities and complex time evolutions compared to N.

Pan, Jie; Li, Li

2015-02-01

153

Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth  

PubMed Central

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

2013-01-01

154

Particle size distributions of currently used pesticides in a rural atmosphere of France  

NASA Astrophysics Data System (ADS)

This work presents first data on the particle size distributions of current-used pesticides in the atmosphere. Ambient air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Centre Region (France). Most pesticides were accumulated in the fine (0.1-1 ?m) particle size fraction such as cyprodinil, pendimethalin, fenpropidin, fenpropimorph and spiroxamine. Other pesticides such as acetochlor and metolachlor presented a bimodal distribution with maximum concentrations in the ultrafine (0.03-0.1 ?m)-coarse (1-10 ?m) and in the ultrafine-fine size ranges, respectively. No pesticides were detected in the size fraction >10 ?m.

Coscollà, Clara; Yahyaoui, Abderrazak; Colin, Patrice; Robin, Corine; Martinon, Laurent; Val, Stéphanie; Baeza-Squiban, Armelle; Mellouki, Abdelwahid; Yusà, Vicent

2013-12-01

155

Particle acceleration and transport in reconnecting twisted loops in a stratified atmosphere  

E-print Network

Twisted coronal loops should be ubiquitous in the solar corona. Twisted magnetic fields contain excess magnetic energy, which can be released during magnetic reconnection, causing solar flares. The aim of this work is to investigate magnetic reconnection, and particle acceleration and transport in kink-unstable twisted coronal loops, with a focus on the effects of resistivity, loop geometry and atmospheric stratification. Another aim is to perform forward-modelling of bremsstrahlung emission and determine the structure of hard X-ray sources. We use a combination of magnetohydrodynamic (MHD) and test-particle methods. First, the evolution of the kinking coronal loop is considered using resistive MHD model, incorporating atmospheric stratification and loop curvature. Then, the obtained electric and magnetic fields and density distributions are used to calculate electron and proton trajectories using a guiding-centre approximation, taking into account Coulomb collisions. It is shown that electric fields in twist...

Gordovskyy, Mykola; Kontar, Eduard; Bian, Nicolas

2015-01-01

156

Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts  

NASA Astrophysics Data System (ADS)

The photooxidation of ?-pinene in the presence of NO 2, with and without added NaNO 3 seed particles, has been studied in a large-diameter flow tube. Particles formed by homogeneous nucleation and by condensation on the pre-existing seeds were sampled at various stages of the reaction, dried using four diffusion dryers, size selected at different mobility diameters ( dm) using a differential mobility analyzer (DMA), and characterized with a single particle mass spectrometer (SPLAT II). It was found that homogeneously nucleated particles are spherical, have a density ( ?) of 1.25 ± 0.02 g cm -3 (±2 ?) and contain a significant amount of organic nitrates. The mass spectra of the low volatility products condensed on the NaNO 3 seed particles were found to be virtually the same as in the case of homogeneous nucleation. The data show that the presence of even a submonolayer of organics on the NaNO 3 particles causes water retention that leads to a decrease in particle density and that the amount of water retained increases with organic coating thickness. Thicker coatings appear to inhibit water evaporation from the particle seeds altogether. This suggests that in the atmosphere, where low volatility organics are plentiful, some hygroscopic salts will retain water and have different densities and refractive indices than expected in the absence of the organic coating. This water retention combined with the organic shell on the particles can potentially impact light scattering by these particles and activity as cloud condensation nuclei (CCN), as well as heterogeneous chemistry and photochemistry on the particles.

Zelenyuk, Alla; Ezell, Michael J.; Perraud, Véronique; Johnson, Stanley N.; Bruns, Emily A.; Yu, Yong; Imre, Dan; Alexander, M. Liz; Finlayson-Pitts, Barbara J.

2010-03-01

157

Characterization of Organic Coatings on Hygroscopic Salt Particles and their Atmospheric Impacts  

SciTech Connect

The photooxidation of ?-pinene in the presence of NO2, with and without added NaNO3 seed particles, has been studied in a large diameter flow tube. Particles formed by homogeneous nucleation and by condensation on the pre-existing seeds were sampled at various stages of the reaction, dried using four diffusion dryers, size selected at different mobility diameters (dm) using a differential mobility analyzer (DMA), and characterized with a single particle mass spectrometer (SPLAT II). It was found that homogeneously nucleated particles are spherical, have a density (?) of 1.25 ± 0.02 g cm-3 (± 2 ?) and contain a significant amount of organic nitrates. The mass spectra of the low volatility products condensed on the NaNO3 seed particles were found to be virtually the same as in the case of homogeneous nucleation. The data show that the presence of even a submonolayer of organics on the NaNO3 particles causes water retention that leads to a decrease in particle density and that the amount of water retained increases with organic coating thickness. Thicker coatings appear to inhibit water evaporation from the particle seeds altogether. This suggests that in the atmosphere, where low volatility organics are plentiful, some hygroscopic salts will retain water and have different densities and refractive indices than expected in the absence of the organic coating. This water retention combined with the organic shell on the particles can potentially impact light scattering by these particles and activity as cloud condensation nuclei (CCN), as well as heterogeneous chemistry and photochemistry on the particles.

Zelenyuk, Alla; Ezell, Michael J.; Perraud, Veronique; Johnson, Stanley N.; Bruns, Emily; Yu, Yong; Imre, D.; Alexander, M. L.; Finlayson-Pitts, Barbara J.

2010-03-30

158

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect

Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

farquar, G; Leif, R

2008-09-12

159

Transient luminous event phenomena and energetic particles impacting the upper atmosphere: Russian space experiment programs  

Microsoft Academic Search

In Russia several space missions are now planned to study transient luminous events in the atmosphere and high-energy charged particles at satellite altitudes. The experimental goal is to investigate the origin of the high-energy electrons and gamma ray quanta for specific transient luminous events (TLEs) and their role in the ionosphere-magnetosphere system. Simultaneous measurements of electrons at the orbit of

M. I. Panasyuk; V. V. Bogomolov; G. K. Garipov; O. R. Grigoryan; Y. I. Denisov; B. A. Khrenov; P. A. Klimov; L. L. Lazutin; S. I. Svertilov; N. N. Vedenkin; I. V. Yashin; S. I. Klimov; L. M. Zeleny; V. S. Makhmutov; Y. I. Stozkov; N. S. Svirzhevsky; V. V. Klimenko; E. A. Mareev; Y. V. Shlyugaev; V. E. Korepanov; I. H. Park; H. I. Salazar; H. Rothkaehl

2010-01-01

160

COMPASS - COMparative Particle formation in the Atmosphere using Simulation chamber Study techniques  

NASA Astrophysics Data System (ADS)

The anthropogenic influence on climate and environment has increased strongly since industrialization about 150 yr ago. The consequences for the atmosphere became more and more apparent and nowadays affect our life quality on Earth progressively. Because of that it is very important to understand the atmospheric processes, on which these effects are based on, in detail. In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes such as particle formation online and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically with a residence time (xT (COMPASS 1) = 26.5 ± 0.3 min and xT (COMPASS 2) = 26.6 ± 0.4 min) at a typical flow rate of 15 L min-1 and a deposition rate (1.6 ± 0.8) × 10-5 s-1. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system a set of experiments was conducted at different conditions, i.e. urban and remote, enhancing ozone and terpenes as well as reducing sunlight. In the ozone enhanced ambient particle number and volume increased substantially at urban and remote conditions in a different strength. Solar radiation displayed a clear positive effect on particle number as well as terpene addition did at remote conditions. Therefore the system is a useful tool to investigate local precursors, the details of ambient particle formation at surface locations as well as future feedback processes.

Bonn, B.; Sun, S.; Haunold, W.; Sitals, R.; van Beesel, E.; dos Santos, L.; Nillius, B.; Jacobi, S.

2013-06-01

161

Sweep numerical method and mass transport analysis in atmospheric freeze drying of protein particles  

NASA Astrophysics Data System (ADS)

This work covers heat pump drying of protein with high quality and low cost. It consists of atmospheric freeze drying to keep product quality followed by evaporation to reduce time. A sweep numerical method was applied to predict the mass transport from the porous particle to gas. The maximum deviation between predictions and mass transfer data was below 4% indicating that the method well describes mass transport during protein drying.

Alves-Filho, Odilio

2010-10-01

162

Femtosecond Laser Ablation Particle Introduction to a Liquid Sampling-Atmospheric Pressure Glow Discharge Ionization Source  

Microsoft Academic Search

This work describes the use of a compact, liquid sampling atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding M\\/M > 160,000. The LS-APGD source generates a low-power plasma between

Anthony J. Carado; C. Derrick Quarles; Andrew M. Duffin; Charles J. Barinaga; Richard Russo; R. Kenneth Marcus; Gregory C. Eiden; David W. Koppenaal

2012-01-01

163

Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity  

SciTech Connect

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by ?-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ? 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ? 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ? 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ? 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

2013-05-14

164

Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics  

SciTech Connect

Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81% to 870% for each of ten ecosystems for this case study. The effects of these and other model parameters in contributing to the uncertainties in the transport of atmospheric aerosol particles should be treated explicitly and systematically in both forward and inverse modelling studies.

Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

2013-06-04

165

Evidence for propagation of aerobic bacteria in particles suspended in gaseous atmospheres. [Terrestrial microorganism contamination of Jupiter atmosphere  

NASA Technical Reports Server (NTRS)

One factor involved in the possibility that airborne microbes might contaminate the Jovian atmosphere is whether microbes have the capacity to propagate in air. Prior to these studies, the evidence was that the airborne state was lethal to microbes. An aerosol of aerobic bacteria was mixed with another containing C-14-glucose, and the presence of C-14-CO2 was subsequently detected, which indicates that the airborne cells were metabolically active. In the same type of experiment, it was shown that thymidine was incorporated into the acid-insoluble fraction of samples, indicating the formation of DNA. It was also shown, both by an increase in the numbers of viable cells and a parallel increase in particle numbers, that at least two new generations of cells could occur. Evidence for propagation of anaerobic bacteria has so far been negative.

Dimmick, R. L.; Chatigny, M. A.; Wolochow, H.; Straat, P.

1977-01-01

166

Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes  

NASA Astrophysics Data System (ADS)

If surface-active organic molecules are present as surface films, the transfer of gases into the atmospheric water system could be impeded, evaporation could be slowed, and the aqueous chemical reactions could be influenced. The results of new measurements of the surface tension of aqueous solutions of common atmospheric organic compounds (beta-pinene, n-hexanol, eugenol, and anethole) are reported, and it is shown that the compounds produce films with properties similar to those of the better known surfactants. It is concluded that organic films are probably common on atmospheric aerosol particles and that they may occur under certain circumstances on fog droplets, cloud droplets, and snowflakes. If they are present, they will increase the lifetimes of aerosol particles, fog droplets, and cloud droplets, both by inhibiting water vapor evaporation and by reducing the efficiency with which these atmospheric components are scavenged. It is thought likely that the transport of gaseous molecules into and out of the aqueous solution will be impeded by factors of several hundred or more when organic films are present.

Gill, P. S.; Graedel, T. E.; Weschler, C. J.

1983-05-01

167

Atmospheric fluid bed cogeneration air heater experiment: Material evaluations  

SciTech Connect

Cogeneration and power cycles involving indirect-fired gas turbines are being investigated to achieve high electric efficiency using coal. Studies have shown the potential of these systems, but few have been built. One of the uncertainties is the selection of suitable heat exchanger materials which can be used at the high temperatures required. The purpose of the AFB Cogeneration Air Heater Experiment was to determine which materials would be suitable for use in a fluid bed system with metal temperatures up to about 1600{degree}F (871{degree}C). Many candidate materials were tested in a 6'x 6' bubbling fluidized bed combustor for up to 2000 hours at temperatures up to 1600{degree}F (871{degree}C). This report presents the results of Combustion Engineering's testing and analysis and an evaluation of suitable materials. The best materials in this test program were SS310, HR3C, Incoloy 800H, and 8XA. Used for a fluidized bed air heater, any of these materials would be expected to last at least 10 to 20 years if the actual fluidized bed environment were not worse (more corrosive or erosive) than that in the 6'x 6' test facility.

Roczniak, W.R.; Turek, D.G. (ABB Combustion Engineering Systems, Chattanooga, TN (United States))

1991-05-01

168

Atmospheric amines - Part II. Thermodynamic properties and gas/particle partitioning  

NASA Astrophysics Data System (ADS)

Amines enter the atmosphere from a wide range of sources, but relatively little is known about their atmospheric behavior, especially their role in gas/particle partitioning. In Part I of this work ( Ge et al., 2011) a total of 154 amines, 32 amino acids and urea were identified as occurring in the atmosphere, based upon a survey of the literature. In this work we compile data for the thermodynamic properties of the amines which control gas/particle partitioning (Henry's Law constant, liquid vapor pressure, acid dissociation constant, activity coefficient and solubility in water), and also estimate the solid/gas dissociation constants of their nitrate and chloride salts. Prediction methods for boiling point, liquid vapor pressure, acid dissociation constant and the solubility of the amines in water are evaluated, and used to estimate values of the equilibrium constants where experimental data are lacking. Partitioning of amines into aqueous aerosols is strongly dependent upon pH and is greatest for acidic aerosols. For several common amines the tendency to partition to the particle phase is similar to or greater than that of ammonia. Our results are presented as tables of values of thermodynamic equilibrium constants, which are also incorporated into the Extended Aerosol Inorganics Model ( E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php) to enable gas/aerosol partitioning and other calculations to be carried out.

Ge, Xinlei; Wexler, Anthony S.; Clegg, Simon L.

2011-01-01

169

Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash  

SciTech Connect

Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

2013-01-21

170

Trends on atmospheric new particle formation - 16 years of observations in boreal forest  

NASA Astrophysics Data System (ADS)

Research on new particle formation (NPF) in the atmosphere has been very active during the last two decades. This phenomenon has been observed in various environments around the world [1]. One of the longest and most comprehensive data sets of atmospheric aerosol properties is available from the University of Helsinki SMEAR II station in Hyytiälä, southern Finland [2]. Ambient aerosol size distributions have been measured at Hyytiälä since January 1996 with a DMPS system covering particle size range 3 - 1000 nm (3 - 500 nm until end of 2004; see Aalto et al., 2001 [3]). Aerosol measurements are complemented by measurements of basic meteorological variables, trace gas concentrations (SO2, O3, CO, CO2, NO, NOx), and quantities related to the soil and forest surrounding the station. Until end of 2011 we have observed 1337 days with regional NPF events, i.e. formation of new 3 nm particles followed by particle growth to sizes of 30-50 nm typically within 10-20 hours. The number of nucleation events detected at Hyytiälä varies from year to year in the range 60 - 120 per year. The reasons behind this quite substantial variation are not yet found. We have, however, established that the variation of the galactic cosmic ray intensity due to the 11 year solar cycle is not connected to the particle formation intensity at Hyytiälä [4]. Mean values and observed trends in the quantities relative to NPF are listed in Table 1. There is no significant trend in the formation rates of 3 nm particles. In contrast, the growth rates are increasing by 3% per year relative to their 16 year mean value. Concentrations of sulphuric acid, which is the most important precursor vapor in atmospheric NPF, can be approximated with a simple proxy model [5]. This proxy takes into account the source from SO2 and the condensation sink by pre-existing particles. Both the SO2 concentration and CS are decreasing in Hyytiälä, but the relative change in SO2 is larger. This leads to a decreasing trend of 4% per year also in the H2SO4 proxy concentration, and suggests that the observed increase in the particle growth rates could be caused by increased concentrations of organic compounds and their oxidation products. As the emissions of these biogenic organic compounds are highly temperature dependent, increasing global temperatures can lead to a larger fraction of newly formed particles reaching cloud condensation nuclei sizes and this way NPF becoming more significant to climate.

Nieminen, T.; Dal Maso, M.; Petäjä, T.; Aalto, P. P.; Kerminen, V.-M.; Hari, P.; Kulmala, M.

2012-04-01

171

Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient.  

PubMed

The lidar of the Radio Science Center for Space and Atmosphere (RASC; Kyoto, Japan) make use of two pure rotational Raman (MR) signals for both the measurement of the atmospheric temperature profile and the derivation of a temperature-independent Raman reference signal. The latter technique is new and leads to significant smaller measurement uncertainties compared with the commonly used vibrational Raman lidar technique. For the measurement of temperature, particle extinction coefficient, particle backscatter coefficient, and humidity simultaneously, only four lidar signal are needed the elastic Cabannes backscatter signal, two RR signals, and the vibrational Raman water vapor signal. The RASC lidar provides RR signals of unprecedented intensity. Although only 25% of the RR signal intensities can be used with the present data-acquisition electronics, the 1-s -statistical uncertainty of nighttime temperature measurements is lower than for previous systems and is < 1K up to 11-km height for, e.g., a resolution of 500 m and 9 min. In addition, RR measurements in daytime also have become feasible. PMID:12510935

Behrendt, Andreas; Nakamura, Takuji; Onishi, Michitaka; Baumgart, Rudolf; Tsuda, Toshitaka

2002-12-20

172

Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere  

NASA Astrophysics Data System (ADS)

Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits and analyzed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometers in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should to be assessed.

Cao, J.; Li, Y.; Jiang, T.; Hu, G.

2014-11-01

173

Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis  

SciTech Connect

Secondary organic aerosols (SOA) formed in the atmosphere from the condensation of semivolatile oxidation products are a significant component of airborne particles which have deleterious effects on health, visibility, and climate. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS) is applied for the first time to the identification of organics in particles from laboratory systems as well as from ambient air. SOA were generated in the laboratory from the ozonolysis of r-pinene and isoprene, as well as from NO3 oxidation of r-pinene, and ambient air was sampled at forested and suburban sites. Particles were collected by impaction on ZnSe disks, analyzed by Fourier transform-infrared spectroscopy (FT-IR) and then transferred to an ASAP-MS probe for further analysis. ASAP-MS data for the laboratory-generated samples show peaks from wellknown products of these reactions, and higher molecular weight oligomers are present in both laboratory and ambient samples. Oligomeric products are shown to be present in the NO3 reaction products for the first time. A major advantage of this technique is that minimal sample preparation is required, and complementary information from nondestructive techniques such as FT-IR can be obtained on the same samples. In addition, a dedicated instrument is not required for particle analysis. This work establishes that ASAP-MS will be useful for identification of organic components of SOA in a variety of field and laboratory studies.

Bruns, Emily A.; Perraud, Veronique M.; Greaves, John; Finlayson-Pitts, Barbara J.

2010-07-15

174

Dysprosium Doped Dielectric Materials for Sintering in Reducing Atmospheres  

Microsoft Academic Search

Substitution of Dy rare earth ions was studied in Ba(Ti,Zr)O3 dielectric materials, using thermogravimetry, X-ray diffraction and dielectric measurements. Dy3+ ions enter both the A- and the B-sites of the perovskite structure, however, the solubility on B-sites is up to 9 mol %, whereas it is only 2.5 mol% on A-sites. Dy can be easily shifted from A- to B-sites

Wen-Hsi Lee; W. A. Groen; Herbert Schreinemacher; Detlev Hennings

2000-01-01

175

Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber  

NASA Astrophysics Data System (ADS)

Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict new aerosol formation in the lower troposphere, developed by Boy, et al. (2006). We first evaluate the modelled results with measurements, and further we investigate the influence of different order of magnitude of terpene mixing ratios, especially isoprene and monoterpenes to the most important parameter of new particles formation, i.e. the formation rate (J1). Also, the influence of varying organic source rates on the sulphuric acid concentration available for particle formation is discussed. M. Boy et al., (2006). Atmos. Chem. Phys., 6, 4499-4517. M. Kulmala et al., (2004). Atmos. Chem. Phys., 4, 557-562. P. Tunved et al., (2006). Science, 14, 261-263. Th. F. Mentel et al., (2009). Atmos. Chem. Phys., 9, 4387-4406.

Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

2012-12-01

176

Determination of iodine and bromine in coal and atmospheric particles by inductively coupled plasma mass spectrometry.  

PubMed

Bromine and iodine in atmospheric particles or coal can cause environmental problems such as destruction of ozone in the atmosphere; therefore, the presence of these compounds has recently received increased attention. Here, a rapid and reliable method for the simultaneous determination of total bromine and iodine using ICP-MS analysis is described. Samples were dissolved in mixtures of 5 mL of HNO(3) and 2 mL of H(2)O(2) in a high pressure microwave digester. The solution was then oxidized by per-sulfate (Na(2)S(2)O(8)) in addition to a small amount of silver nitrate, after which the total bromine and iodine were measured simultaneously by ICP-MS. The signal memory effects of bromine and iodine during analysis were effectively decreased by washing with a new mixture agent (2% alcohol acidic solution, pH 1-2 adjusted with HCl). The detection limits for bromine and iodine using this method were about 3.2 microg L(-1) and 1.1 microg L(-1), respectively. Additionally, the spike recoveries were between 78.7% and 121% for bromine and iodine analysis, while the relative standard deviations ranged from 4.3% to 9.7%, and from 1.5% to 3.4% for bromine and iodine, respectively. The results of this study indicate that the method described here is suitable for the analysis of micro-amounts of bromine and iodine in atmospheric particles and coal samples. PMID:20188948

Sun, Mingxing; Gao, Yunchuan; Wei, Biwen; Wu, Xiaowei

2010-04-15

177

Measurements of the atmospheric radiation environment from CREAM and comparisons with models for quiet time and solar particle events  

Microsoft Academic Search

Flight data on neutron fluxes and dose rates obtained over a wide range of latitudes and altitudes are compared with several models of atmospheric radiation for both quiet-time and solar particle events. For quiet-time, general agreement between the models and measurements is within about 25%. Geomagnetic disturbances can increase atmospheric cosmic ray fluxes by up to 10% due to suppression

Clive Dyer; Fan Lei; Alex Hands; Simon Clucas; Bryn Jones

2005-01-01

178

Measurement of some potentially hazardous materials in the atmosphere of rubber factories.  

PubMed Central

Two separate topics of work are outlined: methods for the measurement of chlorinated monomers in PVC and polychloroprene, and also methods for the measurement of these materials in factory air. Typical results which have been obtained in supplies of raw materials, in finished products, and in the working atmosphere at manufacturing operations are given. The second topic concerns the measurement of benzo[a]pyrene in the atmosphere of a tire manufacturing plant. This material is present in trace quantities in the mineral oils and carbon blacks used by the industry. The atmospheric concentrations present at various processes in this plant were measured on a daily basis over a period of two years, and the results obtained compared with results taken concurrently from an outside air station. It is shown that no significant quantities of benzo[a]pyrene are produced by tire manufacturing operations. Images FIGURE 1. FIGURE 2. FIGURE 4. FIGURE 5. PMID:1026396

Nutt, A

1976-01-01

179

Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests  

NASA Astrophysics Data System (ADS)

Oxidation of isoprene is an important source of secondary organic material (SOM) in atmospheric particles, especially in areas such as the Amazon Basin. Information on the viscosities, diffusion rates, and mixing times within isoprene-derived SOM is needed for accurate predictions of air quality, visibility, and climate. Currently, however, this information is not available. Using a bead-mobility technique and a poke-flow technique combined with fluid simulations, the relative humidity (RH)-dependent viscosities of SOM produced from isoprene photo-oxidation were quantified for 20-60 ?m particles at 295 ± 1 K. From 84.5 to 0% RH, the viscosities for isoprene-derived SOM varied from ~2 × 10-1 to ~3 × 105 Pa s, implying that isoprene-derived SOM ranges from a liquid to a semisolid over this RH range. These viscosities correspond to diffusion coefficients of ~2 × 10-8 to ~2 × 10-14 cm2 s-1 for large organic molecules that follow the Stokes-Einstein relation. Based on the diffusion coefficients, the mixing time of large organic molecules within 200 nm isoprene-derived SOM particles ranges from approximately 0.1 h to less than 1 s. To illustrate the atmospheric implications of this study's results, the Amazon Basin is used as a case study for an isoprene-dominant forest. Considering the RH range observed and with some assumptions about the dominant chemical compositions of SOM particles in the Amazon Basin, it is likely that SOM particles in this region are liquid and reach equilibrium with large gas-phase organic molecules on short time scales, less than or equal to approximately 0.1 h.

Song, M.; Liu, P. F.; Hanna, S. J.; Martin, S. T.; Bertram, A. K.

2015-01-01

180

Particle size distribution of halogenated flame retardants and implications for atmospheric deposition and transport.  

PubMed

This study investigates the distribution of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and a group of novel flame retardants (NFRs) on atmospheric aerosols. Two high volume cascade impactors were used to collect particulate fractions of ambient air over a one year period at urban and rural sites. The majority of FRs were found on the finest aerosols (<0.95 ?m). Concentrations of HBCD were higher than those of ?PBDEs. Moreover, we noted seasonality and spatial differences in particle size distributions, yet a large portion of the observed differences were due to differences in particulate matter (PM) itself. When normalized by PM, the size distributions of the FRs exhibited much greater heterogeneity. Differences existed between the FR distributions by molecular weight, with the higher molecular weight FRs (e.g., BDE-209, Dechlorane Plus) distributed more uniformly across all particulate size fractions. The seasonal, spatial, and compound-specific differences are of crucial importance when estimating dry and wet deposition of FRs as smaller aerosols have longer atmospheric residence times. Estimated wet and dry deposition of four representative FRs (BDE-47, BDE-209, HBCD, and Dechlorane Plus) using size-segregated aerosol data resulted in lower deposition estimates than when bulk aerosol data were used. This has implications for estimates of long-range atmospheric transport and atmospheric residence times, as it suggests that without size-specific distributions, these parameters could be underestimated for FRs. PMID:25380095

Okonski, Krzysztof; Degrendele, Céline; Melymuk, Lisa; Landlová, Linda; Kuku?ka, Petr; Vojta, Simon; Kohoutek, Ji?í; Cupr, Pavel; Klánová, Jana

2014-12-16

181

Particle excitation, airglow and H2 vibrational disequilibrium in the atmosphere of Jupiter  

NASA Technical Reports Server (NTRS)

The extreme ultraviolet EUV emission produced by particle excitation of the hydrogen atmospheres of Jupiter and Saturn is examined using model calculations to determine the nature of the energy deposition process and the effect of such processes on atmospheric structure. Tasks ranging from examination of phenomenologically related processes on Saturn and Titan to analysis of experimental laboratory data required to allow accurate modeling of emissions from hydrogenic atmospheres are investigated. An explanation of the hydrogen H Ly(alpha) bulge in Jupiter's emission from the equatorial region is presented. It is proposed that Saturn, rather then Titan is the major source of the extended hydrogen cloud. The atomic hydrogen detected at the rings of Saturn may originate predominantly from the same source. A cross calibration is obtained between the Pioneer 10 EUV photometer and the Voyager EUV spectrometers, thus providing a direct measure of the temporal morphology of Jupiter between a minimum and a maximum in solar activity. Atomic and molecular data required for the research program are analyzed. An extrapolation of conditions in the upper atmospheres of Jupiter and Saturn produces a predicted condition at Uranus in terms of excitation and hydrogen escape rates that may be observed at Voyager-Uranus encounter.

Shemansky, D. E.

1984-01-01

182

“Waves” vs. “particles” in the atmosphere's phase space: A pathway to long-range forecasting?  

PubMed Central

Thirty years ago, E. N. Lorenz provided some approximate limits to atmospheric predictability. The details—in space and time—of atmospheric flow fields are lost after about 10 days. Certain gross flow features recur, however, after times of the order of 10–50 days, giving hope for their prediction. Over the last two decades, numerous attempts have been made to predict these recurrent features. The attempts have involved, on the one hand, systematic improvements in numerical weather prediction by increasing the spatial resolution and physical faithfulness in the detailed models used for this prediction. On the other hand, theoretical attempts motivated by the same goal have involved the study of the large-scale atmospheric motions' phase space and the inhomogeneities therein. These “coarse-graining” studies have addressed observed as well as simulated atmospheric data sets. Two distinct approaches have been used in these studies: the episodic or intermittent and the oscillatory or periodic. The intermittency approach describes multiple-flow (or weather) regimes, their persistence and recurrence, and the Markov chain of transitions among them. The periodicity approach studies intraseasonal oscillations, with periods of 15–70 days, and their predictability. We review these two approaches, “particles” vs. “waves,” in the quantum physics analogy alluded to in the title of this article, discuss their complementarity, and outline unsolved problems. PMID:11875201

Ghil, Michael; Robertson, Andrew W.

2002-01-01

183

Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions  

PubMed Central

The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth’s climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl] >  ? 1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl] <  ? 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions. PMID:20921372

Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

2010-01-01

184

Correlation of Upper-Atmospheric 7-Be with Solar Energetic Particle Events  

NASA Technical Reports Server (NTRS)

A surprisingly large concentration of radioactive 7-Be was observed in the upper atmosphere at altitudes above 320 km on the LDEF satellite that was recovered in January 1990. We report on follow-up experiments on Russian spacecraft at altitudes of 167 to 370 km during the period of 1996 to 1999, specifically designed to measure 7-Be concentrations in low earth orbit. Our data show a significant correlation between the 7-Be concentration and the solar energetic proton fluence at Earth, but not with the overall solar activity. During periods of low solar proton fluence, the concentration is correlated with the galactic cosmic ray fluence. This indicates that spallation of atmospheric N by both solar energetic particles and cosmic rays is the primary source of 7-Be in the ionosphere.

Phillips, G. W.; Share, G. H.; King, S. E.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskij, B. M.; Kulikauskas, V. S.; Rose, M. Franklin (Technical Monitor)

2001-01-01

185

Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells  

NASA Astrophysics Data System (ADS)

Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

Cuglietta, Mark; Kesler, Olivera

2012-06-01

186

Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.  

PubMed

The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 ?m. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings. PMID:24793329

Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim

2014-07-15

187

Correlation of Upper-Atmospheric Be-7 With Solar Energetic Particle Events  

NASA Technical Reports Server (NTRS)

Surprisingly large concentrations of radioactive Be-7 have been found in the upper atmosphere at levels of one to three orders of magnitude greater than observed in the stratosphere. This phenomenon was originally observed on the LDEF satellite which was recovered in January 1990 following a period of extremely high solar activity in the fall of 1989. We report on follow-up measurements on the Russian COSMOS and RESURS F1 spacecraft during the period of 1996 to 1999 which was a period of minimal to moderate solar activity. The Be-7 concentrations observed on these flights were down substantially from the LDEF observations but were still one to two orders of magnitude higher than stratospheric levels. A significant correlation is observed between the Be-7 activity and the combined fluence of solar energetic protons (SEP) and galactic cosmic-ray (GCR) protons. The Be-7 activity is not correlated with overall solar activity as represented by the solar x-ray flux. We discuss possible mechanisms for the solar proton correlation. However, it is likely that the Be-7 is ionized and it is unknown how this will affect the calculations. There were several large solar flares in the fall of 1989 that produced extraordinarily intense solar particle events at the Earth and record geophysical disturbances. These may have acted to increase production of Be-7 from spallation in the stratosphere and also to enhance transport to higher altitudes from the effects of heating and expansion of the upper atmosphere. Be-7 in the upper atmosphere may also have been produced directly at the Sun. Be-7 and Li-7 are produced in solar flares when accelerated alpha-particles fuse with He-4 in the solar atmosphere. Under optimistic assumptions for Sun to Earth transport and subsequent insertion into low Earth orbit, a Be-7 density of about 10(exp -7) atom/cubic cm at 310 km is estimated.

Phillips, G. W.; Share, G. H.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskjj, B. M.; Kulikauskas, V. S.; Rose, M. Franklin (Technical Monitor); Rose, M. Franklin (Technical Monitor)

2001-01-01

188

The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China  

NASA Astrophysics Data System (ADS)

Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00-18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.

Wang, Z. B.; Hu, M.; Mogensen, D.; Yue, D. L.; Zheng, J.; Zhang, R. Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z. J.; Wiedensohler, A.; Boy, M.

2013-11-01

189

Soft materials design via self assembly of functionalized icosahedral particles  

NASA Astrophysics Data System (ADS)

In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

Muthukumar, Vidyalakshmi Chockalingam

190

Exploring the Origin of High-Energy Particle Beams in the Atmosphere  

NASA Astrophysics Data System (ADS)

High-energy processes in the magnetosphere and atmosphere such as thunderstorm ground enhancements (TGEs), terrestrial gamma ray flashes (TGFs), and transient luminous events (TLEs) and recently discovered relativistic electron acceleration in the Earth's outer radiation belt trigger various dynamic processes in the Earth's environments and have broad astrophysical relevance. Investigation of the accelerated structures in the geospace plasmas can shed light on particle acceleration to much higher energy in the similar structures of space plasmas in the most distant objects in the universe. The Earth's broad environment is a real laboratory for high-energy astrophysics.

Chilingarian, Ashot A.

2014-11-01

191

Experimental study of the modification process of aerosol particles in the atmosphere  

NASA Astrophysics Data System (ADS)

In the present experimental study of the modification process of aerosol particles in the atmosphere in a freezing chamber filled with fog, the selection of a vapor-admittance regime allowed a variation of the electrical sign and magnitude of the fog charge. Results are presented for tests in which lycopodium, a widely-distributed natural aerosol of soil origin, was used as a solid aerosol, and water as a liquid aerosol. Attention was given to the electrification process for water drops during their fall in the artificial cloud medium, and to the variation of the speed of ozone concentration decrease with time.

Amiranashvili, A. G.; Gzirishvili, T. G.; Mirtskhulava, M. D.; Nekhotina, L. M.; Trofimenko, L. T.

192

An improved pulse-height analyzer for energetic particle measurements in the upper atmosphere  

NASA Technical Reports Server (NTRS)

An energetic particle spectrometer for measurements in the upper atmosphere by rocket is described. The system has two methods of processing data. One is a staircase generator using threshold detectors; the other is a peak detector. The system incorporates a logarithmic converter for better resolution at low amplitudes and better use of telemetry channels. The circuits are described and calibration procedures are given. Modifications are recommended for high flux environments. Appendices cover sampling error in the peak detector and modifications made to the receiver of the propagation experiment.

Dean, L.; Smith, L. G.

1982-01-01

193

Thermal and mechanical properties of ceramic blanket particle bed materials: Numerical derivation  

E-print Network

Thermal and mechanical properties of ceramic blanket particle bed materials: Numerical derivation thermal and mechanical properties of the ceramic breeder blanket particle bed materials is presented-strain behavior of the solid breeder blanket parti- cle bed materials have been experimentally studied [1

Abdou, Mohamed

194

Interaction of Fine Fe Particles with Structural Defects on {111} Faces of Synthetic Diamond Crystals in a Hydrogen Atmosphere  

Microsoft Academic Search

Data are presented on the interaction of fine Fe particles with structural defects on the octahedral faces of synthetic diamond crystals during catalyzed diamond gasification in a hydrogen atmosphere at 900°C. The defects were revealed by etching in molten NaNO3?. The results indicate that the penetration of metal particles into the crystal bulk is only possible at the outcrops of

V. M. Sonin

2004-01-01

195

The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany  

NASA Astrophysics Data System (ADS)

It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should be taken into account when studying the impact of new particles in climate feedback cycles.

Bonn, B.; Bourtsoukidis, E.; Sun, T. S.; Bingemer, H.; Rondo, L.; Javed, U.; Li, J.; Axinte, R.; Li, X.; Brauers, T.; Sonderfeld, H.; Koppmann, R.; Sogachev, A.; Jacobi, S.; Spracklen, D. V.

2014-10-01

196

The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany  

NASA Astrophysics Data System (ADS)

It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulphuric acid. However, the activation process of sulphuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt. Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulphuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilized Criegee intermediates (sCI). This novel laboratory derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during nighttime. Because of the RO2s lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but also for the activation process of new particle formation. This is supposed to have significant impact of atmospheric radical species on aerosol chemistry and should to be taken into account when studying the impact of new particles in climate feedback cycles.

Bonn, B.; Bourtsoukidis, E.; Sun, T. S.; Bingemer, H.; Rondo, L.; Javed, U.; Li, J.; Axinte, R.; Li, X.; Brauers, T.; Sonderfeld, H.; Koppmann, R.; Sogachev, A.; Jacobi, S.; Spracklen, D. V.

2013-10-01

197

Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere  

SciTech Connect

Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to adversely affect human health (Lighty et al., 2000; Pope and Dockery, 2006). Gan et al. (Gan et al., accepted) examined the indoor air quality aboard submarines and found that the diesel particulate matter concentrations exceeded the EPA 24 hour standard. Claeys et al. (Claeys et al., accepted) studied the importance and sources of secondary organic aerosol (SOA) in remote marine environment during a period of high biological activity. Methanesulphonate was the major SOA compound detected and there was no evidence for SOA from isoprene. The optical properties of gasoline and diesel vehicle particulate emissions and their relative contribution to radiative forcing was studied by Strawa et al. (Strawa et al., accepted).

Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

2009-12-11

198

Atmosphere  

NSDL National Science Digital Library

What is this atmosphere that surrounds the Earth? This instructional tutorial, part of an interactive laboratory series for grades 8-12, introduces students to the structure, effects, and components of the atmosphere. Here students investigate the composition of the atmosphere; effects of temperature, pressure, and ozone; the greenhouse effect; and how Earth compares with other planets. Interactive activities present students with opportunities to explore ideas and answer questions about the atmosphere, including its structure, the making of ozone, rocket launching, and measuring the atmosphere. Pop-up boxes provide additional information on topics such as dust, rain, and atmospheric composition. Students complete a final written review of six questions about the atmosphere. Copyright 2005 Eisenhower National Clearinghouse

University of Utah. Astrophysics Science Project Integrating Research and Education (ASPIRE)

2003-01-01

199

Particle impact damping: influence of material and size  

E-print Network

.06............................................................... 24 1 1. INTRODUCTION Particle impact damping (PID) is a method to increase structural damping by inserting particles in an enclosure attached to a vibrating structure. The particles absorb kinetic energy of the structure... have wide applications in vibration damping in a normal environment, i.e. under ambient temperature and pressure. However, they lose their effectiveness in very low and high temperature environments and degrade over time. Particle impact damping...

Marhadi, Kun Saptohartyadi

2005-02-17

200

(Bio)hybrid materials based on optically active particles  

NASA Astrophysics Data System (ADS)

In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

2014-03-01

201

Characterization of spatial impact of particles emitted from a cement material production facility on outdoor particle deposition in the surrounding community.  

PubMed

The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located -2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the < 38 microm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m2 x day) than at the background sites (13-17 mg/m2day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. PMID:22070034

Yu, Chang Ho; Fan, Zhihua; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

2011-10-01

202

Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community  

PubMed Central

The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3–4 weeks each) were conducted in 8–11 locations 200–800 m downwind of the facility. Background samples were concurrently collected in a remote area located ~2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the <38 ?m fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24–83 mg/m2 day) than at the background sites (13–17 mg/m2·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8–7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0–11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6–13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. PMID:22070034

Yu, Chang Ho; Fan, Zhihua (Tina); McCandlish, Elizabeth; Stern, Alan H.; Lioy, Paul J.

2014-01-01

203

The impact of atmospheric damage to materials on consumers: News you can use  

Microsoft Academic Search

Recent research on the mechanisms and rates of atmospheric damage to materials, sponsored by the National Acid Precipitation Assessment Program (NAPAP) and the US Environmental Protection Agency, has provided some new insights into the relative roles of wet and dry deposition of air pollutants on the useful lifetimes of objects normally exposed to outdoor weathering. While NAPAP was unable to

Lipfert

1991-01-01

204

Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles Ullrich, R., Hiranuma, N., Hoose, C., Möhler, O., Niemand, M., Steinke, I., Wagner, R. Aerosols of different nature induce microphysical processes of importance for the Earth's atmosphere. They affect not only directly the radiative budget, more importantly they essentially influence the formation and life cycles of clouds. Hence, aerosols and their ice nucleating ability are a fundamental input parameter for weather and climate models. During the previous years, the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber was used to extensively measure, under nearly realistic conditions, the ice nucleating properties of different aerosols. Numerous experiments were performed with a broad variety of aerosol types and under different freezing conditions. A reanalysis of these experiments offers the opportunity to develop a uniform parameterization framework of ice formation for many atmospherically relevant aerosols in a broad temperature and humidity range. The analysis includes both deposition nucleation and immersion freezing. The aim of this study is to develop this comprehensive parameterization for heterogeneous ice formation mainly by using the ice nucleation active site (INAS) approach. Niemand et al. (2012) already developed a temperature dependent parameterization for the INAS- density for immersion freezing on desert dust particles. In addition to a reanalysis of the ice nucleation behaviour of desert dust (Niemand et al. (2012)), volcanic ash (Steinke et al. (2010)) and organic particles (Wagner et al. (2010,2011)) this contribution will also show new results for the immersion freezing and deposition nucleation of soot aerosols. The next step will be the implementation of the parameterizations into the COSMO- ART model in order to test and demonstrate the usability of the framework. Hoose, C. and Möhler, O. (2012) Atmos. Chem. Phys. 12, 9817-9854 Niemand, M., Möhler, O., Vogel, B., Hoose, C., Connolly, P., Klein, H., Bingemer, H., DeMott, P.J., Skrotzki, J. and Leisner, T. (2012) J. Atmos. Sci. 69, 3077-3092 Steinke, I., Möhler, O., Kiselev, A., Niemand, M., Saathoff, H., Schnaiter, M., Skrotzki, J., Hoose, C. and Leisner, T. (2011) Atmos. Chem. Phys. 11, 12945-12958 Wagner, R., Möhler, O., Saathoff, H., Schnaiter, M. and Leisner, T. (2010) Atmos. Chem. Phys. 10, 7617-7641 Wagner, R., Möhler, O., Saathoff, H., Schnaiter, M. and Leisner, T. (2011) Atmos. Chem. Phys. 11, 2083-2110

Ullrich, Romy; Hiranuma, Naruki; Hoose, Corinna; Möhler, Ottmar; Niemand, Monika; Steinke, Isabelle; Wagner, Robert

2014-05-01

205

Comparison of isolation and quantification methods to measure humic-like substances (HULIS) in atmospheric particles  

NASA Astrophysics Data System (ADS)

Humic-like Substances (HULIS) comprise a significant fraction of the water-soluble organic aerosol mass and influence the cloud microphysical properties and climate effects of aerosols in the atmosphere. In this work, the most frequently used HULIS isolation and quantification methods including ENVI-18, HLB, XAD-8 and DEAE were comparatively characterized with two model standards, ten interfering compounds, and five ambient aerosol samples. Quantification of HULIS is performed with a TOC analyzer, complemented by an investigation of the chemical structure of the extracted fractions by UV-Vis spectroscopy. The results show that the four isolation methods were all characterized by high reliability, high reproducibility, and low limit of detection (LOD), indicating that each method can be used to efficiently recover Suwannee River Fulvic Acid (SRFA) and be applied to the quantification of the lower amount of HULIS in atmospheric particles. The analytical results of the UV-Vis spectra of HULIS fractions isolated also indicate that they are all favorable for extraction of compounds of high UV absorbance, high MW, and high aromaticity and that the DEAE protocol is the most significant one. Compared with the DEAE method that favors extraction of highly UV-absorbing and more aromatic compounds, SRFA isolated by the ENVI-18, HLB, and XAD-8 protocols were more representative of the global matrix. Each method has its own advantages and disadvantages and is suitable for a particular application. No single method is ideal for both isolation and quantification of HULIS in atmospheric samples.

Fan, Xingjun; Song, Jianzhong; Peng, Ping'an

2012-12-01

206

The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon  

NASA Astrophysics Data System (ADS)

Carbon cycling in the Amazon is closely linked to atmospheric processes and climate in the region as a consequence of the strong coupling between the atmosphere and biosphere. This work examines the effects of changes in net radiation due to atmospheric aerosol particles and clouds on the net ecosystem exchange (NEE) of CO2 in the Amazon region. Some of the major environmental factors affecting the photosynthetic activity of plants, such as air temperature and relative humidity, were also examined. An algorithm for clear-sky irradiance was developed and used to determine the relative irradiance, f, which quantifies the percentage of solar radiation absorbed and scattered due to atmospheric aerosol particles and clouds. Aerosol optical depth (AOD) was calculated from irradiances measured with the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor, onboard the Terra and Aqua satellites, and was validated with ground-based AOD measurements from AERONET (Aerosol Robotic Network) sun photometers. Carbon fluxes were measured using eddy covariance technique at the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) flux towers. Two sites were studied: the Jaru Biological Reserve (RBJ), located in Rondonia, and the Cuieiras Biological Reserve at the K34 LBA tower (located in a preserved region in the central Amazon). Analysis was performed continuously from 1999 to 2009 at K34 and from 1999 to 2002 at RBJ, and includes wet, dry and transition seasons. In the Jaru Biological Reserve, a 29% increase in carbon uptake (NEE) was observed when the AOD ranged from 0.10 to 1.5 at 550 nm. In the Cuieiras Biological Reserve, the aerosol effect on NEE was smaller, accounting for an approximate 20% increase in NEE. High aerosol loading (AOD above 3 at 550 nm) or high cloud cover leads to reductions in solar flux and strong decreases in photosynthesis up to the point where NEE approaches zero. The observed increase in NEE is attributed to an enhancement (~50%) in the diffuse fraction of photosynthetic active radiation (PAR). The enhancement in diffuse PAR can be done through increases in aerosols and/or clouds. In the present study, it was not possible to separate these two components. Significant changes in air temperature and relative humidity resulting from changes in solar radiation fluxes under high aerosol loading were also observed at both sites. Considering the long-range transport of aerosols in the Amazon, the observed changes in NEE for these two sites may occur over large areas in the Amazon, significantly altering the carbon balance in the largest rainforest in the world.

Cirino, G. G.; Souza, R. A. F.; Adams, D. K.; Artaxo, P.

2014-07-01

207

Space Systems - Safety and Compatibility of Materials - Method to Determine the Ignition Susceptibility of Materials or Components to Particle Impact  

NASA Technical Reports Server (NTRS)

The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.

Hirsch, David B.

2011-01-01

208

Investigation of atmosphere thickness on EAS events by an array of particle detectors and CORSIKA simulations  

NASA Astrophysics Data System (ADS)

Actually until the shower maximum the effect of the atmosphere is: 'an environment for extension of EAS events', but after it the 'absobtion effect of the atmosphere' will be dominant. Since the shower maximum for 100 TeV is 550 gr/cm2( 5000m a.s.l), and we are always after it (1200m a.s.l) specially for higher zenith angle events. So actually in the energy and the site we have to concentrate more on the absorbtion effect. Therefore for the investigation we logged about 400,000 EAS events by an array of particle detectors in a square 6m*6m. These cylindrical (r=35cm, h=120cm) detectors contain pure water and a face sinked PMT inside the water for detection of emitted Cerencov light from passed charged particles through the water. We calculated the local coordinates of (z,?) of each event. The z distribution of the logged events is dN=sin(z)cosn(z)dz with n=6.03. It seems that the decreasing distribution is due to the atmosphere thickness, so for better investigations of the effect we calculated the time differences between each two to six following events and we obtained the rate=(29.33+-0.14 sec)-1. With the rate and Hillass formula (Gaisser 1990) we obtained the energy threshold E_{th}=52 TeV. From 70,000 CORSIKA simulations of our experiment we obtained it 58 TeV. Then we fitted our simulated EAS events (50TeV to 5PeV) on the characteristics of our detectors and our array, and we calculated a probability distribution for different zenith angles which is in agreement with z distribution of our experiment. Also we drew the distribution of number of the secondary particles vs. z and the distribution of number of simulated events vs. secondary particles. Then we extracted the distribution of the number of simulated events vs. z. This is a good observable factor to compare with the experiment result. Our results show that a good coincidence between the simulated and observed curves. small differences in different zenith angles is from the 'efficiency of our array' which is in the investigation precess.

Khakian Ghomi, M.; Bahmanabadi, M.; Samimi, J.; et al.

209

Atmospheric trace element concentrations in total suspended particles near Paris, France  

NASA Astrophysics Data System (ADS)

To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

2010-09-01

210

Modelling the contribution of biogenic VOCs to new particle formation in the Jülich plant atmosphere chamber  

NASA Astrophysics Data System (ADS)

We used the MALTE-BOX model including near-explicit air chemistry and detailed aerosol dynamics to study the mechanisms of observed new particle formation events in the Jülich Plant Atmosphere Chamber. The modelled and measured H2SO4 (sulfuric acid) concentrations agreed within a factor of two. The modelled total monoterpene concentration was in line with PTR-MS observations, and we provided the distributions of individual isomers of terpenes, when no measurements were available. The aerosol dynamic results supported the hypothesis that H2SO4 is one of the critical compounds in the nucleation process. However, compared to kinetic H2SO4 nucleation, nucleation involving OH oxidation products of monoterpenes showed a better agreement with the measurements, with R2 up to 0.97 between modelled and measured total particle number concentrations. The nucleation coefficient for kinetic H2SO4 nucleation was 2.1 × 10-11 cm3 s-1, while the organic nucleation coefficient was 9.0 × 10-14 cm3 s-1. We classified the VOC oxidation products into two sub-groups including extremely low-volatility organic compounds (ELVOCs) and semi-volatile organic compounds (SVOCs). These ELVOCs and SVOCs contributed approximately equally to the particle volume production, whereas only ELVOCs made the smallest particles to grow in size. The model simulations revealed that the chamber walls constitute a major net sink of SVOCs on the first experiment day. However, the net wall SVOC uptake was gradually reduced because of SVOC desorption during the following days. Thus, in order to capture the observed temporal evolution of the particle number size distribution, the model needs to consider reversible gas-wall partitioning.

Liao, L.; Dal Maso, M.; Mogensen, D.; Roldin, P.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

2014-11-01

211

Crystallization of atmospheric sulfate-nitrate-ammonium particles Scot T. Martin, Julie C. Schlenker, Adam Malinowski, and Hui-Ming Hung  

E-print Network

Crystallization of atmospheric sulfate-nitrate-ammonium particles Scot T. Martin, Julie C the crystallization RH (CRH) at 293 K of particles throughout the entire sulfate-nitrate-ammonium composition space. Malinowski, H.-M. Hung, and Y. Rudich, Crystallization of atmospheric sulfate- nitrate-ammonium particles

212

Promoted cell and material interaction on atmospheric pressure plasma treated titanium  

NASA Astrophysics Data System (ADS)

Surface carbon contamination is a natural phenomenon. However, it interferes with cell-biomaterial interaction. In order to eliminate the interference, atmospheric pressure plasma treatment was employed. Dielectric barrier discharge treatment of titanium surface for less than 10 min turned titanium super-hydrophilic. Adsorption of fibronectin which is the major cell adhesive protein increased after plasma treatment. Cell attachment parameters of osteoblast cells such as population, cell area, perimeter, Feret's diameter and cytoskeleton development were also enhanced. Cell proliferation increased on the plasma treated titanium. In conclusion, dielectric barrier discharge type atmospheric pressure plasma system is effective to modify titanium surface and the modified titanium promotes cell and material interactions.

Han, Inho; Vagaska, Barbora; Seo, Hyok Jin; Kang, Jae Kyeong; Kwon, Byeong-Ju; Lee, Mi Hee; Park, Jong-Chul

2012-03-01

213

An absorption model of gas\\/particle partitioning of organic compounds in the atmosphere  

Microsoft Academic Search

An equation that can successfully parameterize gas-particle partitioning is Kp(m3\\/~g -1) =(F\\/TSP)\\/A, where Kp is a partitioning constant, TSP (pgm -3) is the concentration of total suspended particulate material, and F (ngm -3) and A (ngm-3), respectively, are the particulate-associated and gaseous concentrations of the compound of interest. By itself, this equation does not indicate whether the partitioning is primarily

JAMES F. PANKOW

1994-01-01

214

The simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China  

NASA Astrophysics Data System (ADS)

Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism Version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00-18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds possibly participate in the nucleation process should be investigated in further studies.

Wang, Z. B.; Hu, M.; Mogensen, D.; Yue, D. L.; Zheng, J.; Zhang, R. Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z. J.; Wiedensohler, A.; Boy, M.

2013-06-01

215

Femtosecond Laser Ablation Particle Introduction to a Liquid Sampling-Atmospheric Pressure Glow Discharge Ionization Source  

SciTech Connect

This work describes the use of a compact, liquid sampling – atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding M/?M > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several µl min-1 through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the ~10 µm copper cladding and zinc rich bulk layers.

Carado, Anthony J.; Quarles, C. Derrick; Duffin, Andrew M.; Barinaga, Charles J.; Russo, Richard; Marcus, R. Kenneth; Eiden, Gregory C.; Koppenaal, David W.

2012-01-16

216

ATMOSPHERIC DRY PARTICLE DEPOSITION OF POPS AND TRACE METALS IN AN URBAN- AND INDUSTRIALLY-IMPACTED MID-ATLANTIC ESTUARY (AEOLOS B MID-ATLANTIC)  

EPA Science Inventory

Emissions of hazardous air pollutants into the coastal urban-industrial atmosphere increase atmospheric depositional fluxes to proximate water bodies. Dry deposition of large particles containing persistent organic pollutants (POPs) and trace metals were a major contribu...

217

Polar Northern Hemisphere Middle Atmospheric Influence due to Energetic Particle Precipitation in January 2005  

NASA Technical Reports Server (NTRS)

Solar eruptions and geomagnetic activity led to energetic particle precipitation in early 2005, primarily during the January 16-21 period. Production of OH and destruction of ozone have been documented due to the enhanced energetic solar proton flux in January 2005 [e.g., Verronen et al., Geophys. Res. Lett.,33,L24811,doi:10.1029/2006GL028115, 2006; Seppala et al., Geophys. Res. Lett.,33,L07804, doi:10.1029/2005GL025571,2006]. These solar protons as well as precipitating electrons also led to the production of NO(x) (NO, NO2). Our simulations with the Whole Atmosphere Community Climate Model (WACCM) show that NO(x) is enhanced by 20-50 ppbv in the polar Northern Hemisphere middle mesosphere (approx.60-70 km) by January 18. Both the SCISAT-1 Atmospheric Chemistry Experiment (ACE) NO(x) measurements and Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIP AS) nighttime NO2 observations show large increases during this period, in reasonable agreement with WACCM predictions. Such enhancements are considerable for the mesosphere and led to simulated increases in polar Northern Hemisphere upper stratospheric odd nitrogen (NO(y)) of2-5 ppbv into February 2005. The largest ground level enhancement (GLE) of solar cycle 23 occurred on January 20, 2005 with a neutron monitor increase of about 270 percent [Gopalswamy et al., 29th International Cosmic Ray Conference, Pune,00,101-104,2005]. We found that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced stratospheric NO(y) of less than 1 percent as a result of this GLE. The atmospheric impact of precipitating middle energy electrons (30-2,500 keV) during the January 16-21, 2005 period is also of interest, and an effort is ongoing to include these in WACCM computations. This presentation will show both short- and longer-term changes due to the January 2005 energetic particle precipitation.

Jackman, Charles H.

2010-01-01

218

Development of a computer model for calculation of radioactive materials into the atmosphere after an accident  

SciTech Connect

Secondary atmospheric contamination with radioactive dust and chemical species deposited on the ground and resuspended by wind occur very widely. This process is particularly pronounced in case of extensive contamination of soil and under extreme weather conditions, for example, during dust storms. The mechanism of wind dust generation consists in the following. At low wind speed U=2-3 m/s, which is most common in midlatitude, small radioactive dust particles (diameter of hundredth of a micron to 10-20 microns) are lifted from soil surface due to turbulent vortexes. Under the gravitational force the particles of 1-2 micron diameter practically do not settle. Larger dust particles cannot remain in the air for a long time: they are lifted by turbulent vortexes and settle, their motion in the wind flow is jump-wise and the interaction of particles with the flow is called saltation /I/. Saltation is the main mechanism of dust generation up to the wind velocity at which wind erosion starts. The size of dust particles can be as large as 100 pm. When dropping they can be ricocheting from ground or pass the impulse to other particles which begin rolling over and jumping up. The process of dust transport by wind can be compared to a chain reaction. At the velocity of 10 m/s large particles of about 500 pm stop skipping and roll over only, while particles of more than 1 mm remain stationary. Thus, the fine fraction is blown out from the polydispersed soil particles. The intensity of wind resuspension of radioactive dust from the ground is characterized either by a resuspension factor or a resuspension rate.

Schershakov, V. [Federal Information Analytical Centre, Obinski (Russia)

1997-11-01

219

Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a  

E-print Network

Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip@physics.anu.edu.au Abstract: The quest for less costly and more compact high-energy particle accelerators," in Proceedings of Particle Accelerator Conference 2011, (2011) pp. 277­279. 12. M. Deubel, G. von Freymann, M

Byer, Robert L.

220

Modelling brittle impact failure of disc particles using material point method  

Microsoft Academic Search

Understanding the impact failure of particles made of brittle materials such as glasses, ceramics and rocks is an important issue for many engineering applications. During the impact, a solid particle is turned into a discrete assembly of many fragments through the development of multiple cracks. The finite element method is fundamentally ill-equipped to model this transition. Recently a so-called material

Fan Li; Jingzhe Pan; Csaba Sinka

2011-01-01

221

1 INTRODUCTION Asphalt mixtures are composite materials that consist of solid particles, viscous binder/fluid  

E-print Network

1 INTRODUCTION Asphalt mixtures are composite materials that consist of solid particles, viscous binder/fluid (bitumen) and pores filled with air. When considering asphalt we should distinguish interactions) characterize the material behavior of the asphalt mixture. In addition, aggregate particles

Luding, Stefan

222

Viscosity of -pinene secondary organic material and implications for particle growth and reactivity  

E-print Network

Viscosity of -pinene secondary organic material and implications for particle growth and reactivity of secondary organic material (SOM) are abun- dant in the lower troposphere. The viscosity of these particles-mobility" technique and a "poke-flow" technique, in conjunction with simulations of fluid flow, the viscosity

223

Ignition Resistance of Polymeric Materials to Particle Impact in High-Pressure Oxygen  

NASA Technical Reports Server (NTRS)

Particle impact ignition has been the primary cause of numerous fires in oxygen systems. This ignition phenomenon is known to occur where particles are present in high-velocity gas, and where impact occurs on a flammable material. The particle impact ignition behavior of many metals has been widely studied, but the particle impact ignition behavior of polymeric materials is relatively unknown. Particle impact ignition in polymeric materials is a concern as these materials are commonly used in component seat and seal applications, where high-velocity particle impacts can occur. This study evaluates several polymeric materials and compares the minimum temperature required for ignition (threshold temperature) of these materials: Kel-F 81 (CTFE), Teflon (PTFE), PEEK, Vespel SP-21, and Nylon 6/6. The materials were configured as targets in the White Sands Test Facility high-velocity particle impact test system. Gaseous oxygen was flowed at 4000 psi and sonic velocity, and the targets were impacted with 2000-micron aluminum 2017 particles. This paper discusses the results of these tests and ranks the materials according to their threshold temperatures at these conditions.

Forsyth, Elliot T.; Stolzfus, Joel M.; Fries, Joseph (Technical Monitor)

2000-01-01

224

Light absorbing material (soot) in rainwater and in aerosol particles in the Maldives  

NASA Astrophysics Data System (ADS)

Simultaneous measurements of soot (absorbing material at 528 nm) and inorganic ions in aerosol and precipitation at the Maldives Climate Observatory Hanimaadhoo during the period May 2005 to February 2007 have made it possible to calculate the washout ratio (WR) of these components as a measure of how efficiently they are scavenged by precipitation. On the basis of air trajectories the data have been separated into days with polluted air arriving from the Indian subcontinent in a northeasterly sector during winter and clean monsoon days with southerly flow from the Indian Ocean. The average soot concentration was a factor of 10 higher in the former situations. Despite considerable scatter for individual days, a systematic pattern emerged when the WR for the different components were compared with each other. During the monsoon season the WR for soot was similar to that of sulfate and other fine mode aerosol components, indicating that soot containing particles in these situations were efficient as cloud condensation nuclei. The origin of the light absorbing material during the monsoon season is unclear. During the polluted winter days, on the other hand, the WR for soot was three times smaller than that of sulfate. This indicates that, even after a travel time of several days, the soot containing particles from India have retained much of their hydrophobic property. The low WR and the infrequent rain during this season probably contribute to extending the atmospheric lifetime of soot well beyond several days. Surprisingly high concentrations of non-sea-salt calcium were measured during the monsoon season, substantially higher than during the winter season. The origin of these high values could be long-range transport from the Australian or African continents. Another possibility might be exopolymer gels derived from the ocean surface microlayer.

Granat, L.; EngströM, J. E.; Praveen, S.; Rodhe, H.

2010-08-01

225

Fatty acids in the marine atmosphere: Factors governing their concentrations and evaluation of organic films on sea-salt particles  

NASA Astrophysics Data System (ADS)

Fatty acids (C14-C32) in the marine boundary layer were measured in aerosols that were collected over the northern North Pacific from October 1996 to June 1997. Concentrations of lower molecular weight (C14-C19) saturated fatty acids (LFAs, 0.8-24 ng m-3) showed a positive correlation with sea-salt concentrations, suggesting that LFAs are released from the ocean surface to the atmosphere with sea-salt particles. The averaged ratios of [LFAs]air/[sea salt] in autumn, winter, spring and summer seasons were 1.8 (±1.3) × 10-4, 2.1 (±1.3) × 10-4, 3.7 (±2.9) × 10-4, and 4.6 (±1.8) × 10-4, respectively. The results indicate the seasonal variation of the sea-to-air flux of LFAs relative to that of sea salt with a maximum in spring to summer. The enhanced LFA flux was consistent with the satellite images of chlorophyll a over the northern North Pacific, which showed high biological productivity from spring to summer. On the basis of the ratios of [LFAs]air/[sea salt], relative humidity, and modeled size distribution of sea-salt particles, the coverage of LFAs on sea-salt particles was estimated to range from 0.3 to 14%. This study suggests that the coverage of fatty acids, together with other film-forming materials, may have a significant effect on the physicochemical properties of aerosols, which may be affected by the high biological productivity in the high latitudinal ocean.

Mochida, Michihiro; Kitamori, Yasuyuki; Kawamura, Kimitaka; Nojiri, Yukihiro; Suzuki, Keisuke

2002-09-01

226

Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China.  

PubMed

Atmospheric particles (total suspended particles (TSPs); particulate matter (PM) with particle size below 10?m, PM10; particulate matter with particle size below 2.5?m, PM2.5) were collected and analyzed during heating and non-heating periods in Harbin. The sources of PM10 and PM2.5 were identified by the chemical mass balance (CMB) receptor model. Results indicated that PM2.5/TSP was the most prevalent and PM2.5 was the main component of PM10, while the presence of PM10-100 was relatively weak. SO4(2-) and NO3(-) concentrations were more significant than other ions during the heating period. As compared with the non-heating period, Mn, Ni, Pb, S, Si, Ti, Zn, As, Ba, Cd, Cr, Fe and K were relatively higher during the heating period. In particular, Mn, Ni, S, Si, Ti, Zn and As in PM2.5 were obviously higher during the heating period. Organic carbon (OC) in the heating period was 2-5 times higher than in the non-heating period. Elemental carbon (EC) did not change much. OC/EC ratios were 8-11 during the heating period, which was much higher than in other Chinese cities (OC/EC: 4-6). Results from the CMB indicated that 11 pollution sources were identified, of which traffic, coal combustion, secondary sulfate, secondary nitrate, and secondary organic carbon made the greatest contribution. Before the heating period, dust and petrochemical industry made a larger contribution. In the heating period, coal combustion and secondary sulfate were higher. After the heating period, dust and petrochemical industry were higher. Some hazardous components in PM2.5 were higher than in PM10, because PM2.5 has a higher ability to absorb toxic substances. Thus PM2.5 pollution is more significant regarding human health effects in the heating period. PMID:25499495

Huang, Likun; Wang, Guangzhi

2014-12-01

227

Application of Atmospheric Plasma-Sprayed Ferrite Layers for Particle Accelerators  

E-print Network

A common problem in all kinds of cavity-like structures in particle accelerators is the occurrence of RF-resonances. Typically, ferrite plates attached to the walls of such structures as diagnostic devices, kickers or collimators, are used to dampen those undesired modes. However, the heat transfer rate from these plates to the walls is rather limited. Brazing ferrite plates to the walls is not possible in most cases due to the different thermal expansion coefficients. To overcome those limitations, atmospheric plasma spraying techniques have been investigated. Ferrite layers with a thickness from 50 ?m to about 300 ?m can be deposited on metallic surfaces like stainless steel exhibiting good thermal contact and still reasonable absorption properties. In this paper the technological aspects of plasma deposition are discussed and results of specifically developed RF loss measurement procedures for such thin magnetically lossy layers on metal are presented.

Caspers, F; Federmann, S; Taborelli, M; Schulz, C; Bobzin, K; Wu, J

2013-01-01

228

A comparative study on the varying exposure to atmospheric fine and coarse particles under urban and rural conditions.  

PubMed

This paper is based on the results of three air quality studies conducted in Buenos Aires in Berlin, and in German spas between 2003 and 2007. A high comparability of results was ensured by using the same sampling techniques and analytical methods. Total particle sampling was achieved by active sampling of fine (PM2.5) and passive sampling of coarse particles > or = 2.5 microm and giant particles > or = 10 microm. The highly absorbing, black, predominantly carbonaceous particles (BC) of fine particle samples were determined by measuring the total light attenuation of filter samples and interpreting the extinction value as black carbon. The difference between the gravimetric total mass concentration of the PM2.5 samples and the BC is defined as the transparent, mostly mineral fine fraction. In coarse/giant particle samples the mean gray value was determined by means of automated light microscopy with subsequent single-particle analysis. "Opaque" particles were separated from the "transparent" particle fraction by applying a grey value threshold level. Microscopic measurement of individual particles was employed to establish the size distribution of the coarse and giant fraction. Due to different health effects, the separate detection of these components is suggested. Decline functions of particles are given, possibly providing useful information for a more detailed specification of the local particle distribution, and for a better estimate of the individual exposure. Atmospheric dispersal of particles was found effected mainly by source characteristics. An increased, spatially largely constant level of fine transparent particles in Berlin indicates a particle plume originating from photochemical processes. Buenos Aires, in contrast, is characterized by a lower background level of fine transparent particles but is considerably affected by fine black particles from diesel emissions and by a higher resuspension of coarse/giant transparent, mainly soil particles. PMID:23210223

Wolf-Benning, Uta; Schultz, Eckart; Dietze, Volker; Kaminski, Uwe; Endlicher, Wilfried

2012-11-01

229

Energetic Particle Precipitation in the Atmosphere: Northern Hemisphere Variability and Transport  

NASA Astrophysics Data System (ADS)

It is well understood that chemical processes in the stratosphere lead to the destruction of ozone (O3). Our interest in these processes is twofold: (1) stratospheric O3 shields the Earth from biologically harmful radiation, and (2) O3 is a radiatively active gas largely responsible for the temperature structure of the middle atmosphere. A subset of chemical processes that is particularly relevant to O3 consists of catalytic cycles. Catalysts destroy O3 without being depleted. The NOx (NO + NO2) catalytic cycle dominates in the middle stratosphere. One source of stratospheric NO x is energetic particle precipitation (EPP), which contributes to the stratospheric odd nitrogen (NOy) budget in the polar winter. Through interaction with O3, NO x created by EPP (EPP-NOx) has the potential to affect not only the composition of the middle atmosphere but, since O3 is a radiatively active gas, temperature and dynamics as well. This leads to the following science questions, which are the questions that motivated my dissertation: (1) How much EPP-NOx is transported to the stratosphere from year to year? (2) What are the important transport processes involved? The research described here focuses on answering the first question through quantification of the amount of EPP-NOx reaching the northern hemisphere stratosphere using satellite data and the second question through state-of-the-art climate simulations designed to elucidate the important transport mechanisms.

Holt, Laura A.

230

Detection of preferential particle orientation in the atmosphere: Development of an alternative polarization lidar system  

NASA Astrophysics Data System (ADS)

Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. These Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linear or a circular polarized incident laser beam). The conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. The expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. The theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions.

Geier, Manfred; Arienti, Marco

2014-12-01

231

Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan  

NASA Astrophysics Data System (ADS)

Evidence shows a strong association among air pollution, oxidative stress (OS), deoxyribonucleic acid (DNA) damage, and diseases. Recent studies indicated that the aging, human neurodegenerative diseases and cancers resulted from mitochondrial dysfunction and OS. The purpose of this study is to provide a probabilistic risk assessment model to quantify the atmospheric diesel exhaust particles (DEP)-induced pre-cancer biomarker response and cancer incidence risk for residents in south Taiwan. We conducted entirely monthly particulate matter sampling data at five sites in Kaohsiung of south Taiwan in the period 2002-2003. Three findings were found: (i) the DEP dose estimates and cancer risk quantification had heterogeneously spatiotemporal difference in south Taiwan, (ii) the pre-cancer DNA damage biomarker and cancer incidence estimates had a positive yet insignificant association, and (iii) all the estimates of cancer incidence in south Taiwan populations fell within and slight lower than the values from previous cancer epidemiological investigations. In this study, we successfully assessed the tumor incidence for residents posed by DEP exposure in south Taiwan compared with the epidemiological approach. Our approach provides a unique way for assessing human health risk for residences exposed to atmospheric DEP depending on specific combinations of local and regional conditions. Our work implicates the importance of incorporating both environmental and health risk impacts into models of air pollution exposure to guide adaptive mitigation strategies.

Chio, Chia-Pin; Liao, Chung-Min; Tsai, Ying-I.; Cheng, Man-Ting; Chou, Wei-Chun

2014-03-01

232

An Overview of Energetic Particle Precipitation Effects on the Earth's Atmosphere and (Potentially) Climate  

NASA Technical Reports Server (NTRS)

Energetic precipitating particles (EPPs) can cause significant constituent changes in the polar mesosphere and stratosphere (middle atmosphere) during certain periods. Both protons and electrons can influence the polar middle atmosphere through ionization and dissociation processes. EPPs can enhance HOx (H, OH, HO2) through the formation of positive ions followed by complex ion chemistry and NOx (N, NO, NO2) through the dissociation of molecular nitrogen. The solar EPP-created HOx increases can lead to ozone destruction in the mesosphere and upper stratosphere via several catalytic loss cycles. Such middle atmospheric HOx-caused ozone loss is rather short-lived due to the relatively short lifetime (hours) of the HOx constituents. The HOx-caused ozone depletion of greater than 30% has been observed during several large solar proton events (SPEs) in the past 50 years. HOx enhancements due to SPEs were confirmed by observations in solar cycle 23. A number of modeling studies have been undertaken over this time period that show predictions of enhanced HOx accompanied by decreased ozone due to energetic particles. The solar EPP-created NOx family has a longer lifetime than the HOx family and can also lead to catalytic ozone destruction. EPP-caused enhancements of the NOx family can affect ozone promptly, if produced in the stratosphere, or subsequently, if produced in the lower thermosphere or mesosphere and transported to the stratosphere. NOx enhancements due to auroral electrons, medium and high energy electrons, relativistic electron precipitation (REP) events, and SPEs have been measured and/or modeled for decades. Model predictions and measurements show that certain years have significant winter-time meteorological events, which result in the transport of EPP-caused NOx enhancements in the upper mesosphere and lower thermosphere to lower altitudes. The NOx-caused ozone depletion has also been observed during several solar proton events (SPEs) in the past 50 years. Model predictions indicate that the longer-lived SPE-caused polar stratospheric and mesospheric ozone decrease can be >10% for up to five months past the largest events and is statistically significant; however, total ozone measurements do not indicate any long-term SPE impact.

Jackman, Charles H.

2012-01-01

233

Arsenic speciation in total contents and bioaccessible fractions in atmospheric particles related to human intakes.  

PubMed

Speciation of inorganic trivalent arsenicals (iAs(III)), inorganic pentavalent arsenicals (iAs(V)), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in total arsenic (As) content and its bioaccessible fractions contained in road dust, household air-conditioning (AC) filter dust and PM2.5 was investigated. Inorganic As, especially iAs(V), was observed as the dominant species. Physiologically based extraction test (PBET), an in-vitro gastrointestinal method, was used to estimate the oral As bioaccessibility in coarse particles and the species present in the oral bioaccessible fraction. A composite lung simulating serum was used to mimic the pulmonary condition to extract the respiratory bioaccessible As and its species in PM2.5. Reduction of iAs(V) to iAs(III) occurred in both in-vitro gastrointestinal and lung simulating extraction models. The inorganic As species was the exclusive species for absorption through ingestion and inhalation of atmospheric particles, which was an important exposure route to inorganic As, in addition to drinking water and food consumption. PMID:24534614

Huang, Minjuan; Chen, Xunwen; Zhao, Yinge; Yu Chan, Chuen; Wang, Wei; Wang, Xuemei; Wong, Ming Hung

2014-05-01

234

Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition  

NASA Technical Reports Server (NTRS)

Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

2001-01-01

235

The origins of liner material in a shaped charge jet particle  

SciTech Connect

An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

Zernow, L. (Zernow Technical Services, Inc., San Dimas, CA (United States)); Chapyak, E.J.; Meyer, K.A. (Los Alamos National Lab., NM (United States)); Zernow, R.H. (Applied Research Associates, Inc., Lakewood, CO (United States))

1992-01-01

236

The origins of liner material in a shaped charge jet particle  

SciTech Connect

An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

Zernow, L. [Zernow Technical Services, Inc., San Dimas, CA (United States); Chapyak, E.J.; Meyer, K.A. [Los Alamos National Lab., NM (United States); Zernow, R.H. [Applied Research Associates, Inc., Lakewood, CO (United States)

1992-02-01

237

Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules, biological standard particles and potential interferences  

NASA Astrophysics Data System (ADS)

Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard bioparticles (pollen, fungal spores, and bacteria) as well as atmospherically relevant chemical substances. We found varying levels of fluorescent emission and significant differences in the spectral properties of major PBAP classes. The combination will support the quantitative interpretation of data obtained by real-time FBAP instrumentation [5]. [1] Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Atmos. Chem. Phys., 7, 4569-4588. [2] Huffman, J. A., Treutlein, B., & Pöschl, U. (2010). Atmos. Chem. Phys., 10, 3215-3233. [3] Pöschl, U., et al. (2010). Science, 329, 1513-1516. [4] Lakowicz, J., Principles of fluorescence spectroscopy, Plenum publishers, New York, 1999. [5] Pöhlker, C., Huffman, J. A., & Pöschl, U., (2012). Atmos. Meas. Tech., 5, 37-71.

Pöhlker, C.; Huffmann, J. A.; Pöschl, U.

2012-04-01

238

Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo  

NASA Astrophysics Data System (ADS)

Shanghai, with a population of over 20 million, is the largest mega-city in China. Rapidly increasing industrial and metropolitan emissions have deteriorated its air quality in the past decades, with fine particle pollution as one of the major issues. However, systematic characterization of atmospheric fine particles with advanced measurement techniques has been very scarce in Shanghai. During 2010 Shanghai World Expo, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a single particle soot photometer (SP2) in urban Shanghai between 15 May and 10 June 2010 to measure fine particles with a high time resolution. The 4-min resolution PM1 mass concentration ranged from 5.5 to 155 ?g m-3, with an average of 29.2 ?g m-3. On average, sulfate and organic matter (OM) were the most abundant PM1 components, accounting for 33.3 and 28.7% of the total mass, respectively, while the fraction of nitrate showed an increasing trend with the increasing PM1 loading, indicating the photochemical nature of high fine particle pollution in Shanghai. Taking advantage of HR-ToF-AMS and SP2, OM was found to have an average OM/OC ratio (organic matter mass/organic carbon mass) of 1.55 and black carbon (BC) had an average number fraction of internally mixed BC of 41.2%. Positive matrix factorization (PMF) analysis on the high resolution organic mass spectral dataset identified a hydrocarbon-like (HOA), a semi-volatile oxygenated (SV-OOA), and a low-volatility oxygenated (LV-OOA) organic aerosol component, which on average accounted for 24.0, 46.8, and 29.2% of the total organic mass, respectively. The diurnal patterns of them with interesting time delay possibly implied a photochemical oxidizing process from HOA (and/or its concurrently emitted gaseous organic pollutants) to SV-OOA to LV-OOA. Back trajectory analysis indicated that the northwesterly continental air mass represented the most severe pollutant regional transport condition with the highest nitrate and SV-OOA fractions. In addition, the results in Shanghai were compared with similar measurements performed recently in other mega-cities in the world.

Huang, X.-F.; He, L.-Y.; Xue, L.; Sun, T.-L.; Zeng, L.-W.; Gong, Z.-H.; Hu, M.; Zhu, T.

2012-01-01

239

Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo  

NASA Astrophysics Data System (ADS)

Shanghai, with a population of over 20 million, is the largest mega-city in China. Rapidly increasing industrial and metropolitan emissions have deteriorated its air quality in the past decades, with fine particle pollution as one of the major issues. However, systematic characterization of atmospheric fine particles with advanced measurement techniques has been very scarce in Shanghai. During 2010 Shanghai World Expo, we deployed a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a single particle soot photometer (SP2) in urban Shanghai between 15 May and 10 June 2010 to measure fine particles with a high time resolution. The 4-min resolution PM1 mass concentration ranged from 5.5 to 155 ?g m-3, with an average of 29.2 ?g m-3. On average, sulfate and organic matter (OM) were the most abundant PM1 components, accounting for 33.3 and 28.7% of the total mass, respectively, while the fraction of nitrate showed an increasing trend with the increasing PM1 loading, indicating the photochemical nature of high fine particle pollution in Shanghai. Taking advantage of HR-ToF-AMS and SP2, OM was found to have an average OM/OC ratio (organic matter mass/organic carbon mass) of 1.55 and black carbon (BC) had an average number fraction of internally mixed BC of 41.2%. Positive matrix factorization (PMF) analysis on the high resolution organic mass spectral dataset identified a hydrocarbon-like (HOA), a semi-volatile oxygenated (SV-OOA), and a low-volatility oxygenated (LV-OOA) organic aerosol component, which on average accounted for 24.0, 46.8, and 29.2% of the total organic mass, respectively. The diurnal patterns of them with interesting time delay possibly implied a photochemical oxidizing process from HOA (and/or its concurrently emitted gaseous organic pollutants) to SV-OOA to LV-OOA. Back trajectory analysis indicated that the northwesterly continental air mass represented the most severe pollutant regional transport condition with the highest nitrate and SV-OOA fractions. In addition, the results in Shanghai were compared with similar measurements performed recently in other mega-cities in the world.

Huang, X.-F.; He, L.-Y.; Xue, L.; Sun, T.-L.; Zeng, L.-W.; Gong, Z.-H.; Hu, M.; Zhu, T.

2012-06-01

240

Particle alignment and clustering in sheared granular materials composed of platy particles.  

PubMed

By means of molecular dynamics simulations, we investigate the texture and local ordering in sheared packings composed of cohesionless platy particles. The morphology of large packings of platy particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and anisotropic orientations of contacts between particles. We find that particle alignment is strongly enhanced by the degree of platyness and leads to the formation of face-connected clusters of exponentially decaying size. Interestingly, due to dynamics in continuous shearing, this ordering phenomenon emerges even in systems composed of particles of very low platyness differing only slightly from spherical shape. The number of clusters is an increasing function of platyness. However, at high platyness the proportion of face-face interactions is too low to allow for their percolation throughout the system. PMID:25412821

Boton, Mauricio; Estrada, Nicolas; Azéma, Emilien; Radjaï, Farhang

2014-11-01

241

Absorption of Beta Particles in Different Materials: An Undergraduate Experiment  

ERIC Educational Resources Information Center

The absorption of beta rays from a radioactive source in different materials was investigated by the use of a simple setup based on a Geiger counter and a set of absorber sheets. The number of electrons traversing the material was measured as a function of its thickness. Detailed GEANT simulations were carried out to reproduce the obtained…

La Rocca, Paola; Riggi, Francesco

2009-01-01

242

Solid spherical glass particle impingement studies of plastic materials  

NASA Technical Reports Server (NTRS)

Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.

Rao, P. V.; Young, S. G.; Buckley, D. H.

1983-01-01

243

Insitu measurements of laser-induced-fluorescence spectra of single atmospheric organic carbon aerosol particles for their partial classification. (Invited)  

NASA Astrophysics Data System (ADS)

Aerosols are ubiquitous in the earth’s atmosphere. Within the last two decades, the importance of organic carbon aerosols (OCAs) has been widely recognized. OCAs have both natural and anthropogenic sources and have effects ranging from atmospheric radiative forcing to human health. Improved methods for measuring and classifying OCAs are needed for better understanding their sources, transformation, and fate. In this talk we focus on the use of a relatively new technique for characterization of single OCA particles in atmospheric aerosol: ultraviolet laser-induced-fluorescence (UV-LIF). UV-LIF spectra of atmospheric aerosols measured at multiple sites with different regional climate (Adelphi, MD, New Haven, CT, and Las Cruces, NM) are reported. A hierarchical clustering method was used to cluster (approximately 90%) of the single-particle UV-LIF spectra into 8-10 groups (clusters). Some of these clusters have spectra that are similar to spectra of some important classes of atmospheric aerosol, such as humic/fulvic acids and humic-like substances, bacteria, cellulose, marine aerosol, and polycyclic aromatic hydrocarbons. The most highly populated clusters, and some of the less populated ones, appear at all sites. On average, spectra characteristic of humic/fulvic acids and humic-like-substances (HULIS) comprise 28-43% of fluorescent particles at all three sites; whereas cellulose-like spectra contribute only 1-3%.

Pinnick, R. G.; Pan, Y.; Hill, S.; Rosen, J. M.; Chang, R. K.

2009-12-01

244

VIABLE BACTERIAL AEROSOL PARTICLE SIZE DISTRIBUTIONS IN THE MIDSUMMER ATMOSPHERE AT AN ISOLATED LOCATION IN THE HIGH DESERT CHAPARRAL  

EPA Science Inventory

The viable bacterial particle size distribution in the atmosphere at the Hanford Nuclear Reservation, Richland, WA during two 1-week periods in June 1992, was observed at three intervals during the day (morning, midday and evening) and at three heights (2, 4, and 8 m) above groun...

245

Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials  

NASA Technical Reports Server (NTRS)

Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials at 2.2-2.3 micrometers and 2.27 micrometers remain largely unaffected by the environmental conditions. A shift in the Christiansen feature towards shorter wavelengths has also been observed with decreasing atmospheric pressure and temperature in the midinfrared spectra of these samples.

Bishop, Janice L.; Pieters, Carle M.

1995-01-01

246

A model of the atmospheric metal deposition by cosmic dust particles  

NASA Astrophysics Data System (ADS)

We have developed a model of the deposition of meteoric metals in Earth's atmosphere. The model takes as input the total mass influx of material to the Earth and calculates the deposition rate at all altitudes through solution of the drag and subliminal equations in a Monte Carlo-type computation. The diffusion equation is then solved to give steady state concentration of complexes of specific metal species and kinetics are added to calculate the concentration of individual complexes. Concentrating on sodium, we calculate the Na(D) nightglow predicted by the model, and by introduction of seasonal variations in lower tropospheric ozone based on experimental results, we are able to duplicate the seasonal variation of mid-latitude nightglow data.

McNeil, W. J.

1993-11-01

247

Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources  

NASA Astrophysics Data System (ADS)

Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic acids. The high concentrations in summer could lead to the conclusion that these acids are mostly formed during photochemical processes in the atmosphere. However, the concentrations in autumn were often exceeded by the ones in winter. Therefore probably other sources beside photochemical processes have to be considered. The second group consists of aromatic compounds. Because of the high concentrations in winter it can be concluded that photochemical formation plays a minor role and primary emission sources e.g., wood combustion are likely. Further evidence in determining sources of the carboxylic acids could be obtained from the air mass origin. In general, air masses transported from East have a more anthropogenic influence than the air mass inflow from West. For all aromatic carboxylic acids higher concentrations were determined during eastern inflow, indicating anthropogenic sources. This presumption is supported by high correlations with the elemental carbon (EC). Regarding the aliphatic carboxylic there is one group with higher concentrations when the air mass is transported from West and one with higher concentrations when air mass is transported from East. In summary the findings of this study reveal a clear difference in the seasonal trends of the single target acids indicating a variety of different sources.

Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

2013-04-01

248

Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.  

PubMed

Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (?-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the ?-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment. PMID:25491854

Beutel, Bryan G; Danna, Natalie R; Gangolli, Riddhi; Granato, Rodrigo; Manne, Lakshmiprada; Tovar, Nick; Coelho, Paulo G

2014-12-01

249

Autofluorescence of atmospheric bioaerosols - Biological standard particles and the influence of environmental conditions  

NASA Astrophysics Data System (ADS)

Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP can account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard bioparticles (pollen, fungal spores, and bacteria) as well as atmospherically relevant chemical substances. We addressed the sensitivity and selectivity of autofluorescence based online techniques. Moreover, we investigated the influence of environmental conditions, such as relative humidity and oxidizing agents in the atmosphere, on the autofluorescence signature of standard bioparticles. Our results will support the molecular understanding and quantitative interpretation of data obtained by real-time FBAP instrumentation [5,6]. [1] Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Atmos. Chem. Phys., 7, 4569-4588. [2] Huffman, J. A., Treutlein, B., & Pöschl, U. (2010). Atmos. Chem. Phys., 10, 3215-3233. [3] Pöschl, U., et al. (2010). Science, 329, 1513-1516. [4] Lakowicz, J., Principles of fluorescence spectroscopy, Plenum publishers, New York, 1999. [5] Pöhlker, C., Huffman, J. A., & Pöschl, U., (2012). Atmos. Meas. Tech., 5, 37-71. [6] Pöhlker, C., Huffman, J. A., Förster J.-D., & Pöschl, U., (2012) in preparation.

Pöhlker, Christopher; Huffman, J. Alex; Förster, Jan-David; Pöschl, Ulrich

2013-04-01

250

Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles - Laboratory experiments and modeling studies  

NASA Astrophysics Data System (ADS)

Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial Iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate, glutarate and gluconate complexes lie in the range of 0.02 < ? < 0.10, whereas succinate, tartronate, pyruvate and glyoxalate systems have values between 0.16 < ? < 1.26. All quantum yields include contributions from secondary thermal reactions. Furthermore, an attempt was made to differentiate between contributions of individual iron-oxalato complexes to the overall measured quantum yield. The formation and photolysis of the iron-carboxylate complexes and the subsequent reactions of the resulting compounds have been implemented in CAPRAM 3.0 (Chemical Aqueous Phase Radical Mechanism). Modeling studies were performed to investigate the effects of the expanded iron photochemistry on oxidant budgets, the iron redox-cycling and the processing of secondary organic acids in cloud droplets and deliquescent particles under different environmental conditions. The model studies have shown that, i.e. for pyruvic acid under urban conditions, the photolysis of the iron-pyruvate complex can contribute with about 40 % significantly to the overall degradation flux and represents thus an important loss pathway beside the radical oxidation pathways.

Weller, C.; Tilgner, A.; Herrmann, H.

2010-12-01

251

Acoustic properties and durability of liner materials at non-standard atmospheric conditions  

NASA Technical Reports Server (NTRS)

This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

1994-01-01

252

Atmospheric Effects of Energetic Particle Precipitation in the Arctic Winter 1978-1979 Revisited  

NASA Technical Reports Server (NTRS)

The Limb Infrared Monitor of the Stratosphere (LIMS) measured polar stratospheric enhancements of NO2 mixing ratios due to energetic particle precipitation (EPP) in the Arctic winter of 1978-1979. Recently reprocessed LIMS data are compared to more recent measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) to place the LIMS measurements in the context of current observations. The amount of NOx (NO + NO2) entering the stratosphere that has been created by EPP in the mesosphere and lower thermosphere (EPP-NOx) has been quantified for the 1978-1979 and 2002-2003 through 2008-2009 Arctic winters. The NO2 enhancements in the LIMS data are similar to those in MIPAS and ACE-FTS data in the Arctic winters of 2002-2003, 2004-2005, 2006-2007, and 2007-2008. The largest enhancement by far is in 2003-2004 (approximately 2.2 Gmol at 1500 K), which is attributed to a combination of elevated EPP and unusual dynamics that led to strong descent in the upper stratosphere/lower mesosphere in late winter. The enhancements in 2005-2006 and 2008-2009, during which large stratospheric NOx enhancements were caused by a dynamical situation similar to that in 2003 2004, are larger than in all the other years (except 2003-2004) at 3000 K. However, by 2000 K the enhancements in 2005-2006 (2008-2009) are on the same order of magnitude as (smaller than) all other years. These results highlight the importance of the timing of the descent in determining the potential of EPP-NOx for reaching the middle stratosphere.

Holt, L. A.; Randall, C. E.; Harvey, V. L.; Remsberg, E. E.; Stiller, G. P.; Funke, B.; Bernath, P. F.; Walker, K. A.

2012-01-01

253

Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)  

NASA Astrophysics Data System (ADS)

Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary biological aerosol particles in the coarse mode (Pöhlker et al. 2012). We applied STXM-NEXAFS analysis, SEM-EDX analysis and NanoSIMS analysis to investigate the morphology, chemical composition and isotopic composition of aerosol samples. Biogenic salt particles emitted from active biota in the rainforest were found to be enriched in the heavier sulphur isotope, whereas particles with a high organic mass fraction modified by condensation of VOC oxidation products and/or cloud processing were significantly depleted in the heavier sulphur isotope compared to the seed particles. This indicates either a depleted gas phase source of sulphur dioxide contributed to the sulphate formation via the H2O2, O3 or OH oxidation pathway or an unaccounted reaction pathway which depletes the heavier isotope in the product sulphate contributes to the secondary sulphate formation in the pristine Amazon rainforest. Harris, E., et al., Science 340, 727-730, 2013 Pöhlker, C., Science 337, 1075-1078, 2012

Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

2013-12-01

254

Kinetic study of heterogeneous ozonolysis of alachlor, trifluralin and terbuthylazine adsorbed on silica particles under atmospheric conditions  

NASA Astrophysics Data System (ADS)

To better understand the atmospheric behaviour of pesticides, heterogeneous ozonolysis of three herbicides (alachlor, terbuthylazine and trifluralin) adsorbed on silica particles were performed in a flow reactor. The experimental setup used in this study and previously validated ( Pflieger et al., 2009) has been specially developed to investigate extremely slow reactivity. The pesticides were adsorbed on particles using a gas/solid adsorption equilibrium, in order to simulate atmospheric conditions. After exposure to ozone concentrations ranging from 5 to 41 ppm during 90 min to 6 h, the kinetics were calculated by comparing the initial and the remaining amounts of pesticides adsorbed on silica particles. This work offers the first results of heterogeneous ozonolysis of alachlor and trifluralin adsorbed on mineral particles. Although alachlor and terbuthylazine were expected to react with ozone, no degradation was observed which leads to a lifetime higher than 8 months towards ozonolysis (for 40 ppb of O 3). A significant degradation of trifluralin adsorbed on silica particles by heterogeneous ozonolysis was observed. The experimental data could be fit by both the Langmuir-Rideal and the Langmuir-Hinshelwood models resulting in atmospheric lifetimes (towards heterogeneous ozonolysis) of 40 and 32 days respectively (for 40 ppb of O 3). These results are discussed and compared to other studies.

Pflieger, Maryline; Monod, Anne; Wortham, Henri

255

Dynamics of Granular Materials and Particle-Laden Flows  

SciTech Connect

Rapid granular flows and particle-laden flows were studied in laboratory experiments, molecular dynamics simulations, and simulations of continuum equations. The research demonstrated that the inclusion of friction is crucial in realistic modeling of granular flows; hence extensive previous analyses and simulations by many researchers for frictionless particles must be reconsidered in the light of our work. We also made the first detailed comparison between experiment and the predictions of continuum theory for granular media (hydrodynamic equations). We found that shock waves easily form in granular flows since the speed of sound waves (pressure fluctuations) in a granular gas is small, typically 10 cm, while flow velocities are easily an order of magnitude larger. Our measurements on vertically oscillating granular layers led to the development of a novel technique for continuously separating particles of different sizes. Our study of craters formed by the impact of a projectile in a granular medium showed, surprisingly, that the time taken for a projectile to come to a rest in the granular layer is independent of the projectile’s impact energy. Another study supported by this grant examined a vertically oscillating layer of a mixture of cornstarch and water. The discovery of stable holes in the mixture was reported widely in the popular press, e.g., Science News [15 May 2004], “Imaging poking a liquid to create holes that persist like the holes in Swiss cheese. Incredible as that might sound, a group of scientists has done it.” Further experiments on glass spheres in an aqueous solution yielded the same holey fluid phenomenon, supporting our conjecture that such holes may occur in dense concentrations of particles in solution in industrial applications.

Swinney, Harry L.

2007-07-11

256

Automated technologies needed to prevent radioactive materials from reentering the atmosphere  

NASA Astrophysics Data System (ADS)

Project SIREN (Search, Intercept, Retrieve, Expulsion Nuclear) has been created to identify and evaluate the technologies and operational strategies needed to rendezvous with and capture aerospace radioactive materials (e.g., a distressed or spent space reactor core) before such materials can reenter the terrestrial atmosphere and then to safely move these captured materials to an acceptable space destination for proper disposal. A major component of the current Project SIREN effort is the development of an interactive technology model (including a computerized data base) that explores in building block fashion the interaction of the technologies and procedures needed to successfully accomplish a SIREN mission. This SIREN model will include appropriate national and international technology elements-both contemporary and projected into the next century. To permit maximum flexibility and use, the SIREN technology data base is being programmed for use on 386-class PC's.

Buden, David; Angelo, Joseph A., Jr.

257

Thermodynamic analysis of chemical stability of ceramic materials in hydrogen-containing atmospheres at high temperatures  

NASA Technical Reports Server (NTRS)

The chemical stability of several ceramic materials in hydrogen-containing environments was analyzed with thermodynamic considerations in mind. Equilibrium calculations were made as a function of temperature, moisture content, and total system pressure. The following ceramic materials were considered in this study: SiC, Si3N4, SiO2, Al2O3, mullite, ZrO2, Y2O3, CaO, MgO, BeO, TiB2, TiC, HfC, and ZrC. On the basis of purely thermodynamic arguments, upper temperature limits are suggested for each material for long-term use in H2-containing atmospheres.

Misra, Ajay K.

1990-01-01

258

A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles  

NASA Astrophysics Data System (ADS)

Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the MILAGRO study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+; and that a higher H+ loading and lower cation/anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and ammonia-ammonium (NH3-NH4+) partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the Extended Aerosol Inorganics Model (E-AIM) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both models run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements, and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and published studies to date with conclusions based on such acidity proxies may need to be reevaluated. Given the significance of acidity for chemical processes in the atmosphere, the implications of this study are important and far reaching.

Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

2014-11-01

259

The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials  

NASA Technical Reports Server (NTRS)

This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.

Barghouty, A. F.; Thibeault, S. A.

2006-01-01

260

First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events  

SciTech Connect

Recent observations throughout the atmosphere have shown that nucleation occurs frequently (Kulmala et al. 2004). Modeling studies and observations have shown that nucleated particles contribute significantly to concentrations of cloud condensation nuclei (Spracklen et al. 2008), thereby affecting climate (IPCC 2007). Size-resolved measurements extending down to molecular dimensions can provide information on processes that lead to nucleation and would enable development and verification of theories for particle nucleation and growth in the atmosphere and other aerosol systems. This article describes measurements of the complete number size distribution, spanning the size range from vapor molecules and molecular clusters to submicrometer particles, during atmospheric nucleation events. The measurements used two new instruments, the cluster chemical ionization mass spectrometer (Cluster CIMS) and the DEG SMPS. The Cluster CIMS measures neutral molecular clusters from 50 to 900 amu. The DEG SMPS is a scanning mobility particle spectrometer (SMPS) equipped with a diethylene glycol (DEG)-based condensation particle counter (CPC) capable of 1.1 nm mobility diameter particle detection, and overlapping the sizes detected by the Cluster CIMS (Iida et al. 2009; Jiang et al. 2011). The Cluster CIMS distinguishes neutral clusters from ions formed by ion-induced clustering by varying the reaction time for ions with the sampled air (Zhao et al. 2010). It distinguishes clusters from high molecular weight gases by measuring the incremental signal at a specified mass detected during nucleation events. The clusters that were measured in this study contain sulfuric acid, which is known to participate in atmospheric nucleation (Kuang et al. 2008).

Jiang, J.; Kuang, C.; Zhao, J.; Chen, M.; Eisele, F. L.; Scheckman, J.; Williams, B. J.; McMurry, P. H.

2011-02-01

261

Regression modeling of gas-particle partitioning of atmospheric oxidized mercury from temperature data  

NASA Astrophysics Data System (ADS)

describing the partitioning of atmospheric oxidized mercury (Hg(II)) between the gas and fine particulate phases were developed as a function of temperature. The models were derived from regression analysis of the gas-particle partitioning parameters, defined by a partition coefficient (Kp) and Hg(II) fraction in fine particles (fPBM) and temperature data from 10 North American sites. The generalized model, log(1/Kp) = 12.69-3485.30(1/T) (R2 = 0.55; root-mean-square error (RMSE) of 1.06 m3/µg for Kp), predicted the observed average Kp at 7 of the 10 sites. Discrepancies between the predicted and observed average Kp were found at the sites impacted by large Hg sources because the model had not accounted for the different mercury speciation profile and aerosol compositions of different sources. Site-specific equations were also generated from average Kp and fPBM corresponding to temperature interval data. The site-specific models were more accurate than the generalized Kp model at predicting the observations at 9 of the 10 sites as indicated by RMSE of 0.22-0.5 m3/µg for Kp and 0.03-0.08 for fPBM. Both models reproduced the observed monthly average values, except for a peak in Hg(II) partitioning observed during summer at two locations. Weak correlations between the site-specific model Kp or fPBM and observations suggest the role of aerosol composition, aerosol water content, and relative humidity factors on Hg(II) partitioning. The use of local temperature data to parameterize Hg(II) partitioning in the proposed models potentially improves the estimation of mercury cycling in chemical transport models and elsewhere.

Cheng, Irene; Zhang, Leiming; Blanchard, Pierrette

2014-10-01

262

Materials with a desired refraction coefficient can be made by embedding small particles  

E-print Network

A method is proposed to create materials with a desired refraction coefficient, possibly negative one. The method consists of embedding into a given material small particles. Given $n_0(x)$, the refraction coefficient of the original material in a bounded domain $D \\subset \\R^3$, and a desired refraction coefficient $n(x)$, one calculates the number $N(x)$ of small particles, to be embedded in $D$ around a point $x \\in D$ per unit volume of $D$, in order that the resulting new material has refraction coefficient $n(x)$.

A. G. Ramm

2007-06-15

263

TCT characterization of different semiconductor materials for particle detection  

NASA Astrophysics Data System (ADS)

The development of digital semiconductor based X-ray detectors necessitates a detailed understanding of the applied sensor material. Under this premise a broad-band transient current technique (TCT) setup has been developed and used to characterize different semiconductors. The measurements are based on the generation of electrical charges within the sensor material and the subsequent time-resolved analysis of the charge carrier movement. From the recorded current pulses the charge collection efficiency, the charge carrier mobility and the electric field profile have been extracted. The examined materials are silicon p in n diodes, ohmic and Schottky contacted CdTe detectors, CdZnTe (CZT) crystals with Schottky contacts as well as two single-crystal CVD-diamonds.

Fink, J.; Lodomez, P.; Krüger, H.; Pernegger, H.; Weilhammer, P.; Wermes, N.

2006-09-01

264

Comminution of material particles by water jets — Influence of the inner shape of the mixing chamber  

Microsoft Academic Search

Material comminution is one of the typical processes present during the injection abrasive water jet generation inside the mixing chamber and the focussing tube of the abrasive water jet cutting head. The determination of an extent of changes in the size of particles induced in the cutting head is the main objective of this contribution. Knowledge of the particle size

Libor M. Hlavá?; Irena M. Hlavá?ová; Petr Janda?ka; Ji?í Zegzulka; Jana Viliamsová; Jaroslav Vašek; Vilém Mádr

2010-01-01

265

Thermoelectric figure of merit of a material consisting of semiconductor or metal particles  

SciTech Connect

It is found that the dimensionless thermoelectric figure of merit of a material consisting of a large number of ball-shaped semiconductor or metal particles can be much more than unity. The introduction of an insulator into the space between the particles is shown to sharply increase the power of the converter of heat energy into electric current energy.

Kharlamov, V. F., E-mail: kharl@ostu.ru [Orel State Technical University (Russian Federation)

2013-07-15

266

Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility  

NASA Astrophysics Data System (ADS)

Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

2013-11-01

267

Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study  

NASA Astrophysics Data System (ADS)

Processes on icy particles attract much attention due to their importance for atmospheric science, ecology and astrophysics. In this work, adsorption and ecologically important reactions of some molecules on pure and mixed water icy films by means of FTIR spectroscopy have been investigated. The cell for spectral studies of adsorbed molecules at variable temperatures (55-370 K), described elsewhere1, enables one to run the spectra in the presence of gaseous adsorbate, and even to perform adsorption from the solution in some cryogenic solvents. For the studies of ice films, it was equipped with a device for water vapour sputtering from the heated capillaries and deposition onto the inner BaF2 or ZnSe windows of the cell, cooled by liquid nitrogen. Lower temperatures were obtained by pumping off evaporating nitrogen from the coolant volume. The estimated specific surface area of freshly deposited at 77 K water ice film was about 160 m2/g and decreases on raising the temperature together with the diminishing intensity of the bands of dangling OH (OD) groups at 3696 (2727) cm-1 until the latter disappear at 130 - 160 K when the changes of bulk absorption provide evidence for a phase transition from amorphous to polycrystalline ice. CO adsorption at 77 K results in two bands at 2153 and 2137 cm-1 assigned to molecules forming weak H-bond with the dangling hydroxyl groups and bound to unsaturated surface oxygen atoms, respectively2. The band of dangling hydroxyl groups moves to lower wavenumbers on adsorption of different molecules (hydrogen, nitrogen, methane, ozone, NO, ethane or chlorinated ethenes, etc.). The shift value depends on the nature of adsorbate. Besides this shift, spectra of adsorbed nitrogen and methane registered at 55 K reveal the adsorption intensity decrease at ~ 2650 cm-1 at the high-frequency slope of bulk adsorption, and increase at about 25 cm-1 below. We interpret this perturbation as a strengthening of H-bonds between surface water molecules, which act as adsorption sites either as a proton-donor or as a donor of the lone pair of electrons. Such adsorption-induced relaxation explains the dependence of physico-chemical properties of icy particles on the presence of atmospheric gases. Spectra HCN/D2O and ND3/D2O mixed icy films with low (1:10) dopant/water ratios do not manifest any changes in the acidic or basic properties of dangling hydroxyl groups or surface oxygen atoms, but reveal a difference in the proportion between the concentrations of these sites as compared with that for pure water ice. For high dopant concentrations (1:1), the dangling hydroxyls were not observed; the dominant adsorption sites for CO are likely to be the unsaturated oxygen atoms, while serious structural changes occur in the bulk of ices. Ecologically important reactions of atmospheric pollutants such as ozonolysis of ethene, chlorinated ethenes, hydrogen cyanide, and methyl bromide adsorbed on water ice film as well as the influence of UV radiation on this process have been studied in 77 - 200 K temperature range by FTIR spectroscopy. Ozone co-adsorption with ethene or C2H3Cl readily leads to ozonolysis reaction, which also starts for C2H2Cl2 isomers but only at temperatures elevated up to 120 - 150 K. Co-adsorption of O3 with HCN or CH3Br molecules in the dark does not lead to any noticeable spectral changes. Irradiation of HCN or CH3Br deposited on ice films in the presence of ozone leads to appearance of new bands revealing the formation of ozonolysis products. The same "synergetic effect" of simultaneous action of ozone and UV radiation at 77 K, was found for C2H2Cl2 isomers and C2Cl4, which are resistant against O3 even at higher temperatures. The obtained spectral dependence of photo-ozonolysis of C2Cl4 and HCN at 77 K shows that photoexcitation or photodissociation of ozone, evidently, accounts for the observed processes. The surface of ice particles, thus, plays the role of a condenser of atmospheric pollutants and acts as a micro- photoreactor in the atmospheric chemistry. Acknowledgments. The work was

Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

2009-04-01

268

Acidic reaction products of mono- and sesquiterpenes in atmospheric fine particles in a boreal forest  

NASA Astrophysics Data System (ADS)

Biogenic acids were measured from PM2.5 aerosols at SMEAR II station (Station For Measuring Forest Ecosystem-Atmosphere Relations) in Finland from June 2010 until October 2011. The measured organic acids were pinic, pinonic, caric, limonic and caryophyllinic acids from oxidation of ?-pinene, ?-pinene, limonene, ?3-carene and ?-caryophyllene. Due to lack of authentic standards caric, limonic and caryophyllinic acids were synthesized at the Laboratory of Organic Chemistry, University of Helsinki. The highest terpenoic acid concentrations were measured during summer concomitant with the precursor mono- and sesquiterpenes. Of the acids ?-caryophyllinic acid had highest concentrations in summer, but during other times of the year pinonic acid was the most abundant. The ?-caryophyllinic acid contribution was higher than expected on the basis of emission calculations of precursor compounds and yields in oxidation experiments in smog chambers implicating that ?-caryophyllene emissions or ?-caryophyllinic acid yields are underestimated. Concentration ratios between terpenoic acids and their precursor were clearly lower in summer than in winter indicating stronger partitioning to the aerosol phase during cold winter season. The ?-caryophyllinic and caric acids were correlated with the accumulation mode particle number concentrations.

Vestenius, M.; Hellén, H.; Levula, J.; Kuronen, P.; Helminen, K. J.; Nieminen, T.; Kulmala, M.; Hakola, H.

2014-01-01

269

Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles  

PubMed Central

Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA. PMID:21317360

Russell, Lynn M.; Bahadur, Ranjit; Ziemann, Paul J.

2011-01-01

270

Source apportionment of fine atmospheric particles in Marseille: a one year study  

NASA Astrophysics Data System (ADS)

Marseille is the second most populated city in France with more than one million inhabitants. With traffic of about 88 million tons (Mt) in 2011, Marseille is also the most important port of the Mediterranean Sea, and also in the vicinity of the large petrochemical and industrial area of Fos-Berre, located 40 km northwest of the metropolitan area. For these reasons, Marseille area represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. In order to develop strategies for controlling and reducing air pollution, there is a need of source apportionment studies in order to better understand the influence of the different sources of aerosol particles. Within the framework of the EU-MED APICE project (Common Mediterranean strategy and local practical Actions for the mitigation of Port, Industries and Cities Emissions ; www.apice-project.eu), sources of atmospheric particles in Marseille were evaluated for a one-year period by a long monitoring campaign conducted at two sampling sites. PM2.5 were collected continuously on a 24h-basis in an urban background site from July 2011 to July 2012 and on a 48h-basis for the Eastern dock from November 2011 to July 2012 using high volume samplers (DA80) operating at a flow rate of 30m3 h-1. In this work, two different source apportionment models were used to explain the chemical observations, and to investigate the sources of organic aerosol in Marseille. Two sources apportionment models were used and combined to quantify the contribution of the main aerosol particles sources: CMB (Chemical Mass Balance) and PMF (Positive Matrix Factorization). Both models were used with organic molecular markers and metals/trace elements. Both approaches are able to identify major sources, the combination of these two commonly used receptor models offer interesting perspective, especially when the factors derived from PMF analysis are injected as source profiles in CMB calculation.

Marchand, Nicolas; Salameh, Dalia; Detournay, Anais; Wortham, Henri; Jaffrezo, Jean-Luc; Piot, Christine; Armengaud, Alexandre; Piga, Damien; Parra, Michael; Deveze, Magali

2013-04-01

271

Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere  

SciTech Connect

We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

Allendorf, Mark D; Robinson, Alex L

2014-12-09

272

Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically.  

PubMed

Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma. PMID:24068175

Lackmann, Jan-Wilm; Schneider, Simon; Edengeiser, Eugen; Jarzina, Fabian; Brinckmann, Steffen; Steinborn, Elena; Havenith, Martina; Benedikt, Jan; Bandow, Julia E

2013-12-01

273

Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material  

NASA Astrophysics Data System (ADS)

Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air humidity was probably rather high, up to 77%. The combined results of the three selected plant taxa indicate values for atmospheric carbon dioxide concentration between 700 and 1100 ppm (probably about 900 ppm). Reference: Konrad, W., Roth-Nebelsick, A., Grein, M. (2008). Modelling of stomatal density response to atmospheric CO2. Journal of Theoretical Biology 253(4): 638-658.

Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

2010-05-01

274

The thermal performance of fuel matrix material in a CO2 atmosphere  

NASA Astrophysics Data System (ADS)

The thermal oxidation performance of a semi-graphitic fuel matrix-material has been compared to two grades of nuclear graphite between 600 °C and 1200 °C in flowing CO2. Fuel matrix material is used to produce compacts or pebbles containing TRISO coated particle fuel for High Temperature Reactors (HTRs). The A3-27 fuel matrix-material grade was compared to NBG-18 and Gilsocarbon nuclear graphite grades. At 1200 °C temperatures A3-27 appears to be more reactive than NBG-18, but less so than Gilsocarbon. At 600 °C the oxidation rate of A3-27 is comparable to that of NBG-18, but both are significantly higher than that of Gilsocarbon. It is concluded that the comparable thermal oxidation behaviour of graphite and fuel-matrix material suggests that operating temperatures in a CO2 cooled reactor fuelled with TRISO coated particle fuel would not need to be reduced below those considered acceptable for the use of nuclear graphite.

Turner, J. D.; Schmidt, M. J. S.; Abram, T. J.

2013-11-01

275

Adaptive binary material classification of an unknown object using polarimetric images degraded by atmospheric turbulence  

NASA Astrophysics Data System (ADS)

An improved binary material-classification algorithm using passive polarimetric imagery degraded by atmospheric turbulence is presented. The technique implements a modified version of an existing polarimetric blind-deconvolution algorithm in order to remove atmospheric distortion and correctly classify the unknown object. The classification decision, dielectric or metal in this case, is based on degree of linear polarization (DoLP) estimates provided by the blind-deconvolution algorithm augmented by two DoLP priors - one statistically modeling the polarization behavior of metals and the other statistically modeling the polarization behavior of dielectrics. The DoLP estimate which maximizes the log-likelihood function determines the image pixel's classification. The method presented here significantly improves upon a similar published polarimetric classification method by adaptively updating the DoLP priors as more information becomes available about the scene. This new adaptive method significantly extends the range of validity of the existing polarimetric classification technique to near-normal collection geometries where most polarimetric material classifiers perform poorly. In this paper, brief reviews of the polarimetric blind-deconvolution algorithm and the functional forms of the DoLP priors are provided. Also provided is the methodology for making the algorithm adaptive including three techniques for updating the DoLP priors using in-progress DoLP estimates. Lastly, the proposed technique is experimentally validated by comparing classification results of two dielectric and metallic samples obtained using the new method to those obtained using the existing technique.

Kim, Mu J.; Hyde, Milo W.

2012-10-01

276

Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity  

NASA Astrophysics Data System (ADS)

This paper presents the first example of inter-particle force inference in real granular materials using an improved version of the methodology known as the Granular Element Method (GEM). GEM combines experimental imaging techniques with equations governing particle behavior to allow force inference in cohesionless materials with grains of arbitrary shape, texture, and opacity. This novel capability serves as a useful tool for experimentally characterizing granular materials, and provides a new means for investigating force networks. In addition to an experimental example, this paper presents a precise mathematical formulation of the inverse problem involving the governing equations and illustrates solution strategies.

Hurley, Ryan; Marteau, Eloïse; Ravichandran, Guruswami; Andrade, José E.

2014-02-01

277

Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer  

NASA Astrophysics Data System (ADS)

Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 ?m, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 ?m for raw emissions to 0.10 ?m at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp?0.02 ?m. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

2007-10-01

278

Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer  

NASA Astrophysics Data System (ADS)

Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 ?m, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 ?m for raw emissions to 0.10 ?m at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp?0.02 ?m. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

2008-05-01

279

Nucleation and Aitken mode atmospheric particles in relation to O3 and NOX at semirural background in Denmark  

NASA Astrophysics Data System (ADS)

Atmospheric oxidants (O3, NO and NO2) and particle size distributions (6-700 nm) were studied at a semi-rural background location in Denmark during 2009 to evaluate the sources of particulate matter. Aitken mode particles (30-110 nm) and accumulation mode particles (110-700 nm) anti-correlated or showed no correlation with O3. The lower Aitken mode (<30 nm), also referred to as the nucleation mode, typically peaked around noon from April to September and correlated positively with O3, which indicates that photochemistry is likely to be responsible for most of the nucleation mode particles in this period of the year. In the months with low global radiation (October-March), NO2 correlated positively with the lower Aitken mode, which typically peaked in the morning and afternoon on working days, indicating that traffic is the most important source of nucleation mode particles in that period of the year. A strong correlation was observed for NO2 and Aitken mode particles throughout the year, which indicate a common traffic source. We also observed growth of Aitken mode particles during high NOX episodes. While photochemistry and traffic were major sources to Aitken mode particles, a source apportionment analysis identified Secondary Inorganic Aerosols (SIA), as the largest source to PM10 (36% including secondary marine aerosols) in the semi-rural background troposphere in Denmark. Ammonium nitrate was a larger source than ammonium sulfate to the SIA mass fraction, where particulate nitrate exceeded that of sulfates by 2.6 times on a molar basis. Indications are that NO2, as a precursor for e.g. ammonium nitrate is probably more important than SO2, as a precursor for ammonium sulfate, in the formation of SIA. In this way, NO2 from anthropogenic emissions and following conversion to particulate nitrates thus appeared to impact semi-rural atmospheric particulate matter in both the Aitken mode and mass wise in PM10.

Nøjgaard, Jacob K.; Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.

2012-03-01

280

On the influence of atmospheric chemical reactions on the ion composition of aerosol particles in the Baikal region  

NASA Astrophysics Data System (ADS)

Monitoring data on the ion composition of aerosols and gas admixtures in the background and polluted atmosphere of the Lake Baikal region are presented. The ion composition and morphology of aerosols are affected by heterogeneous chemical reactions and variations in relative humidity. Two types of aerosol particles are revealed over this region. The fraction of solid particles recorded in most episodes includes primarily carbonates of alkaline and alkaline-earth metals. With increased atmospheric humidity, these particles are engaged in heterogeneous chemical reactions with gas-phase NH3 and H2SO4, proceeding through the phase of watering. As a result, the composition of these aerosols is changed, and a fraction of aqueous H2O/H2SO4/(NH4)2SO4 aerosol particles of a different composition is formed. On the basis of a physical and chemical analysis of monitoring data on the aerosol composition and concentrations of gas admixtures, the average aerosol-size distribution of different types is estimated. For the first time, the mean acidity of aqueous aerosol particles is estimated.

Yermakov, A. N.; Aloyan, A. E.; Khodzer, T. V.; Golobokova, L. P.; Arutyunyan, V. O.

2007-04-01

281

Air Quality Impacts of Atmospheric Particles & Trace Gases: Field Studies in Diverse Environments  

NASA Astrophysics Data System (ADS)

Air pollution impacts occur at all scales, meaning that policies and air quality management practices must be implemented and coordinated at the local, regional, national, and global scales. This dissertation is part of a continuing effort to improve our understanding of various air quality related issues in different environments. The dissertation consists of four studies. In the first study, wintertime chemical composition of water-soluble particulate matter with aerodynamic diameter less than 2.5 microm (PM2.5) was monitored in the Treasure Valley region near Boise, Idaho. This study was aimed at understanding the major drivers of wintertime PM2.5 within the locality of Boise and its suburbs. From this study, organics and particulate nitrate were the dominant contributors to the PM2.5 mass during wintertime. In the second study, particle size distribution, light scattering coefficient, speciated water soluble PM2.5, and cloud condensation nuclei (CCN) concentration were monitored in a mixed deciduous forest in Northern Michigan during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX-2009). The overall goal of this study was to understand on how emissions of biogenic volatile organic compounds (BVOC) affect the gas-phase and particle-phase chemistry in the near-canopy environment, and the implications on local and regional air quality. From this study aerosol derived from the oxidation of BVOCs exhibited reduced hygroscopicity and CCN activation potential compared to aerosols derived from anthropogenic activities. The third study employed the eddy covariance (EC) technique to understand source-sink interactions of carbon dioxide (CO2), methane (CH 4), carbon monoxide (CO) and nitrous oxide (N2O) in Xi'an, China. In this study urban vegetation were found to play a major role in regulating CO2 emissions within the city while vehicular activities were a major driver for CO and CH4 fluxes. In the fourth study, visibility degradation effects of nitrogen oxide (NO) and nitrogen dioxide (NO2) emissions from a natural gas compressing facility in southern Idaho were evaluated and quantified. In addition, several retrofit technologies were evaluated based to their ability to reduce NOx (NO + NO2) emissions. From this study selective catalytic reduction (SCR) was found to be the most appropriate technology to reduce NOx emissions from the facility.

Mwaniki, George R.

282

Large area nuclear particle detectors using ET materials, phase 2  

NASA Technical Reports Server (NTRS)

This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

1990-01-01

283

Analysis results of micron-sized particles captured by space material exposure experiment  

NASA Astrophysics Data System (ADS)

Space material exposure experiments were performed on the International Space Station (ISS) using the Micro-Particles Capturer and the Space Environment Exposure Device (MPAC&SEED) developed by the Japan Aerospace Exploration Agency (JAXA). MPAC is a passive experiment designed to evaluate the dust (micrometeoroid and space debris) environment and to capture particle residues for subsequent chemical analysis. We found many unexpected micron-sized particles that did not make impact with hypervelocity. The diameter of these particles is in the order of micrometers. It is difficult to analyze these particles because they are too small to handle from aerogels. Also, their colorless and transparent nature prevents us from handling them after extraction. In final paper, I present the analysis results of this micron-sized particles

Kimoto, Yugo

284

Acidic reaction products of monoterpenes and sesquiterpenes in atmospheric fine particles in a boreal forest  

NASA Astrophysics Data System (ADS)

Biogenic acids were measured in aerosols at the SMEAR II (Station for Measuring Forest Ecosystem-Atmosphere Relations II) station in Finland from June 2010 until October 2011. The analysed organic acids were pinic, pinonic, caric, limonic and caryophyllinic acids from oxidation of ?-pinene, ?-pinene, limonene, ?3-carene and ?-caryophyllene, respectively. Due to a lack of authentic standards, the caric, limonic and caryophyllinic acids were synthesised for this study. The mean, median, maximum and minimum concentrations (ng m-3) were as follows: limonic acid (1.26, 0.80, 16.5, below detection limit (< LOD)), pinic acid (5.53, 3.25, 31.4, 0.15), pinonic acid (9.87, 5.07, 80.1, < LOD), caric acid (5.52, 3.58, 49.8, < LOD), and caryophyllinic acid (7.87, 6.07, 86.1, < LOD). The highest terpenoic acid concentrations were measured during the summer. Of the acids, ?-caryophyllinic acid showed the highest concentrations in summer, but during other times of the year pinonic acid was the most abundant. The ?-caryophyllinic acid contribution was higher than expected, based on the emission calculations of the precursor compounds and yields from oxidation experiments in smog chambers, implying that the ?-caryophyllene emissions or ?-caryophyllinic acid yields were underestimated. The concentration ratios between terpenoic acids and their precursors were clearly lower in summer than in winter, indicating stronger partitioning to the aerosol phase during the cold winter season. The ?-caryophyllinic and caric acids were weakly correlated with the accumulation-mode particle number concentrations.

Vestenius, M.; Hellén, H.; Levula, J.; Kuronen, P.; Helminen, K. J.; Nieminen, T.; Kulmala, M.; Hakola, H.

2014-08-01

285

Particle-size distribution of inorganic water soluble ions in the venezuelan savannah atmosphere during burning and nonburning periods  

Microsoft Academic Search

The results presented are the first complete analysis of inorganic soluble ions in a tropical savannah region. Atmospheric particles were collected in six rural Venezuelan savannah sites. Concentrations and size distribution of NO3-, SO42-, CI-, PO43-, NH4+, Na+, K+, Ca2+ and Mg2+ were determined in samples collected with Hi Vol samplers equipped with five-stage cascade impactors. Concentrations were higher in

Eugenio Sanhueza; Alberto Rondón

1988-01-01

286

The Effect of Cloud Particle Size on Climate Using an Atmosphere-Ocean Coupled General Circulation Model  

NASA Astrophysics Data System (ADS)

Recently, there have been some studies suggesting that the variation of solar activity affects the production of cloud condensation nuclei (CCN). If the production of CCN changes, it may be expected that the size of cloud particles would change because more (less) CCN may result in more (less) and smaller (larger) cloud particles. In this study, the cloud particle sizes in the atmospheric radiation computation in an atmosphere-ocean coupled general circulation model, called CFES (Coupled model For the Earth Simulator), are changed in order to investigate the effect of cloud particle size on global climate. The resolution of CFES is T119L48 (horizontally 1-degree and 48 vertical levels) for the atmospheric part, and horizontally 0.5-degree and 54 vertical levels for the ocean. The atmospheric radiation code is MSTRN-X, a Japanese community model. The cloud particle sizes are, for default, 20 micron meters for liquid stratus, 30 for liquid cumulus, 10 for solid stratus and 15 for solid cumulus. The Control run is conducted for 120 years. The last 20 years are analyzed. Additionally, two sensitivity numerical experiments are conducted. In the Half run, the cloud particle sizes are halved. The sizes are doubled in the Double run. It should be mentioned that the effect of cloud particle size on precipitation efficiency is not included in the simulations. Both runs are run from January 1 of the 101st year of Control for 20 years. The global mean surface air temperature in Control is about 287.5 K. After 20-year simulations, the global mean surface temperature is 3.7 K colder for Half than Control and 3.7 K warmer for Double. High clouds warm the Earth, and low clouds cool the Earth because their . The low cloud amount in Double (Half) decreases (increases). It is consistent with the temperature changes. Some implications for paleoclimate, current climate and future climate will be also discussed.; Time series of global mean surface air temperature. Abscissa is year, and ordinate is temperature in K. Black curve is for Control, blue for Half, and red for Double.

Ohfuchi, W.; Chikaraishi, Y.; Suzuki, R.; Kusano, K.; Taguchi, B.; Kataoka, R.; Miyahara, H.; Maruyama, S.; Hamano, Y.

2012-12-01

287

Reactivity of NaCl with Secondary Organic Acids: An Important Mechanism of the Chloride Depletion in Sea Salt Particles Mixed with Organic Materials  

NASA Astrophysics Data System (ADS)

Sea salt particles, one of the major sources of atmospheric aerosols, undergo complex multi-phase reactions and have profound consequences on their physical and chemical properties, thus on climate. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of sea salt chlorides with inorganic acids, such as nitric and sulfuric acids. Some studies have also showed that the chloride deficit cannot be fully compensated for this mechanism. We present an important pathway contributing to this chloride depletion: reactions of weak organic acids with sea salt particles. NaCl particles internally mixed with secondary organic materials generated from the reactions of limonene and alpha-pinene with ozone served as surrogates for sea salt particles mixed with organic materials. Chemical imaging analysis of these particles was conducted using complementary techniques including computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX), scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and micro-fourier transform infrared spectroscopy (micro-FTIR). Substantial chloride depletion and formation of organic salts were observed along with distinctive changes in particle morphology after hydration/dehydration processes. The results indicate that secondary organic acids can effectively react with NaCl particles resulting in displacement of chloride and release of gaseous HCl. This is consistent with a recent field study showing chloride depletion in sea salt particles mixed with organic materials which cannot be fully compensated by inorganic acid displacement. Although the formation of the organic salts is not thermodynamically favored in bulk aqueous solution, these reactions are driven by the high volatility and evaporation of gaseous HCl in particles, especially during hydration/dehydration processes. The proposed reactions may result in the formation of organic salts and production of HCl from sea salt particles that become mixed with organic acids during atmospheric aging that occurs with transport. The process of hydration/dehydration and these reactions may modify the physical and chemical properties of aged sea salt particles.

Wang, B.; Laskin, A.; Kelly, S.; Gilles, M. K.; Shilling, J. E.; Zelenyuk, A.; Wilson, J. M.; Tivanski, A.

2012-12-01

288

Growth of new particle in less and highly polluted atmosphere: Implication for an important role of NH4NO3 in growing new particles to CCN size  

NASA Astrophysics Data System (ADS)

When new particles formed in the atmosphere grow over 50-80 nm, they will activate as cloud condensation nuclei (CCN) and lead to an increase of cloud albedo. Knowledge gaps still existed, e.g., 1) new particles under which conditions can grow to CCN size? 2) which chemicals determine the growth of new particles to CCN size? In this study, new particle formation (NPF) events were investigated at two urban sites, in Qingdao during 23 April and 31 May, 2010, and in Toronto during 1 May and 31 May, 2009, using two identical Fast Mobility Particle Sizer (FMPS). Based on the satellite column densities of air pollutants and the particulate chemical concentration in PM2.5, the site in Qingdao suffered severe air pollution while the site in Toronto is less polluted. NPF events were observed in 16 days out of 39 sampling days in Qingdao and 13 days out of 31 sampling days in Toronto. The occurrence frequency of NPF events between Qingdao (41%) and Toronto (42%) was comparable to each other. In Qingdao, the geometric mean diameter of grown nucleated particles (Dpg,i) in 15 days grew to larger than 40 nm except in one day when the growth of new particles terminated at ~20 nm. In addition, the Dpg,i in 8 days out of the 15 days grew over 50 nm and it reached ~100 nm in two days. Two-phase growth of new particles was generally observed in these NPF events of Qingdao. The first-phase growth occurred in daytime and the CMAQ modeling results showed that formation of secondary organics was likely an important cause for the growth. The second-phase growth was observed at night and was associated with the increased concentrations of NH4+ and NO3-, implying that NH4NO3 condensation played an important role in the growth. In Toronto, NPF events in 4 days followed with the growth of new particles <~20 nm while new particles grew up to ~40 nm in the remaining NPF events. A slight growth of new particles at night was observed only in 3-day NPF events when the increased concentrations of NH4+, NO3- or the increased relative humidity were observed. However, the calculated Dpg,i was less than 45 nm for all NPF events in Toronto, implying a negligible contribution of new particles to the population of CCN.

Zhu, Y.; Gao, H.; Duan, Z. Q.; Evans, G. J.; Yao, X.

2013-12-01

289

The Stopping Power of Asteroidal Materials as High-Energy Charged Particle Shielding  

NASA Astrophysics Data System (ADS)

Extended human missions in deep space face a challenging radiation environment from high-energy galactic cosmic rays and solar energetic particles generated by solar flares and related coronal mass ejections. Shielding to attenuate these high-energy particles will require significant mass and volume, and would be extremely expensive launch from the surface of the earth. One possible solution could be the use of asteroidal resources as shielding for these high-energy particles. The effectiveness of shielding material for moderately relativistic charged particles is a function of the mean rate of energy loss, primarily to ionization and atomic excitation and is termed stopping power. In general, low atomic number elements are more effective per unit volume. We have calculated the stopping power for the average compositions of all major meteorite groups and will compare these data with typical spacecraft materials.

Pohl, Leos; Johnson, Daniel; Britt, Daniel

2014-11-01

290

Control of TTIP Solution for Atmospheric Pressure Plasma Jet and Deposition of TiO2 Micro-particles  

NASA Astrophysics Data System (ADS)

TiO2 deposition-methods are versatile and are expected to be more simple and easy, however, in recent years the industrial photocatalytic products have been developed enormously. In this work, photocatalytic TiO2 micro-particles are deposited using the atmospheric pressure plasma jet device. Here, deposition-method is carried out in two steps, at first, the hydrolysis reaction time has been able to control which will resolve the TTIP coagulating trouble during the transportation, by acidifying the solution with AA (Acetic acid) and DEA (Diethanolamine). An experiment was performed to measure the hydrolysis reaction time of TTIP (Titanium tetraisopropoxide) solution by He-Ne laser. Secondly, the deposition of TiO2 micro-particles was carried out using the atmospheric pressure plasma jet with the controlled TTIP solution in reaction time. Based on SEM and water contact angle measurement, it is found that the smaller the mixing ratios of TTIP and DEA the smaller the TiO2 particle size. Also, the smaller the TiO2 particles the smaller the contact angle under the UV irradiation which suffices the photocatalytic behavior.

Hayakawa, Masahiro; Parajulee, Shankar; Ikezawa, Shunjiro

291

Particle size analysis of prepared solutions and fingerprint deposits of high explosive materials  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) managed and operated by Lockheed Martin Idaho Technologies Company (LMITCO) was tasked via the Federal Aviation Administration (FAA) and US Department of Energy (DOE) to conduct various studies involving the detection and measurement of explosive materials and their associated residues. This report details the results of an investigation to determine the particle size characteristics of the explosive materials used in the design, development, and testing of trace explosives detection systems. These materials, in the form of water suspensions of plastic explosives, are used to provide a quantitative means of monitoring the performance characteristics of the detection systems. The purpose of this investigation is to provide data that allows a comparison between the particles deposited using the suspension standards and the particles deposited from fingerprints. This information may support the development of quality control aids, measurement methods, or performance criteria specifications for the use of trace explosives detection systems. For this report, particle size analyses were completed on explosives standard suspensions/solutions for composition C-4, Semtex-H, and Detasheet and fingerprints for C-4, Detasheet, and pentolite. Because of the difficulty in collecting microscopic images of the particles in the suspensions from test protocol surfaces, this paper discusses the characteristics of the particles as they are found on metal, glass, and paper. The results of the particle characterization analyses indicate that the water suspensions contain particulate composed of binder materials and dissolved portions of the explosive compounds. Upon drying of the water suspensions, significant particle nucleation and growth is observed. The nucleated particulate is comparable to the particulate deposited by fingerprints.

Carmack, W.J.; Hembree, P.B.

1998-03-01

292

Production and characterization of plutonium dioxide particles as a quality control material for safeguards purposes.  

PubMed

Plutonium (Pu) dioxide particles were produced from certified reference material (CRM) 136 solution (CRM 136-plutonium isotopic standard, New Brunswick Laboratory, Argonne, IL, U.S.A., 1987) using an atomizer system on December 3, 2009 after chemical separation of americium (Am) on October 27, 2009. The highest density of the size distribution of the particles obtained from 312 particles on a selected impactor stage was in the range of 0.7-0.8 ?m. The flattening degree of 312 particles was also estimated. The isotopic composition of Pu and uranium (U) and the amount of Am were estimated by thermal ionization mass spectrometry (TIMS), inductively coupled plasma mass spectrometry (ICPMS), and ?-spectrometry. Within uncertainties the isotopic composition of the produced particles is in agreement with the expected values, which were derived from the decay correction of the Pu isotopes in the CRM 136. The elemental ratio of Am to Pu in the produced particles was determined on the 317th and 674th day after Am separation, and the residual amount of Am in the solution was estimated. The analytical results of single particles by micro-Raman-scanning electron microscopy (SEM)-energy-dispersive X-ray spectrometry (EDX) indicate that the produced particles are Pu dioxide. Our initial attempts to measure the density of two single particles gave results with a spread value accompanied by a large uncertainty. PMID:22372509

Shinonaga, Taeko; Donohue, David; Aigner, Helmut; Bürger, Stefan; Klose, Dilani; Kärkelä, Teemu; Zilliacus, Riitta; Auvinen, Ari; Marie, Olivier; Pointurier, Fabien

2012-03-20

293

Interplanetary dust particles, quantitative material properties and bulk chemical composition of meteors  

NASA Astrophysics Data System (ADS)

Meteors fill the gap between interplanetary dust particles (IDPs) and meteorites that are collected for laboratory analyses. When interacting with the atmosphere meteors leave potentially extractable information on mass (size), density, internal texture (massive or aggregates), sizes of building blocks (meteor fragmentation behavior), and bulk composition of "coherent entities" (light curves). Most comet nuclei and many undifferentiated asteroids are rubble piles that could potentially produce meteors ranging from several hundreds of meter-sized pre-protoplanets, boulders (several meters to sub-meter-size), cm/mm-size pebbles and dust. The hypothesis of hierarchical dust accretion describes the mineralogical variations and chemical changes of heterogeneous, micron to mm-sized meteors and constituent grain size. The initially accreting dusts had a non-chondritic composition. Dust in "dirty-ice" or "icy-dirt" was latest-accreted nebular dust once most of the evolved dust had accreted into pre-protoplanets where it was subjected to aqueous, thermal, or both, modification. The hypothesis can no longer be traced when dust +/- ice aggregates material strength. It is generally assumed that such modifications will require a sustained thermal regime but the metastable nature of sub-millimeter grains would allow modification well below equilibrium temperatures. After modification or lithification of accretionary-evolved pre-proto-planets, the resulting rubble pile will preserve a fractal nature from the largest down to the smallest dust aggregates. Its mm-sized and larger meteors would range from Si-rich proto-CI aggregates to fully-hydrated CI, possible also CM, boulders. Mapping the properties listed at the top for individual "dust and small boulder" meteors from comet nuclei in different meteor streams might produce a picture of accretion and (pre)protoplanetary dust modification from these near-surface source sample to asses differences between and among active, dormant and extinct rubble piles from the Oort cloud, KBOs and NEAs, even on-orbit meteoroid modification. Ironically the smallest, thus faintest, meteors would be of greatest interest. Yet, larger meteoroids will remain the only option to learn the nature of the pebbles and boulders that could be CI/CM like, or much-less modified precursor materials.

Rietmeijer, F. J.

294

Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles  

NASA Astrophysics Data System (ADS)

On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 ?g/m3-12.6 ?g/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 ?g/m3 to 9.3 ?g/m3 and 3.1 ?g/m3 to 6.4 ?g /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these species. The secondary aerosol represented an important fraction of total compounds in PM2.5 ranged from 16 to 18% for (NH4)2SO4 and 6 to 8% for NH4NO3. The values for TWSC ranged from 0.28 to 6.35 ?g/m3 in the industrial area and 0.12 to 7.49 ?g/m3 for rural area. The similarity between the areas regarding secondary aerosols formation and water-soluble carbon compounds is probably due to the particle size.

Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

2013-04-01

295

Composite material reinforced with atomized quasicrystalline particles and method of making same  

DOEpatents

A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

Biner, Suleyman B. (Ames, IA); Sordelet, Daniel J. (Ames, IA); Lograsso, Barbara K. (Ames, IA); Anderson, Iver E. (Ames, IA)

1998-12-22

296

Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis  

SciTech Connect

A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

2007-05-16

297

Single-particle chemical characterization and source apportionment of iron-containing atmospheric aerosols in Asian outflow  

NASA Astrophysics Data System (ADS)

Using a single-particle mass spectrometer, the size and chemical composition of individual Fe-containing atmospheric aerosols (Fe aerosols) with diameter from 100 to 1800 nm were characterized during Asian outflow season (spring of 2008) in Okinawa Island, Japan and their sources were determined. Fe aerosols were classified into five unique particle types which were mixed with specific compound(s) and related to their sources (crustal, fly ash/K-biomass burning, elemental carbon, metals, and vanadium). Particle number-based contribution of the crustal particle type, which has been thought to be the main source of aerosol Fe, was quite small (2 ˜ 10%) in all size ranges, while anthropogenic Fe aerosols were the dominant contributor in this study. Fly ash/K-biomass burning type was the most abundant particle types, which contributed ˜50%. Metals and elemental carbon types contributed ˜20% and ˜10%, respectively. Contribution of vanadium type was variable (5 ˜ 50%), which is attributed to ship emission. The frequent appearance of lithium ion peak in the fly ash/K-biomass burning type strongly suggests that large fraction of the type is coal combustion origin, reflecting high coal usage in China. These results show that anthropogenic sources contributes significant portion of Fe aerosols in Asian outflow. Excluding the vanadium type, relative contribution of the remaining four particle types was constant over the course of study, which remained even when the total concentration of Fe aerosols changed and fraction of the Fe aerosols among atmospheric aerosols decreased significantly by the switch of air mass type into marine type. We concluded that the observed constant relative abundance reflected the relative source strength of Fe aerosols in Asian outflow, particularly emphasizing the importance of coal combustion source in East Asia.

Furutani, Hiroshi; Jung, Jinyoung; Miura, Kazuhiko; Takami, Akinori; Kato, Shungo; Kajii, Yoshizumi; Uematsu, Mitsuo

2011-09-01

298

ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer  

NASA Astrophysics Data System (ADS)

This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few meters. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location, shows comparable values. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m altitude indicate a high variability with distinct layers of aerosol especially for the small particles of a few nanometers in diameter. Particle bursts were observed on one day during the boundary layer development in the morning.

Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

2014-12-01

299

Comparison of Contributions of Wind-blown and Anthropogenic Fugitive Dust Particles to Atmospheric Particulate Matter  

NASA Astrophysics Data System (ADS)

A new wind-blown-dust emissions module was recently implemented into AURAMS, a Canadian regional air quality model (Park et al., 2009; Park et al., 2007), to investigate the relative impact of wind-blown dust vs. anthropogenic fugitive dust on air quality in North America. In order to apply the wind-blown dust emissions module to the entire North American continent, a soil-grain-size-distribution map was developed using the outputs of four monthly runs of AURAMS for 2002 and available PM2.5 dust-content observations. The simulation results using the new soil-grain-size-distribution map showed that inclusion of wind-blown dust emissions is essential to predict the impact of dust aerosols on air quality in North America, especially in the western U.S.. The wind-blown dust emissions varied widely by season, whereas the anthropogenic fugitive dust emissions did not change significantly. In the spring (April), the continental monthly average emissions rate of wind-blown dust was much higher than that of anthropogenic fugitive dust. The total amount of wind-blown dust emissions in North America predicted by the model for 2002 was comparable to that of anthropogenic fugitive dust emissions. Even with the inclusion of wind-blown dust emissions, however, the model still had difficulty simulating dust concentrations. Further improvements are needed, in terms of both limitations of the wind-blown-dust emission module and uncertainties in the anthropogenic fugitive dust emissions inventories, for improved dust modelling. References Park, S.H., S.L. Gong, W. Gong, P.A. Makar, M.D. Moran, C.A. Stroud, and J. Zhang, Sensitivity of surface characteristics on the simulation of wind-blown dust source in North America, Atmospheric Environment, 43 (19), 3122-3129, 2009. Park, S.H., S.L. Gong, T.L. Zhao, R.J. Vet, V.S. Bouchet, W. Gong, P.A. Makar, M.D. Moran, C. Stroud, and J. Zhang, Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red Dust Episode"), Journal of Geophysical Research, 112, D20209, doi:10.1029/2007JD008443, 2007.

Park, S.; Gong, S.

2010-12-01

300

Atmosphere Expansion and Mass Loss of Close-orbit Giant Exoplanets Heated by Stellar XUV. I. Modeling of Hydrodynamic Escape of Upper Atmospheric Material  

NASA Astrophysics Data System (ADS)

In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H_3^ + cooling, adiabatic and Ly? cooling, and Ly? reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ~9000 K with a hydrodynamic escape speed of ~9 km s–1, resulting in mass loss rates of ~(4-7) · 1010 g s–1. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

2014-11-01

301

Fluorescence spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico, USA: Variability of concentrations and possible constituents and sources of particles in various spectral clusters  

NASA Astrophysics Data System (ADS)

The UV-excited laser-induced-fluorescence (UV-LIF) spectra of single atmospheric particles and the three-band integrating-nephelometer elastic scattering of atmospheric aerosol were measured during four approximately 24-h periods on May 2007 in Las Cruces, New Mexico, USA. Aerosol scattering measurements in the nephelometer red channel (50-nm band centered at 700-nm) ranged from around 3-10 times the molecular (Rayleigh) scattering background. On average 22.8% of particles with size greater than about 1 ?m diameter have fluorescence above a preset fluorescence threshold. A hierarchical cluster analysis indicates that most of the single-particle UV-LIF spectra fall into about 10 categories (spectral clusters) as found previously at other geographic sites (Pinnick et al., 2004; Pan et al., 2007). The clusters include spectra characteristic of various humic/fulvic acids, humic-like-substances (HULIS), chemically aged terpenes, fungal spores, polycyclic aromatic hydrocarbons, bacteria, cellulose/pollens, and mixtures of various organic carbon compounds. By far the most populated cluster category is similar to those of chemically aged terpenes/humic-materials; on average this population comprises about 62% of fluorescent particles. Clusters with spectra similar to that of some HULIS aerosol contain on average 10.0% of particles; those characteristic of some fungal spores (or perhaps mixtures of aromatic organic compounds) 8.4% of particles; bacteria-like spectra 1.6% of particles; and cellulose/pollen-like spectra 0.8% of particles. Measurements of fluorescent particles over relatively short (24 min) periods reveal that the concentrations of particles in the most populated clusters are highly correlated, suggesting that the particles populating them derive from the same region; these particles might be composed of crustal material coated with secondary organic carbon. On the other hand, concentrations of particles having cellulose-like spectra are generally uncorrelated with those in any other cluster. No clear distinction in fluorescent aerosol characteristics can be seen for different air mass trajectories arriving at the sampling site, suggesting that fluorescent aerosol particles are primarily of local origin. Integrations of the single-particle UV-LIF spectra over approximate 24 h time intervals reveal two broad peaks around 350 nm and 450 nm (for 263 nm excitation); the 450 nm peak is somewhat similar to that measured previously for water soluble organic carbon derived from aerosol collections. The 350 nm peak apparently has not been seen before in measurements of aerosol collections and may derive from non-soluble primary biological aerosol particles such as fungal spores. Further measurements are needed to investigate in more detail the generality of these results.

Pinnick, R. G.; Fernandez, E.; Rosen, J. M.; Hill, S. C.; Wang, Y.; Pan, Y. L.

2013-02-01

302

Atmospheric concentrations and gas/particle partitioning of neutral poly- and perfluoroalkyl substances in northern German coast  

NASA Astrophysics Data System (ADS)

Total 58 high volume air samples were collected in Büsum, Germany, from August 2011 to October 2012 to investigate air concentrations of 12 per- and polyfluoroalkyl substances (PFASs) and their gas/particle partitioning. The total concentration (vapor plus particle phases) of the 12 PFASs (?PFASs) ranged from 8.6 to 155 pg/m3 (mean: 41 pg/m3) while fluorotelomer alcohols 8:2 (8:2 FTOH) dominated all samples accounting for 61.9% of ?PFASs and the next most species were 10:2 FTOH (12.7%). Air mass back trajectory analysis showed that atmospheric PFASs in most samples were from long range atmospheric transport processes and had higher ratios of 8:2 to 6:2 FTOH compared to the data obtained from urban/industrial sources. Small portion of particle PFASs in the atmosphere was observed and the average percent to ?PFASs was 2.0%. The particle-associated fractions of different PFASs decreased from perfluorooctane sulfonamidoethanols (FOSEs) (15.5%) to fluorotelomer acrylates (FTAs) (7.6%) to perfluorooctane sulfonamides (FOSAs) (3.1%) and FTOHs (1.8%), indicating the functional group obviously influenced their gas/particle partitioning. For neutral compounds with acid dissociation constant (pKa) > 7.0 (i.e., FTOHs, FOSEs and FOSAs), a significant log-linear relationship was observed between their gas/particle partition coefficients (KSP) and vapor pressures (pºL), suggesting the gas/particle partitioning of neutral PFASs agreed with the classical logKSP-logpºL relation. Due to the pKa values of 6:2 and 8:2 FTA below the typical environmental pH conditions, they mainly exist as ionic form in aerosols, and the corrected logKSP (neutral form) were considerably lower than those of FTOHs, FOSEs and FOSAs with similar vapor pressures. Considering the strong partitioning potential to aqueous phases for ionic PFASs at higher pH values, a need exists to develop a model taking account of the ad/absorption mechanism to the condensed phase of aerosols for ionizable PFASs (e.g., FTAs).

Wang, Zhen; Xie, Zhiyong; Möller, Axel; Mi, Wenying; Wolschke, Hendrik; Ebinghaus, Ralf

2014-10-01

303

Relationship of Atmospheric Pollution Characterized by Gas (NO 2 ) and Particles (PM10) to Microbial Communities Living in Bryophytes at Three Differently Polluted Sites (Rural, Urban, and Industrial)  

Microsoft Academic Search

Atmospheric pollution has become a major problem for modern societies owing to its fatal effects on both human health and\\u000a ecosystems. We studied the relationships of nitrogen dioxide atmospheric pollution and metal trace elements contained in atmospheric\\u000a particles which were accumulated in bryophytes to microbial communities of bryophytes at three differently polluted sites\\u000a in France (rural, urban, and industrial) over

Caroline Meyer; Daniel Gilbert; André Gaudry; Marielle Franchi; Hung Nguyen-Viet; Juliette Fabure; Nadine Bernard

2010-01-01

304

New applications of particle accelerators in medicine, materials science, and industry  

SciTech Connect

Recently, the application of particle accelerators to medicine, materials science, and other industrial uses has increased dramatically. A random sampling of some of these new programs is discussed, primarily to give the scope of these new applications. The three areas, medicine, materials science or solid-state physics, and industrial applications, are chosen for their diversity and are representative of new accelerator applications for the future.

Knapp, E.A.

1981-01-01

305

Theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops  

Microsoft Academic Search

A theoretical model is formulated which allows the processes that control the wet deposition of atmospheric pollutants to be included in cloud dynamic models. The model considers the condensation process and the collision-coalescence process which, coupled together, controal the fate of atmospheric aerosol particles removed by clouds and precipitation through nucleation scavenging and impaction scavenging. The model ws tested by

A. I. Flossmann; W. D. Hall; H. R. Pruppacher

1985-01-01

306

Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds  

Microsoft Academic Search

Although organic compounds typically constitute a substantial fraction of the fine particulate matter (PM) in the atmosphere, their molecular composition remains poorly characterized. This is largely because atmospheric particles contain a myriad of diverse organic compounds, not all of which extract in a single solvent or elute through a gas chromatograph; therefore, a substantial portion typically remains unanalyzed. Most often

Pradeep Saxena; Lynn M. Hildemann

1996-01-01

307

Direct observation of aerosol particles in aged agricultural biomass burning plumes impacting urban atmospheres  

NASA Astrophysics Data System (ADS)

Emissions from agricultural biomass burning (ABB) in northern China have a significant impact on the regional and the global climate. According to the Giovanni's Aerosol optical depth (AOD) map, the monthly average AOD at 550 nm in northern China in 2007 shows a maximum value of 0.7 in June, suggesting that episodes of severe aerosol pollution occurred in this region. Aerosol particles were collected in urban Beijing during regional brown hazes from 12 to 30 June, 2007. Transmission electron microscopy with energy-dispersive X-ray spectrometry characterized the morphology, composition, and mixing state of aerosol particles. Potassium salts (K2SO4 and KNO3), ammonium sulfate, soot, and organic particles predominated in fine particles (diameter <1 ?m) collected from 12 to 20 June, 2007. In contrast, from 21 to 30 June, 2007, ammonium sulfate, soot, and organic particles were dominant. Potassium-dominant particles as a tracer of biomass burning, together with wildfire maps, show that intensive regional ABB in northern China from 10 to 20 June, 2007 contributed significantly to the regional haze. After long-range transport, ABB particles exhibited marked changes in their morphology, elemental composition, and mixing state. Heterogeneous reactions completely converted KCl particles from ABB into K2SO4 and KNO3. Soot particles were generally mixed with potassium salts, ammonium salts, and organic particles. In addition, the abundant aged organic particles and soluble salts emitted by ABB become more hygroscopic and increase their size during long-range transport, becoming in effect additional cloud condensation nuclei. The high AOD (average value at 2.2) during 12 to 20 June, 2007, in Beijing is partly explained by the hygroscopic growth of aged fine aerosol particles and by the strong absorption of internally mixed soot particles, both coming from regional ABB emissions.

Li, W. Y.; Shao, L. Y.

2010-04-01

308

Development of the Moving Least Squares Smooth Particle Hydrodynamics Approach For Inert/Energetic Material Interaction  

NASA Astrophysics Data System (ADS)

PRIMEX-Warhead Systems (PWS) has developed a smooth particle code based upon a methodology developed by G. Dilts (1999) referred to as MLSPH (Moving Least Squares Smooth Paticles Hydrodynamics). The object is to solve general high rate problems associated with the interaction of energetic and inert materials. Some conservative numerical schemes in cylindrical geometry were developed as well 1D, 2D, and 3D cartesian coding. We use a simple neighbor search technique that limits the computation of searching neighbor particles to one order lower compared to the total CPU time of calculation. PWSuses randomly distributed phantom particles to eliminate certain terms in the numerical growth factor, thus improving the stability of the MLSPH method. In fact, the stability factor can be close to unity. The boundary treatment is also naturally implemented by using this approach. The particle size effect has been minimized through rezoning. PWS developed a new numerical technique of second order accuracy that exactly conserves mass and volume. The rezoning technique provides smoother boundary surface and improves stability by naturally moving apart the particles that are close together. This rezoning method can be used to construct a conservative scheme for volume expansion of particles (mass conservation) that keeps the volume sum of particles equal to the volume enclosed by boundaries, this feature is not satisfied in other SPH schemes. We have also started working on the implementation of a general 3D rezoning technique for SPH. The PWS-MLSPH code is able to deal with material interactions between solid, fluid and gas. Several reaction models are contained in the code to solve problems that involves explosives. In particular the burn process of inert materials contained in an explosive matrix is handled with a 'neighbor ignition' method. That allows an explosive particle to be ignited only by another burning explosive particle that is close enough. We will present a calculation involving the interaction of inert tungsten particles in a TNT matrix. The program will eventually be modified to allow for energy release of metallic particles into the reaction zone (as a function of particle size and coating). The figure below depicts a calculation of 100 micron tungsten in a 60/40 volume ratio.

Yao, Jin; Gunger, Michael

2001-06-01

309

Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints  

NASA Astrophysics Data System (ADS)

Secondary organic material (SOM) produced by the oxidation of biogenic volatile organic compounds is a major global contributor to the mass concentrations of organic components of atmospheric particles. Chemical mechanisms of SOM production are typically developed in focused laboratory studies but widely used in the complex modeling context of the atmosphere. Given this extrapolation, it is crucial to use multidimensional data constraints for testing the accuracy of the chemical mechanisms. Particle mass yield is a typical standard for model-measurement comparison. Particle composition expressed as O:C and H:C elemental ratios can serve as a higher dimensional constraint. A paradigm that uses the two constraints is presented in this study for SOM production from an important C5-C10-C15 terpene sequence, namely isoprene, ?-pinene, and ?-caryopyhllene. The model MCM-SIMPOL is introduced based on the Master Chemical Mechanism (MCM v3.2) and a group contribution method for vapor pressures (SIMPOL). The O:C and H:C ratios of the SOM are measured using an Aerosol Mass Spectrometer (AMS). Detailed SOM-specific AMS calibrations indicate that published O:C and H:C ratios for SOM are systematically too low. Overall, the measurement-model gap was small for particle mass yield but significant for particle-average elemental composition. The implication is that a key chemical pathway is missing from the chemical mechanism. The data can be explained by the particle-phase homolytic decomposition of organic hydroperoxides and subsequent alkyl-radical-promoted oligomerization. For climate-related modeling such as the aerosol direct effect, mass-based modeling is the norm. In this regard, the model might be concluded as acceptably accurate based on the one-dimensional model-measurement comparison on yield; yet, the further analysis proves that the model mechanism is missing important particle-phase chemistry that possibly controls the physical properties of the particles.

Chen, Q.; Liu, Y.; Donahue, N. M.; Shilling, J. E.; Martin, S. T.

2011-12-01

310

Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating  

NASA Technical Reports Server (NTRS)

Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.

Flynn, G. J.; Sutton, S. R.

1992-01-01

311

Free Fatty Acid particles in protein formulations, part 2: contribution of polysorbate raw material.  

PubMed

Polysorbate 20 (PS20) is a nonionic surfactant frequently used to stabilize protein biopharmaceuticals. During the development of mAb formulations containing PS20, small clouds of particles were observed in solutions stored in vials. The degree of particle formation was dependent on PS20 concentration. The particles were characterized by reversed-phase HPLC after dissolution and labeling with the fluorescent dye 1-pyrenyldiazomethane. The analysis showed that the particles consisted of free fatty acids (FFAs), with the distribution of types consistent with those found in the PS20 raw material. Protein solutions formulated with polysorbate 80, a chemically similar nonionic surfactant, showed a substantial delay in particle formation over time compared with PS20. Multiple lots of polysorbates were evaluated for FFA levels, each exhibiting differences based on polysorbate type and lot. Polysorbates purchased in more recent years show a greater distribution and quantity of FFA and also a greater propensity to form particles. This work shows that the quality control of polysorbate raw materials could play an important role in biopharmaceutical product quality. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:447-456, 2015. PMID:25196966

Siska, Christine C; Pierini, Christopher J; Lau, Hollis R; Latypov, Ramil F; Fesinmeyer, R Matthew; Litowski, Jennifer R

2015-02-01

312

Heterogeneous Atmospheric Chemistry of Lead Oxide Particles with Nitrogen Dioxide Increases Lead Solubility: Environmental and Health Implications  

PubMed Central

Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles react to form adsorbed nitrates and lead nitrate thin films with the extent of formation of nitrate relative humidity dependent. Surface adsorbed nitrate increases the amount of dissolved lead. These reacted particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to unreacted particles. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also show that surface intermediates, such as adsorbed nitrates, that form can yield higher concentrations of lead in water systems. In the environment, these water systems can include drinking water, ground water, estuaries and lakes. PMID:23057678

Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan

2012-01-01

313

A Massively Parallel Particle Code for Rarefied Ionized and Neutral Gas Flows in Earth and Planetary Atmospheres, Ionospheres and Magnetospheres  

NASA Technical Reports Server (NTRS)

In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important.

Combi, Michael R.

2004-01-01

314

Development and characterization of an ion trap mass spectrometer for the on-line chemical analysis of atmospheric aerosol particles  

NASA Astrophysics Data System (ADS)

A novel Ion Trap Aerosol Mass Spectrometer (IT-AMS) for atmospheric particles has been developed and characterized. With this instrument the chemical composition of the non-refractory component of aerosol particles can be measured quantitatively. The set-up makes use of the well-characterized inlet and vaporization/ionization system of the Aerodyne Aerosol Mass Spectrometer (AMS). While the AMS uses either a linear quadrupole mass filter (Q-AMS) or a time-of-flight mass spectrometer (ToF-AMS) as the mass analyzer, the IT-AMS utilizes a three-dimensional quadrupole ion trap. The main advantages of an ion trap are the possibility of performing MSn-experiments as well as ion/molecule reaction studies. The mass analyzer has been built in-house together with major components of the electronics. The IT-AMS is operated under full PC control and can be used as a field instrument due to its compact size. A detailed description of the set-up is presented. Experiments show that a mass resolving power larger than 1500 can be reached. This value is high enough to separate different organic species at m/z 43. Calibrations with laboratory-generated aerosol particles indicate a linear relationship between signal response and aerosol mass concentration. These studies, together with estimates of the detection limits for particulate sulfate (0.65 [mu]g/m3) and nitrate (0.16 [mu]g/m3) demonstrate the suitability of the IT-AMS to measure atmospheric aerosol particles. An inter-comparison between the IT-AMS and a Q-AMS for nitrate in urban air yields good agreement. For laboratory-generated polystyrene latex particles a MS/MS-study using collision-induced dissociation (CID) with a daughter/parent ion yield of more than 60% has been performed. In the future, similar MS/MS-studies can be conducted for atmospheric particles and for the study of secondary aerosol formation in smog chamber experiments.

Kürten, Andreas; Curtius, Joachim; Helleis, Frank; Lovejoy, Edward R.; Borrmann, Stephan

2007-08-01

315

Use of natural particles for the removal of paint from aeronautical composite materials  

NASA Astrophysics Data System (ADS)

Paint removal by blasting and its effects on the surface morphology of aeronautical composite materials are investigated. An ideal combination of the parameters for mechanical paint removal by blasting such as particle type, size, velocity and angle of incidence yields a stripped aircraft skin substrate with minimal or no damage. Natural particles, specifically white corn flour, seem to be a good choice for paint removal by blasting. Since they are softer as well as smaller in size than other particles used for paint removal, they minimize the amount of damage to the surface of the composite. They are also cheaper and produce no harm to environment. The variation of the degree of surface roughness and the amount of broken fibers were correlated with some stripping parameters, such as particle impact angle and velocity. This defined an optimum environment for paint removal by blasting.

Guy, Thu-Ha; Lankarani, Hamid M.; Talia, Jorge E.

316

particles  

NASA Astrophysics Data System (ADS)

We explore a facile and nontoxic hydrothermal route for synthesis of a Cu2ZnSnS4 nanocrystalline material by using l-cysteine as the sulfur source and ethylenediaminetetraacetic acid (EDTA) as the complexing agent. The effects of the amount of EDTA, the mole ratio of the three metal ions, and the hydrothermal temperature and time on the phase composition of the obtained product have been systematically investigated. The addition of EDTA and an excessive dose of ZnCl2 in the hydrothermal reaction system favor the generation of kesterite Cu2ZnSnS4. Pure kesterite Cu2ZnSnS4 has been synthesized at 180°C for 12 h from the reaction system containing 2 mmol of EDTA at 2:2:1 of Cu/Zn/Sn. It is confirmed by Raman spectroscopy that those binary and ternary phases are absent in the kesterite Cu2ZnSnS4 product. The kesterite Cu2ZnSnS4 material synthesized by the hydrothermal process consists of flower-like particles with 250 to 400 nm in size. It is revealed that the flower-like particles are assembled from single-crystal Cu2ZnSnS4 nanoflakes with ca. 20 nm in size. The band gap of the Cu2ZnSnS4 nanocrystalline material is estimated to be 1.55 eV. The films fabricated from the hierarchical Cu2ZnSnS4 particles exhibit fast photocurrent responses under intermittent visible-light irradiation, implying that they show potentials for use in solar cells and photocatalysis.

Xia, Yu; Chen, Zhihong; Zhang, Zhengguo; Fang, Xiaoming; Liang, Guozheng

2014-05-01

317

Coating materials and particle size effect of nano- and micro-sized iron powder composites  

NASA Astrophysics Data System (ADS)

Soft magnetic composite materials find increasing use in electrical motors, replacing existing laminate materials. In this study, the composites have been fabricated with micro- and nano-sized highly pure iron powders coated by polyester and phenolic resins. Soft magnetic composite materials have been pressed into ring type for magnetic properties measurement, and bar type for mechanical properties measurement over the pressure range up to 870 MPa. Some samples have subsequently been heat treated to 300°C. The effect of the amount of organic materials on the magnetic properties like as permeability, magnetic flux density, core loss and green density were investigated. And electrical resistivities were also examined. On the addition of the organic coating materials of 5 wt%, green density of the compacted composites is most high of 6.9 g/cm 3, and magnetic properties are also better. For the case of 5 wt% polyester resin, the effect of powder size with 100 nm, 3 ?m, 10 ?m and 53 ?m were examined. Both the green density and the magnetic properties are best for the particle size of 10 ?m. Fine particles below 3 ?m easily agglomerate each other, and homogeneous coating of each particle surface is difficult.

Min, Bok-Ki; Kim, In-Sung; Jeong, Soon-Jong; Song, Jae-Sung

2006-01-01

318

Prediction of material strength and fracture of glass using the SPHINX smooth particle hydrodynamics code  

SciTech Connect

The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, and data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

Mandell, D.A.; Wingate, C.A.

1994-08-01

319

Effect of annealing under vacuum and in nitrogen atmosphere on the structure and strength of porous silicon nitride materials  

Microsoft Academic Search

This paper deals with a study of the structure and the temperature dependence of the strength of the porous silicon nitride materials after prolonged holding at high temperatures under vacuum and in a protective atmosphere (nitrogen). Reaction-sintered Si3N 4 having a porosity 0 = 59.3-68.0% was used in this investigation. In order to obtain a porous material, we used 1.0-1.5

V. N. Antsiferov; V. G. Gilev; A. G. Lanin; O. N. Erin; V. N. Turchin; S. V. Leonov

1993-01-01

320

Responses of the Jovian Atmosphere to Cometary Particles and Photon Impacts  

NASA Technical Reports Server (NTRS)

Spectra of soft x-ray and EUV emissions of oxygen ions, precipitating into the Jovian atmosphere, are calculated, taking into account the dynamical character of the energy and charge distributions of the ions as they propagate. Monte-Carlo simulations are performed using experimental and theoretical cross sections of ion collisions with the atmospheric gases. The numbers of x-ray and EUV photons produced per precipitating oxygen ion are calculated as functions of the initial ion energy and charge. The energy and charge distribution functions are used to evaluate the intensities of characteristic x-ray and EUV spectral emission lines of oxygen ions in the Jovian aurora.

Dalgarno, A.

1998-01-01

321

Review of embedded particle tagging methods for nondestructive evaluation (NDE) of composite materials and structures  

NASA Astrophysics Data System (ADS)

Acceptance of advanced composites in both retrofit applications and new construction necessitates quality control (QC)/quality assurance (QA) and in-service monitoring techniques to ensure the performance and serviceability of the composites. A technology that enhances the inspectability of the advanced composites is the particle tagging method. The concept of particle tagging involves embedding micron-sized particles into materials, such as composites, or adhesive layers to make them an integral part of the host material. When interrogated by suitable instrumentation, the embedded particle sensors interact with their host material and generate certain types of measurable signatures. The signatures can be correlated with the material and structural conditions, such as internal stress states, voids, inclusions, state-of- cure, and delaminations. This paper presents a technology assessment of the current and emerging state-of-the-art tagging methods. The objective of this review is to provide a framework for further understanding the physics and mechanisms involved in using the tagging method for in-field nondestructive evaluation (NDE) of composite materials. Information concerning the development of this technique has been obtained from patents, publications, databases within Newman Library at Virginia Polytechnic Institute and State University (Virginia Tech), and previous work and in-progress research at the Center for Intelligent Material Systems and Structures (CIMSS) at Virginia Tech. This paper includes a historic review of tagging techniques, a description of the tagging systems used for in-situ NDE of composites, and experimental results to date. The current and potential applications of this technique are also addressed. The analysis presented in this paper will assist in further efforts to develop the tagging approach that may be used as a new NDE technique for quality assurance of advanced composites.

Zhou, Su-Wei; Chaudhry, Zaffir A.; Rogers, Craig A.; Quattrone, Robert

1995-04-01

322

Acidic deposition and the corrosion and deterioration of materials in the atmosphere: a bibliography, 1880-1932  

Microsoft Academic Search

The bibliography contains more than 1300 article citations and abstracts on the effects of acidic deposition, air pollutants, and biological and meteorological factors on the corrosion and deterioration of materials in the atmosphere. The listing includes citations for the years 1950 to 1982, with selected citations for the years 1880 to 1949. The citations are catalogued by year in six

Flinn

1983-01-01

323

Acidic deposition and the corrosion and deterioration of materials in the atmosphere: a bibliography, 1880-1982  

Microsoft Academic Search

Materials exposed to the atmosphere are subjected to a wide variety of stressing agents such as wind, solar radiation, temperature, biological species, many forms of water, and chemical agencies including pollutant gases, particulate matter, and components of rainfall, dew, snow, sleet, fog, and aerosols. This bibliography contains more than 1300 article citations and abstracts on the effects of acidic deposition,

D. R. Flinn; S. D. Cramer; J. P. Carter; P. K. Lee; S. I. Sherwood

1983-01-01

324

The influence of formation material properties on the response of water levels in wells to earth tides and atmospheric loading  

Microsoft Academic Search

The water level in an open well can change in response to deformation of the surrounding material, either because of applied strains (tidal or tectonic) or surface loading by atmospheric pressure changes. Under conditions of no vertical fluid flow and negligible well bore storage (static-confined conditions), the sensitivities to these effects depend on the elastic properties and porosity which characterize

Stuart Rojstaczer; Duncan Carr Agnew

1989-01-01

325

A study of inter-particle bonds in dry bauxite waste resulting in atmospheric aerosols  

NASA Astrophysics Data System (ADS)

Bauxite and Alumina production are one of the main activities of several third world countries such as Jamaica, Brazil, India, Guinea, eastern European countries such as Hungary and Rumania and advanced countries such as Australia, West Germany, Japan and the United States. The mining operations lead to dust pollution, but the refining of bauxite to alumina yield large amounts of highly caustic sludge waste, called "Red Mud". Millions of tons of the waste produced in every country are stored in containment dams or natural valleys. This leads to ground water pollution, destruction of plant and bird life and is hazardous to human settlement in earthquake prone regions like Jamaica. As a result several companies have been looking into dry mud stacking which involves thickening the mud in the refining plants and sprying it on the slopes to sun dry it. Typically it involves a drying field of about two hundred acres, which could act as a potential source of caustic dust. In Jamaica one company has started disposing of the mud in this way. The aerosol formation from such areas depends mainly on the integrity of the top dry layers. Presently this is done by studying the approximate parameters such as the friability of the mud. However, following the recent advances in powder technology it has been possible for us to develop an instrument to study the average interparticle forces between the red mud particles. The instrument is based on the principle of a tensometer and a split cell is used to load specimens. A load cell is used to measure the force and a chart recorder is used for plotting separation and the force. The present study reports elemental composition of the dust and its health hazards. It also reports the physical measurement of the average interparticle force as a function of their separation in the Jamaican mud. The effect of ultraviolet radiation on the strength of the material is studied to see the effect of sun-drying of the waste. The five-fold increase in tensile strength indicates that laterisation process is responsible for this phenomenon in Jamaican red mud. The study is crucial to the development of dust free mud stacking by the proper modifications in the process technology. Finally, such a case study is general enough in the characterisation of other sources of aerosols.

Wagh, Arun S.; Thompson, Bentley

1988-02-01

326

Atmospheric Environment 40 (2006) 68636878 Acid-catalyzed reactions of hexanal on sulfuric acid particles  

E-print Network

Atmospheric Environment 40 (2006) 6863­6878 Acid-catalyzed reactions of hexanal on sulfuric acid the uptake of gas- phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced condensation product was formed only at initial concentrations of 75­96 wt% sulfuric acid in water

Elrod, Matthew J.

327

Filtration efficiency validation of glass wool during thermal desorption-gas chromatography-mass spectrometer analysis of fine atmospheric particles.  

PubMed

Thermal desorption-gas chromatography-mass spectrometer (TD-GC-MS) technique has been widely used for analysis of semi-violate organic compounds on atmospheric aerosol. To prevent GC column from being damaged by fine solid particles during thermal desorption process, glass wool as filter mat is indispensible. However, the filtration efficiency has never been validated. In this paper, the most penetrating particle size and the minimum packing thickness of glass wool were calculated based on classical filtration theory. According to the calculation results, packing parameters of glass wool were optimized experimentally using silica particles. It is demonstrated that glass wool with a packing thickness of 30mm, solidity of 0.039 can effectively block these fine solid particles from penetrating at normal thermal desorption conditions (T=300°C, u=0.4-4cm/s). Finally, the filtration efficiency of glass wool was further confirmed with real PM2.5 samples. Under the validated filtration condition, TD-GC-MS was applied for the analysis of non-polar organic compounds on real PM2.5 samples, and very good results were obtained. PMID:25578046

Hao, Liang; Wu, Dapeng; Ding, Kun; Meng, Hu; Yan, Xiaohui; Guan, Yafeng

2015-02-01

328

Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material.  

PubMed

In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM(10)) is exceeded due to these particles. In this study, particles from the wear of studded and studless friction tyres on two pavements and traction sanding were generated using a road simulator. The particles were characterized using particle sizers, Particle Induced X-Ray Emission Analysis and electron microscopy. Cell studies were conducted on particles sampled from the tests with studded tyres and compared with street environment, diesel exhaust and subway PM(10), respectively. The results show that in the road simulator, where resuspension is minimized, studded tyres produce tens of times more particles than friction tyres. Chemical analysis of the sampled particles shows that the generated wear particles consist almost entirely of minerals from the pavement stone material, but also that Sulfur is enriched for the submicron particles and that Zink is enriched for friction tyres for all particles sizes. The chemical data can be used for source identification and apportionment in urban aerosol studies. A mode of ultra-fine particles was also present and is hypothesised to originate in the tyres. Further, traction material properties affect PM(10) emission. The inflammatory potential of the particles from wear of pavements seems to depend on type of pavement and can be at least as potent as diesel exhaust particles. The results imply that there is a need and a good potential to reduce particle emission from pavement wear and winter time road and street operation by adjusting both studded tyre use as well as pavement and traction material properties. PMID:18258284

Gustafsson, Mats; Blomqvist, Göran; Gudmundsson, Anders; Dahl, Andreas; Swietlicki, Erik; Bohgard, Mats; Lindbom, John; Ljungman, Anders

2008-04-15

329

LEVOGLUCOSAN, A TRACER FOR CELLULOSE IN BIOMASS BURNING AND ATMOSPHERIC PARTICLES. (R823990)  

EPA Science Inventory

Abstract The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation wa...

330

Basic characteristics of atmospheric particles, trace gases and meteorology in a relatively clean Southern African Savannah environment  

NASA Astrophysics Data System (ADS)

We have analyzed one year (July 2006 July 2007) of measurement data from a relatively clean background site located in dry savannah in South Africa. The annual-median trace gas concentrations were equal to 0.7 ppb for SO2, 1.4 ppb for NOx, 36 ppb for O3 and 105 ppb for CO. The corresponding PM1, PM2.5 and PM10 concentrations were 9.0, 10.5 and 18.8 ?g m-3, and the annual median total particle number concentration in the size range 10 840 nm was 2340 cm-3. During Easterly winds, influence of industrial sources approximately 150 km away from the measurement site was clearly visible, especially in SO2 and NOx concentrations. Of gases, NOx and CO had a clear annual, and SO2, NOx and O3 clear diurnal cycle. Atmospheric new-particle formation was observed to take place in more than 90% of the analyzed days. The days with no new particle formation were cloudy or rainy days. The formation rate of 10 nm particles varied in the range of 0.1 28 cm-3 s-1 (median 1.9 cm-3 s-1) and nucleation mode particle growth rates were in the range 3 21 nm h-1 (median 8.5 nm h-1). Due to high formation and growth rates, observed new particle formation gives a significant contribute to the number of cloud condensation nuclei budget, having a potential to affect the regional climate forcing patterns.

Laakso, L.; Laakso, H.; Aalto, P. P.; Keronen, P.; Petäjä, T.; Nieminen, T.; Pohja, T.; Siivola, E.; Kulmala, M.; Kgabi, N.; Molefe, M.; Mabaso, D.; Phalatse, D.; Pienaar, K.; Kerminen, V.-M.

2008-08-01

331

Colloidal particles as liquid dispersion stabilizer: Pickering emulsions and materials thereof  

NASA Astrophysics Data System (ADS)

Solid stabilized emulsions, also referred to as Pickering emulsions, are very diverse owing to the large variety of available colloidal particles from naturally occurring to synthesized ones, from hard to very deformable ones and from spheres to more complex shaped particles. Here we illustrate this variety and, despite this huge diversity, we aim at highlighting the common features. We discuss next the remaining open questions that, in our point of view, should sustain special efforts in the future and we illustrate elaboration of original materials based on Pickering emulsions. xml:lang="fr"

Schmitt, Véronique; Destribats, Mathieu; Backov, Rénal

2014-10-01

332

High-energy methods of creating a mesocomposite material with inclusions containing nanocrystalline particles  

Microsoft Academic Search

A thermally stable high-strength mesocomposite containing nano-sized particles of titanium diboride (TiB2) is obtained by combining methods of self-propagating high-temperature synthesis and quasi-dynamic high-velocity pressing.\\u000a The use of self-propagating high-temperature synthesis ensured obtaining a hardening component of the mesocomposite — nanocomposite\\u000a with a TiB2 particle size of ? 100 nm. The quasidynamic method of obtaining a material characterized by high

M. P. Bondar’; M. A. Korchagin; E. S. Obodovskii

2010-01-01

333

Seasonality and interspecies differences in particle/gas partitioning of PAHs observed by the Integrated Atmospheric Deposition Network (IADN)  

NASA Astrophysics Data System (ADS)

This study presents partitioning data from eight locations in the Laurentian Great Lakes region collected by the Integrated Atmospheric Deposition Network (IADN) over periods ranging from 1 to 6 years. Particle/gas partitioning varies sufficiently between sites in the Great Lakes region to preclude the use of a uniform temperature dependence for its description. Site-specific parameters for describing partitioning as a function of inverse temperature are presented. Relationships between partitioning of appreciably semivolatile PAHs and saturated vapour pressure at Chicago (IIT) and Sturgeon Point (STP) demonstrate that anthracene, benz[a]anthracene and retene behave differently than phenanthrene, fluoranthene, pyrene and chrysene+triphenylene. Possible reasons for these differences include interspecies variations in the fraction of atmospherically non-exchangeable, though analytically extractable, PAHs on particles and differences in soot-air partition coefficients as they relate to saturated vapour pressure. The observed interspecies differences are not consistent with sampling artefacts such as filter adsorption or sorbent breakthrough. At IIT, but not at STP, values of the slope of the relationship between the log partition coefficient and log vapour pressure vary in a manner opposing the annual temperature cycle. A comparison of partitioning calculated by a combined absorption/adsorption model shows good predictability at Chicago but underestimates values at a rural site (Eagle Harbor, EGH) by an order of magnitude.

Galarneau, Elisabeth; Bidleman, Terry F.; Blanchard, Pierrette

334

Seasonal variation of source contributions to atmospheric fine and coarse particles at suburban area in Istanbul, Turkey  

SciTech Connect

Daily samples of fine (PM2.5) and coarse (PM2.5-10) particles were collected from July 2002 to July 2003 to provide a better understanding of the elemental concentration and source contribution to both PM fractions. Sampling location represents suburban part of Istanbul metropolitan city. Samples were collected on Teflon filters using a 'Dichotomous Sampler.' Concentrations of Al, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn were measured by GFAAS, FAAS, and FAES techniques. Elemental variations of heating and nonheating seasons were discussed. Fossil fuel-related atmospheric metals dramatically increased during the heating season, while natural originated atmospheric metals increased during the nonheating season. Seasonal variations of source contributions were evaluated using factor analysis, which was separately applied to the collected fine and coarse particles data sets during heating and nonheating seasons (four data sets: PM2.5 heating, PM2.5 nonheating, PM2.5-10 heating, and PM2.5-10 nonheating). Significant seasonal differences in source contributions were observed. Four factor groups were extracted for PM2.5 dataset during the nonheating season, while five factor groups were extracted for all the other cases. Mineral dust transportation, traffic, and industry-related activities were classified as different factor groups in all the cases.

Karaca, F.; Alagha, O.; Erturk, F.; Yilmaz, Y.Z.; Ozkara, T. [Fatih University, Istanbul (Turkey). Dept. for Environmental Engineering

2008-06-15

335

Effect of particle size on compaction of materials with different deformation mechanisms with and without lubricants.  

PubMed

This work investigates the effect of excipient particle size on compaction properties of brittle, plastic and viscoelastic materials with and without added lubricants. Sieve cuts of microcrystalline cellulose (MCC), starch and dibasic calcium phosphate dihydrate were obtained by sieving, then samples were tested without lubrication or with added lubricant (0.5% Mg stearate mixed for either 5 or 30-min). Compacts were left overnight before testing. It was found that in the absence of lubricant, compact tensile strength (TS) was dependent on particle size only for starch. With Mg stearate, lubricant sensitivity shows a strong dependence on excipient particle size for both starch and MCC, where smaller particles are less affected by lubricant. Dibasic calcium phosphate dihydrate was not sensitive to lubricant even after 30 min mixing. This study highlights that in the absence of lubricant, initial particle size of excipients has no impact on compact strength not only for dibasic calcium phosphate dihydrate (brittle), but also for MCC (plastic). On the other hand, TS is dependent on particle size both with or without added lubricant for starch (viscoelastic). PMID:18431664

Almaya, Ahmad; Aburub, Aktham

2008-01-01

336

Properties and toxicological effects of particles from the interaction between tyres, road pavement and winter traction material  

Microsoft Academic Search

In regions where studded tyres and traction material are used during winter, e.g. the Nordic countries, northern part of USA, Canada, and Japan, mechanically generated particles from traffic are the main reason for high particle mass concentrations in busy street and road environments. In many Nordic municipalities the European environmental quality standard for inhalable particles (PM10) is exceeded due to

Mats Gustafsson; Göran Blomqvist; Anders Gudmundsson; Andreas Dahl; Erik Swietlicki; Mats Bohgard; John Lindbom; Anders Ljungman

2008-01-01

337

Forecasting size-fractionated particle number concentrations in the urban atmosphere  

NASA Astrophysics Data System (ADS)

Airborne particulate matter affects human health, especially in urban areas where air pollutant concentrations are high. In order to reduce exposure to particulates and other pollutants it is essential to forecast concentrations of these. In this work we introduce a statistical model to forecast size-fractionated particle number concentrations. Our forecasting approach is based on a parametric regression model that utilises traffic intensity and meteorological parameters as covariates and has an autoregressive dependence structure for the error terms. We use a Bayesian framework with a Markov Chain Monte Carlo (MCMC) implementation to derive the forecasts numerically from a given set of learning data. The particle concentration forecast is provided as probability distributions for a few days ahead. For the development and test of the model we used weather and particle size distribution data from an urban background station in Helsinki, and traffic data. Comparison of forecast distributions and measurements shows that the adopted probabilistic characterisation of particle number concentrations is adequate. In particular, forecasts of the log number concentration of ultra-fine particles (diameter < 100 nm) for the upcoming day have R2 equal to 0.67 (at 3 h time resolution). Our model is flexible and it may be implemented for other urban locations, provided that measurements of number concentrations, as well as measurements and forecasts of covariates are available.

Mølgaard, Bjarke; Hussein, Tareq; Corander, Jukka; Hämeri, Kaarle

2012-01-01

338

Dynamics and particle fluxes in atmospheric-pressure electronegative radio frequency microplasmas  

SciTech Connect

We report on intricate dynamics observed in atmospheric-pressure rf electronegative discharges where electrons and anions are separated due to their different mobilities. This results in the formation of positively charged regions between an electronegative plasma core and an oscillating electron ensemble. It is found that for a given input power, the electron, ion (both positive and negative) and neutral fluxes increase as the gap size is reduced, resulting in a more efficient delivery of chemical species to a treated target.

McKay, K.; Iza, F.; Kong, M. G. [School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, LE11-3TU (United Kingdom); Liu, D. X.; Rong, M. Z. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China)

2011-08-29

339

Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength  

NASA Astrophysics Data System (ADS)

This paper presents the implementation of an adaptive smoothed particle hydrodynamics (ASPH) method for high strain Lagrangian hydrodynamics with material strength. In ASPH, the isotropic kernel in the standard SPH is replaced with an anisotropic kernel whose axes evolve automatically to follow the mean particle spacing as it varies in time, space, and direction around each particle. Except for the features inherited from the standard SPH, ASPH can capture dimension-dependent features such as anisotropic deformations with a more generalized elliptical or ellipsoidal influence domain. Two numerical examples, the impact of a plate against a rigid surface and the penetration of a cylinder through a plate, are investigated using both SPH and ASPH. The comparative studies show that ASPH has better accuracy than the standard SPH when being used for high strain hydrodynamic problems with inherent anisotropic deformations.

Liu, M. B.; Liu, G. R.; Lam, K. Y.

2006-03-01

340

Reconstruction of 20th Century Atmospheric Deposition Rates in the Sierra Nevada (California) using Spheroidal Carbonaceous Particles  

NASA Astrophysics Data System (ADS)

Atmospheric nitrogen deposition is altering biogeochemical cycles and ecological processes in high-elevation aquatic ecosystems. A need for stricter standards based on measurable ecological effects has been identified as an important step towards their long-term protection. One of the challenges with identifying ecological thresholds is a lack of knowledge of background conditions (pre- industrial) and changes that may have occurred prior to extensive monitoring programs. However, this information can be obtained using paleolimnological approaches. We are investigating historic atmospheric deposition in the Sierra Nevada using spheroidal carbonaceous particles (SCPs) in lake sediments. SCPs are strong geochemical indicators of anthropogenic atmospheric deposition because they are only produced by industrial combustion of fossil fuels---there are no natural sources. We detected SCPs as early as 1870 at Moat Lake in the eastern Sierra Nevada. SCP concentrations increased over time, peaking in the mid-1980's (2,399 gDM-1) while SCP accumulation rates peaked in the early 1920's (105 no, cm-2 yr-1) (Figure 1). Lakes along the western slope of the Sierra (Pear and Emerald) show similar patterns although differences vary by site and are likely explained by watershed characteristics and proximity to emission sources. SCP concentrations at Pear and Emerald lakes peak 10-15 years earlier than Moat. A consistent decrease was observed at Pear and Moat following the peak concentrations until present. Present day concentrations are 556 gDM-1 at Moat and 473 gDM-1 at Pear. At Emerald lake SCPs also initially decreased starting in 1964, but an increasing trend is observed from 1995 through present. These data improve our understanding of historic atmospheric deposition patterns and are being used to inform additional palaeolimnological research, including diatom analyses, with the broader objective of reconstructing historic nitrogen deposition and estimating critical loads for Sierra Nevada lakes.igure 1: SCP concentrations and accumulation rates from three Sierra Nevada Lake sediment cores (Moat, Pear, and Emerald Lakes).

Heard, A.; Sickman, J. O.; Rose, N.

2012-12-01

341

Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches  

NASA Astrophysics Data System (ADS)

In recent years low molecular weight alkylamines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkylamines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkylamines in aerosol particles. Alkylamines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3-99.1%, and the limits of detection obtained are 1.8-3.9 pg (or 0.02-0.04 ng m-3). For the IC approach, a solid-phase extraction (SPE) column was used to separate alkylamines from interfering cations before IC analysis. 1-2% (v/v) of acetone (or 2-4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkylamines on the IC column. The limits of detection obtained are 2.1-15.9 ng (or 0.9-6.4 ng m-3), and the accuracy is 55.1-103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkylamines due to its lower detection limits and higher accuracy.

Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q. Y.; Jia, W. T.; Ho, K.-F.; Cao, J. J.; Wang, G. H.; Chen, X.; Haddad, I. EI; Zhuang, Z. X.; Wang, X. R.; Prévôt, A. S. H.; O'Dowd, C. D.; Hoffmann, T.

2014-07-01

342

Determination of alkyl amines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches  

NASA Astrophysics Data System (ADS)

In recent years low molecular weight alkyl amines have been recognized to play an important role in particle formation and growth in the lower atmosphere. However, major uncertainties are associated with their atmospheric processes, sources and sinks, mostly due to the lack of ambient measurements and the difficulties in accurate quantification of alkyl amines at trace level. In this study, we present the evaluation and optimization of two analytical approaches, i.e., gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC), for the determination of alkyl amines in aerosol particles. Alkyl amines were converted to carbamates through derivatization with isobutyl chloroformate for GC-MS determination. A set of parameters affecting the analytical performances of the GC-MS approach, including reagent amount, reaction time and pH value, was evaluated and optimized. The accuracy is 84.3-99.1%, and the limits of detection obtained are 1.8-3.9 pg. For the IC approach, a solid phase extraction (SPE) column was used to separate alkyl amines from interfering cations before IC analysis. 1-2% (v/v) of acetone (or 2-4% (v/v) of acetonitrile) was added to the eluent to improve the separation of alkyl amines on the IC column. The limits of detection obtained are 2.1-15.9 ng and the accuracy is 55.1-103.4%. The lower accuracy can be attributed to evaporation losses of amines during the sample concentration procedure. Measurements of ambient aerosol particle samples collected in Hong Kong show that the GC-MS approach is superior to the IC approach for the quantification of primary and secondary alkyl amines due to its lower detection limits and higher accuracy.

Huang, R.-J.; Li, W.-B.; Wang, Y.-R.; Wang, Q. Y.; Ho, K.-F.; Cao, J. J.; Wang, G. H.; Chen, X.; Haddad, I. EI; Zhuang, Z. X.; Wang, X. R.; Prévôt, A. S. H.; O'Dowd, C. D.; Hoffmann, T.

2014-03-01

343

Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles  

SciTech Connect

In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex forms of nuclear explosion debris (e.g., Trinitite).

Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

2013-12-17

344

New particle formation events arising from painting materials in an indoor microenvironment  

NASA Astrophysics Data System (ADS)

Particulate matter (PM) number size distribution and mass concentration along with total volatile organic compounds (TVOC) were measured during emissions from painting materials inside an indoor microenvironment. The emission sources were derived from oil painting medium and turpentine used for painting. Two sets of measurements (10 experiments) were conducted in a laboratory room of 54 m3. New particle formation events were observed in all 10 experiments. The nucleation events lasted on average less than one hour with an average growth rate 33.9 ± 9.1 nm/h and average formation rate 21.1 ± 8.7 cm-3s-1. After the end of the nucleation event, a condensational growth of indoor particles followed with average growth rate 11.6 ± 2.8 nm/h and duration between 1.4 and 4.1 h. High concentrations up to 3.24 ppm were measured for the indoor TVOC concentrations during the experiments. Simultaneous mass and number size concentration measurements were performed outdoors where no new particle formation event was observed. It is the first time that high nucleation rates indoors were observed in conjunction with high TVOC concentrations originating from painting materials which resulted to high exposure concentration levels of particle number concentration.

Lazaridis, Mihalis; Serfozo, Norbert; Chatoutsidou, Sofia Eirini; Glytsos, Thodoros

2015-02-01

345

Effect of traffic restriction on atmospheric particle concentrations and their size distributions in urban Lanzhou, Northwestern China.  

PubMed

During the 2012 Lanzhou International Marathon, the local government made a significant effort to improve traffic conditions and air quality by implementing traffic restriction measures. To evaluate the direct effect of these measures on urban air quality, especially particle concentrations and their size distributions, atmospheric particle size distributions (0.5-20 microm) obtained using an aerodynamic particle sizer (model 3321, TSI, USA) in June 2012 were analyzed. It was found that the particle number, surface area and volume concentrations for size range 0.5-10 microm were (15.0 +/- 2.1) cm(-3), (11.8 +/- 2.6) microm2/cm3 and (1.9 +/- 0.6) microm2/cm3, respectively, on the traffic-restricted day (Sunday), which is 63.2%, 53.0% and 47.2% lower than those on a normal Sunday. For number and surface area concentrations, the most affected size range was 0.5-0.7 and 0.5-0.8 microm, respectively, while for volume concentration, the most affected size ranges were 0.5-0.8, 1.7-2.0 and 5.0-5.4 microm. Number and volume concentrations of particles in size range 0.5-1.0 microm correlated well with the number of non-CNG (Compressed Natural Gas) powered vehicles, while their correlation with the number of CNG-powered vehicles was very low, suggesting that reasonable urban traffic controls along with vehicle technology improvements could play an important role in improving urban air quality. PMID:25076527

Zhao, Suping; Yu, Ye; Liu, Na; He, Jianjun; Chen, Jinbei

2014-02-01

346

Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method  

NASA Astrophysics Data System (ADS)

The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

2013-03-01

347

Pd Particles as Standardized Test Material for Bioavailability Studies of Traffic Related Pd Emissions to Barley Plants  

Microsoft Academic Search

\\u000a Model palladium particles similar to those emitted from catalytic car exhaust converters were prepared and characterized with\\u000a the intention of providing standardized material for investigation of the chemical behaviour and bioavailability of traffic\\u000a related Pd emissions. Three types of Pd particles—Pd nanoparticles dispersed on silica support particles (Pd\\/SiO2), Pd only nanoparticles (Pd-NPs) and Pd micrometer particles (Pd-MPs)—were prepared and characterized

Kerstin Leopold; Michael Schuster

348

Understanding Atmospheres Culture, materiality and the texture of the in-between  

E-print Network

.00 Coffee break 10.15 Dacia Viejo-Rose, University of Cambridge Constructing an `atmosfear' in post-Civil War Spain 10.50 Marie Kolling, University of Copenhagen /Wageningen University Atmosphere and ambiguity of danger 11.25 Rose Parekh-Gaihede, Independent researcher, performing artist Atmosphere

349

Study on the compatibility of insulation materials for hermetic motor under alternative refrigerants and new lubricants atmosphere  

NASA Astrophysics Data System (ADS)

HFC407C and HFC410A were introduced as the alternative refrigerants for HCFC22 in air conditioner to follow the Motreal protocol. But HFCs were also regulated by the Kyoto protocol and natural refrigerants like hydrocarbon (HC) and CO2 are researched and introduced in the market. Under these circumstances the compatibility of motor insulation materials for hermetic motor under alternative refrigerants and lubricants become important. In this paper we discuss the compatibility of magnet wires and films of hermetic motor for air conditioner under atmosphere of HFC407C and HFC410A with POE and PVE lubricants and also discuss it under atmosphere of R600a with mineral oil and CO2 with PAG lubricant in comparison of conventional atmosphere.

Komatsubara, Takeo; Sunaga, Takeshi; Takahashi, Yasuki

350

Parameterization of Cloud Optical Properties for a Mixture of Ice Particles for use in Atmospheric Models  

NASA Technical Reports Server (NTRS)

Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.

Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

2002-01-01

351

Particle size distribution of nitrate and sulfate in the marine atmosphere  

Microsoft Academic Search

Cascade impactor samples were collected at coastal sites on Sal Island, Barbados, and Virginia Key, Miami during 1974 and at two Miami coastal sites on Virginia Key and Key Biscayne during 1981. In all of the samples, the majority of the nitrate mass was found on intermediate size particles and exhibited a mass median diameter (MMD) of about 4 pm.

D. L. Savoie; J. M. Prospero

1982-01-01

352

Ionization of the Atmosphere Due to Beta Particles Emitted by Fission Products  

Microsoft Academic Search

Persistent ionization of air at moderate heights, just below the E ; layer, after high-altitude nuclear detonations is predominantly due to radiations ; accompanying radioactive decay of fission products. The most important are BETA ; particles, which are restricted in their movements by the earth's magnetic field ; and thus create ionized clouds of high density in localized regions. A

S. Kownacki

1963-01-01

353

The NOAA POES Satellite Detects Record Particle Flows into the Earths Upper Atmosphere  

NSDL National Science Digital Library

This set of still images from the NOAA-POES satellite are derived from measurements by particle detectors in low Earth orbit. The data are sampled along the orbit track and then interpolated in time and position for the rest of the polar region. This interpolation is responsible for the curved block-shaped artifacts in the images.

Bridgman, Tom; Fang, Xiaohua; Evans, David

2004-07-08

354

Observations of new aerosol particle formation in a tropical urban atmosphere  

NASA Astrophysics Data System (ADS)

Particle number concentrations (PNC) and particle size distributions (PSD) in the size range of 5.6-560 nm were measured in Singapore during South West (SW) and North East (NE) monsoon periods. The field study was conducted from 27 July 2008 to 15 August 2008 and from 21 January 2009 to 22 February 2009. A distinct peak of PNC in the afternoon was observed in addition to morning and evening rush hour peaks during the SW monsoon period. Concurrent measurements of PSD, SO2, Black Carbon (BC) and proxy H2SO4 concentrations revealed that the afternoon peaks observed during the SW monsoon period were likely due to new particle formation. These nucleation events were frequently observed during the SW monsoon period, but were rarely seen during the NE monsoon period. The effect of meteorological parameters viz. Temperature (T), Relative Humidity (RH), Incoming Solar radiation (SR) on the rate and intensity of nucleation was examined. Strong nucleation events were observed in the presence of high H2SO4 concentrations at high T, high SR, and low RH. The newly formed particles did not show any signs of growth during the nucleation events. New particle formation (NPF) events appear to be mainly induced by SO2 emissions from the local point sources (e.g. petroleum refineries), so when winds blew from that direction nucleation events were prominent. Local bush fires were observed during the course of air sampling due to a prolonged dry spell in the months of January and February 2009. During the occurrence of the local smoke haze induced by bush fires, nucleation events were suppressed.

Betha, Raghu; Spracklen, Dominick V.; Balasubramanian, Rajasekhar

2013-06-01

355

Comparative analysis of new particle formation events in less and severely polluted urban atmosphere  

NASA Astrophysics Data System (ADS)

In this paper, we conducted a comparative study of new particle formation (NPF) events occurring between Qingdao and Toronto during spring. The extent of air pollution in Qingdao was much severer than that in Toronto, but the occurrence frequency of NPF events in Qingdao (41%) was almost same as that (42%) in Toronto. The geometric median diameter of new particles (Dpg,1) increased up to >40 nm in 15 days out of the total 16 NPF days in Qingdao, the Dpg,1 at least in eight days increased up to >60 nm and even reached >80 nm in two days. Two-stage growth was generally observed in these eight NPF events. The first-stage growth occurred in daytime and it was likely associated with formation of secondary organic aerosol (SOA) on basis of the modeling results. The second-stage growth was generally observed at nighttime when the modeling results showed increases of NH4+ and NO3- in concentration together with SOA, implying that NH4NO3 possibly played a role in the growth. In Toronto, the maximum Dpg,1 of the observed new particles in all 13 NPF events was less than 50 nm. A slight second-stage growth of new particles was observed only in four days when either the increase of NH4+ and NO3- in concentration or the increase of relative humidity occurred. The NPF events in Toronto less likely had a significant contribution to cloud condensation nuclei due to the small size of the observed new particles.

Zhu, Yujiao; Sabaliauskas, Kelly; Liu, Xiaohuan; Meng, He; Gao, Huiwang; Jeong, Cheol-Heon; Evans, Greg J.; Yao, Xiaohong

2014-12-01

356

Particle characteristics of different materials after ultra-short pulsed laser (USPL) irradiation  

NASA Astrophysics Data System (ADS)

The exposition of nanoparticles caused by laser application in dental health care is an open discussion. Based on the fact that nanoparticles can penetrate through the mucosa, the knowledge about particle characteristics after irradiation with an USPL is of high importance. Therefore, the aim of this study was to investigate the particle characteristics, especially the size of the ablated debris after USPL irradiation. The irradiation was carried out with an USP Nd:YVO4 laser with a center wavelength of 1064 nm. Based on the pulse duration of 8 ps and a pulse repetition rate of 500 kHz the laser emits an average power of 9 W. The materials investigated were dental tissues and dental restorative materials (composite and amalgam), ceramic and different metals (gold and aluminium). The samples were irradiated with a power density in the order of 300 GW/cm2 at distances of 5, 10, 15, and 20 mm. The debris was collected on an object plate. SEM pictures were used for analysis of the ablation debris. Depending on the irradiated material, we observed different kinds of structures: vitreous, flocculent, and pellet-like. The mean particle sizes were 10 x 10 up to 30 x 30 ?m2. In addition, a cluster of ablated matter (nanometer range) distributed over the whole irradiated area was found. With increasing distances the cluster structure reduced from multi-layer to mono-layer clusters. Particle sizes in the micrometer and nanometer range were found after irradiation with an USPL. The nanoparticles create a cluster structure which is influenced by increasing distances.

Meister, Joerg; Schelle, Florian; Kowalczyk, Philip; Frentzen, Matthias

2012-01-01

357

The influence of formation material properties on the response of water levels in wells to Earth tides and atmospheric loading  

USGS Publications Warehouse

The water level in an open well can change in response to deformation of the surrounding material, either because of applied strains (tidal or tectonic) or surface loading by atmospheric pressure changes. Under conditions of no vertical fluid flow and negligible well bore storage (static-confined conditions), the sensitivities to these effects depend on the elastic properties and porosity which characterize the surrounding medium. The hydraulic diffusivity which governs pressure diffusion in response to surface loading is slightly smaller than that which governs fluid flow in response to applied strain. Analysis of the static-confined response of five wells to atmospheric loading and Earth tides gives generally reasonable estimates for material properties. -from Authors

Rojstaczer, S.; Agnew, D.C.

1989-01-01

358

Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays  

Microsoft Academic Search

The heavy element compositions of the solar corona, solar wind (SW), solar energetic particles (SEP, ''mass-unbiasedd baseline''; Paper I) and galactic cosmic-ray sources (GCRS) are remarkably similar. They all show the same pattern as compared to standard local galactic (or solar photospheric) composition: an underabundance of heavy elements with first ionization potential (FIP) > or approx. =9 eV relative to

J.-P. Meyer

1985-01-01

359

Applying a fully nonlinear particle filter on a coupled ocean-atmosphere climate model  

NASA Astrophysics Data System (ADS)

It is a widely held assumption that particle filters are not applicable in high-dimensional systems due to filter degeneracy, commonly called the curse of dimensionality. This is only true of naive particle filters, and indeed it has been shown much more advanced methods perform particularly well on systems of dimension up to 216 ? 6.5 × 104. In this talk we will present results from using the equivalent weights particle filter in twin experiments with the global climate model HadCM3. These experiments have a number of notable features. Firstly the sheer size of model in use is substantially larger than has been previously achieved. The model has state dimension approximately 4 × 106 and approximately 4 × 104 observations per analysis step. This is 2 orders of magnitude more than has been achieved with a particle filter in the geosciences. Secondly, the use of a fully nonlinear data assimilation technique to initialise a climate model gives us the possibility to find non-Gaussian estimates for the current state of the climate. In doing so we may find that the same model may demonstrate multiple likely scenarios for forecasts on a multi-annular/decadal timescale. The experiments consider to assimilating artificial sea surface temperatures daily for several years. We will discuss how an ensemble based method for assimilation in a coupled system avoids issues faced by variational methods. Practical details of how the experiments were carried out, specifically the use of the EMPIRE data assimilation framework, will be discussed. The results from applying the nonlinear data assimilation method can always be improved through having a better representation of the model error covariance matrix. We will discuss the representation which we have used for this matrix, and in particular, how it was generated from the coupled system.

Browne, Philip; van Leeuwen, Peter Jan; Wilson, Simon

2014-05-01

360

Exposure Assessment for Atmospheric Ultrafine Particles (UFPs) and Implications in Epidemiologic Research  

PubMed Central

Epidemiologic research has shown increases in adverse cardiovascular and respiratory outcomes in relation to mass concentrations of particulate matter (PM) ?2.5 or ?10 ?m in diameter (PM2.5, PM10, respectively). In a companion article [Delfino RJ, Sioutas C, Malik S. 2005. Environ Health Perspect 113(8):934–946]), we discuss epidemiologic evidence pointing to underlying components linked to fossil fuel combustion. The causal components driving the PM associations remain to be identified, but emerging evidence on particle size and chemistry has led to some clues. There is sufficient reason to believe that ultrafine particles < 0.1 ?m (UFPs) are important because when compared with larger particles, they have order of magnitudes higher particle number concentration and surface area, and larger concentrations of adsorbed or condensed toxic air pollutants (oxidant gases, organic compounds, transition metals) per unit mass. This is supported by evidence of significantly higher in vitro redox activity by UFPs than by larger PM. Although epidemiologic research is needed, exposure assessment issues for UFPs are complex and need to be considered before undertaking investigations of UFP health effects. These issues include high spatial variability, indoor sources, variable infiltration of UFPs from a variety of outside sources, and meteorologic factors leading to high seasonal variability in concentration and composition, including volatility. To address these issues, investigators need to develop as well as validate the analytic technologies required to characterize the physical/chemical nature of UFPs in various environments. In the present review, we provide a detailed discussion of key characteristics of UFPs, their sources and formation mechanisms, and methodologic approaches to assessing population exposures. PMID:16079062

Sioutas, Constantinos; Delfino, Ralph J.; Singh, Manisha

2005-01-01

361

Nano-magnetic particles used in biomedicine: core and coating materials.  

PubMed

Magnetic nanoparticles for medical applications have been developed by many researchers. Separation, immunoassay, drug delivery, magnetic resonance imaging and hyperthermia are enhanced by the use of suitable magnetic nanoparticles and coating materials in the form of ferrofluids. Due to their low biocompatibility and low dispersion in water solutions, nanoparticles that are used for biomedical applications require surface treatment. Various kinds of coating materials including organic materials (polymers), inorganic metals (gold, platinum) or metal oxides (aluminum oxide, cobalt oxide) have been attracted during the last few years. Based on the recent advances and the importance of nanomedicine in human life, this paper attempts to give a brief summary on the different ferrite nano-magnetic particles and coatings used in nanomedicine. PMID:23623057

Karimi, Z; Karimi, L; Shokrollahi, H

2013-07-01

362

In vitro evaluation of atmospheric particulate matter and sedimentation particles using yeast bioassay system.  

PubMed

Little information on the evaluation of airborne particulate matter (APM) and sedimentation particles from subway stations is available. The thermal metamorphism of train wheels generating toxic particles in subway stations is a possibility. In this study, the toxicity and physiological effects of particles from subway stations were evaluated using a yeast bioassay system. Estrogenic and antiestrogenic activities of APM in APM extracts from subway stations were determined. No estrogenic activity was found in the APM fractions and their S9-activated APM samples. Sedimentation dust samples also showed no estrogen activity. In contrast, extracts from sedimentation dust samples showed antiestrogen activity. Marked yeast toxicity was observed in the samples extracted from sedimentation dust. Potent yeast toxicity was also found in the S9-activated extracts from sedimentation dust. The results suggest that sedimentation dust from a semiclosed area of a subway system has antiestrogen activity, although both the origin and generation system of this activity are uncertain. These pollutants in sedimentation dust may change to a more toxic form in vivo by S9 activation. PMID:17762843

Mori, Taiki; Inudo, Makiko; Takao, Yuji; Koga, Minoru; Takemasa, Takehiro; Shinohara, Ryota; Arizono, Koji

2007-01-01

363

Interaction of Plutonium with Diverse Materials in Moist Air and Nitrogen-Argon Atmospheres at Room Temperature  

Microsoft Academic Search

Chemical and radiolytic interactions of weapons-grade plutonium with metallic, inorganic, and hydrogenous materials in atmospheres containing moist air-argon mixtures have been characterized at room temperature from pressure-volume-temperature and mass spectrometric measurements of the gas phase. A reaction sequence controlled by kinetics and gas-phase composition is defined by correlating observed and known reaction rates. In all cases, Oâ is eliminated first

John M. Haschke; Raymond J. Martinez; Robert E. Pruner II; Barbara Martinez; Thomas H. Allen

2001-01-01

364

Liquid-liquid phase separation in atmospheric aerosol particles: dependence on organic functionalities and mixture complexity  

NASA Astrophysics Data System (ADS)

In the troposphere, aerosol particles undergo phase transitions such as deliquescence and efflorescence during humidity cycles (Marcolli and Krieger, 2006). In addition, interactions between organic and inorganic compounds lead to liquid-liquid phase separation (LLPS) (Ciobanu et al., 2009). Recent studies on a limited number of model systems have shown that oxygen-to-carbon ratios (O:C) of the organic aerosol fraction might be a good predictor for LLPS in mixed organic/ammonium sulfate (AS) particles (Bertram et al., 2011; Song et al., 2011). However, in order to corroborate this hypothesis experiments with an organic fraction that consists of a higher number of components with different O:C ratios and functional groups are needed. In order to determine the influence of O:C ratio, the specific organic functionalities and the mixture complexity on LLPS, we subjected organic/AS particles deposited on a hydrophobically coated substrate to relative humidity (RH) cycles and observed phase changes using optical microscopy and micro-Raman spectroscopy. To determine the influence of mixture complexity, we mixed together up to 10 organic compounds. We also prepared mixtures that were rich in different types of functional groups like polyols, aromatics and dicarboxylic acids which were identified from field measurements. We screened for a miscibility gap by varying the organic-to-inorganic ratio from 2:1 to 1:6. AS in the investigated single particles effloresced at 27 - 50 %RH and deliquesced at 72 - 79 %RH during humidity cycles. The occurrence of LLPS is determined to a high degree by the O:C of the organics: there was no LLPS for mixtures with O:C > 0.8 and there was always LLPS for mixtures with O:C < 0.57. In the range in between, we observed a dependence on the specific functional groups: a high share of aromatic functionalities shifts the range of O:C for which LLPS occurs to lower values. A correlation was also found for the onset RH of LLPS as a function of O:C. We did not find any dependence of LLPS on the complexity of the mixture. Overall, the RH range of coexistence of two liquid phases depends in first place on the O:C ratio of the particles and in second place also on the specific organic functionalities.

Song, M.; Marcolli, C.; Krieger, U. K.; Zuend, A.; Peter, T.

2012-04-01

365

Coherent wave induced particle precipitation into the upper atmosphere. [due to energetic electrons interacting with VLF waves in magnetosphere  

NASA Technical Reports Server (NTRS)

A description is presented of the results of a computer simulation involving a study of the particle precipitation induced by coherent VLF waves in the magnetosphere. The results of a computation for a 10 picoweber/sq m wave amplitude are shown in a graph. The precipitated flux for three different energies is given in a table. For 1.5 keV the energy deposition rate is about 0.8 erg/sq cm-sec, almost as intense as a moderate aurora. It is concluded that significant energy is deposited by a wave of 10 picoweber/sq m intensity. Such a wave amplitude is representative of highly coherent VLF wave types that are found in the magnetosphere. On the basis of the considered results it appears that controlled VLF wave injection in the magnetosphere could be an important and useful tool to study the coupling processes between the atmosphere and magnetosphere.

Inan, U. S.; Bell, T. F.; Helliwell, R. A.

1977-01-01

366

Spheroidal carbonaceous particles (SCPs) as indicators of atmospherically deposited pollutants in North African wetlands of conservation importance  

NASA Astrophysics Data System (ADS)

Wetlands and lowland lakes in the coastal region of North Africa are being lost at an alarming rate as a result of increasing human demands for water and land. Those remaining wetlands, which have not been severely degraded, support high value ecosystems that not only contribute to regional biodiversity but also provide important resources for local human populations. However, information on the current status of these sites and the rates and directions of trends in environmental change over recent decades is generally lacking. In particular, regional data on the inputs of atmospheric pollutants to these important sites are absent. As part of the EU (INCO-MED) funded CASSARINA project, sediment cores were taken from eight coastal lakes in Morocco, Tunisia and Egypt. Chronologies for these cores were produced primarily using radionuclides and all were analysed for spheroidal carbonaceous particles (SCPs). SCPs are produced only from high temperature fossil-fuel combustion and are thus unambiguous indicators of atmospheric deposition from industrial sources. SCP contamination trends appear to show a combination of influences from European and, more recently (post-1980), local North African sources. Contemporary data indicate contamination equivalent to that found in heavily impacted European mountain lakes or moderately impacted lowland lakes in the UK. Such levels of impact raise particular concerns over the future of Moroccan wetland lakes downwind of a recently expanded major coal-fired power station at Jorf Lasar.

Rose, N. L.; Flower, R. J.; Appleby, P. G.

367

25th anniversary article: metal oxide particles in materials science: addressing all length scales.  

PubMed

The fundamental mission of materials science is the description of matter over all length scales. In this review, we apply this concept to particle research. Based on metal oxides, we show that every size range offers its specific features, and every size range had its era, when it was in the center of the research activities. In the first part of the review, we discuss on three metal oxides as examples, how and why the research focus changed its targeted size regime from the micrometer to the nanometer scale and back to the macroscopic world. Next, we present the distinct advantages of using nanoparticles over micrometer-sized particles in selected devices and we point out how such a shift in the size regime opens up new research directions. Finally, we exemplify the methods to introduce nanoparticles into macroscopic objects to make functional ceramics. PMID:24254990

Koziej, Dorota; Lauria, Alessandro; Niederberger, Markus

2014-01-15

368

A particle-based multiscale simulation procedure within the material point method framework  

NASA Astrophysics Data System (ADS)

Recent studies of nano energetic composites have underscored the need for an effective multiscale procedure for simulating the responses of discrete nano and sub-micron structures and assemblies to impact loading. A particle-based simulation procedure is proposed with a concurrent link between the dissipative particle dynamics (DPD) method and the material point method (MPM), and a hierarchical bridge from molecular dynamics to DPD, in order to effectively discretize the multiphase interactions associated with multiscale failure evolution. The proposed procedure is illustrated using simulations of the dynamic and impact responses of discrete metallic nano structures. It is shown that the DPD forces can be effectively coarse-grained using the MPM background grid, and that the concurrent link between the MPM and DPD enables near-seamless integration of constitutive modeling at the continuum level with force-based modeling at the mesoparticle level. Additional improvements and applications that build on the current results are discussed.

Chen, Zhen; Jiang, Shan; Gan, Yong; Liu, Hantao; Sewell, Thomas D.

2014-06-01

369

Observations of the UARS Particle Environment Monitor and computation of ionization rates in the middle and upper atmosphere during a geomagnetic storm  

NASA Technical Reports Server (NTRS)

In this paper we present observations made by the Particle Environment Monitor (PEM) instruments during the geomagnetic storm of 8-9 November, 1991. Ionization and energy deposition rates as functions of altitude in the middle and upper atmosphere by incident electrons and positive ions in the storm interval are computed. The suite of PEM instruments provides a systematic measurement of energetic particles and their associated X-rays over an energy range not fully covered by previous satellite missions.

Sharber, J. R.; Frahm, R. A.; Winningham, J. D.; Biard, J. C.; Lummerzheim, D.; Rees, M. H.; Chenette, D. L.; Gaines, E. E.; Nightingale, R. W.; Imhof, W. L.

1993-01-01

370

Analysis of atmospheric aerosols by particle-induced X-ray emission, instrumental neutron activation analysis, and ion chromatography  

NASA Astrophysics Data System (ADS)

Particle-induced X-ray emission (PIXE), ion chromatography (IC), and occasionally also instrumental neutron activation analysis (INAA) were used in combination for the analysis of atmospheric aerosol samples that were collected on Nuclepore polycarbonate filters. A comparison of the results enabled us to evaluate the matrix effects (i.e., particle size effects) of the PIXE analysis for the light elements and to assess the water-solubility and/or speciation of a number of elements (e.g., S, K, Ca). Results are presented from several measurement campaigns at urban and forested sites in Europe, whereby PM10 or PM2.5 filter samples were taken. From the PIXE and IC results for a 2003 summer campaign at the K-puszta site in Hungary, it was estimated that organosulphates could be responsible for 20% of the total sulphur concentration and 30% of the organic aerosol in PM10. The comparison of the IC and PIXE data for K and Ca from the various sites indicated that most of the Ca was water-soluble (the mineral dust Ca was presumably mostly present as calcite, and perhaps also in part as gypsum); in contrast, for K, only half of it was typically water-soluble, indicating that it was to a large extent associated with insoluble mineral dust. Exceptions, with almost fully water-soluble K, were found for samples that were substantially impacted by biomass burning.

Maenhaut, Willy; Raes, Nico; Wang, Wan

2011-11-01

371

Observations of salt particles in the atmosphere in the vicinity of an inland salt lake: Lake Eyre, South Australia  

NASA Astrophysics Data System (ADS)

Lake Eyre is an ephemeral salt lake in arid country 400 km from the sea. The contributions to the total atmospheric aerosol sodium from sea-salt and lake-salt were determined close to the lake over a four-day sampling period in May 1984. Measurements at the lake site detected significant salt aerosol of marine origin. No conclusive evidence for significant lake-derived salt aerosol was obtained. Coincidence scintillation spectrometry was used to detect and assign sources to the particles. The salt was identified as marine in origin from the Na/K ratios for single particles greater than 0.4 ?m radius and from the similarity of concentration versus mass plots for aerosol at Lake Eyre to plots of marine aerosol over the ocean and at cloud levels in central Queensland, Australia. Back trajectory analyses for air parcels reacing the sampling site during the experiment confirmed that the sampling site was not down wind of the lake and supported the conclusion that despite the proximity of the lake the salt aerosols detected were in fact marine. Over the sampling period the average mass loading of sea-salt in the air at 2 m above ground was 0.55 ?g m -3. The estimated 400 million tons of NaCl in the lake is readily accounted for by deposition of sea salt within the lake catchment area, over a relatively short time.

Clark, N. J.; Smith, Rodney B.

372

Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles.  

PubMed

When plants are exposed to airborne particles, they can accumulate metals in their edible portions through root or foliar transfer. There is a lack of knowledge on the influence of plant exposure conditions on human bioaccessibility of metals, which is of particular concern with the increase in urban gardening activities. Lettuce, radish, and parsley were exposed to metal-rich ultrafine particles from a recycling factory via field atmospheric fallouts or polluted soil. Total lead (Pb) and cadmium (Cd) concentrations in of the edible plant parts and their human bioaccessibility were measured, and Pb translocation through the plants was studied using Pb isotopic analysis. The Pb and Cd bioaccessibility measured for consumed parts of the different polluted plants was significantly higher for root exposure (70% for Pb and 89% for Cd in lettuce) in comparison to foliar exposure (40% for Pb and 69% for Cd in lettuce). The difference in metal bioaccessibility could be linked to the metal compartmentalization and speciation changes in relation to exposure conditions. Metal nature strongly influences the measured bioaccessibility: Cd presents higher bioaccessibility in comparison to Pb. In the case of foliar exposure, a significant translocation of Pb from leaves toward the roots was observed. To conclude, the type of pollutant and the method of exposure significantly influences the phytoavailability and human bioaccessibility of metals, especially in relation to the contrasting phenomena involved in the rhizosphere and phyllosphere. The conditions of plant exposure must therefore be taken into account for environmental and health risk assessment. PMID:25603245

Xiong, Tiantian; Leveque, Thibault; Shahid, Muhammad; Foucault, Yann; Mombo, Stéphane; Dumat, Camille

2014-09-01

373

Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility  

NASA Astrophysics Data System (ADS)

Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

2014-05-01

374

Morphological features of soot-containing particles internally mixed with water-soluble materials in continental outflow observed at Cape Hedo, Okinawa, Japan  

Microsoft Academic Search

Morphological features of submicrometer soot-containing particles from ChinaClustered particle-connecting spheroids of 0.3 ?m were found under dry conditionsSoot-containing particles contain >80% water-soluble materials by volume

S. Ueda; K. Osada; A. Takami

2011-01-01

375

Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires  

NASA Astrophysics Data System (ADS)

Insufficient knowledge regarding the sources and number concentrations of atmospheric ice nucleating particles (INP) leads to large uncertainties in understanding the interaction of aerosols with cloud processes, such as cloud life time and precipitation rates. This study utilizes measurements of INP from a diverse set of biomass burning events to better understand INP associated with biomass burning in the U.S. Prescribed burns in Georgia and Colorado, two Colorado wildfires and two laboratory burns were monitored for INP number concentrations. The relationship between nINP and total particle number concentrations, evident within prescribed burning plumes, was degraded within aged smoke plumes from the wildfires, limiting the utility of this relationship for comparing laboratory and field data. Larger particles, represented by n500nm, are less vulnerable to plume processing and have previously been evaluated for their relation to nINP. Our measurements indicated that for a given n500nm, nINP associated with the wildfires were nearly an order of magnitude higher than nINP found in prescribed fire emissions. Reasons for the differences between INP characteristics in these emissions were explored, including variations in combustion efficiency, fuel type, transport time and environmental conditions. Combustion efficiency and fuel type were eliminated as controlling factors by comparing samples with contrasting combustion efficiencies and fuel types. Transport time was eliminated because the expected impact would be to reduce n500nm, thus resulting in the opposite effect from the observed change. Bulk aerosol chemical composition analyses support the potential role of elevated soil dust particle concentrations during the fires, contributing