Science.gov

Sample records for atmospheric physics department

  1. Tumultuous Atmosphere (Physical, Mental), the Main Barrier to Emergency Department Inter-Professional Communication

    PubMed Central

    Varjoshani, Nasrin Jafari; Hosseini, Mohammad Ali; Khankeh, Hamid Reza; Ahmadi, Fazlollah

    2015-01-01

    Background: A highly important factor in enhancing quality of patient care and job satisfaction of health care staff is inter-professional communication. Due to the critical nature of the work environment, the large number of staff and units, and complexity of professional tasks and interventions, inter-professional communication in an emergency department is particularly and exceptionally important. Despite its importance, inter-professional communication in emergency department seems unfavorable. Thus, this study was designed to explain barriers to inter-professional communication in an emergency department. Methodology & Methods: This was a qualitative study with content analysis approach, based on interviews conducted with 26 participants selected purposively, with diversity of occupation, position, age, gender, history, and place of work. Interviews were in-depth and semi-structured, and data were analyzed using the inductive content analysis approach. Results: In total, 251 initial codes were extracted from 30 interviews (some of the participants re-interviewed) and in the reducing trend of final results, 5 categories were extracted including overcrowded emergency, stressful emergency environment, not discerning emergency conditions, ineffective management, and inefficient communication channels. Tumultuous atmosphere (physical, mental) was the common theme between categories, and was decided to be the main barrier to effective inter-professional communication. Conclusion: Tumultuous atmosphere (physical-mental) was found to be the most important barrier to inter-professional communication. This study provided a better understanding of these barriers in emergency department, often neglected in most studies. It is held that by reducing environmental turmoil (physical-mental), inter-professional communication can be improved, thereby improving patient care outcomes and personnel job satisfaction. PMID:25560351

  2. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  3. Dynamics in Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Lindzen, Richard A.

    2005-08-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  4. Dynamics in Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Lindzen, Richard A.

    1990-06-01

    Motion is manifest in the atmosphere in an almost infinite variety of ways. In Dynamics in Atmospheric Physics, Dr. Richard Lindzen describes the nature of motion in the atmosphere, develops fluid dynamics relevant to the atmosphere, and explores the role of motion in determining the climate and atmospheric composition. The author presents the material in a lecture note style, and the emphasis throughout is on describing phenomena that are at the frontiers of current research, but due attention is given to the methodology of research and to the historical background of these topics. The author's treatment and choice of topics is didactic. Problems at the end of each chapter will help students assimilate the material. In general the discussions emphasize physical concepts, and throughout Dr. Lindzen makes a concerted effort to avoid the notion that dynamic meteorology is simply the derivation of equations and their subsequent solution. His desire is that interested students will delve further into solution details. The book is intended as a text for first year graduate students in the atmospheric sciences. Although the material in the book is self contained, a familiarity with differential equations is assumed; some background in fluid mechanics is helpful.

  5. Planetary atmospheric physics and solar physics research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An overview is presented on current and planned research activities in the major areas of solar physics, planetary atmospheres, and space astronomy. The approach to these unsolved problems involves experimental techniques, theoretical analysis, and the use of computers to analyze the data from space experiments. The point is made that the research program is characterized by each activity interacting with the other activities in the laboratory.

  6. A Department of Atmospheric and Planetary Sciences at Hampton University

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  7. Atmospheric cloud physics thermal systems analysis

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Engineering analyses performed on the Atmospheric Cloud Physics (ACPL) Science Simulator expansion chamber and associated thermal control/conditioning system are reported. Analyses were made to develop a verified thermal model and to perform parametric thermal investigations to evaluate systems performance characteristics. Thermal network representations of solid components and the complete fluid conditioning system were solved simultaneously using the Systems Improved Numerical Differencing Analyzer (SINDA) computer program.

  8. Physics of the Sun and its Atmosphere

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.; Narain, U.

    ch. 1. Recent advances in solar physics / B. N. Dwivedi -- ch. 2. Overview of the Sun / S. S. Hasan -- ch. 3. Seismic view of the Sun / S. M. Chitre and B. N. Dwivedi -- ch. 4. Solar magnetism / P. Venkatakrishnan and S. Gosain -- ch. 5. Waves and oscillations in the solar atmosphere / R. Erdélyi -- ch. 6. VUV spectroscopy of solar plasma / A. Mohan -- ch. 7. Active region diagnostics / H. E. Mason and D. Tripathi -- ch. 8. Hall effect and ambipolar diffusion in the lower solar atmosphere / V. Krishan -- ch. 9. On solar coronal heating mechanisms / K. Pandey and U. Narain -- ch. 10. Coronal mass ejections (CMEs) and associated phenomena / N. Srivastava -- ch. 11. The radio Sun / P. K. Manoharan -- ch. 12. The solar wind / P. K. Manoharan -- ch. 13. The Sun-Earth system: our home in space / J. L. Lean.

  9. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  10. Atmospheric Cloud Physics Laboratory thermal control

    NASA Technical Reports Server (NTRS)

    Moses, J. L.; Fogal, G. L.; Scollon, T. R., Jr.

    1978-01-01

    The paper presents the development background and the present status of the Atmospheric Cloud Physics Laboratory (ACPL) thermal control capability. The ACPL, a Spacelab payload, is currently in the initial flight hardware development phase for a first flight scheduled in June 1981. The ACPL is intended as a facility for conducting a wide variety of cloud microphysics experimentation under zero gravity conditions. The cloud chambers, which are key elements of the ACPL, have stringent thermal requirements. Thus the expansion chamber inner walls must be uniform to within + or - 0.1 C during both steady-state and transient operation over a temperature range of +30 to -25 C. Design progression of the expansion chamber, from early in-house NASA-MSFC concepts (including test results of a prototype chamber) to a thermal control concept currently under development, is discussed.

  11. Physics of planetary atmospheres and ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1981-01-01

    The traditional atmospheric regions, the distinction between homosphere and heterosphere, and changing atmospheric composition are discussed. The validity of the barometric law based on a Maxwell-Boltzmann distribution, for the major part of a planetary atmosphere and its breakdown in the exosphere due to escape of atmospheric particles is considered. The formation and maintenance of photochemical and diffusion-controlled ionospheric layers are treated. Their applicability to planetary ionospheres is dealt with. The spatial extent of magnetic and nonmagnetic planet ionospheres is investigated. Thermal and nonthermal processes responsible for the mass loss of planetary atmospheres are surveyed.

  12. Basic research in meteorology and atmospheric physics

    NASA Technical Reports Server (NTRS)

    Miller, J. E.

    1975-01-01

    The effect was studied of the variations of the electromagnetic properties of the three phases of water on measurements of atmospheric and oceanographic parameters by microwave instruments aboard satellites. Other studies reported include: orbital detection of extrasolar planets, detection of stratospheric aerosols from earth orbit, chemistry of Jupiter's atmosphere, and stratospheric ozone.

  13. Basic research in meteorology and atmospheric physics

    NASA Technical Reports Server (NTRS)

    Opstbaum, R.

    1972-01-01

    A survey is reported of methods for sounding the atmospheric temperature profile by remote measurements. The emphasis for this period was placed on sounding in the microwave region of the spectrum, sounding in cloudy atmosphere, and measuring sea temperatures remotely. Summaries of the research in the following areas are included: orbital detection of stratospheric aerosols, monthly precipitation charts for the world, determining planetary cloud structure by remote polarization measurement, analysis of Mariner 6 and 7 multicolor photometric photographs of Mars, and techniques for photometric detection of extrasolar planets.

  14. SOHO: Atomic physics and the solar atmosphere

    SciTech Connect

    Kucera, T. A.

    1998-09-28

    Many aspects of the Sun's corona and wind are studied using data from the ultraviolet spectrum. Accurate atomic parameters are needed to interpret these data correctly, and a good understanding of the behaviors of atoms and ions in plasmas is essential to modeling the Sun's atmosphere. Here I present two examples of studies being carried out using the Solar and Heliospheric Observatory (SOHO) extreme ultraviolet spectrographs. The first of these is the study of flows in the Sun's chromosphere and corona. SOHO has provided new information concerning previous observations of the predominant down-flows in the Sun's lower atmosphere. Accurate measurements of Doppler line shifts have been extended to the corona. It has also been found that the Doppler shifts vary over different parts of the Sun. The second study discussed involves the use of SOHO data to measure elemental abundances in coronal structures know as streamers, giving more information on the 'FIP' effect--the observation that there is a relative deficit of elements with high first ionization potentials (FIPs) in the corona and solar wind.

  15. Assessing the Physical Environment of Emergency Departments

    PubMed Central

    Goodarzi, Hassan; Javadzadeh, Hamidreza; Hassanpour, Kasra

    2015-01-01

    Background: Emergency Department (ED) is considered to be the heart of a hospital. Based on many studies, a well-organized physical environment can enhance efficacy. Objectives: In this study, we aimed to investigate the influence of physical environment in EDs on efficacy. Materials and Methods: This analytical cross-sectional study was conducted via the faculty members of the ED and residents of Shahid Beheshti University of Medical Sciences in Tehran, Iran. Data were collected using a predefined questionnaire. Descriptive statistics and ANOVA were used to analyze the data. Results: Sixty-two participants, including 21 females and 41 males, completed the questionnaires. The mean age of the participants was 37 years (SD: 8.42). The mean work experience was 8 years (SD: 4.52) and all the studied variables varied within a range of 3.3 - 4.2. Time indices had the highest mean among variables followed by capacity, work space, treatment units, critical care units and, triage indices, respectively. Conclusions: In general, time indices including length of patient stay in the ED and space capacity, emphasizing the need to address these shortcomings. PMID:26839860

  16. The physical theory and propagation model of THz atmospheric propagation

    NASA Astrophysics Data System (ADS)

    Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.

    2011-02-01

    Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.

  17. Number of Women in Physics Departments: A Simulation Analysis. Report

    ERIC Educational Resources Information Center

    White, Susan; Ivie, Rachel

    2013-01-01

    Women's representation in physics lags behind most other STEM disciplines. Currently, women make up about 13% of faculty members in all physics degree-granting departments, and there are physics departments with no women faculty members at all. These two data points are often cited as evidence of a lack of equity for women. In this article,…

  18. Physical mechanisms of solar activity effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Ebel, A.

    1989-01-01

    A great variety of physical mechanisms of possibly solar induced variations in the middle atmosphere has been discussed in the literature during the last decades. The views which have been put forward are often controversial in their physical consequences. The reason may be the complexity and non-linearity of the atmospheric response to comparatively weak forcing resulting from solar activity. Therefore this review focuses on aspects which seem to indicate nonlinear processes in the development of solar induced variations. Results from observations and numerical simulations are discussed.

  19. Graduate Physics Degrees: Largest Departments and Degree Distribution. Focus On

    ERIC Educational Resources Information Center

    Mulvey, Patrick J.; Nicholson, Starr

    2014-01-01

    In the 2011-12 academic year there were 751 degree-granting physics departments in the U.S. Of these, 195 offered a PhD and 62 departments offered a master's as the highest physics degree. The remaining 494 departments offered a bachelor's as their highest physics degree. There were six universities that had two doctoral-granting physics…

  20. The Department of Energy's Atmospheric Chemistry Program: A critical review

    SciTech Connect

    Not Available

    1991-01-01

    In response to a request from the Department of Energy's (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER's Atmospheric Chemistry Program (ACP). This report contains the committee's evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP's current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program's technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee's response to the questions posed in the Appendix. Chapter I explores the committee's view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee's conclusions and recommendations.

  1. Highlights from the First Ever Demographic Study of Solar Physics, Space Physics, and Upper Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Moldwin, M.; Morrow, C. A.; White, S. C.; Ivie, R.

    2014-12-01

    Members of the Education & Workforce Working Group and the American Institute of Physics (AIP) conducted the first ever National Demographic Survey of working professionals for the 2012 National Academy of Sciences Solar and Space Physics Decadal Survey to learn about the demographics of this sub-field of space science. The instrument contained questions for participants on: the type of workplace; basic demographic information regarding gender and minority status, educational pathways (discipline of undergrad degree, field of their PhD), how their undergraduate and graduate student researchers are funded, participation in NSF and NASA funded spaceflight missions and suborbital programs, and barriers to career advancement. Using contact data bases from AGU, the American Astronomical Society's Solar Physics Division (AAS-SPD), attendees of NOAA's Space Weather Week and proposal submissions to NSF's Atmospheric, Geospace Science Division, the AIP's Statistical Research Center cross correlated and culled these data bases resulting in 2776 unique email addresses of US based working professionals. The survey received 1305 responses (51%) and generated 125 pages of single space answers to a number of open-ended questions. This talk will summarize the highlights of this first-ever demographic survey including findings extracted from the open-ended responses regarding barriers to career advancement which showed significant gender differences.

  2. Highly physical penumbra solar radiation pressure modeling with atmospheric effects

    NASA Astrophysics Data System (ADS)

    Robertson, Robert; Flury, Jakob; Bandikova, Tamara; Schilling, Manuel

    2015-10-01

    We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth's penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the sub-nm/s2 precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

  3. An Atmospheric Cloud Physics Laboratory for the Space Laboratory

    NASA Technical Reports Server (NTRS)

    Smith, R.; Anderson, J.; Schrick, B.; Ellsworth, C.; Davis, M.

    1976-01-01

    Results of research and engineering analyses to date show that it is feasible to develop and fly on the first Spacelab mission a multipurpose laboratory in which experiments can be performed on the microphysical processes in atmospheric clouds. The paper presents a series of tables on the Atmospheric Cloud Physics Laboratory, with attention given to experiment classes, the preliminary equipment list (particle generators, optical and imaging devices, particle detectors and characterizers, etc.), initial equipment (scientific equipment subsystems and flight support subsystems), and scientific functional requirements (the expansion chamber, the continuous flow diffusion chamber, the static diffusion chamber, the humidifier, and particle generators).

  4. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Kiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model of Lin and Rood (QJRMS, 1997) is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  5. Physically-Derived Dynamical Cores in Atmospheric General Circulation Models

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Lin, Shian-Jiann

    1999-01-01

    The algorithm chosen to represent the advection in atmospheric models is often used as the primary attribute to classify the model. Meteorological models are generally classified as spectral or grid point, with the term grid point implying discretization using finite differences. These traditional approaches have a number of shortcomings that render them non-physical. That is, they provide approximate solutions to the conservation equations that do not obey the fundamental laws of physics. The most commonly discussed shortcomings are overshoots and undershoots which manifest themselves most overtly in the constituent continuity equation. For this reason many climate models have special algorithms to model water vapor advection. This talk focuses on the development of an atmospheric general circulation model which uses a consistent physically-based advection algorithm in all aspects of the model formulation. The shallow-water model is generalized to three dimensions and combined with the physics parameterizations of NCAR's Community Climate Model. The scientific motivation for the development is to increase the integrity of the underlying fluid dynamics so that the physics terms can be more effectively isolated, examined, and improved. The expected benefits of the new model are discussed and results from the initial integrations will be presented.

  6. The Physics Role and Potential of future Atmospheric Detectors

    SciTech Connect

    Gandhi, Raj

    2010-03-30

    We discuss the physics capabilities of basic types of future atmospheric detectors being considered at present, with their strengths and limitations, and compare them with those of long-baseline (LBL) experiments. We also argue that recent studies signal the importance of synergistically combining complementary features of both these classes of experiments in order to accrue maximum benefit towards furthering our goal of building a complete picture of neutrino properties and parameters.

  7. An Investigation on the Relationship between Hydroxyl and Temperature in the Upper and Middle Atmosphere. Authors: Stephanie Nance, Dr. Kenneth Minschwaner Affiliation: New Mexico Tech Chemistry and Physics Department

    NASA Astrophysics Data System (ADS)

    Nance, S. N.; Minschwaner, K. R.

    2009-12-01

    The Hydroxyl radical OH is a reactive species that is involved in the chemical balance of many other gases in the middle and upper atmosphere. Its production is primarily from hydrogen source gases such as water vapor (H2O) and methane (CH4). This study will analyze the OH concentration with respect to temperature in order to detect any notable correlations or trends between the two variables. For example, local temperatures can impact the kinetic rates for chemical reactions involving OH, ultimately having an effect on OH concentrations. Satellite measurements from the Aura Microwave Limb Sounder will be used for this analysis.

  8. Comparison between empirical and physically based models of atmospheric correction

    NASA Astrophysics Data System (ADS)

    Mandanici, E.; Franci, F.; Bitelli, G.; Agapiou, A.; Alexakis, D.; Hadjimitsis, D. G.

    2015-06-01

    A number of methods have been proposed for the atmospheric correction of the multispectral satellite images, based on either atmosphere modelling or images themselves. Full radiative transfer models require a lot of ancillary information about the atmospheric conditions at the acquisition time. Whereas, image based methods cannot account for all the involved phenomena. Therefore, the aim of this paper is the comparison of different atmospheric correction methods for multispectral satellite images. The experimentation was carried out on a study area located in the catchment area of Yialias river, 20 km South of Nicosia, the Cyprus capital. The following models were tested, both empirical and physically based: Dark object subtraction, QUAC, Empirical line, 6SV, and FLAASH. They were applied on a Landsat 8 multispectral image. The spectral signatures of ten different land cover types were measured during a field campaign in 2013 and 15 samples were collected for laboratory measurements in a second campaign in 2014. GER 1500 spectroradiometer was used; this instrument can record electromagnetic radiation from 350 up to 1050 nm, includes 512 different channels and each channel covers about 1.5 nm. The spectral signatures measured were used to simulate the reflectance values for the multispectral sensor bands by applying relative spectral response filters. These data were considered as ground truth to assess the accuracy of the different image correction models. Results do not allow to establish which method is the most accurate. The physics-based methods describe better the shape of the signatures, whereas the image-based models perform better regarding the overall albedo.

  9. Theoretical studies of the physics of the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1992-01-01

    Significant advances in our theoretical basis for understanding several physical processes related to dynamical phenomena on the sun were achieved. We have advanced a new model for spicules and fibrils. We have provided a simple physical view of resonance absorption of MHD surface waves; this allowed an approximate mathematical procedure for obtaining a wealth of new analytical results which we applied to coronal heating and p-mode absorption at magnetic regions. We provided the first comprehensive models for the heating and acceleration of the transition region, corona, and solar wind. We provided a new view of viscosity under coronal conditions. We provided new insights into Alfven wave propagation in the solar atmosphere. And recently we have begun work in a new direction: parametric instabilities of Alfven waves.

  10. Measurements of physical properties of model Titan atmospheres

    NASA Technical Reports Server (NTRS)

    Scattergood, T. W.; Chang, S.; Mckay, C.; Ohara, B.; Carle, G.

    1986-01-01

    One aspect of the study of Titan's atmosphere is the elucidation of the chemical and physical nature of the aerosols. In order to facilitate this, a program to produce laboratory synthesized model materials for Titan's aerosol and to study their chemical and physical properties is now in progress. Various processes, including electric discharge, photolysis by ultraviolet light, and irradiation by energetic particles, will be used to produce the materials. A first set of experiments where a nominal Titan mixture (97%N2, 3% CH4, 0.2% H2) was subjected to pulsed high temperature shocks yielded a reddish brown waxy solid. This material was subjected to pyrolysis/gas chromatography, a technique that has been proposed as a method for analysis of the Titan aerosols. Preliminary results show the material to consist of simple hydrocarbons but little else, at least up to temperatures of 600 C. Since the material was colored, compounds other than those mentioned above must be present.

  11. History of the New York University Physics Department

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin; Henry Stroke, H.

    2011-09-01

    We trace the history of physics at New York University after its founding in 1831, focusing especially on its relatively recent history, which can be divided into five periods: the Gregory Breit period from 1929 to 1934; the prewar period from 1935 to 1941; the wartime period from 1942 to 1945; the postwar period from around 1961 to 1973 when several semiautonomous physics departments were united into a single all-university department under a single head; and after 1973 when the University Heights campus was sold to New York City and its physics department joined the one at the Washington Square campus. For each of these periods we comment on the careers and work of prominent members of the physics faculty and on some of the outstanding graduate students who later went on to distinguished careers at NYU and elsewhere.

  12. Absorption and emission by atmospheric gases - The physical processes

    NASA Astrophysics Data System (ADS)

    McCartney, E. J.

    This book has been written for those who wish to understand better the processes of absorption and emission and their manifold effects. Persons having such interests or needs are the workers in meteorology, atmospheric physics, aerospace surveillance, and air-pollution control. Introductory ideas and useful facts are presented, taking into account an overview of absorption and emission, the electromagnetic spectrum and its parameters, the quantization of energy, the molecular origins of spectra, and the laws of blackbody radiation. Gas properties are considered along with thermodynamics, molecular kinetics, quantized energy states and population, molecular internal energies, spectra of energy transitions, and parameters of line and band absorption. Attention is given to molecular dipole moments, rotational energy and transitions, vibrational energy and transitions, and absorption and emission data.

  13. The University of Tennessee Department of Physics and Astronomy High-School Physics Internet Site

    NASA Astrophysics Data System (ADS)

    Breinig, Marianne

    1997-04-01

    As part of Tennessee's Bicentennial celebration, the state is providing the opportunity for all public schools to be connected with full text and graphics to the Internet. The University of Tennessee Department of Physics and Astronomy High-School Physics Internet Site helps Tennessee High School physics teachers to take maximum advantage of their Internet connections. It provides a way for all High School physics teachers to quickly communicate with faculty when they have physics questions. It makes it easier for teachers to find mentors for special physics projects. The site also provide a setting for all Tennessee High School physics teachers to communicate with each other. Physics teachers themselves are involved in the design of the Internet site. physics>High-School Physics Internet Site

  14. The nitrate radical: Physics, chemistry, and the atmosphere

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P.; Canosa-Mas, C. E.; Hjorth, J.; Le Bras, G.; Moortgat, G. K.; Perner, D.; Poulet, G.; Restelli, G.; Sidebottom, H.

    This review surveys the present state of knowledge of the nitrate (NO 3 radical. Laboratory data on the physics and chemistry of the radical and atmospheric determination of the concentrations of the radical are both considered. One aim of the review is to highlight the relationship between the laboratory and the atmospheric studies. Although the emphasis of the review is on gas-phase processes, relevant studies conducted in condensed phases are mentioned because of their potential importance in the interpretation of cloud and aerosol chemistry. The spectroscopy, structure, and photochemistry of the radical are examined. Here, the object is to establich the spectroscopic basis for detection of the radical and measurement of its concentration in the laboratory and in the atmosphere. Infrared, visible, and paramagnetic resonance spectra are considered. An important quantity discussed is the absorption cross section in the visible region, which is required for quantitative measurements. Interpretation of the spectroscopic features requires an understanding of the geometrical and electronic structure of the radical in its ground and excited states; there is still some controversy about the groundstate geometry, but the most recent experimental evidence 9eg from laser induced fluorescence) and theoretical calculations suggest that the radical has D3h symmetry. Photodissociation of the radical is important in the atmosphere, and the product channels, quantum yields, and dissociation dynamics are discussed. A short examination of the thermodynamics (heat and entropy of formation) of the radical is presented. The main exposition of laboratory studies of the chemistry of the nitrate radical is preceded by a consideration of the techniques used for kinetic and mechanistic studies. Methods for the generation and detection of the radical and the kinetic tools employed are all presented. The exact nature of the technique used in individual studies has some relevance to the way

  15. The Physics Department of Moscow University: In Its Ladies' Faces

    NASA Astrophysics Data System (ADS)

    Elena, Ermolaeva

    2005-10-01

    In commemoration of the 250th anniversary of Moscow University, the Women Council of MSU published a biographical dictionary dedicated to women who contributed significantly to the academic success of their institution and who distinguished themselves both in research and in teaching. The book contains brief biographies of some 619 women employed by MSU; 63 of these entries are for members of the Department of Physics and of its adjacent research institutes. They are doctors of sciences, full professors, recipients of government as well as university awards, and some are WWII veterans. Their lives in science have embodied all tendencies of the Soviet period of the country. The great majority graduated from Moscow State University and have been working at MSU for more than 25 years. At present, the Physics Department consists of 37 sectors with more than two hundred doctors of sciences, 15% of whom are women. The information supplied by the dictionary, combined with data on the younger staff of MSU with similar degrees in physics, lets us compare tendencies in women's professional development, their research and teaching careers, and their success in publishing. It also lets us see some of the key issues. Since 1933 (the year of establishment) more than 25,000 people have graduated from the Physics Department, a quarter of whom were girls. Of 90 students who have graduated with honors this year, one third were girls, and of 22 award-winning thesis this year, 10 were defended by them. About 400 persons are participating in the 3-year postgraduate program of the Physics Department; 30% of all students enrolled this year are girls. Half the winners of annual awards to students, postgraduate students, and ``young scientists'' in physics this year were girls. The percent of successful women in physics is growing.

  16. The Hispanic Experience in Physical Education Programs and Departments

    ERIC Educational Resources Information Center

    Hodge, Samuel R.; Cervantes, Carlos M.; Vigo-Valentin, Alexander N.; Canabal-Torres, Maria Y.; Ortiz-Castillo, Esther M.

    2012-01-01

    The purpose of this article is to discuss challenges and identify strategies to increase the representation of Hispanic faculty in the academy, particularly Physical Education (PE) programs and departments at doctorate-granting universities. Recommendations to increase the presence and improve the experiences of Hispanic faculty are provided.…

  17. University of Michigan Physics Department: E[superscript2]Coach

    ERIC Educational Resources Information Center

    EDUCAUSE, 2014

    2014-01-01

    The E[superscript 2]Coach project from the Department of Physics at the University of Michigan (UM) addresses the challenge of providing individual student support in high-enrollment introductory science courses. This web application employs tailored communications technology, course experiences, student data, and analytics to deliver customized…

  18. Improving Climate and Gender Equity in Physics Departments

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry

    2010-02-01

    We need to open the door of science to women and minorities. We need to invite them in and encourage them to succeed. We need to teach them the secret handshake and transfer all the writing on the men's room walls and all-white country clubs into accessible places. We need to promote them to positions of national prominence. We need to do this out of respect to our mothers and the pioneering scientists who have come before us. We need to do this for our daughters and sons, so that our grandchildren may only know this discrimination as a piece of history. We need to do this now -- for the sake of our country, our science, our technical workforce, our economy and because it is the right thing to do. The Committee on the Status of Women in Physics (CSWP) has been helping physics departments improve their climate as a means to enhance gender equity. The CSWP site visit program has been giving departments valuable feedback on their climate for many years. In May 2007, a workshop on ``Gender Equity: Enhancing the Physics Enterprise in Universities and National Laboratories'' was held to address the issue of underrepresentation of women in physics by engaging the stake holders. This fall a new ``Conversation on Gender Equity'' has begun. Successful strategies for improving the climate and increasing the representation of women in physics will be presented. )

  19. Physics and medical applications of cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Keidar, Michael

    2013-09-01

    Recent progress in atmospheric plasmas led to the creation of cold plasmas with ion temperature close to room temperature. Varieties of novel plasma diagnostic techniques were applied in a quest to understand physics of cold plasmas. In particular it was established that the streamer head charge is about 108 electrons, the electrical field in the head vicinity is about 107 V/m, and the electron density of the streamer column is about 1019 m3. We have demonstrated the efficacy of cold plasma in a pre-clinical model of various cancer types (lung, bladder, breast, head, neck, brain and skin). Both in-vitro andin-vivo studies revealed that cold plasmas selectively kill cancer cells. We showed that: (a) cold plasma application selectively eradicates cancer cells in vitro without damaging normal cells. (b) Significantly reduced tumor size in vivo. Cold plasma treatment led to tumor ablation with neighbouring tumors unaffected. These experiments were performed on more than 10 mice with the same outcome. We found that tumors of about 5mm in diameter were ablated after 2 min of single time plasma treatment. The two best known cold plasma effects, plasma-induced apoptosis and the decrease of cell migration velocity can have important implications in cancer treatment by localizing the affected area of the tissue and by decreasing metastasic development. In addition, cold plasma treatment has affected the cell cycle of cancer cells. In particular, cold plasmainduces a 2-fold increase in cells at the G2/M-checkpoint in both papilloma and carcinoma cells at ~24 hours after treatment, while normal epithelial cells (WTK) did not show significant differences. It was shown that reactive oxygen species metabolism and oxidative stress responsive genes are deregulated. We investigated the production of reactive oxygen species (ROS) with cold plasma treatment as a potential mechanism for the tumor ablation observed.

  20. Physics Teacher Preparation's Role in the Transformation of a Physics Department

    NASA Astrophysics Data System (ADS)

    Kramer, Laird

    2011-04-01

    Physics teacher preparation programs offer one vehicle of creating sustained educational transformation within a physics department. Strategic implementations pave the way for developing more and better prepared physics teachers while providing a cohort of trained peer instructors to drive reform in the physics course sequence. We present the design and results of the new physics teacher preparation programs implemented at Florida International University (FIU). FIU implemented University of Colorado's Learning Assistant (LA) program in 2008, through the support of a PhysTEC Primary Partner Institute Grant. The LA program is an experiential teaching program for undergraduates that recruits and prepares future teachers while driving reform in the department, as LAs must experience research-validated curricula in order to make informed decisions about teaching in their future. FIU's Physics LA program now employs over 40 LAs, impacts over 2,000 introductory physics students per year, and is now fully sustained by university funding. The LA program's success has prompted a spread to chemistry, earth science, mathematics, and biology and serves as the foundation in the university's strategic vision. The impact is most compelling as FIU is a minority-serving urban public research institution in Miami, Florida serving over 42,000 students, of which 64% are Hispanic, 13% are Black, and 56% are women.

  1. Physics Teacher Preparation---Brigham Young Universities Physics Departments efforts in Physics Teacher Training

    NASA Astrophysics Data System (ADS)

    Merrell, Duane

    2010-03-01

    Following BYU's recent decision to shift shared responsibility of secondary science education programs into areas of each specific discipline, BYU's College of Physical and Mathematical Sciences has taken on the role of preparing future junior high and high school teachers. To prepare teachers and to enhance the college's physical science teacher education program the College of Physical Science was able to hire a full time faculty member. This position was made available with the shift of a faculty position from the McKay School of Education. This contributed talk will discuss the implementation of this shift of responsibility, the impact on physics and physical science teacher preparation and things we have learned along the way.

  2. Vapor chambers for an atmospheric cloud physics laboratory

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Scollon, T. R., Jr.; Loose, J. D.

    1980-01-01

    The methanol/stainless steel vapor chambers (flat-plate heat pipes) discussed in this paper were developed for use in spaceborne atmospheric cloud chambers. This application imposed stringent thermal and mechanical requirements on the design. Flatness, low thermal mass, vibration, and structural integrity requirements were achieved in addition to precision temperature uniformity and thermal transport. Heat transfer coefficients on the order of 0.34 to 0.40 W/sq cm -C were measured. The vapor chambers are capable of transporting 170 W-cm per cm of width in either the axial or side-to-side direction.

  3. On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): new advances.

    PubMed

    Spurny, K R

    1998-08-01

    The existing data about the epidemiology, toxicology, physics and chemistry of atmospheric particulate pollutants were recently essentially completed and extended. They do support the hypothesis that the fine and very fine dispersed fraction of the atmospheric anthropogenic aerosols (UAAA) are responsible for the aggravation of the health risk potential of the polluted atmosphere during the last decade. The recently published data dealing primarily with the physics, chemistry, sampling and analysis of these highly dispersed particulate air pollutants are reviewed, summarized and critically evaluated. PMID:9820675

  4. Research relative to atmosphere physics and spacecraft applications studies

    NASA Technical Reports Server (NTRS)

    Greenwood, Stuart W.

    1987-01-01

    Progress is reported in several areas of research. Brief descriptions are given in each of the following areas: Spacelab data analysis; San Marco activity; Molecular physics; Stellar energy analysis; Troposphere data analysis; Voyager encounter analysis; Laser activity; Gravity wave study; Venus studies; and Shuttle environmental studies.

  5. Cognitive-based approach in teaching 1st year Physics for Life Sciences, including Atmospheric Physics and Climate Change components

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-12-01

    Most 1st year students who take the service course in Physics - Physics for Life Sciences - in Australia encounter numerous problems caused by such factors as no previous experience with this subject; general perception that Physics is hard and only very gifted people are able to understand it; lack of knowledge of elementary mathematics; difficulties encountered by lecturers in teaching university level Physics to a class of nearly 200 students with no prior experience, diverse and sometime disadvantageous backgrounds, different majoring areas, and different learning abilities. As a result, many students either drop, or fail the subject. In addition, many of those who pass develop a huge dislike towards Physics, consider the whole experience as time wasted, and spread this opinion among their peers and friends. The above issues were addressed by introducing numerous changes to the curriculum and modifying strategies and approaches in teaching Physics for Life Sciences. Instead of a conventional approach - teaching Physics from simple to complicated, topic after topic, the students were placed in the world of Physics in the same way as a newborn child is introduced to this world - everything is seen all the time and everywhere. That created a unique environment where a bigger picture and all details were always present and interrelated. Numerous concepts of classical and modern physics were discussed, compared, and interconnected all the time with “Light” being a key component. Our primary field of research is Atmospheric Physics, in particular studying the atmospheric composition and structure using various satellite and ground-based data. With this expertise and also inspired by an increasing importance of training a scientifically educated generation who understands the challenges of the modern society and responsibilities that come with wealth, a new section on environmental physics has been developed. It included atmospheric processes and the greenhouse

  6. Women among Physics & Astronomy Faculty: Results from the 2010 Survey of Physics Degree-Granting Departments. Focus On

    ERIC Educational Resources Information Center

    Ivie, Rachel; White, Susan; Garrett, Arnell; Anderson, Garrett

    2013-01-01

    Between March and July 2010, each of the 796 departments that awarded at least a bachelor's degree in physics or astronomy were contacted by e-mail, mail, and certified mail. Follow-up contacts were made for departments that had not yet responded. Responses were received from 744 departments (93%). The percentage of women among physics…

  7. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    NASA Astrophysics Data System (ADS)

    Chamberlain, Joseph W.; Hunten, Donald M.

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  8. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    SciTech Connect

    Chamberlain, J.W.; Hunten, D.M.

    1987-01-01

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  9. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    PubMed

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand. PMID:23670773

  10. Improved Uncertainty Quantification for Physics-Based Atmospheric Models via Generalized Polynomial Chaos

    NASA Astrophysics Data System (ADS)

    Vittaldev, V.; Linares, R.; Godinez, H. C.; Koller, J.; Russell, R. P.

    2013-12-01

    Recent events in space, including the collision of Russia's Cosmos 2251 satellite with Iridium 33 and China's Feng Yun 1C anti-satellite demonstration, have stressed the capabilities of the Space Surveillance Network and its ability to provide accurate and actionable impact probability estimates. In particular low-Earth orbiting satellites are heavily influenced by upper atmospheric density, due to drag, which is very difficult to model accurately. This work focuses on the generalized Polynomial Chaos (gPC) technique for Uncertainty Quantification (UQ) in physics-based atmospheric models. The advantage of the gPC approach is that it can efficiently model non-Gaussian probability distribution functions (pdfs). The gPC approach is used to create a polynomial chaos in F10.7, AP, and solar wind parameters; this chaos is used to perform UQ on future atmospheric conditions. A number of physics-based models are used as test cases, including GITM and TIE-GCM, and the gPC is shown to have good performance in modeling non-Gaussian pdfs. Los Alamos National Laboratory (LANL) has established a research effort, called IMPACT (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking), to improve impact assessment via improved physics-based modeling. A number of atmospheric models exist which can be classified as either empirical or physics-based. Physics-based models can be used to provide a forward prediction which is required for accurate collision assessments. As part of this effort, accurate and consistent UQ is required for the atmospheric models used. One of the primary sources of uncertainty is input parameter uncertainty. These input parameters, which include F10.7, AP, and solar wind parameters, are measured constantly. In turn, these measurements are used to provide a prediction for future parameter values. Therefore, the uncertainty of the atmospheric model forecast, due to potential error in the input parameters, must be correctly characterized to

  11. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    SciTech Connect

    Kusumawati, Intan; Marwoto, Putut Linuwih, Suharto

    2015-09-30

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative–quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM–learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  12. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    NASA Astrophysics Data System (ADS)

    Kusumawati, Intan; Marwoto, Putut; Linuwih, Suharto

    2015-09-01

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative-quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM-learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  13. Graduate Physics Education Adding Industrial Culture and Methods to a Traditional Graduate Physics Department

    NASA Astrophysics Data System (ADS)

    Vickers, Ken

    2005-03-01

    The education and training of the workforce needed to assure global competitiveness of American industry in high technology areas, along with the proper role of various disciplines in that educational process, is currently being re-examined. Several academic areas in science and engineering have reported results from such studies that revealed several broad themes of educational need that span and cross the boundaries of science and engineering. They included greater attention to and the development of team-building skills, personal or interactive skills, creative ability, and a business or entrepreneurial where-with-all. We will report in this paper the results of a fall 2000 Department of Education FIPSE grant to implement changes in its graduate physics program to address these issues. The proposal goal was to produce next-generation physics graduate students that are trained to evaluate and overcome complex technical problems by their participation in courses emphasizing the commercialization of technology research. To produce next-generation physics graduates who have learned to work with their student colleagues for their mutual success in an industrial-like group setting. And finally, to produce graduates who can lead interdisciplinary groups in solving complex problems in their career field.

  14. The space shuttle payload planning working groups. Volume 2: Atmospheric and space physics

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The findings of the Atmospheric and Space Physics working group of the space shuttle mission planning activity are presented. The principal objectives defined by the group are: (1) to investigate the detailed mechanisms which control the near-space environment of the earth, (2) to perform plasma physics investigations not feasible in ground-based laboratories, and (3) to conduct investigations which are important in understanding planetary and cometary phenomena. The core instrumentation and laboratory configurations for conducting the investigations are defined.

  15. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  16. Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory

    NASA Astrophysics Data System (ADS)

    Cheruy, F.; Campoy, A.; Dupont, J.-C.; Ducharne, A.; Hourdin, F.; Haeffelin, M.; Chiriaco, M.; Idelkadi, A.

    2013-05-01

    The identification of the land-atmosphere interactions as one of the key source of uncertainty in climate models calls for process-level assessment of the coupled atmosphere/land continental surface system in numerical climate models. To this end, we propose a novel approach and apply it to evaluate the standard and new parametrizations of boundary layer/convection/clouds in the Earth System Model (ESM) of Institut Pierre Simon Laplace (IPSL), which differentiate the IPSL-CM5A and IPSL-CM5B climate change simulations produced for the Coupled Model Inter-comparison Project phase 5 exercise. Two different land surface hydrology parametrizations are also considered to analyze different land-atmosphere interactions. Ten-year simulations of the coupled land surface/atmospheric ESM modules are confronted to observations collected at the SIRTA (Site Instrumental de Recherche par Télédection Atmosphérique), located near Paris (France). For sounder evaluation of the physical parametrizations, the grid of the model is stretched and refined in the vicinity of the SIRTA, and the large scale component of the modeled circulation is adjusted toward ERA-Interim reanalysis outside of the zoomed area. This allows us to detect situations where the parametrizations do not perform satisfactorily and can affect climate simulations at the regional/continental scale, including in full 3D coupled runs. In particular, we show how the biases in near surface state variables simulated by the ESM are explained by (1) the sensible/latent heat partitionning at the surface, (2) the low level cloudiness and its radiative impact at the surface, (3) the parametrization of turbulent transport in the surface layer, (4) the complex interplay between these processes. We also show how the new set of parametrizations can improve these biases.

  17. Physics for the 1990s. AAPT Conference of Department Chairs in Physics. (February 19-20, 1988).

    ERIC Educational Resources Information Center

    McDermott, Mark N., Ed.; Wilson, Jack M., Ed.

    This book contains the proceedings of the Third Topical Conference of Department Chairs in Physics. Topics of the papers summarized include: (1) research centers sponsored by the National Science Foundation; (2) physics programs at the undergraduate and graduate levels; (3) the use of accelerators in education and research; (4) approaches to…

  18. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  19. Top physics departments tumble in new RAE review

    NASA Astrophysics Data System (ADS)

    Harris, Margaret

    2009-01-01

    Placing numerical scores on research by UK universities has always been a controversial task, and the new system of "quality profiles" used to evaluate departments in the 2008 Research Assessment Exercise (RAE) should keep number-crunchers busy through 2009. While previous RAEs ranked departments using single numbers on a seven-point scale, the 2008 exercise instead lists the percentage of research activity rated at each of five levels, from a "world-leading" 4* to an unclassified "below standard".

  20. Falsification of the Atmospheric CO2 Greenhouse Effects Within the Frame of Physics

    NASA Astrophysics Data System (ADS)

    Gerlich, Gerhard; Tscheuschner, Ralf D.

    The atmospheric greenhouse effect, an idea that many authors trace back to the traditional works of Fourier (1824), Tyndall (1861), and Arrhenius (1896), and which is still supported in global climatology, essentially describes a fictitious mechanism, in which a planetary atmosphere acts as a heat pump driven by an environment that is radiatively interacting with but radiatively equilibrated to the atmospheric system. According to the second law of thermodynamics, such a planetary machine can never exist. Nevertheless, in almost all texts of global climatology and in a widespread secondary literature, it is taken for granted that such a mechanism is real and stands on a firm scientific foundation. In this paper, the popular conjecture is analyzed and the underlying physical principles are clarified. By showing that (a) there are no common physical laws between the warming phenomenon in glass houses and the fictitious atmospheric greenhouse effects, (b) there are no calculations to determine an average surface temperature of a planet, (c) the frequently mentioned difference of 33° is a meaningless number calculated wrongly, (d) the formulas of cavity radiation are used inappropriately, (e) the assumption of a radiative balance is unphysical, (f) thermal conductivity and friction must not be set to zero, the atmospheric greenhouse conjecture is falsified.

  1. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  2. The Department of Energy`s Atmospheric Chemistry Program: A critical review

    SciTech Connect

    Not Available

    1991-12-31

    In response to a request from the Department of Energy`s (DOE) Office of Health and Environmental Research (OHER), the Committee on Atmospheric Chemistry has reviewed OHER`s Atmospheric Chemistry Program (ACP). This report contains the committee`s evaluation and critique arising from that review. The review process included a two-day symposium held at the National Academy of Sciences on September 25 and 26, 1990, that focused on presenting the ACP`s current components, recent scientific accomplishments, and scientific plans. Following the symposium, committee members met in a one-day executive session to formulate and outline this report. In undertaking this review, OHER and ACP management requested that the committee attempt to answer several specific questions involving the program`s technical capability and productivity, its leadership and organization, and its future direction. These questions are given in the Appendix. This report represents the committee`s response to the questions posed in the Appendix. Chapter I explores the committee`s view of the role that atmospheric chemistry could and should assume within the DOE and its prospective National Energy Strategy. Chapter 2 assesses the current ACP, Chapter 3 presents recommendations for revising and strengthening it, and Chapter 4 restates the committee`s conclusions and recommendations.

  3. Design evaluations for a flight cloud physics holocamera. [holographic/photographic camera for low-g Atmospheric Cloud Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Kurtz, R. L.; Lemons, J. F.

    1976-01-01

    The paper describes a holographic/photographic camera to be used with the zero-g or low-g Atmospheric Cloud Physics Laboratory. The flight prototype holocamera is intended to record particles from 0.01 to 5 microns for an optimum two-dimensional plane only in the microscopic photography mode, particles on a volume basis in the in-line holography mode from 5 microns up, and all particle sizes possible on a volume basis in the acute sideband holography mode.

  4. Atmospheric corrosion monitoring at the US Department of Energy`s Oak Ridge K-25 Site

    SciTech Connect

    Rao, M.

    1995-12-31

    Depleted uranium hexafluoride (UF{sub 6}) at the US Department of Energy`s K-25 Site at Oak Ridge, TN has been stored in large steel cylinders which have undergone significant atmospheric corrosion damage over the last 35 years. A detailed experimental program to characterize and monitor the corrosion damage was initiated in 1992. Large amounts of corrosion scale and deep pits are found to cover cylinder surfaces. Ultrasonic wall thickness measurements have shown uniform corrosion losses up to 20 mils (0.5 mm) and pits up to 100 mils (2.5 mm) deep. Electrical resistance corrosion probes, time-of-wetness sensors and thermocouples have been attached to cylinder bodies. Atmospheric conditions are monitored using rain gauges, relative humidity sensors and thermocouples. Long-term (16 years) data are being obtained from mild steel corrosion coupons on test racks as well as attached directly to cylinder surfaces. Corrosion rates have been found to intimately related to the times-of-wetness, both tending to be higher on cylinder tops due to apparent sheltering effects. Data from the various tests are compared, discrepancies are discussed and a pattern of cylinder corrosion as a function of cylinder position and location is described.

  5. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  6. Becoming a Health and Physical Education (HPE) Teacher: Student Teacher "Performances" in the Physical Education Subject Department Office

    ERIC Educational Resources Information Center

    Rossi, Tony; Sirna, Karen; Tinning, Richard

    2008-01-01

    This study considered how physical education teacher education students "perform" their "selves" within subject department offices during the practicum or "teaching practice". The research was framed by a conceptual framework informed by the work of Goffman on "performance" and "front". The findings revealed three common performances across the…

  7. Investigation of Students' Multiple Intelligence Domains in Three Different Departments of the School of Physical Education and Sports

    ERIC Educational Resources Information Center

    Ürgüp, Sabri; Aslan, Sinan

    2015-01-01

    The majority of the schools of physical education and sports in Turkey consist of three departments, which are physical education and sports teaching department, coaching education and sports management departments. All of these departments are applying similar entrance examinations, and mostly similar curriculum and learning styles to the…

  8. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  9. Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II

    SciTech Connect

    IceCube Collaboration; Klein, Spencer; Collaboration, IceCube

    2009-06-02

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.

  10. Turkish community pharmacists’ self-report of their pharmacies’ physical atmosphere

    PubMed Central

    Cagirci, Simge; Yegenoglu, Selen; Uner, Mehmet Mithat

    2012-01-01

    Objective: There is a great recognition that store interiors and exteriors can be designed to create feelings in potential customers which can have an important reinforcing effect on purchase. In this study it is mainly aimed to explore the behaviors of the community pharmacists related to their store's physical environment. Also we aimed to determine whether any difference exist between behaviors of pharmacists serving in high and low socio-economic regions. Methods: A total of 200 pharmacists that work socio-economically different regions were randomly selected from 1424 pharmacists registered in Ankara Chamber of Pharmacists. A uniform questionnaire was applied to the pharmacists by using a face-to-face interview technique. Findings: There are differences in terms of behavior between the pharmacists serving in high and low socio-economic regions within the context of putting importance to their stores’ atmosphere. More pharmacists attach importance to the physical sight of their pharmacy serving in high socio-economic regions (90%) vs. pharmacists in low socio-economic regions (70%). Also pharmacists in high socio-economic regions indicated higher importance level of selection of the decoration equipments (84%) than pharmacists serving in high socio-economic regions (60%). Conclusion: Our study suggests that some pharmacists pay more attention to interior atmospheric elements and others do not. There is a difference in terms of attaching importance to some store atmospheric elements (i.e. physical site, decoration equipment, it's color, wall color, etc.) serving in high versus low socio-economic regions in this context. PMID:24991582

  11. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    In the area of solar physics, new calculations of the acoustic wave energy fluxes generated in the solar convective zone was performed. The original theory developed was corrected by including a new frequency factor describing temporal variations of the turbulent energy spectrum. We have modified the original Stein code by including this new frequency factor, and tested the code extensively. Another possible source of the mechanical energy generated in the solar convective zone is the excitation of magnetic flux tube waves which can carry energy along the tubes far away from the region. The problem as to how efficiently those waves are generated in the Sun was recently solved. The propagation of nonlinear magnetic tube waves in the solar atmosphere was calculated, and mode coupling, shock formation, and heating of the local medium was studied. The wave trapping problems and evaluation of critical frequencies for wave reflection in the solar atmosphere was studied. It was shown that the role played by Alfven waves in the wind accelerations and the coronal hole heating is dominant. Presently, we are performing calculations of wave energy fluxes generated in late-type dwarf stars and studying physical processes responsible for the heating of stellar chromospheres and coronae. In the area of physics of waves, a new analytical approach for studying linear Alfven waves in smoothly nonuniform media was recently developed. This approach is presently being extended to study the propagation of linear and nonlinear magnetohydrodynamic (MHD) waves in stratified, nonisothermal and solar atmosphere. The Lighthill theory of sound generation to nonisothermal media (with a special temperature distribution) was extended. Energy cascade by nonlinear MHD waves and possible chaos driven by these waves are presently considered.

  12. Public Relations for Physics Departments: Convincing the Community that Quarks are Cool

    NASA Astrophysics Data System (ADS)

    Levine, Alaina G.

    2002-03-01

    A strong public relations program can be of great importance to a physics department. Not only can effective PR improve the reputation of an individual department, but it can also serve the greater physics community by convincing the public that quarks, quantum dots, and nanostructures are cool. Building a solid reputation with the many constituents that a physics department serves can lead to greater media exposure, improved quality of student applicants, community and industrial partnerships, and even financial support. It isn’t difficult to create a strategic PR program, but it does take planning and commitment of resources. I will discuss the techniques and tactics of effective media, community, alumni, and internal relations, with special emphasis placed on establishing connections with media outlets, creating and publicizing outreach programs for the community, initiating a newsletter, organizing an external board of advisors, and developing an effective alumni relations program. The University of Arizona Physics Department serves as a case study, but other physics departments with similar communications programs will also be incorporated.

  13. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  14. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    SciTech Connect

    Ando, Shin'ichiro; Profumo, Stefano; Beacom, John F; Rainwater, David E-mail: beacom@mps.ohio-state.edu E-mail: rain@pas.rochester.edu

    2008-04-15

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

  15. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Beacom, John F.; Profumo, Stefano; Rainwater, David

    2008-04-01

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

  16. Illinois State University FOCUS Initiative: Civic Engagement and Outreach Projects in the ISU Physics Department

    NASA Astrophysics Data System (ADS)

    Ansher, J. A.; Holland, D. L.; Johns, G. F.; Willmitch, T. R.

    2007-05-01

    The Illinois State University Physics Department has long realized the importance of providing educational outreach opportunities to the wider community. Creating and maintaining community networks with engaging outreach projects helps us broaden the appreciation of physics, as well as encourage young students to consider careers in the sciences. A key aspect of these ISU Physics programs is that we involve our undergraduates in them, thereby fostering civic engagement in the next generation of scientists. This presentation highlights how our department promotes basic science literacy, and awareness of space physics and astronomy through several existing outreach projects. We also describe how we operate under the broader scope of the ISU FOCUS Initiative, and the NASA Solar System Ambassadors program.

  17. The Sensitivity of Simulated Tropical Cyclones to Tunable Physical Parameters in Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    He, F.; Posselt, D. J.

    2014-12-01

    The inability to explicitly resolve the sub-grid scale physical processes (e.g. cloud, precipitation and convection) of atmospheric general circulation models (AGCMs) greatly limits their performance in simulating tropical cyclones (TCs) and predicting their future changes. To address it, this study carried out a total of 92 simulations and investigated the sensitivity of TC simulation to 24 physical parameters that control the deep convection, shallow convection, turbulence, cloud microphysics and cloud macrophysics processes in Community Atmosphere Model version 5 (CAM5). The Reed-Jablonowski TC test case is utilized and run at horizontal resolution of 0.5°×0.5° with 30 vertical levels. The sensitivity is assessed by the uncertainty each parameter exerts on simulated TC while perturbing it from its minimum to maximum with other 23 parameters set to their default value. The uncertainty is characterized by changes on simulated TC intensity (measured by absolute maximum wind speed at 100 m above surface), precipitation rate, shortwave cloud radiative forcing (SWCF), longwave cloud radiative forcing (LWCF), cloud liquid water path (LWP) and cloud ice water path (IWP), the latter five of which are quantified by their area-weighted value over the tropical cyclone region. Both the relative importance among these 24 physical parameters on TC simulation and the response function describing how they affect the six TC characteristics are quantified. It is found that the simulated TC intensity is most sensitive to the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. Decreasing this parameter enables a change from tropical depression to Category-4 storm. In contrast, other 23 physical parameters cause intensity uncertainty within 10 m/s. The precipitation rate, SWCF, LWP and IWP are also found to receive major impact from parameters in ZM deep convection scheme while the LWCF is dominated by parameters both in ZM deep convection and

  18. New Mass Spectrometry Techniques for Studying Physical Chemistry of Atmospheric Heterogeneous Processes

    SciTech Connect

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2013-03-01

    Ambient particles and droplets have a significant effect on climate, visibility, and human health. Once formed, they undergo continuous transformations through condensation and evaporation of water, uptake of low-volatility organic molecules, and photochemical reactions involving various gaseous and condensed-phase species in the atmosphere. These transformations determine the physical and chemical properties of airborne particles, such as their ability to absorb and scatter solar radiation and nucleate cloud droplets. The complexity, heterogeneity, and size of ambient particles make it challenging to understand the kinetics and mechanisms of their formation and chemical transformations. Mass spectrometry (MS) is a powerful analytical technique that enables detailed chemical characterization of both small and large molecules in complex matrices. We present an overview of new and emerging experimental MS-based approaches for understanding physical chemistry of environmental particles, droplets, and surfaces. In addition, we emphasize the role of fundamental physical chemistry studies in the development of new methods for chemical analysis of ambient particles and droplets.

  19. The Department of Energy's Atmospheric Radiation Measurement (ARM) Unmanned Aerospace Vehicle (UAV) Program.

    NASA Astrophysics Data System (ADS)

    Stephens, G. L.; Ellingson, R. G.; Vitko, J., Jr.; Bolton, W.; Tooman, T. P.; Valero, F. P. J.; Minnis, P.; Pilewskie, P.; Phipps, G. S.; Sekelsky, S.; Carswell, J. R.; Miller, S. D.; Benedetti, A.; McCoy, R. B.; McCoy, R. F., Jr.; Lederbuhr, A.; Bambha, R.

    2000-12-01

    The U.S. Department of Energy has established an unmanned aerospace vehicle (UAV) measurement program. The purpose of this paper is to describe the evolution of the program since its inception, review the progress of the program, summarize the measurement capabilities developed under the program, illustrate key results from the various UAV campaigns carried out to date, and provide a sense of the future direction of the program. The Atmospheric Radiation Measurement (ARM)-UAV program has demonstrated how measurements from unmanned aircraft platforms operating under the various constraints imposed by different science experiments can contribute to our understanding of cloud and radiative processes. The program was first introduced in 1991 and has evolved in the form of four phases of activity each culminating in one or more flight campaigns. A total of 8 flight campaigns produced over 140 h of science flights using three different UAV platforms. The UAV platforms and their capabilities are described as are the various phases of the program development. Examples of data collected from various campaigns highlight the powerful nature of the observing system developed under the auspices of the ARM-UAV program and confirm the viability of the UAV platform for the kinds of research of interest to ARM and the clouds and radiation community as a whole. The specific examples include applications of the data in the study of radiative transfer through clouds, the evaluation of cloud parameterizations, and the development and evaluation of cloud remote sensing methods. A number of notable and novel achievements of the program are also highlighted.

  20. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    SciTech Connect

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.; McDonald, Kirk T.; Meyers, Peter D.; Olsen, James D.; Smith, Arthur J.S.; Steinhardt, Paul J.; Tully, Christopher G.; Stickland, David P.

    2013-04-30

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

  1. Narrative Accounts of US Teachers' Collaborative Curriculum Making in a Physical Education Department

    ERIC Educational Resources Information Center

    You, JeongAe; Craig, Cheryl J.

    2015-01-01

    Through the use of narrative inquiry, this research study explores the collaborative curriculum making experiences of six teachers (three males; three females) in one physical education (PE) department in an urban middle school in the U.S. Collaboration; as defined in this work, this has to do with teachers' voluntary interactions and their shared…

  2. Academic Planning in the Physical Education Department of Polk Community College.

    ERIC Educational Resources Information Center

    Nelson, Hershel H.

    This study illustrates an attempt to quantitatively express justification for altering the workloads and compensation for members of the physical education department of Polk Community College (Florida). While equitable workloads can be det4rmined in most other fields because credit hours coincide with an instructor's time in class, the physical…

  3. Theoretical support to NRL's upper atmospheric branch: Physics and chemistry of the upper and middle atmospheres with emphasis on daytime, nighttime, and auroral optical emissions

    NASA Astrophysics Data System (ADS)

    1991-06-01

    Significant advances were made in the ability to model physical processes in the thermosphere (airglow and aurora) and middle atmosphere. These advances came in the form of code development and improved methods for updating input parameters (most notably, cross sections). Important advances were also made in the development of an algorithm for deducing O3 and O2 density profiles from full solar disk extinction measurements to be made by the instrument Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on board the upper atmosphere research satellite (UARS).

  4. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.

    1981-01-01

    In evaluating the effects of spacecraft motions on atmospheric cloud physics laboratory (ACPL) experimentation, the motions of concern are those which will result in the movement of the fluid or cloud particles within the experiment chambers. Of the various vehicle motions and residual forces which can and will occur, three types appear most likely to damage the experimental results: non-steady rotations through a large angle, long-duration accelerations in a constant direction, and vibrations. During the ACPL ice crystal growth experiments, the crystals are suspended near the end of a long fiber (20 cm long by 200 micron diameter) of glass or similar material. Small vibrations of the supported end of the fiber could cause extensive motions of the ice crystal, if care is not taken to avoid this problem.

  5. Mount Aragats as a stable electron accelerator for atmospheric high-energy physics research

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot; Hovsepyan, Gagik; Mnatsakanyan, Eduard

    2016-03-01

    Observation of the numerous thunderstorm ground enhancements (TGEs), i.e., enhanced fluxes of electrons, gamma rays, and neutrons detected by particle detectors located on the Earth's surface and related to the strong thunderstorms above it, helped to establish a new scientific topic—high-energy physics in the atmosphere. Relativistic runaway electron avalanches (RREAs) are believed to be a central engine initiating high-energy processes in thunderstorm atmospheres. RREAs observed on Mount Aragats in Armenia during the strongest thunderstorms and simultaneous measurements of TGE electron and gamma-ray energy spectra proved that RREAs are a robust and realistic mechanism for electron acceleration. TGE research facilitates investigations of the long-standing lightning initiation problem. For the last 5 years we were experimenting with the "beams" of "electron accelerators" operating in the thunderclouds above the Aragats research station. Thunderstorms are very frequent above Aragats, peaking in May-June, and almost all of them are accompanied with enhanced particle fluxes. The station is located on a plateau at an altitude 3200 asl near a large lake. Numerous particle detectors and field meters are located in three experimental halls as well as outdoors; the facilities are operated all year round. All relevant information is being gathered, including data on particle fluxes, fields, lightning occurrences, and meteorological conditions. By the example of the huge thunderstorm that took place at Mount Aragats on August 28, 2015, we show that simultaneous detection of all the relevant data allowed us to reveal the temporal pattern of the storm development and to investigate the atmospheric discharges and particle fluxes.

  6. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system.

    PubMed

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-06-28

    The finite resolution of general circulation models of the coupled atmosphere-ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere-ocean climate system in operational forecast mode, and the latest seasonal forecasting system--System 4--has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981-2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden-Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  7. The role of ocean physics in setting glacial atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Oliver, Kevin; Mueller, Simon; Edwards, Neil; Henderson, Gideon; Rickaby, Ros

    2010-05-01

    The impact of ocean physics on atmospheric pCO2 is examined analytically and using ensembles experiments with the Earth system model GENIE. Results are interpreted in terms of the 'red loop' (global low-mid-latitude upper and mode waters, and the Atlantic overturning cell), in which the efficiency of nutrient utilisation is high, and the 'blue loop' (the Antarctic overturning cell) in which the efficiency of nutrient utilisation is low. For fixed efficiency of the red loop, atmospheric pCO2 can be lowered by decreasing ventilation of the blue loop, increasing ventilation of the red loop, increasing mixing between the red and blue loops, or decreasing particle flux from the red loop to the blue loop. This is because any of these changes increase the fraction of nutrients in the global ocean that was last at the surface in the red loop, rather than the blue loop. GENIE experiments yield an ambiguous response to increasing red loop ventilation rates, however, because the efficiency of this loop decreases in response to increased ventilation rates. These findings are used, in conjunction with geochemical proxy simulations in the GENIE ensemble, to illuminate hypothesised mechanisms of glacial pCO2 cycles. A variety of mechanisms can produce δ13C distributions comparable to last glacial maximum (LGM) observations, and this is associated with a decrease in pCO2 if the cause is the formation of high salinity, high density water in the Southern Ocean. This results in a highly stratified ocean and a contraction of the red loop. Nevertheless, the strong LGM meridional density gradients suggested by pore water salinity measurements are only sustained if there is plentiful energy for diapycnal mixing. This increases mixing between the red and blue loops, and can reconcile low atmospheric pCO2 with the absence of an exceptionally old water mass in the deep ocean.

  8. Physical modeling of the atmospheric boundary layer for wind energy and wind engineering studies

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Turner, John; Wosnik, Martin

    2015-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W6.0m, H2.7m, L=72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL): the stable, unstable, and neutral ABL. The neutral ABL is characterized by a zero potential temperature gradient, which is readily achieved in the FPF by operating when air and floor temperatures are close to equal. The stable and unstable ABLs have positive and negative vertical temperature gradients, respectively, which are more difficult to simulate without direct control of air or test section floor temperature. The test section floor is a 10 inch thick concrete cement slab and has significant thermal mass. When combined with the diurnal temperature variation of the ambient air, it is possible to achieve vertical temperature gradients in the test section, and produce weakly stable or weakly unstable boundary layer. Achievable Richardson numbers and Obukhov lengths are estimated. The different boundary layer profiles were measured, and compared to theoretical atmospheric models. Supported by UNH Hamel Center for Undergraduate Research SURF.

  9. Measurements of Physical and Gas Exchanges between the Atmosphere and Surface at the Tiksi Hydrometeorological Observatory

    NASA Astrophysics Data System (ADS)

    Uttal, T.; Grachev, A. A.; Makshtas, A. P.; Repina, I.; Persson, O. P.; Laurila, T. J.; Crepinsek, S.

    2013-12-01

    In recent years a number of Arctic stations have installed micro-meteorological towers in recognition of the need to explicitly quantify the detailed exchanges between the surface and the atmosphere. One of the newer installations is a 20 meter tower in Tiksi, Russia that is located at 71.58N, 128.92E in the Russian Far East. The Tiksi tower is equipped with temperature, humidity and wind sensors at several levels (allowing the calculation of turbulent heat fluxes and fine scale characterization of the near-surface boundary layer) and H2O/CO2 sensors, It is located in near proximity to measurements of incoming and outgoing solar radiation (allowing energy balance calculations), and CH4 sensors, surface O3 measurements (allowing detection of ozone depletion events), and ancillary measurements of snow depth and permafrost active layer temperature profiles. An integrated analysis will look at the variability of these physical and chemical exchanges and variations over one annual cycle with an emphasis on detecting connections and linkages. This network of measurements supports the International Arctic Systems for Observing the Atmosphere (www.iasoa.org) and Global Cryosphere Watch (http://globalcryospherewatch.org/)

  10. Paleoclimate modelling at the Institute of Atmospheric Physics, Chinese Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Jiang, Dabang; Zhang, Zhongshi

    2006-12-01

    Paleoclimate modelling is one of the core topics in the Past Global Changes project under the International Geosphere-Biosphere Programme and has received much attention worldwide in recent decades. Here we summarize the research on the Paleoclimate modeling, including the Holocene, Last Glacial Maximum, and pre-Quaternary climate intervals or events performed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP/CAS) for over one decade. As an attempt to review these academic activities, we emphasize that vegetation and ocean feedbacks can amplify East Asian climate response to the Earth’s orbital parameters and atmospheric CO2 concentration at the mid-Holocene. At the Last Glacial Maximum, additional cooling in interior China is caused by the feedback effects of East Asian vegetation and the ice sheet over the Tibetan Plateau, and the regional climate model RegCM2 generally reduces data-model discrepancies in East Asia. The simulated mid-Pliocene climate is characterized by warmer and drier conditions as well as significantly weakened summer and winter monsoon systems in interior China. On a tectonic timescale, both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of East Asian monsoon-dominant environmental pattern during the Cenozoic.

  11. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  12. "SMART": A Compact and Handy FORTRAN Code for the Physics of Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Poolamäe, R.

    2003-01-01

    A new computer code SMART (Spectra from Model Atmospheres by Radiative Transfer) for computing the stellar spectra, forming in plane-parallel atmospheres, has been compiled by us and A. Aret. To guarantee wide compatibility of the code with shell environment, we chose FORTRAN-77 as programming language and tried to confine ourselves to common part of its numerous versions both in WINDOWS and LINUX. SMART can be used for studies of several processes in stellar atmospheres. The current version of the programme is undergoing rapid changes due to our goal to elaborate a simple, handy and compact code. Instead of linearisation (being a mathematical method of recurrent approximations) we propose to use the physical evolutionary changes or in other words relaxation of quantum state populations rates from LTE to NLTE has been studied using small number of NLTE states. This computational scheme is essentially simpler and more compact than the linearisation. This relaxation scheme enables using instead of the Λ-iteration procedure a physically changing emissivity (or the source function) which incorporates in itself changing Menzel coefficients for NLTE quantum state populations. However, the light scattering on free electrons is in the terms of Feynman graphs a real second-order quantum process and cannot be reduced to consequent processes of absorption and emission as in the case of radiative transfer in spectral lines. With duly chosen input parameters the code SMART enables computing radiative acceleration to the matter of stellar atmosphere in turbulence clumps. This also enables to connect the model atmosphere in more detail with the problem of the stellar wind triggering. Another problem, which has been incorporated into the computer code SMART, is diffusion of chemical elements and their isotopes in the atmospheres of chemically peculiar (CP) stars due to usual radiative acceleration and the essential additional acceleration generated by the light-induced drift. As

  13. Minimally-Invasive Gene Transfection by Chemical and Physical Interaction of Atmospheric Pressure Plasma Flow

    NASA Astrophysics Data System (ADS)

    Kaneko, Toshiro

    2014-10-01

    Non-equilibrium atmospheric pressure plasma irradiated to the living-cell is investigated for medical applications such as gene transfection, which is expected to play an important role in molecular biology, gene therapy, and creation of induced pluripotent stem (iPS) cells. However, the conventional gene transfection using the plasma has some problems that the cell viability is low and the genes cannot be transferred into some specific lipid cells, which is attributed to the unknown mechanism of the gene transfection using the plasma. Therefore, the time-controlled atmospheric pressure plasma flow is generated and irradiated to the living-cell suspended solution for clarifying the transfection mechanism toward developing highly-efficient and minimally- invasive gene transfection system. In this experiment, fluorescent dye YOYO-1 is used as the simulated gene and LIVE/DEAD Stain is simultaneously used for cell viability assay. By the fluorescence image, the transfection efficiency is calculated as the ratio of the number of transferred and surviving cells to total cell count. It is clarified that the transfection efficiency is significantly increased by the short-time (<4 sec) and short-distance (<40 mm) plasma irradiation, and the high transfection efficiency of 53% is realized together with the high cell viability (>90%). This result indicates that the physical effects such as the electric field caused by the charged particles arriving at the surface of the cell membrane, and chemical effects associated with plasma-activated products in solution act synergistically to enhance the cell-membrane transport with low-damage. This work was supported by JSPS KAKENHI Grant Number 24108004.

  14. An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products

    NASA Astrophysics Data System (ADS)

    Qin, Jun; Tang, Wenjun; Yang, Kun; Lu, Ning; Niu, Xiaolei; Liang, Shunlin

    2015-05-01

    Surface solar irradiance (SSI) is required in a wide range of scientific researches and practical applications. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since SSI is directly measured at a very limited number of stations. Even so, meteorological stations are still sparse, especially in remote areas. Remote sensing can be used to map spatiotemporally continuous SSI. Considering the huge amount of satellite data, coarse-resolution SSI has been estimated for reducing the computational burden when the estimation is based on a complex radiative transfer model. On the other hand, many empirical relationships are used to enhance the retrieval efficiency, but the accuracy cannot be guaranteed out of regions where they are locally calibrated. In this study, an efficient physically based parameterization is proposed to balance computational efficiency and retrieval accuracy for SSI estimation. In this parameterization, the transmittances for gases, aerosols, and clouds are all handled in full band form and the multiple reflections between the atmosphere and surface are explicitly taken into account. The newly proposed parameterization is applied to estimate SSI with both Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric and land products as inputs. These retrievals are validated against in situ measurements at the Surface Radiation Budget Network and at the North China Plain on an instantaneous basis, and moreover, they are validated and compared with Global Energy and Water Exchanges-Surface Radiation Budget and International Satellite Cloud Climatology Project-flux data SSI estimates at radiation stations of China Meteorological Administration on a daily mean basis. The estimation results indicates that the newly proposed SSI estimation scheme can effectively retrieve SSI based on MODIS products with mean root-mean-square errors of about 100 Wm- 1 and 35 Wm- 1 on an instantaneous and daily

  15. Subgrid-scale physical parameterization in atmospheric modeling: How can we make it consistent?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2016-07-01

    Approaches to subgrid-scale physical parameterization in atmospheric modeling are reviewed by taking turbulent combustion flow research as a point of reference. Three major general approaches are considered for its consistent development: moment, distribution density function (DDF), and mode decomposition. The moment expansion is a standard method for describing the subgrid-scale turbulent flows both in geophysics and engineering. The DDF (commonly called PDF) approach is intuitively appealing as it deals with a distribution of variables in subgrid scale in a more direct manner. Mode decomposition was originally applied by Aubry et al (1988 J. Fluid Mech. 192 115-73) in the context of wall boundary-layer turbulence. It is specifically designed to represent coherencies in compact manner by a low-dimensional dynamical system. Their original proposal adopts the proper orthogonal decomposition (empirical orthogonal functions) as their mode-decomposition basis. However, the methodology can easily be generalized into any decomposition basis. Among those, wavelet is a particularly attractive alternative. The mass-flux formulation that is currently adopted in the majority of atmospheric models for parameterizing convection can also be considered a special case of mode decomposition, adopting segmentally constant modes for the expansion basis. This perspective further identifies a very basic but also general geometrical constraint imposed on the massflux formulation: the segmentally-constant approximation. Mode decomposition can, furthermore, be understood by analogy with a Galerkin method in numerically modeling. This analogy suggests that the subgrid parameterization may be re-interpreted as a type of mesh-refinement in numerical modeling. A link between the subgrid parameterization and downscaling problems is also pointed out.

  16. Physical properties of meteoroids based on middle and upper atmosphere radar measurements

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Kero, J.; Virtanen, J.; Szasz, C.; Nakamura, T.; Peltoniemi, J.; Koschny, D.

    2014-07-01

    We present a novel approach to reliably interpret the meteor head-echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically-based parametrization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100,000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern-related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.

  17. Physical Properties of Meteoroids based on Middle and Upper Atmosphere Radar Measurements

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Nakamura, Takuji; Kero, Johan; Szasz, Csilla; Virtanen, Jenni; Peltoniemi, Jouni; Koschny, Detlef

    We present a novel approach to reliably interpret the meteor head echo scattering measurements detected by the 46.5 MHz MU radar system near Shigaraki, Japan. A meteor head echo is caused by radio waves scattered from the dense region of plasma surrounding and co-moving with a meteoroid during atmospheric flight. The signal Doppler shift and/or range rate of the target can therefore be used to determine meteoroid velocity. The data reduction steps include determining the exact trajectory of the meteoroids entering the observation volume of the antenna beam and calculating meteoroid mass and velocity as a function of time. The model is built using physically based parameterization. The considered observation volume is narrow, elongated in the vertical direction, and its area of greatest sensitivity covers a circular area of about 10 km diameter at an altitude of 100 km above the radar. Over 100000 meteor head echoes have been detected over past years of observations. Most of the events are faint with no alternative to be detected visually or with intensified video (ICCD) cameras. In this study we are focusing on objects which have entered the atmosphere with almost vertical trajectories, to ensure the observed segment of the trajectory to be as complete as possible, without loss of its beginning or end part due to beam-pattern related loss of signal power. The analysis output parameters are range, altitude, radial velocity, meteoroid velocity, instantaneous target position, Radar Cross Section (RCS), meteor radiant, meteoroid ballistic and ablation coefficients, mass loss parameter and meteoroid mass, with possibility to derive other parameters.

  18. Physics and chemistry of non-equilibrium, atmospheric pressure plasmas containing fluorine

    NASA Astrophysics Data System (ADS)

    Yang, Xiawan

    The physics and chemistry of low temperature, atmospheric pressure plasmas containing fluorine have been investigated with current, voltage, and power measurements, infrared absorption spectroscopy, and optical emission spectroscopy. The plasma source consisted of two closely spaced metal electrodes, supplied with radio-frequency power at 13.56 MHz. The fluorine atom concentration was measured in the downstream region of a carbon tetrafluoride and helium plasma using infrared spectroscopy. The gas discharge generated 1.2 x 10 15 cm-3 of F atoms, which is ˜100 times higher than that found in low-pressure plasmas. A numerical model of the plasma indicated that most of the F atoms were generated by the reaction of CF4 with metastable helium atoms. It was discovered that the atmospheric pressure, radio-frequency plasma could be made to undergo sheath breakdown with conversion from an alpha- to a gamma-mode discharge. With 0.4 vol% nitrogen in helium, this transition was accompanied by a 40% drop in voltage, a 12% decrease in current, and a surge in power density from 25 to 2083 W/cm3. The shift in intense plasma emission from the bulk gas to the surface of the electrodes was documented by optical techniques. When the plasma was operated in the alpha and gamma modes, 5.2% and 15.2% of the N2 was dissociated into atoms, respectively. In the latter case, the low dissociation efficiency was ascribed to the nonuniform structure of the plasma across the gap. In plasmas containing 1.0 vol% carbon tetrafluoride and sulfur hexafluoride, the alpha to gamma transition occurred smoothly with no discharge contraction. The electron density in these plasmas equaled 6.0 x 1011 cm-3, compared to 1.9 x 1013 cm -3 in pure helium. The drop in plasma density was due to fast electron attachment processes caused by the electronegative molecules, which also resulted in a high density of negative ions, up to 1013 cm-3. In addition, the non-equilibrium, atmospheric pressure plasma was used to

  19. Chemical, physical and radiative properties of atmospheric aerosols measured at Mt. Lulin Atmospheric Background Station (LABS) in East Asia during biomass burning seasons (Invited)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Lee, C.; Wang, S.; Chuang, M.; Chia, E.; Andrews, E.; Ogren, J. A.; Lin, J.; Hung, H.; Hsiao, T.; Liang, S.

    2013-12-01

    This paper presents the chemical, physical and radiative properties of atmospheric aerosols measured at the Lulin Atmospheric Background Station (LABS) which is located at Mt. Lulin (2,862 m MSL; 23o 28'07"N, 120o52'25"E) in central Taiwan, East Asia, and has been operated since 13 April, 2006. LABS is unique because its location and altitude enhances the global network of GAW (Global Atmosphere Watch) in the Southeast Asian region, where no high-elevation baseline station is available. Our site is located between the GAW Waliguan station (3,810 m) on the Tibetan plateau and the Mauna Loa Observatory (3,397m) in Hawaii. We will particularly focus on the results obtained during the spring season, when biomass burning activities prevail in northern Southeast Asia. Chemical characterization of fine and coarse aerosol particles, including water-soluble ions, organic and elemental carbon, and trace elements, will be presented. Aerosol optical properties, including scattering, absorption, extinction, single scattering albedo, Ångström exponent, and aerosol optical depth, as well as the derived radiative forcing efficiency, will be discussed. Results of cloud condensation nuclei measurements, made intermittently, will also be presented. Trajectory studies indicate that this site experiences a variety of air masses originating from contaminated and clean source regions, giving a distinctive contrast of atmospheric changes. To summarize the results, the maximum values (and monthly means) of these chemical, physical and radiative parameters generally occurred during spring time, especially in March, corresponding to prevailing biomass burning activities in SE Asia. Besides, LABS is also one of the supersites during the 2010-2013 spring campaigns of the Seven South East Asian Studies (7-SEAS) for studying the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate over Southeast Asian region. Results of source (northern Thailand

  20. Phase B-final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL). A spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Progress in the development of the Atmospheric Cloud Physics Laboratory is outlined. The fluid subsystem, aerosol generator, expansion chamber, optical system, control systems, and software are included.

  1. Spatial-Spectral Studies of Cometary Volatiles and the Physical Environment of Inner Cometary Atmospheres

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho P.; Fougere, Nicolas; Villanueva, Geronimo L.; Mumma, Michael J.; Combi, Michael R.; DiSanti, Michael A.; Paganini, Lucas; Cordiner, Martin; Gibb, Erika L.; Milam, Stefanie N.

    2015-11-01

    How is water released in comets - directly from the nucleus versus sublimation from icy grains in the coma? How common and how prevalent are icy grains as a source of gas-phase water (and other volatiles) among the active comet population? These questions are being addressed through synergy between spatial-spectral studies of native volatiles in comets and the physical models tested against them. This synergy is extending the state-of-the-art in both domains. Ground-based near-IR spectroscopy (Keck, NASA IRTF, and ESO VLT) allowed measurements of spatially resolved inner coma temperatures and column densities for H2O - the most abundant volatile in the coma. These measurements motivated the inclusion of new physics in the models. The evolved models now open new questions and trigger improvement in the accuracy of measured temperature profiles, most recently extended to other molecules (HCN in the near-IR) and to other wavelength domains (CH3OH, through ALMA; S. Milam et al., this meeting). The net result is deeper quantitative insight into the competition among processes that cause heating and cooling of the coma and into the prevalent mechanism(s) for release of native volatiles in the gas phase.The same inner-coma modeling formalisms are used to interpret both the environment of Rosetta's mission target (67P/Churyumov-Gerasimenko) and those from the ground-based observations reported here (Combi et al. 2015, LPSC, #1714; Fougere et al., this meeting). While ground-based spectroscopy offers less detail than in-situ missions, it can probe the comae of many comets that may differ greatly from one another and from Rosetta's target, thereby assessing the extent to which the inner-coma environment of 67P is unique, and how it relates to other comets.We gratefully acknowledge support from NASA Planetary Atmospheres, Solar System Workings, Planetary Astronomy, and Astrobiology programs, and from NSF Astronomy and Astrophysics Research Grants program.

  2. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  3. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Atmospheric Cloud Physics Laboratory (ACPL) task flow is shown. Current progress is identified. The requirements generated in task 1 have been used to formulate an initial ACPL baseline design concept. ACPL design/functional features are illustrated. A timetable is presented of the routines for ACPL integration with the spacelab system.

  4. Relationships among Teachers' Self-Efficacy and Students' Motivation, Atmosphere, and Satisfaction in Physical Education

    ERIC Educational Resources Information Center

    Pan, Yi-Hsiang

    2014-01-01

    The purpose of this study was to confirm the relationships among teachers' self-efficacy, and students' learning motivation, learning atmosphere, and learning satisfaction in senior high school physical education (PE). A sample of 462 PE teachers and 2681 students was drawn using stratified random sampling and cluster sampling from high…

  5. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  6. Coupling submesoscale physics to seabirds behaviour at the ocean-atmosphere interface

    NASA Astrophysics Data System (ADS)

    De Monte, S.; Cotté, C.; d'Ovidio, F.; Lévy, M.; Le Corre, M.; Weimerskirch, H.

    2012-04-01

    During their journeys, seabirds are faced to environmental heterogeneity of the scale of tens of Kms in extension and of days in duration, that are induced in the open ocean by mesoscale and submesoscale turbulence. We combine tracking of frigatebirds in the Mozambique channel - available for the first time with 3-D resolution - and multisatellite-based nonlinear diagnostics to inquire how birds respond to the coupled ocean-atmosphere physics. Birds behaviour along their flight trajectory are categorized in 5 classes of vertical displacement, e.g. slow or fast descents, and are superimposed with the submesoscale structures obtained by a Lagrangian reanalysis or remote-sensing measures. We show that frigatebirds modify their behaviour at such scale over and outside transport and thermal fronts. We suggest that birds colocalization with structures generated by horizontal transport is a consequence of their quest for food (preferentially located on thermal fronts) but also for upward vertical wind. Our multidisciplinary method can be applied to forthcoming high-resolution animal tracking data and contribute to elucidate the response of marine ecosystems to environmental change.

  7. Space and Atmospheric Physics Education and Research at North Carolina A&T State University

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Smith, G.; Kebede, A.

    2006-11-01

    gutaye@ncat.edu In this communication we discuss the new undergraduate and graduate space and atmospheric physics program at NC A&T State University. The program is designed to train future generation space scientists to meet the workforce needs of NASA, aerospace industries and academic institutions. In order to fortify this effort, we have initiated collaboration with US Air Force, GSFC and University of Michigan. We plan to contribute to the current scientific issues associated with TEC variations, scintillations and disturbances, and the morphology/manifestations of Ionospheric Spread F phenomena, and their variations with locations, specifically over low and mid-latitudes. In order to facilitate research we plan to install a magnetometer, a coherent beacon receiver and GPS receivers. In the long run the space science research community and K12 students and teachers will use of these facilities. We will discuss our recent experience during the IHY-SCINDA 2006 workshop, in Sal Cape Verde, as well as the plans of the upcoming IHY-Africa workshop, November 5-9, 2007 Addis Ababa Ethiopia.

  8. Weakness in the Emergency Department: Hypokalemic Periodic Paralysis Induced By Strenuous Physical Activity.

    PubMed

    Dogan, Nurettin Ozgur; Avcu, Nazire; Yaka, Elif; Isikkent, Ali; Durmus, Ugur

    2015-06-01

    Hypokalemic periodic paralysis is a rare but serious disorder that is typically caused by a channelopathy. Thyrotoxicosis, heavy exercise, high carbohydrate meal and some drugs can trigger channelopathy in genetically predisposed individuals. A 33-year-old male patient presented to the emergency department with weakness in the lower extremities. He stated that he had done heavy physical activity during the previous week. The patient exhibited motor weakness in the lower extremities (2/5 strength) during the physical examination. Initial laboratory tests showed a potassium level of 1.89 mEq/L. The initial electrocardiogram demonstrated T wave inversion and prominent U waves. The patient was treated in the emergency department with oral and intravenous potassium. The physical and ECG symptoms resolved within 16 hours of potassium supplementation and biochemical tests showed normal serum potassium levels. The patient was discharged shortly after the resolution of the symptoms. Weakness is an important but nonspecific symptom that may be brought on by a number of underlying physiological processes. Hypokalemic periodic paralysis is a rare disease that may be triggered by heavy physical activity and presents with recurrent admissions due to weakness. PMID:27336072

  9. Physical design correlates of efficiency and safety in emergency departments: a qualitative examination.

    PubMed

    Pati, Debajyoti; Harvey, Thomas E; Pati, Sipra

    2014-01-01

    The objective of this study was to explore and identify physical design correlates of safety and efficiency in emergency department (ED) operations. This study adopted an exploratory, multimeasure approach to (1) examine the interactions between ED operations and physical design at 4 sites and (2) identify domains of physical design decision-making that potentially influence efficiency and safety. Multidisciplinary gaming and semistructured interviews were conducted with stakeholders at each site. Study data suggest that 16 domains of physical design decisions influence safety, efficiency, or both. These include (1) entrance and patient waiting, (2) traffic management, (3) subwaiting or internal waiting areas, (4) triage, (5) examination/treatment area configuration, (6) examination/treatment area centralization versus decentralization, (7) examination/treatment room standardization, (8) adequate space, (9) nurse work space, (10) physician work space, (11) adjacencies and access, (12) equipment room, (13) psych room, (14) staff de-stressing room, (15) hallway width, and (16) results waiting area. Safety and efficiency from a physical environment perspective in ED design are mutually reinforcing concepts--enhancing efficiency bears positive implications for safety. Furthermore, safety and security emerged as correlated concepts, with security issues bearing implications for safety, thereby suggesting important associations between safety, security, and efficiency. PMID:24896560

  10. The Impact of Physical Atmosphere on Air Quality and the Utility of Satellite Observations in Air Quality Models

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Park, Y. H.; Doty, K.; Khan, M. N.; Dornblaser, B.

    2012-12-01

    Physical atmosphere significantly impacts air quality as it regulates production, accumulation, and transport of atmospheric pollutants. Consequently, air quality simulations are greatly influenced by the uncertainties that emanates from the simulation of physical atmosphere. Since air quality model predictions are increasingly being used in health studies, regulatory applications, and policy making, reducing such uncertainties in model simulations is of outmost importance. This paper describes some of the critical aspects of physical atmosphere affecting air quality models that can be improved by utilizing satellite observations. Retrievals of skin temperature, surface albedo, surface insolation, cloud top temperature and cloud reflectance obtained from the Geostationary Operational Environmental Satellite (GOES) by NASA/MSFC GOES Product Generation System (GPGS) have been utilized to improve the air quality simulations used in the State Implementation Plan (SIP) attainment demonstrations. Satellite observations of ground temperature are used to recover surface moisture and heat capacity and thereby improving model simulation of air temperature. Observations of clouds are utilized to improve the photochemical reaction rates within the photochemical model and also to assimilate clouds in the meteorological model. These techniques have been implemented and tested in some of the widely used air quality decision modeling systems such as MM5/WRF/CMAQ/CAMx. The results from these activities show significant improvements in air quality simulations.

  11. Optics program in the physics department at San Jose State University

    NASA Astrophysics Data System (ADS)

    Bahuguna, Ramendra D.; Arya, Karamjeet; Becker, Joseph F.; Gruber, John B.; Lakkaraju, H. Sarma; Wharton, Kenneth B.; Williams, Gareth T.

    2002-05-01

    The San Jose State University Physics Department, located in Silicon Valley, provides students with a high quality education in optics and provides local high-tech industry and government laboratories with a partner for optics- related research and development projects. There are approximately 50 undergraduate majors and 20 graduate (M.S.) students in the Department. Core courses leading to the B.S. in Physics are offered with upper division courses in Modern Optics, Lasers and Applications, Advanced Optics Lab, Advanced Instrumentation Lab, and Individual Studies as well as graduate courses in Electro-optics, Graduate Optics, Optical Metrology, and Laser Spectroscopy. Graduates are well prepared to enter the lasers and optics industry or go onto graduate school. A 4000 square-foot lab in the Science Building houses the Institute for Modern Optics, an organized research unit in the College of Science. One of the major goals of the Institute is to facilitate collaborative research between the local optics industry and the faculty and students at SJSU. The Department is presently developing a new biophotonics lab for single molecule studies with a dual beam optical tweezers already operational. A National Science Foundation Research Experience for Undergraduates Program grant provides research support for undergraduates.

  12. Service-oriented calculator of atmospheric aerosol's physical and chemical properties

    NASA Astrophysics Data System (ADS)

    Prokopov, Nikita A.

    2006-02-01

    Atmospheric calculator is a toolset to help users work with atmospheric optics formulas. It was originally written in 2001, and now there is new implementation. New calculator based on modem principals of programming and uses a lot of modem technologies: web-services, java 2 enterprise edition (J2EE), service orchestration, web ontology and so on. For implementing calculator, special middleware was developed. It's universal service integration technology and can be used for different application, including atmospheric calculator.

  13. Job rotation as a factor in reducing physical workload at a refuse collecting department.

    PubMed

    Kuijer, P P; Visser, B; Kemper, H C

    1999-09-01

    The effect of job rotation on the physical workload was investigated for male employees working at a refuse collecting department. Before the introduction of job rotation, an employee worked as a street sweeper, as a refuse collector or as a driver. After the introduction of job rotation, every employee was allowed to alternate between two of the three possible jobs during the day, i.e. refuse collecting/street sweeping, refuse collecting/driving or street sweeping/driving. Two non-rotation groups (i.e. refuse collectors and street sweepers) and two rotation groups (i.e. refuse collectors/street sweepers and street sweepers/drivers) were mutually compared. The physical workload was determined by measuring the perceived load, energetic load and postural load during a full working day. Job rotation resulted in a significant decrease of the perceived load and energetic load and a slight decrease of the postural load. The results indicate that the total amount of work performed by means of job rotation resulted in an overall reduced physical workload of the employees of the refuse collecting department. PMID:10503051

  14. Scientific Method in Teaching Physics in Languages and Social Sciences Department of High—Schools

    NASA Astrophysics Data System (ADS)

    Nagl, Mirko G.; Obadović, Dušanka Ž.; Stojanović, Maja M.

    2010-01-01

    The expansion of scientific materials in the last few decades, demands that the contemporary educational system should select and develop methods of effective learning in the process of acquiring skills and knowledge usable and feasible for a longer period of time. Grammar schools as general educational institutions possess all that is necessary for the development of new teaching methods and fitting into contemporary social tendencies. In the languages and social sciences department in of grammar schools physics is the only natural sciences subject present during all four years. The classical approach to teaching is tiring as such and creates aversion towards learning physic when it deals with pupils oriented towards social sciences. The introduction of scientific methods raises the motivation to a substantial level and when applied both the teacher and pupils forget when the class starts or ends. The assignment has shown the analysis of initial knowledge of physics of the pupils attending the first grade of languages and social sciences department of of grammar schools as a preparation for the introduction of the scientific method, the analysis of the initial test with the topic of gravitation, as well as the analysis of the final test after applying the scientific method through the topic of gravitation. The introduction of the scientific method has duly justified the expectations and resulted in increasing the level of achievement among the pupils in the experimental class.

  15. Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

    PubMed Central

    Weisheimer, Antje; Corti, Susanna; Palmer, Tim; Vitart, Frederic

    2014-01-01

    The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid

  16. Public Outreach From the Physics Department at the Air Force Academy: Engaging the Faculty as Scientists and Partners

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kutche, C.

    2001-05-01

    The Air Force Academy serves a specialized function as a developer of military officers preparing to lead the nation's air and space forces. Within the Academy, the Physics department focuses on providing a breadth of integrated knowledge in physics and meteorology. To that end technical competency and scientific literacy of both incoming and outgoing students is a significant issue. Despite limited outreach resources, the Physics faculty and staff are very active in K-12 science education and in enhancing general science literacy via public outreach to the community. The department supports more than 1500 public outreach contacts per year. Teachers at all levels are involved in a variety of interactions: one-on-one mentoring, class-to-class pairings of elementary and college physics students, motivational "Physics is Phun" school visits, and numerous activities on the Academy grounds. In this presentation we will discuss the breadth of outreach activities and how they relate the research emphasis areas of the Academy's Physics Department.

  17. Department of Energy nuclear material physical protection program in the Republic of Kazakstan

    SciTech Connect

    Eras, A.; Berry, R.B.; Case, R.S.

    1997-09-01

    As part of the joint U.S. and Republic of Kazakstan nuclear Material Protection, Control, and Accounting (MPC{ampersand}A) program, the U.S. Department of Energy (DOE) is providing assistance at four nuclear facilities in Kazakstan. These facilities are the Ulba Metallurgical Plant, the National Nuclear Center (NNC) Institute of Atomic Energy at Kurchatov (IAE-K), the Mangyshlak Atomic Energy Complex (BN-350) Reactor, and the NNC Institute of Atomic Energy at Almaty (IAE-A). This paper describes the DOE MPC{ampersand}A physical protection program at each of the facilities.

  18. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.

    PubMed

    Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire

    2016-01-01

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes. PMID:27187527

  19. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes

    PubMed Central

    Gottschalk, Julia; Skinner, Luke C.; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L.; Waelbroeck, Claire

    2016-01-01

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean–atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air–sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes. PMID:27187527

  20. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes

    NASA Astrophysics Data System (ADS)

    Gottschalk, Julia; Skinner, Luke C.; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L.; Waelbroeck, Claire

    2016-05-01

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and 14C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

  1. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL), a spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary identification of the Supporting Research and Technology (SR&T) necessary during the planned evolution of atmospheric cloud physics is discussed. All requirements are for subsequent flights over its expected ten year lifetime. Those components identified as requiring some SR&T work prior to inclusion are listed. A data sheet is included for each item, briefly justifying the need, giving general objectives for the proposed development effort and identifying approximate schedule requirements on the program.

  2. Marine Primary Aerosol in the Mediterranean atmosphere: physical and chemical properties from a mesocosm study

    NASA Astrophysics Data System (ADS)

    D'anna, B.; Sellegri, K.; Charriere, B.; Sempere, R.; Mas, S.; George, C.; Meme, A.; R'Mili, B.; Schwier, A. N.; Rose, C.

    2013-12-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminated the contribution of Primary Sea Salt Aerosol (SSA) formed at the sea-air interface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. A mesocosms experiment was performed in May 2013 at the Oceanographic and Marine Station STARESO in Western Corsica. Three mesocosms were simultaneously filled with pooled and screened (<1000 μm) subsurface (1 m) seawater from the Bay. Each mesocosm had a maximum water column depth of 2 m and contained 2260 L of Bay water and covered with transparent (teflon film) dome to prevent atmospheric contamination. The three mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatements: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ration (N:P = 16). The evolution of the three systems was followed for 20 days. A set of sensors in each mesocosm were established at 0.5 m and allowed to monitor at high frequency (every 2 min): water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical (dissolved oxygen, colored dissolved organic matter, nitrates, phosphates, silicates, transparent polyssacharides, dicarboxylic acids and related polar compounds) and biological (chlorophyll a, virus, phytoplankton and zooplankton concentration) analyses. Finally, few liters of sea-water from each mesocosms were sampled daily and immediately transferred to a bubble-bursting apparatus to simulate SSA. Size distribution and particle number were followed by SMPS and APS in the range of 10nm to 10

  3. Forum: What Has Actually Changed in Physics Departments in the Situation for Women, Graduate Students and Other People?

    NASA Astrophysics Data System (ADS)

    Mulvey, Patrick; Ivie, Rachel; Campbell, David; Murnane, Margaret; Kirby, Kate; Catlla, Anne

    2006-03-01

    The decade of the 90's was a period of intense scrutiny of climate issues in physics departments, e.g. the status of women, the job situation for new Ph.D.'s and postdocs, and the preparation of physicists for careers inside and outside of physics. There were many conference sessions on these topics, and both APS members and leadership instigated important efforts to focus on specific areas. These efforts included the program of visiting committees to departments to examine the situation for women by the Committee on the Status of Women in Physics, the AIP's various studies of a statistical nature, and the creation by the APS of a Committee on Careers and the Forum on Graduate Student Affairs, as well as the recent APS-AAPT task force on graduate education. This forum patterned after similar sessions 10 years ago - will examine how physics departments have changed as a result of such efforts. It will begin with short (12-minute) talks by a panel of experts to describe what has happened in key areas. The greater part of the session will be a period of observations, questions, and discussion from the audience and the panel together. The purpose is to have an interchange on these interrelated topics from which we can all learn. THE TOPICS TO BE INTRODUCED IN THE SHORT TALKS AT THE BEGINNING OF THE SESSION ARE: 1) changes in graduate enrollment, composition, and subsequent jobs (Patrick Mulvey); 2) women in physics and astronomy departments 2005 (Rachel Ivie); 3) changes in graduate curricula and environment (David Campbell); 4) CSWP site visits to physics departments what’s been accomplished and learned (Margaret Murnane); 5) survey of ethical issues in physics departments and the physics profession: results and reactions (Kate Kirby); and (6) physics departments from the point of view of younger physicists (Anne Catlla). The bulk of the session will be a public forum, on these and related issues, among the audience and the panel.

  4. A simple-physics global circulation model for Venus: Sensitivity assessments of atmospheric superrotation

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J. L.; Young, R. E.; Schubert, G.; Covey, C.; Grossman, A. S.

    2007-03-01

    A 3D global circulation model is adapted to the atmosphere of Venus to explore the nature of the planet's atmospheric superrotation. The model employs the full meteorological primitive equations and simplified forms for diabatic and other nonconservative forcings. It is therefore economical for performing very long simulations. To assess circulation equilibration and the occurrence of atmospheric superrotation, the climate model is run for 10,000-20,000 day integrations at 4° × 5° latitude-longitude horizontal resolution, and 56 vertical levels (denoted L56). The sensitivity of these simulations to imposed Venus-like diabatic heating rates, momentum dissipation rates, and various other key parameters (e.g., near-surface momentum drag), in addition to model configuration (e.g., low versus high vertical domain and number of atmospheric levels), is examined. We find equatorial superrotation in several of our numerical experiments, but the magnitude of superrotation is often less than observed. Further, the meridional structure of the mean zonal overturning (i.e., Hadley circulation) can consist of numerous cells which are symmetric about the equator and whose depth scale appears sensitive to the number of vertical layers imposed in the model atmosphere. We find that when realistic diabatic heating is imposed in the lowest several scales heights, only extremely weak atmospheric superrotation results.

  5. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    SciTech Connect

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  6. The Use of Full-Physics Atmospheric Modeling for Wind Power Plants

    NASA Astrophysics Data System (ADS)

    Flaherty, J. E.; Berg, L. K.; Fast, J. D.; Gustafson, W. I.; Rishel, J. P.; Shaw, W. J.

    2008-12-01

    This presentation will describe a number of issues relevant to the use of mesoscale meteorological models for the development and operation of wind power plants. An accurate description of the local winds over a range of spatial and temporal scales is important for wind plants. In addition to various measurement methods, a number of modeling tools can be used to explore winds at these scales, including a full-physics mesoscale model such as the Weather Research and Forecasting (WRF) model. Simulations in regions of complex terrain can, however, have significant amounts of uncertainty, and results can be sensitive to the model parameters such as turbulence representation, the horizontal and vertical grid spacing, and initial and boundary conditions. Numerous studies conducted by PNNL scientists have quantified the performance of WRF. These evaluations included simulation of low-level winds in a number of geographic areas with both simple and complex terrain. However, previous research focused on comparisons with data from intensive, short-duration field campaigns that may not be completely relevant for wind plants. The identification of long- term, high quality data sets is therefore an important aspect of evaluating and improving model performance in wind energy applications. One such source of quality-assured meteorological data is from the US Department of Energy's Hanford Site. It is an ideal location for evaluating the performance of the WRF model for both prognosis of the local winds, as would be appropriate for a wind resource characterization, and for an analysis of severe wind events, which is important for wind turbine safety. The Hanford Site is located in southeastern Washington State and covers approximately 1500 sq km. The topography in this region is dominated by a number of significant ridges around a central basin, and severe wind events are frequent, especially during the springtime. Wind energy has been explored in this area, and a wind plant with

  7. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    NASA Astrophysics Data System (ADS)

    Gillich, Don; Shannon, Mike; Kovanen, Andrew; Anderson, Tom; Bright, Kevin; Edwards, Ronald; Danon, Yaron; Moretti, Brian; Musk, Jeffrey

    2011-06-01

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of ˜100 keV. Within the next year, cadets and faculty at USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.

  8. Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1976-01-01

    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.

  9. Microbiology and atmospheric processes: the role of biological particles in cloud physics

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Demott, P. J.; Vali, G.; Levin, Z.

    2007-12-01

    As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN) and heterogeneous ice nuclei (IN) and thereby can contribute to the initial cloud formation stages and the development of precipitation through giant CCN and IN processes. The paper gives an introduction to aerosol-cloud processes involving CCN and IN in general and provides a short summary of previous laboratory, field and modelling work which investigated the CCN and IN activity of bacterial cells and pollen. Recent measurements of atmospheric ice nuclei with a continuous flow diffusion chamber (CFDC) and of the heterogeneous ice nucleation efficiency of bacterial cells are also briefly discussed. As a main result of this overview paper we conclude that a proper assessment of the impact of biological particles on tropospheric clouds needs new laboratory, field and modelling work on the abundance of biological particles in the atmosphere and their CCN and heterogeneous IN properties.

  10. Microbiology and atmospheric processes: the role of biological particles in cloud physics

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Demott, P. J.; Vali, G.; Levin, Z.

    2007-08-01

    As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN) and heterogeneous ice nuclei (IN) and thereby can contribute to the initial cloud formation stages and the development of precipitation through giant CCN and IN processes. The paper gives an introduction to aerosol-cloud processes like CCN and IN in general and provides a short summary of previous laboratory, field and modelling work investigating the CCN and IN activity of bacterial cells and pollen. Recent measurements of atmospheric ice nuclei with a continuous flow diffusion chamber (CFDC) and of the heterogeneous ice nucleation efficiency of bacterial cells are also briefly discussed. As a main result of this overview paper we conclude that a proper assessment of the impact of biological particles on tropospheric clouds needs new laboratory, field and modelling work investigating the abundance of biological particles in the atmosphere and their CCN and heterogeneous IN properties.

  11. Radiological and Environmental Research Division annual report, January-December 1980. Atmospheric physics

    SciTech Connect

    Not Available

    1981-08-01

    Contained are twenty-six abstracts of on-going research programs at Argonne National Laboratory concerning the modeling of environmental air pollutants concentration and transport for January-December 1980. Studies on pollutant transport modeling, fluid flow models, and atmospheric precipitations chemistry are included. (DLS)

  12. Radiological and Environmental Research Division annual report, January-December 1982. Atmospheric physics. Part 4

    SciTech Connect

    Not Available

    1984-01-01

    The first article in this report, although dealing with simple terrain, summarizes an effort to obtain measures of parameters important in transport and diffusion in the lower atmosphere solely by use of a Doppler acoustic sounding system. The second article describes participation in a multiagency experiment (Shoreline Environment Atmospheric Dispersion Experiment, SEADEX) to study the fate of materials released over a surface with notable surface nonuniformities, specifically at a coastal nuclear power plant during onshore flow conditions. The third and fourth articles in this report address research on the local behavior of pollutants emitted from diesel engines in urban areas. Most effort was directed toward field studies on circulation patterns in street canyons, exchange rates with the atmosphere above rooftops, and characterization of particles in outdoor urban microclimates. The remainder of the report is quite diverse and contains multiple articles on perhaps only one or two types of research. One is numerical modeling of the behavior of atmospheric pollutants, especially gaseous and particulate substances associated with acid deposition. The modeling and theoretical capabilities have been developed in part to consider potential nonlinear relationships between anthropogenic emissions of sulfur and nitrogen compounds and the distant deposition of resulting acidifying substances. On the experimental side, field phases of research designed to compare methods of analyses of precipitation samples and to study local urban effects on precipitation chemistry were completed. Each report is indexed separately.

  13. Physical Properties of Dust in the Martian Atmosphere: Analysis of Contradictions and Possible Ways of Their Resolution

    NASA Astrophysics Data System (ADS)

    Dlugach, Zh. M.; Korablev, O. I.; Morozhenko, A. V.; Moroz, V. I.; Petrova, E. V.; Rodin, A. V.

    2003-01-01

    Atmospheric aerosols play an important role in forming the Martian climate. However, the basic physical properties of the Martian aerosols are still poorly known; there are many contradictions in their estimates. We present an analytical overview of the published results and potentialities of various methods. We consider mineral dust. Zonally averaged data obtained from mapping IR instruments (TES and IRTM) give the optical thickness of mineral aerosols τ9 = 0.05-0.1 in the 9-μm band for quite atmospheric conditions. There is a problem of comparing these estimates with those obtained in the visible spectral range. We suggest that the commonly used ratio τvis/τ9 >2 depends on the interpretation and it may actually be smaller. The ratio τvis/τ9 ~ 1 is in better agreement with the IRIS data (materials like montmorillonite). If we assume that τvis/τ9 = 1 and take into account the nonspherical particle shape, then the interpretation of ground-based integrated polarimetric observations (τ < 0.04) can be reconciled with IR measurements from the orbit. However, for thin layers, the sensitivity of both methods to the optical thickness is poorly understood: on the one hand, polarimetry depends on the cloud cover and, on the other hand, the interpretation of IR measurements requires that the atmospheric temperature profile and the surface temperature and emissivity be precisely known. For quite atmospheric conditions, the local optical-thickness estimates obtained by the Bouguer-Lambert-Beer method and from the sky brightness measured from Viking 1 and 2 and Mars Pathfinder landers are much larger: τ = 0.3-0.6. Estimates of the contrasts in images from the Viking orbiters yield the same values. Thus, there is still a factor of 3 to 10 difference between different groups of optical-thickness estimates for the quiet atmosphere. This difference is probably explained by the contribution of condensation clouds and/or by local/time variations.

  14. Summary of the NASA/MSFC FY-79 Severe Storm and Local Weather research review. [cloud physics, atmospheric electricity, and mesoscale/storm dynamics reserach

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Significant acomplishments, current focus of work, plans for FY-80, and recommendations for new research are outlined for 36 research projects proposed for technical monitoring by the Atmospheric Sciences Division at Marshall Space Flight Center. Topics of the investigations, which were reviewed at a two-day meeting, relate to cloud physics, atmospheric electricity, and mesoscale/storm dynamics.

  15. Final definition and preliminary design study for the initial atmospheric cloud physics laboratory, a Spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.

  16. What do the cited and citing environments reveal about Advances in Atmospheric Physics?

    NASA Astrophysics Data System (ADS)

    Shi, Aolan; Leydesdorff, Loet

    2011-01-01

    The networking status of journals reflects their academic influence among peer journals. This paper analyzes the cited and citing environments of this journal, Advances in Atmospheric Sciences ( Adv. Atmos. Sci.), using methods from social network analysis. Since its initial publication, Adv. Atmos. Sci. has been actively participating in the international journal environment and international journals are frequently cited in Adv. Atmos. Sci. Particularly, this journal is intensely interrelated with its international peer journals in terms of their similar citing patterns. The international influence of Adv. Atmos. Sci. is comparatively bigger than other Chinese SCI journals in atmospheric sciences as reflected by total cites to Adv. Atmos. Sci. and the total number of international journals citing it. The academic visibility of Adv. Atmos. Sci. is continuing to improve in the international research community as the number of reference citation it receives in its peer journals internationally increases over time.

  17. Science on Spacelab. [astronomy, high energy astrophysics, life sciences, and solar, atmospheric and space physics

    NASA Technical Reports Server (NTRS)

    Schmerling, E. R.

    1977-01-01

    Spacelab was developed by the European Space Agency for the conduction of scientific and technological experiments in space. Spacelab can be taken into earth orbit by the Space Shuttle and returned to earth after a period of 1-3 weeks. The Spacelab modular system of pallets, pressurized modules, and racks can contain large payloads with high power and telemetry requirements. A working group has defined the 'Atmospheres, Magnetospheres, and Plasmas-in-Space' project. The project objectives include the absolute measurement of solar flux in a number of carefully selected bands at the same time at which atmospheric measurements are made. NASA is committed to the concept that the scientist is to play a key role in its scientific programs.

  18. Extrasolar Storms: The Physics and Chemistry of Evolving Cloud Structures in Brown Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Apai, Daniel

    2012-10-01

    Condensate clouds pose the most significant challenge to the understanding of ultracool atmospheres of brown dwarfs and giant exoplanets. In three ongoing Spitzer programs we have taken advantage of Spitzer's ability to obtain high-cadence uninterrupted observations to pioneer a new technique, rotational phase mapping, and successfully explored the properties of cloud covers in ~50 brown dwarfs. Among other exciting results we found that most brown dwarfs possess heterogeneous cloud cover, often with complex surface structures. Perhaps the most perplexing behavior seen in our surveys is light curve evolution on timescales as short as 5 hours and as long as a year. This unexpected behavior offers a unique opportunity to explore the dynamics of cloud layers, but requires multi-epoch data sets. We propose here to follow up a representative set of varying brown dwarfs via multi-epoch Spitzer and HST phase mapping to carry out the first quantitative exploration of cloud cover evolution. The proposed study will establish the first time-resolved multi-wavelength light curve library for brown dwarfs. Spitzer uniquely offers precise 3-5 micron photometry and continuous coverage that allow us to detect cloud structures a fraction of the size of the Great Red Spot on Jupiter in our targets. Combined with HST grism spectroscopy during a subset of the Spitzer observations, the Spitzer phase maps will allow us to disentangle the effects of cloud formation, differential rotation, large-scale rainout and dispersal of clouds. As different wavelengths probe different pressures and different rotational phases probe different latitudes we will be able to explore the two or even three-dimensional structure of the atmospheres. We will also constrain the dynamical and radiative timescales for brown dwarfs and compare these to theoretical predictions to identify the underlying atmospheric dynamics. This program will leave a unique legacy that will propel studies of ultracool atmosphere

  19. Extrasolar Storms: The Physics and Chemistry of Evolving Cloud Structures in Brown Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Apai, Daniel; Buenzli, Esther; Flateau, Davin; Metchev, Stanimir; Marley, Mark; Radigan, Jacqueline; Lowrance, Patrick; Showman, Adam; Artigau, Etienne; Heinze, Aren; Burgasser, Adam; Mohanty, Subhanjoy

    2012-09-01

    Condensate clouds pose the most significant challenge to the understanding of ultracool atmospheres of brown dwarfs and giant?exoplanets. In three ongoing Spitzer programs we have?taken advantage of Spitzer's ability to obtain high-cadence uninterrupted observations to pioneer a new technique, rotational phase mapping, and successfully explored the properties of cloud covers in ~50 brown?dwarfs. Among other exciting results we found that most brown dwarfs possess heterogeneous cloud cover, often with complex surface structures. Perhaps the most perplexing behavior seen in our surveys is light curve evolution on timescales as short as 5 hours and as long as a year. This unexpected behavior offers a unique opportunity to explore the dynamics of cloud layers, but requires multi-epoch data sets. We propose here to follow up a representative set of varying brown dwarfs via multi-epoch Spitzer and HST phase mapping to carry out the first quantitative exploration of cloud cover evolution. The proposed study will establish the first time-resolved multi-wavelength light curve library for brown dwarfs. Spitzer uniquely offers precise 3-5 micron photometry and continuous coverage that allow us to detect cloud structures a fraction of the size of the Great Red Spot on Jupiter in our targets. Combined with HST grism spectroscopy during a subset of the Spitzer observations, the Spitzer phase maps will allow us to disentangle the effects of cloud formation, differential rotation, large-scale rainout and dispersal of clouds. As different wavelengths probe different pressures and different rotational phases probe different latitudes we will be able to explore the two or even three-dimensional structure of the atmospheres. We will also constrain the dynamical and radiative timescales for brown dwarfs and compare these to theoretical predictions to identify the underlying atmospheric dynamics. This program will leave a unique legacy that will propel studies of ultracool atmosphere

  20. Optical holography applications for the zero-g Atmospheric Cloud Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L.

    1974-01-01

    A complete description of holography is provided, both for the time-dependent case of moving scene holography and for the time-independent case of stationary holography. Further, a specific holographic arrangement for application to the detection of particle size distribution in an atmospheric simulation cloud chamber. In this chamber particle growth rate is investigated; therefore, the proposed holographic system must capture continuous particle motion in real time. Such a system is described.

  1. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.

    2008-04-01

    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  2. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, D. G.; Després, V.; Fröhlich-Nowoisky, J.; Psenner, R.; Ariya, P. A.; Pósfai, M.; Ahern, H. E.; Moffett, B. F.; Hill, T. C. J.

    2009-04-01

    The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques) required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  3. Analysis of Physical Properties of Dust Suspended in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Snook, Kelly; McKay, Chris; Cantwell, Brian

    1998-01-01

    Methods for iteratively determining the infrared optical constants for dust suspended in the Mars atmosphere are described. High quality spectra for wavenumbers from 200 to 2000 1/cm were obtained over a wide range of view angles by the Mariner 9 spacecraft, when it observed a global Martian dust storm in 1971-2. In this research, theoretical spectra of the emergent intensity from Martian dust clouds are generated using a 2-stream source-function radiative transfer code. The code computes the radiation field in a plane-parallel, vertically homogeneous, multiply scattering atmosphere. Calculated intensity spectra are compared with the actual spacecraft data to iteratively retrieve the optical properties and opacity of the dust, as well as the surface temperature of Mars at the time and location of each measurement. Many different particle size distributions a-re investigated to determine the best fit to the data. The particles are assumed spherical and the temperature profile was obtained from the CO2 band shape. Given a reasonable initial guess for the indices of refraction, the searches converge in a well-behaved fashion, producing a fit with error of less than 1.2 K (rms) to the observed brightness spectra. The particle size distribution corresponding to the best fit was a lognormal distribution with a mean particle radius, r(sub m) 0.66 pm, and variance, omega(sup 2) = 0.412 (r(sub eff) = 1.85 microns, v(sub eff) =.51), in close agreement with the size distribution found to be the best fit in the visible wavelengths in recent studies. The optical properties and the associated single scattering properties are shown to be a significant improvement over those used in existing models by demonstrating the effects of the new properties both on heating rates of the Mars atmosphere and in example spectral retrieval of surface characteristics from emission spectra.

  4. Accessing Solar Irradiance Data via LISIRD, the Laboratory for Atmospheric and Space Physics Interactive Solar Irradiance Datacenter

    NASA Astrophysics Data System (ADS)

    Pankratz, C. K.; Wilson, A.; Snow, M. A.; Lindholm, D. M.; Woods, T. N.; Traver, T.; Woodraska, D.

    2015-12-01

    The LASP Interactive Solar Irradiance Datacenter, LISIRD, http://lasp.colorado.edu/lisird, allows the science community and the public to explore and access solar irradiance and related data sets using convenient, interactive or scriptable, standards-based interfaces. LISIRD's interactive plotting allows users to investigate and download irradiance data sets from a variety of sources, including space missions, ground observatories, and modeling efforts. LISIRD's programmatic interfaces allow software-level data retrievals and facilitate automation. This presentation will describe the current state of LISIRD, provide details of the data sets it serves, outline data access methods, identify key technologies in-use, and address other related aspects of serving spectral and other time series data. We continue to improve LISIRD by integrating new data sets, and also by advancing its data management and presentation capabilities to meet evolving best practices and community needs. LISIRD is hosted and operated by the Laboratory for Atmospheric and Space Physics, LASP, which has been a leader in Atmospheric and Heliophysics science for over 60 years. LASP makes a variety of space-based measurements of solar irradiance, which provide crucial input for research and modeling in solar-terrestrial interactions, space physics, planetary, atmospheric, and climate sciences. These data sets consist of fundamental measurements, composite data sets, solar indices, space weather products, and models. Current data sets available through LISIRD originate from the SORCE, SDO (EVE), UARS (SOLSTICE), TIMED (SEE), and SME space missions, as well as several other space and ground-based projects. LISIRD leverages several technologies to provide flexible and standards-based access to the data holdings available through LISIRD. This includes internet-accessible interfaces that permit data access in a variety of formats, data subsetting, as well as program-level access from data analysis

  5. Physical conditions and nature of chemical anomalies in the atmosphere of Sirius A

    NASA Astrophysics Data System (ADS)

    Leushin, V. V.; Topilskaya, G. P.; Musaev, F. A.

    On the basis of the analysis of the observed equivalent line widths of Fe I, Fe II, Ti II in the spectra of alpha CMa and o Peg and calculation of abundances of these elements, oscillator strengths of the lines used are refined. With the improved oscillator strengths the iron and titanium abundances in the atmosphere of Sirius A are obtained with a higher accuracy than previously: lg N(Fe I) = 7.899 +/- 0.011, lg N(Fe II) = 7.908 +/- 0.010, lg N(Ti II) = 5.289 +/- 0.020. The improved accuracy allowed one to conclude that the surface magnetic field is absent in the atmosphere of Sirius A: H_s = 0+/-100 G. The equivalent widths of helium carbon and nitrogen lines of the red region of the spectrum are measured. The calculations of these lines with allowance for their blending with lines of other elements show normal helium abundance. From a comparison of features of alpha CMa and o Peg an assumption is made on possible reasons for the existence of the phenomenon of Am stars.

  6. Simultaneous physical retrieval of atmospheric and surface state from Martian spectra: the phi MARS algorithm and application to TES

    NASA Astrophysics Data System (ADS)

    Liuzzi, G.; Masiello, G.; Serio, C.; Mancarella, F.; Fonti, S.; Roush, T.

    The problem of fully simultaneous retrieval of surface and atmosphere has been satisfactorily addressed as far as Earth is concerned in many works \\citep{masACP09,carENSO05}, especially for high-resolution instruments. However, such retrieval know-how has been not completely implemented in other planetary contexts. In this perspective, we present a new methodology for the simultaneous retrieval of surface and atmospheric parameters of Mars. The methodology, fully explained in \\cite{liuzzi2015} is based on a non-linear, iterative optimal estimation scheme, supported by a statistical retrieval procedure used to initialize the physical retrieval algorithm with a reliable first guess of the atmospheric parameters. The forward module \\cite{liuzzi2014} is fully integrated with the inverse one, and it is a monochromatic radiative transfer model with the capability to calculate genuine analytical Jacobians of any desired geophysical parameter. We describe both the mathematical framework of the methodology and, as a proof of concept, its application to a large sample of data acquired by the Thermal Emission Spectrometer (TES). Results are drawn for the case of surface temperature and emissivity, atmospheric temperature profile, water vapour, dust and ice mixing ratios. Some work has also been done for revisiting the claims of methane detection with TES data \\citep{fon10,fonti2015}. Comparison with climate models and other TES data analyses show a very good agreement and consistency. Moreover, we will show how the methodology can be applied to other instruments looking at Mars, simply customizing part of the forward and reverse modules.

  7. Verochka Zingan or recollections from the Physics Department of the Moscow University

    NASA Astrophysics Data System (ADS)

    Gaina, Alex; Gaina, Danielle A.

    The author recollects his studentship during 70-th years at the Physics Department of the Moscow University. He was graduated from the theoretical Physics Department in 1977. The Rectors of the University that times were I.G. Petrovskii, R.V. Khokhlov and A.A. Logunov. The dean of the Physics Department was V.S. Fursov. As a particular event a meet with the former prime-minister of the USSR A.N. Kosygin is reported. Between professors mentioned throughout the recollections are A.I.Kitaigorodskii, Ya. B. Zel'dovich, D.D. Ivanenko, A.A. Sokolov, A.A. Vlasov, V.B. Braginsky, I.M. Ternov, L.A. Artsimovich, E.P. Velikhov and other, including that which became University professors later. A great number of colleagues from the Physics, Chemistry, Phylological and Historical Departments of the Moscow University are mentioned. Particularly, the students which entered the group 113 in 1971 and finished the group 601 in 1977 are listed. The recollections include 5 parts. Persons cited throughout the paper: A.N. Kosygin, A.S. Golovin, V. Kostyukevich, I.M. Ternov, E.G. Pozdnyak, A. N. Matveev, V.P. Elyutin, V.V. Kerzhentsev, 113 academic group (1971), V. Topala, E.A. Marinchuk, P.Paduraru, A.I. Kitaygorodski, A. Leahu, S. Berzan, B. Ursu, I. Coanda (Koade), M. Stefanovici, O. Bulgaru, A. Iurie-Apostol, A.S. Davydov, M.I. Kaganov, I.M. Lifshitz, Ya. B. Zel'dovich, A.Zhukov, A.I. Buzdin, N.S. Perov, V. Dolgov, P. Vabishchevich, A.A. Samarskii, V. Makarov, Irina Kamenskih, A.A. Arsen'ev, L.A. Artsimovich, A.A. Tyapkin, B.M. Pontecorvo, D.I. Blokhintsev, I.G. Petrovskii, R.V. Khokhlov, V.N. Rudenko, A.A. Sokolov, D.D. Ivanenko (Iwanenko), A.A. Vlasov, V.N. Ponomarev, N.N. Bogolyubov, N.N. Bogolyubov (Jr), V.Ch. Zhukovskii, Tamara Tarasova, Zarina Radzhabova (Malovekova), V.Malovekov, Tatiana Shmeleva, Alexandra C.Nicolescu, Tatiana Nicolescu, Rano Mahkamova, Miriam Yandieva, Natalia Germaniuk (Grigor'eva), E. Grigor'ev, A. Putro, Elena Nikiforova, B. Kostrykin, Galia Laufer, K

  8. Verochka Zingan or recollections from the Physics Department of the Moscow University

    NASA Astrophysics Data System (ADS)

    Gaina, Alex; Gaina, Danielle A.

    The author recollects his studentship during 70-th years at the Physics Department of the Moscow University. He was graduated from the theoretical Physics Department in 1977. The Rectors of the University that times were I.G. Petrovskii, R.V. Khokhlov and A.A. Logunov. The dean of the Physics Department was V.S. Fursov. As a particular event a meet with the former prime-minister of the USSR A.N. Kosygin is reported. Between professors mentioned throughout the recollections are A.I.Kitaigorodskii, Ya. B. Zel'dovich, D.D. Ivanenko, A.A. Sokolov, A.A. Vlasov, V.B. Braginsky, I.M. Ternov, L.A. Artsimovich, E.P. Velikhov and other, including that which became University professors later. A great number of colleagues from the Physics, Chemistry, Phylological and Historical Departments of the Moscow University are mentioned. Particularly, the students which entered the group 113 in 1971 and finished the group 601 in 1977 are listed. The recollections include 5 parts. Persons cited throughout the paper: A.N. Kosygin, A.S. Golovin, V. Kostyukevich, I.M. Ternov, E.G. Pozdnyak, A. N. Matveev, V.P. Elyutin, V.V. Kerzhentsev, 113 academic group (1971), V. Topala, E.A. Marinchuk, P.Paduraru, A.I. Kitaygorodski, A. Leahu, S. Berzan, B. Ursu, I. Coanda (Koade), M. Stefanovici, O. Bulgaru, A. Iurie-Apostol, A.S. Davydov, M.I. Kaganov, I.M. Lifshitz, Ya. B. Zel'dovich, A.Zhukov, A.I. Buzdin, N.S. Perov, V. Dolgov, P. Vabishchevich, A.A. Samarskii, V. Makarov, Irina Kamenskih, A.A. Arsen'ev, L.A. Artsimovich, A.A. Tyapkin, B.M. Pontecorvo, D.I. Blokhintsev, I.G. Petrovskii, R.V. Khokhlov, V.N. Rudenko, A.A. Sokolov, D.D. Ivanenko (Iwanenko), A.A. Vlasov, V.N. Ponomarev, N.N. Bogolyubov, N.N. Bogolyubov (Jr), V.Ch. Zhukovskii, Tamara Tarasova, Zarina Radzhabova (Malovekova), V.Malovekov, Tatiana Shmeleva, Alexandra C.Nicolescu, Tatiana Nicolescu, Rano Mahkamova, Miriam Yandieva, Natalia Germaniuk (Grigor'eva), E. Grigor'ev, A. Putro, Elena Nikiforova, B. Kostrykin, Galia Laufer, K

  9. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  10. Atmospheric Physics and Earth Observations: Observations of Lyman-agr Emissions of Hydrogen and Deuterium.

    PubMed

    Bertaux, J L; Goutail, F; Kockarts, G

    1984-07-13

    A spectrophotometer was flown on Spacelab 1 to study various mechanisms of Lyman-alpha emission in the upper atmosphere. The use of absorption cells filled with H(2) and D(2) gases allowed us to discriminate a number of weak Lyman-alpha emissions heretofore masked by the strong H geocoronal emission due to resonance scattering of solar photons. Preliminary results are presented on three topics: the first optical detection of the deuterium Lyman-alpha emission at 110 kilometers, with an intensity of 330 rayleighs indicating an eddy diffusion coefficient of 1.3 x 10(6) square centimeters per second; auroral proton precipitations seen on both the night and the day side; and an emission located above 250 kilometers of altitude, interpreted as the result of charge exchange of magnetospheric protons with geocoronal atoms. PMID:17837930

  11. The Composition and Physical Structure of the Io Torus and Atmosphere

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa

    2004-01-01

    Generally speaking the goal of the research was to provide detailed spectral analysis of a Hopkins Ultraviolet Telescope EUV/FUV spectrum of the Io plasma torus. The specific research tasks outlined to achieve this goal were: Line identifications and brightnesses. Verify line identifications with independent data sets. Simple physical modeling to derive ne, ni, Te. Determine neutral source rates. Determine implications of minor species abundances for Io processes. Determine spatial structure from HUT data.

  12. The CHUVA Project Contributions to the Understanding of Anthropogenic Interactions Affecting the Atmospheric Physics over Amazonas.

    NASA Astrophysics Data System (ADS)

    Machado, L.; Cecchini, M. A.; Gonçalves, W.

    2014-12-01

    CHUVA, meaning "rain" in Portuguese, is the acronym for the Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement). The CHUVA project has conducted six field campaigns; the last campaign was held in Manaus in 2014 jointly with GoAmazon and ACRIDICON. CHUVA's main scientific motivation is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. This study will briefly describe the CHUVA project and the main scientific results obtained in the Amazon region. Specifically, we will describe the results of one year radar observation of Manaus rainfall and the relationship with black carbon. The results indicate that the aerosol influence on precipitating systems is modulated by the atmospheric instability degree. For stable atmospheres, the higher the aerosol concentration, the lower the precipitation over the region. On the other hand, for unstable cases, higher concentrations of particulate material are associated with more precipitation, elevated presence of ice and larger rain cells, which suggests an association with long lived systems. Also we will describe some preliminary results obtained during GoAmazon describing the cloud and rainfall size distribution (DSD). The DSD was adjusted to the gamma function using the momentum method and disposed in the three-dimensional space of the gamma parameters: the intercept, the shape and the width. Each point in this three-dimensional space corresponds to a specific DSD and the ensemble of points describes all regimes of precipitation in Amazon. Based in this Gamma space we will discuss the characteristics of the rainfall regime and anthropogenic features.

  13. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  14. Physical activity in postdeployment Operation Iraqi Freedom/Operation Enduring Freedom veterans using Department of Veterans Affairs services.

    PubMed

    Buis, Lorraine R; Kotagal, Lindsey V; Porcari, Carole E; Rauch, Sheila A M; Krein, Sarah L; Richardson, Caroline R

    2011-01-01

    Veteran activity levels may decrease between Active Duty and postdeployment. We examined attitudes and changes in self-reported activities between the two in Operation Iraqi Freedom/Operation Enduring Freedom (OIF/OEF) veterans using Department of Veterans Affairs (VA) services. We conducted an online cross-sectional survey (June-August 2008) of postdeployment OIF/OEF veterans registered with the VA Ann Arbor Healthcare System, Ann Arbor, Michigan. Descriptive statistics summarized demographic data and attitudes, while regression analyses compared physical activities during Active Duty with physical activities postdeployment. Participants (n = 319, 15.6% response rate) reported that they believe staying physically fit is important, they worry about gaining weight, and they believe exercise will keep them healthy (77%, 72%, and 90% agree or strongly agree, respectively). Running (30.0%), Exercise with Gym Equipment (21.5%), Occupational Activities (14.9%), and Walking (13.0%) were the most frequently reported Active Duty physical activities. The most frequently reported postdeployment physical activities included Walking (21.1%), Running (18.5%), and Exercise with Gym Equipment (17.9%). Health problems (39%) and chronic pain (52%) were common barriers to physical activity. Postdeployment OIF/OEF veterans using the VA believe physical activity is beneficial, yet many report health problems and/or chronic pain that makes exercise difficult. Physical activity promotes health, and strategies are needed to facilitate physical activity in this population. PMID:22068369

  15. Physical Modeling of Secondary Arcing at Environmental Pressures in the Range from Atmospheric to Vacuum

    NASA Astrophysics Data System (ADS)

    Batrakov, A. V.; Dubrovskaya, E. L.; Karlik, K. V.; Kim, V. S.; Kochura, S. G.; Lavrinovich, V. A.; Suntsov, S. B.; Shnaider, A. V.

    2015-03-01

    An electrical breakdown in the onboard equipment of orbital space vehicles is a consequence of multifactor physical process related to vacuum electronics, low-temperature plasma physics, and gas discharge. The problem becomes especially urgent in connection with the application of an onboard electrical network voltage of 100 V and higher that exceeds the arcing threshold. The given problem is being actively investigated for more than 10 years; as a result, a number of standards regulating measures on prevention of secondary arcing as a consequence of electrostatic breakdown are currently in force in the world. However, arcing caused by internal processes in onboard equipment without high-voltage initiation has not yet practically been studied, despite the existence of such problem that makes these investigations urgent. The present work contains results of experiments on registration of the threshold parameters, first of all, the pressure that determines the risk of secondary arcing in the presence of the plasma imitating the primary discharge plasma and caused by wire evaporation. Results of experiments confirm the expected decrease of the threshold breakdown voltage below the minima of the Paschen curve. Experimental approaches used in this work are of methodological interest for imitation of arcing conditions and testing of stability of the equipment against arcing in orbital space.

  16. Fly in Atmosphere by Drag Force - Easy Thrust Generation Aircraft Engine Based Physics

    NASA Astrophysics Data System (ADS)

    Pierre Celestin, Mwizerwa

    2013-11-01

    This paper aims to present to the science community another way to fly in atmosphere, a way which is much more cheaper, efficient, safe and easy. Over the years scientists have been trying to find a way to built the vertically taking off vehicles but there have been no satisfactory success(what have been found was very expensive), Even aircrafts we know now need very sophisticated and expensive engines and not efficient enough. This way of flying may help our governments to spend less money on technologies and will help people to travel at very low prices so that, it may be a solution to the crisis which the world faces nowadays. In other words, it is my proposal to the next generation technologies we was looking for for years because everything can fly from the car to the trucks, the spaceships and even the hotels maybe constructed and fly as we construct the ships which sail in the oceans. My way of flying will have many applications in all the aspect of travel as it is going to be explained.

  17. Development of an Atmospheric Climate Model with Self-Adapting Grid and Physics

    SciTech Connect

    Penner, Joyce E.

    2013-08-10

    This project was targeting the development of a computational approach that would allow resolving cloud processes on small-scales within the framework of the most recent version of the NASA/NCAR Finite-Volume Community Atmospheric Model (FVCAM). The FVCAM is based on the multidimensional Flux-Form Semi-Lagrangian (FFSL) dynamical core and uses a ?vertically Lagrangian? finite-volume (FV) representation of the model equations with a mass-conserving re-mapping algorithm. The Lagrangian coordinate requires a remapping of the Lagrangian volume back to Eulerian coordinates to restore the original resolution and keep the mesh from developing distortions such as layers with overlapping interfaces. The main objectives of the project were, first, to develop the 3D library which allows refinement and coarsening of the model domain in spherical coordinates, and second, to develop a non-hydrostatic code for calculation of the model variables within the refined areas that could be seamlessly incorporated with the hydrostatic finite volume dynamical core when higher resolution is wanted. We also updated the aerosol simulation model in CAM in order to ready the model for the treatment of aerosol/cloud interactions.

  18. Generation and transfer of polarized radiation in the solar atmosphere: Physical mechanisms and magnetic-field diagnostics

    NASA Technical Reports Server (NTRS)

    Deglinnocenti, E. L.

    1985-01-01

    The main physical mechanisms responsible for the generation and transfer of polarized radiation in the solar atmosphere can be classified in a suitable bidimensional diagram with an indicator of the magnetic field strength on its vertical axis and an indicator of the radiation field anisotropy on its horizontal axis. The various polarimetric observations performed on solar spectral lines are interpreted with different theoretical schemes according to their classification in the diagram and to the optical depths involved. These theoretical schemes, and the associated diagnostic tools for inferring the magnetic field vector from observations are reviewed. In particular, the role of magneto-optical effects in determining the direction of the observed linear polarization in active regions is discussed in some detail.

  19. Remote sensing of chemical and physical processes in the atmosphere caused by the presence of radioactive ionization source

    NASA Astrophysics Data System (ADS)

    Boyarchuk, Kirill; Tumanov, Mikhail; Karelin, Alexander

    During the years of the nuclear power industry, some large accidents occurred at the nuclear objects, and that caused enormous environmental contamination. The last accident at the Fucushima-1 power plant highlighted the need to review seriously the safety issues at the active power plants and to develop the new effective methods for remote detection and control over radioactive environmental contamination and over general geophysical situation in the areas. The main influence of the fission products on the environment is its ionisation, and therefore various detectable biological and physical processes that are caused by ions. Presence of an ionisation source within the area under study may cause significant changes of absolute humidity and, that is especially important, changes of the chemical potential of atmosphere vapours indicating presence of charged condensation centres. These effects may cause anomalies in the IR radiation emitted from the Earth surface and jumps in the chemical potentials of water vapours that may be observed by means of the satellite remote sensing by specialized equipment (works by Dimitar Ouzounov, Sergey Pulinets, e.a.). In the current study, the theoretical description is presented from positions of the molecular-kinetic condensation theory that shows significant changes of the absolute and relative humidity values in the near-earth air layer. The detailed calculations of the water vapours in atmosphere were carried out with use of detailed non-stationary kinetic model of moist atmosphere air. The processes of condensation and evaporation were effectively considered with use of reactions of neutral water molecules’ association under presence of a third particle, conversion of water molecules with an ion cluster to a more complicated cluster, and the relevant counter reactions’ splits of neutral and ion clusters.

  20. The atmospheric component of the Mediterranean Sea water budget in a WRF multi-physics ensemble and observations

    NASA Astrophysics Data System (ADS)

    Di Luca, Alejandro; Flaounas, Emmanouil; Drobinski, Philippe; Brossier, Cindy Lebeaupin

    2014-11-01

    The use of high resolution atmosphere-ocean coupled regional climate models to study possible future climate changes in the Mediterranean Sea requires an accurate simulation of the atmospheric component of the water budget (i.e., evaporation, precipitation and runoff). A specific configuration of the version 3.1 of the weather research and forecasting (WRF) regional climate model was shown to systematically overestimate the Mediterranean Sea water budget mainly due to an excess of evaporation (~1,450 mm yr-1) compared with observed estimations (~1,150 mm yr-1). In this article, a 70-member multi-physics ensemble is used to try to understand the relative importance of various sub-grid scale processes in the Mediterranean Sea water budget and to evaluate its representation by comparing simulated results with observed-based estimates. The physics ensemble was constructed by performing 70 1-year long simulations using version 3.3 of the WRF model by combining six cumulus, four surface/planetary boundary layer and three radiation schemes. Results show that evaporation variability across the multi-physics ensemble (˜10 % of the mean evaporation) is dominated by the choice of the surface layer scheme that explains more than ˜70 % of the total variance and that the overestimation of evaporation in WRF simulations is generally related with an overestimation of surface exchange coefficients due to too large values of the surface roughness parameter and/or the simulation of too unstable surface conditions. Although the influence of radiation schemes on evaporation variability is small (˜13 % of the total variance), radiation schemes strongly influence exchange coefficients and vertical humidity gradients near the surface due to modifications of temperature lapse rates. The precipitation variability across the physics ensemble (˜35 % of the mean precipitation) is dominated by the choice of both cumulus (˜55 % of the total variance) and planetary boundary layer (˜32 % of

  1. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    New calculations of the acoustic wave energy fluxes generated in the solar convective zone have been performed. The treatment of convective turbulence in the sun and solar-like stars, in particular, the precise nature of the turbulent power spectrum has been recognized as one of the most important issues in the wave generation problem. Several different functional forms for spatial and temporal spectra have been considered in the literature and differences between the energy fluxes obtained for different forms often exceed two orders of magnitude. The basic criterion for choosing the appropriate spectrum was the maximal efficiency of the wave generation. We have used a different approach based on physical and empirical arguments as well as on some results from numerical simulation of turbulent convection.

  2. Physical Processes Governing Atmospheric Trace Constituents Measured from an Aircraft on PEM-Tropics

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Hoell, James M., Jr. (Technical Monitor)

    2001-01-01

    Before the mission, the PI (principal investigator) was instrumental in securing real-time use of the new 51-level ECMWF (European Centre for Medium Range Weather Forecasts) meteorological data. During the mission, he provided flight planning and execution guidance as meteorologist for the P-3B. Mr. Yong Zhu computed and plotted meteorological forecast maps using the ECMWF data and transmitted them to the field from MIT (Massachusetts Institute of Technology). Dr. John Cho was in the field for the Christmas Island portion to extract data from the on-site NOAA (National Oceanic and Atmospheric Administration) radars for local wind profiles that were used at the flight planning meetings. When the power supply for the VHF radar failed, he assisted the NOAA engineer in its repair. After the mission, Mr. Zhu produced meteorological data memos, which were made available to the PEM (Pacific Exploratory Mission)-Tropics B science team on request. An undergraduate student, Ms. Danielle Morse, wrote memos annotating the cloud conditions seen on the aircraft external monitor video tapes. Dr. Cho and the PI circulated a memo regarding the status (and associated problems) of the meteorological measurement systems on the DC-8 and P-3B to the relevant people on the science team. Several papers by members of our project were completed and accepted by JGR (Journal of Geophysical Research) for the first special section on PEM-Tropics B. These papers included coverage of the following topics: 1) examination of boundary layer data; 2) water vapor transport; 3) tropospheric trace constituent layers; 4) summarizations of the meteorological background and events during PEM-Tropics B; 5) concomitant lidar measurements of ozone, water vapor, and aerosol.

  3. The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation

    NASA Astrophysics Data System (ADS)

    Barsotti, S.; Neri, A.; Scire, J. S.

    2008-03-01

    We present a new modeling tool, named VOL-CALPUFF, that is able to simulate the transient and three-dimensional transport and deposition of volcanic ash under the action of realistic meteorological and volcanological conditions throughout eruption duration. The new model derives from the CALPUFF System, a software program widely used in environmental applications of pollutant dispersion, that describes the dispersal process in both the proximal and distal regions and also in the presence of complex orography. The main novel feature of the model is its capability of coupling a Eulerian description of plume rise with a Lagrangian representation of ash dispersal described as a series of diffusing packets of particles or puffs. The model is also able to describe the multiparticle nature of the mixture as well as the tilting effects of the plume due to wind action. The dispersal dynamics and ash deposition are described by using refined orography-corrected meteorological data with a spatial resolution up to 1 km or less and a temporal step of 1 h. The modeling approach also keeps the execution time to a few minutes on common PCs, thus making VOL-CALPUFF a possible tool for the production of ash dispersal forecasts for hazard assessment. Besides the model formulation, this paper presents the type of outcomes produced by VOL-CALPUFF, shows the effect of main model parameters on results, and also anticipates the fundamental control of atmospheric conditions on the ash dispersal processes. In the companion paper, Barsotti and Neri present a first thorough application of VOL-CALPUFF to the simulation of a weak plume at Mount Etna (Italy) with the specific aim of comparing model predictions with independent observations.

  4. Putting Physics First: Three Case Studies of High School Science Department and Course Sequence Reorganization

    ERIC Educational Resources Information Center

    Larkin, Douglas B.

    2016-01-01

    This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…

  5. The contributions of Lewis Fry Richardson to drainage theory, soil physics, and the soil-plant-atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Knight, John; Raats, Peter

    2016-04-01

    The EGU Division on Nonlinear Processes in Geophysics awards the Lewis Fry Richardson Medal. Richardson's significance is highlighted in http://www.egu.eu/awards-medals/portrait-lewis-fry-richardson/, but his contributions to soil physics and to numerical solutions of heat and diffusion equations are not mentioned. We would like to draw attention to those little known contributions. Lewis Fry Richardson (1881-1953) made important contributions to many fields including numerical weather prediction, finite difference solutions of partial differential equations, turbulent flow and diffusion, fractals, quantitative psychology and studies of conflict. He invented numerical weather prediction during World War I, although his methods were not successfully applied until 1950, after the invention of fast digital computers. In 1922 he published the book `Numerical weather prediction', of which few copies were sold and even fewer were read until the 1950s. To model heat and mass transfer in the atmosphere, he did much original work on turbulent flow and defined what is now known as the Richardson number. His technique for improving the convergence of a finite difference calculation is known as Richardson extrapolation, and was used by John Philip in his 1957 semi-analytical solution of the Richards equation for water movement in unsaturated soil. Richardson's first papers in 1908 concerned the numerical solution of the free surface problem of unconfined flow of water in saturated soil, arising in the design of drain spacing in peat. Later, for the lower boundary of his atmospheric model he needed to understand the movement of heat, liquid water and water vapor in what is now called the vadose zone and the soil plant atmosphere system, and to model coupled transfer of heat and flow of water in unsaturated soil. Finding little previous work, he formulated partial differential equations for transient, vertical flow of liquid water and for transfer of heat and water vapor. He

  6. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    SciTech Connect

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  7. Physical-Biogeochemical Interactions that Alter the Uptake of Atmospheric CO2 in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Signorini, S. R.; Hakkinen, S. M.; McClain, C. R.

    2009-04-01

    The Barents Sea is characterized by significant calcification rates during summer promoted by intense coccolithophore blooms that peak during August. Coccolithophores, among which Emiliania huxleyi (E. huxleyi) is the most abundant and widespread species, are considered to be the most productive calcifying organisms on Earth. They inhabit the surface layer (MLD 20m) in highly stratified waters where light intensity is high. E. huxleyi often forms massive blooms in temperate and sub-polar oceans. Coupling of the coccolithophore organic carbon and carbonate pumps interact to consume (photosynthesis) and produce (calcification) CO2. The so-called Rain Ratio, defined as the ratio of particulate inorganic carbon (PIC) to particulate organic carbon (POC) in exported biogenic matter, determines the relative strength of the two biological carbon pumps and influences the flux of CO2 across the surface ocean - atmosphere interface. Here we use a combination of satellite ocean color algorithms, coupled ice-ocean model products, an SST-dependent pCO2 algorithm, and gas exchange parameterization to describe the seasonal and decadal variability of the air-sea CO2 flux in the Barents Sea. Model-derived SST and SSS (1955-2008) are used in conjunction with the pCO2 algorithm and carbonate chemistry to derive decadal trends of sea-air CO2 flux, pH and calcite saturation state. Phytoplankton and calcite production have strong spatial variability. Nutrient supply, biomass and calcite concentrations are modulated by light and MLD seasonal cycle. The size, intensity, and location of coccolithophore blooms vary from year to year, but the peak bloom is always in June in the Central Basin of the sub-polar North Atlantic (45oW - 10oW, 50oN - 65oN) and August in the Barents Sea. Calcification rates range from 5% to 27% of net primary production. The Barents Sea PIC production is about twice that of the Central Basin. Predicted freshening and warming of polar seas may increase stratification

  8. Viability and DNA damage of halobacteria under physical stress conditions, including a simulated Martian atmosphere.

    NASA Astrophysics Data System (ADS)

    Weidler, G.; Leuko, S.; Radax, C.; Stan-Lotter, H.

    2003-04-01

    Several viable halobacteria were isolated from Alpine rock salt of Permo-Triassic age and described as novel species (1, 2). They have apparently survived in the salt sediments over extremely long periods of time. Halobacteria could therefore be suitable model organisms for exploring the possibility of long-term survival of microorganisms on other planets. In addition, the discovery of extraterrestrial halite makes it plausible to consider a specific search for halophiles, perhaps in the planned sample return missions to Mars. We are developing experimental procedures to test the viability of halobacteria under Martian conditions. Cells of two species of haloarchaea were used: 1. Halobacterium sp. NRC-1, whose whole genome sequence is already known; 2. Halococcus dombrowskii, a novel isolate from Austrian Permo-Triassic rock salt (2). Cells were grown in complex medium, containing up to 4 M NaCl, and were kept at minus 70riptsizeraisebox{1.5ex{o}}C for up to seven days, or freeze-dried in a lyophilizer. In addition, exposure experiments of halobacterial cells in a liquid nitrogen cooled Martian simulation chamber, at the Austrian Academy of Sceinces, were begun, where temperatures from about plus 5 to minus 100riptsizeraisebox{1.5ex{o}}C, pressures of 6-8 mbar, and a carbon dioxide atmosphere (or other gas mixtures) can be produced. Survival of cells was evaluated by determination of colony-forming units, microscopic examination of cellular morphology, and examination of potential strand breaks in DNA using pulsed-field gel electrophoresis (PFGE). Results showed a reduction of viable cells, following deep freezing, or lyophilization, respectively, by a factor of about 10 to 100, depending somewhat on the presence of cations, glycerol and other protective substances. Data will be presented on the DNA from stressed halobacterial cells, following digestion by restriction enzymes and separation by PFGE. 1) Stan-Lotter H, McGenity TJ, Legat A, Denner EBM, Glaser K

  9. Integrated systems with applications to the multi-phases of the ephemerides, physics and methematics of the upper atmosphere. Final report, June 1983-February 1987

    SciTech Connect

    Bass, J.N.; Bhavnani, K.H.; Bonito, N.A.; Bryant, C.M.; McNEil, W.J.

    1987-02-27

    This contract provided research, analysis and development support for integrated systems with applications to ephemerides, physics, and mathematics of the upper atmosphere. Investigations were supported in various aspects of neutral atmospheric density, ionospheric scintillation, magnetic field models, magnetospherically trapped particles and auroral-particle precipitation. Software systems have been developed for processing and analyzing data pertaining to these research areas, and for interactive targeting of the space shuttle, ephemeris computation during double thrust, and processing of celestial aspect sensor data.

  10. Incorporating a Full-Physics Meteorological Model into an Applied Atmospheric Dispersion Modeling System

    SciTech Connect

    Berg, Larry K.; Allwine, K Jerry; Rutz, Frederick C.

    2004-08-23

    A new modeling system has been developed to provide a non-meteorologist with tools to predict air pollution transport in regions of complex terrain. This system couples the Penn State/NCAR Mesoscale Model 5 (MM5) with Earth Tech’s CALMET-CALPUFF system using a unique Graphical User Interface (GUI) developed at Pacific Northwest National Laboratory. This system is most useful in data-sparse regions, where there are limited observations to initialize the CALMET model. The user is able to define the domain of interest, provide details about the source term, and enter a surface weather observation through the GUI. The system then generates initial conditions and time constant boundary conditions for use by MM5. MM5 is run and the results are piped to CALPUFF for the dispersion calculations. Contour plots of pollutant concentration are prepared for the user. The primary advantages of the system are the streamlined application of MM5 and CALMET, limited data requirements, and the ability to run the coupled system on a desktop or laptop computer. In comparison with data collected as part of a field campaign, the new modeling system shows promise that a full-physics mesoscale model can be used in an applied modeling system to effectively simulate locally thermally-driven winds with minimal observations as input. An unexpected outcome of this research was how well CALMET represented the locally thermally-driven flows.

  11. Large-scale atmospheric influence on the physical and biogeochemical properties of the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Tim, Nele; Zorita, Eduardo; Hünicke, Birgit

    2014-05-01

    The Namibian upwelling region is one of the four Eastern Boundary Upwelling Ecosystems and among the most productive areas in the World Ocean. Here, upwelling indices have been defined in three ways. First, by performing EOF analyses of Sea Surface Temperature (SST) observations HadlSST1 and high resolution ocean model simulations (MPI-OM (STORM) and MOM4), driven by meteorological reanalysis. Second, water vertical velocity of STORM and MOM4. Third, the area between the 13°C isotherm and the coastline was used to indicate the intensity of the upwelling. Correlations with observed atmospheric variables (NCEP reanalysis) over the whole southern Atlantic show which conditions favour upwelling: higher than normal South Atlantic anticyclone, strong and southerly wind/wind stress and pressure and air temperature contrast between ocean and land. Separating the coastal area off southern Africa at Lüderitz (28°S) depicts the differences between the northern and southern Benguela upwelling region. Northern Benguela is characterised by a negative trend in upwelling over the last 60 year, Southern Benguela by a positive one. Furthermore, Northern Benguela upwelling seems to be influenced strongly by the conditions described above while the wind field correlated with the upwelling south of 28°S do not show stronger southerly winds. Additionally, the southern upwelling index of MOM4 is not reflected properly in the corresponding SST field. A reason for this could be an overlaying signal, possibly the advection of warm air from the Indian or the central Atlantic Ocean. The sea level pressure (SLP) gradient between land and ocean of NCEP reanalysis provide a opposite trend to the one postulated by Bakun (¹). We did not find an indication for a stronger pressure contrast between land and ocean. Correlations with indices of El Niño Southern Oscillation (ENSO), the Antarctic Oscillation (AAO) and an index of the tropical Atlantic SST variability. None of these correlations is

  12. Use of high-volume outdoor smog chamber photo-reactors for studying physical and chemical atmospheric aerosol formation and composition

    NASA Astrophysics Data System (ADS)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.

  13. Fine-Structure Measurements of Oxygen A Band Absorbance for Estimating the Thermodynamic Average Temperature of the Earth's Atmosphere: An Experiment in Physical and Environmental Chemistry

    ERIC Educational Resources Information Center

    Myrick, M. L.; Greer, A. E.; Nieuwland, A.; Priore, R. J.; Scaffidi, J.; Andreatta, Daniele; Colavita, Paula

    2006-01-01

    The experiment describe the measures of the A band transitions of atmospheric oxygen, a rich series of rotation-electronic absorption lines falling in the deep red portion of the optical spectrum and clearly visible owing to attenuation of solar radiation. It combines pure physical chemistry with analytical and environmental science and provides a…

  14. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    NASA Technical Reports Server (NTRS)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  15. Final Report DE-FG02-00ER54583: "Physics of Atmospheric Pressure Glow Discharges" and "Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas"

    SciTech Connect

    Uwe Kortshagen; Joachim Heberlein; Steven L. Girshick

    2009-06-01

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  16. Physical and plasmachemical aspects of diffuse coplanar barrier discharge as a novel atmospheric-pressure plasma source

    NASA Astrophysics Data System (ADS)

    Cernak, M.; Kovacik, D.; Zahoranova, A.; Rahel, J.

    2008-07-01

    Collaborating Czech and Slovakian university teams have recently developed an innovative plasma source, the so-called Diffuse Coplanar Surface Barrier Discharge (DCSBD), which has the potential to move a step closer to the industry requirement for in-line treatment of low-added-value materials using a highly-nonequlibrium ambient air plasma (Simor et al. 2002, The idea is to generate a thin (on the order of 0.1 mm) layer of highly-nonequlibrium plasma with a high power density (up to 100 W/cm^3) in the immediate vicinity of the treated surface and bring it into a close contact with the treated surface. Comparing to atmospheric-pressure glow discharge, volume dielectric barrier discharge, and plasma jet plasmas, such a diffuse plasma layer is believed to provide substantial advantages in energy consumption, exposure time, and technical simplicity. A brief outline of physical mechanism and basic properties of DCSBD will given using the results of emission spectroscopy, high-speed camera, and spatially resolved cross-correlation spectroscopy studies. The presentation will review also a current state of the art in in-line plasma treatment of low-cost materials and opportunities for the use of the so-called Diffuse Coplanar Surface Dielectric Barrier Discharge (DCSBD). The results obtained on the ambient air plasma treatments of textile, paper, wood, and glass illustrate that DCSBD offers outstanding performance with extremely low energy consumption for large area, uniform surface modifications of materials under continuous process conditions.

  17. MECA Workshop on Atmospheric H2O Observations of Earth and Mars. Physical Processes, Measurements and Interpretations

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M. (Editor); Haberle, Robert M. (Editor)

    1988-01-01

    The workshop was held to discuss a variety of questions related to the detection and cycling of atmospheric water. Among the questions addressed were: what factors govern the storage and exchange of water between planetary surfaces and atmospheres; what instruments are best suited for the measurement and mapping of atmospheric water; do regolith sources and sinks of water have uniquely identifiable column abundance signatures; what degree of time and spatial resolution in column abundance data is necessary to determine dynamic behavior. Of special importance is the question, does the understanding of how atmospheric water is cycled on Earth provide any insights for the interpretation of Mars atmospheric data.

  18. The middle atmosphere and space observations; International Summer School on Space Physics, Marseille, France, Aug. 1990, Proceedings

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Papers are presented on topics in the dynamics of the middle atmosphere, the homogeneous chemistry of gas-phase neutral constituents in the middle atmosphere, stratospheric turbulence, the stratospheric ozone balance considered as a coupled chemical system, and gases of biological origin in the atmosphere. Consideration is also given to lidar measurements of ozone, microwave techniques for the measurement of stratospheric constituents, the seasonal evolution of the extratropical middle atmosphere, the WINDII experiment on the UARS satellite, and the use of the European polar platform for middle-atmosphere research.

  19. The middle atmosphere and space observations; International Summer School on Space Physics, Marseille, France, Aug. 1990, Proceedings

    NASA Astrophysics Data System (ADS)

    Papers are presented on topics in the dynamics of the middle atmosphere, the homogeneous chemistry of gas-phase neutral constituents in the middle atmosphere, stratospheric turbulence, the stratospheric ozone balance considered as a coupled chemical system, and gases of biological origin in the atmosphere. Consideration is also given to lidar measurements of ozone, microwave techniques for the measurement of stratospheric constituents, the seasonal evolution of the extratropical middle atmosphere, the WINDII experiment on the UARS satellite, and the use of the European polar platform for middle-atmosphere research.

  20. Research in experimental elementary particle physics. A proposal to the U.S. Department of Energy

    SciTech Connect

    Andrew P. White; Kaushik De; Paul A. Draper; Ransom Stephens

    1995-04-13

    We report on the activities of the High Energy Physics Group at the University of Texas at Arlington for the period 1994-95. We propose the continuation of the research program for 1996-98 with strong participation in the detector upgrade and physics analysis work for the D0 Experiment at Fermilab, prototyping and pre-production studies for the muon and calorimeter systems for the ATLAS Experiment at CERN, and detector development and simulation studies for the PP2PP Experiment at Brookhaven.

  1. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.

    SciTech Connect

    Ernst, Jesse; Jain, Vivek

    2014-08-15

    A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

  2. Research supported by the department of energy Task C: Experimental high energy physics. 1995 Final report

    SciTech Connect

    Brau, J.

    1996-07-01

    This report describes work of the University of Oregon high-energy physics group related to the Stanford Linear Detector, LEP`s OPAL detector, the NuTeV experiment at Fermilab, the SSC`s GEM detector, and top-quark studies at the Next Linear Collider. 160 refs., 53 figs., 12 tabs.

  3. Nevada Department of Education Physical Education Content Standards [and] Performance Level Descriptors.

    ERIC Educational Resources Information Center

    Nevada State Dept. of Education, Carson City.

    This document presents content and performance standards for physical education in Nevada's public schools. The five content standards are: students will understand and apply movement concepts and principles to the learning and development of motor skills; students will demonstrate competency in many movement forms and proficiency in a few…

  4. Annual Progress Report to the Department of Energy for Project Entitled "Board on Physics and Astronomy"

    SciTech Connect

    Shapero, Donald

    2008-06-12

    The overall objectives of the Board on Physics and Astronomy are to identify important new developments at the scientific forefronts, foster interactions with other fields, strengthen connections to technology, and facilitate effective service to the nation by the scientific community. The membership of the BPA is drawn from universities, industry, and national laboratories. Meetings are devoted to reviewing activities being carried out under its auspices, discussing critical issues, and developing new initiatives. In general, studies initiated by the BPA focusing on particular areas of physics or astronomy are carried out by ad hoc groups of experts in those areas. More information on the BPA’s strategy, activities, and volunteers can be found in the attached PDF.

  5. The U.C. Berkeley Space Sciences Laboratory and Department of Physics Submillimeter Receiver

    NASA Technical Reports Server (NTRS)

    Harris, A. I.; Jaffe, D. T.; Genzel, R.

    1986-01-01

    The UCB submm heterodyne receiver is a complete system for high-resolution astronomical spectroscopy in the 350-micron and 450-micron atmospheric windows. This compact system mounts directly at the Cassegrain focus of large optical and IR telescopes. It consists of a laser local oscillator, open structure mixer, quasi-optical coupling system, a broad-band IF system, and an acoustooptical spectrometer. The local oscillator is a 1-m-long submm laser optically pumped by a CO2 laser. The mixer is a quasi-optical corner-cube antenna structure and Schottky diode. The mixer is currently operated at room temperature, and its performance at 77 K is being evaluated. The system noise temperature is less than 7000 K SSB during observations.

  6. Multi-scale Drivers of Variations in Atmospheric Evaporative Demand Based on Observations and Physically-based Modeling

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Li, D.

    2015-12-01

    Evapotranspiration (ET) is a key link between the availability of water resources and climate change and climate variability. Variability of ET has important environmental and socioeconomic implications for managing hydrological hazards, food and energy production. Although there have been many observational and modeling studies of ET, how ET has varied and the drivers of the variations at different temporal scales remain elusive. Much of the uncertainty comes from the atmospheric evaporative demand (AED), which is the combined effect of radiative and aerodynamic controls. The inconsistencies among modeled AED estimates and the limited observational data may originate from multiple sources including the limited time span and uncertainties in the data. To fully investigate and untangle the intertwined drivers of AED, we present a spectrum analysis to identify key controls of AED across multiple temporal scales. We use long-term records of observed pan evaporation for 1961-2006 from 317 weather stations across China and physically-based model estimates of potential evapotranspiration (PET). The model estimates are based on surface meteorology and radiation derived from reanalysis, satellite retrievals and station data. Our analyses show that temperature plays a dominant role in regulating variability of AED at the inter-annual scale. At the monthly and seasonal scales, the primary control of AED shifts from radiation in humid regions to humidity in dry regions. Unlike many studies focusing on the spatial pattern of ET drivers based on a traditional supply and demand framework, this study underlines the importance of temporal scales when discussing controls of ET variations.

  7. On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime

    SciTech Connect

    Prevosto, L. Mancinelli, B.; Chamorro, J. C.; Cejas, E.; Kelly, H.

    2015-02-15

    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360 V and a current density at the cathode surface of about 11 A/cm{sup 2}, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium.

  8. Validating and assessing the sensitivity of the climate model with an ocean general circulation model developed at the Institute of Atmospheric Physics, Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Muryshev, K. E.; Eliseev, A. V.; Mokhov, I. I.; Diansky, N. A.

    2009-08-01

    A new version of the Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS), climate model (CM) has been developed using an ocean general circulation model instead of the statistical-dynamical ocean model applied in the previous version. The spatial resolution of the new ocean model is 3° in latitude and 5° in longitude, with 25 unevenly spaced vertical levels. In the previous version of the oceanic model, as in the atmospheric model, the horizontal resolution was 4.5° in latitude and 6° in longitude, with four vertical levels (the upper quasi-homogeneous layer, seasonal thermocline, abyssal ocean, and bottom friction layer). There is no correction for the heat and momentum fluxes between the atmosphere and ocean in the new version of the IAP RAS CM. Numerical experiments with the IAP RAS CM have been performed under current initial and boundary conditions, as well as with an increasing concentration of atmospheric carbon dioxide. The main simulated atmospheric and oceanic fields agree quite well with observational data. The new version’s equilibrium temperature sensitivity to atmospheric CO2 doubling was found to be 2.9 K. This value lies in the mid-range of estimates (2-4.5 K) obtained from simulations with state-of-the-art models of different complexities.

  9. Goddard Laboratory for Atmospheric Sciences physical retrieval system for remote determination of weather and climate parameter from HIRS2 and MSU observations

    NASA Technical Reports Server (NTRS)

    Susskind, J.

    1984-01-01

    At the Goddard Laboratory for Atmospheric Sciences (GLAS) a physically based satellite temperature sounding retrieval system, involving the simultaneous analysis of HIRS2 and MSU sounding data, was developed for determining atmospheric and surface conditions which are consistent with the observed radiances. In addition to determining accurate atmospheric temperature profiles even in the presence of cloud contamination, the system provides global estimates of day and night sea or land surface temperatures, snow and ice cover, and parameters related to cloud cover. Details of the system are described elsewhere. A brief overview of the system is presented, as well as recent improvements and previously unpublished results, relating to the sea-surface intercomparison workshop, the diurnal variation of ground temperatures, and forecast impact tests.

  10. Influence of Inert and Oxidizing Atmospheres on the Physical and Optical Properties of Luminescent Carbon Dots Prepared through Pyrolysis of a Model Molecule.

    PubMed

    Machado, Cláudia Emanuele; Tartuci, Letícia Gazola; de Fátima Gorgulho, Honória; de Oliveira, Luiz Fernando Cappa; Bettini, Jefferson; Pereira dos Santos, Daniela; Ferrari, Jefferson Luis; Schiavon, Marco Antônio

    2016-03-18

    This work used L-tartaric acid as a model molecule to evaluate how the use of inert and oxidizing atmospheres during pyrolysis affected the physical and optical properties of the resulting carbon dots (CDs). Pyrolysis revealed to be a simple procedure that afforded CDs in a single step, dismissed the addition of organic solvents, and involved only one extraction stage that employed water. By X-ray diffraction a dependency between the structure of the CDs and the atmosphere (oxidizing or inert) used during the pyrolysis was found. Potentiometric titration demonstrated that the CDs were largely soluble in water; it also aided characterization of the various groups that contained sp(3) -hybridized carbon atoms on the surface of the dots. Raman spectroscopy suggested that different amounts of sp(2)- and sp(3)-hybridized carbon atoms emerged on the CDs depending on the pyrolysis atmosphere. In conclusion, the pyrolysis atmosphere influenced the physical properties, such as the composition and the final structure. PMID:26845751

  11. Physics.

    ERIC Educational Resources Information Center

    Bromley, D. Allan

    1980-01-01

    The author presents the argument that the past few years, in terms of new discoveries, insights, and questions raised, have been among the most productive in the history of physics. Selected for discussion are some of the most important new developments in physics research. (Author/SA)

  12. Commemoration of the centenary of the birth of Academician S N Vernov(Joint scientific session of the Physical Sciences Division of the Russian Academy of Sciences and the Department of Physics of M V Lomonosov Moscow State University, 16 June 2010)

    NASA Astrophysics Data System (ADS)

    2011-02-01

    On 16 June 2010, a joint scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), Joint Physical Society of the Russian Federation, Scientific Council of the Department of Physics of Moscow State University (MSU), Scientific Council of the MSU SINP, RAS Council on Space Research, Coordination Scientific and Technical Council of the Federal Space Agency, RAS Scientific Council on the Integrated Problem of Cosmic Rays and RAS Scientific Council on Physics of Solar-Terrestrial Relations took place at the R V Khokhlov central physics auditorium of the MSU Department of Physics. The session was devoted to the 100th anniversary of the birth of Academician Sergei Nikolaevich Vernov.The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports:Ryazhskaya O G (RAS Institute for Nuclear Research, Moscow) "Opening address"; (1) Matveev V A (RAS Physical Sciences Division, Moscow) "A few words about S N Vernov" (2) Sadovnichy V A (M V Lomonosov Moscow State University, Moscow) "S N Vernov as a scientist at Moscow State University"; (3) Trukhin V I (M V Lomonosov Moscow State University, Moscow) "S N Vernov as a professor in the MSU Department of Physics"; (4) Panasyuk M I (D V Skobeltsyn Institute of Nuclear Physics of M V Lomonosov Moscow State University, Moscow) "Cosmic ray astrophysics before and after 1957"; (5) Dergachev V A (RAS A F Ioffe Physical-Technical Institute, St. Petersburg) "S N Vernov and space physics: Apatity-Leningrad, 1968-1983"; (6) Stozhkov Yu I ( P N Lebedev Physical Institute, RAS, Moscow) "S N Vernov and ground-breaking studies of cosmic rays in the stratosphere"; (7) Berezhko E G, Krymsky G F (Yu G Shafer Institute of Cosmophysical Research and Aeronomy of the SB RAS Yakutsk Scientific Center, Yakutsk) "S N Vernov and cosmic ray research in Yakutia".Texts of the articles based on the reports presented are printed below. • Opening address, O

  13. Efficient and physically accurate modeling and simulation of anisoplanatic imaging through the atmosphere: a space-variant volumetric image blur method

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Ritcey, James A.

    2015-09-01

    We present a novel method for efficient and physically-accurate modeling & simulation of anisoplanatic imaging through the atmosphere; in particular we present a new space-variant volumetric image blur algorithm. The method is based on the use of physical atmospheric meteorology models, such as vertical turbulence profiles and aerosol/molecular profiles which can be in general fully spatially-varying in 3 dimensions and also evolving in time. The space-variant modeling method relies on the metadata provided by 3D computer graphics modeling and rendering systems to decompose the image into a set of slices which can be treated in an independent but physically consistent manner to achieve simulated image blur effects which are more accurate and realistic than the homogeneous and stationary blurring methods which are commonly used today. We also present a simple illustrative example of the application of our algorithm, and show its results and performance are in agreement with the expected relative trends and behavior of the prescribed turbulence profile physical model used to define the initial spatially-varying environmental scenario conditions. We present the details of an efficient Fourier-transform-domain formulation of the SV volumetric blur algorithm and detailed algorithm pseudocode description of the method implementation and clarification of some nonobvious technical details.

  14. Influence of the micro-physical properties of the aerosol on the atmospheric correction of OLI data acquired over desert area

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana

    2016-04-01

    This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected

  15. Public emergency department: the psychosocial impact on the physical domain of quality of life of nursing professionals

    PubMed Central

    Kogien, Moisés; Cedaro, José Juliano

    2014-01-01

    Objectives to determine the psychosocial factors of work related to harm caused in the physical domain of the quality of life of nursing professionals working in a public emergency department. Method cross-sectional, descriptive study addressing 189 nursing professionals. The Job Stress Scale and the short version of an instrument from the World Health Organization to assess quality of life were used to collect data. Robert Karasek's Demand-Control Model was the reference for the analysis of the psychosocial configuration. The risk for damage was computed with a confidence interval of 95%. Results In regard to the psychosocial environment, the largest proportion of workers reported low psychological demands (66.1%) and low social support (52.4%), while 60.9% of the professionals experienced work situations with a greater potential for harm: high demand job (22.8%) and passive work (38.1%). Conclusions low intellectual discernment, low social support and experiencing a high demand job or a passive job were the main risk factors for damage in the physical domain of quality of life. PMID:24553703

  16. The Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Hansen, J. E. (Editor)

    1975-01-01

    Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.

  17. Atmospheric Aging and Its Impacts on Physical Properties of Soot Aerosols: Results from the 2009 SHARP/SOOT Campaign

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Khalizov, A. F.; Zheng, J.; Reed, C. C.; Collins, D. R.; Olaguer, E. P.

    2009-12-01

    Atmospheric aerosols impact the Earth energy balance directly by scattering solar radiation back to space and indirectly by changing the albedo, frequency, and lifetime of clouds. Carbon soot (or black carbon) produced from incomplete combustion of fossil fuels and biomass burning represents a major component of primary aerosols. Because of high absorption cross-sections over a broad range of the electromagnetic spectra, black carbon contributes significantly to climate change by direct radiative forcing and is the second most important component causing global warming after carbon dioxide. In areas identified as aerosol hotspots, which include many megacities, solar heating by soot-containing aerosols is roughly comparable to heating due to greenhouse gases. In addition, light absorbing soot aerosols may reduce photolysis rates at the surface level, producing a noticeable impact on photochemistry. Enhanced light absorption and scattering by soot can stabilize the atmosphere, retarding vertical transport and exacerbating accumulation of gaseous and particulate matter (PM) pollutants within the planetary boundary layer. Less surface heating and atmospheric stabilization may decrease formation of clouds, and warming in the atmosphere can evaporate existing cloud droplets by lowering relative humidity. Furthermore, soot-containing aerosols represent a major type of PM that has adverse effects on human health. When first emitted, soot particles are low-density aggregates of loosely connected primary spherules. Freshly emitted soot particles are typically hydrophobic, but may become cloud condensation nuclei (CCN) during atmospheric aging by acquiring hydrophilic coatings. Hygroscopic soot particles, being efficient CCN, can exert indirect forcing on climate. In this talk, results will be presented on measurements of soot properties during the 2009 SHARP/SOOT Campaign. Ambient aerosols and fresh soot particles injected into a captured air chamber were monitored to

  18. Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling

    NASA Astrophysics Data System (ADS)

    Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Camy-Peyret, C.

    2016-10-01

    Spectra observed by the Infrared Atmospheric Sounder Interferometer (IASI) have been used to assess both retrievals and the spectral quality and consistency of current forward models and spectroscopic databases for atmospheric gas line and continuum absorption. The analysis has been performed with thousands of observed spectra over sea surface in the Pacific Ocean close to the Mauna Loa (Hawaii) validation station. A simultaneous retrieval for surface temperature, atmospheric temperature, H2O, HDO, O3 profiles and gas average column abundance of CO2, CO, CH4, SO2, N2O, HNO3, NH3, OCS and CF4 has been performed and compared to in situ observations. The retrieval system considers the full IASI spectrum (all 8461 spectral channels on the range 645-2760 cm-1). We have found that the average column amount of atmospheric greenhouse gases can be retrieved with a precision better than 1% in most cases. The analysis of spectral residuals shows that, after inversion, they are generally reduced to within the IASI radiometric noise. However, larger residuals still appear for many of the most abundant gases, namely H2O, CH4 and CO2. The H2O ν2 spectral region is in general warmer (higher radiance) than observations. The CO2ν2 and N2O/CO2ν3 spectral regions now show a consistent behavior for channels, which are probing the troposphere. Updates in CH4 spectroscopy do not seem to improve the residuals. The effect of isotopic fractionation of HDO is evident in the 2500-2760 cm-1 region and in the atmospheric window around 1200 cm-1.

  19. The U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facilities on the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Ivey, M. D.; Verlinde, J.; Richardson, S.; Zak, B.; Zirzow, J.

    2008-12-01

    The U.S. Department of Energy (DOE) provides scientific infrastructure and data archives to the international Arctic research community through a national user facility, the ARM Climate Research Facilities (ACRF). One of three fixed ARM Climate Research Facilities is located on the North Slope of Alaska. Since 1998, these facilities near the communities of Barrow and Atqasuk have provided data about cloud and radiative processes at high latitudes. These data are used to refine models and parameterizations related to the Arctic. Data records from the instruments at these facilities and data products are available through web- accessible archives. The ACRF's role is to provide infrastructure support for climate research, including Arctic research, to the global scientific community. DOE's climate research programs, with a focus on clouds and aerosols and their impact on the radiative budget, define the research scope supported by the Facility. In addition to a set of baseline instruments at the two fixed North Slope ACRF locations, temporary or guest instruments are operated as required to support field campaigns. Recent field campaigns have included over-flights by aircraft with cloud and aerosol-sampling instrumentation. To support proposed deployments of unmanned aerial vehicle and unmanned aerial systems on the North Slope of Alaska and over the Arctic Ocean, permissions are being obtained and access arranged for use of a runway and nearby ground support facilities at Oliktok Point, Alaska. In addition to the fixed facilities, ARM Mobile Facilities may be used for high-latitude deployments. Deployments for the ARM Mobile Facilities are selected through a formal process that includes peer review of science-focused proposals. The first ARM Mobile Facility is nearing the end of a deployment in China. Design and development of a second ARM Mobile Facility will begin in late calendar year 2008. This paper discusses the scientific infrastructure, data streams and

  20. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    SciTech Connect

    Haase, M.; Hine, C.; Robertson, C.

    1996-12-31

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.

  1. Public Outreach of the South Texas Health Physic Society and Texas A&M University Nuclear Engineering Department

    SciTech Connect

    Berry, R. O.

    2003-02-24

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to site a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.

  2. Analysis of vegetation by the application of a physically-based atmospheric correction algorithm to OLI data: a case study of Leonessa Municipality, Italy

    NASA Astrophysics Data System (ADS)

    Mei, Alessandro; Manzo, Ciro; Petracchini, Francesco; Bassani, Cristiana

    2016-04-01

    Remote sensing techniques allow to estimate vegetation parameters related to large areas for forest health evaluation and biomass estimation. Moreover, the parametrization of specific indices such as Normalized Difference Vegetation Index (NDVI) allows to study biogeochemical cycles and radiative energy transfer processes between soil/vegetation and atmosphere. This paper focuses on the evaluation of vegetation cover analysis in Leonessa Municipality, Latium Region (Italy) by the use of 2015 Landsat 8 applying the OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) algorithm developed following the procedure described in Bassani et al. 2015. The OLI@CRI is based on 6SV radiative transfer model (Kotchenova et al., 2006) ables to simulate the radiative field in the atmosphere-earth coupled system. NDVI was derived from the OLI corrected image. This index, widely used for biomass estimation and vegetation analysis cover, considers the sensor channels falling in the near infrared and red spectral regions which are sensitive to chlorophyll absorption and cell structure. The retrieved product was then spatially resampled at MODIS image resolution and then validated by the NDVI of MODIS considered as reference. The physically-based OLI@CRI algorithm also provides the incident solar radiation at ground at the acquisition time by 6SV simulation. Thus, the OLI@CRI algorithm completes the remote sensing dataset required for a comprehensive analysis of the sub-regional biomass production by using data of the new generation remote sensing sensor and an atmospheric radiative transfer model. If the OLI@CRI algorithm is applied to a temporal series of OLI data, the influence of the solar radiation on the above-ground vegetation can be analysed as well as vegetation index variation.

  3. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    SciTech Connect

    Board on Physics and Astronomy

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  4. African Americans & Hispanics among Physics & Astronomy Faculty: Results from the 2012 Survey of Physics & Astronomy Degree-Granting Departments. Focus On

    ERIC Educational Resources Information Center

    Ivie, Rachel; Anderson, Garrett; White, Susan

    2014-01-01

    The United States is becoming more and more diverse, but the representation of some minority groups in physics and astronomy lags behind. Although 13% of the US population is African American or black, and 17% is Hispanic (US Census), the representation of these two groups in physics and astronomy is much lower. For this reason, African Americans…

  5. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  6. Michigan Council on Physical Fitness and Health Annual Report to the Michigan Department of Public Health, December 29, 1978.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Public Health, Lansing. Council on Physical Fitness & Health.

    The projects which the Michigan Council on Physical Fitness and Health undertook in 1978 are reported and described here. The projects and activities include: a school physical fitness program that provided assistance to public, private, and parochial schools in monitoring the physical fitness levels of all students in grades kindergarten through…

  7. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    NASA Astrophysics Data System (ADS)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J.; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O.; DuBow, Michael S.; Odic, Emmanuel

    2015-11-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H2O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ~5.5 and ~5 log10 reductions were observed for E. coli DH-1 bacteria (from 106 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H2O2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C the contribution of heating, along with that of H2O2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions.

  8. TV series on atmospheric science

    NASA Astrophysics Data System (ADS)

    Cruise, Karla A.

    Acid rain, climate change, air pollution, and the possible inadvertent depletion of ozone in the upper atmosphere will be among the subjects covered in an eight-part television series that premiers April 3, 1986, on public television. Part of a 32-lecture program entitled “Earth Science for Teachers,” this series will feature new developments in the physics, chemistry, and dynamics of the atmosphere and will focus on the role of anthropogenic activities that affect atmospheric composition and climate.Public television station WHRO-TV in Norfolk, Va., in cooperation with Virginia's Department of Education in Richmond, produced the series, which involved guest lecturers from across the country. Joel S. Levine, senior research scientist in the Atmospheric Science Division at the Langley Research Center of the National Aeronautics and Space Administration (NASA) in Hampton, Va., served as the organizer and coordinator of the series. Joseph D. Exline, Associate Director for Science, Virginia Department of Education, assisted with the development and production of the series.

  9. A Year-Long Research Experience Program in Solar and Atmospheric Physics at the Queensborough Community College of the City University of New York (CUNY)

    NASA Astrophysics Data System (ADS)

    Damas, M. C.; Cheung, T. D.; Ngwira, C.; Mohamed, A.; Knipp, D. J.; Johnson, L. P.; Zheng, Y.; Paglione, T.

    2015-12-01

    The Queensborough Community College (QCC) of the City University of New York (CUNY), a Hispanic and minority-serving institution, is the recipient of a 2-year NSF EAGER (Early Concept Grants for Exploratory Research) grant to design and implement a high-impact practice integrated research and education program in solar and atmospheric physics. Through a strong collaboration with CUNY/City College of New York and NASA Goddard Space Flight Center's Community Coordinated Modeling Center (CCMC), the project engages underrepresented community college students in geosciences-related STEM fields through a year-long research experience with two components: 1) during the academic year, students are enrolled in a course-based introductory research (CURE) where they conduct research on real-world problems; and 2) during the summer, students are placed in research internships at partner institutions. We will present the results of the first year-long research experience, including successes and challenges.

  10. Validation of the Institute of Atmospheric Physics emergency response model with the meteorological towers measurements and SF6 diffusion and pool fire experiments

    NASA Astrophysics Data System (ADS)

    An, Junling; Xiang, Weiling; Han, Zhiwei; Xiao, Kaitao; Wang, Zifa; Wang, Xinhua; Wu, Jianbin; Yan, Pingzhong; Li, Jie; Chen, Yong; Li, Jian; Li, Ying

    2013-12-01

    The urban canopy layer parameterization (UCP), a successive bias correction method (SBC), an atmospheric dispersion module for denser-than-air releases, and the emission intensity of chemicals monitored by a Fourier-transform-infrared remote sensor (EM27) were incorporated into the Institute of Atmospheric Physics emergency response model (IAPERM). IAPERM's performance was tested in Beijing using the field data collected from a 325-m meteorological tower and sulfur hexafluoride (SF6) diffusion and pool fire experiments. The results show that the IAPERM simulations of the vertical wind speeds in the urban canopy layer (UCL) with the UCP perform much better than those with the Monin-Obukhov similarity parameterization scheme. The IAPERM forecasts for air temperature and relative humidity are more accurate than those for wind speed and direction, which require correction. When the SBC with the local terrain effect is adopted, the wind speed and direction and the maximum concentrations of black carbon near the ground are well forecasted. IAPERM reproduces the spatial distributions of the SF6 observations more accurately near the release source (≤500 m) than at locations far away from the release source with the use of the observed meteorological parameters. These results suggest that IAPERM could be a promising tool for passive and dense gas diffusion simulations or forecasts.

  11. Atmospheric science and power production

    SciTech Connect

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  12. Missed connections: A case study of the social networks of physics doctoral students in a single department

    NASA Astrophysics Data System (ADS)

    Knaub, Alexis Victoria

    Gender disparity is an issue among the many science, technology, engineering, and mathematics (STEM) fields. Although many previous studies examine gender issues in STEM as an aggregate discipline, there are unique issues to each of the fields that are considered STEM fields. Some fields, such as physics, have fewer women graduating with degrees than other fields. This suggests that women's experiences vary by STEM field. The majority of previous research also examines gender and other disparities at either the nationwide or individual level. This project entailed social network analysis through survey and interview data to examine a single physics department's doctoral students in order to provide a comprehensive look at student social experiences. In addition to examining gender, other demographic variables were studied to see if the results are truly associated with gender; these variables include race/ethnicity, year in program, student type, relationship status, research type, undergraduate institute, and subfield. Data were examined to determine if there are relationships to social connections and outcome variables such as persistence in completing the degree and the time to degree. Data collected on faculty were used to rank faculty members; data such as h-indices and number of students graduate over the past 5 years were collected. Fifty-five (55) of 110 possible participants completed the survey; forty-three are male, and twelve are female. Twenty-eight of the fifty-five survey participants were interview; twenty-three are male, and five are female. Findings for peer networks include that peer networks are established during the first year and do not change drastically as one progresses in the program. Geographic location within the campus affects socializing with peers. Connections to fellow students are not necessarily reciprocated; the maximum percentage of reciprocated connections is 60%. The number of connections one has varies by network purpose

  13. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3

    USGS Publications Warehouse

    Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.-C.; Ginoux, P.; Lin, S.-J.; Schwarzkopf, M.D.; Austin, J.; Alaka, G.; Cooke, W.F.; Delworth, T.L.; Freidenreich, S.M.; Gordon, C.T.; Griffies, S.M.; Held, I.M.; Hurlin, W.J.; Klein, S.A.; Knutson, T.R.; Langenhorst, A.R.; Lee, H.-C.; Lin, Y.; Magi, B.I.; Malyshev, S.L.; Milly, P.C.D.; Naik, V.; Nath, M.J.; Pincus, R.; Ploshay, J.J.; Ramaswamy, V.; Seman, C.J.; Shevliakova, E.; Sirutis, J.J.; Stern, W.F.; Stouffer, R.J.; Wilson, R.J.; Winton, M.; Wittenberg, A.T.; Zeng, F.

    2011-01-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol-cloud interactions, chemistry-climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future-for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth's surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of

  14. What Should We Be Teaching about the Atmosphere?

    ERIC Educational Resources Information Center

    Atkinson, Bruce

    1978-01-01

    Because study of climatology in most college and university geography departments is descriptive, it gives no fundamental insights into geophysical processes. In order to achieve a quantified understanding of atmospheric processes, geographers must have expertise in mathematics, physics, and instrumentation. For journal availability, see 506 593.…

  15. Column-integrated aerosol optical and physical properties at a regional background atmosphere in North China Plain

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Che, Huizheng; Xia, Xiangao; Chen, Hongbin; Goloub, Phillipe; Zhang, Wenxing

    2014-02-01

    The AERONET level 2.0 data at Xinglong station from February 2006 to July 2011 were used to characterize the aerosol optical and physical properties, including temporal variability, aerosol absorption, classification and properties under dust and haze conditions. The annual mean aerosol optical depth (AOD) and extinction Angstrom exponent (EAE) are 0.28 ± 0.30 and 1.07 ± 0.38, respectively. The seasonal variations of AOD440nm are higher in spring (0.40 ± 0.3) and summer (0.40 ± 0.42) than in autumn (0.20 ± 0.22) and winter (0.19 ± 0.21). The EAE is low in spring (0.96 ± 0.43) and high in summer (1.22 ± 0.38). The EAE is ˜1.25 with an absorption Angstrom exponent (AAE) of ˜1.0-1.5 in Xinglong, which indicates that the dominant type is mixed aerosol (accounting for 88.2% at AAE > 1.0). Almost all of the dust observations occurred in spring. The volume concentrations of both fine and coarse mode particles increase with increasing AOD. In spring, the increase of coarse particles is greater than that of fine aerosols; however, the reverse phenomenon is observed for other seasons. The high AOD at Xinglong could be associated with the growth of fine mode aerosols and addition of coarse mode particles. This background station is not only impacted by dust aerosols from northwest China and south Mongolia but also influenced by long-range transportation of anthropogenic aerosols from south urban and industrialized regions. The mean AOD was 1.49 on the dust day, while AOD was 1.10 on the haze day. The mean EAEs were 0.09 and 1.43 on dust and haze days, respectively.

  16. Women in Physics.

    ERIC Educational Resources Information Center

    Roth, Laura M.; O'Fallon, Nancy M.

    This booklet presents information about career opportunities for women in physics. Included are summaries of research areas in physics (optical physics, solid-state physics, materials science, nuclear physics, high-energy physics, astrophysics, cryogenics, plasma physics, biophysics, atmospheric physics) and differences between theory and…

  17. Measurements of Atmospheric Extinction at a Ground Level Observatory

    NASA Astrophysics Data System (ADS)

    Jurado Vargas, M.; Merchán Benítez, P.; Sánchez Bajo, F.; Astillero Vivas, A.

    In order to determine the atmospheric extinction at Physics Department Astronomical Observatory of the University of Extremadura, located at Badajoz (Spain), several stars were observed during some clear nights of atmospheric stability in the period 1998-2000, at optical wavelengths corresponding to the filters of the Kron-Cousins and Strömgren photometric systems. The determination of the extinction coefficients was made by assuming the Bouguer's law, which was shown to be a good approximation for this study. The results exhibited temporal variations and can be considered to be associated with clean atmospheres at locations of low altitude.

  18. SRNL Atmospheric Technologies Group

    ScienceCinema

    Viner, Brian; Parker, Matthew J.

    2016-05-25

    The Savannah River National Laboratory, Atmospheric Technologies Group, conducts a best-in class Applied Meteorology Program to ensure the Department of Energy?s Savannah River Site is operated safely and complies with stringent environmental regulations.

  19. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  20. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  1. Physical Characterization and Effect of Effective Surface Area on the Sensing Properties of Tin Dioxide Thin Solid Films in a Propane Atmosphere

    PubMed Central

    Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; de la Luz Olvera, María; Castañeda, Luis

    2014-01-01

    The physical properties and the effect of effective surface area (ESA) on the sensing properties of tin dioxide [SnO2] thin films in air and propane [C3H8] atmosphere as a function of operating temperature and gas concentration have been studied in this paper. SnO2 thin films with different estimated thicknesses (50, 100 and 200 nm) were deposited on glass substrates by the chemical spray technique. Besides, they were prepared at two different deposition temperatures (400 and 475 °C). Tin chloride [SnCl4 · 5H2O] with 0.2 M concentration value and ethanol [C2H6O] were used as tin precursor and solvent, respectively. The morphological, and structural properties of the as-prepared films were analyzed by AFM and XRD, respectively. Gas sensing characteristics of SnO2 thin solid films were measured at operating temperatures of 22, 100, 200, and 300 °C, and at propane concentration levels (0, 5, 50, 100, 200, 300, 400, and 500 ppm). ESA values were calculated for each sample. It was found that the ESA increased with the increasing thickness of the films. The results demonstrated the importance of the achieving of a large effective surface area for improving gas sensing performance. SnO2 thin films deposited by spray chemical were chosen to study the ESA effect on gas sensing properties because their very rough surfaces were appropriate for this application. PMID:24379046

  2. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.

    2015-07-01

    This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.

  3. Measurement of atmospheric hydrogen peroxide and organic peroxides in Beijing before and during the 2008 Olympic Games: Chemical and physical factors influencing their concentrations

    NASA Astrophysics Data System (ADS)

    He, S. Z.; Chen, Z. M.; Zhang, X.; Zhao, Y.; Huang, D. M.; Zhao, J. N.; Zhu, T.; Hu, M.; Zeng, L. M.

    2010-09-01

    For the 2008 Beijing Olympic Games full-scale control (FSC) of atmospheric pollution was implemented to improve the air quality from 20 July to 20 September 2008, resulting in a significant decrease in the emission of pollutants in urban Beijing, especially vehicular emissions. The combination of reduced emissions and weather condition changes provided us with a unique opportunity to investigate urban atmospheric chemistry. Hydrogen peroxide (H2O2) and organic peroxides play significant roles in atmospheric processes, such as the cycling of HOx radicals and the formation of secondary sulfate aerosols and secondary organic aerosols. We measured atmospheric H2O2 and organic peroxides in urban Beijing, at the Peking University campus, from 12 July to 30 September, before and during the FSC. The major peroxides observed were H2O2, methyl hydroperoxide (MHP), and peroxyacetic acid (PAA), having maximal mixing ratios of 2.34, 0.95, and 0.17 ppbv (parts per billion by volume), respectively. Other organic peroxides were detected occasionally, such as bis-hydroxymethyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and 1-hydroxyethyl hydroperoxide. On sunny days the concentrations of H2O2, MHP, and PAA exhibited pronounced diurnal variations, with a peak in the afternoon (1500-1900) and, occasionally, a second peak in the evening (2000-0200). The night peaks can be attributed to local night production from the ozonolysis of alkenes, coupled with the reaction between NO3 radicals and organic compounds. Sunny-day weather dominated during 16-26 July, and we found that the concentrations of H2O2, MHP, and PAA increased strikingly on 22-26 July, compared with the concentrations during 16-19 July. This effect was mainly attributed to the NOx (NO and NO2) decline because of the FSC, due to (i) the suppressing effect of NO and NO2 on the production of peroxides and (ii) the indirect effect of reduced NOx on the concentration of peroxides via O3 production in the

  4. Experiments on atmospheric processes

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W.

    1977-01-01

    Spacelab technology is examined as applied to the observation of the earth's weather patterns, composition, thermodynamics, and kinematics. An atmospheric cloud physics laboratory and a geophysical fluid flow cell are individually outlined as planned payload experiment efforts.

  5. The AIP Career Pathways Project: Learning the Effective Practices of Physics Departments Preparing Graduates with the Bachelor's Degree for STEM Careers

    NASA Astrophysics Data System (ADS)

    Olsen, Thomas; Redmond, Kendra; Czujko, Roman

    2012-10-01

    Forty percent of students graduating with the bachelor's degree in physics seek employment immediately upon graduation. The AIP Career Pathways Project, funded by NSF, seeks to learn by site visits the effective practices of departments in preparing these students to successfully secure positions in STEM and to make these practices known by presentations, publications, and workshops. This talk will review AIP Statistical Resources data on the careers of physicists with the bachelor's degree, provide preliminary insights from the site visits, provide some advice for graduates seeking employment, and describe the upcoming workshops.

  6. Diagnostic Overshadowing and Other Challenges Involved in the Diagnostic Process of Patients with Mental Illness Who Present in Emergency Departments with Physical Symptoms – A Qualitative Study

    PubMed Central

    Shefer, Guy; Henderson, Claire; Howard, Louise M.; Murray, Joanna; Thornicroft, Graham

    2014-01-01

    We conducted a qualitative study in the Emergency Departments (EDs) of four hospitals in order to investigate the perceived scope and causes of ‘diagnostic overshadowing’ – the misattribution of physical symptoms to mental illness – and other challenges involved in the diagnostic process of people with mental illness who present in EDs with physical symptoms. Eighteen doctors and twenty-one nurses working in EDs and psychiatric liaisons teams in four general hospitals in the UK were interviewed. Interviewees were asked about cases in which mental illness interfered with diagnosis of physical problems and about other aspects of the diagnostic process. Interviews were transcribed and analysed thematically. Interviewees reported various scenarios in which mental illness or factors related to it led to misdiagnosis or delayed treatment with various degrees of seriousness. Direct factors which may lead to misattribution in this regard are complex presentations or aspects related to poor communication or challenging behaviour of the patient. Background factors are the crowded nature of the ED environment, time pressures and targets and stigmatising attitudes held by a minority of staff. The existence of psychiatric liaison team covering the ED twenty-four hours a day, seven days a week, can help reduce the risk of misdiagnosis of people with mental illness who present with physical symptoms. However, procedures used by emergency and psychiatric liaison staff require fuller operationalization to reduce disagreement over where responsibilities lie. PMID:25369130

  7. Increased Screening for Child Physical Abuse in Emergency Departments in a Regional Trauma System: Response to a Sentinel Event.

    PubMed

    Wilkins, Ginger G; Ball, Jane; Mann, N Clay; Nadkarni, Milan; Meredith, J Wayne

    2016-01-01

    A pediatric patient was assaulted while being treated at a Level 1 pediatric trauma center, prompting a Centers for Medicare & Medicaid Services site visit. The process of screening for physical abuse and protection of patients was reevaluated and revised, and a new guideline was implemented and shared with referral hospitals. During this same time period, 13 referral hospitals participated in an unrelated federally funded study determining the impact of recognition and care of injured children in states with and without a pediatric emergency care facility recognition program. A pre-post study analysis revealed that screening for abuse doubled during this time period. PMID:26953535

  8. African dust in the Caribbean: chemical, physical and optical properties of transported African dust across the Atlantic: observations from Atmospheric Observatory in Cabezas de San Juan, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Quiñones Rosado, M.; Vallejo, P. M.; Mayol-Bracero, O. L.; Gutiérrez, I.; Ogren, J. A.; Desboeufs, K.; Formenti, P.

    2012-12-01

    We present results on the assessment of aerosols chemical, physical, and optical properties at the atmospheric observatory of Cabezas de San Juan in Fajardo, PR, during the summer 2011, where periods in the presence and absence of dust were studied as part of the project Dust-ATtACk (Dust- Aging and Transport, from Africa to the Caribbean). Dust events were identified through observation and using air-mass back-trajectories, Saharan Air Layer images, measurements of aerosol optical thickness (AOT), in situ scattering and absorption coefficients, and chemical analyses. We focused on results obtained for intense dust events observed in June 22-24 and July 9, 2011. Those events were characterized by higher concentration of coarse particles, higher concentration of metals associated with mineral dust (e.g., Si 3 μg/m3 compared to background concentrations of 0.15 μg/m3), higher scattering and absorption coefficients (up to 100 Mm-1 and 2.5 Mm-1 at 550 and 530 nm, respectively), and AOT (from 0.4 to 0.8) values. The single scattering albedo (SSA) was calculated for the periods of interest for the PM10 and the PM1 mass fractions and plotted against wavelength. For PM10, SSA values ranged from 0.93 to 0.99 and had the same trend reported for dust, with lower SSA values at shorter wavelengths. For PM1, values ranged from 0.85 to 0.98 and more variability was observed in terms of SSA wavelength dependence, likely as species other than dust contribute. Satellite products (e.g., Calipso, Seviri) are used in the attempt to trace these events back to their source region at North Africa.

  9. Investigation of the Ejection and Physical Properties of Large Comet Dust Grains and Their Interaction with Earth's Atmosphere During the 2002 Leonid Multi-Instrument Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Russell, R. W.; Yano, H.; Plane, J. M. C.; Murray, I. S.; Taylor, M. J.; Borovicka, J.; Kuenzi, K.; Smith, W. H.; Rairden, R. L.; Stenbaek-Nielsen, H. C.; Rietmeijer, F. J. M.; Betlem, H.; Martinez-Frias, J.

    2003-05-01

    In November 2002, the Leonid Multi-Instrument Aircraft Campaign had its final mission to explore the Leonid meteor storms for what they can tell us about comets, meteors, and how they may have contributed prebiotic compounds to the origin of life. The mission provided an airborne platform to 36 researchers of seven countries. The storms were caused by Earth's crossing of the 1767 and 1866 dust ejecta of comet 55P/Tempel-Tuttle. The Center for Astrobiology (CAB) hosted the mission at Torrejon AB in Spain. In a westward flight back to Omaha, Nebraska, the aircraft encountered the first storm at 04:06 UT on Nov. 19, with rates of ZHR 2,300 /hr, and the second peak at 10:47 UT, when rates increased again to ZHR 2,600 /hr. The wealth of faint meteors made the showers difficult to observe from the ground. The narrow and slightly asymmetric flux profiles add to a three-dimensional map of the dust density in 55P/Tempel-Tuttle's one-revolution dust trail. Meteoroid composition and morphology were measured for numerous individual particles. The first near-IR spectra of meteors were recorded. High frame-rate imaging confirmed the formation of a shock-like feature in bright Leonids, adding to a new understanding of the physical conditions in the rarefied flow of meteors. The interaction of meteors with the atmosphere was investigated at optical and sub-mm wavelengths. Optical and mid-IR emissions of persistent trains were recorded. We will briefly review these first results and their implication for comet dust ejection and evolution in the interplanetary and Earth environment. The 2002 Leonid MAC mission was supported by NASA's Astrobiology and Planetary Astronomy programs, by ESA, and by CAB. NASA's DC-8 Airborne Laboratory was operated by NASA DFRC and the NKC-135 "FISTA" aircraft by Edwards AFB. Leonid MAC was organized by the SETI Institute and NASA Ames Research Center.

  10. Jovian atmospheres

    SciTech Connect

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  11. Statistics of atmospheric correlations.

    PubMed

    Santhanam, M S; Patra, P K

    2001-07-01

    For a large class of quantum systems, the statistical properties of their spectrum show remarkable agreement with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider. In this work, we show that the random matrix approach can be beneficially applied to a completely different classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmospheric parameters that characterize the state of atmosphere. We show that the spectrum of atmospheric correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric empirical correlation matrices that have physical significance are marked by deviations from the eigenvector distribution. PMID:11461326

  12. Department of Physics' Involvement of the Impact Testing Project of the High Speed Civil Transport Program (HSCT)

    NASA Technical Reports Server (NTRS)

    VonMeerwall, Ernst D.

    1994-01-01

    The project involved the impact testing of a kevlar-like woven polymer material, PBO. The purpose was to determine whether this material showed any promise as a lightweight replacement material for jet engine fan containment. The currently used metal fan containment designs carry a high drag penalty due to their weight. Projectiles were fired at samples of PBO by means of a 0.5 inch diameter Helium powered gun. The Initial plan was to encase the samples inside a purpose-built steel "hot box" for heating and ricochet containment. The research associate's responsibility was to develop the data acquisition programs and techniques necessary to determine accurately the impacting projectile's velocity. Beyond this, the Research Associate's duties include any physical computations, experimental design, and data analysis necessary.

  13. I. Airglow on Mars: Model predictions for the oxygen IR atmospheric band at 1.27 micrometers, the hydroxyl radical Meinel bands and the hydroxyl radical A-X band system. II. Physical and chemical aeronomy of HD 209458b

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, Antonio

    The first part of this dissertation is concerned with model predictions of airglow from the O2 IR atmospheric band at 1.27 mum, the OH Meinel bands and the OH A-X band system in the low-latitude neutral atmosphere of Mars. As an observable feature, airglow provides a means to remotely probe the composition, dynamics and energetics of the Martian atmosphere. The daytime emission from the O2 IR atmospheric band, a direct result of ozone photodissociation, has long been known to be a prominent emission of the Martian airglow. The motivation for pursuing the modelling of the nighttime components of the O2 IR atmospheric band and the OH Meinel bands is the potential of these two processes for characterizing the atomic oxygen profile in the 50-80 km region of the atmosphere. Likewise, the OH A-X band system may be useful to constrain the abundance of the hydroxyl radical on the illuminated side of the planet below 60 km. Both, O and OH are indicators of the photochemical state of the atmosphere. The results reported herein are expected to serve as guidelines for prospective observations of the atmosphere of Mars. The second part of the dissertation investigates the physical and chemical aeronomy of HD 209458b. The discovery of this extrasolar planet by radial velocity measurements was announced in 2000. Shortly afterwards, the inference of the mean planetary density from transit observations indicated the plausible gaseous nature of the planet. Later in-transit spectrally-resolved photometric observations revealed a cloud of hydrogen, carbon and oxygen atoms extending to a few planetary radii above the surface of the planet, which has been interpreted as evidence for an escaping atmosphere around HD 209458b. At an orbital distance of 0.05 AU, intense EUV stellar irradiation may lead to the massive escape of the atmosphere. In this work, the composition, escape and energy balance of the atmosphere are consistently modelled. Escape rates and abundances of the main hydrogen

  14. Community Atmosphere Model

    Energy Science and Technology Software Center (ESTSC)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  15. Phase B - final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Work breakdown structure for phase C/D DR-MA-06 (preliminary issue)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Work Breakdown Structure (WBS) and Dictionary (DR-MA-06) for initial and subsequent flights of the Atmospheric Cloud Physics Laboratory (ACPL) is presented. An attempt is made to identify specific equipment and components in each of the eleven subsystems; they are listed under the appropriate subdivisions of the WBS. The reader is cautioned that some of these components are likely to change substantially during the course of the study, and the list provided should only be considered representative.

  16. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 4: Physical Sciences

    SciTech Connect

    Toburen, L.H.; Stults, B.R.; Mahaffey, J.A.

    1990-04-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains 20 papers. Part 4 of the Pacific Northwest Laboratory Annual Report of 1989 to the DOE Office of Energy Research includes those programs funded under the title Physical and Technological Research.'' The Field Task Program Studies reported in this document are grouped by budget category and each Field Task proposal/agreement is introduced by an abstract that describes the projects reported in that section. These reports only briefly indicate progress made during 1989. 74 refs., 29 figs., 6 tabs.

  17. Optimisation of the usage of LHC and local computing resources in a multidisciplinary physics department hosting a WLCG Tier-2 centre

    NASA Astrophysics Data System (ADS)

    Barberis, Stefano; Carminati, Leonardo; Leveraro, Franco; Mazza, Simone Michele; Perini, Laura; Perlz, Francesco; Rebatto, David; Tura, Ruggero; Vaccarossa, Luca; Villaplana, Miguel

    2015-12-01

    We present the approach of the University of Milan Physics Department and the local unit of INFN to allow and encourage the sharing among different research areas of computing, storage and networking resources (the largest ones being those composing the Milan WLCG Tier-2 centre and tailored to the needs of the ATLAS experiment). Computing resources are organised as independent HTCondor pools, with a global master in charge of monitoring them and optimising their usage. The configuration has to provide satisfactory throughput for both serial and parallel (multicore, MPI) jobs. A combination of local, remote and cloud storage options are available. The experience of users from different research areas operating on this shared infrastructure is discussed. The promising direction of improving scientific computing throughput by federating access to distributed computing and storage also seems to fit very well with the objectives listed in the European Horizon 2020 framework for research and development.

  18. Insights and implications for health departments from the evaluation of New York City's regulations on nutrition, physical activity, and screen time in child care centers.

    PubMed

    Nonas, Cathy; Silver, Lynn D; Kettel Khan, Laura

    2014-01-01

    In 2006, the New York City Department of Health and Mental Hygiene, seeking to address the epidemic of childhood obesity, issued new regulations on beverages, physical activity, and screen time in group child care centers. An evaluation was conducted to identify characteristics of New York City child care centers that have implemented these regulations and to examine how varying degrees of implementation affected children's behaviors. This article discusses results of this evaluation and how findings can be useful for other public health agencies. Knowing the characteristics of centers that are more likely to comply can help other jurisdictions identify centers that may need additional support and training. Results indicated that compliance may improve when rules established by governing agencies, national standards, and local regulatory bodies are complementary or additive. Therefore, the establishment of clear standards for obesity prevention for child care providers can be a significant public health achievement. PMID:25321629

  19. The Atmospheric Tides Middle Atmosphere Program (ATMAP)

    NASA Technical Reports Server (NTRS)

    Forbes, J. M.

    1989-01-01

    Atmospheric tides, oscillations in meteorological fields occurring at subharmonics of a solar or lunar day, comprise a major component of middle atmosphere global dynamics. The purpose of the 1982 to 1986 Atmospheric Tides Atmosphere Program (ATMAP) was to foster an interaction between experimentalists, data analysts, and theoreticians and modelers, in order to better understand the physical mechanisms governing tides and their relationships to other scales of motion, and to thereby explain features of observed tidal structures in the mesosphere and lower thermosphere. The ATMAP consisted of seven observational campaigns, five workshops and a climatological study. A historical perspective is provided along with a summary of major results, conclusions, and recommendations for future study which have emerged from the ATMAP.

  20. Introduction to Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.

    In thirty years of university teaching, Peter Hobbs of the Atmospheric Sciences Department at the University of Washington, has seen atmospheric chemistry grow from a relatively small branch of geosciences into one with which every student of atmospheric sciences needs familiarity Some students are captivated in their first course and make atmospheric chemistry a field of further study or a lifelong career. At the same time, courses of “global change” and emerging curricula in scientific policy require students from diverse backgrounds to develop sufficient knowledge to become well-informed policy-makers. A number of practicing atmospheric chemists are retrained on the job from other scientific backgrounds and need selfeducation in the basics of the field.

  1. Atmospheric Mixing of CO2 above Carbon Storage Sites: Coupling Physics Based Models within a CO2 Sequestration System Modeling Framework

    NASA Astrophysics Data System (ADS)

    Stauffer, P. H.; Olsen, S. C.; Viswanathan, H. S.; Dubey, M. K.; Guthrie, G. D.; Pawar, R. J.

    2006-12-01

    The Zero Emissions Research and Technology (ZERT) project at the Los Alamos National Laboratory is studying the injection of CO2 into geologic repositories. We are formulating the problem as science based decision framework that can address issues of risk, cost, and technical requirements at all stages of the sequestration process. The framework, called CO2-PENS , is implemented in a system model that is capable of performing stochastic simulations to address uncertainty in different geologic sequestration scenarios. In this talk we examine the changes atmospheric concentrations directly above a potential repository caused by diffuse CO2 leakage that migrates to the atmosphere from the repository. We present an atmospheric mixing model that accounts for local surface effects, local climate data, and daily variations in the mixing layer thickness. We compare model results to field data collected at a controlled flux tower experiment. We next show how the atmospheric mixing model can provide estimates of uncertainty when used from within the CO2- PENS framework. Finally, we discuss data needs and future work needed to make the atmospheric component more flexible so that it can quickly be applied to any potential repository.

  2. Physical activity

    MedlinePlus

    ... time they spend watching TV and using a computer and other electronic devices. All of these activities ... U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans: Recommendation ... Page last updated: ...

  3. Atmospheric breakup of meteoroids

    NASA Astrophysics Data System (ADS)

    El-Dasher, Bassem; Swift, Damian; Remington, Bruce; Mulford, Roberta; Milathianaki, Despina; Chen, Laura; Eakins, Daniel

    2013-06-01

    When meteoroids enter a planetary atmosphere, breakup is governed by the Rayleigh-Taylor instability, mitigated by the strength of the meteoritic material. Particle sizes in the breakup cascade depend on the perturbation length scales exhibiting growth. The physics of meteoroid entry is thus related closely to experiments where strength at high pressure is inferred from the Rayleigh-Taylor growth of perturbations. There are significant discrepancies between predicted and observed breakup altitudes of meteoroids, which in turn reduce the accuracy of assessments of the impact threat from asteroids. Simulations, validated by laboratory experiments of instability growth, can play a role in understanding the breakup of meteoroids and thus the threat from asteroids. Continuum dynamics simulations provide more rigorous stress distribution than are usually used in breakup analyses, and can be used to calibrate compact expressions describing the breakup conditions. We have measured the strength of samples from Fe-rich meteorites using indentation and shock-loading experiments, and found them to be significantly stronger than was previously realized. This, together with the more accurate stress analysis, removes the altitude discrepancy for Fe-rich meteorites. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  5. The NOAA Center in Atmospheric Sciences (NCAS) at Howard University

    NASA Astrophysics Data System (ADS)

    Strachan, M. D.; Morris, V. R.

    2003-12-01

    The National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce established the NOAA Center for Atmospheric Sciences (NCAS), a Cooperative Science Center, in fall 2001 to support the development of quality education to students at minority serving institutions while meeting the prescribed goals of NOAA and the nation. NCAS was established to research some of the critical environmental conditions occurring nationally and globally, and to provide opportunities and programs for students to pursue careers in atmospheric, environmental, and oceanic sciences and remote sensing. A primary goal is to increase the number of highly qualified, well trained graduates in the fields of NOAA related atmospheric sciences. NCAS is led by Howard University, in collaboration with three partners - Jackson State University, the University of Texas at El Paso, and the University of Puerto Rico at Mayaguez. This presentation will highlight the activities and accomplishments in research, education, and outreach of NCAS over its first two years of existence. The primary benefactor of NCAS has been the Howard University Program in Atmospheric Sciences (HUPAS), a comprehensive graduate program in atmospheric sciences with core focus areas of atmospheric chemistry, atmospheric physics, and geophysical fluid dynamics.

  6. Atmospheric Misconceptions.

    ERIC Educational Resources Information Center

    Aron, Robert H.

    1994-01-01

    Presents student survey results (n=708) of misconceptions held regarding the atmosphere. Results indicated a basic lack of understanding concerning atmospheric processes and phenomena. Although misconceptions generally decreased with increasing education, some seemed to be firmly rooted. (PR)

  7. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  8. Promoting Fun in Physics.

    ERIC Educational Resources Information Center

    Jena, P.

    This document reviews a collection of activities conducted by the Department of Physics at Virginia Commonwealth University to excite young people about physics so that they will be more likely to consider physics as a career. The Society of Physics Students performs demonstrations of physics experiments for Virginia high school physics classes…

  9. The Third Pole Environment Programme (TPE): A new base for the processes study of atmospheric physics and environment over the Tibetan Plateau and surrounding regions

    NASA Astrophysics Data System (ADS)

    Ma, Yaoming

    2016-04-01

    The Tibetan Plateau, with the most prominent and complicated terrain on the globe and an elevation of more than 4000 m on average above sea leave (msl), is often called the "Third Pole" due to its significance parallel with Antarctica and the Arctic. The exchange of energy, water vapor and some greenhouse gases between land surface and atmosphere over the Tibetan Plateau and the surrounding regions play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Supported by the Chinese Academy of Sciences and some international organizations, a Third Pole Environment (TPE) Research Platform (TPEP) is now implementing over the Tibetan Plateau and surrounding region. The background of the establishment of the TPEP, the establishing and monitoring plan of long-term scale (5-10 years) of the TPEP will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes, CO2 flux and evapotranspiration (ET) partitioning (diurnal variation, inter-monthly variation and vertical variation etc), aerosol optical properties between southern and northern sides of the Himalayas, the characteristics of atmospheric and soil variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this study.

  10. Prediction of Mobility Limitations after Hospitalization in Older Medical Patients by Simple Measures of Physical Performance Obtained at Admission to the Emergency Department

    PubMed Central

    Klausen, Henrik Hedegaard; Petersen, Janne; Beyer, Nina; Andersen, Ove; Jørgensen, Lillian Mørch; Juul-Larsen, Helle Gybel; Bandholm, Thomas

    2016-01-01

    Objective Mobility limitations relate to dependency in older adults. Identification of older patients with mobility limitations after hospital discharge may help stratify treatment and could potentially counteract dependency seen in older adults after hospitalization. We investigated the ability of four physical performance measures administered at hospital admission to identify older medical patients who manifest mobility limitations 30 days after discharge. Design Prospective cohort study of patients (≥65 years) admitted to the emergency department for acute medical illness. During the first 24 hours, we assessed: handgrip strength, 4-meter gait speed, the ability to rise from a chair (chair-stand), and the Cumulated Ambulation Score. The mobility level 30 days after discharge was evaluated using the de Morton Mobility Index. Results A total of 369 patients (77.9 years, 62% women) were included. Of those, 128 (40%) patients had mobility limitations at follow-up. Univariate analyzes showed that each of the physical performance measures was strongly associated with mobility limitations at follow-up (handgrip strength(women), OR 0.86 (0.81–0.91), handgrip strength(men), OR 0.90 (0.86–0.95), gait speed, OR 0.35 (0.26–0.46), chair-stand, OR 0.04 (0.02–0.08) and Cumulated Ambulation Score OR 0.49 (0.38–0.64). Adjustment for potential confounders did not change the results and the associations were not modified by any of the covariates: age, gender, cognitive status, the severity of the acute medical illness, and the Charlson Comorbidity Index. Based on prespecified cut-offs the prognostic accuracy of the four measures for mobility limitation at follow-up was calculated. The sensitivity and specificity were: handgrip strength(women), 56.8 (45.8–67.3), 75.7 (66.8–83.2), handgrip strength(men), 50.0 (33.8–66.2), 80.8 (69.9–89.1), gait speed, 68.4 (58.2–77.4), 81.4 (75.0–86.8), chair-stand 67.8 (58.6–76.1), 91.8 (86.8–95.3), and Cumulated

  11. 76 FR 65183 - National Oceanic and Atmospheric Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... National Oceanic and Atmospheric Administration National Climate Assessment and Development Advisory... Administration (NOAA), Department of Commerce (DOC). ACTION: Notice of open meeting. SUMMARY: The National... of Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration. BILLING...

  12. The NASA program on upper atmospheric research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The purpose of the NASA Upper Atmospheric Research Program is to develop a better understanding of the physical and chemical processes that occur in the earth's upper atmosphere with emphasis on the stratosphere.

  13. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    NASA Astrophysics Data System (ADS)

    Jickells, Tim D.

    2016-04-01

    , even with the increased transport across shelf to the open ocean from low latitude fluvial systems identified. 1. School of Environmental Science University of East Anglia UK 2. Energy Research Centre University of Cape Town SA 3. Department of Biological Sciences University of S California USA 4. Departments of Oceanography and Atmospheric Sciences Texas A&M University USA 5. JRC Ispra Italy 6. Department of Oceanography Dalhousie University Canada 7. Department of Environmental Sciences U. Virginia USA 8. Department of Chemistry, University of Crete, Greece 9. Department of Biology Dalhousie University, Canada 10. School of Environmental Science and Engineering Pohang University S Korea. 11. Faculty of Geosciences University of Utrecht Netherlands 12. Department of Earth System Science University of California at Irvine USA 13. WMO Geneva 14. Department of Geography University of California USA 15. GEOMAR Keil Germany 16. Department of Atmospheric Sciences, University of Miami, USA 17. Geosciences Division at Physical Research Laboratory, Ahmedabad, India 18. Department of Environmental Studies, University of Victoria, Canada 19. School of Environmentak Sciences, U Liverpool UK 20. Center for International Collaboration, Atmosphere and Ocean Research Institute, The University of Tokyo Japan 21. Oak Ridge Associated Universities USA

  14. Isotopes and soil physic analysis as a tool to meet answers related to soil-plant-atmosphere behavior of Amazon forest during droughts

    NASA Astrophysics Data System (ADS)

    Borma, L. D. S.; Oliveira, R. S.; Silva, R. D.; Chaparro Saaveedra, O. F.; Barros, F. V.; Bittencourt, P.

    2015-12-01

    Droughts and floods are part of the Amazon weather pattern, but in face of climate change, it has been expected an increase in their intensity and duration. Forests are important regulators of climate. However, it is still unknown how they respond to an increase in frequency and intensity of extreme droughts. Additionally, there are great uncertainties related with the forest behavior in an enriched CO2 environment. For the Amazon rainforest, some authors report forest growth in a drier climate, while others report forest mortality in these same conditions. The crucial factor in this process seem the linkage between atmospheric demand from water and its provision by soil moisture, intermediated by the plants. In theory, in regions where soil moisture is high, even in the absence of rainfall conditions, water exists in enough quantity to meet the atmospheric demand, and majority of plants behave as an evergreen forest. This is the case, for example, for some research sites of equatorial regions of the Amazon forest, which tend to increase evapotranspiration rates in dry season, when the atmospheric demand is higher. However, the extent to which soil moisture decreases, the plant is no longer able to meet the atmospheric demand, limiting evapotranspiration and possibly, entering in a dormant state. To understand the forest response to droughts, in terms of its potential to maintain or reduce evapotranspiration rates, it is necessary to know water dynamics in soil and soil layers where plants are able to extract water. It's a challenge, considering the great variability of soils and plants that forms the huge biodiversity of the Amazon forest. Here, we present an experiment design based on isotopic analyzes in a small watershed in Amazon basin. In order to understand the dynamics of the water used by the plant during the evaporation process, isotope analysis were carried out in soil water collected from shallow and deep groundwater, in the water collected on the bark

  15. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  16. Pluto's atmosphere

    SciTech Connect

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references.

  17. Planetary upper atmospheres

    NASA Astrophysics Data System (ADS)

    Müller-Wodarg, Ingo

    2005-10-01

    Earth and most planets in our solar system are surrounded by permanent atmospheres. Their outermost layers, the thermospheres, ionospheres and exospheres, are regions which couple the atmospheres to space, the Sun and solar wind. Furthermore, most planets possess a magnetosphere, which extends into space considerably further than the atmosphere, but through magnetosphere-ionosphere coupling processes closely interacts with it. Auroral emissions, found on Earth and other panets, are manifestations of this coupling and a mapping of distant regions in the magnetosphere into the upper atmosphere along magnetic field lines. This article compares planetary upper atmospheres in our solar system and attempts to explain their differences via fundamental properties such as atmospheric gas composition, magnetosphere structure and distance from Sun. Understanding the space environment of Earth and its coupling to the Sun, and attempting to predict its behaviour ("Space Weather") plays an important practical role in protecting satellites, upon which many aspects to todays civilisation rely. By comparing our own space environment to that of other planets we gain a deeper understanding of its physical processes and uniqueness. Increasingly, we apply our knowledge also to atmospheres of extrasolar system planets, which will help assessing the possibility of life-elsewhere in the Universe.

  18. Atmospheric and adaptive optics

    NASA Astrophysics Data System (ADS)

    Hickson, Paul

    2014-11-01

    Atmospheric optics is the study of optical effects induced by the atmosphere on light propagating from distant sources. Of particular concern to astronomers is atmospheric turbulence, which limits the performance of ground-based telescopes. The past two decades have seen remarkable growth in the capabilities and performance of adaptive optics (AO) systems. These opto-mechanical systems actively compensate for the blurring effect of the Earth's turbulent atmosphere. By sensing, and correcting, wavefront distortion introduced by atmospheric index-of-refraction variations, AO systems can produce images with resolution approaching the diffraction limit of the telescope at near-infrared wavelengths. This review highlights the physical processes and fundamental relations of atmospheric optics that are most relevant to astronomy, and discusses the techniques used to characterize atmospheric turbulence. The fundamentals of AO are then introduced and the many types of advanced AO systems that have been developed are described. The principles of each are outlined, and the performance and limitations are examined. Aspects of photometric and astrometric measurements of AO-corrected images are considered. The paper concludes with a discussion of some of the challenges related to current and future AO systems, particularly those that will equip the next generation of large, ground-based optical and infrared telescopes.

  19. Long Term Baseline Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Goldman, Mark A.

    1975-01-01

    Describes a program designed to measure the normal concentrations of certain chemical and physical parameters of the atmosphere so that quantitative estimates can be made of local, regional, and global pollution. (GS)

  20. Convective storms in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2013-05-01

    The atmospheres of the planets in the Solar System have different physical properties that in some cases can be considered as extreme when compared with our own planet's more familiar atmosphere. From the tenuous and cold atmosphere of Mars to the dense and warm atmosphere of Venus in the case of the terrestrial planets, to the gigantic atmospheres of the outer planets, or the nitrogen and methane atmosphere of Saturn's moon Titan, we can find a large variety of physical environments. The comparative study of these atmospheres provides a better understanding of the physics of a geophysical fluid. In many of these worlds convective storms of different intensity appear. They are analogous to terrestrial atmospheres fed by the release of latent heat when one of the gases in the atmosphere condenses and they are therefore called moist convective storms. In many of these planets they can produce severe meteorological phenomena and by studying them in a comparative way we can aspire to get a further insight in the dynamics of these atmospheres even beyond the scope of moist convection. A classical example is the structure of the complex systems of winds in the giant planets Jupiter and Saturn. These winds are zonal and alternate in latitude but their deep structure is not accessible to direct observation. However the behaviour of large--scale convective storms vertically extending over the "weather layer" allows to study the buried roots of these winds. Another interesting atmosphere with a rather different structure of convection is Titan, a world where methane is close to its triple point in the atmosphere and can condense in bright clouds with large precipitation fluxes that may model part of the orography of the surface making Titan a world with a methane cycle similar to the hydrological cycle of Earth's atmosphere.

  1. Atmospheric chemistry

    SciTech Connect

    Sloane, C.S. ); Tesche, T.W. )

    1991-01-01

    This book covers the predictive strength of atmospheric models. The book covers all of the major important atmospheric areas, including large scale models for ozone depletion and global warming, regional scale models for urban smog (ozone and visibility impairment) and acid rain, as well as accompanying models of cloud processes and biofeedbacks.

  2. The Atmosphere.

    ERIC Educational Resources Information Center

    Ingersoll, Andrew P.

    1983-01-01

    The composition and dynamics of the earth's atmosphere are discussed, considering the atmosphere's role in distributing the energy of solar radiation received by the earth. Models of this activity which help to explain climates of the past and predict those of the future are also considered. (JN)

  3. Roster of Physics Departments with Enrollment and Degree Data, 2014: Results from the 2014 Survey of Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Nicholson, Starr; Mulvey, Patrick J.

    2015-01-01

    Physics bachelor's degree production has more than doubled since the recent low in 1999 and total enrollments in US undergraduate physics programs continue to increase. The all-time high of 7,526 bachelor's degrees in the class of 2014 represents the 15th consecutive year that the number of physics bachelor's conferred has increased. First-year…

  4. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.

    PubMed

    Hubert, G; Regis, D; Cheminet, A; Gatti, M; Lacoste, V

    2014-10-01

    Particles originating from primary cosmic radiation, which hit the Earth's atmosphere give rise to a complex field of secondary particles. These particles include neutrons, protons, muons, pions, etc. Since the 1980s it has been known that terrestrial cosmic rays can penetrate the natural shielding of buildings, equipment and circuit package and induce soft errors in integrated circuits. Recently, research has shown that commercial static random access memories are now so small and sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic stopping of a proton. With continued advancements in process size, this downward trend in sensitivity is expected to continue. Then, muon soft errors have been predicted for nano-electronics. This paper describes the effects in the specific cases such as neutron-, proton- and muon-induced SEU observed in complementary metal-oxide semiconductor. The results will allow investigating the technology node sensitivity along the scaling trend. PMID:24500239

  5. Recent studies of buried charges of single, multiple, and plate explosives, with details of atmospheric propagation effects, applied to human and physical impact

    SciTech Connect

    Reed, J.W.

    1983-01-01

    Characteristics of blast waves from explosions in simple geometries and containment media have been well defined by hydrodynamic models and verified by experiment. A large class of useful explosions, those only partially contained by the close surrounding medium, are less adequately understood. This report addresses the problem of airblast emitted into the atmosphere from explosions buried in the ground at less than containment depth. Examples of such explosions have arisen in cratering excavation, mining and quarrying, ordnance disposal, and military High Explosives Simulation Tests (HEST). Some recent HEST data have been assembled here to help define an empirical approach to airblast predictions, for operational safety as well as for controlling environmental impact on neighboring communities.

  6. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere? PMID:20299587

  7. Physics of the Space Environment

    NASA Astrophysics Data System (ADS)

    Vasyliünas, Vytenis M.

    This book, one in the Cambridge Atmospheric and Space Science Series, joins a growing list of advanced-level textbooks in a field of study and research known under a variety of names: space plasma physics, solar-terrestrial or solar-planetary relations, space weather, or (the official name of the relevant AGU section) space physics and aeronomy. On the basis of graduate courses taught by the author in various departments at the University of Michigan, complete with problems and with appendices of physical constants and mathematical identities, this is indeed a textbook, systematic and severe in its approach. The book is divided into three parts, in length ratios of roughly 6:4:5. Part I, “Theoretical Description of Gases and Plasmas,” starts by writing down Maxwell's equations and the Lorentz transformation (no nonsense about any introductory material of a descriptive or historical nature) and proceeds through particle orbit theory, kinetics, and plasma physics with fluid and MHD approximations to waves, shocks, and energetic particle transport. Part II, “The Upper Atmosphere,” features chapters on the terrestrial upper atmosphere, airglow and aurora, and the ionosphere. Part III, “Sun-Earth Connection,” deals with the Sun, the solar wind, cosmic rays, and the terrestrial magnetosphere. The book thus covers, with two exceptions, just about all the topics of interest to Space Physics and Aeronomy scientists, and then some (the chapter on the Sun, for instance, briefly discusses also topics of the solar interior: thermonuclear energy generation, equilibrium structure, energy transfer, with a page or two on each). One exception reflects a strong geocentric bias: there is not one word in the main text on magnetospheres and ionospheres of other planets and their interaction with the solar wind (they are mentioned in a few problems). The other exception: the chapter on the terrestrial magnetosphere lacks a systematic exposition of the theory of

  8. Middle atmosphere dynamics and composition

    NASA Technical Reports Server (NTRS)

    Geller, M. A.

    1981-01-01

    Aspects of the dynamics and composition of that region of the earth atmosphere lying above the tropopause but below 100 km are considered as they relate to processes at middle and high latitudes. The physics of the summer to winter reversal of the direction of the middle atmosphere jet is discussed, along with the effects of planetary waves on the mean zonal flow, which occasionally produce sudden stratosphere warming events. The chemistry of the two middle atmospheric trace constituents ozone and nitric oxide, which play dominant roles in atmospheric radiation balance and lower ionospheric structure, respectively, is then examined, and the importance of transport in determining their distribution is pointed out.

  9. Atmospheric Release Advisory Capability

    SciTech Connect

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

  10. Dimethylsulfide/cloud condensation nuclei/climate system - Relevant size-resolved measurements of the chemical and physical properties of atmospheric aerosol particles

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Covert, D. S.; Bates, T. S.; Kapustin, V. N.; Ramsey-Bell, D. C.; Mcinnes, L. M.

    1993-01-01

    The mass and number relationships occurring within the atmospheric dimethylsulfide/cloud condensation nuclei (CCN)/climate system, using simultaneous measurements of particulate phase mass size distributions of nss SO4(2-), methanesulfonic acid (MSA), and NH4(+); number size distributions of particles having diameters between 0.02 and 9.6 microns; CCN concentrations at a supersaturation of 0.3 percent; relative humidity; and temperature, obtained for the northeastern Pacific Ocean in April and May 1991. Based on these measurements, particulate nss SO4(2-), MSA, and NH4(+) mass appeared to be correlated with both particle effective surface area and number in the accumulation mode size range (0.16 to 0.5 micron). No correlations were found in the size range below 0.16 micron. A correlation was also found between nss SO4(2-) mass and the CCN number concentration, such that a doubling of the SO4(2-) mass corresponded to a 40 percent increase in the CCN number concentration. However, no correlation was found between MSA mass and CCN concentration.

  11. Atmospheric tritium

    SciTech Connect

    Oestlund, H.G.; Mason, A.S.

    1980-01-01

    Research progress for the year 1979 to 1980 are reported. Concentrations of tritiated water vapor, tritium gas and tritiated hydrocarbons in the atmosphere at selected sampling points are presented. (ACR)

  12. Research in physical chemistry and chemical education: Part A: Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B: The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Maron, Marta Katarzyna

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water in the Earth's atmosphere has been of considerable interest due to its ability to impact chemistry and climate. Oxidized atmospheric molecules in the presence of water have the ability to form hydrogen bonded water complexes. The spectroscopic investigation of nitric acid-water complexes, outlined in Chapter III, was undertaken to characterize intermolecular hydrogen bonds in a water-restricted environment at ambient temperatures. Additionally, this characterization of nitric acid-water complexes allowed for the comparison of calculated overtone OH-stretching vibrational band frequencies, intensities, and anharmonicities of intermolecular hydrogen-bonded water complexes with experimental observations. Oxidized organic molecules, such as aldehydes and ketones, in addition to forming hydrogen-bonded water complexes can undergo a hydration reaction of the carbonyl group and form germinal diols in the presence of water. This chemistry has been studied extensively in bulk aqueous media, however little is known about this process in the gas-phase at low water concentrations. The focus of the studies outlined in Chapters IV and V is motivated by the ability of pyruvic acid and formaldehyde to form germinal diols and water complexes in water-restricted environment. This water-mediated chemistry changes the physical and chemical properties of these organic molecules, therefore, impacting the partitioning between gas and particle phase, as well as the chemistry and photochemistry of oxidized organic molecules in the Earth's atmosphere. The results presented in this dissertation may help resolve the significant discrepancy between

  13. Roster of Physics Departments with Enrollment and Degree Data, 2011: Results from the 2011 Survey of Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Nicholson, Starr; Mulvey, Patrick J.

    2012-01-01

    Academic year 2010-11 produced 2 new all-time highs for physics bachelor's and physics PhDs conferred in the U.S. The 6,296 physics bachelor's degrees earned in the class of 2011 represent a 73% increase from a recent low in the class of 1999 twelve years earlier. The 1,688 PhDs in the class of 2011 is up 55% from a recent low 7 years earlier.…

  14. Roster of Physics Departments with Enrollment and Degree Data, 2013: Results from the 2013 Survey of Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Nicholson, Starr; Mulvey, Patrick J.

    2014-01-01

    Physics bachelor's degree production has more than doubled since the recent low in 1999, and enrollment in U.S. undergraduate physics programs continues to increase. The all-time high of 7,329 bachelor's degrees in the class of 2013 represents the 14th consecutive year that the number of physics bachelor's conferred has increased.…

  15. Roster of Physics Departments with Enrollment and Degree Data, 2010: Results from the 2010 Survey of Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Nicholson, Starr; Mulvey, Patrick J.

    2011-01-01

    Academic year 2009-10 produced more physics bachelor's and more physics PhDs than in any other year in US history. The 6,017 physics bachelor's degrees earned in the class of 2010 represent a 65% increase from the class of 1999 eleven years earlier. The 1,558 PhDs in the class of 2010 is up 43% from a recent low 6 years earlier. Non-US citizens…

  16. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  17. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm.

    PubMed

    Ma, Xia L; Wan, Zhengming; Moeller, Christopher C; Menzel, W Paul; Gumley, Liam E

    2002-02-10

    An extension to the two-step physical retrieval algorithm was developed. Combined clear-sky multitemporal and multispectral observations were used to retrieve the atmospheric temperature-humidity profile, land-surface temperature, and surface emissivities in the midwave (3-5 microns) and long-wave (8-14.5 microns) regions. The extended algorithm was tested with both simulated and real data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator. A sensitivity study and error analysis demonstrate that retrieval performance is improved by the extended algorithm. The extended algorithm is relatively insensitive to the uncertainties simulated for the real observations. The extended algorithm was also applied to real MODIS daytime and nighttime observations and showed that it is capable of retrieving medium-scale atmospheric temperature water vapor and retrieving surface temperature emissivity with retrieval accuracy similar to that achieved by the Geostationary Operational Environmental Satellite (GOES) but at a spatial resolution higher than that of GOES. PMID:11908219

  18. The role of physical and chemical properties of Pd nanostructured materials immobilized on inorganic carriers on ion formation in atmospheric pressure laser desorption/ionization mass spectrometry.

    PubMed

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2014-06-01

    Fundamental parameters influencing the ion-producing efficiency of palladium nanostructures (nanoparticles [Pd-NP], nanoflowers, nanofilms) during laser irradiation were studied in this paper. The nanostructures were immobilized on the surface of different solid inorganic carrier materials (porous and mono-crystalline silicon, anodic porous aluminum oxide, glass and polished steel) by using classical galvanic deposition, electroless local deposition and sputtering. It was the goal of this study to investigate the influence of both the nanoparticular layer as well as the carrier material on ion production for selected analyte molecules. Our experiments demonstrated that the dimensions of the synthesized nanostructures, the thickness of the active layers, surface disorders, thermal conductivity and physically or chemically adsorbed water influenced signal intensities of analyte ions during surface-assisted laser desorption/ionization (SALDI) while no effects such as plasmon resonance, photoelectric effect or catalytic activity were expected to occur. Excellent LDI abilities were seen for Pd-NPs immobilized on steel, while Pd nanoflowers on porous silicon exhibited several disadvantages; viz, strong memory effects, dependency of the analytical signal on amount of physically and chemically adsorbed water inside porous carrier, reduced SALDI activity from unstable connections between Pd and semiconductor material, decrease of the melting point of pure silicon after Pd immobilization and resulting strong laser ablation of metal/semiconductor complex, as well as significantly changed surface morphology after laser irradiation. The analytical performance of Pd-NP/steel was further improved by applying a hydrophobic coating to the steel surface before galvanic deposition. This procedure increased the distance between Pd-NPs, thus reducing thermal stress upon LDI; it simultaneously decreased spot sizes of deposited sample solutions. PMID:24913399

  19. Phenomenology of atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Fedynitch, Anatoli

    2016-04-01

    The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  20. Fundamentals of Atmospheric Radiation

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.; Clothiaux, Eugene E.

    2006-02-01

    This textbook fills a gap in the literature for teaching material suitable for students of atmospheric science and courses on atmospheric radiation. It covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the book applies to planetary atmosphere. The authors are physicists and teach at the largest meteorology department of the US at Penn State. Craig T. Bohren has taught the atmospheric radiation course there for the past 20 years with no book. Eugene Clothiaux has taken over and added to the course notes. Problems given in the text come from students, colleagues, and correspondents. The design of the figures especially for this book is meant to ease comprehension. Discussions have a graded approach with a thorough treatment of subjects, such as single scattering by particles, at different levels of complexity. The discussion of the multiple scattering theory begins with piles of plates. This simple theory introduces concepts in more advanced theories, i.e. optical thickness, single-scattering albedo, asymmetry parameter. The more complicated theory, the two-stream theory, then takes the reader beyond the pile-of-plates theory. Ideal for advanced undergraduate and graduate students of atmospheric science.

  1. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  2. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  3. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  4. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  5. Roster of Physics Departments with Enrollment and Degree Data, 2012: Results from the 2012 Survey of Enrollments and Degrees. Focus On

    ERIC Educational Resources Information Center

    Nicholson, Starr; Mulvey, Patrick J.

    2013-01-01

    The number of physics degrees earned in the U.S. continues to rise, with bachelor's and PhDs yet again reaching all-time highs. The 6,776 physics bachelor's degrees awarded in the 2011-2012 academic year represent an 8% increase over the previous year and an 86% increase from a recent low in 1999. Similarly, the number of PhDs (1,762) in…

  6. Atmospheric humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  7. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  8. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  9. Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Green, John

    2004-12-01

    In his book, John Green presents a unique personal insight into the fundamentals of fluid mechanics and atmospheric dynamics. Generations of students have benefited from his lectures, and this book, many years in the making, is the result of his wide teaching and research experience. The theory of fluid flow has developed to such an extent that very complex mathematics and models are currently used to describe it, but many of the fundamental results follow from relatively simple considerations: these classic principles are derived here in a novel, distinctive, and at times even idiosyncratic, way. The book is an introduction to fluid mechanics in the atmosphere for students and researchers that are already familiar with the subject, but who wish to extend their knowledge and philosophy beyond the currently popular development of conventional undergraduate instruction.

  10. Atmospheric neutrinos

    NASA Astrophysics Data System (ADS)

    Gaisser, Thomas K.

    2016-05-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  11. The Social Tasks of Learning to Become a Physical Education Teacher: Considering the HPE Subject Department as a Community of Practice

    ERIC Educational Resources Information Center

    Sirna, Karen; Tinning, Richard; Rossi, Toni

    2008-01-01

    Initial teacher education (ITE) students participate in various workplaces within schools and in doing so, form understandings about the numerous, and at times competing, expectations of teachers' work. Through these experiences they form understandings about themselves as health and physical education (HPE) teachers. This paper examines the ways…

  12. Self-Efficacy Expectations in Teacher Trainees and the Perceived Role of Schools and Their Physical Education Department in the Educational Treatment of Overweight Students

    ERIC Educational Resources Information Center

    Martinez-Lopez, Emilio; Zagalaz Sanchez, Maria; Ramos Alvarez, Manuel; de la Torre Cruz, Manuel

    2010-01-01

    This study is about the relation between self-efficacy expectations and the attitude towards child and youth obesity, as well as the role of the school in this matter. A questionnaire was given to a sample of 436 trainee physical education teachers from eight universities in Andalusia (Spain). The questionnaire was a version of "Teaching…

  13. New atmospheric sensor analysis study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1989-01-01

    The functional capabilities of the ESAD Research Computing Facility are discussed. The system is used in processing atmospheric measurements which are used in the evaluation of sensor performance, conducting design-concept simulation studies, and also in modeling the physical and dynamical nature of atmospheric processes. The results may then be evaluated to furnish inputs into the final design specifications for new space sensors intended for future Spacelab, Space Station, and free-flying missions. In addition, data gathered from these missions may subsequently be analyzed to provide better understanding of requirements for numerical modeling of atmospheric phenomena.

  14. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  15. Understanding Atmospheric Catastrophes

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2009-01-01

    The atmosphere, as in other parts of nature, is full of phenomena that involve rapid transitions from one (quasi-) equilibrium state to another--- i.e. catastrophes. These (quasi-) equilibria are the multiple solutions of the same dynamical system. Unlocking the mystery behind a catastrophe reveals not only the physical mechanism responsible for the transition, but also how the (quasi-) equilibria before and after the transition are maintained. Each catastrophe is different, but they do have some common traits. Understanding these common traits is the first step in studying these catastrophes. In this seminar, three examples chosen based on the speaker's research interest--tropical cyclogenesis, stratospheric sudden warming, and monsoon onset--are given to illustrate how atmospheric catastrophes can be studied.

  16. Modeling atmospheric particle deposition

    NASA Astrophysics Data System (ADS)

    Jackson, Msafiri M.

    Experimentally determined dry deposition velocities for atmospheric particles in the size range of 5-80 μm in diameter have been shown to be greater than predictions made with the current state-of-the-art (Sehmel-Hodgson) model which is based on wind tunnel experiment, particularly at higher wind speed. In this research, a model to predict the atmospheric dry deposition velocities of particles has been developed that is similar to a model developed for particle deposition in vertical pipes. The model uses a sigmoid curve to correlate nondimensional inertial deposition velocity (Vdi+) with dimensionless particle relaxation time (/tau+) and flow Reynolds number (Re). Vdi+ obtained from data collected in the atmosphere with particle size classifier system and a flat greased plate, Re, and /tau+ for particles between 1 and 100 μm diameter were fit with a sigmoid curve using the least square procedure to obtain coefficients for the sigmoid curve. Deposition velocities data for particles between 0.06 and 4 μm diameter developed by Sehmel-Hodgson model were used to introduce a Schmidt number (Sc) term to take care of Brownian diffusion. The atmospheric plate deposition velocity model is a function of Vst (Stokes settling velocity), V* (friction velocity), /tau+, Re, and Sc. Model application to 62 atmospheric data set revealed that: generated flux predictions agreed well with atmospheric measurements, and its performance is better than Sehmel-Hodgson model. By comparing the sigmoid curve coefficients developed for vertical pipe data with the coefficients developed for atmospheric data it is concluded that, the two types of deposition are similar when the effects of Re and /tau+ are properly considered. Sensitivity analysis for the model has revealed three distinct regions based on particle size. Of the three physical parameters (/tau+, Re, Sc) in the model, not more than two controls the deposition in any of the identified regions. The plate deposition model which is

  17. 28 CFR 79.13 - Proof of physical presence for the requisite period and proof of participation onsite during a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Proof of physical presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13 Section 79.13 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE...

  18. 28 CFR 79.13 - Proof of physical presence for the requisite period and proof of participation onsite during a...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Proof of physical presence for the requisite period and proof of participation onsite during a period of atmospheric nuclear testing. 79.13 Section 79.13 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria...

  19. Atmospheric science

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Ackerman, Thomas; Clarke, Antony; Goodman, Jindra; Levin, Zev; Tomasko, Martin; Toon, O. Brian; Whitten, Robert

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) growth of liquid water drop populations; (2) coalescence; (3) drop breakup; (4) breakup of freezing drops; (5) ice nucleation for large aerosols or bacteria; (6) scavenging of gases, for example, SO2 oxidation; (7) phoretic forces, i.e., thermophoresis versus diffusiophoresis; (8) Rayleigh bursting of drops; (9) charge separation due to collisions of rimed and unrimed ice; (10) charged drop dynamics; (11) growth of particles in other planetary atmospheres; and (12) freezing and liquid-liquid evaporation. The required capabilities and desired hardware for the facility are detailed.

  20. Atmospheric microphysical experiments on an orbital platform

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.

    1974-01-01

    The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.

  1. Solar flare model atmospheres

    NASA Technical Reports Server (NTRS)

    Hawley, Suzanne L.; Fisher, George H.

    1993-01-01

    Solar flare model atmospheres computed under the assumption of energetic equilibrium in the chromosphere are presented. The models use a static, one-dimensional plane parallel geometry and are designed within a physically self-consistent coronal loop. Assumed flare heating mechanisms include collisions from a flux of non-thermal electrons and x-ray heating of the chromosphere by the corona. The heating by energetic electrons accounts explicitly for variations of the ionized fraction with depth in the atmosphere. X-ray heating of the chromosphere by the corona incorporates a flare loop geometry by approximating distant portions of the loop with a series of point sources, while treating the loop leg closest to the chromospheric footpoint in the plane-parallel approximation. Coronal flare heating leads to increased heat conduction, chromospheric evaporation and subsequent changes in coronal pressure; these effects are included self-consistently in the models. Cooling in the chromosphere is computed in detail for the important optically thick HI, CaII and MgII transitions using the non-LTE prescription in the program MULTI. Hydrogen ionization rates from x-ray photo-ionization and collisional ionization by non-thermal electrons are included explicitly in the rate equations. The models are computed in the 'impulsive' and 'equilibrium' limits, and in a set of intermediate 'evolving' states. The impulsive atmospheres have the density distribution frozen in pre-flare configuration, while the equilibrium models assume the entire atmosphere is in hydrostatic and energetic equilibrium. The evolving atmospheres represent intermediate stages where hydrostatic equilibrium has been established in the chromosphere and corona, but the corona is not yet in energetic equilibrium with the flare heating source. Thus, for example, chromospheric evaporation is still in the process of occurring.

  2. Development of local atmospheric model for estimating solar irradiance in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Yeap, E. C.; Lau, A. M. S.; Busu, I.; Kanniah, K. D.; Rasib, A. W.; Kadir, W. H. W.

    2014-02-01

    Incoming solar irradiance covers a wide range of wavelengths with different intensities which drives almost every biological and physical cycle on earth at a selective wavelength. Estimation of the intensities of each wavelength for the solar irradiance on the earth surface provides a better way to understand and predict the radiance energy. It requires that the atmospheric and geometric input and the availability of atmospheric parameter is always the main concern in estimating solar irradiance. In this study, a local static atmospheric model for Peninsular Malaysia was built to provide the atmospheric parameters in the estimation of solar irradiance. Ten years of monthly Atmospheric Infrared Sounder (AIRS) average data (water vapor, temperature, humidity and pressure profile) of the Peninsular Malaysia was used for the building of the atmospheric model and the atmospheric model were assessed based on the measured meteorological data with RMSE of 4.7% and 0.7k for both humidity and temperature respectively. The atmospheric model were applied on a well-established radiative transfer model namely SMARTS2. Some modifications are required in order to include the atmospheric model into the radiative transfer model. The solar irradiance results were then assessed with measured irradiance data and the results show that both the radiative transfer model and atmospheric model were reliable with RMSE value of 0.5 Wm-2. The atmospheric model was further validated based on the measured meteorological data (temperature and humidity) provided by the Department of Meteorology, Malaysia and high coefficient of determination with R2 value of 0.99 (RMSE value = 4.7%) and 0.90 (RMSE value = 0.7k) were found for both temperature and humidity respectively.

  3. Measurement of Casimir force with magnetic materials Alexandr Banishev, Chia-Cheng Chang, Umar Mohideen Department of Physics and Astronomy, University of California, Riverside, USA

    NASA Astrophysics Data System (ADS)

    Banishev, Alexandr; Chang, Chia-Cheng; Mohideen, Umar

    2012-02-01

    The Casimir effect is important in various fields from atomic physics to nanotechnology. According to the Lifshitz theory of the Casimir force, the interaction between two objects depends both on their dielectric permittivity and magenetic permeability. Thus the role of magnetic properties on the Casimir force is interesting particularly due to the possibility of a reduction the Casimir force. In this report we will present the results of a Casimir force measurement between a magnetic material such as nickel coated on SiO2 plate and a Au-coated sphere.

  4. Juggling Makes Physics Fun

    ERIC Educational Resources Information Center

    Beck, Charles

    2008-01-01

    We all hope our classrooms don't take on a circus-like atmosphere, but juggling can be an engaging way to introduce elementary physics to students. The very act of tossing and catching objects can help students to understand the basic physical principles involved in rotating a set of objects. This article suggests a variety of simple hands-on…

  5. Atmosphere Analyzer

    NASA Technical Reports Server (NTRS)

    1982-01-01

    California Measurements, Inc.'s model PC-2 Aerosol Particle Analyzer is produced in both airborne and ground-use versions. Originating from NASA technology, it is a quick and accurate method of detecting minute amounts of mass loadings on a quartz crystal -- offers utility as highly sensitive detector of fine particles suspended in air. When combined with suitable air delivery system, it provides immediate information on the size distribution and mass concentrations of aerosols. William Chiang, obtained a NASA license for multiple crystal oscillator technology, and initially developed a particle analyzer for NASA use with Langley Research Center assistance. Later his company produced the modified PC-2 for commercial applications Brunswick Corporation uses the device for atmospheric research and in studies of smoke particles in Fires. PC-2 is used by pharmaceutical and chemical companies in research on inhalation toxicology and environmental health. Also useful in testing various filters for safety masks and nuclear installations.

  6. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  7. Middle atmosphere program. Handbook for MAP, volume 25

    SciTech Connect

    Roper, R.G.

    1987-08-01

    GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.

  8. Middle Atmosphere Program. Handbook for MAP, volume 25

    NASA Technical Reports Server (NTRS)

    Roper, R. G. (Editor)

    1987-01-01

    GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.

  9. Titan's surface and atmosphere

    NASA Astrophysics Data System (ADS)

    Hayes, Alexander G.; Soderblom, Jason M.; Ádámkovics, Máté

    2016-05-01

    Since its arrival in late 2004, the NASA/ESA Cassini-Huygens mission to Saturn has revealed Titan to be a world that is both strange and familiar. Titan is the only extraterrestrial body known to support standing bodies of stable liquid on its surface and, along with Earth and early Mars, is one of three places in the Solar System known to have had an active hydrologic cycle. With atmospheric pressures of 1.5 bar and temperatures of 90-95 K at the surface, methane and ethane condense out of Titan's nitrogen-dominated atmosphere and flow as liquids on the surface. Despite vast differences in environmental conditions and materials from Earth, Titan's methane-based hydrologic cycle drives climatic and geologic processes which generate landforms that are strikingly similar to their terrestrial counterparts, including vast equatorial dunes, well-organized channel networks that route material through erosional and depositional landscapes, and lakes and seas of liquid hydrocarbons. These similarities make Titan a natural laboratory for studying the processes that shape terrestrial landscapes and drive climates, probing extreme conditions impossible to recreate in earthbound laboratories. Titan's exotic environment ensures that even rudimentary measurements of atmospheric/surface interactions, such as wind-wave generation or aeolian dune development, provide valuable data to anchor physical models.

  10. Investigation of Heterogeneous Atmospheric Chlorine Chemistry: Modeling and Environmental Chamber Studies Authors: Cameron B. Faxon, Lea Hildebrandt Ruiz, and David Allen University of Texas at Austin, McKetta Department of Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Faxon, C. B.; Hildebrandt Ruiz, L.; Allen, D.

    2013-12-01

    Previous work has shown that gas phase atomic chlorine radicals (Cl*) can influence tropospheric photochemistry, including concentrations of volatile organic compound (VOC) and ozone. These radicals are produced through both gas phase and heterogeneous pathways. This work presents computational and experimental investigation into the heterogeneous reactions of chloride aerosols. An overview of a sensitivity analysis of the physical parameters involved in the heterogeneous production of nitryl chloride (ClNO2) (R1-R5) will comprise the computational work presented. NO2(g) + NO3(g) ↔ N2O5(g) (R1) N2O5(aq) ↔ N2O5(aq) (R2) N2O5(aq) ↔ NO2+(aq) + NO3-(aq) (R3) NO2+(aq) + H2O(aq) → H3O+(aq) + HNO3(aq) (R4a) NO2+(aq) + Cl- → ClNO2 + H2O(aq) (R4b) NO3-(aq) + H+ ↔ HNO3+(aq) (R5) Relative parameters include the reactive uptake coefficient, ClNO2 yield, particle surface area, and gas phase concentrations of VOCs and NOx. The sensitivity analysis results were generated through photochemical box modeling and focus on the production of ClNO2 and impacts to ozone production. Results were compared to a base case scenario in which all heterogeneous reactions were absent. Parameter values reaching the upper limits reported in the literature were tested, and results indicate that ClNO2 chemistry can potentially change peak O3 concentrations by -10.5% to 27%. NOx availability was also found to play an important role. Experimental results of the heterogeneous reaction between OH* and particulate chloride (R6-R7) will also be discussed. The mechanism is shown below, and OH***Cl- represents an intermediate species forming at the particle surface. OH(g) + Cl-(aq) → OH***Cl-(aq) (R6) 2OH***Cl-(aq) → Cl2,g + 2OH-(aq) (R7) Environmental chamber experiments involving the exposure of NaCl aerosol particles to typical atmospheric conditions (HOx, NOx, O3 and UV radiation) were performed. A 10 cubic meter teflon reaction chamber equipped with UV lights was used to contain the

  11. Solar Atmosphere Simulation - AGU Dec. 9, 2013

    NASA Video Gallery

    This movie shows a numerical simulation of a small area of the solar atmosphere at ~10,000K. Numerical models bridge the gap between IRIS observations and the physical mechanisms driving solar even...

  12. Cometary Atmospheres

    NASA Astrophysics Data System (ADS)

    Dello Rosa, N.

    Comets are icy leftovers from the formation of the solar system about 4.5 billion years ago. Because they have been stored at cold temperatures and their interiors have been protected by an overburden of insulating layers, comets contain the most unaltered remnants from the birth of our solar system. For this reason, determining their chemical composition and physical proper-ties as well as how the composition and structure of the nucleus changes with time are fundamental problems in planetary science. This information provides clues as to how material in our solar system formed and evolved.

  13. An Atmospheric Pressure Ping-Pong "Ballometer"

    ERIC Educational Resources Information Center

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  14. Atmosphere, Science (Experimental): 5343.08.

    ERIC Educational Resources Information Center

    Reese, Sandra Kay

    This unit of instruction deals with a study of the general atmosphere by layers with an emphasis on physical characteristics. The formation of layers in the atmosphere and the energy relationships that exist between them are also discussed. No requisites for prior course work, experience, or courses to be taken concurrently are required for…

  15. Working model of the atmosphere and near planetary space of Jupiter

    NASA Technical Reports Server (NTRS)

    Moroz, V. I. (Editor)

    1978-01-01

    Basic physical characteristics of Jupiter, its gravitational field, atmosphere, electromagnetic radiation, magnetosphere, meteorite situation and satellites are presented in tables, graphs and figures. Means of observation of the atmosphere and three models of the atmosphere are presented and analyzed.

  16. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  17. Atmospheric electricity

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.

  18. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  19. Atmospheric neutrinos: Status and prospects

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya

    2016-07-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tantalising hints regarding the neutrino mass hierarchy, octant of θ23 and δCP, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  20. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  1. Physics in Police Investigations.

    ERIC Educational Resources Information Center

    Young, Peter

    1980-01-01

    Described are several techniques and pieces of equipment developed by the Police Scientific Department Branch in its application of physics to police problems. Topics discussed include fingerprints, documents, and photographs. (Author/DS)

  2. The Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael (Editor); Travis, Larry D. (Editor)

    1986-01-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  3. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  4. Interdisciplinary Approaches to Physical Education

    ERIC Educational Resources Information Center

    Grebner, Florence; Razor, Jack E.

    1975-01-01

    The degree to which physical education serves the needs of students in higher education may well be a function of the extent to which departments of physical education encourage and participate in cross disciplinary study. (RC)

  5. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  6. The atmospheres of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1993-01-01

    The atmospheres of Uranus and Neptune are discussed in the light of the Voyager 2 flybys of these planets. A basic overview of their atmospheres is presented, with emphasis on thermal structure, composition, energy and opacity sources, cloud structure, and the horizontal structure of the atmospheres. The nature and implications of the different internal heat flows on the two planets, and the implications of the deuterium and helium abundances for the origin and evolution of these ice giants, as distinct from Jupiter and Saturn, are discussed. Selected chemical and physical processes in the atmospheres of Uranus and Neptune are illustrated.

  7. Optical models of the molecular atmosphere

    NASA Technical Reports Server (NTRS)

    Zuev, V. E.; Makushkin, Y. S.; Mitsel, A. A.; Ponomarev, Y. N.; Rudenko, V. P.; Firsov, K. M.

    1986-01-01

    The use of optical and laser methods for performing atmospheric investigations has stimulated the development of the optical models of the atmosphere. The principles of constructing the optical models of molecular atmosphere for radiation with different spectral composition (wideband, narrowband, and monochromatic) are considered in the case of linear and nonlinear absorptions. The example of the development of a system which provides for the modeling of the processes of optical-wave energy transfer in the atmosphere is presented. Its physical foundations, structure, programming software, and functioning were considered.

  8. Atmospheric Emissions Photometric Imaging (AEPI) experiment

    NASA Technical Reports Server (NTRS)

    Mende, S. B.

    1988-01-01

    Space plasma physics will be studied on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission during the Atmospheric Emissions Photometric Imaging (AEPI) experiment. The basic scientific objective of the AEPI is the investigation of the upper atmosphere-ionosphere and the space shuttle environment. The experiment areas of the AEPI include: (1) the investigation of ionospheric transport processes by observing Mg(+) ions; (2) studies of optical properties of artificially induced electron beams; (3) measurement of electron cross sections for selected atmospheric species; (4) studies of natural airglow; and (5) studies of natural auroras. On ATLAS 1, optical emissions generated by the shuttle (shuttle ram glow) will also be investigated.

  9. Validation of LAIC model within the framework of ISSI project "Multi-instrument space-borne observations and validation of the physical model of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling"

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Laic Team

    2015-04-01

    A new international project to study the complex chain of interactions of different layers of atmosphere and near-Earth space plasma in presence of ionization sources and atmosphere loading by aerosol and dust, was initiated with the support of the International Space Science Institute (ISSI) in Bern. The Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept initially created to understand the pre-earthquake phenomena in atmosphere and ionosphere, demonstrated its universality and ability to explain other natural phenomena involving atmosphere-ionosphere coupling from below such as tropical cyclones, thunderstorm activity, dust storms, volcano eruptions etc. The project aim, defined within the frame of the ISSI projects, can advance the Multi-instrument space-borne observations for studying the Earth Geospace environment. The currently project development utilizes multi-instrument ground and space-born observations collected all over the world to explore the variety of natural phenomena. First results show, that our planet environment could be regarded as an open complex system where interactions between different layers of atmosphere play important role in its thermodynamics and electrodynamics. Holistic approach to the geospheres interaction gives the new insight of our near-planet environment.

  10. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  11. Atmospheric black carbon concentrations in North America, ~1100 to 2005. Liaquat Husain and Tanveer Ahmed Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA, and Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, NY, 12201-0509, USA

    NASA Astrophysics Data System (ADS)

    Husain, L.

    2013-05-01

    Black carbon (BC) aerosols in the atmosphere absorb solar radiation, and cause heating of the atmosphere, may alter Earth's cloud cover, and impact precipitation cycle. The best estimate for radiative forcing from BC with 90% certainty is + 1.1 Wm-2 ( + 0.17 to 2.1 Wm-2), second only to that of CO2. A major uncertainty in the estimation is a lack of atmospheric BC data. Models are used to estimate BC emissions into the atmosphere. They have not been validated by field data. We report measurements of BC in the atmosphere, over a period of several centuries using lake sediments. Retrieval of such records provides an invaluable source for understanding changes in the atmosphere with time. Numerous studies have been conducted with such an objective. Owing to a lack of knowledge of deposition rates of atmospheric aerosols into the lake sediments, a major shortcoming of these studies have been an inability to convert the measurements of chemical species in lake sediments into the atmosphere. We have developed a technique to overcome this shortcoming by measuring black carbon in atmospheric aerosols, and in lake sediment cores. The concentrations of BC were determined in daily filters collected at Whiteface Mountain, NY, from 1978 to 2005. Cores from two lakes around Whiteface Mountain, NY, were collected. Cores were (1) sectioned in thin slices, (2) freeze dried, (3) dated using the 210Pb technique, (4) BC chemically separated, and (5) concentrations measured using the thermal-optical method. By The deposition rate of BC from the atmosphere to the lakes was determined by comparing the BC concentration in air and the sediments for the 1978 -2005 period. The deposition rate so determined was used to concert the BC in the sediment into the atmosphere for the ~1978 to ~1100 period. The BC concentrations for the industrial period, ~1850 was low but rapidly increased from ~1900, peaked ~1925, decreased very slowly ~ 1980, followed by a sharp decrease. Concentrations has

  12. Promoting Interests in Atmospheric Science at a Liberal Arts Institution

    NASA Astrophysics Data System (ADS)

    Roussev, S.; Sherengos, P. M.; Limpasuvan, V.; Xue, M.

    2007-12-01

    Coastal Carolina University (CCU) students in Computer Science participated in a project to set up an operational weather forecast for the local community. The project involved the construction of two computing clusters and the automation of daily forecasting. Funded by NSF-MRI, two high-performance clusters were successfully established to run the University of Oklahoma's Advance Regional Prediction System (ARPS). Daily weather predictions are made over South Carolina and North Carolina at 3-km horizontal resolution (roughly 1.9 miles) using initial and boundary condition data provided by UNIDATA. At this high resolution, the model is cloud- resolving, thus providing detailed picture of heavy thunderstorms and precipitation. Forecast results are displayed on CCU's website (https://marc.coastal.edu/HPC) to complement observations at the National Weather Service in Wilmington N.C. Present efforts include providing forecasts at 1-km resolution (or finer), comparisons with other models like Weather Research and Forecasting (WRF) model, and the examination of local phenomena (like water spouts and tornadoes). Through these activities the students learn about shell scripting, cluster operating systems, and web design. More importantly, students are introduced to Atmospheric Science, the processes involved in making weather forecasts, and the interpretation of their forecasts. Simulations generated by the forecasts will be integrated into the contents of CCU's course like Fluid Dynamics, Atmospheric Sciences, Atmospheric Physics, and Remote Sensing. Operated jointly between the departments of Applied Physics and Computer Science, the clusters are expected to be used by CCU faculty and students for future research and inquiry-based projects in Computer Science, Applied Physics, and Marine Science.

  13. Atmospheric Climate Experiment Plus

    NASA Astrophysics Data System (ADS)

    Lundahl, K.

    ACE+ is an atmospheric sounding mission using radio occultation techniques and is a combination of the two Earth Explorer missions ACE and WATS earlier proposed to ESA. ACE was highly rated by ESA in the Call for Earth Explorer Opportunity Missions in 1999 and was prioritised as number three and selected as a "hot-stand-by". A phase A study was carried out during 2000 and 2001. ACE will observe atmospheric parameters using radio occultations from an array of 6 micro-satellites which track the L- band signal of GPS satellites to map the detailed refractivity and thermal structure of the global atmosphere from surface to space. Water vapour and wind in Atmospheric Troposphere and Stratosphere WATS was the response to ESA's Call for Ideas for the next Earth Explorer Core Missions in 2001. WATS combines ACE GPS atmospheric occultations and LEO-LEO cross-link occultations. Cross-links strongly enhance the capability of measuring humidity relative to the ACE mission. The Earth Science Advisory Committée at ESA noted that the LEO-GNSS occultation technique is already well established through several missions in recent years and could not recommend WATS for a Phase A study as an Earth Explorer Core Mission. The ESAC was, however, deeply impressed by the LEO-LEO component of the WATS proposal and would regard it as regrettable if this science would be lost and encourages the ACE/WATS team to explore other means to achieve its scientific goal. ACE+ is therefore the response to ESA's 2nd Call for Earth Explorer Opportunity Missions in 2001 and will contribute in a significant manner to ESA's Living Planet Programme. ACE+ will considerably advance our knowledge about atmosphere physics and climate change processes. The mission will demonstrate a highly innovative approach using radio occultations for globally measuring profiles of humidity and temperature throughout the atmosphere and stratosphere. A constellation of 4 small satellites, tracking L-band GPS/GALILEO signals and

  14. Brown dwarf Atmosphere Monitoring (BAM): Characterizing the Coolest Atmosphere

    NASA Astrophysics Data System (ADS)

    Patience, Jennifer

    2014-10-01

    Using the G141 WFC3/IR grism, we propose a HST spectrophotometric monitoring study of the coolest variable brown dwarf (~650K) identified as part of our Brown dwarf Atmosphere Monitoring (BAM) program. The proposed observations will enable exploration of the dynamic atmospheric evolution of a benchmark T8.5 binary brown dwarf system, which we have discovered to exhibit the second-largest amplitude variation amongst all currently known brown dwarf variables. The close binarity of this system requires the exquisite stability of the HST point spread function to enable resolved monitoring of both components and to discriminate the source of the variability - the second component is a planetary mass object based on evolutionary models. This BAM follow-up study is designed to characterize both the longitudinal and vertical structure of the atmospheric properties of this system via multi-wavelength observations covering the entire spectral range of the WFC3/IR detector. Additionally, by monitoring the target over two separate epochs we will measure the evolution of atmospheric features giving rise to the flux variations. The proposed program will provide a comprehensive dataset serving as a benchmark comparison to directly imaged planets, intensely irradiated Hot Jupiters, and synthetic atmospheric models incorporating different physical processes.

  15. Atmospheric Downscaling using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Zerenner, T.; Venema, V.; Simmer, C.

    2013-12-01

    The coupling of models for the different components of the soil-vegetation-atmosphere system is required to understand component interactions and feedback processes. The Transregional Collaborative Research Center 32 (TR 32) has developed a coupled modeling platform, TerrSysMP, consisting of the atmospheric model COSMO, the land-surface model CLM, and the hydrological model ParFlow. These component models are usually operated at different resolutions in space and time owing to the dominant processes. These different scales should also be considered in the coupling mode, because it is for instance unfeasible to run the computationally quite expensive atmospheric models at the usually much higher spatial resolution required by hydrological models. Thus up- and downscaling procedures are required at the interface between atmospheric model and land-surface/subsurface models. Here we present an advanced atmospheric downscaling scheme, that creates realistic fine-scale fields (e.g. 400 m resolution) of the atmospheric state variables from the coarse atmospheric model output (e.g. 2.8 km resolution). The mixed physical/statistical scheme is developed from a training data set of high-resolution atmospheric model runs covering a range different weather conditions using Genetic Programming (GP). GP originates from machine learning: From a set of functions (arithmetic expressions, IF-statements, etc.) and terminals (constants or variables) GP generates potential solutions to a given problem while minimizing a fitness or cost function. We use a multi-objective approach that aims at fitting spatial structures, spatially distributed variance and spatio-temporal correlation of the fields. We account for the spatio-temporal nature of the data in two ways. On the one hand we offer GP potential predictors, which are based on our physical understanding of the atmospheric processes involved (spatial and temporal gradients, etc.). On the other hand we include functions operating on

  16. Physics Academic Workforce Report, 2000. AIP Report.

    ERIC Educational Resources Information Center

    Ivie, Rachel; Stowe, Katie; Czujko, Roman

    This report discusses trends in the physics academic workforce and the implications of these trends for the future academic job market. In March 2000, a survey was sent to 766 U.S. physics departments that grant at least a bachelor's degree in physics, and 725 responses were received, a response rate of 95%. Degree-granting physics departments in…

  17. The atmosphere as particle detector

    NASA Technical Reports Server (NTRS)

    Stanev, Todor

    1990-01-01

    The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.

  18. Fermilab Physics Department Fastbus TDC module

    SciTech Connect

    Cancelo, G.; Hansen, S.; Cotta-Ramusino, A.

    1991-07-01

    A prototype 64 channel Fastbus TDC built at Fermilab is described. The module features a full custom CMOS four channel gated integrator chip. One level of analog buffering at the inputs is implemented on chip. A four event deep output queue at the bus interface allows a high event rate with low dead time. Each channel can record up to two hits per event. With an occupation rate of 10%, the module can operate at 40,000 events per second with dead time on the order of 15%. The TDC operates in common stop mode with a full scale of 1 {mu}sec and a resolution of 1 nsec. 5 refs., 6 figs.

  19. Activities report of the Physics Department

    NASA Astrophysics Data System (ADS)

    1987-09-01

    An antistatic coating tester; measurement of tip clearance in turbomachines; the GRADIO Project and electrostatic three-axis accelerometers for space applications; a dedicated processor for correcting the signal from CCD array; and improvement of barometric and accelerometric sensitivities of quartz-crystal resonators are discussed. Effects of aerodynamic flows on image generation; bispectral infrared imaging; infrared cameras; and wavefront analysis are reviewed. Impulsive noise of main helicopter rotors is treated. Application of holographic interferometry on two wavelengths to measuring the density of a plasma; and a secondary emission electron gun are described. Lightning monitoring and warning by radioelectric interferometry and electrostatic measurements; space-time analysis of the electromagnetic radiation associated with lightning discharges; airborne lightning characterization; electromagnetic interference generated on the fly-by-wire controls of an Airbus aircraft by a simulated direct lightning strike; electromagnetic radiation generated by junction of a lightning channel with ground; and determination of the charge distribution within an E-irradiated dielectric are considered.

  20. Lord Kelvin's atmospheric electricity measurements

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.

    2013-09-01

    Lord Kelvin (William Thomson) made important contributions to the study of atmospheric electricity during a brief but productive period from 1859-1861. By 1859 Kelvin had recognised the need for "incessant recording" of atmospheric electrical parameters, and responded by inventing both the water dropper equaliser for measuring the atmospheric potential gradient (PG), and photographic data logging. The water dropper equaliser was widely adopted internationally and is still in use today. Following theoretical considerations of electric field distortion by local topography, Kelvin developed a portable electrometer, using it to investigate the PG on the Scottish island of Arran. During these environmental measurements, Kelvin may have unwittingly detected atmospheric PG changes during solar activity in August/September 1859 associated with the "Carrington event", which is interesting in the context of his later statements that solar magnetic influence on the Earth was impossible. Kelvin's atmospheric electricity work presents an early representative study in quantitative environmental physics, through the application of mathematical principles to an environmental problem, the design and construction of bespoke instrumentation for real world measurements and recognising the limitations of the original theoretical view revealed by experimental work.

  1. Atmosphere in a Test Tube

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Pace, E.; Ciaravella, A.; Micela, G.; Piccioni, G.; Billi, D.; Cestelli Guidi, M.; Coccola, L.; Erculiani, M. S.; Fedel, M.; Galletta, G.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Schierano, D.; Stefani, S.

    The ancestor philosophers' dream of thousand of new world is finally realised: more than 1800 extrasolar planets have been discovered in the neighborhood of our Sun. Most of them are very different from those we used to know in our Solar System. Others orbit the Habitable Zone (HZ) of their parent stars. Space missions, as JWST and the very recently proposed ARIEL, or ground based instruments, like SPHERE@VLT, GPI@GEMINI and EPICS@ELT, have been proposed and built to measure the atmospheric transmission, reflection and emission spectra over a wide wavelength range of these new worlds. In order to interpret the spectra coming out by this new instrumentation, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how those characteristics could be affected by radiation driven photochemical and bio-chemical reaction. Insights in this direction can be achieved from laboratory studies of simulated planetary atmosphere of different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. ''Atmosphere in a Test Tube'' is a collaboration among several Italian astronomical, biological and engineering institutes in order to share their experiencece in performing laboratory experiments on several items concerning extrasolar planet atmospheres.

  2. Atmospheric Research 2014 Technical Highlights

    NASA Technical Reports Server (NTRS)

    Platnick, Steven

    2015-01-01

    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the

  3. Atmospheric ultraviolet remote sensing

    NASA Astrophysics Data System (ADS)

    Huffman, Robert E.

    Techniques and applications of the ultraviolet wavelength region are examined. The topics addressed include: radiometry, sensors, space operations, the earth's atmosphere, solar photoabsorption, photon cross sections, airglow, aurora, scattering and fluorescence, atmospheric ultraviolet backgrounds, radiance and transmission codes, ozone and lower atmospheric composition, upper atmospheric composition and density, global auroral imaging, and ionospheric electron density.

  4. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  5. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  6. Satellite Atmosphere and Io Torus Observations

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas M.

    2000-01-01

    Io is the most volcanically active body in the solar system, and it is embedded deep within the strongest magnetosphere of any planet. This combination of circumstances leads to a host of scientifically compelling phenomena, including (1) an atmosphere out of proportion with such a small object, (2) a correspondingly large atmospheric escape rate, (3) a ring of dense plasma locked in a feedback loop with the atmosphere, and (4) a host of Io-induced emissions from radio bursts to UV auroral spots on Jupiter. This proposal seeks to continue our investigation into the physics connecting these phenomena, with emphasis on Io's atmosphere and plasma torus. The physical processes are clearly of interest for Io, and also other places in the solar system where they are important but not readily observable.

  7. NEUTRINO FACTORIES - PHYSICS POTENTIALS.

    SciTech Connect

    PARSA,Z.

    2001-02-16

    The recent results from Super-Kamiokande atmospheric and solar neutrino observations opens a new era in neutrino physics and has sparked a considerable interest in the physics possibilities with a Neutrino Factory based on the muon storage ring. We present physics opportunities at a Neutrino Factory, and prospects of Neutrino oscillation experiments. Using the precisely known flavor composition of the beam, one could envision an extensive program to measure the neutrino oscillation mixing matrix, including possible CP violating effects. These and Neutrino Interaction Rates for examples of a Neutrino Factory at BNL (and FNAL) with detectors at Gran Sasso, SLAC and Sudan are also presented.

  8. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  9. Volatile processes in Triton's atmosphere and surface

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1992-01-01

    A basic model for latitudinal transport of nitrogen is reviewed focusing on its limitations and some complications associated with surface and atmospheric physics. Data obtained by 1989 Voyager encounter with the Neptune system revealed the complexity in the pure nitrogen transport which is caused by the nonuniform albedo of the frosts. It is concluded that Triton is similar to Mars in terms of the complexity of volatile transport and to understand Triton's surface-atmosphere system, Mars may be a very good analog.

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Atmospheric Chemistry Over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    campaigns such as Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE-A), Southern African Fire-Atmosphere Research Initiative (SAFARI-92), and Southern African Regional Science Initiative (SAFARI 2000). Since those large international efforts, satellites have matured enough to enable quantifiable measurements of regional land surface, atmosphere, and ocean. In addition, global and chemical transport models have also been advanced to incorporate various data. Thus, the timing of the workshop was right for a full-fledged re-assessment of the chemistry, physics, and socio-economical impacts caused by pollution in the region, including a characterization of sources, deposition, and feedbacks with climate change.

  12. High School Physics, Two-Year Colleges, and Physics Majors

    ERIC Educational Resources Information Center

    White, Susan C.

    2013-01-01

    We have just completed the data collection for our 2012-13 Nationwide Survey of High School Physics and expect to have results to report in the spring. In the interim, we will take a look at physics in two-year colleges (TYCs). In 2007, we surveyed undergraduate seniors in degree-granting physics departments, and we asked these students if they…

  13. Radiosondes for Characterizing the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Schumacher, D. M.; Dorney, D. J.; McGrath, M. A.

    2012-01-01

    The National Weather Service (NWS) releases approximately 75,000 radiosondes each year to measure pressure, altitude, temperature, relative humidity, wind and cosmic radiation [1]. The data obtained from these measurements have led to a more thorough understanding of the Earth s lower atmosphere. On the contrary, there have been only six fully successful landings on Mars, and there is much less known about the variations in winds, density, etc., in the mid-regions of the Martian atmosphere (see Fig. 1). This data is vital to understanding Martian weather and the development of Mars landers for larger payloads [2,3,4]. Mars has too much atmosphere to land like is done on the moon, and too little atmosphere to land like is done on Earth. It is suggested that radiosondes could be added as secondary payloads on Mars missions and used to map physical properties in the different regions of the Martian atmosphere.

  14. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  15. Homogeneous processes of atmospheric interest

    NASA Technical Reports Server (NTRS)

    Rossi, M. J.; Barker, J. R.; Golden, D. M.

    1983-01-01

    Upper atmospheric research programs in the department of chemical kinetics are reported. Topics discussed include: (1) third-order rate constants of atmospheric importance; (2) a computational study of the HO2 + HO2 and DO2 + DO2 reactions; (3) measurement and estimation of rate constants for modeling reactive systems; (4) kinetics and thermodynamics of ion-molecule association reactions; (5) entropy barriers in ion-molecule reactions; (6) reaction rate constant for OH + HOONO2 yields products over the temperature range 246 to 324 K; (7) very low-pressure photolysis of tert-bytyl nitrite at 248 nm; (8) summary of preliminary data for the photolysis of C1ONO2 and N2O5 at 285 nm; and (9) heterogeneous reaction of N2O5 and H2O.

  16. 11th International Conference on Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Christian, H. J. (Compiler)

    1999-01-01

    This document contains the proceedings from the 11th International Conference on Atmospheric Electricity (ICAE 99), held June 7-11, 1999. This conference was attended by scientists and researchers from around the world. The subjects covered included natural and artificially initiated lightning, lightning in the middle and upper atmosphere (sprites and jets), lightning protection and safety, lightning detection techniques (ground, airborne, and space-based), storm physics, electric fields near and within thunderstorms, storm electrification, atmospheric ions and chemistry, shumann resonances, satellite observations of lightning, global electrical processes, fair weather electricity, and instrumentation.

  17. OCCIMA: Optical Channel Characterization in Maritime Atmospheres

    NASA Astrophysics Data System (ADS)

    Hammel, Steve; Tsintikidis, Dimitri; deGrassie, John; Reinhardt, Colin; McBryde, Kevin; Hallenborg, Eric; Wayne, David; Gibson, Kristofor; Cauble, Galen; Ascencio, Ana; Rudiger, Joshua

    2015-05-01

    The Navy is actively developing diverse optical application areas, including high-energy laser weapons and free- space optical communications, which depend on an accurate and timely knowledge of the state of the atmospheric channel. The Optical Channel Characterization in Maritime Atmospheres (OCCIMA) project is a comprehensive program to coalesce and extend the current capability to characterize the maritime atmosphere for all optical and infrared wavelengths. The program goal is the development of a unified and validated analysis toolbox. The foundational design for this program coordinates the development of sensors, measurement protocols, analytical models, and basic physics necessary to fulfill this goal.

  18. Physical Activity and Your Heart

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Physical Activity? Español Physical activity is any body movement that works your muscles ... yoga, and gardening are a few examples of physical activity. According to the Department of Health and Human ...

  19. Atmospheric Laboratory for Applications and Science Payload

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an STS-66 mission onboard photo of the Space Shuttle Orbiter Atlantis showing the payload of the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66).

  20. Positron production within our atmosphere

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  1. Formation of spectral lines in planetary atmospheres. I - Theory for cloudy atmospheres: Application to Venus.

    NASA Technical Reports Server (NTRS)

    Hunt, G. E.

    1972-01-01

    The theory of the formation of spectral lines in a cloudy planetary atmosphere is studied in detail. It is shown that models based upon homogeneous, isotropically scattering atmospheres cannot be used to reproduce observed spectroscopic features of phase effect and the shape of spectral lines for weak and strong bands. The theory must, therefore, be developed using an inhomogeneous (gravitational) model of a planetary atmosphere, accurately incorporating all the physical processes of radiative transfer. Such a model of the lower Venus atmosphere, consistent with our present knowledge, is constructed. The results discussed in this article demonstrate the effects of the parameters that describe the atmospheric model on the spectroscopic features of spectral line profile and phase effect, at visible and near infrared wavelengths. This information enables us to develop a comprehensive theory of line formation in a Venus atmosphere.

  2. Atmospheric turbulence MTF for infrared optical waves' propagation through marine atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Cui, Linyan; Xue, Bindang; Zhou, Fugen

    2014-07-01

    Infrared optical wave's propagation in marine environment is particularly challenging, not only for scattering and absorption due to high humidity, but also for a different behavior of atmospheric turbulence with respect to terrestrial propagation. In this paper, the marine atmospheric turbulence modulation transfer functions (MTF), which describes the degrading effects of marine atmospheric turbulence on an optical imaging system, is investigated in detail both analytically and numerically. New analytic expressions of the MTF are derived for plane and spherical waves under marine atmospheric turbulence, and they consider physically the influences of finite turbulence inner and outer scales. The final results indicate that, the marine atmospheric turbulence brings more degrading effects on the imaging system than the terrestrial atmospheric turbulence.

  3. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  4. Our shared atmosphere

    EPA Science Inventory

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  5. Earth's changeable atmosphere

    NASA Astrophysics Data System (ADS)

    2016-06-01

    Billions of years ago, high atmospheric greenhouse gas concentrations were vital to life's tenuous foothold on Earth. Despite new constraints, the composition and evolution of Earth's early atmosphere remains hazy.

  6. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  7. Current issues in atmospheric change

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In response to questions about the effects of long-term, global-scale changes in the atmosphere raised in congressional hearings, a group of leading experts held a two-day workshop to survey the state of current knowledge about atmospheric changes and their implications. The review focuses on the sources, concentrations, and changes of those gases most directly linked to human activities, i.e., carbon dioxide, ozone, and the chlorofluorocarbons; the direct physical effects of rising concentrations of trace gases. The review discusses the uncertainties associated with the knowledge of current trends and possible future changes, including ozone trends and the Antarctic ozone hole, and the impacts of rising concentrations of trace gases.

  8. Magnetosphere, ionosphere and atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1979-01-01

    In the present review, the general nature of the earth's space environment is discussed with particular reference to the physical processes which link the magnetosphere, the ionosphere, and the upper atmosphere. Recent theoretical and experimental research has revealed the existence of subtle couplings which closely link the electrical and mass properties of these regions. Some of these couplings have been known for many years. Recent discoveries include such couplings as the formation of the plasmasphere through the mutual action of convective electric fields and ionospheric plasma flows. However, there is still insufficient information to define accurately the basic processes associated with space plasma dynamics when cool thermal plasma of ionospheric origin interacts with the neutral atmosphere, the energetic plasma of the ionosphere, and the solar wind. The primary objective of the discussion is to provide a general introduction to the more challenging processes as they are presently known.

  9. The Department of Education: A Reporter's Guide.

    ERIC Educational Resources Information Center

    Shannon, Paul

    Noting that covering the United States Department of Education can pose special problems for journalists, this report provides information about the operations of the department and notes the strengths and weaknesses of information produced by and about it. The first three sections of the report discuss the current political atmosphere at the…

  10. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 3: Atmospheric and climate research

    SciTech Connect

    Not Available

    1994-05-01

    The US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER) atmospheric sciences and carbon dioxide research programs provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the Environmental Sciences Division of OHER, the Atmospheric Chemistry Program continues DOE`s long-term commitment to understanding the local, regional, and global effects of energy-related air pollutants. Research through direct measurement, numerical modeling, and analytical studies in the Atmospheric Chemistry Program emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, photochemically produced oxidant species, nitrogen-reservoir species, and aerosols. The atmospheric studies in Complex Terrain Program applies basic research on atmospheric boundary layer structure and evolution over inhomogeneous terrain to DOE`s site-specific and generic mission needs in site safety, air quality, and climate change. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements, the Computer Hardware, Advanced Mathematics and Model Physics, and Quantitative Links program to form DOE`s contribution to the US Global Change Research Program. The description of ongoing atmospheric and climate research at PNL is organized in two broad research areas: atmospheric research; and climate research. This report describes the progress in fiscal year 1993 in each of these areas. Individual papers have been processed separately for inclusion in the appropriate data bases.

  11. EDITORIAL: Physics competitions Physics competitions

    NASA Astrophysics Data System (ADS)

    Jordens, H.; Mathelitsch, L.

    2009-11-01

    higher education'. One point, among others, is to publish 'descriptions of successful and original student projects, experimental, theoretical or computational'. This comes close to the tasks and student work carried out in physics competitions. Physics educators at university level are usually aware of the existence of such competitions, but the majority, with the few exceptions of those involved in these competitions, lack knowledge of what is actually going on, and how high levelled the performances are. Therefore, it is not obvious to them that these competitions could be useful for university teaching, and could be sources of interesting and novel examples for labs and theoretical exercises. Each physics department wants to attract good students or, in other words, wants talented students to choose physics as their first subject of study. Experience has shown that physics competitions can assist in meeting this demand. Not only do students involved in the competitions beoome more inclined to study physics, their experimental and theoretical knowledge is far beyond that of typical students. Therefore it would be of mutual interest to intensify the bonds between physics competitions and universities. The publication of tasks and solutions to problems from physics competitions may serve several purposes: Competitions and especially their high quality can be communicated to a very broad audience of physicists. University teachers could be encouraged to implement these problems in their lectures, exercises and labs, mainly at the undergraduate level, theoretically as well as experimentally. The previous point is even more important for the education of physics teachers. Ongoing physics teachers should know in detail the different competitions and their specific goals and problems. The winners of the competitions get greater publicity, which in turn could create additional attraction to future participants. As an example of the second point, the successful application of

  12. Modeling Atmospheric Energy Deposition (by energetic ions)

    NASA Astrophysics Data System (ADS)

    Parkinson, C. D.; Brain, D. A.; Lillis, R. J.; Liemohn, M. W.; Bougher, S. W.

    2011-12-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. Such modeling has been previously done for Earth, Mars and Jupiter using a guiding center precipitation model with extensive collisional physics. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation that can perform calculations for cases where there is only a weak or nonexistent magnetic field that includes detailed physical interaction with the atmosphere (i.e. collisional physics). We show initial efforts to apply a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Venus, Mars, and Titan. A systematic study of the ionization, excitation, and energy

  13. Physics Academic Workforce Report, 2002. AIP Report.

    ERIC Educational Resources Information Center

    Ivie, Rachel; Stowe, Katie; Nies, Kimberley

    This report discusses trends in the physics academic workforce and the implications of these trends for the future academic job market. Data are from a survey of physics departments that was completed by 722 departments, a response rate of 94%. The number of physics faculty increased almost 5% since 2000, and much of this growth resulted from…

  14. Nonisothermal Pluto atmosphere models

    SciTech Connect

    Hubbard, W.B.; Yelle, R.V.; Lunine, J.I. )

    1990-03-01

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs.

  15. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  16. A Standard Atmosphere of the Antarctic Plateau

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Lubin, Dan

    2004-01-01

    Climate models often rely on standard atmospheres to represent various regions; these broadly capture the important physical and radiative characteristics of regional atmospheres, and become benchmarks for simulations by researchers. The high Antarctic plateau is a significant region of the earth for which such standard atmospheres are as yet unavailable. Moreover, representative profiles from atmospheres over other regions of the planet, including &om the northern high latitudes, are not comparable to the atmosphere over the Antarctic plateau, and are therefore only of limited value as substitutes in climate models. Using data from radiosondes, ozonesondes and satellites along with other observations from South Pole station, typical seasonal atmospheric profiles for the high plateau are compiled. Proper representations of rapidly changing ozone concentrations (during the ozone hole) and the effect of surface elevation on tropospheric temperatures are discussed. The differences between standard profiles developed here and the most similar standard atmosphere that already exists - namely, the Arctic Winter profile - suggest that these new profiles will be extremely useful to make accurate representations of the atmosphere over the high plateau.

  17. Modeling Callisto's Ionosphere: Insight Into Callisto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Hartkorn, O. A.; Saur, J.; Strobel, D. F.

    2015-12-01

    We develop a kinetic model of the ionosphere of Jupiter's moon Callisto within a prescribed neutral atmosphere composed of O2 and CO2. We calculate the electron energy distribution as a function of space by solving the Boltzmann equation and assuming a stationary balance between local sources and sinks of electrons and electron energy. Electron transport within the ionosphere is neglected, whereas we approximate the electron transport out of the ionosphere into the Jovian magnetosphere. Photoionization is believed to be the major electron source within Callisto's atmosphere. Therefore, we calculate the energy dependent photoelectron spectrum as source term of the Boltzmann equation. The resulting Boltzmann equation is solved rigorously delivering electron distribution functions at every point of Callisto's atmosphere. From these distribution functions, we calculate electron densities and electron impact generated UV emissions from Callisto's atmosphere. The calculated electron densities and UV emissions are compared with observations of the Galileo spacecraft [Kliore et al., 2002] and the Hubble Space Telescope [Cunningham et al., 2015]. Based on these comparisons, we test a physically motivated atmosphere model including asymmetries that depend on Callisto's orbital phase, similar to Europa's atmosphere [Plainaki et al., 2013]. As a result, we gain knowledge about Callisto's atmospheric density and its atmospheric asymmetries.

  18. Incomputability in Physics

    NASA Astrophysics Data System (ADS)

    Longo, Giuseppe

    Computability originated from Logic and followed the original path proposed by the founding fathers of the modern foundational analysis of Mathematics (Frege, Hilbert). This theoretical path departed in principle from the contemporary renewed relations between Geometry and Physics. In particular, the key issue of physical measure, as our only access to "reality", is not part of its theoretical frame, in contrast to Physics, since Poincaré, Planck and Einstein. Computability though, by its fine analysis of undecidability, provides a very useful tool for the investigation of "unpredictability" in Physics. Unpredictability coincides with physical randomness, in classical and quantum frames. And an understanding of randomness turns out to be a key component of intelligibility in Physics.

  19. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wyttenbach, Aurélien; Ehrenreich, David

    2015-12-01

    The field of exoplanet atmospheres is booming thanks to (low-resolution) space-borne spectrographs and high-resolution (narrow-ranged) NIR spectrographs on ground-based 8m-class telescopes. Atmospheres are important because they are our observing window on the physical, chemical, and evolutionary processes occurring on exoplanets. Transiting exoplanets are the best suitable targets for atmospheric studies. Observing a transit in different filters or with a spectrograph reveals the transmission spectrum of the planet atmosphere. More than one decade of such observations allowed the exploration of these remote words by detecting some constituents of their atmospheres, but revealing also the presence of scattering hazes and clouds in several exoplanets preventing the detection of major chemical constituents at low to medium resolution even from space.Transit observations from the ground with stabilised high-resolution spectrograph, such HARPS, have key roles to play in this context. Observation of the hot-jupiter HD 189733b with HARPS allow the detection of sodium in the planet atmosphere. The high-resolution transmission spectra allowed to probe a new region high in the atmosphere and revealed rapid winds and a heating thermosphere. This new use of the famous planet hunter turned HARPS into a powerful exoplanet characterisation machine. It has the precision level of the Hubble Space Telescope, albeit at 20 higher resolution.A survey of a large set of known hot transiting exoplanets with HARPS and later with ESPRESSO will allow the detection of key tracers of atmospheric physics, chemistry, and evolution, above the scattering haze layers known to dominate low-resolution visible spectra of exoplanets.Such observation, in total sinergy with other technics, will rmly establish stabilised, high-resolution spectrographs on 4m telescopes as corner-stones for the characterisation of exoplanets. This is instrumental considering the upcoming surveys (NGTS,K2, CHEOPS, TESS

  20. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    ERIC Educational Resources Information Center

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  1. Model atmospheres for cool stars. [varying chemical composition

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.

    1974-01-01

    This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.

  2. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Astrophysics Data System (ADS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  3. Sports physical

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000673.htm Sports physical To use the sharing features on this ... or routine checkups. Why do you Need a Sports Physical? The sports physical is done to: Find ...

  4. Static Atmospheres in a Rotating Space Habitat.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Discusses O'Neill's proposal for the colonization of space as it offers new problems in pure physics. Addresses specifically the distribution of the atmosphere in O'Neill's habitat and whether there will be enough air at the axis of rotation to allow human-powered flight, with particular reference to the habitat's "artificial gravity." (CS)

  5. Catalog of ionospheric and atmospheric data

    NASA Technical Reports Server (NTRS)

    Liles, J. N.

    1975-01-01

    Available data from planetary atmospheres and ionospheric physics (aeronomy) are announced. Most of the data sets identified result from individual experiments carried on board various spacecraft. A spacecraft Automated Internal Management File and a Nonsatellite Data File are utilized to maintain information on these data. Photoreduced reports produced by these information files are presented. A variety of user oriented indexes are included.

  6. Solar Physics at Evergreen

    NASA Astrophysics Data System (ADS)

    Zita, E. J.; Bogdan, T. J.; Carlsson, M.; Judge, P.; Heller, N.; Johnson, M.; Petty, S.

    2004-05-01

    We have recently established a solar physics research program at The Evergreen State College. Famed for its cloudy skies, the Pacific Northwest is an ideal location for solar physics research activities that do not require local observations. Collaborators from the High Altitude Observatory (HAO) at the National Center for Atmospheric Research have shared solar data from satellite-borne instruments such as TRACE and SUMER. HAO colleagues also share data from computer simulations of magneto-hydrodynamics (MHD) in the chromosphere, generated by the Institute for Theoretical Astrophysics (ITA) at the University of Oslo. Evergreen students and faculty learned to analyze data from satellites and simulations, in Boulder and Oslo, and established an infrastructure for continuing our analyses in Olympia. We are investigating the role of magnetic waves in heating the solar atmosphere. Comparing data from satellites and simulations shows that acoustic oscillations from the photosphere cannot effectively propagate into the chromosphere, but that magnetic waves can carry energy up toward the hot, thin corona. We find that acoustic waves can change into magnetic waves, especially near the magnetic "canopy," a region where the sound speed is comparable to magnetic wave speeds. Understanding MHD wave transformations and their role in energy transport can help answer outstanding questions about the anomalous heating of the solar atmosphere. Ref: Waves in the magnetized solar atmosphere II: Waves from localized sources in magnetic flux concentrations. Bogdan et al., 2003, ApJ 597

  7. Photochemistry in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Graedel, T. E.

    1981-01-01

    Widely varying paths of evolutionary history, atmospheric processes, solar fluxes, and temperatures have produced vastly different planetary atmospheres. The similarities and differences between the earth atmosphere and those of the terrestrial planets (Venus and Mars) and of the Jovian planets are discussed in detail; consideration is also given to the photochemistry of Saturn, Uranus, Pluto, Neptune, Titan, and Triton. Changes in the earth's ancient atmosphere are described, and problems of interest in the earth's present troposphere are discussed, including the down wind effect, plume interactions, aerosol nucleation and growth, acid rain, and the fate of terpenes. Temperature fluctuations in the four principal layers of the earth's atmosphere, predicted decreases in the ozone concentration as a function of time, and spectra of particles in the earth's upper atmosphere are also presented. Finally, the vertical structure of the Venus cloud system and the thermal structure of the Jovian planets are shown graphically.

  8. Pluto's atmosphere near perihelion

    SciTech Connect

    Trafton, L.M. )

    1989-11-01

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir.

  9. Earth's Climate: The Ocean-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Lifland, Jonathan

    2004-11-01

    A new AGU book, Earth's Climate: The Ocean-Atmosphere Interaction, edited by Chunzai Wang, Shang-Ping Xie, and James A. Carton, presents current observations, theories, and models of ocean-atmosphere interaction that helps shape climate and its variations over the global ocean. The book represents the climate community's first effort to summarize the modern science of ocean-atmosphere interaction and the roles that the interaction play in climate variability in the Pacific, Atlantic, and Indian Oceans as well as interactions across basins and between the tropics and extratropics. In this issue, Eos talks with lead editor Chunzai Wang. Wang is a research oceanographer at the Physical Oceanography Division of the National Oceanic and Atmospheric Administration's Atlantic Oceanographic and Meteorological Laboratory, in Miami, Florida.

  10. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  11. A Comprehensive Analysis of Io's Atmosphere and Torus

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas M.

    1999-01-01

    This final report describes the results of our NASA/Planetary Atmospheres program studying the atmosphere of Jupiter's moon Io and the plasma torus which it creates. Io is the most volcanically active body in the solar system, and it is embedded deep within the strongest magnetosphere of any planet. This combination of circumstances leads to a host of scientifically compelling phenomena, including (1) an atmosphere out of proportion with such a small object, (2) a correspondingly large atmospheric escape rate, (3) a ring of dense plasma locked in a feedback loop with the atmosphere, and (4) a host of Io-induced emissions from radio bursts to UV auroral spots on Jupiter. This proposal seeks to continue our investigation into the physics connecting these phenomena, with emphasis on Io's atmosphere and plasma torus. The physical processes are clearly of interest for Io, and also other places in the solar system where they are important but not so readily observable.

  12. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  13. Atmospheres from Within

    NASA Technical Reports Server (NTRS)

    Morgan, Thomas; Abshire, James; Clancy, Todd; Fry, Ghee; Gustafson, Bo; Hecht, Michael; Kostiuk, Theodor; Rall, Jonathan; Reuter, Dennis; Sheldon, Robert

    1996-01-01

    In this review of atmospheric investigations from planetary surfaces, a wide variety of measurement and instrument techniques relevant to atmospheric studies from future planetary lander missions are discussed. The diversity of planetary surface environments within the solar system precludes complete or highly specific coverage, but lander investigations for Mars and cometary missions are presented as specific cases that represent the broad range of atmospheric-surface boundaries and that also correspond to high priority goals for future national and international lander missions.

  14. RESEARCH IN PARTICLE PHYSICS

    SciTech Connect

    Kearns, Edward

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  15. Atmospheric Downscaling using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Zerenner, Tanja; Venema, Victor; Simmer, Clemens

    2013-04-01

    Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and

  16. Work on the Super and the Study of Atmospheric Ignition

    NASA Astrophysics Data System (ADS)

    Hull, Mcallister

    2001-03-01

    By 1951, the group of young faculty (Bob Gluckstern and me), post doctoral fellows and graduate students, was comfortably established in Sloane Laboratory, and as "The Breit Group", in the department of physics at Yale. We didn't consciously separate ourselves from others in the department, and no one seemed to put us apart, but the association with Breit gave us a special "aura"--sometimes as objects of pity. Any project that involved the group as a whole, or a significant part of it, was discussed with Bob and me, and sometime in 1951 Breit called us in to consider a request that we look at the possibility of atmospheric ignition by a "Super" - as we still called it then, after Edward Teller. At the end of my stay at Los Alamos, in the summer of 1946, we youngsters had many bull sessions about that "Super", and the possibility of controlled fusion energy. We were confident that the former would be working in perhaps five years, and the latter within ten. After all, Han Bethe had shown us how the sun made its energy, and all that was needed to do was to replace a couple of his slow beta decays with something faster. As I write, some fifty-four years later, we still haven't got fusion energy for power. Our crystal balls were cloudier than Vicky Weisskopf's were to be! But I knew some of the lingo, and had worked out the way radiation penetrates the atmosphere (for understanding the Bikini tests), so in 1951, initially drew the task of looking at opacity, a key question in the bomb itself, and in the possibility of atmospheric ignition. Most of our limited work on the bomb was checking calculations that had been done by others as the Teller-Ulam design was being put together. At least some work on atmospheric ignition had already been done as well, but Teller wanted the "most careful physicist he knew" to do the definitive calculations, so Breit got the call. I do not recall all the members of the group who worked on the project and for that I apologize - no private

  17. Atmosphere, Ocean, Land, and Solar Irradiance Data Sets

    NASA Technical Reports Server (NTRS)

    Johnson, James; Ahmad, Suraiya

    2003-01-01

    The report present the atmosphere, ocean color, land and solar irradiation data sets. The data presented: total ozone, aerosol, cloud optical and physical parameters, temperature and humidity profiles, radiances, rain fall, drop size distribution.

  18. A New Computational Framework for Atmospheric and Surface Remote Sensing

    NASA Technical Reports Server (NTRS)

    Timucin, Dogan A.

    2004-01-01

    A Bayesian data-analysis framework is described for atmospheric and surface retrievals from remotely-sensed hyper-spectral data. Some computational techniques are high- lighted for improved accuracy in the forward physics model.

  19. Atmospheric Laboratory for Applications and Science, Mission 1

    NASA Technical Reports Server (NTRS)

    Craven, Paul D. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    The first Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission, planned for late 1990, includes experiments in four areas: Atmospheric Science, Solar Physics, Space Plasma Physics, and Astronomy. The atmospheric science investigations will study the composition of the atmosphere in the stratosphere, mesosphere, and thermosphere. The solar physics investigations will measure the total energy output of the sun. The space plasma physics investigations will study the charged particle and plasma environment of the earth. The astronomy investigation will study astronomical sources of radiation in the ultraviolet wavelengths that are inaccessible to observers on earth. Most of the experimental equipment has been flown before on one of the Spacelab missions. Brief descriptions of the experiments are given.

  20. A Basic Manual for Physical Plant Administration.

    ERIC Educational Resources Information Center

    Weber, George O., Ed.; Fincham, Michael W., Ed.

    This book provides practical advice on problems of institutional plant management to physical plant administrators. Areas covered include the role, organization, and facilities of the physical plant department; personnel administration; financial administration; buildings maintenance and operation; custodial services; utilities distribution…

  1. MULTIRESOLUTION FEATURE ANALYSIS AND OTHER TECHNIQUES FOR UNDERSTANDING AND MODELING TURBULENCE IN STABLE ATMOSPHERES Final Report

    SciTech Connect

    R. L. Street; F. L. Ludwig; Y. Chen

    2005-04-11

    Our DOE project is one of the efforts comprising the Vertical Transport and Mixing Program of the Environmental Sciences Division of the Office of Biological and Environmental Research in Department of Energy. We used ARPS to simulate flow in the Salt Lake Valley. We simulated the physical processes more accurately so that we can better understand the physics of flow in complex terrain and its effects at larger scales. The simulations provided evidence that atmospheric forcing interacts with the Jordan Narrows, the Traverse Range and other complex mountain terrain at the south end of the Salt Lake Valley to produce lee rotors, hydraulic jumps and other effects. While we have successfully used ARPS to simulate VTMX 2000 flows, we have also used observed data to test the model and identify some of its weaknesses. Those are being addressed in a continuation project supported by DOE.

  2. Raman/Rayleigh/fluorescence lidar for atmosphere measurement

    NASA Astrophysics Data System (ADS)

    Gong, Shunsheng; Zheng, Wengang; Li, Hongjun; Yang, Guotao

    1998-08-01

    A Raman/Rayleigh/Fluorescence Lidar established in the Wuhan Institute of Physics & Mathematics, China for the measurements of the atmosphere is described, and the preliminary observation results for the lower, upper atmosphere and the sodium layer over Wuhan, China obtained by this lidar are presented in this paper.

  3. Atmospherics: A Look at the Earth's Airy Shell.

    ERIC Educational Resources Information Center

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  4. Possibility of growth of airborne microbes in outer planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Chatigny, M. A.

    1975-01-01

    It is shown that airborne bacteria can maintain metabolic functions in a suitable atmosphere. It is theorized that particles in the Jovian atmosphere would have physical half-lives of 10 to 1500 years, depending upon which of two turbulent models is chosen.

  5. Line Coupling in Atmospheric Spectra

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.

    1996-01-01

    The theoretical modeling of atmospheric spectra is important for a number of different applications: for instance, in the determination of minor atmospheric constituents such as ozone, carbon dioxide, CFC's etc.; in monitoring the temperature profile for climate studies; and in measuring the incoming and outgoing radiation to input into global climate models. In order to accomplish the above mentioned goal, one needs to know the spectral parameters characterizing the individual spectral lines (frequency, width, strength, and shape) as well as the physical parameters of the atmosphere (temperature, abundances, and pressure). When all these parameters are known, it is usually assumed that the resultant spectra and concomitant absorption coefficient can then be calculated by a superposition of individual profiles of appropriate frequency, strength and shape. However, this is not true if the lines are 'coupled'. Line coupling is a subtle effect that takes place when lines of a particular molecule overlap in frequency. In this case when the initial states and the final states of two transitions are connected by collisions, there is a quantum interference resulting in perturbed shapes. In general, this results in the narrowing of Q-branches (those in which the rotational quantum number does not change), and vibration-rotational R- and P branches (those in which the rotational quantum number changes by +/- 1), and in the spectral region beyond band heads (regions where the spectral lines pile up due to centrifugal distortion). Because these features and spectral regions are often those of interest in the determination of the abundances and pressure-temperature profiles, one must take this effect into account in atmospheric models.

  6. New Opacities for Dense Helium and the Composition of Helium Rich, Very Cool White Dwarf Atmospheres

    NASA Astrophysics Data System (ADS)

    Kowalski, P. M.; Mazevet, S.; Saumon, D.

    2004-12-01

    Very cool white dwarfs (T eff ≤ 4000K) are among the oldest stars in the Milky Way. They are of great interest as chronometers for understanding the history of star formation in our Galaxy. To realize the full potential of white dwarf cosmochronology, we need to understand better the physical processes that take place in the surface layers of cool white dwarfs. Strong surface gravity results in a compositionally stratified structure for those stars, with light elements "floating" to the surface. Accretion from the ISM over Gyrs should result in pure H atmosphere for all of them today, regardless of their initial composition. However, observations indicate that many very cool white dwarfs possess helium-rich atmospheres. Envelope models provide a possible explanation for this phenomenon, where He is transported to the atmosphere from the envelope by a convective zone which, for cool white dwarfs of T eff ≤ 5000K, can extend from the surface down to the helium layer. However, an analysis based on current atmospheric models gives a He abundance that is much higher than can be explained by the convective mixing model. We think that one of the main reason for this discrepancy is an inadequate description of the opacity used in current atmosphere models. The very cool helium-rich atmospheres, with densities up to 2 \\ g/cm3, are fluid, not gaseous. The description of the opacity must be revised for this high density regime. Using quantum molecular dynamics simulations we calculated new opacities for dense helium that are much larger than previously thought. As a result, a much lower helium abundance is found in the coolest white dwarfs, which is in much better agreement with the predictions of the convective mixing model. This research was supported by the United States Department of Energy under contract W-7405-ENG-36.

  7. IMPACT: Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking

    NASA Astrophysics Data System (ADS)

    Koller, J.; Ridley, A. J.; Godinez, H. C.; Impact Team

    2011-12-01

    Our society relies heavily on its space infrastructure for a vast number of applications. However, NASA predicts that between now and 2030 orbital collisions will become increasingly frequent and could reach a run-away environment - the so-called Kessler Syndrome. Preventing this scenario requires, in addition to an object removal technique, an improved new orbital dynamics framework with improved drag predictions based on thermospheric densities and wind velocities. In particular for LEO (Low Earth Orbit) objects, satellite drag due to atmospheric friction is the major non-conservative force that can lead to significant errors. To achieve the goal of improved orbital drag specification, the IMPACT project (Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking) will employ a comprehensive physics-based model of the thermosphere GITM. The GITM model (Global Ionosphere-Thermosphere Model), developed at the University of Michigan, is solving the full hydrodynamic equation without assuming hydrostatic equilibrium and also includes heating and cooling processes that are causing the density variations and thermospheric wind velocities in the upper atmosphere. The model is coupled to solar and magnetospheric drivers and is, therefore, ideally suited for orbital drag calculations that include relative wind velocities. We will present a study of thermospheric wind velocities as predicted with GITM and compared to observations. We will use the results for orbital drag calculations and determine the sensitivity of the errors in orbital predictions as a function of thermospheric density and wind velocities and how they can alter the orbit of LEO objects and lead to significant errors in orbital predictions. This work is a major new investment at Los Alamos National Laboratory funded by the Laboratory Directed Research and Development (LDRD) program and we gratefully acknowledge the support of the U.S. Department of Energy for this work.

  8. GSFC Venus atmosphere simulator

    NASA Technical Reports Server (NTRS)

    Cridlin, M. S.; Munford, J. A.

    1974-01-01

    The design and preliminary testing of a Venus Atmosphere Simulation System are described. The system was designed for testing a quadrupole mass spectrometer proposed for the Pioneer-Venus Experiment. The system is capable of providing programmed temperature cycles up to 550 C, and manually controlled pressure up to 100 atmospheres.

  9. MODIS Atmospheric Data Handler

    NASA Technical Reports Server (NTRS)

    Anantharaj, Valentine; Fitzpatrick, Patrick

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Atmosphere Data Handler software converts the HDF data to ASCII format, and outputs: (1) atmospheric profiles of temperature and dew point and (2) total precipitable water. Quality-control data are also considered in the export procedure.

  10. Evolution of the atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Theories on the origin of the Earth atmosphere and chemical composition are presented. The role of oxygenic photosynthesis on the determination of the Earth's origin is discussed. The research suggests that further analysis of the geologic record is needed to more accurately estimate the history of atmospheric oxygen.

  11. Magneto-atmospheric waves

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1983-01-01

    A theoretical treatment of magneto-atmospheric waves is presented and applied to the modelling of waves in the solar atmosphere. The waves arise in compressible, stratified, electrically conductive atmospheres within gravitational fields when permeated by a magnetic field. Compression, buoyancy, and distortion of the magnetic field all contribute to the existence of the waves. Basic linearized equations are introduced to describe the waves and attention is given to plane-stratified atmospheres and their stability. A dispersion relation is defined for wave propagation in a plane-stratified atmosphere when there are no plane-wave solutions. Solutions are found for the full wave equation in the presence of either a vertical or a horizontal magnetic field. The theory is applied to describing waves in sunspots, in penumbrae, and flare-induced coronal disturbances.

  12. The atmosphere below. (Videotape)

    SciTech Connect

    1992-12-31

    In this educational `Liftoff to Learning` video series, astronauts from the STS-45 Space Shuttle Mission (Kathy Sullivan, Byron Lichtenberg, Brian Duffy, Mike Foale, David Leestma, Charlie Bolden, and Dirk Frimont) explain and discuss the Earths atmosphere, its needs, the changes occurring within it, the importance of ozone, and some of the reasons behind the ozone depletion in the Earths atmosphere. The questions of: (1) what is ozone; (2) what has happened to the ozone layer in the atmosphere; and (3) what exactly does ozone do in the atmosphere, are answered. Different chemicals and their reactions with ozone are discussed. Computer animation and graphics show how these chemical reactions affect the atmosphere and how the ozone hole looks and develops at the south pole during its winter season appearance.

  13. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  14. Final Report for Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)(DE-SC0002003) for 8/15/2009 through 8/14/2012

    SciTech Connect

    Russell, Lynn M; Somerville, Richard C.J.

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by nudging to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  15. Geochemical cycles of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Drever, J. I.

    1988-01-01

    The processes that control the atmosphere and atmospheric changes are reviewed. The geochemical cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.

  16. Radon in atmospheric studies: a review

    SciTech Connect

    Wilkening, M.

    1981-01-01

    The distribution of the isotopes of radon in space and time, their physical characteristics, and their behavior in the dynamics of the atmosphere have presented challenges for many decades. /sup 220/Rn, /sup 222/Rn and their daughters furnish a unique set of tracers for the study of transport and mixing processes in the atmosphere. Appropriate applications of turbulent diffusion theory yield general agreement with measured profiles. Diurnal and seasonal variations follow patterns set by consideration of atmospheric stability. /sup 222/Rn has been used successfully in recent studies of nocturnal drainage winds and cumulus convection. Good results have been obtained using /sup 222/Rn and its long-lived /sup 210/Pb daughter as tracers in the study of continent-to-ocean and ocean-to-continent air mass trajectories, /sup 220/Rn (thoron) because of its short half-life of only 55 seconds has been used to measure turbulent diffusion within the first few meters of the earth's surface and to study the influence of meteorological variables on the rate of exhalation from the ground. Radon daughters attach readily to atmospheric particulate matter which makes it possible to study these aerosols with respect to size spectra, attachment characteristics, removal by gravitation and precipitation, and residence times in the troposphere. The importance of ionization by radon and its daughters in the lower atmosphere and its effect on atmospheric electrical parameters is well known. Knowledge of the mobility and other characteristics of radon daughter ions has led to applications in the study of atmospheric electrical environments under fair weather and thunderstorm conditions and in the formation of condensation nuclei. The availability of increasingly sophisticated analytical tools and atmospheric measurement systems can be expected to add much to our understanding of radon and its daughters as trace components of the atmospheric environment in the years ahead.

  17. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  18. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  19. Why Preschoolers Need Physical Education

    ERIC Educational Resources Information Center

    Pica, Rae

    2011-01-01

    NAEYC, the National Association for Sport and Physical Education, and the US Department of Health and Human Services all recommend that preschool programs offer physical education. There are many reasons why. First, young children form healthy habits early in life. Before entering elementary school they learn to brush their teeth, bathe…

  20. Cyberinfrastructure for Atmospheric Discovery

    NASA Astrophysics Data System (ADS)

    Wilhelmson, R.; Moore, C. W.

    2004-12-01

    Each year across the United States, floods, tornadoes, hail, strong winds, lightning, hurricanes, and winter storms cause hundreds of deaths, routinely disrupt transportation and commerce, and result in billions of dollars in annual economic losses . MEAD and LEAD are two recent efforts aimed at developing the cyberinfrastructure for studying and forecasting these events through collection, integration, and analysis of observational data coupled with numerical simulation, data mining, and visualization. MEAD (Modeling Environment for Atmospheric Discovery) has been funded for two years as an NCSA (National Center for Supercomputing Applications) Alliance Expedition. The goal of this expedition has been the development/adaptation of cyberinfrastructure that will enable research simulations, datamining, machine learning and visualization of hurricanes and storms utilizing the high performance computing environments including the TeraGrid. Portal grid and web infrastructure are being tested that will enable launching of hundreds of individual WRF (Weather Research and Forecasting) simulations. In a similar way, multiple Regional Ocean Modeling System (ROMS) or WRF/ROMS simulations can be carried out. Metadata and the resulting large volumes of data will then be made available for further study and for educational purposes using analysis, mining, and visualization services. Initial coupling of the ROMS and WRF codes has been completed and parallel I/O is being implemented for these models. Management of these activities (services) are being enabled through Grid workflow technologies (e.g. OGCE). LEAD (Linked Environments for Atmospheric Discovery) is a recently funded 5-year, large NSF ITR grant that involves 9 institutions who are developing a comprehensive national cyberinfrastructure in mesoscale meteorology, particularly one that can interoperate with others being developed. LEAD is addressing the fundamental information technology (IT) research challenges needed

  1. New atmospheric model of Epsilon Eridani

    NASA Astrophysics Data System (ADS)

    Vieytes, Mariela; Fontenla, Juan; Buccino, Andrea; Mauas, Pablo

    2016-05-01

    We present a new semi-empirical model of the atmosphere of the widely studied K-dwarf Epsilon Eridani (HD 22049). The model is build to reproduce the visible spectral observations from 3800 to 6800 Angstrom and the h and k Mg II lines profiles. The computations were carried out using the Solar-Stellar Radiation Physical Modeling (SSRPM) tools, which calculate non-LTE population for the most important species in the stellar atmosphere. We show a comparison between the synthetic and observed spectrum, obtaining a good agreement in all the studied spectral range.

  2. Triton's surface-atmosphere energy balance

    NASA Technical Reports Server (NTRS)

    Stansberry, John A.; Yelle, Roger V.; Lunine, Jonathan I.; Mcewen, Alfred S.

    1992-01-01

    A model encompassing the turbulent transfer of sensible heat as well as insolation, reradiation, and latent heat transport is presently used to investigate the energetics of the surface-atmosphere system of Triton. Under the assumption of a physically plausible range of heat transfer coefficients, the atmospheric temperature 1 km above the surface is found to be 1-3 K hotter than the Triton surface. The observed N2 frosts must have an emissivity lower than unity in order to match a frost temperature at the surface of about 38 K.

  3. A First Course in Atmospheric Thermodynamics

    NASA Astrophysics Data System (ADS)

    Chilson, Phillip

    2009-08-01

    It is not uncommon to find textbooks that have been written with the intention of catering to a broad spectrum of readers. Often, though not always, the result is a book appropriate for neither advanced nor beginning students. However, Grant Petty had a very specific target audience in mind when he wrote A First Course in Atmospheric Thermodynamics. The book is clearly gauged for atmospheric science and meteorology students who have had introductory courses in physics and calculus but who have not necessarily established a firm foundation in analytic problem solving.

  4. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  5. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  6. Atmospheres of Jovian Planets

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy

    The giant planets of the solar system have been studied for centuries using a wide range of remote sensing and in situ techniques. An understanding of the atmospheres of Jupiter, Saturn, Uranus, and Neptune has dramatically improved since the dawn of spacecraft exploration of the outer solar system in the 1970s. Cloud decks that were predicted to exist from thermochemical equilibrium arguments have been observationally confirmed, although the exact vertical distribution of condensible species in these atmospheres remains an active area of study. All four of the giant planets have fast zonal (east-west) winds with prograde and retrograde jets, which dominate their atmospheric circulations. Each planet also contains long-lived cyclonic features or convective cloud features that appear and disappear on short timescales. These features suggest a link between the energy transport in the deep atmosphere and the visible cloud tops; the exact nature of this connection remains an outstanding question in giant planet atmosphere studies. The chemistry of the giant planet atmospheres is driven by both the convective processes that loft disequilibrium species from the deep atmosphere into the stratosphere and the interaction between stratospheric materials and ultraviolet sunlight. A unique opportunity to study these interactions was presented to planetary scientists in 1994, when the 22 fragments of Comet Shoemaker-Levy 9 impacted Jupiter. The future of giant planet atmospheric studies is promising. Several mission concepts that will answer fundamental questions regarding giant planet atmospheres are in various stages of development, and the James Webb Space Telescope will also contribute especially to our understanding of Uranus and Neptune. As an understanding of giant planet formation and evolution expands and deepens, these knowledge gains must be examined against the backdrop of the numerous exoplanet systems recently discovered, very few of which resemble our own.

  7. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  8. An implementation plan for priorities in solar-system space physics

    NASA Technical Reports Server (NTRS)

    Krimigis, Stamatios M.; Athay, R. Grant; Baker, Daniel; Fisk, Lennard A.; Fredricks, Robert W.; Harvey, John W.; Jokipii, Jack R.; Kivelson, Margaret; Mendillo, Michael; Nagy, Andrew F.

    1985-01-01

    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described.

  9. Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)

    EPA Science Inventory

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...

  10. Triton's Distorted Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Stansberry, J. A.; Olkin, C. B.; Agner, M. A.; Davies, M. E.

    1998-01-01

    A stellar-occultation light curve for Triton shows asymmetry that can be understood if Triton's middle atmosphere is distorted from spherical symmetry. Although a globally oblate model can explain the data, the inferred atmospheric flattening is so large that it could be caused only by an unrealistic internal mass distribution or highly supersonic zonal winds. Cyclostrophic winds confined to a jet near Triton's northern or southern limbs (or both) could also be responsible for the details of the light curve, but such winds are required to be slightly supersonic. Hazes and clouds in the atmosphere are unlikely to have caused the asymmetry in the light curve.

  11. Laboratory atmospheric compensation experiment

    NASA Astrophysics Data System (ADS)

    Drutman, C.; Moran, James P.; Faria-e-Maia, Francisco; Hyman, Howard; Russell, Jeffrey A.

    1993-06-01

    This paper describes an in-house experiment that was performed at the Avco Research Labs/Textron to test a proprietary atmospheric phase compensation algorithm. Since the laser energies of interest were small enough that thermal blooming was not an issue, it was only necessary to simulate the effect of atmospheric turbulence. This was achieved by fabricating phase screens that mimicked Kolmogorov phase statistics. A simulated atmosphere was constructed from these phase screens and the phase at the simulated ground was measured with a digital heterodyne interferometer. The result of this effort was an initial verification of our proprietary algorithm two years before the field experiment.

  12. Evolution of Atmospheres

    SciTech Connect

    Hanson, B.

    1993-02-12

    An atmosphere is the dynamic gaseous boundary layer between a planet and space. Many complex interactions affect the composition and time evolution of an atmosphere and control the environment - or climate - at a planet's surface. These include both reactions within the atmosphere as well as exchange of energy, gases, and dust with the planet below and the solar system above; for Earth today, interactions with the biosphere and oceans are paramount. In view of the large changes in inputs of energy and gases that have occurred since planets began to form and the complexity of the chemistry, it is not surprising that planetary climates have changed greatly and are continuing to change.

  13. New atmospheric program

    NASA Astrophysics Data System (ADS)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  14. Heterogeneous Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Schryer, David R.

    In the past few years it has become increasingly clear that heterogeneous, or multiphase, processes play an important role in the atmosphere. Unfortunately the literature on the subject, although now fairly extensive, is still rather dispersed. Furthermore, much of the expertise regarding heterogeneous processes lies in fields not directly related to atmospheric science. Therefore, it seemed desirable to bring together for an exchange of ideas, information, and methodologies the various atmospheric scientists who are actively studying heterogeneous processes as well as other researchers studying similar processes in the context of other fields.

  15. Atmospheric refraction: a history

    NASA Astrophysics Data System (ADS)

    Lehn, Waldemar H.; van der Werf, Siebren

    2005-09-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of uniform density up to a sharp upper transition to the ether, at which the refraction occurred. Alhazen and Witelo transmitted his knowledge to medieval Europe. The first accurate measurements were made by Tycho Brahe in the 16th century. Finally, Kepler, who was aware of unusually strong refractions, used the Ptolemaic model to explain the first documented and recognized mirage (the Novaya Zemlya effect).

  16. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study

  17. Triton's surface-atmosphere energy balance

    USGS Publications Warehouse

    Stansberry, J.A.; Yelle, R.V.; Lunine, J.I.; McEwen, A.S.

    1992-01-01

    We explore the energetics of Triton's surface-atmosphere system using a model that includes the turbulent transfer of sensible heat as well as insolation, reradiation, and latent heat transport. The model relies on a 1?? by 1?? resolution hemispheric bolometric albedo map of Triton for determining the atmospheric temperature, the N2 frost emissivity, and the temperatures of unfrosted portions of the surface consistent with a frost temperature of ???38 K. For a physically plausible range of heat transfer coefficients, we find that the atmospheric temperature roughly 1 km above the surface is approximately 1 to 3 K hotter than the surface. Atmospheric temperatures of 48 K suggested by early analysis of radio occultation data cannot be obtained for plausible values of the heat transfer coefficients. Our calculations indicate that Triton's N2 frosts must have an emissivity well below unity in order to have a temperature of ???38 K, consistent with previous results. We also find that convection over small hot spots does not significantly cool them off, so they may be able to act as continous sources of buoyancy for convective plumes, but have not explored whether the convection is vigorous enough to entrain particulate matter thereby forming a dust devil. Our elevated atmospheric temperatures make geyser driven plumes with initial upward velocities ???10 m s-1 stagnate in the lower atmosphere. These "wimpy" plumes provide a possible explanation for Triton's "wind streaks.". ?? 1992.

  18. Orographic disturbances in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Semenov, Anatoly I.; Shefov, Nikolay N.; Medvedeva, Irina V.

    2012-12-01

    Interaction of atmospheric non-stationary stream with obstacles on the Earth's terrestrial surface causes disturbances which are a source of various wave processes. A study of such processes and their influence on the upper atmosphere temperature regime was carried out at Kislovodsk high-mountainous scientific station of the Institute of Atmospheric Physics Russian Academy of Sciences (IAP RAS) by measuring the mesopause temperature in the northern leeward area of the Caucasian ridge. Using the data of the spectrophotometric measurements of the upper atmosphere hydroxyl emission characteristics over almost two decades, information about the orographic disturbances at the mesopause altitudes were obtained and features of their generation in the surface atmosphere were studied. It was found that the atmospheric temperature at altitudes around 90 km in the lee of mountains increased by 10 K (the mean value is about 200 K) at a distance of about 150 km from the ridge. The 300-km width of the observed airglow disturbances is from the observations near the Ural and Caucasian mountains.The sources of wave disturbances are shown to be concentrated near the mountainous irregularities of the Caucasian ridge. These sources appear in the troposphere at altitudes of about 4 km. The process of generating waves with periods from 7 to 20 min were believed to be caused by wind gusts. The spatial distribution of energy flow in the lee of the mountains was calculated and amounts to about 3 erg cm-2 s-1.

  19. Spectrally Invariant Approximation within Atmospheric Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2011-01-01

    Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These spectrally invariant relationships are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.

  20. VII International Congress of Engineering Physics

    NASA Astrophysics Data System (ADS)

    2015-01-01

    In the frame of the fortieth anniversary celebration of the Universidad Autónoma Metropolitana and the Physics Engineering career, the Division of Basic Science and Engineering and its Departments organized the "VII International Congress of Physics Engineering". The Congress was held from 24 to 28 November 2014 in Mexico City, Mexico. This congress is the first of its type in Latin America, and because of its international character, it gathers experts on physics engineering from Mexico and all over the globe. Since 1999, this event has shown research, articles, projects, technological developments and vanguard scientists. These activities aim to spread, promote, and share the knowledge of Physics Engineering. The topics of the Congress were: • Renewable energies engineering • Materials technology • Nanotechnology • Medical physics • Educational physics engineering • Nuclear engineering • High precision instrumentation • Atmospheric physics • Optical engineering • Physics history • Acoustics This event integrates lectures on top trending topics with pre-congress workshops, which are given by recognized scientists with an outstanding academic record. The lectures and workshops allow the exchange of experiences, and create and strengthen research networks. The Congress also encourages professional mobility among all universities and research centres from all countries. CIIF2014 Organizing and Editorial Committee Dr. Ernesto Rodrigo Vázquez Cerón Universidad Autónoma Metropolitana - Azcapotzalco ervc@correo.azc.uam.mx Dr. Luis Enrique Noreña Franco Universidad Autónoma Metropolitana - Azcapotzalco lnf@correo.azc.uam.mx Dr. Alberto Rubio Ponce Universidad Autónoma Metropolitana - Azcapotzalco arp@correo.azc.uam.mx Dr. Óscar Olvera Neria Universidad Autónoma Metropolitana - Azcapotzalco oon@correo.azc.uam.mx Professor Jaime Granados Samaniego Universidad Autónoma Metropolitana - Azcapotzalco jgs@correo.azc.uam.mx Dr. Roberto Tito Hern

  1. Physical activity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/001941.htm Physical activity To use the sharing features on this page, please enable JavaScript. Physical activity -- which includes an active lifestyle and routine exercise -- ...

  2. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are 13 physics experiments/demonstrations applicable to introductory physics courses. Activities include: improved current balance, division circuits, liquid pressure, convection, siphons, oscillators and modulation, electrical resistance, soap films, Helmholtz coils, radioactive decay, and springs. (SL)

  3. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Seventeen experiments in physics are described to demonstrate various physical phenomena. These include the areas of velocity of sound, damped oscillations, plastic deformation of wires, materials, testing, air resistance, spectrum optical filtering, and some new improvised apparatus. (PS)

  4. Physical Allergy

    MedlinePlus

    ... physical stimulus. Physical stimuli include the following: Cold Sunlight Heat or other stimuli that cause sweating (such ... a foreign substance and attacks it. Sensitivity to sunlight (photosensitivity) is an example. Ultraviolet light changes proteins ...

  5. Free from the Atmosphere

    NASA Astrophysics Data System (ADS)

    2007-06-01

    /07 ESO PR Photo 27e/07 Active Galaxy NGC 4945 (NACO-LGS/VLT) Still closer to home, the LGS system can also be applied to solar system objects, such as asteroids or satellites, but also to the study of particular regions of spatially extended bodies like the polar regions of giant planets, where aurora activity is concentrated. During their science verification, the scientists turned the SINFONI instrument with the LGS to a Trans-Neptunian Object, 2003 EL 61. The high image contrast and sensitivity obtained with the use of the LGS mode permit the detection of the two faint satellites known to orbit the TNO. "From such observations one can study the chemical composition of the surface material of the TNO and its satellites (mainly crystalline water ice), estimate their surface properties and constrain their internal structure," explains Christophe Dumas, from ESO. The VLT Laser Guide System is the result of a collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. NACO was built by a Consortium of French and German institutes and ESO. SINFONI was built by a Consortium of German and Dutch Institutes and ESO. More Information Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed to a few percent only. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. The laser beam takes advantage of the layer of sodium atoms

  6. The Association of Pre-storm Ground Wetness with Inland Penetration of Monsoon Depressions : A Study Using Self Organizing Maps (SOM) C.M. Kishtawal Meteorology and Oceanography Group, Space Applications Center, Ahmedabad, INDIA Dev Niyogi2 Department of Agronomy, and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana

    NASA Astrophysics Data System (ADS)

    Kishtawal, C. M.; Niyogi, D.

    2009-12-01

    Monsoon depressions (MDs)are probably the most important rain bearing systems that occur during the Indian summer monsoon season. The unique topography of Indian peninsula and Indo-china region favor the formation and development of MDs in the warm and moist air over the Bay of Bengal. After formation the MDs move in a north-northwest track along the monsoon trough to the warmer and drier heat low regions of Northwest India and Pakistan. The dynamic structure of MDs is largely maintained by convergence of atmospheric water vapor flux coupled with the lower tropospheric divergent circulation (Chen et al., 2005), and they weaken rapidly after landfall due to the lack of surface moisture fluxes (Dastoor and Krishnamurti, 1991). In the present study we explored the association between pre-storm wetness conditions and the post-landfall situation of MDs using 54-year long observations (1951-2004) of 183 MDs and daily surface rainfall. Our analysis suggests that the MD’s post-landfall behavior is most sensitive to mean inland rainfall between To-1 to To-8 days (the pre-storm rainfall), where To is the day of formation of MD in the Bay of Bengal. Further, pre-storm rainfall over a broad region along the monsoon trough is found to exhibit the maximum association with the MDs inland lifespan. We further carried out the unsupervised classification of pre-storm rainfall patterns using Self Organizing Map(SOM), a topology preserving map that maps data from higher dimensions onto a two dimensional grid(Kohenen, 1990). The SOM patterns of rainfall indicate that pre-storm wetness is strongly associated with the inland penetration length of MDs with wetter conditions supporting MDs to survive longer after the landfall. Although the pre-storm inland wetness has not been found to be associated with the formation of MDs and a number of MDs form during relatively dry inland conditions during the early (June) and late (September) phases of monsoon, the inland-penetration and post

  7. The physics of lightning

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Uman, Martin A.

    2014-01-01

    Despite being one of the most familiar and widely recognized natural phenomena, lightning remains relatively poorly understood. Even the most basic questions of how lightning is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of lightning and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered lightning experiments are now providing new insights into the physics of lightning. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and lightning illustrate that new and interesting physics is still being discovered in our atmosphere. The study of lightning and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of lightning with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is lightning initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in lightning initiation and how? What is the role of various forms of ice and water in lightning initiation? What physical mechanisms govern the propagation of the different types of lightning leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics

  8. IN MY OPINION: The how of physics

    NASA Astrophysics Data System (ADS)

    Kibble, Bob

    2000-03-01

    if development days have lost the plot somewhat. How often are such days devoted to generic, whole school issues and how often do they focus on teachers and teaching? As a teacher I found it a rare luxury to find a forum, both the time and the place, to talk about teaching. Occasionally the ASE local section meetings or the ASE annual meeting provided space for professional reflection, and I often returned from such events with ideas to try out and to share with colleagues. Perhaps better use might be made of subject departments as agents for change. A modest investment in training middle managers as teacher-mentors and leaders might result in change that would be managed from within schools. Teachers helping teachers. I'll end this editorial with a plea to head teachers, advisers, department heads and the physics teaching community. Resurrect the HOW of physics teaching. Let's create space and time for teachers to share, reflect and explore their trade, to observe others teaching, to articulate their strategies for lesson planning and motivating learners and to be brave enough to step out from the stifling atmosphere of their classroom boxes and breathe again.

  9. Physics Teacher Quality

    NASA Astrophysics Data System (ADS)

    Wallace, Andrew; Bixler, David

    2010-03-01

    Physics Teacher Quality at Angelo State University (ASU) and Education Service Center Region XV is funded through a US Department of Education grant. In this program secondary science teachers from local and rural districts within Region XV learn and practice physics and principles of technology concepts emphasized in the Texas Essential Knowledge and Skills (TEKS), improve practice of 5E model of guided inquiry, and complete activity-based laboratories and field investigations. Investigations include field and laboratory safety, environmental responsibility, ethical practices, application of scientific methods to open-ended problems encountered in the physical sciences, and critical thinking and problem solving. Teachers are assessed through pre- and post- testing, lab practicum, and classroom observation over a two-year cycle. Assessment data from 2004 through 2008 indicates Physics Teacher Quality is changing teaching behavior in the secondary classroom.

  10. The atmospheres of Venus, earth, and Mars - A critical comparison

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Fegley, Bruce, Jr.

    1987-01-01

    The physical conditions and structures, chemical compositions, origins, and evolutions of the earth, Mars, and Venus atmospheres are compared, summarizing the results of recent theoretical and observational investigations. Data are compiled in extensive tables, graphs, and diagrams and characterized in detail. Consideration is given to the roles of chemical cycles and biology; global changes in atmospheric composition; the secondary origin of all three atmospheres; volatile retention by solid grains in the solar nebula; volatile degassing and atmosphere formation; and evolutionary processes, sources, cycles, and sinks.

  11. Remote sensing of the atmosphere by resonance Raman LIDAR

    SciTech Connect

    Sedlacek, A.J.; Harder, D.; Leung, K.P.; Zuhoski, P.B. Jr.; Burr, D.; Chen, C.L.

    1994-12-01

    When in resonance, Raman scattering exhibits strong enhancement ranging from four to six orders of magnitude. This physical phenomenon has been applied to remote sensing of the Earth`s atmosphere. With a 16 inch Cassegrain telescope and spectrometer/ CCD-detector system, 70-150 ppm-m of SO{sub 2} in the atmosphere has been detected at a distance of 0.5 kilometer. This system can be used to detect/monitor chemical effluence in the atmosphere by their unique Raman fingerprints. Experimental result together with detailed resonance Raman and atmospheric laser propagation effects will be discussed.

  12. Atmospheric Profiling Snthetic observation System(APSOS) - a system for whole atmosphere, purpose and preliminary observation

    NASA Astrophysics Data System (ADS)

    Lu, Daren; Pan, Weilin; Wang, Yinan

    2016-07-01

    To understand the vertical coupling processes between the troposphere, stratosphere, mesosphere and lower thermosphere with high vertical resolution and temporal resolution, an observation system consisted of multi-lidars, a W-band Doppler radar, and a THz spectrometer has been developing starting from 2012. This system is developed to observer the multiple atmospheric parameters, include high clouds, aerosols, CO2, SO2, NO2, water vapor, ozone, atmospheric temperature and wind, sodium atomic layer, in different height ranges, with vertical resolution of tens to hundreds meters and temporal resolution of several to tens minutes. In addition, the simultaneous observation with high cloud radar will enhance the ability of quantitative retrieval of middle and upper atmospheric observation with combined retrieval of cloud micro-physical characteristics and other atmospheric parameters above the cloud layer. As the cirrus cloud occupied about 50% of earth coverage, this ability will increase the whole atmosphere observation ability obviously. During last 5 years. We have finished each unit of the system and have revealed their targets separately. Temperature profile has been observed from 30 to 110 km, ozone up to 50 km, etc. In spring of 2016, we will have preliminary integrated observation in Eastern China, the Huainan Observatory of the Institute of Atmospheric Physics, CAS. In the end of 2016, the system will be implemented at Yangbajing Cosmic Ray Observatory, CAS, near Lasa, Tibetan Plateau. Some preliminary results from Huainan observation will be presented in this presentation. This project is founded by NSFC.

  13. Sports Physicals

    MedlinePlus

    ... stronger athlete. previous continue When & Where Should I Go for a Sports Physical? Some people go to their own doctor for a sports physical; ... one at school. During school physicals, you may go to half a dozen or so "stations" set ...

  14. PREFACE: First International Workshop and Summer School on Plasma Physics

    NASA Astrophysics Data System (ADS)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school

  15. Thermal atmospheric models

    NASA Technical Reports Server (NTRS)

    Johnson, Hollis Ralph

    1987-01-01

    The static thermal atmosphere is described and its predictions are compared to observations both to test the validity of the classic assumptions and to distinguish and describe those spectral features with diagnostic value.

  16. Condensates in Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    Thermochemical equilibrium theory which starts with temperature/pressure profiles, compositional information and thermodynamic data for condensable species in the jovian planet atmospheres predicts layers of condensate clouds in the upper troposphere.

  17. Students 'Weigh' Atmospheric Pollution.

    ERIC Educational Resources Information Center

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  18. Middle atmospheric electrodynamics

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  19. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  20. The invention of atmosphere.

    PubMed

    Martin, Craig

    2015-08-01

    The word "atmosphere" was a neologism Willebrord Snellius created for his Latin translation of Simon Stevin's cosmographical writings. Astronomers and mathematical practitioners, such as Snellius and Christoph Scheiner, applying the techniques of Ibn Mu'ādh and Witelo, were the first to use the term in their calculations of the height of vapors that cause twilight. Their understandings of the atmosphere diverged from Aristotelian divisions of the aerial region. From the early years of the seventeenth century, the term was often associated with atomism or corpuscular matter theory. The concept of the atmosphere changed dramatically with the advent of pneumatic experiments in the middle of the seventeenth century. Pierre Gassendi, Walter Charleton, and Robert Boyle transformed the atmosphere of the mathematicians giving it the characteristics of weight, specific gravity, and fluidity, while disputes about its extent and border remained unresolved. PMID:26193787

  1. The changing atmosphere

    SciTech Connect

    Firor, J. )

    1990-01-01

    This book describes the causes of acid rain, ozone depletion, and global warming and the evidence for each one's recent acceleration. It provides practical and long-range suggestions for controlling these and other forms of atmospheric deterioration.

  2. Our Changing Atmosphere.

    ERIC Educational Resources Information Center

    Clearing, 1988

    1988-01-01

    Summarizes what is known about two major variables involved in certain types of chemical pollution that seem to be changing the structure of the Earth's atmosphere. Discusses the greenhouse effect and the ozone layer. (TW)

  3. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, Roland L.; Cannon, Theodore W.

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  4. Atmospheric optical calibration system

    DOEpatents

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  5. Unravelling our atmosphere

    NASA Astrophysics Data System (ADS)

    Caldwell, Martin

    2014-05-01

    A main limiting factor in climate predictions is that we do not understand atmospheric processes as a function of height. An upcoming European and Japanese space mission called EarthCARE seeks to remedy this, as Martin Caldwell explains.

  6. Pioneer 10 Jupiter atmospheric definition results: A summary. [Jupiter atmosphere composition measurements

    NASA Technical Reports Server (NTRS)

    Wolfe, J.; Kliore, A.

    1974-01-01

    The various entry probes for measuring outer planetary atmospheric compositions are discussed. Considered are chemical components and physical accumulation processes observable by spectroscopic studies, as well as pressure gauges, temperature gauges, accelerometers, nephelometers, and visible and infrared sensors for determining abundances.

  7. Atmospheric Chemistry Data Products

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This presentation poster covers data products from the Distributed Active Archive Center (DAAC) of the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Total Ozone Mapping Spectrometer products (TOMS) introduced in the presentation include TOMS Version 8 as well as Aura, which provides 25 years of TOMS and Upper Atmosphere Research Satellite (UARS) data. The presentation lists a number of atmospheric chemistry and dynamics data sets at DAAC.

  8. Study of atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Christy, John R.; Cox, Gregory N.

    1993-01-01

    In order to better understand the dynamics of the global atmosphere, a data set of precision temperature measurements was developed using the NASA built Microwave Sounding Unit. Modeling research was carried out to validate global model outputs using various satellite data. Idealized flows in a rotating annulus were studied and applied to the general circulation of the atmosphere. Dynamic stratospheric ozone fluctuations were investigated. An extensive bibliography and several reprints are appended.

  9. Comparative Research Productivity Measures for Economic Departments.

    ERIC Educational Resources Information Center

    Huettner, David A.; Clark, William

    1997-01-01

    Develops a simple theoretical model to evaluate interdisciplinary differences in research productivity between economics departments and related subjects. Compares the research publishing statistics of economics, finance, psychology, geology, physics, oceanography, chemistry, and geophysics. Considers a number of factors including journal…

  10. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Seiff, Alvin; Lester, Peter

    1999-01-01

    instrument performance, although performed greater than 5 years prior to Jupiter encounter. Capability of decoding the science data from the Experiment Data Record to be provided at encounter was developed and exercised using the tape recording of the first Cruise Checkout data. A team effort was organized to program the selection and combination of data words defining pressure, temperature, acceleration, turbulence, and engineering quantities; to apply decalibration algorithms to convert readings from digital numbers to physical quantities; and to organize the data into a suitable printout. A paper on the Galileo Atmosphere Structure Instrument was written and submitted for publication in a special issue of Space Science Reviews. At the Journal editor's request, the grantee reviewed other Probe instrument papers submitted for this special issue. Calibration data were carefully taken for all experiment sensors and accumulated over a period of 10 years. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature, and acceleration sensors, and the supporting engineering temperature sensors. This report was distributed to experiment coinvestigators and the Probe Project Office.

  11. 32 CFR 644.140 - Physical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Physical protection. 644.140 Section 644.140 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer...

  12. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect

    Schrempf, R.E.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  13. Evolution of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Povoden, G.; Selsis, F.; Ribas, I.; Tehrany, M. G.; Guinan, E. F.; Hanslmeier, A.; Bauer, S. J.

    2003-04-01

    We show that anomalies of heavy isotopes in Titan's atmosphere can be explained by using observational data of the radiation and particle environment of solar proxies. These observations indicate a larger solar wind flux and high solar EUV radiation of the early Sun during the first billion years are responsible for a fractionated atmospheric loss. For studying the evolution of the thermal escape of Titan's atmosphere we use a scaling law based on an approximate solution of the heat balance equation in the exosphere. Further, isotope fractionation by non-thermal atmospheric escape processes like dissociative recombination, impact dissociation, atmospheric sputtering and ion pick-up processes. We show that Titan lost an atmospheric mass We discuss also possible chemical reactions of methane and other out-gassing substances due to the high solar EUV fluxes powered thermospheric temperature 4 Gyr ago. This could have lead to molecules of higher mass like ethane and other organic compounds. The efficient production of such molecules was reduced by the decrease of the solar activity resulting in a kind of frozen state. At present only high energy processes like lightning discharges may give similar reactions.

  14. The photochemistry of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1988-01-01

    Recent theoretical and observational investigations of photochemical processes in the atmospheres of the planets and their satellites are reviewed. Particular attention is given to the CO2-dominated atmospheres of Mars and Venus, the hydrogen-dominated atmospheres of the Jovian planets, the SO2 atmosphere of Io, and the massive atmospheres of Titan and Triton. The principal reaction paths involved are listed and briefly characterized, and numerical data on atmospheric compositions are given in tables.

  15. MAVEN Imaging UV Spectrograph Results on the Mars Atmosphere and Atmospheric Escape

    NASA Astrophysics Data System (ADS)

    Chaffin, Michael; Schneider, Nick; McClintock, Bill; Stewart, Ian; Deighan, Justin; Jain, Sonal; Clarke, John; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Chaufray, Jean-Yves; Stiepen, Arnaud; Crismani, Matteo; Mayyasi, Majd; Evans, Scott; Stevens, Mike; Yelle, Roger; Jakosky, Bruce

    2016-04-01

    physics probed by IUVS is hardly unique to Mars, having broad implications throughout the Solar System and beyond for all planets with CO2-dominated atmospheres.

  16. Interior and its implications for the atmosphere. [effects of Titan interior structure on its atmospheric composition

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1974-01-01

    The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.

  17. Princeton Plasma Physics Laboratory

    SciTech Connect

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  18. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1984-01-01

    The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.

  19. Cloud Computing with iPlant Atmosphere.

    PubMed

    McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos

    2013-01-01

    Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. PMID:26270172

  20. A contaminant monitor for submarine atmospheres.

    NASA Technical Reports Server (NTRS)

    Ruecker, M. R.

    1973-01-01

    A requirement for monitoring selected atmospheric constituents on board nuclear powered submarines has been met by the development of the Central Atmosphere Monitoring System, Mark I. This system employs a mass spectrometer to monitor H2, H2O, N2, O2, CO2, Freon 11, Freon 12, and Freon 114, in addition to an infrared sensor for CO. The CAMS MKI development is discussed, including background, operating fundamentals, principal requirements, functional and physical descriptions, and summarized test results. Each of two prototype units has successfully completed over 9000 hr of operational sea trails, providing the necessary ground work for the manufacture of production units. At the same time, these units, which have benefited extensively from NASA hardware experience, may in turn provide useful data for the development of a new class of maintainable atmospheric monitoring instrumentation for manned spacecraft.

  1. Discovery of Haze in Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    2015-12-01

    The New Horizons spacecraft made the first reconnaissance of the Pluto-Charon system on Jul 14, 2015. The Long Range Reconnaissance Imager (LORRI) on New Horizons obtained images of Pluto and Charon on approach, near closest approach, and on departure. The departure images, obtained at high solar phase angles, unexpectedly revealed that Pluto's atmosphere is hazy. The haze in Pluto's atmosphere was detected in each of five images obtained in two separate observations on Jul 14 and on Jul 16, at solar phase angles of 167° and 165° respectively. The haze extends to altitudes of 150 km above Pluto's surface, with evidence for layering and/or gravity waves. We will present the haze observations and discuss derived physical properties and implications for the atmosphere and its interactions with the surface.

  2. We reside in the sun's atmosphere.

    PubMed

    Kamide, Y

    2005-10-01

    The Sun is the origin of all activities of the Earth, including its solid, liquid and gas states, as well as life on the Earth surface. Life was created on this planet and was further evolved after long physical/chemical processes, so that life here matches with what this planet requires. This paper contends that the Earth is located within the solar atmosphere, but we do not feel it in a daily life because of the blocking effects of the Earth's magnetic field and atmosphere, preventing the entry of the solar atmosphere directly into the Earth's domain. This paper emphasizes that we should not attempt to change the quality of the natural environment that delicate interactions between the Sun and the Earth have established for us by taking a long time. PMID:16275476

  3. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  4. Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm

    NASA Astrophysics Data System (ADS)

    Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael; Berk, Alexander; Anderson, Gail; Gardner, James; Felde, Gerald

    2005-10-01

    Atmospheric Correction Algorithms (ACAs) are used in applications of remotely sensed Hyperspectral and Multispectral Imagery (HSI/MSI) to correct for atmospheric effects on measurements acquired by air and space-borne systems. The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm is a forward-model based ACA created for HSI and MSI instruments which operate in the visible through shortwave infrared (Vis-SWIR) spectral regime. Designed as a general-purpose, physics-based code for inverting at-sensor radiance measurements into surface reflectance, FLAASH provides a collection of spectral analysis and atmospheric retrieval methods including: a per-pixel vertical water vapor column estimate, determination of aerosol optical depth, estimation of scattering for compensation of adjacency effects, detection/characterization of clouds, and smoothing of spectral structure resulting from an imperfect atmospheric correction. To further improve the accuracy of the atmospheric correction process, FLAASH will also detect and compensate for sensor-introduced artifacts such as optical smile and wavelength mis-calibration. FLAASH relies on the MODTRANTM radiative transfer (RT) code as the physical basis behind its mathematical formulation, and has been developed in parallel with upgrades to MODTRAN in order to take advantage of the latest improvements in speed and accuracy. For example, the rapid, high fidelity multiple scattering (MS) option available in MODTRAN4 can greatly improve the accuracy of atmospheric retrievals over the 2-stream approximation. In this paper, advanced features available in FLAASH are described, including the principles and methods used to derive atmospheric parameters from HSI and MSI data. Results are presented from processing of Hyperion, AVIRIS, and LANDSAT data.

  5. Physics Buildings Today. A Supplement to Modern Physics Buildings: Design and Function.

    ERIC Educational Resources Information Center

    American Inst. of Physics, New York, NY.

    This supplement to "Modern Physics Buildings: Design and Function" is intended as an aid to physics department faculties, administrators, and architects responsible for designing new science buildings. It provides descriptions of 26 new physics buildings and science buildings with physics facilities. Presented are (1) floor plans, (2) photographs,…

  6. U.S. Standard Atmosphere, 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Part 1 gives the basis for computation of the main tables of atmospheric properties, including values of physical constants, conversion factors, and definitions of derived properties, including values of physical constants, conversion factors, and definitions of derived properties. Part 2 describes the model and data used up to 85 km, in the first section; and the model and data used above 85 km in the second section. The theoretical basis of the high altitude model is given in an appendix. Part 3 contains information on minor constituents in the troposphere, stratosphere, and mesosphere. The main tables of atmospheric properties to 1000 km are given in Part 4. The international system of metric units is used.

  7. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  8. The realist interpretation of the atmosphere

    NASA Astrophysics Data System (ADS)

    Anduaga, Aitor

    The discovery of a clearly stratified structure of layers in the upper atmosphere has been--and still is--invoked too often as the great paradigm of atmospheric sciences in the 20th century. Behind this vision, an emphasis--or better, an overstatement--on the reality of the concept of layer lies. One of the few historians of physics who have not ignored this phenomenon of reification, C. Stewart Gillmor, attributed it to--somewhat ambiguous-- cultural (or perhaps, more generally, contextual) factors, though he never specified their nature. In this essay, I aim to demonstrate that, in the interwar years, most radiophysicists and some atomic physicists, for reasons principally related to extrinsic influences and to a lesser extent to internal developments of their own science, fervidly embraced a realist interpretation of the ionosphere. We will focus on the historical circumstances in which a specific social and commercial environment came to exert a strong influence on upper atmospheric physicists, and in which realism as a product validating the "truth" of certain practices and beliefs arose. This realist commitment I attribute to the mutual reinforcement of atmospheric physics and commercial and imperial interests in long-distance communications.

  9. Princeton Plasma Physics Laboratory:

    SciTech Connect

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  10. Tipping point analysis of atmospheric oxygen concentration

    SciTech Connect

    Livina, V. N.; Forbes, A. B.; Vaz Martins, T. M.

    2015-03-15

    We apply tipping point analysis to nine observational oxygen concentration records around the globe, analyse their dynamics and perform projections under possible future scenarios, leading to oxygen deficiency in the atmosphere. The analysis is based on statistical physics framework with stochastic modelling, where we represent the observed data as a composition of deterministic and stochastic components estimated from the observed data using Bayesian and wavelet techniques.

  11. ICOS Atmospheric Thematic Center

    NASA Astrophysics Data System (ADS)

    Rivier, Leonard; Hazan, Lynn; Tarniewicz, Jerome; Laurent, Olivier; Yver, Camille; Laurila, Tuomas; Paris, Jean-Daniel; Ramonet, Michel; Ciais, Philippe

    2014-05-01

    ICOS is a recently-launched, world-class research infrastructure dedicated to the monitoring and improved understanding of carbon sources and sinks. It consists of complementary, harmonized networks of long-term ecosystem monitoring stations focusing on Europe and adjacent regions. The ICOS networks will comprise about 40 operational atmospheric stations (measuring atmospheric composition in greenhouse gases and other core parameters), 30 ecosystem stations (measuring fluxes from ecosystems) and about 10 oceanic measurement platforms. The networks will be coordinated through a set of central facilities: three Thematic centres respectively for atmospheric, ecosystem and ocean data, and a Central analytical lab. The mission of the thematic centres are to process, validate and distribute data to end-users. ICOS will also set up a Carbon portal dedicated to easy discovery of and access to data and elaborated products such as flux maps by end users.The Atmospheric Thematic Center (ATC) has three main functions: Operate the atmospheric data processing chains, going from data transmission from stations to the routine delivery of quality checked data-stream Carry out regular measurement technology survey, analysis and enable development of new sensors and their testing Monitor the network and propose spare instruments, training, and technical assistance.

  12. LIMITS ON QUAOAR'S ATMOSPHERE

    SciTech Connect

    Fraser, Wesley C.; Gwyn, Stephen; Kavelaars, J. J.; Trujillo, Chad; Stephens, Andrew W.; Gimeno, German

    2013-09-10

    Here we present high cadence photometry taken by the Acquisition Camera on Gemini South, of a close passage by the {approx}540 km radius Kuiper belt object, (50000) Quaoar, of a r' = 20.2 background star. Observations before and after the event show that the apparent impact parameter of the event was 0.''019 {+-} 0.''004, corresponding to a close approach of 580 {+-} 120 km to the center of Quaoar. No signatures of occultation by either Quaoar's limb or its potential atmosphere are detectable in the relative photometry of Quaoar and the target star, which were unresolved during closest approach. From this photometry we are able to put constraints on any potential atmosphere Quaoar might have. Using a Markov chain Monte Carlo and likelihood approach, we place pressure upper limits on sublimation supported, isothermal atmospheres of pure N{sub 2}, CO, and CH{sub 4}. For N{sub 2} and CO, the upper limit surface pressures are 1 and 0.7 {mu}bar, respectively. The surface temperature required for such low sublimation pressures is {approx}33 K, much lower than Quaoar's mean temperature of {approx}44 K measured by others. We conclude that Quaoar cannot have an isothermal N{sub 2} or CO atmosphere. We cannot eliminate the possibility of a CH{sub 4} atmosphere, but place upper surface pressure and mean temperature limits of {approx}138 nbar and {approx}44 K, respectively.

  13. THERMALLY DRIVEN ATMOSPHERIC ESCAPE

    SciTech Connect

    Johnson, Robert E.

    2010-06-20

    Accurately determining the escape rate from a planet's atmosphere is critical for determining its evolution. A large amount of Cassini data is now available for Titan's upper atmosphere and a wealth of data is expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes produced by energy deposited in the exobase region. Recent applications of a model for escape driven by upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large loss rates for the atmosphere of Titan, Saturn's largest moon. Based on a molecular kinetic simulation of the exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore, the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.

  14. Venus: atmospheric evolution.

    PubMed

    Dayhoff, M O; Eck, R V; Lippincott, E R; Sagan, C

    1967-02-01

    Because of the high temperatures prevailing in the lower atmosphere of Venus, its chemistry is dominated by the tendency toward thermodynamic equilibrium. From the atomic composition deduced spectroscopically, the thermodynamic equilibrium composition of the atmosphere of Venus is computed, and the following conclusions drawn. (i) There can be no free carbon, hydrocarbons, formaldehyde, or any other organic molecule present in more than trace amounts. (ii) The original atomic composition of the atmosphere must have included much larger quantities of hydrogen and a carbon/oxygen ratio atmosphere of Venus are so unique that an evolutionary mechanism involving two independent processes seems necessary, as follows. Water, originally present in large quantities, has been photodissociated in the upper atmosphere, and the resulting atomic hydrogen has been lost in space. The resulting excess oxygen has been very effectively bound to the surface materials. (iv) There must be some weathering process, for example, violent wind erosion, to disturb and expose a sufficient quantity of reduced surface material to react with the oxygen produced by photodissociation. PMID:17737405

  15. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  16. Physics from UFO Data

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2001-05-01

    A research project regarding the instrumental investigation on atmospheric plasma-like luminous phenomena is proposed. Considered targets are treated on a par with astronomical objects having no fixed coordinates. Specifically oriented monitoring techniques and strategies involving small telescopes which are connected to CCD detectors, spectrographs and photon-counting photometers are presented. Expected exposure-times for acquiring an optimum signal-to-noise ratio of the target by using all the proposed instruments is also evaluated. Finally, physical parameters which are expected to be inferred from data analysis are presented and discussed in detail. This is the amply revised and expanded version of a paper published on Ufodatanet in 1999.

  17. Physics from UFO Data

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    1999-06-01

    A research project regarding the instrumental investigation on atmospheric plasma-like luminous phenomena is proposed. Considered targets are treated on a par with astronomical objects having no fixed coordinates. Specifically oriented monitoring techniques and strategies involving small telescopes which are connected to CCD detectors, spectrographs and photon-counting photometers are presented. Expected exposure-times for acquiring an optimum signal-to-noise ratio of the target by using all the proposed instruments is also evaluated. Finally, physical parameters which are expected to be inferred from data analysis are presented and discussed in detail.

  18. Physical composition

    NASA Astrophysics Data System (ADS)

    Healey, Richard

    2013-02-01

    Atomistic metaphysics motivated an explanatory strategy which science has pursued with great success since the scientific revolution. By decomposing matter into its atomic and subatomic parts physics gave us powerful explanations and accurate predictions as well as providing a unifying framework for the rest of science. The success of the decompositional strategy has encouraged a widespread conviction that the physical world forms a compositional hierarchy that physics and other sciences are progressively articulating. But this conviction does not stand up to a closer examination of how physics has treated composition, as a variety of case studies will show.

  19. Physical Abuse

    MedlinePlus

    Navigation Physical Abuse Sexual Abuse Domestic Violence Psychological Abuse Financial Abuse Neglect Critical Issues What Communities Can Do The Role of Professionals and Concerned Citizens Help for Victims ...

  20. Therapeutic potential of atmospheric neutrons

    PubMed Central

    Voyant, Cyril; Roustit, Rudy; Tatje, Jennifer; Biffi, Katia; Leschi, Delphine; Briançon, Jérome; Marcovici, Céline Lantieri

    2010-01-01

    Background Glioblastoma multiform (GBM) is the most common and most aggressive type of primary brain tumour in humans. It has a very poor prognosis despite multi-modality treatments consisting of open craniotomy with surgical resection, followed by chemotherapy and/or radiotherapy. Recently, a new treatment has been proposed – Boron Neutron Capture Therapy (BNCT) – which exploits the interaction between Boron-10 atoms (introduced by vector molecules) and low energy neutrons produced by giant accelerators or nuclear reactors. Methods The objective of the present study is to compute the deposited dose using a natural source of neutrons (atmospheric neutrons). For this purpose, Monte Carlo computer simulations were carried out to estimate the dosimetric effects of a natural source of neutrons in the matter, to establish if atmospheric neutrons interact with vector molecules containing Boron-10. Results The doses produced (an average of 1 μGy in a 1 g tumour) are not sufficient for therapeutic treatment of in situ tumours. However, the non-localised yet specific dosimetric properties of 10B vector molecules could prove interesting for the treatment of micro-metastases or as (neo)adjuvant treatment. On a cellular scale, the deposited dose is approximately 0.5 Gy/neutron impact. Conclusion It has been shown that BNCT may be used with a natural source of neutrons, and may potentially be useful for the treatment of micro-metastases. The atmospheric neutron flux is much lower than that utilized during standard NBCT. However the purpose of the proposed study is not to replace the ordinary NBCT but to test if naturally occurring atmospheric neutrons, considered to be an ionizing pollution at the Earth's surface, can be used in the treatment of a disease such as cancer. To finalize this study, it is necessary to quantify the biological effects of the physically deposited dose, taking into account the characteristics of the incident particles (alpha particle and Lithium