Science.gov

Sample records for atmospheric pollution monitor

  1. Monitoring environmental pollution by atmospheric corrosion

    SciTech Connect

    Al-Kharafi, F.M.; Ismail, M.I.

    1988-01-01

    Atmospheric pollution is monitored by outdoor exposure of several commercial alloys including steel, Al, Cu, and brass (Cu-30Zu) alloys. Three districts of Kuwait were selected for this study including of residential, industrial, and marine areas. The atmospheric pollution level could be monitored directly by observation of the corrosion of the test alloys.

  2. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  3. An advanced open path atmospheric pollution monitor for large areas

    SciTech Connect

    Taylor, L.; Suhre, D.; Mani, S.

    1996-12-31

    Over 100 million gallons of radioactive and toxic waste materials generated in weapon materials production are stored in 322 tanks buried within large areas at DOE sites. Toxic vapors occur in the tank headspace due to the solvents used and chemical reactions within the tanks. To prevent flammable or explosive concentration of volatile vapors, the headspace are vented, either manually or automatically, to the atmosphere when the headspace pressure exceeds preset values. Furthermore, 67 of the 177 tanks at the DOE Hanford Site are suspected or are known to be leaking into the ground. These underground storage tanks are grouped into tank farms which contain closely spaced tanks in areas as large as 1 km{sup 2}. The objective of this program is to protect DOE personnel and the public by monitoring the air above these tank farms for toxic air pollutants without the monitor entering the tanks farms, which can be radioactive. A secondary objective is to protect personnel by monitoring the air above buried 50 gallon drums containing moderately low radioactive materials but which could also emit toxic air pollutants.

  4. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  5. Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution.

    PubMed

    Salo, Hanna; Berisha, Anna-Kaisa; Mäkinen, Joni

    2016-03-01

    This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples. PMID:26969058

  6. The Due Innovators II Apollo Project: Monitoring Atmospheric Pollution with Earth Observations

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Del Frate, F.; Di Noia, A.; Sambucini, V.; Bojkov, B. R.

    2010-12-01

    In this paper we present the Innovators II - APOLLO (monitoring Atmospheric POLLution with earth Observation) project which has been carried out in the framework of the ESA Data User Element programme (http://www.esa.int/due). The projects aims at the development of an innovative service for the monitoring of the air quality from ground based measurements and by means of satellite data e.g. provided by the OMI mission. The core of the APOLLO project is the OMI-TOC NN (neural networks) algorithm.

  7. Atmospheric Composition Monitoring with MOPITT and IASI: CO, a Tracer of Pollution

    NASA Astrophysics Data System (ADS)

    George, M.; Clerbaux, C.; Hadji-Lazaro, J.; Bouarar, I.; Hurtmans, D.; Coheur, P. F.; Edwards, D. P.; Deeter, M. N.; Worden, H. M.; Inness, A.

    2014-12-01

    Carbon monoxide (CO) is an important trace gas for understanding air quality and atmospheric composition. It is a good tracer of pollution plumes and atmospheric dynamics. In this presentation we analyse the global and regional CO distributions as seen by remote sensors onboard of satellites, in particular the nadir-looking thermal infrared MOPITT/Terra and IASI/MetOp instruments. Since several years of data are now available, we show CO distributions over polluted and clean regions for the period 2008-2013, and we discuss their evolution with time. A detailed analysis was performed to compare both datasets and we show the influence of the a priori assumptions in the retrieval process. We did a retrieval experience where the MOPITT retrieval code was run on the MOPITT dataset using the IASI a priori profile and covariance matrix. The agreement for total columns and profiles distributions is discussed, and the retrieved profiles are validated with aircraft IAGOS data. Finally, we will also describe how MOPITT and IASI data are routinely assimilated in the Monitoring Atmospheric Composition and Climate (MACC) system (the pre-operational Copernicus Atmosphere Service of the European Union), which provides analyses and forecasts of global CO distributions.

  8. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  9. Global pollution aerosol monitoring (GPAM) in the atmospheric boundary layer using future earth observing satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Qu, Jianhe; Kafatos, Menas; Yang, Ruixin; Chiu, Long S.; Riebau, Allen R.

    2003-04-01

    Global pollution aerosol monitoring is a very important climatic and environmental problem. It affects not only human health but also ecological systems. Because most pollution aerosols are concentrated in the atmospheric boundary layer where human, animal and vegetation live, global pollution aerosol stuides have been an important topic since about a decade ago. Recently, many new chemistry remote sensing satellite systems, such as NASA's Aura (EOS-CHEM), have been established. However, pollution aerosols in the atmospheric boundary layer cannot be detected using current remote sensing technologies. George Mason University (GMU) proposes to design scientific algorithms and technologies to monitor the atmospheric boundary layer pollution aerosols, using both satellite remote sensing measurements and ground measurements, collaborating with NASA and the United States Department of Agriculture (USDA)/Forest Services (FS). Boundary layer pollution aerosols result from industrial pollution, desert dust storms, smoke from wildfires and biomass burning, volcanic eruptions, and from other trace gases. The current and next generation satellite instruments, such as The Ozone Mapping and Profiler Suite (OMPS), Ozone Monitoring Instrument (OMI), Thermal Emission Spectrometer (TES), and High Resolution Dynamics Limb Sounder (HIRDLS) can be used for this study. Some surface measurements from USDA/FS and other agencies may also be used in this study. We will discuss critical issues for GPAM in the boundary layer using Earth observing satellite remote sensing in detail in this paper.

  10. Optical Remote-sensing Monitoring and Forecasting of Atmospheric Pollution in Huaibei Area, China

    NASA Astrophysics Data System (ADS)

    Li, Su-wen; Xie, Pin-hua; Jiang, En-hua; Zhang, Yong; Dai, Hai-feng

    2012-12-01

    Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concentrations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area.

  11. Instrumentation for Air Pollution Monitoring

    ERIC Educational Resources Information Center

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  12. Students 'Weigh' Atmospheric Pollution.

    ERIC Educational Resources Information Center

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  13. Quantifying the influences of atmospheric stability on air pollution in Lanzhou, China, using a radon-based stability monitor

    NASA Astrophysics Data System (ADS)

    Chambers, Scott D.; Wang, Fenjuan; Williams, Alastair G.; Xiaodong, Deng; Zhang, Hua; Lonati, Giovanni; Crawford, Jagoda; Griffiths, Alan D.; Ianniello, Antonietta; Allegrini, Ivo

    2015-04-01

    Commercially-available "stability monitors" based on in situ atmospheric radon progeny measurements remain underutilised as a tool for urban pollution studies, due in part to difficulties experienced in relating their standard output directly to the atmospheric mixing state in a consistent manner. The main confounding factor has been a lack of attention to the fact that the observed near-surface atmospheric radon concentration includes large synoptic and fetch-related components in addition to the local stability influence. Here, a technique recently developed for stability classification using a research-quality dual-flow-loop two-filter radon detector is adapted for use with a commercially-available radon-based stability monitor. Performance of the classification scheme is then tested in Lanzhou, China, a topographically-complex region renowned for low mean annual wind speeds (0.8 m s-1) and winter stagnation episodes. Based on an 11-month composite, a factor of seven difference is estimated between peak NOx concentrations in the city's industrial region and a rural background location under stable conditions. The radon-based scheme is evaluated against the Pasquil-Gifford "radiation" (PGR) scheme, and assigns pollutant concentrations more consistently between defined atmospheric stability states than the PGR scheme. Furthermore, the PGR scheme consistently underestimates all peak pollutant concentrations under stable conditions compared with the radon-based scheme, in some cases (e.g. CO in the industrial region) by 25%.

  14. Online vehicle and atmospheric pollution monitoring using GIS and wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Cordova-Lopez, L. E.; Mason, A.; Cullen, J. D.; Shaw, A.; Al-Shamma'a, A. I.

    2007-07-01

    A Geographical Information System (GIS) is a computer system designed to integrate, store, edit, analyse, share and display geographically referenced data. A wireless sensor network (WSN) is a wireless network of spatially distributed autonomous devices using sensors to monitor physical or environmental conditions. This paper presents the integration of these two technologies to create a system able to detect measure and transmit information regarding the presence and quantities of internal combustion derived pollution and the geographical location in real time with the aim of creating pollution maps in urban environments.

  15. An advanced open-path atmospheric pollution monitor for large areas

    SciTech Connect

    Taylor, L.

    1995-10-01

    Large amounts of toxic waste materials, generated in manufacturing fuel for nuclear reactors, are stored in tanks buried over large areas at DOE sites. Flammable and hazardous gases are continually generated by chemical reactions in the waste materials. To prevent explosive concentrations of these gases, the gases are automatically vented to the atmosphere when the pressure exceeds a preset value. Real-time monitoring of the atmosphere above the tanks with automatic alarming is needed to prevent exposing workers to unsafe conditions when venting occurs. This report describes the development of a monitor which can measure concentrations of hazardous gases over ranges as long as 4km. The system consists of a carbon dioxide laser combined with an acousto-optic tunable filter.

  16. Deposition of Atmospheric Pollutants

    NASA Astrophysics Data System (ADS)

    Malet, L. M.

    Deposition of Atmospheric Pollutants, containing the proceedings of a colloquium held at Oberursel/Taunus, FRG, November 9-11, 1981, is divided into three main parts: dry deposition; wet deposition; and deposition on plants and vegetation.The 20 articles in the volume permit a fair survey of present-day knowledge and will be a useful tool to all working on the topic. Pollution by deposition of either the dry or wet sort is very insidious; its importance only appears in the long range, when its effects are or are almost irreversible. That is why concern was so long in emerging from decision makers.

  17. Lidar Monitoring of Mexico City's Atmosphere During High Air Pollution Episodes

    NASA Technical Reports Server (NTRS)

    Quick, C. R., Jr.; Archuleta, F. L.; Hof, D. E.; Karl, R. R., Jr.; Tiee, J. J., Jr.; Eichinger, W. E.; Holtkamp, D. B.; Tellier, L.

    1992-01-01

    Over the last two decades, Mexico City, like many large industrial and populous urban areas, has developed a serious air pollution problem, especially during the winter months when there are frequent temperature inversions and weak winds. The deteriorating air quality is the result of several factors. The basin within which Mexico City lies in Mexico's center of political, administrative and economic activity, generating 34 percent of the gross domestic product and 42 percent of the industrial revenue, and supporting a population which is rapidly approaching the 20 million mark. The basin is surrounded by mountains on three sides which end up preventing rapid dispersal of pollutants. Emissions from the transportation fleet (more than 3 million vehicles) are one of the primary pollution sources, and most are uncontrolled. Catalytic converters are just now working their way into the fleet. The Mexico City Air Quality Research Initiative in an international collaboration project between the Los Alamos National Laboratory and the Mexican Petroleum Institute are dedicated to the investigation of the air quality problem in Mexico City. The main objective of the project is to identify and assess the cost and benefits of major options being proposed to improve the air quality. The project is organized into three main activity areas: (1) modeling and simulation; (2) characterization and measurements; and (3) strategic evaluation.

  18. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  19. Photographic coronagraph, Skylab particulate experiment T025. [earth atmospheric pollution and Kohoutek Comet monitoring

    NASA Technical Reports Server (NTRS)

    Giovane, F.; Schuerman, D. W.; Greenberg, J. M.

    1977-01-01

    A photographic coronagraph, built to monitor Skylab's extravehicular contamination, is described. This versatile instrument was used to observe the earth's vertical aerosol distribution and Comet Kohoutek (1973f) near perihelion. Although originally designed for deployment from the solar airlock, the instrument was modified for EVA operation when the airlock was rendered unusable. The results of the observations made in four EVA's were almost completely ruined by the failure of a Skylab operational camera used with the coronagraph. Nevertheless, an aerosol layer at 48 km was discovered in the southern hemisphere from the few useful photographs.

  20. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  1. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    NASA Astrophysics Data System (ADS)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the

  2. Remote measurement of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Allario, F.; Hoell, J.; Seals, R. K.

    1979-01-01

    The concentration and vertical distribution of atmospheric ammonia and ozone are remotely sensed, using dual-C02-laser multichannel infrared Heterodyne Spectrometer (1HS). Innovation makes atmospheric pollution measurements possible with nearly-quantum-noise-limited sensitivity and ultrafine spectral resolution.

  3. Atmospheric Chemistry and Air Pollution

    DOE PAGESBeta

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  4. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations.

    PubMed

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-01-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models. PMID:25335435

  5. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  6. Global Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Wallen, Carl C.

    1975-01-01

    The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…

  7. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  8. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  9. Atmospheric pollution and lung cancer.

    PubMed Central

    Doll, R

    1978-01-01

    Lung cancer is consistently more common in urban areas than in rural. The excess cannot be accounted for by specific occupational hazards but some of it might be due to the presence of carcinogens in urban air. The excess cannot be wholly due to such agents, because the excess in nonsmokers is small and variable. Cigarette consumption has also been greater in urban areas, but it is difficult to estimate how much of the excess it can account for. Occupational studies confirm that pollutants present in town air are capable of causing lung cancer in man and suggest that the pollutants and cigarette smoke act synergistically. The trends in the mortality from lung cancer in young and middle-aged men in England and Wales provide uncertain evidence but support the belief that atmospheric pollution has contributed to the production of the disease. In the absence of cigarette smoking, the combined effect of all atmospheric carcinogens is not responsible for more than about 5 cases of lung cancer per 100,000 persons per year in European populations. PMID:648488

  10. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  11. Archives of Atmospheric Lead Pollution

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  12. A process for selecting ecological indicators for application in monitoring impacts to Air Quality Related Values (AQRVs) from atmospheric pollutants. Final report

    SciTech Connect

    White, G.J.; Breckenridge, R.P.

    1997-01-01

    Section 160 of the Clean Air Act (CAA) calls for measures be taken {open_quotes}to preserve, protect, and enhance air quality in national parks, national wilderness areas, national monuments, national seashores, and other areas of special national or regional natural, recreational, scenic, or historic value.{close_quotes} Pursuant to this, stringent requirement have been established for {open_quotes}Class I{close_quotes} areas, which include most National Parks and Wilderness Areas. Federal Land Managers (FLMs) are charged with the task of carrying out these requirements through the identification of air quality related values (AQRVs) that are potentially at risk from atmospheric pollutants. This is a complex task, the success of which is dependent on the gathering of information on a wide variety of factors that contribute to the potential for impacting resources in Class I areas. Further complicating the issue is the diversity of ecological systems found in Class I areas. There is a critical need for the development of monitoring programs to assess the status of AQRVs in Class I areas with respect to impacts caused by atmospheric pollutants. These monitoring programs must be based on the measurement of a carefully selected suite of key physical, chemical, and biological parameters that serve as indicators of the status of the ecosystems found in Class I areas. Such programs must be both scientifically-based and cost-effective, and must provide the data necessary for FLMs to make objective, defensible decisions. This document summarizes a method for developing AQRV monitoring programs in Class I areas.

  13. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  14. Pollution Analyzing and Monitoring Instruments.

    ERIC Educational Resources Information Center

    1972

    Compiled in this book is basic, technical information useful in a systems approach to pollution control. Descriptions and specifications are given of what is available in ready made, on-the-line commercial equipment for sampling, monitoring, measuring and continuously analyzing the multitudinous types of pollutants found in the air, water, soil,…

  15. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2015-04-01

    The current estimates for the internal radiation doses from inhalation by the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011 have large uncertainty, because no observed data has been found of continuous monitoring of radioactive materials in the atmosphere in the Fukushima prefecture (FP) just after the accident, compared with the many observed datasets of deposition densities of radionuclides on the grounds in eastern Japan. To retrieve the atmospheric transport of radioactive materials released from the FD1NPS, we collected the used filter tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated in the air pollution monitoring network of eastern Japan. Then, we measured hourly Cs-134 and Cs-137 concentrations in SPM at 40 monitoring sites in the FP and Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPS, after more than one year. The period for measurements was during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan by a large amount of radioactive materials released from the FD1NPS. In this paper, a comprehensive study will be reported for the first time on a spatio-temporal variation of atmospheric Cs-137 concentrations in the FP and the TMA. Major results are as follows; (1) Nine major plumes with Cs-137 concentrations higher than 10 Bq m-3 were found, of which 5 and 4 plumes were transported to the FP and TMA, respectively. The radioactive materials from the FD1NPS was transported four times in the period to the northern part of Hamadori located in the east coast of the FP, and which was little known up to this study. (2) Two plumes transported to the TMA were newly founded, in addition to the well-known two major plumes on March 15 and 21, 2011. (3) The radiation dose rate measured at some monitoring posts in Nakadori located in the central area of the FP, did not increase even when

  16. KINETIC STUDIES OF SIMULATED POLLUTED ATMOSPHERES

    EPA Science Inventory

    The kinetics and reaction mechanisms of several important atmospheric contaminants - SO2, formaldehyde, nitrous acid, and the nitrosamines - were assessed to help quantify some key aspects of the chemistry of polluted atmospheres. The reactions and lifetimes of excited sulfur dio...

  17. Biological monitors of pollution

    SciTech Connect

    Root, M.

    1990-02-01

    This article discusses the use of biological monitors to assess the biological consequences of toxicants in the environment, such as bioavailability, synergism, and bioaccumulation through the food web. Among the organisms discussed are fly larvae, worms, bees, shellfish, fishes, birds (starlings, owls, hawks, songbirds) and mammals (rabbits, field mice, shrews).

  18. Long Term Baseline Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Goldman, Mark A.

    1975-01-01

    Describes a program designed to measure the normal concentrations of certain chemical and physical parameters of the atmosphere so that quantitative estimates can be made of local, regional, and global pollution. (GS)

  19. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  20. Advection fog formation in a polluted atmosphere

    SciTech Connect

    Hung, R.J.; Liaw, G.S.

    1981-01-01

    Large quantities of atmospheric aerosols with composition SO/sub 4//sup 2 -/, NO/sub 3//sup -/ and NH/sub 4//sup +/ have been detected in highly industrialized areas. The major portions of aerosol products are the results of energy related fuel combustion. Both microphysical and macrophysical processes are considered in investigating the time dependent evolution of the saturation spectra of condensation nuclei associated with both polluted and clean atmospheres during the time periods of advection fog formation. The results show that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog with condensation nuclei associated with a polluted atmosphere for monodisperse distribution.

  1. Atmospheric pollutants and trace gases

    SciTech Connect

    Ranieri, A.; Schenone, G.; Lencioni, L.; Soldatini, G.F.

    1994-03-01

    Pumpkin [Cucurbita pepo (L.) cv. Ambassador] plants were grown under either nonfiltered or filtered ambient air in open-top field chambers (OTCs) near the urban area of Milan, Northern Italy. The effects of ambient air pollution on the enzymatic detoxfication system of the leaves, both in terms of activity and isoform pattern were investigated. The data on air quality showed that ozone was the main phytotoxic pollutant present in ambient air, reaching a 7 h mean of 63 nL L{sup -1} and a maximum hourly peak of 104 nL L{sup -1} The peroxidase and catalase activities increased fourfold and twofold, respectively in the nonfiltered air plants In comparison to the filtered air ones. The peroxidase patterns were very modified in the polluted plants. In contrast no significant changes were found in the activity and isoenzyme pattern of superoxide dismutase. The data reported here suggest that in field-grown pumpkin plants exposed to ambient levels of photooxidants, a stimulation of the peroxddase-catalase detoxification system takes place. 32 refs., 3 figs., 3 tabs.

  2. Atmospheric Pollution: Its Origins and Prevention.

    ERIC Educational Resources Information Center

    Meetham, A. R.

    Although atmospheric pollution can be reduced or eliminated in many different ways, each way involves questions of economics, the time factor, availability of materials, priority over other urgent reforms, and individual and social psychology. To provide a basis for consideration of these questions, this book gives information not only about the…

  3. Some applications of remote sensing in atmospheric monitoring programs

    NASA Technical Reports Server (NTRS)

    Heller, A. N.; Bryson, J. C.; Vasuki, N. C.

    1972-01-01

    The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.

  4. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  5. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, Kelly; Liu, Xiong; Suleiman, Raid M.; Flittner, David E.; Al-Saadi, Jassim; Janz, Scott J.

    2014-06-01

    TEMPO, selected by NASA as the first Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest-cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50 %. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well-proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement

  6. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.; Tempo Science Team

    2013-05-01

    TEMPO has been selected by NASA as the first Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (Mexico City is measured at 1.6 km N/S by 4.5 km E/W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary

  7. Radar monitoring of oil pollution

    NASA Technical Reports Server (NTRS)

    Guinard, N. W.

    1970-01-01

    Radar is currently used for detecting and monitoring oil slicks on the sea surface. The four-frequency radar system is used to acquire synthetic aperature imagery of the sea surface on which the oil slicks appear as a nonreflecting area on the surface surrounded by the usual sea return. The value of this technique was demonstrated, when the four-frequency radar system was used to image the oil spill of tanker which has wrecked. Imagery was acquired on both linear polarization (horizontal, vertical) for frequencies of 428, 1228, and 8910 megahertz. Vertical returns strongly indicated the presence of oil while horizontal returns failed to detect the slicks. Such a result is characteristic of the return from the sea and cannot presently be interpreted as characteristics of oil spills. Because an airborne imaging radar is capable of providing a wide-swath coverage under almost all weather conditions, it offers promise in the development of a pollution-monitoring system that can provide a coastal watch for oil slicks.

  8. Space Station atmospheric monitoring systems.

    PubMed

    Buoni, C; Coutant, R; Barnes, R; Slivon, L

    1988-05-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs. PMID:11542838

  9. Space Station atmospheric monitoring systems

    NASA Technical Reports Server (NTRS)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    1988-01-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  10. Pollution Monitoring: An Engineering Challenge

    NASA Technical Reports Server (NTRS)

    Snodgrass, J. M.

    1971-01-01

    One purpose in presenting this material is to bring to the attention of engineers background material which they would not normally encounter in the course of routine development work. An excellent and timely reference is as follows: Seminar on Methods of Detection, Measurement and Monitoring of Pollutants in the Marine Environment. The international seminar was organized by FAO with the support of UNESCO, IAEA, SCOR and WMO, and was held in Rome, Italy, 4-10 December 1970. The final report, the title of which was given, is a very thoroughgoing document and certainly a must reference for anyone seriously considering the development of sensors for pollution measurement. Perhaps it would be appropriate to present some exact quotations selected from the referenced document. The quotations follow: 1) "The pressures to develop sensitive and reliable methods come about when those responsible for the management of our environment need an objective evaluation of existing or potential perils." 2) "Nearly all of the Panels concerned with the contaminants identified specific examples of man's waste products which may be leaking to the environment in substantial quantities and for which as yet there are no analytical techniques available ". 3) "Very few analyses for organochlorine pesticides appear to have been carried out on sea water and the panel considered that the present methodology was not capable of detecting, on a routine basis, the quantities of these compounds in open sea waters." and 4) "This corresponds essentially to the ratio of useful data produced to the labour expended, since instrumentation costs in the long run become negligible."

  11. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  12. Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)

    EPA Science Inventory

    The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...

  13. Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Janz, S. J.

    2012-12-01

    TEMPO is a proposed concept to measure pollution for greater North America using ultraviolet/visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar/oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (9 km2). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO makes the first tropospheric trace gas measurements from GEO, by building on the heritage of five spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed spectra, although at coarse spatial and temporal resolutions, to the precisions required for TEMPO and use retrieval algorithms developed for them by TEMPO Science Team members and currently running in operational environments. This makes TEMPO an innovative use of a well proven technique, able to produce a revolutionary data set. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007

  14. Comprehensive Retrieval of Spatio-temporal Variations in Atmospheric Radionuclides just after the Fukushima Accident by Analyzing Filter-tapes of Operational Air Pollution Monitoring Stations in Eastern Japan

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Oura, Y.; Ebihara, M.; Ohara, T.; Nakajima, T.

    2015-12-01

    After the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011, many datasets have been available of deposition density of radionuclides in soils in eastern Japan. By contrast, no time-series data of atmospheric radionuclides has been measured in the Fukushima prefecture (FP), although very limited data is available in the Tokyo metropolitan area (TMA) located more than 170 km southwest of the FD1NPS. As a result, atmospheric transport models simulating the atmospheric concentrations and surface deposition of radionuclides have large uncertainty, as well as the estimate of release rate of source terms and of internal exposure from inhalation. One year after the accident, we collected the used filter-tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated by local governments in the air pollution monitoring network of eastern Japan. By measuring radionuclides in SPM on the filter-tapes, we retrieved hourly atmospheric Cs-134 and Cs-137 concentrations during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan. Until now, we measured hourly radiocesium at around 100 SPM sites in the southern Tohoku region (ST) including the FP and in the TMA. By analysing the dataset, nine major plumes with Cs-137 concentrations higher than 10 Bq m-3 were found, and some plumes were newly found in this study. A local area of relatively high Cs-137 deposition density in the TMA by precipitation on the morning of March 21, was consistent with an area where the time-integrated atmospheric Cs-137 concentrations were also high due to the transport of a plume on the morning of March 21. In the FP, however, the correlation was not so clear. High radionuclides trapped in a cloud layer might be transported to the ST with relatively high Cs-137 deposition densities, because the atmospheric Cs-137 concentrations were under the detection limit.

  15. Association between atmospheric pollutants and hospital admissions in Lisbon.

    PubMed

    Cruz, A M J; Sarmento, S; Almeida, S M; Silva, A V; Alves, C; Freitas, M C; Wolterbeek, H

    2015-04-01

    Ambient air pollution is recognised as one of the potential environmental risk factors causing health hazards to the exposed population, demonstrated in numerous previous studies. Several longitudinal, ecological and epidemiological studies have shown associations between outdoor levels of outdoor atmospheric pollutants and adverse health effects, especially associated with respiratory and cardiovascular hospital admissions. The aim of this work is to assess the influence of atmospheric pollutants over the hospital admissions in Lisbon, by Ordinary Least Squares Linear Regression. The pollutants (CO, NO, NO2, SO2, O3, PM10 and PM2.5) were obtained from 13 monitoring stations of the Portuguese Environmental Agency, which provide hourly observations. Hospital admission data were collected from the Central Administration of the Health System and were compiled by age: <15, 15-64, >64 years old. The study period was 2006-2008. Results showed significant positive associations between the following: (1) the pollutants CO, NO, NO2, SO2, PM10 and PM2.5 and circulatory diseases for ages between 15 and 64 years (0.5% hospital admissions (HA) increase with 10 μg m(-3) NO increase) and above 64 years (1.0% stroke admission increase with 10 μg m(-3) NO2 increase); (2) the pollutants CO, NO, NO2, SO2, PM10 and PM2.5 and respiratory diseases for ages below 15 years (up to 1.9% HA increase with 10 μg m(-3) pollutant increase); and (3) the pollutants NO, NO2 and SO2 and respiratory diseases for ages above 64 years (1.3% HA increase with 10 μg m(-3) CO increase). PMID:25471710

  16. Comprehensive Retrieval of Spatio-temporal Variations in Atmospheric Radionuclides just after the Fukushima Accident by Analyzing Filter-tapes of Operational Air Pollution Monitoring Stations in Eastern Japan

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2016-04-01

    After the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011, many datasets have been available of deposition density of radionuclides in soils in eastern Japan. By contrast, no time-series data of atmospheric radionuclides has been measured in the Fukushima prefecture (FP), although very limited data is available in the Tokyo metropolitan area (TMA) located more than 170 km southwest of the FD1NPS. As a result, atmospheric transport models simulating the atmospheric concentrations and surface deposition of radionuclides have large uncertainty, as well as the estimate of release rate of source terms and of internal exposure from inhalation. One year after the accident, we collected the used filter-tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated by local governments in the air pollution monitoring network of eastern Japan. The SPM monitoring stations are mostly located in the urban and/or industrial area to measure the hourly mass concentration of SPM less than 10 μm in diameter for health effect due to atmospheric aerosols. By measuring radionuclides in SPM on the filter-tapes, we retrieved hourly atmospheric Cs-134 and Cs-137 concentrations during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan. Until now, we measured hourly radiocesium at around 100 SPM sites in the southern Tohoku region (ST) including the FP and in the TMA. By analysing the dataset, about 10 plumes/polluted air masses with Cs-137 concentrations higher than 10 Bq m-3 were found, and some plumes were newly detected in this study. And the spatio-temporal distributions of atmospheric Cs-137 were clearly shown for all the plumes. The east coast area of the FP where the FD1NPS was located in the centre was attacked several times by the plumes, and suffered the highest time-integrated Cs-137 concentration during the period among the ST and TMA

  17. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles. PMID:25400029

  18. Water Pollution: Monitoring the Source.

    ERIC Educational Resources Information Center

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  19. Review on atmospheric turbulence monitoring

    NASA Astrophysics Data System (ADS)

    Lombardi, Gianluca; Navarrete, Julio; Sarazin, Marc

    2014-07-01

    In the past years, intensive Site Characterization campaigns have been performed to chose the sites for the future giant ELTs. Various atmospheric turbulence profilers with different resolution and sensed altitude ranges have been used, as well as climatological tools and satellite data analysis. Mixing long term statistics at low altitude resolution with high resolution data collected during short term campaigns allows to produce the reference profiles as input to the Adaptive Optics instrument performance estimators. In this paper I will perform a brief review of the principal and most used instruments and tools in order to give to the reader a panorama of the work and the efforts to monitor the atmospheric turbulence for astronomical purposes.

  20. The use of video for air pollution source monitoring

    SciTech Connect

    Ferreira, F.; Camara, A.

    1999-07-01

    The evaluation of air pollution impacts from single industrial emission sources is a complex environmental engineering problem. Recent developments in multimedia technologies used by personal computers improved the digitizing and processing of digital video sequences. This paper proposes a methodology where statistical analysis of both meteorological and air quality data combined with digital video images are used for monitoring air pollution sources. One of the objectives of this paper is to present the use of image processing algorithms in air pollution source monitoring. CCD amateur video cameras capture images that are further processed by computer. The use of video as a remote sensing system was implemented with the goal of determining some particular parameters, either meteorological or related with air quality monitoring and modeling of point sources. These parameters include the remote calculation of wind direction, wind speed, gases stack's outlet velocity, and stack's effective emission height. The characteristics and behavior of a visible pollutant's plume is also studied. Different sequences of relatively simple image processing operations are applied to the images gathered by the different cameras to segment the plume. The algorithms are selected depending on the atmospheric and lighting conditions. The developed system was applied to a 1,000 MW fuel power plant located at Setubal, Portugal. The methodology presented shows that digital video can be an inexpensive form to get useful air pollution related data for monitoring and modeling purposes.

  1. Interdisciplinary study of atmospheric processes and constituents of the mid-Atlantic coastal region. Attachment 3: Data set for Craney Island oil refinery installation experiment. [air pollution monitoring

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Bandy, A.; Copeland, G.; Blais, R.; Levy, G.; Sonenshine, D.; Adams, D.; Maier, G.

    1975-01-01

    Data tables and maps are presented which include background information and experimental data on the Craney Island oil refinery installation experiment. The experiment was to investigate air pollution effects.

  2. Changing the Paradigm of Air Pollution Monitoring

    EPA Science Inventory

    Historically, approaches for monitoring air pollution generally use expensive, complex, stationary equipment,1,2 which limits who collects data, why data are collected, and how data are accessed. This paradigm is changing with the materialization of lower-cost, easy-to...

  3. Monitoring of atmospheric behaviour of NOx from vehicular traffic.

    PubMed

    Lal, S; Patil, R S

    2001-04-01

    In recent years the concern about the behaviour of oxides of nitrogen (NOx: NO, NO2) in atmosphere has increased considerably. NOx undergoes various complex atmospheric reactions to generate secondary pollutants which are known to cause severe adverse effects on human health. This work focuses on the study of physical and chemical fate of NOx released in the atmosphere from vehicles, which are the main sources of atmospheric NOx. Keeping the objective and standard guidelines for monitoring in view, two typical sites near the road with high vehicular density were chosen for the study. One site was a relatively cleaner area with only vehicles as major source of pollution, and the second site was a traffic junction in an industrial region, where pollution levels are amongst the highest in Mumbai. Ambient monitoring of NOx was done for 24 hr continuously using chemiluminescent NOx analyser. The data was used to analyse temporal and spatial variation of NO, NO2 and NOx and their atmospheric chemical reactions. The monitoring results show that at larger distance from the road the level of NO decreases but the concentration of NO2 which is very harmful remains the same. Statistical analysis is conducted to establish the relationship between likely change in NO2 concentration as a result of NOx emission changes. PMID:11336410

  4. Cost analysis of atmosphere monitoring systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    The cost analyses of two leading atmospheric monitoring systems, namely the mass spectrometer and the gas chromatograph, are reported. A summary of the approach used in developing the cost estimating techinques is presented; included are the cost estimating techniques, the development of cost estimating relationships and the atmospheric monitoring system cost estimates.

  5. Atmospheric Visibility Monitoring (AVM) Program

    NASA Technical Reports Server (NTRS)

    Jeganathan, Muthu; Tong, Loretta

    1996-01-01

    The program objective is to obtain atmospheric transmission statistics data to support optical communications through: (1) Atmospheric loss in optical communication channel; (2) Joint PDFs for multiple site reception; (3) Statistical modeling; and (4) extrapolate PDFs for other sites.

  6. Atmospheric Pollution and Emission Sources in South Asian Urban Region

    NASA Astrophysics Data System (ADS)

    Biswas, K. F.; Husain, Liaquat

    2009-04-01

    Rapid urbanization, and lack of efficient monitoring and control of pollution, along with phenomena like Asian Brown Haze or prolonged episodes of winter fog, makes the South Asian atmospheric chemistry a very complex one. The anthropogenic aerosols released from this region are projected to become the dominant component of anthropogenic aerosols worldwide in the next 25 years (Nakicenovic and Swart, 2000). The region is one of the most densely populated in the world, with present population densities of 100-500 persons km-2. There are six big cities, namely, Delhi, Dhaka, Karachi, Kolkata, Lahore, and Mumbai, each housing a population around or above 10 million. There is now a real concern about the sustainability of the region's ability to support the population due to air pollution, loss of biodiversity and soil degradation. Therefore, we conducted several extensive campaigns over last 10 years in Lahore, Karachi, and Islamabad in Pakistan to (1) chemically characterize the aerosols (PM2.5 mass, concentrations of trace elements, ions, black and organic carbon), and gaseous pollutants (concentrations of NH3, SO2, HONO, HNO3, HCl and (COOH)2, and (2) identify the major emission sources in this region. Exceedingly high concentrations of all species, relative to major urban areas of US and Europe, were observed. Concentrations of PM2.5, BC, Pb, SO42-, NH4+, HONO, NH3 respectively, up to 476, 110, 12, 66, 60, 19.6 and 50 μgm-3 were observed in these cities, which were far in excess of WHO and US EPA air quality standard (Biswas et al., 2008). We use air parcel back trajectories, intercomponent relationships and meteorological observations to explain chemistry and emission sources of aerosol constituents. Carbonaceous aerosols contributed up to 69% of the PM2.5 mass (Husain et al., 2007). Source apportionment was conducted using positive matrix factorization. The analysis has classified six emission sources of aerosol components, namely, industrial activities, wood

  7. Monitoring air pollution in the Bialowieza Forest

    NASA Astrophysics Data System (ADS)

    Malzahn, Elżbieta; Sondej, Izabela; Paluch, Rafał

    2016-04-01

    Air pollution, as sulfur dioxide(SO2) and nitrous oxides (NOx), affects forest health negatively and can initiate forest dieback. Long-term monitoring (since 1986) and analyses are conducted in the Bialowieza Forest due to the threat by abiotic, biotic and anthropogenic factors. This forest has a special and unique natural value, as confirmed by the various forms of protection of national and international rank. The main aim of monitoring is to determine the level and trends of deposition of air pollutants and their effects on selected forest stands and forest communities in the Bialowieza Forest. Concentration measurements of gaseous pollutants and the chemical composition of the precipitation are performed at seven points within the forest area (62 219 ha). Measurement gauges are measuring gaseous pollutants (SO2 and NOx) by the passive method and collecting precipitation at each point at a height of three meters. The period of measuring by the instruments is 30 days. All analyses are conducted according to the methodology of the European forest monitoring program in the certified Laboratory of Natural Environment Chemistry of the Polish Forest Research Institute (IBL). The concentration of pollutant gases (dry deposition) in the years 2002-2015 accounted for only 6-13% of the limit in Poland, as defined by the Polish Ministry of Environment, and are of no threat to the forest environment. Wet deposition of pollutants, which dependents directly from the amount of precipitation and its concentration of pollutants, varied strongly between different months and years. Total deposition (dry and wet) of sulfur (S) and nitrogen (N) was calculated for seasonal and annual periods. On an annual basis, wet deposition represented approximately 80% of the total deposition of S and N. Total deposition of S did not exceed the average deposition values for forests in north-eastern Europe (5-10 kg ha‑1 year‑1) at any of the seven measuring points. Total deposition of N did

  8. Statistical methods for environmental pollution monitoring

    SciTech Connect

    Gilbert, R.O.

    1987-01-01

    The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Some statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.

  9. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Monitoring other pollutants. 58.61... (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Federal Monitoring § 58.61 Monitoring other pollutants. The... pollutant for which an NAAQS does not exist. Such an action would be taken whenever the...

  10. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  11. Implementation of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2014-12-01

    The updated status of TEMPO, as it proceeds from formulation phase into implementation phase is presented. TEMPO, the first NASA Earth Venture Instrument, will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. GEO-CAPE is not planned for implementation this decade. However, instruments from Europe (Sentinel 4) and Asia (GEMS) will form parts of a global GEO constellation for pollution monitoring later this decade, with a major focus on intercontinental

  12. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    ERIC Educational Resources Information Center

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  13. Atmospheric analyzer, carbon monoxide monitor and toluene diisocyanate monitor

    NASA Technical Reports Server (NTRS)

    Shannon, A. V.

    1977-01-01

    The purpose of the atmospheric analyzer and the carbon monoxide and toluene diisocyanate monitors is to analyze the atmospheric volatiles and to monitor carbon monoxide and toluene diisocyanate levels in the cabin atmosphere of Skylab. The carbon monoxide monitor was used on Skylab 2, 3, and 4 to detect any carbon monoxide levels above 25 ppm. Air samples were taken once each week. The toluene diisocyanate monitor was used only on Skylab 2. The loss of a micrometeoroid shield following the launch of Skylab 1 resulted in overheating of the interior walls of the Orbital Workshop. A potential hazard existed from outgassing of an isocyanate derivative resulting from heat-decomposition of the rigid polyurethane wall insulation. The toluene diisocyanate monitor was used to detect any polymer decomposition. The atmospheric analyzer was used on Skylab 4 because of a suspected leak in the Skylab cabin. An air sample was taken at the beginning, middle, and the end of the mission.

  14. VERITAS Distant Laser Calibration and Atmospheric Monitoring

    SciTech Connect

    Hui, C. M.

    2008-12-24

    As a calibrated laser pulse propagates through the atmosphere, the intensity of the Rayleigh scattered light arriving at the VERITAS telescopes can be calculated precisely. This allows for absolute calibration of imaging atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In these proceedings, we present the comparison between laser data and simulation to estimate the light collection efficiencies of the VERITAS telescopes, and the analysis of multiple laser data sets taken in different months for atmospheric monitoring purpose.

  15. Application of computational fluid mechanics to atmospheric pollution problems

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  16. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    PubMed Central

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  17. Brown dwarf Atmosphere Monitoring (BAM): Characterizing the Coolest Atmosphere

    NASA Astrophysics Data System (ADS)

    Patience, Jennifer

    2014-10-01

    Using the G141 WFC3/IR grism, we propose a HST spectrophotometric monitoring study of the coolest variable brown dwarf (~650K) identified as part of our Brown dwarf Atmosphere Monitoring (BAM) program. The proposed observations will enable exploration of the dynamic atmospheric evolution of a benchmark T8.5 binary brown dwarf system, which we have discovered to exhibit the second-largest amplitude variation amongst all currently known brown dwarf variables. The close binarity of this system requires the exquisite stability of the HST point spread function to enable resolved monitoring of both components and to discriminate the source of the variability - the second component is a planetary mass object based on evolutionary models. This BAM follow-up study is designed to characterize both the longitudinal and vertical structure of the atmospheric properties of this system via multi-wavelength observations covering the entire spectral range of the WFC3/IR detector. Additionally, by monitoring the target over two separate epochs we will measure the evolution of atmospheric features giving rise to the flux variations. The proposed program will provide a comprehensive dataset serving as a benchmark comparison to directly imaged planets, intensely irradiated Hot Jupiters, and synthetic atmospheric models incorporating different physical processes.

  18. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    PubMed

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation. PMID:26620865

  19. A contaminant monitor for submarine atmospheres.

    NASA Technical Reports Server (NTRS)

    Ruecker, M. R.

    1973-01-01

    A requirement for monitoring selected atmospheric constituents on board nuclear powered submarines has been met by the development of the Central Atmosphere Monitoring System, Mark I. This system employs a mass spectrometer to monitor H2, H2O, N2, O2, CO2, Freon 11, Freon 12, and Freon 114, in addition to an infrared sensor for CO. The CAMS MKI development is discussed, including background, operating fundamentals, principal requirements, functional and physical descriptions, and summarized test results. Each of two prototype units has successfully completed over 9000 hr of operational sea trails, providing the necessary ground work for the manufacture of production units. At the same time, these units, which have benefited extensively from NASA hardware experience, may in turn provide useful data for the development of a new class of maintainable atmospheric monitoring instrumentation for manned spacecraft.

  20. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    PubMed Central

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-01-01

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective. PMID:25748923

  1. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    NASA Astrophysics Data System (ADS)

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-03-01

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective.

  2. ATMOSPHERIC TURBULENCE AND POLLUTANT DISPERSION NEAR ROADWAYS

    EPA Science Inventory

    The major objectives of this investigation are: (1) to determine the time and space scales of the eddies generated by the traffic, (2) to study the effects of traffic-induced turbulence on the near-field dispersion of pollutants, (3) to evaluate several commonly used highway air ...

  3. Monitoring of pyrocatechol indoor air pollution

    NASA Astrophysics Data System (ADS)

    Eškinja, I.; Grabarić, Z.; Grabarić, B. S.

    Spectrophotometric and electrochemical methods for monitoring of pyrocatechol (PC) indoor air pollution have been investigated. Spectrophotometric determination was performed using Fe(III) and iodine methods. The adherence to Beer's law was found in the concentration range between 0 and 12 μg ml - for iodine method at pH = 5.7 measuring absorbance at 725 nm, and in the range 0-30 μg ml - for Fe(III) method at pH = 9.5 measuring absorbance at 510 nm. The former method showed greater sensitivity than the latter one. Differential pulse voltammetry (DPV) and chronoamperometric (CA) detection in flow injection analysis (FIA) using carbon paste electrode in phosphate buffer solution of pH = 6.5 was also used for pyrocatechol determination. The electrochemical methods allowed pyrocatechol quantitation in submicromolar concentration level with an overall reproducibility of ± 1%. The efficiency of pyrocatechol sampling collection was investigated at two temperatures (27 and 40°C) in water, 0.1 M NaOH and 0.1 M HCl solutions. Solution of 0.1 M HCl gave the best collection efficiency (95.5-98.5%). A chamber testing simulating the indoor pollution has been performed. In order to check the reliability of the proposed methods for monitoring of the indoor pyrocatechol pollution, the air in working premises with pyrocatechol released from meteorological charts during mapping and paper drying was analyzed using proposed methods. The concentration of pyrocatechol in the air during mapping was found to be 1.8 mg m -3 which is below the hygienic standard of permissible exposure of 20 mg m -3 (≈ 5 ppm). The release of pyrocatechol from the paper impregnated with pyrocatechol standing at room temperature during one year was also measured. The proposed methods can be used for indoor pyrocatechol pollution monitoring in working premises of photographic, rubber, oil and dye industries, fur and furniture dyeing and cosmetic or pharmaceutical premises where pyrocatechol and related

  4. Pollution monitoring using networks of honey bees

    SciTech Connect

    Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.

    1983-08-01

    Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiable sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.

  5. Laser systems for stand-off detection of contamination and pollution of atmosphere

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt

    2007-02-01

    The paper presents selected laser systems used for remote detection of contamination and pollution of atmosphere. Having in view a way of taking samples for analysis, the methods used for atmosphere monitoring can be divided into two groups: sampling at the place of existing pollution and remote detection, identification, and measurement of concentration. "Stand-off" and "remote" systems of atmosphere monitoring are described here. The "stand-off" systems provide detection of pollution (gas, aerosol, smoke, dust) at long distances, without the contact with a contaminated area. These systems are active laser systems (lidars) or passive thermal systems with narrow filters matched to the bands of gas absorption and imaging the transmission changes of radiation absorbed along the path of gas presence. A single "stand-off" station can cover significant area, the size of which depends on the range of sampling radiation, field of view, and scanning speed. "Remote" systems employ various types of small point sensors and the data from these sensors are transmitted by wire or wireless connections to alarm centres. It should be pointed out that in this case, a contact between sensor and analysed area is necessary and remote detection is performed by the transmission systems of measurement data. The paper presents construction, principle of operation, and basic analytical characteristics of the chosen "standoff" and "remote" measuring systems developed at Military University of Technology, devoted to continuous monitoring of contaminations and pollution of atmosphere.

  6. The etymological role of the main atmosphere pollutants in development of human diseases.

    PubMed

    Lomtatidze, N; Kiknadze, N; Khakhnalidze, R; Tusishvili, Kh; Alasania, N; Kiknadze, M

    2013-04-01

    The aim of research was monitoring of the main atmospheric air pollutants concentration on Adjara Autonomous Republic territory in order to determine their role in causing different diseases. The following atmospheric air pollutants have been determined in Batumi: dust, carbon monoxide, sulfur and nitrogen dioxide. The number of diseases registered in Adjara Autonomous Republic, which may be linked to the air pollution, has been studied. These are the following: chronic and nonspecific bronchitis, asthma and asthma status diseases, allergic rhinitis, trachea-, bronchi- and lung malignant tumor. In order to reduce the number of risk-factors significant attention should be paid to the proper functionality of the vehicles and systematic observations should continue on the chemical pollution of the air to make proper decisions to reduce the number of diseases. PMID:23676494

  7. Medical aspects of atmosphere pollution in Tbilisi, Georgia.

    PubMed

    Lagidze, Lamzira; Matchavariani, Lia; Tsivtsivadze, Nodar; Khidasheli, Nargiz; Paichadze, Nino; Motsonelidze, Nargiz; Vakhtangishvili, Maia

    2015-01-01

    Climate change and its impact on ecosystems is one of the main problem of 21st century. Increase in green house gas in the atmosphere was regarded as an important cause. Atmospheric composition had significantly changed due to intensive technogenic pollution. Increase in aerosol (solid, liquid and gas) concentration had serious impact on human health and raised the level of risk factors for longevity of life. Despite, global character of climatic change and its intensity in numerous ways was influenced by local specificity of regions, their geographical location and meteorological factors. A study on the atmospheric quality (quantitative and percentage estimation of aerosols) of Georgia was carried out. Also the assessment of impact of meteorological and ecological conditions on human health was made for Tbilisi city. A relation between contaminants and meteorological factors was evaluated, particularly gas pollutants were strongly correlated with each other due to their photochemical activity; positive correlation (0.65; 0.69) between air temperature and pollutants. All the contaminants showed negative correlation with relative humidity, due to hydrolyzing ability. On the basis of multi-factorial statistical analysis, correlation between ambulance call, weather type, atmosphere pollution index, change in ground ozone quantity and earth magnetic field were determined. Atmospheric pollution due to dust, carbon, sulfur and nitrogen oxides, ground ozone quantity in Tbilisi significantly exceeded maximum permissible level, that effected human health. PMID:26591888

  8. A mobile system for active otpical pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sunesson, A.; Edner, H.; Svanberg, S.; Uneus, L.; Wendt, W.; Fredriksson, K.

    1986-01-01

    The remote monitoring of atmospheric pollutants can now be performed in several ways. Laser radar techniques have proven their ability to reveal the spatial distribution of different species or particles. Classical optical techniques can also be used, but yield the average concentration over a given path and hence no range resolution. One such technique is Differential Optical Absorption Spectroscopy, DOAS. Such schemes can be used to monitor paths that a preliminary lidar investigation has shown to be of interest. Having previously had access to a mobile lidar system, a new system has been completed. The construction builds on experience from using the other system and it is meant to be more of a mobile optical laboratory than just a lidar system. A complete system description is given along with some preliminary usage. Future uses are contemplated.

  9. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  10. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    PubMed Central

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples. PMID:17671615

  11. Study of atmospheric pollution scavenging. [Annotated bibligraphy

    SciTech Connect

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980's became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  12. GENASIS national and international monitoring networks for persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav

    2010-05-01

    Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a

  13. Status of Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2015-12-01

    TEMPO is now well into its implementation phase, having passed both its Key Decision Point C and the Critical Design Review (CDR) for the instrument. The CDR for the ground systems will occur in March 2016 and the CDR for the Mission component at a later date, after the host spacecraft has been selected. TEMPO is on schedule to measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution. TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.TEMPO takes advantage of a GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions by 50%. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available.TEMPO provides much of the atmospheric measurement capability recommended for GEO-CAPE in the 2007 National Research Council Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. Instruments from Europe (Sentinel 4) and Asia (GEMS) will form

  14. Atmospheric trace gases monitoring by UV-vis spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Xie, Pinhua; Li, Ang; Wu, Fengcheng; Qin, Min; Hu, Rezhi; Xu, Jin; Si, Fuqi; Liu, Jianguo; Liu, Wenqing

    2016-04-01

    Due to rapidly economic development, air pollution has become an important issue in China. Phenomena such as regional haze in winter and high O3 concentration in summer are strongly related to increasing trace species. For better understanding the air pollution formation, it is necessary to know spatial and temporal distribution of trace species in the atmosphere. UV-vis spectroscopic techniques are of great advantages for trace species monitoring to meet several requirements, e.g. versatility, high sensitivity, good temporal resolution and field applicability. We have studied and developed various trace gases monitoring techniques and instruments based on UV-vis spectroscopic technique for in-situ measurements and remote sensing, e.g. LP-DOAS, IBBCEAS, CRDS, MAX-DOAS and mobile DOAS for NO2, SO2, HCHO, HONO, NO3, and N2O5 etc. The principle, instrumentation and inversion algorithm are presented. As typical applications of these techniques, investigation of the evolution of HONO and NO3 radicals over Beijing area, measurements of regional pollution in NCP and YRD are discussed in the aspects of HONO and nocturnal NO3 radical characteristics, trace gases (NO2, SO2 etc.) temporal and spatial distribution, pollution transport pathway, emission sources.

  15. An advanced open-path atmospheric monitor design

    SciTech Connect

    Taylor, L.; Suhre, D.; Mech, S.

    1996-05-01

    The conceptual design of an open-path atmospheric monitor combines an acousto-optic tunable filter for emission spectroscopy (3-14 {mu}m) with a mid-IR (4.6-5.4 {mu}m) for absorption spectroscopy. It utilizes mostly commercially available components, covers a large area ({approximately}4 km radius), measures the distance to any reflecting object, can take measurements along any line-of-sight, and is eye safe. Of twenty test pollutants it is to detect, the concentrations of all twenty will be measurable via emission spectroscopy and ten by the more sensitive absorption spectroscopy.

  16. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... pollutant for which an NAAQS does not exist. Such an action would be taken whenever the Administrator determines that a nationwide monitoring program is necessary to monitor such a pollutant....

  17. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... pollutant for which an NAAQS does not exist. Such an action would be taken whenever the Administrator determines that a nationwide monitoring program is necessary to monitor such a pollutant....

  18. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... pollutant for which an NAAQS does not exist. Such an action would be taken whenever the Administrator determines that a nationwide monitoring program is necessary to monitor such a pollutant....

  19. 40 CFR 58.61 - Monitoring other pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 58.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... pollutant for which an NAAQS does not exist. Such an action would be taken whenever the Administrator determines that a nationwide monitoring program is necessary to monitor such a pollutant....

  20. A Regulation for the Control of Atmospheric Pollution, Amended Version.

    ERIC Educational Resources Information Center

    Puerto Rico Environmental Quality Board, San Juan.

    Nine articles, related to the preservation of the natural quality of the air, and to prevention, elimination and control of atmospheric pollution in the Commonwealth of Puerto Rico, are contained in this document. These articles were written and enacted by the Environmental Quality Board in accordance with Law No. 9, approved June 18, 1970 -…

  1. New microwave spectrometer/imager has possible applications for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Tooley, R. D.

    1970-01-01

    Microwave imager forms thermal-emissivity image of solid portion of planet Venus and provides data on the planet's atmosphere, surface, terminator, and temperature changes. These thermally produced multifrequency microwaves for image production of temperature profiles can be applied to water pollution monitoring, agriculture, and forestry survey.

  2. POLLUTANT SAMPLER FOR MEASUREMENTS OF ATMOSPHERIC ACIDIC DRY DEPOSITION

    EPA Science Inventory

    An acidic pollutant sampler for dry deposition monitoring has been designed and evaluated in laboratory and field studies. The system, which is modular and simple to operate, samples gaseous HNO3, NH3, SO2 and NO2 and particulate SO4(-2), NO3(1-) and NH4(1+) and is made of Teflon...

  3. Lidar monitoring of atmospheric ozone and aerosol

    NASA Astrophysics Data System (ADS)

    Chudzynski, Stanislaw; Czyzewski, A.; Ernst, Krzysztof; Skubiszak, Wojciech; Stacewicz, Tadeusz; Stelmaszczyk, K.; Szymanski, Artur

    2000-11-01

    The growth of aerosol and ozone concentrations in the troposphere stimulates development of monitoring techniques allowing their detection. DIAL (Differential Absorption Lidar) is one of the most promising methods. It allows the remote measurements of selected pollutants within the range of few kilometers and with spatial resolution of few meters. We introduce the basic principles of the DIAL method and describe shortly our mobile lidar system. We present and comment selected registrations of ozone and aerosol concentration distributions obtained during summer field campaigns of 1997 and 1998.

  4. The propagation of light pollution in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cinzano, P.; Falchi, F.

    2012-12-01

    Recent methods to map artificial night-sky brightness and stellar visibility across large territories or their distribution over the entire sky at any site are based on computation of the propagation of light pollution with Garstang models, a simplified solution of the radiative transfer problem in the atmosphere that allows fast computation by reducing it to a ray-tracing approach. They are accurate for a clear atmosphere, when a two-scattering approximation is acceptable, which is the most common situation. We present here up-to-date extended Garstang models (EGM), which provide a more general numerical solution for the radiative transfer problem applied to the propagation of light pollution in the atmosphere. We also present the LPTRAN software package, an application of EGM to high-resolution Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) satellite measurements of artificial light emission and to GTOPO30 (Global 30 Arcsecond) digital elevation data, which provides an up-to-date method to predict the artificial brightness distribution of the night sky at any site in the world at any visible wavelength for a broad range of atmospheric situations and the artificial radiation density in the atmosphere across the territory. EGM account for (i) multiple scattering, (ii) wavelengths from 250 nm to infrared, (iii) the Earth's curvature and its screening effects, (iv) site and source elevation, (v) many kinds of atmosphere with the possibility of custom set-up (e.g. including thermal inversion layers), (vi) a mix of different boundary-layer aerosols and tropospheric aerosols, with the possibility of custom set-up, (vii) up to five aerosol layers in the upper atmosphere, including fresh and aged volcanic dust and meteoric dust, (viii) variations of the scattering phase function with elevation, (ix) continuum and line gas absorption from many species, ozone included, (x) up to five cloud layers, (xi) wavelength-dependent bidirectional

  5. Long path DOAS measurements of atmospheric pollutants concentration

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2015-11-01

    A differential optical absorption spectroscopy gas-analyzer consisted of a coaxial telescope, a spectrometer, an analyzer and retroreflector was successfully tested. A high pressure 150-W Xe arc lamp was employed as a light source. In order to record the spectra, a monochrometer with a grating and photodiode array was used. Gas analyzer spectral data bank includes more than 35 moleculas absorbed in UV spectral region. The measured absorption spectra were evaluated by using a least-squares fit to determine the average mixing ratio of each species in the atmosphere. As a result of experiments time series of concentrations of gases polluting the atmosphere were trace measured. Minimally detected concentration on pathlength 480 m is the unit of ppb at the time of accumulation of 2 min. The results of the field test measurements of pollutants in Tomsk city are presented.

  6. Changes in atmospheric lead and other pollution elements at Bermuda

    NASA Astrophysics Data System (ADS)

    Huang, Suilou; Arimoto, Richard; Rahn, Kenneth A.

    1996-09-01

    Measurements of atmospheric lead at Bermuda during the Atmosphere-Ocean Chemistry Experiments (AEROCE) in 1993-1994 showed that annual-mean concentrations had decreased by an order of magnitude from the 1970s and by a factor of 4 since the 1980s. Seasonal patterns had changed as well, with lead no longer being highest during winter. Both changes are consistent with decreased use of leaded gasoline in North America. Pollution-derived zinc and antimony also decreased, probably because of reduced smelting in the United States or changed atmospheric transport to Bermuda. Lead/aluminum mass ratios depended on direction: 0.04 with western air-mass trajectories (pollution from North America) versus 0.0001 and 0.0003 with eastern trajectories. The eastern Pb/Al ratios were indistinguishable from typical crustal values of 0.0002. The lower eastern ratio probably represents pure Saharan dust, while the higher ratio may indicate minor amounts of superimposed pollution aerosol, possibly from Europe or the Mediterranean area. Crustal lead was not evident in the 1970s because more lead was emitted from gasoline and dust transport from the Sahara was weaker.

  7. Network of LAMP systems for atmospheric monitoring in India

    NASA Astrophysics Data System (ADS)

    Yellapragada, Bhavani Kumar; Jayaraman, Achuthan

    2012-07-01

    A systematic knowledge of the vertical distribution of aerosol particles in the atmosphere is required for understanding many atmospheric processes such as dynamics of boundary layer, pollution transport, modification of cloud microphysics etc. At present, the information on the particle distribution in the atmosphere is far from sufficient to estimate properly the load of aerosols in the atmosphere. Light detection and ranging (LIDAR) has been demonstrated to be a reliable remote sensing technique to obtain altitude profiles of atmospheric cloud and aerosol scattering. A LIDAR network is being implemented by National Atmospheric Research Laboratory (NARL), a Department of Space unit, in India for the measurement and monitoring of the atmospheric aerosols and clouds. Towards this, the technology of boundary layer lidar (BLL) (Bhavani Kumar, 2006) has been exploited. Several industrial grade BLL systems are being fabricated at a private industry in India through technological transfer from NARL. The industrial BLL lidar is named as LAMP, stands for LIDAR for Atmospheric Measurement and Probing. Five LAMP systems have already been fabricated and deployed at several locations of the country for continuous monitoring of aerosols and clouds under the Indian Lidar network (I-LINK) programme. The LAMP system employs a single barrel construction so that no realignment is required in future. Moreover, the network lidar system employs several features like rotation facility about the elevation (EL) axis, a provision of front window for environmental protection to the telescope optics and a silica gel pocket for desiccation (for transmit and receive assembly) and a provision of nitrogen purging to overcome the humidity effects. The LAMP system is an autonomous system equipped with a diode pumped Nd-YAG laser, a PMT for the detection of the backscattered photons, and a PC based photon counting electronics for recording the photon returns. In this paper, a report describing

  8. Monitoring of air pollution by plants methods and problems

    SciTech Connect

    Steubing, L.; Jager, H.J.

    1985-01-01

    Ecosystem pollution is often discovered too late for preventive measure to be implemented. Papers include the topics of methods and problems of bioindication of air pollution. The participants discussed passive and active biological monitoring, including mapping of natural vegetation (lichens and mosses, for example) and plant exposure. Morphological and microscopical studies, chemical, physiological and biochemical investigations are presented.

  9. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-05-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  10. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  11. Pierre Auger Atmosphere-Monitoring Lidar System

    NASA Astrophysics Data System (ADS)

    Filipcic, A.; Horvat, M.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.; Chiosso, M.; Mussa, R.; Sequeiros, G.; Mostafa, M. A.; Roberts, M. D.

    2003-07-01

    The fluorescence-detection techniques of cosmic-ray air-shower experiments require precise knowledge of atmospheric properties to reconstruct air-shower energies. Up to now, the atmosphere in desert-like areas was assumed to be stable enough so that o ccasional calibration of atmospheric attenuation would suffice to reconstruct shower profiles. However, serious difficulties have been reported in recent fluorescence-detector experiments causing systematic errors in cosmic ray spectra at extreme energies. Therefore, a scanning backscatter lidar system has been constructed for the Pierre Auger Observatory in Malargue, Argentina, where ¨ on-line atmospheric monitoring will be performed. One lidar system is already deployed at the Los Leones fluorescence detector (FD) site and the second one is currently (April 2003) under construction at the Coihueco site. Next to the established ones, a novel analysis method with assumption on horizontal invariance, using multi-angle measurements is shown to unambiguously measure optical depth, as well as absorption and backscatter coefficient.

  12. Variation of atmospheric air pollution under conditions of rapid economic change—Estonia 1994-1999

    NASA Astrophysics Data System (ADS)

    Kimmel, V.; Tammet, H.; Truuts, T.

    Estonia is an example of a country with economy in transition whose atmospheric air pollution has been remarkably influenced by economic changes. During the period of 1994-1999 GDP increased by one-fourth, while agricultural production, electricity and heat production dropped by one-sixths during the studied period. These processes are reflected in the quantity of emissions and structure of air pollution. The study is based on the measurements of concentrations of pollutants at six Estonian Euroairnet monitoring stations—at three sites in the capital city and at three sites in remote areas. The pollutants concerned are the first-priority pollutants in the European Union legislation—nitrogen oxides, SO 2, O 3, particulate matter, and additionally CO. The study reveals that concentrations of gaseous pollutants in Estonia remain within the EU limit values except for ozone in remote areas. The main trend during the studied period was a significant, up to several times, decrease in concentrations of SO 2 and CO while the decrease of nitrogen oxides was less remarkable. The paper propose ratio of NO x/SO 2 as an index describing increasing transport loads and drop in use of sulphur-rich fuels—thus of structure of economy. The annual variation of pollutants is explained by seasonal variations of anthropogenic activity in conditions where local fuels are widely used for heating during winter. Air pollution in Estonian rural stations mostly originated from transboundary fluxes. The 1-3 day delay of the weekly minimum of pollutant concentrations and the wind roses allow to conclude that essential part of pollutants is imported from West Europe.

  13. Atmospheric pollutant outflow from southern Asia: a review

    NASA Astrophysics Data System (ADS)

    Lawrence, M. G.; Lelieveld, J.

    2010-11-01

    Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook

  14. CONTINUOUS AIR POLLUTION SOURCE MONITORING SYSTEMS

    EPA Science Inventory

    This handbook provides the eetailed information necessary to develop a continuous emissions monitoring program at a stationary source facility. Federal and State EPA requirements are given, including design and performance specifications and monitoring and date reporting requirem...

  15. Measurements of atmospheric pollutants by a DOAS spectrometer in urban areas

    NASA Astrophysics Data System (ADS)

    Ravegnani, Fabrizio; Evangelisti, Franco; Baroncelli, A.; Bonasoni, Paolo; Giovanelli, Giorgio; Kostadinov, Ivan

    1997-05-01

    A monitoring campaign of atmospheric pollutants was conducted in February 1993 by several of Italy's CNR institute in heavily polluted greater Milan. This metropolitan area, the largest one in northern Italy, is situated in the northernmost part of the Po Valley and, because of its topography and orography is frequently marked by low ventilation and inversion phenomena, a fast that promotes the accumulation and vertical layering over the city of pollutants. The need for more detailed information on air circulation and changes occurring in the lower atmospheric layers, as well as to understand why air-mass exchange does not take place, thereby impeding the dispersion of pollutants, was the project's goal- orientation. Measurement of NO2, SO2, O3, HNO2 were carried out over a 1.7 Km path in the city center by means of a DOAS system called GASCOD developed by remote sensing group of FISBAT-CNR at Bologna. The light source has been equipped with a remote-controlled occulting devices in order to separate the sky light scattered into the field of bye of the receiving system, which can interfere with the lamp spectra during daytime. The light from the source is collected by a Cassegrain telescope and focused on the spectrograph's entrance slit receiving system; the detector is a linear image sensor featuring an array of 512 MOS photodiodes. Data recorded in the same and boundary areas by a conventional analyzer from city's air-pollution monitoring network are reported for comparison. The statistical correlation of concentration values to the main weather and atmospheric stability parameters are stressed.

  16. [Comprehensive study of lead pollution in atmospheric aerosol of Shanghai].

    PubMed

    Zhang, Gui-lin; Tan, Ming-guang; Li, Xiao-lin; Zhang, Yuan-xun; Yue, Wei-sheng; Chen, Jian-min; Wang, Yin-song; Li, Ai-guo; Li, Yan; Zhang, Yuan-mao; Shan, Zhu-ci

    2006-05-01

    The lead contamination, lead species and source assignment were studied by a combination of several analytical techniques such as Proton-induced X-ray emission analysis (PIXE), Proton microprobe (micro-PIXE), Inductively coupled plasma-mass spectrometry (ICP-MS) and extended X-ray absorption fine structure (EXAFS) techniques. The results indicate that the lead concentration in the air of Shanghai gradually decreased over the last years. The atmospheric lead concentration of PM10 in the winter of 2002 was 369 ng x m(-3), which had declined by 28% in 2001, and in the winter of 2003 it decreased further to 237 ng x m(-3). The main lead species in the samples collected in the winter of 2003 were probably PbCl2, PbSO4 and PbO. The source apportionment was calculated in terms of the combination of lead isotope ratios and lead mass balance method, assisted by single particle analysis with micro-PIXE and pattern recognition. The results suggest that the major contributors of atmospheric lead pollution in Shanghai are the coal combustion dust; the metallurgic dust and vehicle exhaust particles, with a contribution around 50%, 35% and 15%, respectively. It probably is the first time to give a city a quantitative estimation of lead pollution contribution from emission sources. The influence from leaded gasoline was still present in the atmosphere by four or five years after the phasing out of leaded gasoline. PMID:16850817

  17. CAPACITY: Operational Atmospheric Chemistry Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Kelder, H.; Goede, A.; van Weele, M.

    The ESA project CAPACITY refers to future Operational Atmospheric Chemistry Monitoring Missions. Here operational is meant in the sense that a reliable service of specified information products can be established that satisfies user needs. Monitoring is meant in the sense that long-term continuity and consistency in the quality of the information products can be achieved. The objectives of the project are: To consult with user communities to develop high level information requirements and the form of the information products. To identify and prioritise mission objectives. To derive mission data requirements from the high level user information requirements and iterate these with the users. To set these requirements against observation systems available or approved for the future. To identify missing information products or information products of insufficient quality. To define a global observation system that would satisfy user requirements. The time frame of this operational system is projected to cover the period 2010 to 2020 concurrent with the operational satellites MetOp and NPOESS. In order to address these objectives a large European consortium has been formed consisting of approximately 30 partners from 9 ESA countries (F, D, UK, I, SW, N, DK, B, NL). The project is led by the Royal Netherlands Meteorological Institute (KNMI) and the core team includes the Rutherford Appleton Laboratory, Univ Leicester, Univ Bremen and industry. Four application areas are identified: Protocol Monitoring (Montreal and Kyoto) and Policy Support Air Quality Monitoring and Policy Support (CLRTAP) Long Term Science Issues and Climate Monitoring Forecast Capacity In the derivation of data level 2/3 requirements from high level user requirements the consortium relies on a large group of modellers using satellite data, and of space research institutes with expertise in retrieval and calibration/validation of satellite data as well as Industry with experience in building space

  18. Assessment of the spatial and temporal distribution of persistent organic pollutants (POPs) in the Nordic atmosphere

    NASA Astrophysics Data System (ADS)

    Anttila, Pia; Brorström-Lundén, Eva; Hansson, Katarina; Hakola, Hannele; Vestenius, Mika

    2016-09-01

    Long-term atmospheric monitoring data (1994-2011) of persistent organic pollutants (POPs) were assembled from a rural site in southern Sweden, Råö, and a remote, sub-Arctic site in Finland, Pallas. The concentration levels, congener profiles, seasonal and temporal trends, and projections were evaluated in order to assess the status of POPs in the Scandinavian atmosphere. Our data include atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), altogether comprising a selection of 27 different compounds. The atmospheric POP levels were generally higher in the south, closer to the sources (primary emissions) of the pollutants. The levels of low-chlorinated PCBs and chlordanes were equal at the two sites, and one of the studied POPs, α-HCH, showed higher levels in the north than in the south. Declining temporal trends in the atmospheric concentrations for the legacy POPs - PCBs (2-4% per year), HCHs (6-7% per year), chlordanes (3-4% per year) and DTTs (2-5% per year) - were identified both along Sweden's west coast and in the sub-Arctic area of northern Finland. Most of PAHs did not show any significant long-term trends. The future projections for POP concentrations suggest that in Scandinavia, low-chlorinated PCBs and p,p‧-DDE will remain in the atmospheric compartment the longest (beyond 2030). HCH's and PCB180 will be depleted from the Nordic atmosphere first, before 2020, whereas chlordanes and rest of the PCBs will be depleted between the years 2020 and 2025. PCBs tend to deplete sooner and chlordanes later from the sub-Arctic compared to the south of Sweden. This study demonstrates that the international bans on legacy POPs have successfully reduced the concentrations of these particular substances in the Nordic atmosphere. However, the most long-lived compounds may continue in the atmospheric cycle for another couple of decades.

  19. DEVELOPMENT OF A POLLUTANT MONITORING SYSTEM FOR BIOSPHERE RESERVES

    EPA Science Inventory

    This report presents an initial approach to identifying and solving the problems of developing a monitoring system for Biosphere Reserves. To date, most proposals have only focused on the selection of Reserves, pollutants to monitor, etc.; the real-world problems of how to monito...

  20. The Role of Monitoring in Controlling Water Pollution

    NASA Technical Reports Server (NTRS)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  1. Laboratory measurements of Photochemical Properties of Atmospheric Pollutants.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.

    2012-04-01

    One of the most important parameters in estimating the environmental impact due to emission of a compound is its residence time in the atmosphere, which is driven by the reaction of a compound with hydroxyl radicals (OH) for many atmospheric trace gases. The atmospheric lifetime is important for estimating ozone depletion potential (ODP) and global warming potential (GWP) of industrial compounds which are needed for evaluation of their environmental impact and regulatory purposes. The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the present work was to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. We provide a detailed inventory of accountable sources of instrumental uncertainties related to our FP-RF experiment to prove a total uncertainty of the OH reaction rate constant to be ca. 2%. The results of accurate measurements of photochemical properties of industrial and natural atmospheric pollutants will be presented.

  2. Influence of meteorological parameters on particulates and atmospheric pollutants at Taichung harbor sampling site.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Wen, Chih-Chung; Lee, Wen-Jhy; Chang, Shih-Yu

    2007-05-01

    Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5-10. The concentration distribution trend between TSP, PM2.5, PM2.5-10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl(-), NO3 (-), SO4 (2-), NH4+, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study. PMID:17057996

  3. Laboratory studies of sources of HONO in polluted urban atmospheres

    NASA Astrophysics Data System (ADS)

    Saliba, Najat A.; Mochida, Michihiro; Finlayson-Pitts, Barbara. J.

    2000-10-01

    Laboratory studies reported here and in previous work show that the reaction of NO(g) with surface adsorbed HNO3 may be a significant source of HONO in polluted urban atmospheres. If these laboratory studies can be extrapolated to ambient conditions, this heterogeneous reaction may generate HONO to about the same extent as the hydrolysis of NO2 on surfaces, which is greater than the heterogeneous reaction of NO, NO2 and water. It may also be involved in generating HONO in snowpacks, and important in reconciling the discrepancy between measured and modeled HNO3/NOx ratios in the troposphere.

  4. Development and evaluation of an instantaneous atmospheric corrosion rate monitor

    NASA Astrophysics Data System (ADS)

    Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.

    1985-06-01

    A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.

  5. Monitoring and control of atmosphere in a closed environment

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Perry, J.

    1991-01-01

    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.

  6. Utilization of bark pockets as time capsules of atmospheric-lead pollution in Norway

    NASA Astrophysics Data System (ADS)

    Åberg, Gøran; Abrahamsen, Gunnar; Steinnes, Eiliv; Hjelmseth, Harry

    The outer bark being enveloped by and grown into the tree trunk (bark pocket), acts as a passive biomonitor which readily accumulates pollution on its surface. Analysed with stable lead isotopes, these environmental historical archives are very strong candidates for unwinding pollution history. The Røros sulphide ore district, central Norway, has a well-documented mining activity which started in 1647 and the quarrying and smelting in Røros was easily monitored from the middle of the 18th century until the smelting stopped in 1977. Thereafter other sources, like the increase in use of leaded gasoline and further on its outphasing, can be followed. In southern Norway analyses of bark pockets show a good correlation with Pb isotope data from peat cores and tree rings. This region has not been dominated by a single source for many centuries. From the 17th century until about 1925 coal firing and ore smelting in England and on the continent were the dominating sources of pollution in southwestern Norway. From about 1925 and until about 1950 other sources like waste burning contributed, and from about 1950 onwards the pollution has been a mixture of mainly leaded gasoline, coal and coke firing, and incineration of waste. The main objective of this study is to demonstrate the historical changes of environmental pollution in Norway during the last several hundred years up to the present time using tree bark pockets as pollution time capsules. Analyses of stable lead isotopes makes it possible to trace and identify lead from different sources of pollution and atmospherically transported lead deposited in central and southern Norway. Of special interest is the relationship between the industrialization of Europe and the global environmental pollution. Understanding this evolution is of considerable value for evaluating the present day situation.

  7. Characterisation of gaseous and particulate atmospheric pollutants in the East Mediterranean by diffusion denuder sampling lines.

    PubMed

    Perrino, C; Catrambone, M; Esposito, G; Lahav, D; Mamane, Y

    2009-05-01

    A field study aimed to characterize atmospheric pollutants in the gaseous and the particulate phases was conducted during the fall-winter of 2004 and the summer of 2005 in the Ashdod area, Israel. The site is influenced by both anthropogenic sources (power plants, refineries, chemical and metal industries, a cargo port, road traffic) and natural sources (sea-spray and desert dust). The use of diffusion lines--a series of annular diffusion denuders for sampling gaseous compounds followed by a cyclone and a filter pack for determining PM(2.5) composition--allowed a good daily characterization of the main inorganic compounds in both the gaseous (HCl, HNO(3), SO(2), NH(3)) and the particulate phase (Cl(-), NO(3)(-), SO(4)(=), NH(4)(+), and base cations). During the summer campaign two other activities were added: an intensive 3-h sampling period and the determination of PM(2.5) bulk composition. The results were interpreted on the basis of meteorological condition, especially the mixing properties of the lower atmosphere as determined by monitoring the natural radioactivity due to Radon progeny, a good proxy of the atmospheric ability to dilute pollutants. Several pollution episodes were identified and the predominance of different sources was highlighted (sea-spray, desert dust, secondary photochemical pollutants). During the summer period a considerable increase of nitric acid and particulate sulphate was observed. Secondary inorganic pollutants (nitrate, sulphate and ammonium) constituted, on the average, 57% of the fine particle fraction, organic compounds 20%, primary anthropogenic compounds 14%, natural components (sea-spray and crustal elements) 9%. The advantages of the diffusion lines in determining gaseous and particulate N- and S- inorganic compounds are discussed. PMID:18535917

  8. Change of the dynamics of heavy metals concentration in atmospheric precipitation in chatkal nature reservation of the republic of uzbekistan as anthropogenic index of the atmospheric pollution

    NASA Astrophysics Data System (ADS)

    Smirnova, T.; Tolkacheva, G.

    2003-04-01

    At present the investigation of the chemical composition of precipitation is a very actual task in the monitoring of environmental pollution. It is known that heavy metals can be the indices of the anthropogenic atmospheric pollution. The emissions from the mining enterprises, of non-ferrous metallurgy, of chemical industry, from heat-and-power production plants, from transport vehicles fare the sources of the heavy metals ingress into the atmosphere. Their emissions in atmosphere form fine-disperse aerosol fractions and afterwards they fall down together with precipitation onto the underlying surface. Heavy metals have the property of accumulation in environmental objects, which disturbs its ecological balance. One of the problems of the study of the influence of heavy metals pollution on the environment is their travel with the air masses of different origin on large distance. In this concern it is interesting to study the content of the heavy metals in atmospheric aerosols and precipitation in the background zones. Chatkal nature reservation on the territory of Tashkent province presents such background point. For the estimation of the level of atmospheric pollution by heavy metals and evaluation of the possible impact on the background level of air pollution of Chatkal nature reservation by anthropogenic sources (industrial cities of the capital province of Uzbekistan) the data analysis was carried out by the Administration of Environment Pollution Monitoring (AEPM) of hydrometeorological service of the Republic of Uzbekistan. It is necessary to mention that Chatkal biospheric nature reservation is situated in 100 km from Tashkent (the capital of the Republic of Uzbekistan) and in 60 km from Almalyk (the biggest centre of mining-metallurgical and chemical industry of the republic). The station of the complex background monitoring of atmospheric pollution (SCBM) is situated on the territory of this nature reservation. This area is characterized by a typical

  9. Monitoring of stream pollution using protozoan communities on artificial substrates

    SciTech Connect

    Henebry, M.S.; Cairns, J. Jr.

    1980-01-01

    Monitoring of stream pollution using protozoan communities on artificial substrates. Protozoan communities were sampled in 1978 from the South River near Waynesboro, Virginia, and compared with a study carried out in 1972. Five study stations were located above and below sources of pollution. Species richness followed the same pattern as in the 1972 study except at Station 2 (just below a major source of pollution) where a marked improvement in water quality occurred. Numbers of species increased significantly downstream from a source of pollution. This study provides evidence that protozoan communities may be used effectively in the assessment of water pollution and that results compare favorably with those based on macroinvertebrates which are more expensive to collect.

  10. Development of a Scheimpflug Lidar System for Atmospheric Aerosol Monitoring

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Brydegaard, Mikkel

    2016-06-01

    This work presents a Scheimpflug lidar system which was employed for atmospheric aerosol monitoring in southern Sweden. Atmospheric aerosol fluctuation was observed around rush-hour. The extinction coefficient over 6 km was retrieved, i.e., 0.15 km-1, by employing the slop-method during the time when the atmosphere was relatively homogenous. The measurements successfully demonstrate the potential of using a Scheimpflug lidar technique for atmospheric aerosol monitoring applications.

  11. Pollution Permanent Monitoring PANEL--2013 Annual Report

    NASA Astrophysics Data System (ADS)

    Everett, Lorne G.

    2014-07-01

    The following sections are included: * POLLUTION PANEL ACTIVITIES 2013 * NATIONAL ACADEMY OF SCIENCES 2013 * MTBE NEW HAMPSHIRE LITIGATION--APRIL 12, 2013 * ALTERNATIVES FOR MANAGING THE NATION's COMPLEX CONTAMINATED GROUNDWATER SITES--NATIONAL ACADEMY OF SCIENCES, 2013 * HUMAN HEALTH EFFECTS OF TRICHLOROETHYLENE: KEY FINDINGS AND SCIENTIFIC ISSUES. MARCH 1, 2013 REVIEWS * BAROMETRIC PRESSURE DRIVES SOIL-GAS CONCENTRATIONS * WATER RESOURCES--TERRORISM TARGETS * WITH A LITTLE INGENUITY THE PROBLEM IS NOT INSOLUBLE * HIGH RISE BUILDINGS * TERRORIST MATERIAL MAY DESTROY WATER TRANSMISSION INFRASTRUCTURE * WATER THREAT CONCLUSIONS * MULTINATIONAL REPOSITORIES

  12. Use of tree bark to monitor radionuclide pollution

    SciTech Connect

    Brownridge, J.D.

    1985-08-01

    The outer surface bark of many trees is an excellent monitoring source of fallout radionuclides. The accumulation and retention of these pollutants is evident by the presence of /sup 106/Ru, /sup 125/Sb, /sup 144/Ce and /sup 155/Eu in the outer layer of bark from many trees surveyed during this study. The accumulation and retention of these and other radionuclides suggest that tree bark is an ecosystem monitoring resource that should be exploited for these and possible other environmental pollutants. Therefore, the emphasis of this study was a broad survey of the detectability of gamma-ray emitting radionuclides in and on tree bark rather than a narrow quantitative study.

  13. Study of organic pollutants oxidation by atmospheric plasma discharge

    NASA Astrophysics Data System (ADS)

    Gumuchian, Diane; Cavadias, Simeon; Duten, Xavier; Tatoulian, Michael; da Costa, Patrick; Ognier, Stephanie

    2013-09-01

    Ozonation is one of the usual steps in water treatment processes. However, some organic molecules (acetic acid) cannot be decomposed during ozonation. In that context, we are developing an Advanced Oxidation Process based on the use of a needle plate discharge at atmospheric pressure. The process is a reactor with a plasma discharge between a high voltage electrode and the solution in controlled atmosphere. Characterizations of the plasma obtained in different atmospheres were carried out (Optical Emission Spectroscopy, iCCD camera observations, etc). The efficiency of the process was evaluated by the percentage of degradation of the model-pollutant, measured by liquid chromatography analysis. Treatments in nitrogen lead to the formation of NOx species that decrease the efficiency of the process. Indeed, NOx lead to the consumption of actives species created. Treatments in argon are the most efficient. Two hypotheses are considered: (i) metastable argon participates to the degradation of acetic acid or to the formation of radicals (ii) discharges in argon lead to the formation of many streamers of low energy that increase the interface plasma/solution.

  14. Detection and monitoring of pollutant sources with Lidar/Dial techniques

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Malizia, A.; Parracino, S.; Richetta, M.; De Leo, L.; Perrimezzi, C.; Bellecci, C.

    2015-11-01

    It's well known that air pollution due to anthropogenic sources can have adverse effects on humans and the ecosystem. Therefore, in the last years, surveying large regions of the atmosphere in an automatic way has become a strategic objective of various public health organizations for early detection of pollutant sources in urban and industrial areas. The Lidar and Dial techniques have become well established laser based methods for the remote sensing of the atmosphere. They are often implemented to probe almost any level of the atmosphere and to acquire information to validate theoretical models about different topics of atmospheric physics. They can also be used for environment surveying by monitoring particles, aerosols and molecules. The aim of the present work is to demonstrate the potential of these methods to detect pollutants emitted from local sources (such as particulate and/or chemical compounds) and to evaluate their concentration. This is exemplified with the help of experimental data acquired in an industrial area in the south of Italy by mean of experimental campaign by use of pollutants simulated source. For this purpose, two mobile systems Lidar and Dial have been developed by the authors. In this paper there will be presented the operating principles of the system and the results of the experimental campaign.

  15. A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region.

    PubMed

    Lai, I-Chien; Lee, Chon-Lin; Huang, Hu-Ching

    2016-03-01

    Transboundary transport of air pollution is a serious environmental concern as pollutant affects both human health and the environment. Many numerical approaches have been utilized to quantify the amounts of pollutants transported to receptor regions, based on emission inventories from possible source regions. However, sparse temporal-spatial observational data and uncertainty in emission inventories might make the transboundary transport contribution difficult to estimate. This study presents a conceptual quantitative approach that uses transport pathway classification in combination with curve fitting models to simulate an air pollutant concentration baseline for pollution background concentrations. This approach is used to investigate the transboundary transport contribution of atmospheric pollutants to a metropolitan area in the East Asian Pacific rim region. Trajectory analysis categorized pollution sources for the study area into three regions: East Asia, Southeast Asia, and Taiwan cities. The occurrence frequency and transboundary contribution results suggest the predominant source region is the East Asian continent. This study also presents an application to evaluate heavy pollution cases for health concerns. This new baseline construction model provides a useful tool for the study of the contribution of transboundary pollution delivered to receptors, especially for areas deficient in emission inventories and regulatory monitoring data for harmful air pollutants. PMID:26760713

  16. Passive Samplers for Monitoring Insidious N Air Pollutants and Estimating N Deposition to Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.

    2004-12-01

    Ammonia (NH3), nitric acid vapor (HNO3), nitric oxide (NO) and nitrogen dioxide (NO2) are the main biologically important nitrogenous (N) air pollutants. At highly elevated concentrations, these pollutants have a potential of causing injury to sensitive plants. More importantly, gaseous N pollutants may provide significant amounts of atmospheric N to the terrestrial ecosystems. This is especially true for wildlands affected by photochemical smog and agricultural emissions (e.g. mountains near California Central Valley or Los Angeles Basin). Passive samplers developed in the 1990s and 2000s have allowed for reliable monitoring of ambient concentrations of the pollutants at large geographic scales. Information on spatial and temporal distribution of NH3, HNO3, NO and NO2 from passive samplers may allow for determining potential "hot spots" of N pollutants effects. Information on ambient concentrations of gaseous N can also be used for estimates of N deposition to various ecosystems. Monitoring of N air pollutants and estimates of N deposition have been conducted in deserts, coastal sage, serpentine grassland, chaparral, and mixed conifer forests in California. These efforts and potential future use of passive samplers will be discussed.

  17. HANDBOOK: CONTINUOUS EMISSION MONITORING SYSTEMS FOR NON-CRITERIA POLLUTANTS

    EPA Science Inventory

    This Handbook provides a description of the methods used to continuously monitor non-criteria pollutants emitted from stationary sources. The Handbook contains a review of current regulatory programs, the state-of-the-art sampling system design, analytical techniques, and the use...

  18. Raman gas analyzer applicability to monitoring of gaseous air pollution

    NASA Astrophysics Data System (ADS)

    Petrov, D. V.; Matrosov, I. I.; Tikhomirov, A. A.

    2015-11-01

    It is shown that the main problem, arising when designing a stationary Raman gas analyzer intended to monitor gaseous air pollutions, is to get SRS signals of sufficient intensity. The engineering solutions are presented that provide the required sensitivity (~ 50-100 ppb). It is achieved by compressing a gas medium under analysis and gaining intensity of the exciting laser radiation.

  19. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  20. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  1. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  2. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  3. 49 CFR 192.481 - Atmospheric corrosion control: Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each...

  4. Preliminary results of a lidar-dial integrated system for the automatic detection of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Richetta, M.

    2012-11-01

    In the last decades, atmospheric pollution in urban and industrial areas has become a major concern of both developed and developing countries. In this context, surveying relative large areas in an automatic way is an increasing common objective of public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective approach to monitor large portions of the atmosphere and, for example, they have been successful applied to the early detection of forest fire. The studies and preliminary results reported in this paper concern the development of an integrated Lidar-Dial system able to detect sudden releases in air of harmful and polluting substances. The propose approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement (by means of a low cost system). Once a significant increase in the density of a pollutant is revealed, the Dial technique is used to identify the released chemicals. In this paper, the specifications of the proposed station are discussed. The most stringent requirement is the need for a very compact system with a range of at least 600-700 m. Of course, the optical wavelengths must be in an absolute eye-safe range for humans. A conceptual design of the entire system is described and the most important characteristic of the main elements are provided. In particular the capability of the envisaged laser sources, Nd:YAG and CO2 lasers, to provide the necessary quality of the measurements is carefully assessed. Since the detection of dangerous substances must be performed in an automatic way, the monitoring station will be equipped with an adequate set of control and communication devices for independent autonomous operation. The results of the first preliminary tests illustrate the potential of the chosen approach.

  5. Laser-excited fluorescence for measuring atmospheric pollution

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1975-01-01

    System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.

  6. Real-time monitoring for low-level pollution

    SciTech Connect

    Kishkovich, O.P.; Joffe, M.A.

    1997-11-01

    Real-time monitors provide a valuable addition to the arsenal of air-sampling methods used for IAQ applications. They are accurate, dependable, flexible, and provide IAQ professionals with more detailed quantitative information. RTM improves efficiency of many IAQ sampling applications and, in some cases, cannot be matched by other sampling techniques. Adequate instrumentation for demanding IAQ applications is available today. Future needs are expanding the range of pollutants that can be monitored with real-time instruments, improving reliability and portability of monitoring instrumentation, and devising cost-effective multiplexing schemes for multi-point RTM sampling.

  7. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    NASA Astrophysics Data System (ADS)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  8. Weather and Climate on the Reliability of Enviromagnetic Studies of Tree Leaves in Air Pollution Monitoring

    NASA Astrophysics Data System (ADS)

    Rey, D.; Rodríguez-Germade, I.; Mohamed Falcon, K. J.; Rubio, B.; Garcia, A.

    2014-12-01

    Monthly monitoring of the magnetic properties of Platanus hispanica tree leaves to assess atmospheric pollution in Madrid (Spain) and its suburban town of Pozuelo de Alarcon showed anthropogenic time-related klf enhancement of tree leaves. We established a significant correlation between metal concentration (leaching) in the leaves with Klf and IRM1T. This relationship was not as high as those found in other studies carried out on airborne dust, sediments and soils. Further analyses pointed out that local humidity played a dual roll, controlling availability of airborne lithogenic dust and the incorporation of trace metals in the leaf tissue, modulating the magnetic enhancement. Further to these findings, the comparison between cities of different climatic regimes showed that air humidity is the major factor controlling the interaction of the atmosphere and tree leaves, thus their magnetic properties. The relative influence of pollutants, lithogenic dust and biological effects depends not only on local meteorology but also on climate. Their influence should be most seriously considered to design methodological approaches that are appropriate to the environmental characteristics of each study area, if the magnetic properties of tree leaves are intended as an atmospheric pollution-monitoring tool.

  9. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia

  10. [Application of lysosomal detection in marine pollution monitoring: research progress].

    PubMed

    Weng, You-Zhu; Fang, Yong-Qiang; Zhang, Yu-Sheng

    2013-11-01

    Lysosome is an important organelle existing in eukaryotic cells. With the development of the study on the structure and function of lysosome in recent years, lysosome is considered as a target of toxic substances on subcellular level, and has been widely applied abroad in marine pollution monitoring. This paper summarized the biological characteristics of lysosomal marker enzyme, lysosome-autophagy system, and lysosomal membrane, and introduced the principles and methods of applying lysosomal detection in marine pollution monitoring. Bivalve shellfish digestive gland and fish liver are the most sensitive organs for lysosomal detection. By adopting the lysosomal detection techniques such as lysosomal membrane stability (LMS) test, neutral red retention time (NRRT) assay, morphological measurement (MM) of lysosome, immunohistochemical (Ih) assay of lysosomal marker enzyme, and electron microscopy (EM), the status of marine pollution can be evaluated. It was suggested that the lysosome could be used as a biomarker for monitoring marine environmental pollution. The advantages and disadvantages of lysosomal detection and some problems worthy of attention were analyzed, and the application prospects of lysosomal detection were discussed. PMID:24564165

  11. Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino

    2011-11-01

    Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.

  12. Assessment of space sensors for ocean pollution monitoring

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Tomiyasu, K.; Gulatsi, R. L.

    1980-01-01

    Several passive and active microwave, as well as passive optical remote sensors, applicable to the monitoring of oil spills and waste discharges at sea, are considered. The discussed types of measurements relate to: (1) spatial distribution and properties of the pollutant, and (2) oceanic parameters needed to predict the movement of the pollutants and their impact upon land. The sensors, operating from satellite platforms at 700-900 km altitudes, are found to be useful in mapping the spread of oil in major oil spills and in addition, can be effective in producing wind and ocean parameters as inputs to oil trajectory and dispersion models. These capabilities can be used in countermeasures.

  13. Terahertz sensor for air pollution monitoring from spacecraft

    NASA Astrophysics Data System (ADS)

    You, Rui; Guo, Aiyan

    2016-07-01

    Terahertz wave is a radio wave which wavelength between infrared and microwave, substantial is from 0.1-1mm that is 300-3000GHz(0.3-3THz). Compare to microwave and visible/infrared it is advantage of resolution and better penetration in atmosphere respectively, and because of wavelength is similar to scale of micro-particle of air pollution, the absorption coefficient due to the many relevant molecules have a maximum signature in the THz region, such as SO2、CH4、H2S、NH3、CO、O3 etc. of molecules of polluted atmosphere . This paper present a conceptional solution of THz sensor for air pollution sounder which using of large aperture antenna and FSS with 15 channels in 0.183-1.5THz region, each channel with 2MHz by extreme narrow band filter for detecting signature of polluted air. Analysis data show that 2Km spatial resolution at 700km altitude orbit. Sensitive is about 10-12W/Hz1/2 level at cryogenic temp.

  14. Atmospheric Pollution over the Eastern Mediterranean during summer - A Review

    NASA Astrophysics Data System (ADS)

    Dayan, Uri; Ricaud, Philippe; Zbinden, Regina; Dulac, François

    2016-04-01

    The subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, control the spatio-temporal distribution of the boundary layer during summer. The shallow mixed layer and weak zonal flow, leads to poor ventilation rates, inhibiting an efficient dispersion of the pollutants. Several studies pointing at specific local (e.g. ventilation rates) and regional peculiarities (long range transport) enhancing the building up of pollutant concentrations are presented. Tropospheric-ozone concentrations over the EM basin are among the highest over the Northern Hemisphere. The processes controlling its formation (i.e., long range transport from Europe, dynamic subsidence at mid-troposphere, and stratosphere-to-troposphere exchange) are reviewed. Airborne and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen are 2 to 10 times higher than in the hemispheric background troposphere. Models, aircraft measurements, and satellite data, have shown that sulfate has a maximum during spring and summer. The CO seasonal cycle, mainly governed by the concentration of the hydroxyl radical demonstrates high concentrations over winter months and lowest during summer when photochemistry is active. The daily variations in CO concentration are caused by long-range CO transport from European anthropogenic sources. The spatial distribution of methane, derived from satellite identified August as the month with the highest levels over the EM. The results of a comprehensive analysis of atmospheric methane over the EM Basin as part of the ChArMEx program, using satellite data and model simulations is consistent with other previous studies.

  15. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  16. ATMOSPHERIC DEPOSITION MODELING AND MONITORING OF NUTRIENTS

    EPA Science Inventory

    This talk presents an overview of the capabilities and roles that regional atmospheric deposition models can play with respect to multi-media environmental problems. The focus is on nutrient deposition (nitrogen). Atmospheric deposition of nitrogen is an important contributor to...

  17. Source regions of some persistent organic pollutants measured in the atmosphere at Birkenes, Norway

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Breivik, K.; Li, Y. F.; Manø, S.; Stohl, A.

    2009-09-01

    A key feature of POPs (Persistent Organic Pollutants) is their potential for long-range atmospheric transport. In order to better understand and predict atmospheric source-receptor relationships of POPs, we have modified an existing Lagrangian transport model (FLEXPART) to include some of the key processes that control the atmospheric fate of POPs. We also present four years (2004-2007) of new atmospheric measurement data for polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) obtained at Birkenes, an EMEP (European Monitoring and Evaluation Programme) site in southern Norway. The model overestimates measured PCB-28 and γ-HCH concentrations by factors of 2 and 8, respectively, which is most likely because the emissions used as input to the model are overestimated. FLEXPART captures the temporal variability in the measurements very well and, depending on season, explains 31-67% (14-62%) of the variance of measured PCB-28 (γ-HCH) concentrations. FLEXPART, run in a time-reversed (adjoint) mode, was used to identify the source regions responsible for the POP loading at the Birkenes station. Emissions in Central Europe and Eastern Europe contributed 32% and 24%, respectively, to PCB-28 at Birkenes, while Western Europe was found to be the dominant source (50%) for γ-HCH. Intercontinental transport from North America contributed 13% γ-HCH. While FLEXPART has no treatment of the partitioning of POPs between different surface media, it was found a very useful tool for studying atmospheric source-receptor relationships for POPs and POP-like chemicals that do not sorb strongly to atmospheric particles and whose atmospheric levels are believed to be mainly controlled by primary sources.

  18. Development of wireless sensor network for monitoring indoor air pollutant

    NASA Astrophysics Data System (ADS)

    Saad, Shaharil Mad; Shakaff, Ali Yeon Md; Saad, Abdul Rahman Mohd; Yusof @ Kamarudin, Azman Muhamad

    2015-05-01

    The air that we breathe with everyday contains variety of contaminants and particles. Some of these contaminants and particles are hazardous to human health. Most of the people don't realize that the content of air they being exposed to whether it was a good or bad air quality. The air quality whether in indoor or outdoor environment can be influenced by physical factors like dust particles, gaseous pollutants (including carbon dioxide, carbon monoxide and volatile organic compounds) and biological like molds and bacteria growth which largely depend on temperature and humidity condition of a room. These kinds of pollutants can affect human health, physical reaction, comfort or work performance. In this study, a wireless sensor network (WSN) monitoring system for monitor air pollutant in indoor environment was developed. The system was divided into three parts: web-based interface program, sensing module and a base station. The measured data was displayed on the web which is can be accessed by the user. The result shows that the overall measured parameters were meet the acceptable limit, requirement and criteria of indoor air pollution inside the building. The research can be used to improve the indoor air quality level in order to create a comfortable working and healthy environment for the occupants inside the building.

  19. Tracking of atmospheric release of pollution using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Šmídl, Václav; Hofman, Radek

    2013-03-01

    Tracking of an atmospheric release of pollution is usually based on measurements provided by stationary networks, occasionally complemented with deployment of mobile sensors. In this paper, we extend the existing concept to the case where the sensors are carried onboard of unmanned aerial vehicles (UAVs). The decision theoretic framework is used to design an unsupervised algorithm that navigates the UAVs to minimize the selected loss function. A particle filter with a problem-tailored proposal function was used as the underlying data assimilation procedure. A range of simulated twin experiments was performed on the problem of tracking an accidental release of radiation from a nuclear power plant in realistic settings. The main uncertainty was in the released activity and in parametric bias of the numerical weather forecast. It was shown that the UAVs can complement the existing stationary network to improve the accuracy of data assimilation. Moreover, two autonomously navigated UAVs alone were shown to provide assimilation results comparable to those obtained using the stationary network with more than thirty sensors.

  20. Study on wet scavenging of atmospheric pollutants in south Brazil

    NASA Astrophysics Data System (ADS)

    Wiegand, Flavio; Pereira, Felipe Norte; Teixeira, Elba Calesso

    2011-09-01

    The present paper presents the study of in-cloud and below-cloud SO 2 and SO 42-scavenging processes by applying numerical models in the Candiota region, located in the state of Rio Grande do Sul, South Brazil. The BRAMS (Brazilian Regional Atmospheric Modeling System) model was applied to simulate the vertical structure of the clouds, and the B.V.2 (Below-Cloud Beheng Version 2) scavenging model was applied to simulate in-cloud and below-cloud scavenging processes of the pollutants SO 2 and SO 42-. Five events in 2004 were selected for this study and were sampled at the Candiota Airport station. The concentrations of SO 2 and SO 42- sampled in the air and the simulated meteorological parameters of rainfall episodes were used as input data in the B.V.2, which simulates raindrop interactions associated with the scavenging process. Results for the Candiota region showed that in-cloud scavenging processes were more significant than below-cloud scavenging processes for two of the five events studied, with a contribution of approximately 90-100% of SO 2 and SO 42- concentrations in rainwater. A few adjustments to the original version of B.V.2 were made to allow simulation of scavenging processes in several types of clouds, not only cumulus humilis and cumulus congestus.

  1. The magnetic way of quantifying road traffic pollution in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Spassov, S.; Egli, R.; Heller, F.

    2003-12-01

    The steadily increasing number of motor vehicles requires continuous air quality monitoring in large urban and sub-urban areas. We present a fast and simple method for analysing samples of atmospheric particulate matter (PM) based on magnetic measurements, which is suitable for systematic pollution monitoring of extensive areas at low costs. Representative samples have been collected in Switzerland at sites with variable exposure to pollution sources. Atmospheric PM consists of natural and of anthropogenic components which both contain magnetic mineral fractions with specific magnetic properties. Our method relies on the analysis of the remanent magnetisation of PM samples. Detailed demagnetisation curves of anhysteretic remanent magnetisation (ARM) of these samples have been modelled using a linear combination of appropriate model functions, which represent the contribution of different magnetic mineral sources to the total magnetisation. Two magnetic components C1 and C2 with well-defined magnetic properties have been identified in all samples. The low-coercivity component C1 predominates in less polluted sites, whereas the concentration of the higher coercivity component C2 is large in urban areas. Once the coercivity distributions of C1 and C2 have been characterised, a simple method has been developed to quantify C1 and C2. This method is based on four-step demagnetisation curves, which can be measured in 12 minutes using a 2G cryogenic magnetometer with an in-line AF degausser. Our results are confirmed by independent chemical investigations at the same sites. The magnetic contribution of C2 is shown to be proportional to the chemically estimated total PM10 mass contribution of exhaust emissions. The mass concentration of traffic related elements in PM10 such as Fe, Ba, Cu, Mo, Br and elemental carbon also correlates with our results. Traffic is the most important PM pollution source in Switzerland: it includes exhaust emissions and abrasion products released

  2. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    PubMed

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing. PMID:26698808

  3. Monitoring of Air Pollution by Satellites (MAPS), phase 1

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Malkmus, W.; Griggs, M.; Bartle, E. R.

    1972-01-01

    Results are reported upon which the design of a satellite remote gas filter correlation (RGFC) instrument can be based. Although a final decision about the feasibility of measuring some of the pollutants with the required accuracy is still outstanding and subject to further theoretical and experimental verifications, viable concepts are presented which permit the initiation of the design phase. The pollutants which are of concern in the troposphere and stratosphere were selected. The infrared bands of these pollutants were identified, together with the bands of interfering gases, and the line parameters of the pollutants as well as interfering gases were generated through a computer program. Radiative transfer calculations (line-by-line) were made to establish the radiation levels at the top of the atmosphere and the signal levels at the detector of the RGFC instrument. Based upon these results the channels for the RGFC were selected. Finally, the problem areas, which need further investigations, were delineated and the supporting data requirements were established.

  4. Atmospheric monitoring in MAGIC and data corrections

    NASA Astrophysics Data System (ADS)

    Fruck, Christian; Gaug, Markus

    2015-03-01

    A method for analyzing returns of a custom-made "micro"-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.

  5. Atmospheric modeling of air pollution. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft. (Contains 250 citations and includes a subject term index and title list.)

  6. Atmospheric modeling of air pollution. (Latest citations from the NTIS bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft. (Contains 250 citations and includes a subject term index and title list.)

  7. Atmospheric modeling of air pollution. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft. (Contains 250 citations and includes a subject term index and title list.)

  8. Atmospheric modeling of air pollution. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Atmospheric corrosion model and monitor for low cost solar arrays

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  10. An experimental/analytical program to assess the utility of lidar for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Mills, F. S.; Allen, R. J.; Butler, C. F.; Kindle, E. C.

    1978-01-01

    The development and demonstration of lidar techniques for the remote measurement of atmospheric constituents and transport processes in the lower troposphere was carried out. Particular emphasis was given to techniques for monitoring SO2 and particulates, the principal pollutants in power plant and industrial plumes. Data from a plume dispersion study conducted in Maryland during September and October 1976 were reduced, and a data base was assembled which is available to the scientific community for plume model verification. A UV Differential Absorption Lidar (DIAL) was built, and preliminary testing was done.

  11. Report to the congress on ocean pollution, monitoring and research October 1980 through September 1981

    SciTech Connect

    Not Available

    1982-07-01

    This report summarizes the results of FY 1981 National Oceanic and Atmospheric Administration (NOAA) monitoring and research efforts under Title II of the Marine Protection, Research, and Sanctuaries Act of 1972 (P.L. 92-532). Section 201 of Title II assigns responsibility to the Department of Commerce for a comprehensive and continuing program of monitoring and research regarding the effects of dumping material into ocean waters, coastal waters, and the Great Lakes. Section 202 of Title II directs the Secretary of Commerce, in consultation with other appropriate parts of the U.S. Government, to 'initiate a comprehensive and continuing program of research with respect to the possible long-range effects of pollution, overfishing, and man-induced changes of ocean ecosystems.' The legislation also directs the Secretary of Commerce to report the findings from the monitoring and research programs to the Congress at least once a year. There are intrinsic difficulties, however, in distinguishing 'long-range' effects from the 'acute' effects of ocean dumping, or more generally of marine pollution. In response to these considerations and to the responsibilities assigned to NOAA under the National Ocean Pollution Planning Act (P.L. 95-273), NOAA has consolidated and coordinated its research efforts in these areas to make the overall program more cost-effective and productive.

  12. An Infrared Spectral Library for Atmospheric Environmental Monitoring

    SciTech Connect

    Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2006-04-12

    Infrared (IR) spectroscopy is one of several powerful analytical techniques, well suited for characterizing atmospheric composition. A few applications of infrared spectroscopy include air quality monitoring of building environs, automotive exhaust emissions, “fence-line” or open-path monitoring near industrial facilities and smokestack emissions. Regardless of the application or the specific instrumental configuration (Fourier transform, dispersive, laser based, …) a comprehensive reference library is critical to interpreting spectral data. Pacific Northwest National Laboratory (PNNL), through the support of the Department of Energy is developing a comprehensive infrared spectral library tailored for atmospheric environmental monitoring.

  13. Identifying atmospheric monitoring needs for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.

  14. A rationale for atmospheric monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.; Russo, Dane M.

    1989-01-01

    The atmosphere monitoring needs for the Space Station Freedom are identified by examining the monitoring requirements for supplied breathing air in confined spaces, as in the case of submarines and the Shuttle. Some other factors influencing the monitoring requirements for Space Station Freedom are also identified. These include: the experience of past missions and ground based tests; the proposed experimental and manufacturing processes and their hazards; and limitations of the life support systems.

  15. Atmospheric transport of persistent organic pollutants (POPs) to Bjørnøya (Bear island).

    PubMed

    Kallenborn, Roland; Christensen, Guttorm; Evenset, Anita; Schlabach, Martin; Stohl, Andreas

    2007-10-01

    A first medium term monitoring of atmospheric transport and distribution for persistent organic pollutants (POPs) in Bjørnøya (Bear island) air samples has been performed in the period between week 51/1999 and week 28/2003. A total of 50 single compounds consisting of polychlorinated biphenyls (33 congeners), hexachlorobenzene (HCB), hexachlorocyclohexane isomers (alpha-, beta-, gamma-HCH), alpha-endosulfan, cyclodiene pesticides (chlordanes, nonachlor-isomers, oxy-chlordane, heptachlor and chlordane) as well as dichlorodiphenyltrichloroethane (DDT) derivatives were analysed and quantified. Atmospheric transport of POPs was identified as an important contamination source for the island. PCBs, HCB and HCH isomers were the predominant POP groups, contributing with 70-90% to the overall POP burden quantified in the Bjørnøya air samples. The highest concentration levels for a single compound were found for HCB (25-35 pg m(-3)). However, the sum of 33 PCB congeners was found to be in the same concentration range (annual means between 15 and 30 pg m(-3)). Cyclodiene pesticides, DDT derivatives and alpha-endosulfan were identified as minor contaminants. Several atmospheric long-range transport episodes were identified and characterised. Indications for industrial emissions as well as agricultural sources were found for the respective atmospheric transport episodes. A first simple statistical correlation assessment showed that for long-range transport of pollution, the local meteorological situation is not as important as the air mass properties integrated over the time period of the transport event. The local weather situation, on the other hand, is important when investigating deposition rates and up-take/accumulation properties in the local ecosystem. Based upon chemical data interpretation, valuable information about the influence of primary and secondary sources on the air mass contamination with chlorinated insecticides (e.g., HCHs) was found and discussed. The

  16. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    PubMed

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot. PMID:26352643

  17. GREENHOUSE GAS RESEARCH AREAS (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The emissions programs in the Atmospheric Protection Branch (APB) of NRMRL's Air Pollution Prevention and Control Division are primarily dedicated to anthropogenic (human-influenced) sources of methane and high-global-warming refrigerants, though some work addresses carbon dioxid...

  18. GREENHOUSE GASES (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...

  19. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    NASA Technical Reports Server (NTRS)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; Lee, S. S.; Song, C. K.; Hong, Y. D.

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  20. Toward the next generation of air quality monitoring: Persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Hung, Hayley; MacLeod, Matthew; Guardans, Ramon; Scheringer, Martin; Barra, Ricardo; Harner, Tom; Zhang, Gan

    2013-12-01

    Persistent Organic Pollutants (POPs) are global pollutants that can migrate over long distances and bioaccumulate through food webs, posing health risks to wildlife and humans. Multilateral environmental agreements, such as the Stockholm Convention on POPs, were enacted to identify POPs and establish the conditions to control their release, production and use. A Global Monitoring Plan was initiated under the Stockholm Convention calling for POP monitoring in air as a core medium; however long temporal trends (>10 years) of atmospheric POPs are only available at a few selected sites. Spatial coverage of air monitoring for POPs has recently significantly improved with the introduction and advancement of passive air samplers. Here, we review the status of air monitoring and modeling activities and note major uncertainties in data comparability, deficiencies of air monitoring and modeling in urban and alpine areas, and lack of emission inventories for most POPs. A vision for an internationally-integrated strategic monitoring plan is proposed which could provide consistent and comparable monitoring data for POPs supported and supplemented by global and regional transport models. Key recommendations include developing expertise in all aspects of air monitoring to ensure data comparability and consistency; partnering with existing air quality and meteorological networks to leverage synergies; facilitating data sharing with international data archives; and expanding spatial coverage with passive air samplers. Enhancing research on the stability of particle-bound chemicals is needed to assess exposure and deposition in urban areas, and to elucidate long-range transport. Conducting targeted measurement campaigns in specific source areas would enhance regional models which can be extrapolated to similar regions to estimate emissions. Ultimately, reverse-modeling combined with air measurements can be used to derive “emission” as an indicator to assess environmental

  1. 40 CFR 60.1365 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuously monitored pollutants or parameters? 60.1365 Section 60.1365 Protection of Environment... Recordkeeping § 60.1365 What records must I keep for continuously monitored pollutants or parameters? You must... items: (1) Calendar dates whenever any of the five pollutant or parameter levels recorded in...

  2. 40 CFR 60.1850 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... continuously monitored pollutants or parameters? 60.1850 Section 60.1850 Protection of Environment... continuously monitored pollutants or parameters? You must keep records of eight items. (a) Records of... five pollutant or parameter levels recorded in paragraph (b) of this section or the opacity...

  3. Atmospheric pollutants and hospital admissions due to pneumonia in children

    PubMed Central

    Negrisoli, Juliana; Nascimento, Luiz Fernando C.

    2013-01-01

    OBJECTIVE: To analyze the relationship between exposure to air pollutants and hospitalizations due to pneumonia in children of Sorocaba, São Paulo, Brazil. METHODS: Time series ecological study, from 2007 to 2008. Daily data were obtained from the State Environmental Agency for Pollution Control for particulate matter, nitric oxide, nitrogen dioxide, ozone, besides air temperature and relative humidity. The data concerning pneumonia admissions were collected in the public health system of Sorocaba. Correlations between the variables of interest using Pearson cofficient were calculated. Models with lags from zero to five days after exposure to pollutants were performed to analyze the association between the exposure to environmental pollutants and hospital admissions. The analysis used the generalized linear model of Poisson regression, being significant p<0.05. RESULTS: There were 1,825 admissions for pneumonia, with a daily mean of 2.5±2.1. There was a strong correlation between pollutants and hospital admissions, except for ozone. Regarding the Poisson regression analysis with the multi-pollutant model, only nitrogen dioxide was statistically significant in the same day (relative risk - RR=1.016), as well as particulate matter with a lag of four days (RR=1.009) after exposure to pollutants. CONCLUSIONS: There was an acute effect of exposure to nitrogen dioxide and a later effect of exposure to particulate matter on children hospitalizations for pneumonia in Sorocaba. PMID:24473956

  4. ATMOSPHERIC MEASUREMENTS OF TRACE POLLUTANTS; LONG PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    Described are the results of a four-year study to measure trace pollutant concentrations in polluted atmospheres by kilometer pathlength Fourier transform infrared (FT-IR) absorption spectroscopy. The study covers selected smog episodes during the years 1976 to 1979. During 1976 ...

  5. Monitoring PM2.5 in the Atmosphere by Using Terahertz Time-Domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Zhao, Kun; Bao, Rima; Xiao, Lizhi

    2016-09-01

    The real-time monitoring of the air pollution with multiple sources is of great significance for pollution control and environmental protection. In this paper, we presented a study of terahertz time-domain spectroscopy (THz-TDS) as a direct tool for monitoring the component and content of PM2.5 in atmosphere. Due to the THz absorption, the intensities of the peaks in THz-TDS decreased with the augment of PM2.5 and were proportional to the PM2.5 content. The ratio of absorbance A to PM2.5 reflected a basically unchanged tendency, indicating the little change of principal elements under the pollution degree. In the high-pollution condition, a lot of SO2 from vehicle and factory was emitted into air. The elements, such as S and O from anions, had a stronger absorption effect in THz range. Based on the absorbance spectra, the absorption tendencies with PM2.5 over the whole range were validated by principal component analysis and the quantitative model with a high correlation was built by using back propagation artificial neural network. BPANN model improved the precision of linear fitting between peak intensities and PM2.5. The research demonstrates that THz-TDS is a promising tool for fast, direct, and reliable monitoring in environmental applications.

  6. Fluid mechanics simulation of fog formation associated with polluted atmosphere produced by energy related fuel combustion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.

  7. EFFECTS OF ATMOSPHERIC POLLUTANTS ON HUMAN PHYSIOLOGIC FUNCTION

    EPA Science Inventory

    Short-term health effects of common ambient air pollutants, particularly photochemical oxidants, were investigated under controlled conditions simulating typical ambient exposures. Volunteer subjects were exposed, in an environmental control chamber providing highly purified back...

  8. Atmospheric chemistry: Ozone pollution from near and far

    NASA Astrophysics Data System (ADS)

    Doherty, Ruth M.

    2015-09-01

    Tropospheric ozone is generated from precursor pollutants, but can be blown far afield. Satellite observations show rising ozone levels over China -- and almost stable levels over western North America despite stricter regulations.

  9. Molecular Biomarkers: their significance and application in marine pollution monitoring.

    PubMed

    Sarkar, A; Ray, D; Shrivastava, Amulya N; Sarker, Subhodeep

    2006-05-01

    This paper presents an overview of the significance of the use of molecular biomarkers as diagnostic and prognostic tools for marine pollution monitoring. In order to assess the impact of highly persistent pollutants such as polychlorinated biphenyls (PCB), polychlorinated dibenzo-dioxins (PCDD), polychlorinated dibenzo-furans (PCDF), polynuclear aromatic hydrocarbons (PAH), tributyltin (TBT) and other toxic metals on the marine ecosystem a suite of biomarkers are being extensively used worldwide. Among the various types of biomarkers, the following have received special attention: cytochrome P4501A induction, DNA integrity, acetylcholinesterase activity and metallothionein induction. These biomarkers are being used to evaluate exposure of various species of sentinel marine organisms (e.g. mussels, clams, oysters, snails, fishes, etc.) to and the effect of various contaminants (organic xenobiotics and metals) using different molecular approaches [biochemical assays, enzyme linked immuno-sorbent assays (ELISA), spectrophotometric, fluorometric measurement, differential pulsed polarography, liquid chromatography, atomic absorption spectrometry]. The induction of the biotransformation enzyme, cytochrome P4501A in fishes (Callionymus lyra, Limanda limanda, Serranus sp., Mullus barbatus) and mussels (Dreissena polymorpha) by various xenobiotic contaminants such as PCBs, PAHs, PCDs is used as a biomarker of exposure to such organic pollutants. The induction of cytochrome P4501A is involved in chemical carcinogenesis through catalysis of the covalent bonding of organic contaminants to a DNA strand leading to formation of DNA adduct. Measurement of the induction of cytochrome P4501A in terms of EROD (7-ethoxy resorufin O-deethylase) activity is successfully used as a potential biomarker of exposure to xenobiotic contaminants in marine pollution monitoring. In order to assess the impact of neurotoxic compounds on marine environment the evaluation of acetylcholinesterase

  10. Noble gas atmospheric monitoring at reprocessing facilities

    SciTech Connect

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  11. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.

    PubMed

    Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2. PMID:27058127

  12. Trinidad Head, California: New NOAA/CMDL Baseline Observatory for Monitoring Asian Atmospheric Effluents

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Butler, J. H.

    2002-12-01

    Long-range transport of dust and air pollution from Asia to the Mauna Loa, Hawaii, Atmospheric Baseline Observatory has been documented since the early 1970s. In a single year, as many as 30 distinct pollution flow events from Asia have been observed there. Some flows last a few hours, whereas others persist for up to 5 days. More recently, it has been recognized by both measurements and satellite photos that there are significant numbers of air pollution flow events from Asia into North America along a broad front, ranging from the north slope of Alaska to central California. There is a valid concern that ozone and ozone precursors advecting from Asia could eventually put California into noncompliance with federal air-quality regulations. As a component of the Intercontinental Transport and Chemical Transformation (ITCT) program, NOAA/CMDL established an atmospheric monitoring observatory (April 2002) at Trinidad Head, California in collaboration with Humboldt State University, to monitor both the inflow of air pollution from Asia as well as regionally influenced air. The station monitors aerosols, ozone (continuous surface and weekly ozonesonde balloon profiles), radiation, and halocarbon and carbon cycle trace gases (weekly flasks). Data from Trinidad Head are monitored via the internet at CMDL in Boulder. Plans call for the installation of a GC/MS for the measurement of PAN, hydrocarbons, and certain halocarbons, and for vertical profiles of trace gases and ozone to be obtained (with light aircraft) upwind and above the site on a weekly basis. It is expected that the Trinidad Head observatory will expand measurement programs over the next 5 years and be in operation for many decades to come.

  13. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  14. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  15. Atmospheric mercury monitoring survey in Beijing, China.

    PubMed

    Liu, Shili; Nadim, Farhad; Perkins, Chris; Carley, Robert J; Hoag, George E; Lin, Yuhan; Chen, Letian

    2002-07-01

    With the aid of one industrial, two urban, two suburban, and two rural sampling locations, diurnal patterns of total gaseous mercury (TGM) were monitored in January, February and September of 1998 in Beijing, China. Monitoring was conducted in six (two urban, two suburban, one rural and the industrial sites) of the seven sampling sites during January and February (winter) and in four (two urban, one rural, and the industrial sites) of the sampling locations during September (summer) of 1998. In the three suburban sampling stations, mean TGM concentrations during the winter sampling period were 8.6, 10.7, and 6.2 ng/m3, respectively. In the two urban sampling locations mean TGM concentrations during winter and summer sampling periods were 24.7, 8.3, 10, and 12.7 ng/m3, respectively. In the suburban-industrial and the two rural sampling locations, mean mercury concentrations ranged from 3.1-5.3 ng/m3 in winter to 4.1-7.7 ng/m3 in summer sampling periods. In the Tiananmen Square (urban), and Shijingshan (suburban) sampling locations the mean TGM concentrations during the summer sampling period were higher than winter concentrations, which may have been caused by evaporation of soil-bound mercury in warm periods. Continuous meteorological data were available at one of the suburban sites, which allowed the observation of mercury concentration variations associated with some weather parameters. It was found that there was a moderate negative correlation between the wind speed and the TGM concentration at this suburban sampling location. It was also found that during the sampling period at the same site, the quantity of TGM transported to or from the sampling site was mainly influenced by the duration and frequency of wind occurrence from certain directions. PMID:12137064

  16. Site selection criteria for the optical atmospheric visibility monitoring telescopes

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1989-01-01

    A description of each of the criteria used to decide where to locate the Atmospheric Visibility Monitoring (AVM) telescope systems is given, along with a weighting factor for each of them. These criteria include low probability of clouds, fog, smog, haze, low scattering, low turbulence, availability of security and maintenance, and suitability of a site for a potential optical reception station. They will be used to determine which three of several sites under consideration will be used for monitoring visibility through the atmosphere as it applies to an optical ground-based receiving network as may be used in NASA space missions in decades to come.

  17. Atmospheric monitoring at the site of the Telescopio Nazionale Galileo

    NASA Astrophysics Data System (ADS)

    Adriano, Ghedina; Marco, Pedani; de Gurtubai Albar, Garcia

    2015-03-01

    For more than 20 years, the atmosphere above the Telescopio Nazionale Galileo and its surroundings at the Roque de Los Muchachos Observatory have been monitored. From the first instruments installed in the early `90s to characterize and show the quality of the sky at the chosen site (particularly the Automatic Weather Station and the DIMM) we evolved into the actual set up of remote sensing devices. They are as a fundamental aid for the telescope, in particular for its safety and the optimization of the scientific throughput. We will resume here the lessons learned, some results and the new choices for monitoring the atmosphere at the TNG.

  18. Atmospheric transport of persistent pollutants governs uptake by holarctic terrestrial biota

    SciTech Connect

    Larsson, P.; Okla, L.; Woin, Per )

    1990-10-01

    The atmospheric deposition of PCBs, DDT, and lindane, governed uptake in terrestrial biota in the Scandinavian peninsula. Mammalian herbivores and predators as well as predatory insects contained higher levels of pollutants at locations where the fallout load was high than at stations where atmospheric deposition was lower, and the two variables were significantly correlated.

  19. Two-filter monitor for atmospheric 222Rn

    NASA Astrophysics Data System (ADS)

    Schery, S. D.; Gaeddert, D. H.; Wilkening, M. H.

    1980-03-01

    A two-filter, continuous monitor has been developed for atmospheric 222Rn. Features include a sensitivity of better than 0.01 pCi/l, a high specificity for 222Rn, and immediate start up capability. The monitor has been computer modeled to facilitate calibration and selection of operating parameters. The filters are stationary and require no moving parts for control. Field trials indicate high reliability and maintenance-free operation for periods of a week and longer.

  20. FT-IR remote sensing of atmospheric species: Application to global change and air pollution

    SciTech Connect

    Vazquez, G.J.

    1995-12-31

    In this contribution, the author describes two applications of Fourier Transform Infrared Spectroscopy to the monitoring of atmospheric compounds. Firstly, the author reports FTIR solar spectroscopy measurements carried out at ground level at NCAR and on airplanes employing a spectrometer of 0.06 cm{sup -1} resolution. Sample atmospheric spectra and fitting examples are presented for key species relevant to stratospheric chemistry and global change: ozone (O{sub 3}), a chlorofluorocarbon (CF{sub 2}Cl{sub 2}), a greenhouse gas (N{sub 2}O), HCl, NO and HNO{sub 3}. Secondly, the author briefly describes urban air pollution measurements at an intersection with heavy traffic in Tucson, AZ. Two FTIR spectrometers of 1 cm{sup -1} resolution were employed to carry out long-path open-path measurements of the CO/CO{sub 2} ratio and SF{sub 6}. Two FEAT and two LPUV instruments were employed for ancillary measurements of CO, CO{sub 2}, NO, and aromatic hydrocarbons. Measurements of CO at two heights and a comparison of CO/CO{sub 2} ratios obtained by FEAT exhaust emission and FTIR ambient air measurements are reported.

  1. Monitoring Air Pollution from Satellites (MAPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Performance tests on an electro-optical model of an infrared sensor for remote measurements of trace atmospheric gases are detailed; the instrument utilized a sample of the gas to be measured as spectral filter. Also reported is the development of radiometric calibration equipment that determines responses to simulated pollution effects. Results show excellent agreement with theoretical performance predictions with the exception of nonuniform radiance responses. Balance stability to an accuracy better than the rms noise level was demonstrated for the EOM in both the NH3 and CO modes for a period of two days under laboratory conditions. Flight test results show that the temperature range of the absorption cell is restricted to 255 K or higher.

  2. Low level atmospheric sulfur dioxide pollution and childhood asthma

    SciTech Connect

    Tseng, R.Y.; Li, C.K. )

    1990-11-01

    Quarterly analysis (1983-1987) of childhood asthma in Hong Kong from 13,620 hospitalization episodes in relation to levels of pollutants (SO{sub 2}, NO{sub 2}, NO, O{sub 3}, TSP, and RSP) revealed a seasonal pattern of attack rates that correlates inversely with exposure to sulfur dioxide (r = -.52, P less than .05). The same cannot be found with other pollutants. Many factors may contribute to the seasonal variation of asthma attacks. We speculate that prolonged exposure (in terms of months) to low level SO{sub 2} is one factor that might induce airway inflammation and bronchial hyperreactivity and predispose to episodes of asthma.

  3. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    NASA Technical Reports Server (NTRS)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  4. Pollution monitoring in Southeast Asia using biomarkers in the mytilid mussel Perna viridis (Mytilidae: Bivalvia).

    PubMed

    Nicholson, S; Lam, P K S

    2005-01-01

    Mytilid mussels have been extensively used in marine pollution monitoring programmes in temperate regions of the world although widespread subtropical representatives such as Perna viridis have only comparatively recently been utilised to monitor the sublethal effects of pollution in Southeast Asia. P. viridis is considered a subtropical equivalent of the temperate Mytilus sp. and has considerable potential for pollution monitoring throughout its geographical range. This paper reviews the current status of biomarkers in P. viridis and provides some recommendations on biological-effects monitoring to facilitate the assessment of coastal pollution in Southeast Asia. PMID:15607786

  5. Atmospheric Visibility Monitoring Using Digital Image Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Liaw, Jiun-Jian; Lian, Ssu-Bin; Huang, Yung-Fa; Chen, Rung-Ching

    Atmospheric visibility is a standard of human visual perception of the environment. It is also directly associated with air quality, polluted species and climate. The influence of urban atmospheric visibility affects not only human health but also traffic safety and human life quality. Visibility is traditionally defined as the maximum distance at which a selected target can be recognized. To replace the traditional measurement for atmospheric visibility, digital image processing schemes provide good visibility data, established by numerical index. The performance of these techniques is defined by the correlation between the observed visual range and the obtained index. Since performance is affected by non-uniform illumination, this paper proposes a new procedure to estimate the visibility index with a sharpening method. The experimental results show that the proposed procedure obtains a better correlation coefficient than previous schemes.

  6. RESIDENCE TIME OF ATMOSPHERIC POLLUTANTS AND LONG-RANGE TRANSPORT

    EPA Science Inventory

    The Lagrangian trajectory model which is suitable for the study of long-range transport of pollutants, is developed. The computer program is capable of calculating trajectories over the region of the U.S. using routine sounding data. The output consists of tables of locations of ...

  7. Export of arsenic from forested catchments under easing atmospheric pollution

    SciTech Connect

    Lucie Erbanova; Martin Novak; Daniela Fottova; Barbora Dousova

    2008-10-01

    Massive lignite burning in Central European power plants peaked in the 1980s. Dissolved arsenic in runoff from upland forest ecosystems is one of the ecotoxicological risks resulting from power plant emissions. Maxima in As concentrations in runoff from four forest catchments have increased 2-5 times between 1995 and 2006, and approach the drinking water limit (10 {mu}g L{sup -1}). To assess the fate of anthropogenic As, we constructed input/output mass balances for three polluted and one relatively unpolluted forest catchment in the Czech Republic, and evaluated the pool size of soil As. The observation period was 11 years, and the sites spanned a 6-fold As pollution gradient. Two of the polluted sites exhibit large net As export via runoff solutes (mean of 4-5 g As ha{sup -1} yr{sup -1} for the 11-year period; up to 28 g As ha{sup -1} yr{sup -1} in 2005). This contrasts with previous studies which concluded that forest catchments are a net sink for atmogenic arsenic both at times of increasing and decreasing pollution. The amount of exported As is not correlated with the total As soil pool size, which is over 78% geogenic in origin, but correlates closely with water fluxes via runoff. Net arsenic release is caused by an interplay of hydrological conditions and retreating acidification which may mobilize arsenic by competitive ligand exchange. The effects of droughts and other aspects of climate change on subsequent As release from soil were not investigated. Between-site comparisons indicate that most pollutant As may be released from humus. 24 refs., 7 figs., 1 tab.

  8. Method for protecting plant life from acidic atmospheric pollutants

    SciTech Connect

    Lengyel, A.D.

    1986-10-14

    A method is described for treating a stand of coniferous trees growing by natural processes and exposed to an atmosphere containing inorganic nitric acid or nitrate compounds to improve the resistance of the trees to damage by acid rain. The method consists of foliarly applying at least one sugar selected from the group consisting of monosaccharides and disaccharides to the coniferous trees naturally growing in the stand exposed to the atmosphere.

  9. DEVELOPMENT AND EVALUATION OF AN INSTANTANEOUS ATMOSPHERIC CORROSION RATE MONITOR

    EPA Science Inventory

    A research program has been carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) has been developed and evaluated, and equipment has been constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first tas...

  10. Development of the atmospheric volcanic monitoring system in Iceland

    NASA Astrophysics Data System (ADS)

    Petersen, G. N.; Bjornsson, H.; Arason, P.; von Löwis, S.; Sigurøsson, G. S.; Karlsdóttir, S.

    2012-04-01

    The development of the atmospheric volcanic plume monitoring system has escalated since the eruption of Eyjafjallajökull in 2010. Radars provide a near-real time capability to observe volcanic eruptions both day and night. At high latitudes this is important, over the darkest periods of winter when radar and satellite images are the only means of measurements. Also weather conditions can be such at any time of the year that they obscure observations from survey flights and even from satellites. Prior to and during the 39 days eruption in 2010 only one operational radar was installed in Iceland, the fixed C-band radar at Keflavík International Airport. The main purpose of this radar is weather monitoring but it can simultaneously be used for volcanic plume monitoring within a radius of 480 km. The radar has been used for plume monitoring since 1991 when an eruption started in Hekla, only a few days after the installation of the radar. Since November 2010 a X-band dual polarization radar has been on loan from the Italian Civil Protection Agency to the Icelandic Meteorological Office (IMO) and during the eruption in Grímsvötn in 2011 the combined system, together with visual observations, gave a good picture of the eruption. Also, in cooperation with the UK National Centre for Atmospheric Science (NCAS) a Lidar has been operating in South-Iceland since May 2011. The Lidar was moved to Keflavík airport during the Grímsvötn eruption to monitor the atmosphere above the airport and assist in decision making regarding openings and closures of the airport. In 2012 a second fixed position C-band weather radar will be installed in East-Iceland. This means that the geophysically active region in both south and northeast of Iceland will be covered. In addition, the International Civil Aviation Organization (ICAO) has financed two X-band mobile radars to be installed and used in Iceland, solely for volcanic plume monitoring, with the first one becoming operational in

  11. The atmospheric monitoring system of the JEM-EUSO instrument

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will detect Ultra-High Energy Cosmic Rays (UHECRs) from space, detecting the UV Fluorescence Light produced by Extensive Air Showers (EAS) induced by the interaction of the cosmic rays with the earth's atmosphere. The capability to reconstruct the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring (AM) system of JEM-EUSO will host a LIDAR, operating in the UV band, and an Infrared camera to monitor the cloud cover in the JEM-EUSO Field of View, in order to be sensitive to clouds with an optical depth τ ≥ 0.15 and to measure the cloud top altitude with an accuracy of 500 m and an altitude resolution of 500 m.

  12. FRAM telescope - monitoring of atmospheric extinction and variable star photometry

    NASA Astrophysics Data System (ADS)

    Jurysek, J.; Honkova, K.; Masek, M.

    2015-02-01

    The FRAM (F/(Ph)otometric Robotic Atmospheric Monitor) telescope is a part of the Pierre Auger Observatory (PAO) located near town Malargüe in Argentina. The main task of the FRAM telescope is the continuous night - time monitoring of the atmospheric extinction and its wavelength dependence. The current methodology of the measurement of a atmospheric extinction and for instrumentation properties also allows simultaneous observation of other interesting astronomical targets. The current observations of the FRAM telescope are focused on the photometry of eclipsing binaries, positional refinement of minor bodies of the Solar system and observations of optical counterparts of gamma ray bursts. In this contribution, we briefly describe the main purpose of the FRAM telescope for the PAO and we also present its current astrono mical observing program.

  13. Monitoring atmospheric particulate matter through cavity ring-down spectroscopy.

    PubMed

    Thompson, Jonathan E; Smith, Benjamin W; Winefordner, James D

    2002-05-01

    Cavity ring-down spectroscopy was explored as a means to measure atmospheric optical extinction. Ambient air was sampled through a window on the campus of the University of Florida and transported to a ring-down cell fashioned from standard stainless steel vacuum components. When a copper vapor laser operating at 10 kHz is employed, this arrangement allowed for nearly continuous monitoring of atmospheric extinction at 510 and 578 nm. We have characterized the system performance in terms of detection limit and dynamic range and also monitored a change in atmospheric extinction during a nearby wildfire and fireworks exhibition. The sensitivity and compatibility with automation of the technique renders it useful as a laboratory-based measurement of airborne particulate matter. PMID:12033292

  14. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  15. [Monitoring of organic pollutants in river based on polarimetric SAR].

    PubMed

    Chen, Jiong; Jia, Hai-Feng; Yang, Jian; Chen, Yu-Rong

    2010-09-01

    The rivers with the distinct gradient of water quality in the southern region of China were selected as a case study. The objective of this study was to develop the monitoring and evaluating technology of the water quality based on C-band polarimetric synthetic aperture radar (POLSAR). The random rough surface scattering model to describe the electromagnetic scattering characteristics of polluted water was briefly introduced. The potential effect of organic pollutants to the scattering model and backscattering coefficient were explored. The simultaneously obtained POLSAR data and the measured water quality indexes were analyzed. By comparing the POLSAR data and the water quality indexes, it could be observed that the chemical oxygen demand (COD) was in proportional to the ratio between HH and VV backscattering coefficients, which matched the analysis based on electromagnetic scattering theory. A fitting model was proposed to retrieve the chemical oxygen demand by ratio between HH and VV channel backscattering coefficients using least square method, with the fit coefficient of 0.90. In this study, the model using the ratio between HH and VV backscattering coefficients was established, which was mainly based on the analysis of experimental results, and was also supported by theoretical interpretation. PMID:21072918

  16. Source apportionment of gaseous atmospheric pollutants by means of an absolute principal component scores (APCS) receptor model.

    PubMed

    Bruno, P; Caselli, M; de Gennaro, G; Traini, A

    2001-12-01

    A multivariate statistical method has been applied to apportion the atmospheric pollutant concentrations measured by automatic gas analyzers placed on a mobile laboratory for air quality monitoring in Taranto (Italy). In particular, Principal Component Analysis (PCA) followed by Absolute Principal Component Scores (APCS) technique was performed to identify the number of emission sources and their contribution to measured concentrations of CO, NOx, benzene toluene m+p-Xylene (BTX). This procedure singled out two different sources that explain about 85% of collected data variance. PMID:11798109

  17. AICE Survey of USSR Air Pollution Literature, Volume 12: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part I.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Twelve papers dealing with the meteorological aspects of air pollution were translated. These papers were initially presented at an international symposium held in Leningrad during July 1968. The papers are: Status and prospective development of meteorological studies of atmospheric pollution, Effect of the stability of the atmosphere on the…

  18. Tropospheric Emissions: Monitoring of Pollution (TEMPO) - Status and Potential Science Studies

    NASA Astrophysics Data System (ADS)

    Chance, Kelly

    2016-05-01

    TEMPO is the first NASA Earth Venture Instrument, to launch between 2019 and 2021. It measures atmospheric pollution from Mexico City and Cuba to the Canadian oil sands, and from the Atlantic to the Pacific, hourly at high spatial resolution, ~ 10 km2. It measures the key elements of air pollution chemistry. Geostationary (GEO) measurements capture the variability in the diurnal cycle of emissions and chemistry at sub-urban scale to improve emission inventories, monitor population exposure, and enable emission-control strategies. TEMPO measures the UV/visible spectra to retrieve O3, NO2, SO2, H2 CO, C2 H2 O2, H2 O, aerosols, cloud parameters, and UVB radiation. It tracks aerosol loading. It provides near-real-time air quality products. TEMPO is the North American component of the global geostationary constellation for pollution monitoring, with the European Sentinel-4 and the Korean GEMS. TEMPO studies may include: Solar-induced fluorescence from chlorophyll over land and in the ocean to study tropical dynamics, primary productivity, carbon uptake, to detect red tides, and to study phytoplankton; Measurements of stratospheric intrusions that cause air quality exceedances; Measurements at peaks in vehicle travel to capture the variability in emissions from mobile sources; Measurements of thunderstorm activity, including outflow regions to better quantify lightning NOx and O3 production; Cropland measurements follow the temporal evolution of emissions after fertilizer application and from rain-induced emissions from semi-arid soils; Measurements investigate the chemical processing of primary fire emissions and the secondary formation of VOCs and ozone; Measurements examine ocean halogen emissions and their impact on the oxidizing capacity of coastal environments; Spectra of nighttime lights are markers for human activity, energy conservation, and compliance with outdoor lighting standards intended to reduce light pollution.

  19. Effects of atmospheric pollutants on forests, wetlands, and agricultural ecosystems

    SciTech Connect

    Hutchinson, T.C.; Meema, K.M.

    1987-01-01

    This book reports on the knowledge of the sensitivities and responses of forests, wetlands and crops to airborne pollutants. Pollutants examined include: acidic depositions, heavy metal particulates, sulphur dioxide, ozone, nitrogen oxides, acid fogs, and mixtures of these. Various types of ecosystem stresses and physiological mechanisms pertinent to acid deposition are also discussed. Related subjects, such as the effects of ethylene on vegetation, the physiology of drought in trees, the ability of soils to generate acidity naturally, the role of Sphagnum moss in natural peatland acidity, the use of lichens as indicators of changing air quality, and the magnitude of natural emissions of reduced sulphur gases from tropical rainforests and temperate deciduous forests, are covered.

  20. Detection of atmospheric pollutants by pulsed photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roman, Miruna; Pascu, Mihail-Lucian; Staicu, Angela

    1998-07-01

    Pulsed laser photoacoustic detection of NO2 and SO2 is reported. The laser source is a pulsed molecular nitrogen laser emitting at 337.1 nm. The average energy per pulse is about 350 (mu) J and the pulse duration 10 nsec. For detection we used a piezoelectric transducer (TUSIM-N.I.M.P., resonance frequency 4 MHz) and an electret condenser microphone (Trevi EM 27). The photoacoustic cell was a nonresonant one, with a cylindrical shape. The laser beam was centered along the cylinder axis. Linear dependence of the photoacoustic signal on pollutant pressure was obtained. This linearity is in a good agreement with theoretical considerations. The photoacoustic signal was measured for pollutants pressure between 1 torr and 100 torr for NO2 and between 35 torr and 100 torr for SO2.

  1. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values

  2. Study of atmospheric dynamics and pollution in the coastal area of English Channel using clustering technique

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmenten, Marc

    2016-04-01

    The problem of atmospheric contamination by principal air pollutants was considered in the industrialized coastal region of English Channel in Dunkirk influenced by north European metropolitan areas. MESO-NH nested models were used for the simulation of the local atmospheric dynamics and the online calculation of Lagrangian backward trajectories with 15-minute temporal resolution and the horizontal resolution down to 500 m. The one-month mesoscale numerical simulation was coupled with local pollution measurements of volatile organic components, particulate matter, ozone, sulphur dioxide and nitrogen oxides. Principal atmospheric pathways were determined by clustering technique applied to backward trajectories simulated. Six clusters were obtained which describe local atmospheric dynamics, four winds blowing through the English Channel, one coming from the south, and the biggest cluster with small wind speeds. This last cluster includes mostly sea breeze events. The analysis of meteorological data and pollution measurements allows relating the principal atmospheric pathways with local air contamination events. It was shown that contamination events are mostly connected with a channelling of pollution from local sources and low-turbulent states of the local atmosphere.

  3. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China.

    PubMed

    Kong, Lingxiao; Kadokami, Kiwao; Wang, Shaopo; Duong, Hanh Thi; Chau, Hong Thi Cam

    2015-03-01

    In spite of the quantities and species of chemicals dramatically increased with rapid economic growth in China in the last decade, the focus of environmental research was mainly on limited number of priority pollutants. Therefore, to elucidate environmental pollution by organic micro-pollutants, this work was conducted as the first systematic survey on the occurrence of 1300 substances in 20 surface water samples of Tianjin, North China, selected as a representative area of China. The results showed the presence of 227 chemicals. The most relevant compounds in terms of frequency of detection and median concentration were bis(2-ethylhexyl) phthalate (100%; 0.26μgL(-1)), siduron (100%; 0.20μgL(-1)), lidocaine (100%; 96ngL(-1)), antipyrine (100%; 76ngL(-1)), caffeine (95%; 0.28μgL(-1)), cotinine (95%; 0.20μgL(-1)), phenanthrene (95%; 0.17μgL(-1)), metformin (90%; 0.61μgL(-1)), diethyl phthalate (90%; 0.19μgL(-1)), quinoxaline-2-carboxylic acid (90%; 0.14μgL(-1)), 2-(methylthio)-benzothiazole (85%; 0.11μgL(-1)) and anthraquinone (85%; 54ngL(-1)). Cluster analysis discriminated three highly polluted sites from others based on data similarity. Principle component analysis identified four factors, corresponding to industrial wastewater, domestic discharge, tire production and atmospheric deposition, accounting for 78% of the total variance in the water monitoring data set. This work provides a wide reconnaissance on broad spectrum of organic micro-contaminants in surface waters in China, which indicates that the aquatic environment in China has been polluted by a large number of chemicals. PMID:25479805

  4. Status of the first NASA EV-I Project, Tropospheric Emissions: Monitoring of Pollution (TEMPO)

    NASA Astrophysics Data System (ADS)

    Chance, K.; Liu, X.; Suleiman, R. M.; Flittner, D. E.; Al-Saadi, J. A.; Janz, S. J.

    2013-12-01

    TEMPO is the first NASA Earth Venture Instrument. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (2 km N/S × 4.5 km E/W at the center of its field of regard). The status of TEMPO including progress in instrument definition and implementation of the ground system will be presented. TEMPO provides a minimally-redundant measurement suite that includes all key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO will be delivered in 2017 for integration onto a NASA-selected GEO host spacecraft for launch as early as 2018. It will provide the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. Additional gases not central to air quality, including BrO, OClO, and IO will also be measured. TEMPO and its Asian (GEMS) and European (Sentinel-4) constellation partners make the first tropospheric trace gas measurements from GEO, building on the heritage of six spectrometers flown in low-earth-orbit (LEO). These LEO instruments measure the needed

  5. Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution.

    PubMed

    Hauck, Markus

    2005-05-01

    Based on literature data, epiphytic lichen abundance was comparably studied in montane woodlands on healthy versus dead or dying conifers of Europe and North America in areas with different levels of atmospheric pollution. Study sites comprised Picea abies forests in the Harz Mountains and in the northern Alps, Germany, Picea rubens-Abies balsamea forests on Whiteface Mountain, Adirondacks, New York, U.S.A. and Picea engelmannii-Abies lasiocarpa forests in the Salish Mountains, Montana, U.S.A. Detrended correspondence analysis showed that epiphytic lichen vegetation differed more between healthy and dead or dying trees at high- versus low-polluted sites. This is attributed to greater differences in chemical habitat conditions between trees of different vitality in highly polluted areas. Based on these results, a hypothetical model of relative importance of site factors for small-scale variation of epiphytic lichen abundance versus atmospheric pollutant load is discussed. PMID:15701398

  6. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?

    NASA Astrophysics Data System (ADS)

    Brahney, Janice; Mahowald, Natalie; Ward, Daniel S.; Ballantyne, Ashley P.; Neff, Jason C.

    2015-09-01

    Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes (r2 = 0.81, p < 0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations (r2 = 0.20, p < 0.05) however, atmospheric deposition of P appears to be major contributor to this pattern (r2 = 0.65, p < 0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16 times the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine Lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.

  7. Biomagnetic monitoring of traffic air pollution in Toulouse (France) using magnetic properties of tree bark

    NASA Astrophysics Data System (ADS)

    Macouin, M.; Rousse, S.; Brulfert, F.; Durand, M.; Feida, N.; Durand, X.; Becaud, L.

    2012-12-01

    Magnetic properties of various atmospheric samples represent rapid and economic proxies in the pollution studies based on their strong linkage to heavy metals and/or volatile organic carbons. We report a biomonitoring study of air pollution in Toulouse (France) based on the magnetic properties of tree (Platanus acerifolia) bark. More than 250 bark samples were taken at different areas of the city. Both mass specific magnetic susceptibility and isothermal remanent magnetization (IRM) at 1 Tesla display relationships with the traffic intensity and the distance to the road. Urban roadside tree bark exhibit significant enhancement in their values of susceptibility and IRM reflecting surface accumulation of particulate pollutants, compared with tree growing at lower traffic sites. To estimate the deposition time and accumulation on bark, we have deposited 20 "clean" bark samples from low traffic area with susceptibility inferior to 10 SI, near the city ring road. Samples were then collected during three months. Samples were imparted a 1 Tesla IRM both prior the deposition and after the resampling. Results are useful to apprehend the process of magnetic particulates accumulation and to evaluate the potential of tree bark for the air quality monitoring.

  8. Appropriate line profiles for radiation modeling in the detection of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.

    1973-01-01

    Absorption by Lorentz, Doppler, and Voight lines are compared for a range of atmospheric parameters. It is found that, for the intermediate path lengths, the use of the combined Lorentz-Doppler (Voight) profile is essential in calculating the atmospheric transmittance. A brief review of band models, to approximate the absorption over certain frequency interval, is presented. Expressions for total radiative energy emergent from the atmosphere are given which, with appropriate line or band models, can be used to reduce the data obtained from radiation measurement by an instrument mounted on an aircraft or a satellite. By employing the inversion procedure, the concentration of atmospheric pollutants can be obtained from the measured data.

  9. Study of atmospheric pollution scavenging. Eighteenth progress report

    SciTech Connect

    Semonin, R.G.; Bartlett, J.D.; Bowersox, V.C.; Gatz, D.F.; Naiman, D.Q.; Peden, M.E.; Stahlhut, R.K.; Stensland, G.J.

    1980-07-01

    The analysis of aerosol samples obtained in rural east-central Illinois reveals a seasonal maximum in SO/sub 4/ during May to July and a similar pattern for NH/sub 4/. The annual median SO/sub 4/ is about 1 to 1.5 ..mu..g/m/sup 3/. In contrast to these ions, NO/sub 3/ displays highest values in the cold season. Soil-related species (Ca, K) seem to maximize in relation to farm tillage and harvesting practices. The NO/sub 3/ in recent precipitation samples over the northeast US increased between 1 and 2 times the values observed in the mid-1950's. A case study from SCORE-78 suggests that all ion concentrations analyzed from sequentially collected samples decreased from the onset of rain to a minimum corresponding to the heaviest rain rates. Four groups of elements in 10 event rain samples were identified using factor analysis. The groups include soluble and insoluble crustal elements, soluble pollutant metals and sulfate, and insoluble pollutant metals. Utilizing the factor analysis approach, the St. Louis METROMEX precipitation chemistry data showed that the SO/sub 4/ deposition patterns group consistently with those of other soluble pollutants. Additional factor analysis efforts on the St. Louis rainwater data set revealed that soluble and insoluble concentrations of a given element have different deposition patterns suggesting that scavenging and/or precipitation formation processes dictate the patterns. An approach to managing the vast data base of rain chemistry used in the above studies is described. The software also examines the data for certain aspects of quality assurance. The procedures used to analyze ambient air filter samples are discussed.

  10. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  11. Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.

  12. Worldwide monitoring of VLF-LF propagation and atmospheric noise

    NASA Astrophysics Data System (ADS)

    Tomko, A. A.; Hepner, T.

    2001-03-01

    A joint effort is underway between The Johns Hopkins University Applied Physics Laboratory and the Space and Naval Warfare (SPAWAR) Systems Center, San Diego, to deploy monitoring equipment capable of characterizing worldwide VLF-LF radio wave propagation and atmospheric noise levels. The monitoring equipment consists of a PC-based spectrum analyzer and orthogonal ferrite core magnetic loop antennas. The analyzer performs continuous measurements of the radio spectrum from 12 to 62 kHz and records time histories of VLF-LF signals (equivalent vertical electric field strength), noise amplitude probability distribution, noise impulsiveness, and average noise field strength. Data are downloaded via the Internet to a central database server. The Internet connection also provides for system reconfiguration and clock synchronization. Data collected by the monitoring network will be used to improve communication coverage forecasts and to analyze transient and long-term propagation effects. This paper provides an overview of the monitoring network and samples of data collected by it.

  13. Atmosphere and water quality monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  14. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What continuous emission monitoring systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... emission monitoring systems must I install for gaseous pollutants? (a) You must install,...

  15. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.

    PubMed

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming

    2016-09-01

    Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. PMID:27295441

  16. Supplemental mathematical formulations, Atmospheric pathway: The Multimedia Environmental Pollutant Assessment System (MEPAS)

    SciTech Connect

    Droppo, J.G.; Buck, J.W.

    1996-03-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a ``multimedia`` model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations.

  17. Agriculture Crop Burning in Northwestern India and Its Impact on Atmospheric Pollution and Air Quality

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Chauhan, A.; Gonzalez Abad, G.

    2014-12-01

    Crop burning season, over northern India, occurs during October-November and April-May after harvesting season. The mechanized harvesting started in 1986, and every year crop residues are burnt in the northwestern parts of India. During post-monsoon season, October - November, the boundary layer is shallow; as a result the crop burning greatly impacts the regional air quality and climate of the northern parts of south Asia. Due to intense burning episodes, heavy smoke pollution-laden plumes are transported all along the Indo-Gangetic basin in the northern parts of India, depending upon diurnal changes in the wind patterns. We find that, in general, the dominant westerly winds transport the plumes and emissions far away from the source region up to the eastern parts of Indo-Gangetic basin, further dispersing over central India to the south. We use retrievals of formaldehyde and nitrogen dioxide and Aerosol Index from the Ozone Monitoring Instrument (OMI) onboard NASA Aura satellite together with Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA Terra and Aqua fire counts to assess the seasonal variation and geographical extent of the emissions due to burning of crop residues. In addition, our results, based on satellite measurements, indicate that the smoke plumes and biomass burning emissions are also transported over the Himalayan region and beyond, resulting in enhanced concentrations of aerosol loading and trace gases. Overall, our findings suggest that, during post-monsoon season, crop burning smoke plumes and emissions are the main cause of poor air quality, high atmospheric pollution and dense haze/smog, especially in the Indo-Gangetic basin.

  18. Study of atmospheric pollution scavenging. Twenty-fourth progress report

    SciTech Connect

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980`s became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  19. Pollution monitoring using bees: a new service provided by honey bees

    SciTech Connect

    Bromenshenk, J.J.; Thomas, J.M.; Simpson, J.C.; Bishop, M.

    1983-10-01

    The objectives are to provide a tool for assessing pollutant distributions and the effects of pollutants on living systems. The potential of bees as pollution monitors was studied by examining bees exposed to toxic metals near a smelter in Montana and bees in the area surrounding a hazardous waste disposal site near Puget Sound, Washington. Levels of toxic metals in the bees and brood survival were examined. It was concluded bees were, indeed, suitable indicators of pollution levels. (ACR)

  20. Major Constituents Analysis for the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; Macaskill, John A.

    2011-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) can provide a means for monitoring the air within enclosed environments such as the International Space Station, the Crew Exploration Vehicle (CEV), a Lunar habitat, or another vehicle traveling to Mars. The software processes a sum total spectra (counts vs. mass channel) with the intention of computing abundance ratios for N2, O2, CO2, Ar2, and H2O. A brute-force powerset expansion compares a library of expected mass lines with those found within the data. Least squares error is combined with a penalty term for using small peaks.

  1. ATMOSUV-CanSat (Atmospheric Thunderstorms's Monitor Optical Signal & UV)

    NASA Astrophysics Data System (ADS)

    Calvo, David; Navarro-González, Javier; Carrió, Fernando; Blay, Pere; Espinós, Héctor; Connell, Paul; Eyles, Chris; Reglero, Víctor

    2014-05-01

    The ATMOSUV-CanSat is a small instrument aimed to study the Optical and UV signal in a TGF (Terrestrial Gamma-ray Flash) process, as a complementary ground monitor facility in the study of thunderstorms at high altitude in the atmosphere. The main goal is to take complementary data to that of the MXGS/ASIM (Modular X-ray and Gamma-ray Sensor in the Atmosphere-Space Interactions Monitor) mission, taken from the ISS (International Space Station). The detector is planed to be launch in a baloon during severe thunderstorms and take measurements of air conditions and to perform fast imaging with high temporal accuracy. We expect to measure UV emision, optical signal, temperature, presure, and accurate 3D location, with FPGA controlled high velocity imaging devices and sensors.

  2. Micro sensor node for air pollutant monitoring: hardware and software issues.

    PubMed

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems. PMID:22408489

  3. Micro Sensor Node for Air Pollutant Monitoring: Hardware and Software Issues

    PubMed Central

    Choi, Sukwon; Kim, Nakyoung; Cha, Hojung; Ha, Rhan

    2009-01-01

    Wireless sensor networks equipped with various gas sensors have been actively used for air quality monitoring. Previous studies have typically explored system issues that include middleware or networking performance, but most research has barely considered the details of the hardware and software of the sensor node itself. In this paper, we focus on the design and implementation of a sensor board for air pollutant monitoring applications. Several hardware and software issues are discussed to explore the possibilities of a practical WSN-based air pollution monitoring system. Through extensive experiments and evaluation, we have determined the various characteristics of the gas sensors and their practical implications for air pollutant monitoring systems. PMID:22408489

  4. Sources of Atmospheric Pollutants Impacting Air and Water Quality in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Gertler, A. W.; Cahill, T. A.; Gillies, J.; Kuhns, H.

    2008-12-01

    Starting in the second half of the 20th century, decline in Lake Tahoe's water clarity and degradation in the basin's air quality have become major concerns due to its unique scenic features. Gaseous and particulate nitrogen (N) and particulate phosphorus (P) loading via direct atmospheric deposition and sediment transport to the lake have also been implicated as responsible for its eutrophication and decline in water clarity. Estimates suggest that atmospheric N deposition contributes 55% of the total N loading to the lake, while atmospheric P deposition contributes 15% of the total P loading. In order to improve both air quality and, as a consequence, water quality, it is necessary to develop an understanding of the sources of the atmospheric pollutants. Once this is accomplished, it is possible to implement cost-effective strategies to reduce this impact. This paper summarizes the findings of a series of studies performed to determine the levels and sources of ambient air pollutants in the basin. Projects have included the development of a Tahoe-specific emissions inventory, long-term measurements of road dust resuspension, modeling to determine the fraction of pollutants coming from in-basin vs. out-of-basin sources, particulate source apportionment, and estimates of nitric acid deposition. These studies found that the pollutants most closely connected to the decline in water quality come largely from within basin sources, as opposed to those coming from the Central Valley and upwind urban areas of California. These results indicate regulators need to control pollutant emissions within the Tahoe basin in order to reduce the impact of atmospheric pollutants on both air and water quality.

  5. Biomagnetic monitoring of industry-derived particulate pollution.

    PubMed

    Hansard, R; Maher, B A; Kinnersley, R

    2011-06-01

    Clear association exists between ambient PM₁₀ concentrations and adverse health outcomes. However, determination of the strength of associations between exposure and illness is limited by low spatial-resolution of particulate concentration measurements. Conventional fixed monitoring stations provide high temporal-resolution data, but cannot capture fine-scale spatial variations. Here we examine the utility of biomagnetic monitoring for spatial mapping of PM₁₀ concentrations around a major industrial site. We combine leaf magnetic measurements with co-located PM₁₀ measurements to achieve inter-calibration. Comparison of the leaf-calculated and measured PM₁₀ concentrations with PM₁₀ predictions from a widely-used atmospheric dispersion model indicates that modelling of stack emissions alone substantially under-predicts ambient PM₁₀ concentrations in parts of the study area. Some of this discrepancy might be attributable to fugitive emissions from the industrial site. The composition of the magnetic particulates from vehicle and industry-derived sources differ, indicating the potential of magnetic techniques for source attribution. PMID:21450382

  6. Using KML to Visualize 4-D Atmospheric Carbon Monitoring Data

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.

    2009-12-01

    Concentrations of carbon in the atmosphere have increased dramatically in the last half century. Scientists seek to understand why the atmospheric concentrations are increasing, so that they can forecast how the concentrations may increase in the future and affect climate change. One method that scientists use to understand the carbon cycle is to monitor the concentration of carbon dioxide and other gasses at select locations around the world. These measurements provide information on the carbon exchange (or fluxes) between the atmosphere and land/ocean surface at upwind locations, but interpreting these data is difficult due to the spatial and temporal variability of the fluxes and the wind fields. Virtual globe applications offer a powerful way to visualize and understand what information on carbon flux is provided by these measurements. This presentation will give an overview of a data system, based on open source geospatial technologies, that creates KML documents of 3-D spatially and temporally tagged objects that help to explain atmospheric carbon monitoring. An output from this data system was selected as a winner in the Google for Educators KML in Research Competition. Visualization of the sensitivity of measurements at two NOAA Tall Tower locations to carbon flux at upwind locations.

  7. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  8. Atmospheric depositions of persistent pollutants: methodological aspects and values from case studies.

    PubMed

    Settimo, Gaetano; Viviano, Giuseppe

    2015-01-01

    Deposition monitoring, already in use by government control organizations of various countries, contributes to an important increase in experimental knowledge on pollutant deposition fluxes, on their environmental fate and on the possible effects on human health.At the European level, the necessity to consider with extreme attention the environmental contamination due to deposition, has brought to adopt a series of legislative measures and recommendations; this has contributed to set up environmental surveillance systems and monitoring campaigns for a series of pollutants which may accumulate in the environment as persistent organic pollutants (POPs) and for metals.More recently, with DL.vo 155/2010, the necessity to consider, in the development of monitoring stations, the possibility to detect also data on deposition rates which represent a non-direct exposure of the population through the food chain. For sampling the Decree considers only two types of depositions: for total deposition (bulk and Bergerhoff) and wet only deposition. PMID:26783216

  9. A Great Lakes atmospheric mercury monitoring network: evaluation and design

    USGS Publications Warehouse

    Risch, Martin R.; Kenski, Donna M.; Gay; David, A.

    2014-01-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  10. A Great Lakes Atmospheric Mercury Monitoring network: Evaluation and design

    NASA Astrophysics Data System (ADS)

    Risch, Martin R.; Kenski, Donna M.; Gay, David A.

    2014-03-01

    As many as 51 mercury (Hg) wet-deposition-monitoring sites from 4 networks were operated in 8 USA states and Ontario, Canada in the North American Great Lakes Region from 1996 to 2010. By 2013, 20 of those sites were no longer in operation and approximately half the geographic area of the Region was represented by a single Hg-monitoring site. In response, a Great Lakes Atmospheric Mercury Monitoring (GLAMM) network is needed as a framework for regional collaboration in Hg-deposition monitoring. The purpose of the GLAMM network is to detect changes in regional atmospheric Hg deposition related to changes in Hg emissions. An optimized design for the network was determined to be a minimum of 21 sites in a representative and approximately uniform geographic distribution. A majority of the active and historic Hg-monitoring sites in the Great Lakes Region are part of the National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) in North America and the GLAMM network is planned to be part of the MDN. To determine an optimized network design, active and historic Hg-monitoring sites in the Great Lakes Region were evaluated with a rating system of 21 factors that included characteristics of the monitoring locations and interpretations of Hg data. Monitoring sites were rated according to the number of Hg emissions sources and annual Hg emissions in a geographic polygon centered on each site. Hg-monitoring data from the sites were analyzed for long-term averages in weekly Hg concentrations in precipitation and weekly Hg-wet deposition, and on significant temporal trends in Hg concentrations and Hg deposition. A cluster analysis method was used to group sites with similar variability in their Hg data in order to identify sites that were unique for explaining Hg data variability in the Region. The network design included locations in protected natural areas, urban areas, Great Lakes watersheds, and in proximity to areas with a high density of annual Hg

  11. Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria

    2016-04-01

    Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.

  12. Atmospheric monitoring for fugitive emissions from geological carbon storage

    NASA Astrophysics Data System (ADS)

    Loh, Z. M.; Etheridge, D.; Luhar, A.; Leuning, R.; Jenkins, C.

    2013-12-01

    We present a multi-year record of continuous atmospheric CO2 and CH4 concentration measurements, flask sampling (for CO2, CH4, N2O, δ13CO2 and SF6) and CO2 flux measurements at the CO2CRC Otway Project (http://www.co2crc.com.au/otway/), a demonstration site for geological storage of CO2 in south-western Victoria, Australia. The measurements are used to develop atmospheric methods for operational monitoring of large scale CO2 geological storage. Characterization of emission rates ideally requires concentration measurements upwind and downwind of the source, along with knowledge of the atmospheric turbulence field. Because only a single measurement location was available for much of the measurement period, we develop techniques to filter the record and to construct a ';pseudo-upwind' measurement from our dataset. Carbon dioxide and methane concentrations were filtered based on wind direction, downward shortwave radiation, atmospheric stability and hour-to-hour changes in CO2 flux. These criteria remove periods of naturally high concentration due to the combined effects of biogenic respiration, stable atmospheric conditions and pre-existing sources (both natural and anthropogenic), leaving a reduced data set, from which a fugitive leak from the storage reservoir, the ';(potential) source sector)', could more easily be detected. Histograms of the filtered data give a measure of the background variability in both CO2 and CH4. Comparison of the ';pseudo-upwind' dataset histogram with the ';(potential) source sector' histogram shows no statistical difference, placing limits on leakage to the atmosphere over the preceding two years. For five months in 2011, we ran a true pair of up and downwind CO2 and CH4 concentration measurements. During this period, known rates of gas were periodically released at the surface (near the original injection point). These emissions are clearly detected as elevated concentrations of CO2 and CH4 in the filtered data and in the measured

  13. POINTS-OF-CONTACT (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Atmospheric Protection Branch's (APB's) Points-of-Contact page lists APB's research areas along with the name, phone number and e-mail address of the responsible person. APB is part of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC. The ...

  14. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  15. ASSESSMENT OF CROP LOSS FROM AIR POLLUTANTS: METEOROLOGY-ATMOSPHERIC CHEMISTRY AND LONG RANGE TRANSPORT

    EPA Science Inventory

    Ozone is a secondary pollutant with many distinctive characteristics in respect to its sources and modes of formation within regions of the troposphere and in the stratosphere. The scales of intermediate and longer range transport influencing the atmospheric distribution of O3 wi...

  16. REPRESENTATION OF ATMOSPHERIC MOTION IN MODELS OF REGIONAL-SCALE AIR POLLUTION

    EPA Science Inventory

    A method is developed for generating ensembles of wind fields for use in regional scale (1000 km) models of transport and diffusion. The underlying objective is a methodology for representing atmospheric motion in applied air pollution models that permits explicit treatment of th...

  17. The UARS particle environment monitor. [Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Winningham, J. D.; Sharber, J. R.; Frahm, R. A.; Burch, J. L.; Eaker, N.; Black, R. K.; Blevins, V. A.; Andrews, J. P.; Rudzki, J.; Sablik, M. J.

    1993-01-01

    The overall objective of the particle environment monitor (PEM) is to provide comprehensive measurements of both local and global energy inputs into the earth's atmosphere by charged particles and Joule dissipation using a carefully integrated set of instruments. PEM consists of four instruments: the atmospheric X-ray imaging spectrometer (AXIS), the high-energy particle spectrometer (HEPS), the medium-energy particle spectrometer (MEPS), and the vector magnetometer (VMAG). AXIS provides global scale images and energy spectra of 3- to 100-keV bremsstrahlung X-rays produced by electron precipitation into the atmosphere. HEPS and MEPS provide in situ measurements of precipitating electrons in the energy range from 1 eV to 5 MeV and protons in the energy range from 1 eV to 150 MeV. Particles in this energy range deposit their energy in the atmosphere at altitudes extending from several hundred kilometers down to as low as about 30 km. VMAG provides the magnetic field direction needed to indicate and interpret the locations and intensities of ionospheric and field-aligned currents as well as providing a reference for the particle measurements. Examples of data acquired early in the Upper Atmosphere Research Satellite (UARS) mission are presented.

  18. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  19. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    PubMed

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. PMID:22169208

  20. Atmospheric transport of pollutants from North America to the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Sebacher, D. I.; Gregory, G. L.; Hinton, R. R.; Beck, S. M.; Mcdougal, D. S.; Shipley, S. T.

    1984-01-01

    Ground-based measurements strongly support the hypothesis that pollutant materials of anthropogenic origin are being transported over long distances in the midtroposphere and are a significant source of acid rain, acid snow, trace metal deposition, ozone and visibility-reducing aerosols in remote oceanic and polar regions of the Norhern Hemisphere. Atmospheric sulphur budget calculations and studies of acid rain on Bermuda indicate that a large fraction of pollutant materials emitted into the atmosphere in eastern North America are advected eastwards over the North Atlantic Ocean. The first direct airborne measurements of the vertical distribution of tropospheric aerosols over the western North Atlantic is reported here. A newly developed airborne differential adsorption lidar system was used to obtain continuous, remotely sensed aerosol distributions along its flight path. The data document two episodes of long-distance transport of pollutant materials from North America over the North Atlantic Ocean.

  1. Gas-aerosol partitioning of semi volatile carbonyls in polluted atmosphere in Hachioji, Tokyo

    NASA Astrophysics Data System (ADS)

    Matsunaga, Sou N.; Kato, Shungo; Yoshino, Ayako; Greenberg, Jim P.; Kajii, Yoshizumi; Guenther, Alex B.

    2005-06-01

    Gaseous and particulate semi volatile carbonyls have been measured in urban air using an annular denuder sampling system. Three dicarbonyls, five aliphatic aldehydes and two hydroxy carbonyls were observed. Concentrations of other biogenic and anthropogenic volatile organic compounds (VOCs), SO2, CO, NO2 and particle concentration were also measured. Estimated gas-aerosol equilibrium constants for the carbonyls showed an inverse correlation with the concentrations of anthropogenic pollutants such as benzene, isopentane and SO2. This suggests that the increase in the fraction of non-polar anthropogenic particles in the atmosphere could change the average property of the ambient aerosols and drive the gas particle equilibrium of the carbonyls to the gas phase. This trend is uncommon in remote forest air. In this study, we examined the factors controlling the equilibrium in the polluted atmosphere and show that there is a difference in gas-aerosol partition between polluted and clean air.

  2. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  3. Composition of atmospheric suspensions of Ussuriisk City according to snow pollution

    NASA Astrophysics Data System (ADS)

    Golokhvast, Kirill S.; Soboleva, Elena V.; Borisovsky, Andrey O.; Khristoforova, Nadezhda K.

    2014-11-01

    The results of the study by scanning electron microscopy with energy dispersive analysis of microparticles of atmospheric suspensions contained in Ussuriysk winter snows (2012/2013) are presented. Particles of rocks and technogenic (mainly metal and soot) formations to prevail in the atmospheric suspensions of Ussuriysk are shown. There is a large amount of metal particles of automobile and industrial - Fe, Au, Pt, Pd, Cu, Sn, Pb, Ti, W. The analysis of the qualitative composition of atmospheric suspensions Ussuriysk confirms its status as a city with a strong impact of automobile transportation and high levels of air pollution.

  4. The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe

    SciTech Connect

    Braennvall, M.L.; Bindler, R.; Renberg, I.; Emteryd, O.; Bartnicki, J.; Billstroem, K.

    1999-12-15

    There is great concern for contamination of sensitive ecosystems in high latitudes by long-range transport of heavy metals and other pollutants derived from industrial areas in lower latitudes. Atmospheric pollution of heavy metals has a very long history, and since metals accumulate in the environment, understanding of present-day pollution conditions requires knowledge of past atmospheric deposition. The authors use analyses of lead concentrations and stable lead isotopes ({sup 206}Pb/{sup 207}Pb ratios) of annually laminated sediments from four lakes in northern Sweden to provide a decadal record of atmospheric lead pollution for the last 3000 years. There is a clear signal in the sediments of airborne pollution from Greek and Roman cultures 2000 years ago, followed by a period of clean conditions 400--900 A.D. From 900 A.D. there was a conspicuous, permanent increase in atmospheric lead pollution fallout, The sediments reveal peaks in atmospheric lead pollution at 1200 and 1530 A.D. comparable to present-day levels. These peaks match the history of metal production in Europe. This study indicates that the contemporary atmospheric pollution climate in northern Europe was established in Medieval time, rather than in the industrial period. Atmospheric lead pollution deposition did not, when seen in a historical perspective, increase as much as usually assumed with the Industrial Revolution.

  5. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    PubMed

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  6. Monitoring strategy to assessment the air pollution level in Salamanca (México)

    NASA Astrophysics Data System (ADS)

    Barrón-Adame, J. M.; Cortina-Januchs, M. G.; Andina, D.; Vega-Corona, A.

    2009-04-01

    Air pollution affects not only the quality of life and the health of the urban population but also forests and agriculture. Agricultural crops can be injured when exposed to high concentrations of various air pollutants. Air pollutants can generally be classed as either local or widespread. Local pollutants are those emitted from a specific stationary source and result in a well-defined zone of vegetation injury or contamination. Most common among the local pollutants are sulphur dioxide, fluorides, ammonia and particulate matter. The paper presents an air monitoring strategy based on data fusion and Artificial Neural Networks. The main objective is to classify automatically the air pollution level as a proposal to assessment the air pollution level affecting the agriculture in Salamanca (Mexico). Salamanca is catalogued as one of the most polluted cities in Mexico. Pollutant concentrations and meteorological variables have been consider in data fusion process in order to build a Representative Pollution Vector (RPV). Meteorological variables (Wind Direction and Wind Speed) are taken as a decision factor in the air pollutant concentration level. RPV is used to train an Artificial Neural Network in order to classify new pollutant events. In the experiments, real time series gathered from the Automatic Environmental Monitoring Network (AEMN) in Salamanca have been used.

  7. Effects of point-source atmospheric pollution on boreal-forest vegetation of northwestern Siberia

    SciTech Connect

    Vlasova, T.M.; Kovalev, B.I.; Filipchuk, A.N.

    1992-03-01

    Atmospheric pollution from the Noril'sk Mining-Metallurgical Complex, in the form of heavy metals and sulfur components, has resulted in damage to plant communities in the area. Vegetation on over 550,000 ha has been detrimentally affected by the pollution fallout, primarily sulfur dioxide. Forests (mainly Larix sibirica) and most lichens have been killed within a 300,000-ha zone around Noril'sk and extending about 50 km to the south and southeast. Less severe damage to lichens and vascular plants extends 170 km to the south and 80 km to the east of the pollution source consistent with prevailing winds during the period of plant growth. Terricolous lichens are particularly vulnerable to the pollution products and among vascular plants Larix gmelinii, Picea obovata, Ledum palustre, Calamagrostis sp., and Salix lanata show least resistance.

  8. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  9. Particle size effect for metal pollution analysis of atmospherically deposited dust

    NASA Astrophysics Data System (ADS)

    Al-Rajhi, M. A.; Al-Shayeb, S. M.; Seaward, M. R. D.; Edwards, H. G. M.

    The metallic compositions of 231 atmospherically deposited dust samples obtained from widely-differing environments in Riyadh city, Saudi Arabia, have been investigated in relation to the particle size distributions. Sample data are presented which show that particle size classification is very important when analysing dust samples for atmospheric metal pollution studies. By cross-correlation and comparison, it was found that the best way to express the results of the metal concentration trend was as an average of particle ratios. Correlations between the six metals studied, namely Pb, Cr, Ni, Cu, Zn and Li, were found for every particle size (eight categories) and reveal that the metal concentrations increased as the particle size decreased. On the basis of this work, it is strongly recommended that future international standards for metal pollutants in atmospherically deposited dusts should be based on particle size fractions.

  10. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    SciTech Connect

    Datta, D.

    2010-10-26

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  11. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  12. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  13. Monitoring the decontamination of a site polluted by DNAPLs

    NASA Astrophysics Data System (ADS)

    Audí-Miró, C.; Espinola, R.; Torrentó, C.; Otero, N.; Rossi, A.; Palau, J.; Soler, A.

    2012-04-01

    The aim of this study is to monitor the decontamination of a site polluted by DNAPLs coming from an automotive industry. The contamination was caused by the poor management of the waste generated by the industrial activity, which was discharged into a seepage pit. As a result, soil contamination was produced in the seepage pit area and a plume of DNAPLs-contaminated groundwater was generated. To recover the original environmental quality, a dual action was proposed: in the first place, the removal of the source of contamination and in the second one, the treatment of the DNAPLs plume. The elimination of the source of contamination consisted on a selective excavation of the seepage pit and an offsite management of the contaminated land. To restore the groundwater quality, a passive treatment system using a permeable reactive barrier (PRB) of zero valent iron (ZVI) was implemented. In order to determine the efficiency of the remediation actions, a chemical, isotopic and hydrogeological control of the main solvents detected in groundwater (perchloroethylene -PCE-, trichloroethene -TCE- and cis-dichloroethylene -cis-DCE-) has been established. Results show a decrease in PCE concentration that has been attributed to the removal of the source more than to a degradation process. However, the presence of PCE by-products, TCE and cis-DCE, might indicate a possible PCE biotic degradation. δ13CPCE values analyzed upstream and downstream of the barrier don't show isotopic changes associated to the PRB (values are around -20‰ in all the sampling points). TCE might have experienced a natural advanced degradation process according to the high concentration of cis-DCE found prior the installation of the PRB and the isotopic enrichment in δ13CTCE in some specific areas of the plume (-19.9‰ in the source and -16‰ before the barrier). Slight isotopic changes have been observed in the water flow in a far distance after the barrier (-15.4‰). δ13Ccis-DCE experienced an

  14. Moisture dynamics in the cloudy and polluted tropical atmosphere: The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX)

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.

    2012-12-01

    Aerosols are well known to modify the microphysical properties of clouds. This modification is expected to yield brighter clouds that cover a greater area. However, observations from satellites show little inter-hemispheric difference in cloud optical thickness and liquid water path in spite of the clear inter-hemispheric difference in aerosol optical thickness. Furthermore, comparisons of observations with global atmospheric models suggest that models that parameterize the mechanisms of aerosol nucleation of cloud drops but do not resolve cloud-scale dynamics may be overestimating the magnitude of aerosol effects on cloud radiative forcing. Resolving these discrepancies requires a deeper understanding of the factors determining the transport of moisture to the cloud layer and the effects of aerosols on that transport. Towards this goal, we have conducted a new field experiment to study the moisture dynamics in the boundary layer and lower troposphere of the polluted and cloudy tropical atmosphere. The Cloud Aerosol Radiative Forcing Dynamics Experiment (CARDEX) was conducted during the winter of 2012 at the Maldives Climate Observatory - Hanimaadhoo in the tropical northern Indian Ocean during the period of extensive outflow of the South Asian pollution. Pollution in the CARDEX region has been well documented to both modify the microphysical properties of low clouds and strongly absorb solar radiation with significant consequences for the lower atmosphere and surface radiative energy budgets. Three unmanned aerial vehicles (UAVs) flew nearly 60 research flights instrumented to measure turbulent latent and sensible heat fluxes, aerosol concentrations, and cloud microphysical properties. Airborne measurements were enhanced with continuous surface monitoring of surface turbulent heat fluxes, aerosol concentrations and physical properties, surface remote sensing of cloud water amount and aerosol profiles, and model analyses of aerosols and dynamics with WRFchem. This

  15. a Mesoscale Atmospheric Dispersion Modeling System for Simulations of Topographically Induced Atmospheric Flow and Air Pollution Dispersion.

    NASA Astrophysics Data System (ADS)

    Boybeyi, Zafer

    A mesoscale atmospheric dispersion modeling system has been developed to investigate mesoscale circulations and associated air pollution dispersion, including effects of terrain topography, large water bodies and urban areas. The system is based on a three-dimensional mesoscale meteorological model coupled with two dispersion models (an Eulerian dispersion model and a Lagrangian particle dispersion model). The mesoscale model is hydrostatic and based on primitive equations formulated in a terrain-following coordinate system with a E-varepsilon turbulence closure scheme. The Eulerian dispersion model is based on numerical solution of the advection-diffusion equation to allow one to simulate releases of non-buoyant pollutants (especially from area and volume sources). The Lagrangian particle dispersion model allows one to simulate releases of buoyant pollutants from arbitrary sources (particularly from point and line sources). The air pollution dispersion models included in the system are driven by the meteorological information provided by the mesoscale model. Mesoscale atmospheric circulations associated with sea and lake breezes have been examined using the mesoscale model. A series of model sensitivity studies were performed to investigate the effects of different environmental parameters on these circulations. It was found that the spatial and temporal variation of the sea and lake breeze convergence zones and the associated convective activities depend to a large extent on the direction and the magnitude of the ambient wind. Dispersion of methyl isocyanate gas from the Bhopal accident was investigated using the mesoscale atmospheric dispersion modeling system. A series of numerical experiments were performed to investigate the possible role of the mesoscale circulations on this industrial gas episode. The temporal and spatial variations of the wind and turbulence fields were simulated with the mesoscale model. The dispersion characteristics of the accidental

  16. Global monitoring of atmospheric properties by the EOS MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  17. Stereo image motion monitor for atmospheric mitigation and estimation

    NASA Astrophysics Data System (ADS)

    Gibson, Kristofor B.

    2015-09-01

    The knowledge of the turbulence strength in the atmosphere is important for many applications. Imagery in the atmosphere experience significant blur when the turbulence is strong. This can be automatically improved (without user intervention) if the turbulence strength is known. The performance of a high-power laser emitting in the atmosphere can be predicted if the statistics of the turbulence strength is known. If not predicted correctly, the laser may unintentionally destroy a target or fail to be able to disable a target. In this article, we review existing methods that estimate turbulence strength, provide a more in depth error analysis, and propose a new method for estimating and mitigating turbulence in the atmosphere. We focus on methods that are passive in design in order to prevent detection in surveillance scenarios and tactical situations. We also propose a new method, stereo image motion monitor (SIMM) which is a system containing two independent apertures. Our goal in this approach is threefold: 1) We can measure r0 using the DIMM method 2) We can simultaneously estimate r0 individually for each aperture and 3) We have multiple views of the same scene thus can increase the number of frames used in turbulence mitigation methods.

  18. Cluster Analysis of Atmospheric Dynamics and Pollution Transport in a Coastal Area

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Maksimovich, Elena; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmentin, Marc; Locoge, Nadine

    2016-06-01

    Summertime atmospheric dynamics in the coastal zone of the industrialized Dunkerque agglomeration in northern France was characterized by a cluster analysis of back trajectories in the context of pollution transport. The MESO-NH atmospheric model was used to simulate the local dynamics at multiple scales with horizontal resolution down to 500 m, and for the online calculation of the Lagrangian backward trajectories with 30-min temporal resolution. Airmass transport was performed along six principal pathways obtained by the weighted k-means clustering technique. Four of these centroids corresponded to a range of wind speeds over the English Channel: two for wind directions from the north-east and two from the south-west. Another pathway corresponded to a south-westerly continental transport. The backward trajectories of the largest and most dispersed sixth cluster contained low wind speeds, including sea-breeze circulations. Based on analyses of meteorological data and pollution measurements, the principal atmospheric pathways were related to local air-contamination events. Continuous air quality and meteorological data were collected during the Benzene-Toluene-Ethylbenzene-Xylene 2006 campaign. The sites of the pollution measurements served as the endpoints for the backward trajectories. Pollutant transport pathways corresponding to the highest air contamination were defined.

  19. Understanding global cycling of atmosphere-surface exchangeable pollutants and its implications

    NASA Astrophysics Data System (ADS)

    Selin, N. E.; Giang, A.; Song, S.; Pike-thackray, C.; Friedman, C. L.

    2014-12-01

    We combine modeling approaches with data analysis to provide quantitative constraints on the global biogeochemical cycling of pollutants such as mercury (Hg) and persistent organic pollutants (POPs). These pollutants, released by human activities, continue to cycle between land, ocean, and atmosphere surfaces, extending their effective lifetimes in the environment. Measurement data are limited for all of these substances, providing few constraints on the magnitude of surface-atmosphere fluxes and thus the timescales of their cycling. This limits our ability to trace emissions to impacts for these substances, particularly in the context of both ongoing policies and climate change. We present a suite of modeling and analysis tools, including uncertainty analysis, that can provide quantitative constraints on cycling for these data-limited problems, and we illustrate their applicability through examples of Hg and selected POPs. Specifically, we summarize recent insights from inverse modeling of mercury, polynomial chaos-based methods for PAHs. Finally, we assess how uncertainty in timescales affects the entire emissions-to-impacts pathway for atmosphere-surface exchangeable pollutants. We discuss the implications of this analysis for policies under the Stockholm and Minamata Conventions.

  20. Plug-in Sensors for Air Pollution Monitoring.

    ERIC Educational Resources Information Center

    Shaw, Manny

    Faristors, a type of plug-in sensors used in analyzing equipment, are described in this technical report presented at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. Their principles of operation, interchangeability, and versatility for measuring air pollution at…

  1. Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis

    EPA Science Inventory

    Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...

  2. Polybromobenzene pollutants in the atmosphere of North China: levels, distribution, and sources.

    PubMed

    Lin, Yan; Qiu, Xinghua; Zhao, Yifan; Ma, Jin; Yang, Qiaoyun; Zhu, Tong

    2013-11-19

    Brominated flame retardants (BFRs) are important persistent organic pollutants. Analysis of BFRs in atmospheric samples in a previous study led us to suspect the presence of unidentified organic bromides, other than polybrominated diphenyl ethers (PBDEs), in the atmosphere. In this study, we identified and quantified polybromobenzenes, a group of organic bromides, in air samples collected through passive sampling in gridded observations in North China. We investigated their concentrations and spatial distribution, and estimated the proportion due to different sources. We detected seven species of polybromobenzenes, including hexabromobenzene (HBB), pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), pentabromobenzene (PeBB), tetrabromobenzenes (TeBBs), and tribromotoluene (TrBT), in all or most of the field samples, indicating widespread occurrence of this class of pollutants. The median concentrations of each pollutant ranged from 20.0 to 144 pg/sample (or from 0.07 to 1.16 pg/m(3)), with relatively high concentrations found near e-waste recycling sites, BFR manufacturing sites, and areas of high population density. Positive matrix factorization (PMF) analysis revealed that ∼70% of HBB, PBT, PBEB, and PeBB was from commercial products, while ∼80% of 1,2,3,5-TeBB, 1,2,4,5-TeBB, and 2,4,5-TrBT was linked with BFR manufacturing. This study provides essential information on widespread polybromobenzene pollutants in the atmosphere, particularly TeBBs and TrBT, for which this is the first report of their presence as atmospheric pollutants. PMID:24144297

  3. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods which have been proposed for the detection of trace concentrations of gaseous contaminants include Raman backscattering (LIDAR) and passive radiometry (LOPAIR). Remote sensing techniques using laser spectrometry are presented and in particular a simple long-path laser absorption method (LOLA), which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels is discussed. A number of species were selected for study which are representative of those most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Computer programs were developed which will permit a real-time analysis of the monitored atmosphere. Estimates of the dynamic range of this monitoring technique for various system configurations, and comparison with other methods of analysis, are given.

  4. Remote sensing applications for diagnostics of the radioactive pollution of the ground surface and in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Boyarchuk, Kirill; Laverov, Nikolay

    2013-04-01

    Radioactive pollution due to its air ionization activity can drastically change the atmospheric boundary layer conductivity (what was experimentally proved during period of nuclear tests in atmosphere) and through the global electric circuit produce anomalous variations in atmosphere. As additional effect the ions created due to air ionization serve as centers of water vapor condensation and nucleation of aerosol-size particles. This process is accompanied by latent heat release. Both anomalies (ionospheric and thermal) can be controlled by remote sensing technique both from satellites (IR sensors and ionospheric probes) and from ground (GPS receivers, ground based ionosondes, VLF propagation sounding, ground measurements of the air temperature and humidity). We monitored the majority of transient events (Three-Mile Island and Chernobyl nuclear power plant emergencies) and stationary sources such as Gabon natural nuclear reactor, sites of underground nuclear tests, etc. and were able to detect thermal anomalies and for majority of cases - the ionospheric anomalies as well. Immediately after the March 11, 2011 earthquake and tsunami in Japan we started to continuously survey the long-wavelength energy flux (10-13 microns) measurable at top of the atmosphere from POES/NOAA/AVHRR polar orbit satellites. Our preliminary results show the presence of hot spots on the top of the atmosphere over the Fukushima Daiichi Nuclear Power Plant (FDNPP) and due to their persistence over the same region they are most likely not of meteorological origin. On March 14 and 21 we detected a significant increase in radiation at the top of the atmosphere which also coincides with a reported radioactivity gas leaks from the FDNPP. After March 21 the intensity of energy flux in atmosphere started to decline, which has been confirmed by ground radiometer network. We were able to detect with ground based ionosonde the ionospheric anomaly associated with the largest radioactive release on March

  5. Radon as a tool for characterising atmospheric stability effects on air pollution concentrations in model evaluation studies

    NASA Astrophysics Data System (ADS)

    Chambers, Scott; Williams, Alastair; Crawford, Jagoda; Griffiths, Alan

    2015-04-01

    A clearer understanding of the variability in near-surface concentrations of pollutants in urban regions is essential for improving the predictive abilities of chemical transport models as well as identifying the need for (and assessing the efficacy of) emission mitigation strategies. Pollutant concentrations in the atmospheric boundary layer (ABL) are a complex function of many factors, including: source strengths and distribution, local meteorology and air chemistry. On short (sub-diurnal) timescales, the extent of the vertical column within which emissions mix usually has the largest influence on measured concentrations, and the depth of this mixing volume is in turn closely related to wind speed and the thermal stability of the ABL. Continuous hourly observations of the ubiquitous, surface-emitted, passive tracer radon-222 provide a powerful alternative to contemporary meteorological techniques for assessing stability effects on urban pollutants, because radon's concentration is closely matched with pollution transport processes at the surface. Here we outline a technique by which single-height, near-surface (<20m) radon observations can be conditioned to derive a multi-category stability classification scheme for urban pollution monitoring to provide benchmarking tools for local- to regional- chemical transport model evaluations. Efficacy of the radon-based classification scheme is compared to that based on conventional Pasquil-Gifford "turbulence" and "radiation" schemes. Lastly, we apply the radon-based classification scheme to nocturnal mixing height estimates calculated from the diurnal radon accumulation time series, and provide insight to the range of nocturnal mixing depths expected for each of the stability classes.

  6. Some results of CO and aerosols atmospheric pollution investigations in Moscow and Beijing

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Wang, Gengchen; Wang, Pusai; Grechko, Evgeny; Dzhola, Anatoly; Emilenko, Alexander; Fokeeva, Ekaterina; Kopeikin, Vladimir; Safronov, Alexander

    2014-05-01

    Results of the CO total column (TC) and submicron (sbm) and soot concentrations measurements in Moscow and Beijing for period from 1992 to 2013 years are presented. The rate of decrease of CO TC Moscow anthropogenic portion is 1.4 % per year for 1992-2013 years in spite of multiple increase of the motor vehicles number. There are no significant changes in CO TC over Beijing for whole period of measurements (1992-2013 years). Soot concentration in Beijing has decreased while sbm aerosol has increased since 2006 year. Level of atmospheric CO and aerosols pollution in Beijing is 2-5 times stronger in comparison with Moscow ones. Reasonably typical of atmospheric pollution events for Beijing with extreme values of CO TC and aerosols concentrations were observed in Moscow during wild fires of 2002 and 2010 years only. Trajectory cluster analysis using has allowed studying the location of sources of CO and aerosols emissions. Relatively stronger atmospheric pollution of Beijing partially due to the atmospheric transportation from industry regions of China located to south, south-east and east from the city.

  7. The Role of Urban Landscape Green in Urban Atmospheric Pollution Prevention

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Kong, H.

    Through the investigation to understand the different nature of the city, the scale of the different planning and design, different varieties of seedlings of different plant configurations, different green hard landscape materials and air quality within the respective plots, find out toxic and harmful substances in the atmosphere absorb absorption, resistance stagnation, degradation of the strongest, least amount of dust generated dust, improving urban air quality best green landscape design, ideas and principles, and thus adjust and optimize the urban landscape, the landscape green purifying improve urban air quality, improve the urban environment repair of air pollution, urban centers in urban air pollution prevention role.

  8. Comparison of laser methods for the remote detection of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Kildal, H.; Byer, R. L.

    1971-01-01

    Three methods of remote air pollution detection - Raman backscattering, resonance backscattering, and resonance absorption - are discussed and compared. Theoretical expressions are derived for the minimum detectable pollutant concentration, and in each case the depth resolution and the problems of interference, pump depletion, and background noise are discussed. A brief discussion of possible laser sources is included, numerical examples of the detectabilities based on present technology are given. The atmospheric transparency limits the useful range to a few kilometers for the Raman and resonance backscattering schemes. F or the resonance absorption technique the useful range can be as great as 50 kilometers.

  9. A New Interferometer for Monitoring Atmospheric Phase Fluctuations

    NASA Technical Reports Server (NTRS)

    Lay, Oliver

    2000-01-01

    Water vapor in the Earth's troposphere introduces an extra electrical path in the propagation of radio signals through the atmosphere. The distribution of water vapor is irregular and distorts the wavefronts of incoming radio waves, limiting the angular resolution that can be achieved with ground-based telescopes. The level of fluctuations depends both on the location of the site ,and on the prevailing atmospheric conditions. The ability to measure the fluctuations is therefore important when choosing a site for a new instrument, and for scheduling observations of existing telescopes. Existing phase monitors are radio interferometers that monitor monochromatic beacon tones from geostationary communications satellites at a frequency of about 12 GHz. They have a classical heterodyne design based on two satellite receiving antennas; each has a front-end for amplifying and down-converting the incoming signals using a local oscillator that is phase-locked to a common reference frequency. In addition to multiple phase-locked loops these instruments require expensive phase-stable cabling to reduce the effects of thermal drift. The new system uses two consumer 18" digital satellite TV dishes to monitor satellite TV broadcast signals over a bandwidth of 500 MHz (12.2 to 12.7 GHz). The novel design eliminates the need for phase-locked loops and thermally stable components, and uses a pair of Gilbert Cell multipliers to perform the broadband correlation. A phase monitor has been been built and deployed at the site of the Berkeley-Illinois-Maryland Association Millimeter Array in Northern California, and has been operating successfully since June 1998, measuring the difference in electrical path length for parallel lines of sight to the satellite separated by a baseline of 100 m. With a hardware cost of approximately $4000, it is much cheaper than previous instruments, and the low power requirements and high reliability make the system suitable for site testing in remote

  10. GROUNDWATER QUALITY MONITORING OF WESTERN COAL STRIP MINING: PRELIMINARY DESIGNS FOR ACTIVE MINE SOURCES OF POLLUTION

    EPA Science Inventory

    Three potential pollution source categories have been identified for Western coal strip mines. These sources include mine stockpiles, mine waters, and miscellaneous active mine sources. TEMPO's stepwise monitoring methodology (Todd et al., 1976) is used to develop groundwater qua...

  11. WASTE DISCHARGE MONITORING REQUIREMENTS UNDER THE NPDES (NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM) PERMITS PROGRAM

    EPA Science Inventory

    This manual was prepared to provide a tool to aid the Equivalency staff of the Environmental Monitoring and Support Laboratory - Cincinnati in evaluating applications for alternate analytical methods under the National Pollutant Discharge Elimination System (NPDES) Permits Progra...

  12. 40 CFR 62.15305 - What records must I keep for continuously monitored pollutants or parameters?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quarterly accuracy determinations according to Procedure 1 of appendix F of 40 CFR part 60. Keep these... continuously monitored pollutants or parameters? 62.15305 Section 62.15305 Protection of Environment... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal...

  13. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What continuous emission monitoring systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment... gaseous pollutants? (a) You must install, calibrate, maintain, and operate continuous emission...

  14. Concentrations and δ13C values of atmospheric CO2 from oceanic atmosphere through time: polluted and non-polluted areas

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Lenaz, Renzo; Ori, Carlo; Selmo, Enrico

    2005-11-01

    CO2 is one of the primary agents of global climate changes. The increase of atmospheric CO2 concentration is essentially related to human-induced emissions and, particularly, to the burning of fossil fuel whose δ13C values are quite negative. Consequently, an increase of the CO2 concentration in the atmosphere should be paralleled by a decrease of its δ13C. Continuous and/or spot measurements of CO2 concentrations were repeatedly carried out during the last decade and in the same period of the year along hemispheric courses from Italy to Antarctica on a vessel of the Italian National Research Program in Antarctica. During these expeditions, discrete air samples were also collected in 4-l Pyrex flasks in order to carry out precise carbon isotope analyses on atmospheric CO2 from different areas, including theoretically 'clean' open ocean areas, with the main purpose of comparing these open ocean results with the results obtained by the National Oceanic and Atmospheric Administration/World Meteorological Organization (NOAA/WMO) at land-based stations. According to the data obtained for these two variables, a relatively large atmospheric pollution is apparent in the Mediterranean area where the CO2 concentration has reached the value of 384 ppmv while quite negative δ13C values have been measured only occasionally. In this area, southerly winds probably help to reduce the effect of atmospheric pollution even though, despite a large variability of CO2 concentrations, these values are consistently higher than those measured in open ocean areas by a few ppmv to about 10 ppmv. A marked, though non-continuous, pollution is apparent in the area of the Bab-el-Mandeb strait where δ13C values considerably more negative than in the Central and Southern Red Sea were measured. The concentration of atmospheric CO2 over the Central Indian Ocean increased from about 361 ppmv at the end of 1996 to about 373 ppmv at the end of 2003 (mean growth rate of about 1.7 ppmv yr

  15. Space Monitoring of air pollution using satellite time series: from a global view down to local scale

    NASA Astrophysics Data System (ADS)

    Lanorte, Antonio; Aromando, Angelo; Desantis, Fortunato; Lasaponara, Rosa

    2013-04-01

    Assessment of air pollution has been performed by different means over the years and, recently, the use of satellite data for detecting and monitoring atmospheric pollution has received considerable attention especially for application in industrial and urban areas. Methods based on satellite data (such as Landsat TM, SPOT MODIS images) are focused on the estimation of aerosol optical thickness (AOT) that is a measure of aerosol loading in the atmosphere, and therefore, it is considered as the main significant parameter of the presence/absence of atmospheric pollutants. A higher AOT value expresses the degree to which aerosols prevent the transmission of light, therefore, higher columnar of aerosol loading means lower visibility and higher aerosol concentration Several state-of-art aerosol retrieval techniques provide aerosol properties in global scale, as for example products from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Earth Observing System (EOS) Terra and Aqua satellites. The current aerosol optical thickness (AOT) products from MODIS (available free of charge by the NASA web site) is 10 km. This product is suitable for global research, but it faces difficulty in local area research, especially in urban areas However, new aerosol retrieval algorithm for the (MODIS) 500m resolution data have been developed to retrieve aerosol properties over land, which helps on addressing the aerosol climatic issues in local/urban scale. Over the years, several algorithms for determining the aerosol optical thickness have been developed using several approaches and satellite sensors including medium (Landsat; ASTER) and high resolution imagery (IKONOS and Quickbird). A comparison of results from these methods and independent data sets has been performed in the Basilicata region in the framework of the MITRA project (ref). This research activity was conducted in order to analyze their temporal dynamics and reliability for systematically using them

  16. Atmosphere-surface exchange and long-range transport of persistent organic pollutants

    SciTech Connect

    Pul, W.A.J. van; Jaarsveld, J.A. van; Jacobs, C.M.J.

    1996-12-31

    Persistent Organic Pollutants (POPs) are compounds that are resistant to photolytic, biological and chemical degradation. Many POPs are semi-volatile at atmospheric conditions. Because of these characteristics POPs have a atmospheric lifetime of weeks or more and are subject to long-range atmospheric transport. During this transport POPs can be deposited as well as be re-emitted from soil and water bodies. In this study a model for the exchange of POP at the soil and sea surface is presented as well as its application in a long-range atmospheric transport model. The main goal of this study is to simulate the spatial distribution of POP deposition (accumulation) over Europe.

  17. Sentinel-5 Precursor: Global Monitoring of Atmospheric Trace Gases & Aerosols

    NASA Astrophysics Data System (ADS)

    Nett, Herbert; McMullan, Kevin; Ingmann, Paul

    2013-04-01

    ESA's Sentinel 5 Precursor (S5P) Mission will form part of the Space Component under the Global Monitoring for Environment and Security (GMES) initiative. It represents a preparatory project for the GMES atmospheric missions that comprise both a geo-stationary (Sentinel-4 / part of MTG-S payload) and a polar orbiting (Sentinel-5 / MetOp Second Generation) component. In view of the planned launch date of around 2020 for the first S-4 MTG-S and MetOp-SG spacecrafts, respectively, S5P (launch: mid 2015) shall minimize gaps in the availability of global atmospheric data products as provided by its predecessor missions SCIAMACHY (Envisat) and OMI (AURA). The satellite's single payload instrument, TROPOMI (TROPOspheric Monitoring Instrument), is jointly developed by The Netherlands and ESA. Covering spectral channels located in the UV, visible, near- and short-wave infrared it will measure various key species including stratospheric ozone, as well as NO2, SO2, CO, CH4, CH2O and aerosols, specifically in the lower Troposphere. The envisaged formation flying with NASA's Suomi NPP satellite will allow use of high spatial resolution imager data for enhanced cloud clearing of the observational data specifically in the short-wave infrared range. An outline of the Sentinel-5P mission objectives will be given. The status of development activities, covering Spacecraft and the Ground Segment will be presented.

  18. Monitoring of atmospheric 14CO2 in central European countries

    NASA Astrophysics Data System (ADS)

    Světlík, I.; Tomášková, L.; Molnár, M.; Svingor, E.; Futó, I.; Pintér, T.; Rulík, P.; Michálek, V.

    2006-01-01

    Carbon-14 is a radionuclide with global occurrence and partly natural origin. The main anthropogenic sources of the 14C were the nuclear weapon tests, namely at the beginning of the 1960s, nowadays the nuclear energy facilities are the main sources. Maximum in the atmospheric 14C activity was observed in 1963. In the following years the considerable 14C activity decrease was due to intensive carbon deposition into oceanic water and sediments particularly. At present the 14C activity approximates the level before nuclear age, corresponding to ˜0 ‰ Δ 14C. Another actual type of anthropogenic influence is the Suess effect, i.e., the dilution of 14C by fossil carbon (fuel combustion). This effect causes a decrease of the 14C activity on a global, regional and local scale. Thus, monitoring of actual reference level of 14C activity gives a possibility to indicate local or global anthropogenic influences. This paper reporting data from the atmospheric 14CO2 monitoring in the Czech Republic and Hungary compares the actual results with other European countries. The observed effects connected with local and regional CO2 releases from fossil fuel combustion are discussed.

  19. The use of atmospheric monitoring systems in dieselized coal mines

    SciTech Connect

    Wirth, G.J.; Schultz, M.J.; Francart, W.J.

    1995-12-31

    Atmospheric Monitoring Systems (AMS) utilizing carbon monoxide sensors have demonstrated their superiority over thermal type fire sensors for early fire detection in underground coal mines. After proving their capability and dependability throughout the 1980`s. systems are now evolving and applying new technologies to enhance their effectiveness and reliability. The use of AMS in coal mines which utilize diesel equipment presents unique obstacles. Exhaust gases from diesel equipment not only raise mine ambient CO readings, but also cause numerous nuisance alarms. Both of these conditions reduce the effectiveness of the AMS. New technologies, such as discriminating devices, smoke detectors, and time delays, as well as administrative controls, have been developed and are being utilized to help reduce nuisance alarms produced by the diesel exhaust. This paper will discuss these technologies and administrative controls which are being utilized in coal mines to enhance the effectiveness of the Atmospheric Monitoring Systems. Reference to specific products does not imply endorsement by the Mine Safety and Health Administration.

  20. Atmosphere composition monitor for space station and advanced missions application

    SciTech Connect

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions.

  1. Monitoring intraurban spatial patterns of multiple combustion air pollutants in New York City: design and implementation.

    PubMed

    Matte, Thomas D; Ross, Zev; Kheirbek, Iyad; Eisl, Holger; Johnson, Sarah; Gorczynski, John E; Kass, Daniel; Markowitz, Steven; Pezeshki, Grant; Clougherty, Jane E

    2013-01-01

    Routine air monitoring provides data to assess urban scale temporal variation in pollution concentrations in relation to regulatory standards, but is not well suited to characterizing intraurban spatial variation in pollutant concentrations from local sources. To address these limitations and inform local control strategies, New York City developed a program to track spatial patterns of multiple air pollutants in each season of the year. Monitor locations include 150 distributed street-level sites chosen to represent a range of traffic, land-use and other characteristics. Integrated samples are collected at each distributed site for one 2-week session each season and in every 2-week period at five reference locations to track city-wide temporal variation. Pollutants sampled include PM(2.5) and constituents, nitrogen oxides, black carbon, ozone (summer only) and sulfur dioxide (winter only). During the first full year of monitoring more than 95% of designed samples were completed. Agreement between colocated samples was good (absolute mean % difference 3.2-8.9%). Street-level pollutant concentrations spanned a much greater range than did concentrations at regulatory monitors, especially for oxides of nitrogen and sulfur dioxide. Monitoring to characterize intraurban spatial gradients in ambient pollution usefully complements regulatory monitoring data to inform local air quality management. PMID:23321861

  2. Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Lin, Henry W.; Gonzalez Abad, Gonzalo; Loeb, Abraham

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ~1.2 days (~1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl3F (CF4) to ~10 times the current terrestrial level.

  3. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    SciTech Connect

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham E-mail: ggonzalezabad@cfa.harvard.edu

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  4. Bronchitis in two integrated steel works: III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution

    PubMed Central

    Lowe, C. R.; Campbell, H.; Khosla, T.

    1970-01-01

    Lowe, C. R., Campbell, H., and Khosla, T.(1970).Brit. J. industr. Med.,27, 121-129. Bronchitis in two integrated steel works. III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution. This is the third in a series of papers presenting the results of an epidemiological study of respiratory symptomatology and lung function among men employed in two integrated steel works in South Wales. In this paper measurements of atmospheric pollution are related to respiratory symptoms and ventilatory capacity among 10 449 men who spent the greater part of their working hours in one or other of 114 defined working areas. The problem has been explored in three different ways. In the first, each man was assigned the mean value of sulphur dioxide and respirable dust for the area in which he was working and this was related to his ventilatory capacity (FEV1·0), age, smoking habits, and the number of years he had spent in his present department. In the second, the 114 working areas were divided into four sub-groups, according to defined levels of atmospheric pollution, and the prevalence of chronic bronchitis and mean FEV1·0 in the four sub-groups was examined. In the third way, the mean atmospheric pollution levels in each of the 114 areas were related to the prevalence of bronchitis and to the mean FEV1·0, age, and smoking habits in those areas. The analysis demonstrates very clearly the over-riding importance of cigarette smoking in the aetiology of chronic bronchitis, but, so far as the main purpose of the survey is concerned, it is concluded that, if there is any relation between respiratory disability and atmospheric pollution in the two steel works, it is so slight that none of the three approaches to the problem was sensitive enough to detect it. The implications of this are discussed in the light of the levels of pollution that were recorded in and around the two works. PMID:5428631

  5. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  6. AICE Survey of USSR Air Pollution Literature, Volume 14: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 3.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Fifteen papers were translated: On the removal of impurities from the atmosphere by clouds and precipitation; Some aspects of the adoption of automatic methods of determining atmospheric pollutants; Recording of sulfur dioxide content at the outskirts of a city. Comparison of measurement results for a valley and an elevation; Theoretical and…

  7. Observable Effects of Atmospheric Pollution on Outpatient and Inpatient Morbidity in Bulgaria

    PubMed Central

    PLATIKANOVA, Magdalena; PENKOVA-RADICHEVA, Mariana

    2016-01-01

    Background: One of Europe’s most well-developed industrial regions is found in the Republic of Bulgaria. The industrialization of the region has a big impact on air pollution. Thermal power plant “Maritza East” (the largest of its kind in southeastern Europe), the army training range, machine manufacturers, household heating and high volume of automobile traffic are all major sources of pollution in the region. Methods: A five year study (2009–2013) followed yearly concentrations of principal atmospheric pollutants such as sulfur dioxide, dust, nitrogen dioxide, lead aerosols and hydrogen sulfide, and the way in which those levels had an effect on morbidity (outpatient and inpatient medical care) in the area. Statistical processing of data has been completed to represent and analyze the collected data in nonparametric and alternative format. Results: Atmospheric pollution affects human health directly through pathological changes in the human organism. The registered outpatient care provided for the period 2009–2013 is highest for diseases of the cardiovascular system (11.85%), the respiratory system (17.34%) and the genitourinary system (9.76%). The registered rate of hospitalization for the same period is for diseases of the digestive system (11.90%), the cardiovascular system (11.85%), respiratory system (10.86%) and the genitourinary system (8.88%). Conclusion: The observed period shows a decrease in average yearly concentrations of the principal atmospheric pollutants in the industrial region (Bulgaria) and reflects a decrease in morbidity based on outpatient care and an increase in morbidity by inpatient care (hospitalization). Our findings should be corroborated in future longitudinal studies. PMID:27252921

  8. Atmospheric pollution: a case study of degrading urban air quality over Punjab, India.

    PubMed

    Sehra, Parmjit Singh

    2007-01-01

    This paper presents the results of a case study of urban air quality over a densely populated city Ludhiana situated in Punjab, India, in the form of monthly and annual average concentrations of Suspended Particulate Matter (SPM), NO2 and SO2 for the periods 1988-1989, 1994-1999 and 2001-2005 which is generally found to be increasing with time and thus requires immediate corrective measures lest the situation becomes totally uncontrollable. The present situation is as bad as in other metropolitan Indian cities, although it seems to have somewhat improved as indicated by the latest 2001-2005 data in comparison with the past 1988-1989 and 1994-1999 data, but much more still needs to be done. In addition to the industrial and vehicular pollution, the agricultural pollution due to the burning of wheat and rice straws by the farmers should also be checked because it also creates tremendous pollution in the atmosphere. PMID:18472555

  9. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    PubMed Central

    Anjaneyulu, Y.; Jayakumar, I.; Bindu, V. Hima; Sagareswar, G.; Rao, P.V. Mukunda; Rambabu, N.; Ramani, K. V.

    2005-01-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  10. Using remote sensing imagery to monitoring sea surface pollution cause by abandoned gold-copper mine

    NASA Astrophysics Data System (ADS)

    Kao, H. M.; Ren, H.; Lee, Y. T.

    2010-08-01

    The Chinkuashih Benshen mine was the largest gold-copper mine in Taiwan before the owner had abandoned the mine in 1987. However, even the mine had been closed, the mineral still interacts with rain and underground water and flowed into the sea. The polluted sea surface had appeared yellow, green and even white color, and the pollutants had carried by the coast current. In this study, we used the optical satellite images to monitoring the sea surface. Several image processing algorithms are employed especial the subpixel technique and linear mixture model to estimate the concentration of pollutants. The change detection approach is also applied to track them. We also conduct the chemical analysis of the polluted water to provide the ground truth validation. By the correlation analysis between the satellite observation and the ground truth chemical analysis, an effective approach to monitoring water pollution could be established.

  11. Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad

    2016-01-01

    Bio-monitoring method using mosses have been widely done around the world and the effectiveness has been approved. Mosses can be used to assess the levels of atmospheric pollution as mosses pick up nutrients from the atmosphere and deposition retaining many trace elements. In this study, the deposition of two radionuclides; uranium (U) and thorium (Th) around Manjung districts have been evaluated using Leucobryum aduncum as bio-monitoring medium. The samples were collected from 24 sampling sites covering up to 40 km radius to the North, North-East and South-East directions from Teluk Rubiah. The concentrations of U and Th in moss samples were analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The concentrations of Th are in the range of 0.07-2.09 mg/kg. Meanwhile, the concentrations of U in the moss are in the range of 0.03-0.18 mg/kg. The Enrichment Factor (EF) was calculated to determine the origin of the radionuclides distributions. Other than that, the distribution maps were developed to observe the distribution of the radionuclides around the study area.

  12. Monitoring of air pollutants and green house gases

    SciTech Connect

    Sharma, M.

    1996-12-31

    The study of chemical reactions in the atmosphere poses a serious problem due to the very low concentrations involved, which makes the detection and analysis of reaction products extremely difficult. High altitude reactions at very low pressure cannot be simulated in the laboratory. Chemicals in the atmosphere participate in photochemical reactions by absorption of solar radiation. Such reaction occurs even at the absence of chemical catalysts at much lower temperatures. These photochemical reactions play a key role in governing the ultimate fate of a chemical in the atmosphere. It should be noted that the atmosphere is a tremendously dynamic system with wide fluctuations of the parameters, viz composition, temperature, humidity and intensity of sunlight. Obviously, different processes will be observed under varying atmospheric conditions. Some typical chemical and photochemical reactions will be illustrated. In this context, it must be mentioned that while oxygen plays an important role in the troposphere, ozone plays an important as well as key role in the stratosphere.

  13. Predicting changes of glass optical properties in polluted atmospheric environment by a neural network model

    NASA Astrophysics Data System (ADS)

    Verney-Carron, A.; Dutot, A. L.; Lombardo, T.; Chabas, A.

    2012-07-01

    Soiling results from the deposition of pollutants on materials. On glass, it leads to an alteration of its intrinsic optical properties. The nature and intensity of this phenomenon mirrors the pollution of an environment. This paper proposes a new statistical model in order to predict the evolution of haze (H) (i.e. diffuse/direct transmitted light ratio) as a function of time and major pollutant concentrations in the atmosphere (SO2, NO2, and PM10 (Particulate Matter < 10 μm)). The model was parameterized by using a large set of data collected in European cities (especially, Paris and its suburbs, Athens, Krakow, Prague, and Rome) during field exposure campaigns (French, European, and international programs). This statistical model, called NEUROPT-Glass, comes from an artificial neural network with two hidden layers and uses a non-linear parametric regression named Multilayer Perceptron (MLP). The results display a high determination coefficient (R2 = 0.88) between the measured and the predicted hazes and minimizes the dispersion of data compared to existing multilinear dose-response functions. Therefore, this model can be used with a great confidence in order to predict the soiling of glass as a function of time in world cities with different levels of pollution or to assess the effect of pollution reduction policies on glass soiling problems in urban environments.

  14. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  15. 40 CFR 62.15175 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission monitoring system according to the “Monitoring Requirements” in § 60.13 of subpart A of 40 CFR... subpart A of 40 CFR part 60. ... systems must I install for gaseous pollutants? 62.15175 Section 62.15175 Protection of...

  16. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  17. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon...

  18. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon...

  19. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems for oxygen (or carbon dioxide), sulfur dioxide, and carbon monoxide. If you operate a Class I... sulfur dioxide, nitrogen oxides, and oxygen (or carbon dioxide) at the outlet of the air pollution... according to the “Monitoring Requirements” in § 60.13. (c) You must monitor the oxygen (or carbon...

  20. LAKE ONTARIO BASIN POLLUTANT REDUCTION PROJECT - AIR DEPOSITION MONITORING

    EPA Science Inventory

    The Lake Ontario LaMP identified six critical pollutants for the lake: PCBs, DDT, mirex, dieldrin, mercury and dioxins. In order to gain a better understanding of the movement of toxic chemicals through the Lake Ontario ecosystem, EPA Region 2, in coordination with the other LaMP...

  1. The influence of scales of atmospheric motion on air pollution over Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  2. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    PubMed Central

    Kang, Joonhee; Kim, Jin Young

    2012-01-01

    Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems. PMID:22928151

  3. Pollution monitoring system. [photographic laboratory by-products

    NASA Technical Reports Server (NTRS)

    Goodding, R. A.

    1973-01-01

    An investigation was undertaken to identify those photographic laboratory by-products which can produce harmful reactions if released untreated. After identification of these by-products, specific monitoring systems for each of the offending ions were investigated and recommendations for implementation are presented. Appropriate monitoring systems are discussed.

  4. Impacts of the NAO on atmospheric pollution in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Dayan, U.

    2010-09-01

    The measured concentrations of air pollutants in the lower atmosphere are the result of the combined effect of local-, meso -, and synoptic scale processes. However, there are several inherent problems in attributing pollution concentrations to changes in large-scale atmospheric circulation: 1) the year to year variability being modulated by both, changes in circulation and changes in upwind emissions, 2) the shorter life-time of some pollutants precluding a meaningful relationship with changes in circulation, and 3) the both-ways interaction between trace gases, aerosols and climate. In order to understand the relationship between atmospheric circulation to climatically related variables such as air pollutants, few examples are presented while using Yarnal's (1993) both fundamental approaches: "Circulation to Environment" and "Environment to Circulation". In the first method, an atmospheric circulation classification is performed and then related to an environmental phenomenon. In the second method, the circulation classification is carried over along specific environment-based criteria set for a particular environmental phenomenon. Simulations of transport of anthropogenic CO for high and low phases of the NAO are presented followed by an observational-based study relating the ozone seasonal variability across North Atlantic and the Western Mediterranean to the NAO. Both phases of the NAO controlling dust transport to the Mediterranean are described: the positive phase during summer over the western region and the negative one regulating dust transport over the Eastern Mediterranean in winter. Low NAO indices have been related to a higher cyclonic activity over the western basin. However, Avila and Roda (2002) found no correlation between annual wet deposition of African dust-related elements and the NAO. Their results indicate that, contrary to the Eastern Mediterranean, the two variables (precipitation inversely and dust updraft directly) controlling wet

  5. Relationship between Atmospheric Pollution Processes and Atmospheric Circulation in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, J.; Cong, J.; Wang, J.

    2014-12-01

    Severe haze weather occurred in Shanghai in the beginning of 2013. In this paper,spatial-temporal characteristics of the smog days was analyzed using the data of 10 stations in the downtown, the suburb & the outer suburb of Shanghai from 2002-2013. In addition, we discussed the correlation between PM2.5, PM10, SO2 & NO2 and the smog days. At last, the situation of atmospheric circulation during a severe haze weather process between Jan, 2, 2013 to Feb, 4, 2013 was studied. Results show that: (1) from 2002 to 2012, the average smog days in Shanghai and in the outer suburb of Shanghai show a trend of fluctuating decrease generally with the rates of 6.031d/a and 5.89d/a, respectively. The smog days in the downtown of Shanghai decrease most quickly, with the rate of 15.418d/a. The smog days in the suburb of Shanghai decreased most slowly, with the rate of 2.495d/a. Smog happens most frequently in January, November and December (accounting for 31%) and least in August and September. The inter-annual variation of smog days shows the trend of decreasing in all four seasons. The smog days decreases most slowly in spring, with the ratio of 1.16d/a, it decreases most quickly in winter, with the ratio of 1.65d/a, and decreases at the medium ratio of 1.58d/a and 1.49d/a in summer and autumn respectively. (2) The number of monthly average smog days is positively related to the monthly average concentration of PM10, SO2, PM2.5 and NO2. The correlative coefficient between the number of monthly average smog days and the monthly average PM10 and NO2 concentrations are 0.756 and 0.610, respectively. (3) Atmospheric circulation analysis shows that stable west straight current in the air, weak high pressure on the ground and sufficient supplement of water steam are good for the formation and maintenance of haze weather.

  6. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴). PMID:27506017

  7. CHRONOS: Time Resolved Atmospheric Pollution Observations Commercially Hosted in Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Chronos Science Team

    2011-12-01

    This presentation describes the CHRONOS (Commercially Hosted spectroRadiometer Observations and New Opportunities for Science) mission proposed to the NASA Earth Venture-2 program. The primary goal of this mission is to measure atmospheric pollutants carbon monoxide and methane from geostationary orbit concentrating on North America with high spatiotemporal (hourly at 8 km) resolution. This will provide unique insights into pollutant sources, transport, chemical transformations and climate impact. In addition to significantly improved understanding of the underlying processes determining atmospheric composition, CHRONOS observations will also find direct societal applications for air quality regulation and forecasting. CHRONOS is partnering with private industry to provide accommodation for the instrument as a commercially hosted payload on a telecommunications satellite. The gas correlation radiometry multispectral measurement technique has a demonstrated heritage in the low-Earth orbit Terra/Measurement of Pollution in The Troposphere (MOPITT) instrument that now provides more than a decade of observations. Providing these observations from a geostationary vantage point was also a recommendation of the Decadal Survey in the context of the GEO-CAPE mission.

  8. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic. PMID:27011970

  9. The effect of local circulations on the variation of atmospheric pollutants in the northwestern Taiwan

    SciTech Connect

    Pay-Liam Lin; Hsin-Chih Lai

    1996-12-31

    A field experiment was held in the northwestern Taiwan as a part of a long-term research program for studying Taiwan`s local circulation. The program has been named as Taiwan Regional-circulation Experiment (TREX). The particular goal of this research is to investigate characteristics of boundary layer and local Circulation and their impact on the distribution and Variation of pollutants in the northwestern Taiwan during Mei-Yu season. It has been known for quite sometime that land-sea breeze is very pronounced under hot and humid conditions. Extensive network includes 11 pilot ballon stations, 3 acoustic sounding sites, and 14 surface stations in about 20 km by 20 km area centered at National Central University, Chung-Li. In addition, there are ground temperature measurements at 3 sites, Integrated Sounding System (ISS) at NCU, air plane observation, tracer experiment with 10 collecting stations, 3 background upper-air sounding stations, 2 towers etc. NOAA and GMS satellite data, sea surface temperature radar, and precipitation data are collected. The local circulations such as land/sea breezes and mountain/valley winds, induced by thermal and topographical effects often play an important role in transporting, redistributing and transforming atmospheric pollutants. This study documents the effects of the development of local circulations and the accompanying evolution of boundary layer on the distribution and the variation of the atmospheric pollutants in the north western Taiwan during Mei-Yu season.

  10. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  11. Impact of a future H2 transportation on atmospheric pollution in Europe

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Segers, Arjo; Denier van der Gon, Hugo; Schaap, Martijn; Krol, Maarten; Visschedijk, Antoon; Röckmann, Thomas

    2014-05-01

    Traditionally fuelled road traffic is a major source of greenhouse gases and pollutants. Greenhouse gases (e.g. CO2 and CH4) affect the global atmosphere and contribute to global warming. The pollutants emitted by vehicles (e.g. CO, NOx, SO2, particulate matter, volatile organic compounds) are toxic for man and environment and decrease air quality especially in highly populated areas. Burning H2 produces only water, thus H2-powered vehicles are seen as a possibility to reduce greenhouse gas emissions and improve air quality; because of this, H2 usage as a fuel is foreseen to significantly increase in the future. Large scale usage of H2 as a fuel has the potential to affect the atmospheric composition in different ways. On one hand, emissions associated to fossil fuel burning will decrease. On the other hand, large quantities of H2 used will likely lead to increased H2 emissions from leakages during production, transport and storage. Additional H2 in the atmosphere will affect the chemistry of many species, in principal by decreasing the availability of OH radicals, with the result of increasing the lifetime of greenhouse gases and pollutants. Thus the net effect of H2 vehicles on the atmospheric composition depends on the relative strength of these two contrary effects. In order to evaluate the potential influence of a future H2 road transportation on local and regional air quality, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the future (2020) using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that in general the air quality in 2020 will be significantly better than at present in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict

  12. Development of multianalyte sensor arrays for continuous monitoring of pollutants

    SciTech Connect

    Milanovich, F.P.; Richards, J.B.; Brown, S.B.; Healey, B.G.; Chadha, S.; Walt, D.

    1995-01-01

    Industrial development has led to the release of numerous hazardous materials into the environment posing a potential threat to surrounding waters. Environmental analysis of sites contaminated by several chemicals calls for continuous monitoring of multiple analytes. Monitoring can be achieved by using imaging bundles (300--400 {micro}m in diameter), containing several thousand individual optical fibers for the fabrication of sensors. Multiple sensor sites are created at the distal end of the fiber by immobilizing different analyte-specific fluorescent dyes. By coupling these imaging fibers to a charge coupled device (CCD), one has the ability to spatially and spectrally discriminate the multiple sensing sites simultaneously and hence monitor analyte concentrations.

  13. Microchip Capillary Electrophoresis with Electrochemical Detection for Monitoring Environmental Pollutants

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This invited paper reviews recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, sample pretreatments, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  14. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Steffens, Jonathan T.; Heist, David K.; Perry, Steven G.; Zhang, K. Max

    2013-04-01

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollutant concentrations. However, there is still a lack of mechanistic understanding of how solid barriers affect pollutant transport, especially under a variety of meteorological conditions. In this study, we utilized the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial gradients of SF6 concentrations behind a solid barrier under a variety of atmospheric stability conditions collected during the Near Road Tracer Study (NRTS08). We employed two different CFD models, RANS and LES. A recirculation zone, characterized by strong mixing, forms in the wake of a barrier. It is found that this region is important for accurately predicting pollutant dispersion, but is often insufficiently resolved by the less complex RANS model. The RANS model was found to perform adequately away from the leading edge of the barrier. The LES model, however, performs consistently well at all flow locations. Therefore, the LES model will make a significant improvement compared to the RANS model in regions of strong recirculating flow or edge effects. Our study suggests that advanced simulation tools can potentially provide a variety of numerical experiments that may prove useful for roadway design communities to intelligently design roadways, making effective use of roadside barriers.

  15. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  16. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y.

    PubMed

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A; Vallelonga, Paul; Thompson, Lonnie G

    2015-02-24

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793-1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438-1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history. PMID:25675506

  17. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 years

    NASA Astrophysics Data System (ADS)

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin; Vallelonga, Paul; Thompson, Lonnie

    2015-04-01

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice-core record (793-1989 AD) from the high altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the pre-colonial period (i.e., pre-1532 AD), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions indicating that metallurgic production during the Inca Empire (1438-1532 AD) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after 1540 AD, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, 240 years prior to the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (1572 AD), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history.

  18. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y

    PubMed Central

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A.; Vallelonga, Paul; Thompson, Lonnie G.

    2015-01-01

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793–1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438−1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history. PMID:25675506

  19. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  20. POLLUTION MONITORING OF PUGET SOUND WITH HONEY BEES

    EPA Science Inventory

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were genera...

  1. Assessment of wintertime atmospheric pollutants in an urban area of Kansai, Japan

    NASA Astrophysics Data System (ADS)

    Ma, Chang-Jin; Oki, Yoshishige; Tohno, Susumu; Kasahara, Mikio

    An intensive measurement of particulate matter and gaseous materials was made to assess the characteristics of wintertime atmospheric pollutants in an urban area of Kansai, Japan. Sampling was performed by a combination of filter pack sampler and low-pressure Andersen impactor (LPAI). Particle-induced X-ray Emission (PIXE) and Thermal/Optical Reflectance (TOR ®) methods were employed in analyzing element and carbon, respectively. The concentrations of SO 2, NO x, and PM 2.5 monitored during our intensive measurement show a strong time serial variation. PM 2.5 levels are higher in the daytime with an average level of 21.3 μg m -3. Most of the peaks for NO x were regularly found in the morning throughout the campaign duration. The number concentration of particles larger than 0.3 μm appears dominated by the ultrafine particles ranged between 0.3 and 0.5 μm. The size distribution of elemental concentration as a function of water solubility was investigated. Organic carbon (OC) concentration shows the strong size distribution with the main peak formed in a range of 0.29-0.67 μm, while elemental carbon (EC) is principally enriched in a range of 0.12-0.29 μm ultra fine fraction. TC (OC+EC) fraction accounts for 42.5% and 26.2% of the mass concentration in fine particle fraction (<1.17 μm ) and coarse particle fraction (>1.17 μm), respectively. The simulated backward aerosol dispersion with the surface wind roses for three events of high PM 2.5 mass concentration indicates that aerosol dispersions might be originated from the emission sources of Osaka and Shiga. Also the possibility of long-range transportation of fine particulate matter from the domestic areas of Japan, Taiwan, and Pacific Ocean was still raised. The result of factor analysis indicates that automobile exhaust, fossil fuel combustion, refuse incineration, iron industry, and soil originated particles contribute the major portion of PM 2.5 in our sampling area.

  2. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region.

    PubMed

    Mejía, Rubén Galicia; Vázquez, Josémanueldelarosa; Isakina, Suren Stolik; García, Edgard Moreno; Iglesias, Gustavo Sosa

    2013-01-01

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed. PMID:23369629

  3. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region

    PubMed Central

    2013-01-01

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed. PMID:23369629

  4. Pollution monitoring of Puget Sound with honey bees

    SciTech Connect

    Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.; Thomas, J.M.

    1985-02-08

    To show that honey bees are effective biological monitors of environmental contaminants over large geographic areas, beekeepers of Puget Sound, Washington, collected pollen and bees for chemical analysis. From these data, kriging maps of arsenic, cadmium, and fluoride were generated. Results, based on actual concentrations of contaminants in bee tissues, show that the greatest concentrations of contaminants occur close to Commencement Bay and that honey bees are effective as large-scale monitors. 27 references, 2 figures.

  5. Air monitoring in the Arctic: Results for selected persistent organic pollutants for 1992

    SciTech Connect

    Fellin, P.; Dougherty, D.; Barrie, L.A.; Toom, D.; Muir, D.; Grift, N.; Lockhart, L.; Billeck, B.

    1996-03-01

    The Arctic is generally considered to be a pristine environment and has few direct inputs of organochlorine compounds (OCs), including pesticides, herbicides, polychlorinated biphenyls, or polycyclic aromatic hydrocarbons (PAHs). In spite of this, airborne concentrations of persistent organic pollutants (POPs) are comparable to those in more populated and industrialized regions of North America and Europe. Atmospheric transport and condensation of compounds at low temperature conditions are important factors contributing to the presence of contaminants in the Arctic. A long-term program has been established to measure the airborne concentrations of POPs in the Arctic. The first station at Alert was established in January 1992. The concentrations measured in the first year of monitoring for 18 compounds that are representative of different compound classes are presented. Seasonal variations for PAHs are similar to those for Arctic haze and peak during winter. For example, in the coldest period, october to April, benzo[a]pyrene concentrations were found to average 20 pg/m{sup 3}, whereas, in contrast, during the relatively warm May to September period, average levels were 1.0 pg/m{sup 3}. For OCs, the seasonal cycle was not as pronounced as that for PAH compounds. For example, {alpha}-hexachlorocyclohexane was found at Alert at average concentrations of 62 and 57 pg/m{sup 3}, respectively, during cold and warm periods. It is postulated that air concentrations are influenced by advection from distant source regions as well as exchange with local (Arctic Ocean) surfaces.

  6. Synchrotron radiation X-ray fluorescence analysis of trace elements in Nerium oleander for pollution monitoring

    NASA Astrophysics Data System (ADS)

    de Jesus, E. F. O.; Simabuco, S. M.; dos Anjos, M. J.; Lopes, R. T.

    2000-07-01

    This works describes the use of synchrotron radiation fluorescence analysis as a technique for monitoring trace elements in bio-indicators for environmental pollution control. The analyses were performed on leaves of Nerium oleander collected in streets with different levels of traffic flow in Rio de Janeiro, Brazil, with one sample from a rural zone. The leaves were collected from adult trees in December and April. The measurement was made with a white beam of synchrotron radiation calibrated with thin samples from MicroMatter. The results indicate that some metals such as Ti, V, Fe and Zn have major content in samples that were collected in places with a high traffic flow, even in the leaves that have been washed. The levels of Mn, Co, Cu and Ni did not show significant differences between the samples. The Pb level also did not vary significantly. This was expected because in Brazil gasoline without Pb has been used for many years. The results seem to indicate that the leaves from Nerium oleander absorb metals from the atmosphere and may be used as an environmental indicator.

  7. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  8. Growing Atmospheric Pollution and Its Relation with Occurrences of Natural Hazards in India

    NASA Astrophysics Data System (ADS)

    Singh, Ramesh

    In the last three decades, multi satellite remote sensing data have revealed increasing atmospheric pollution. The satellite data have shown spatial distribution of fine and coarse atmospheric particles which impact human health, cloud albedo and atmospheric and meteorological parameters. The long range dusts coming over India travel through Arabian Sea and reach to the Bay of Bengal, such long range transport of dust influences atmospheric and ocean parameters, as a result strong coupling exists between land-ocean-atmosphere. Various kind of natural hazards, such as cyclone, algal bloom, cloud burst, excessive rainfall have been observed apart from the intense fog, haze and smog during winter and post monsoon seasons that have serious impacts on human health of people living in the Indo-Gangetic basin. The long range transport of dust and local anthropogenic emissions also reach to the Himalayan region affecting snow and glaciers of Himalaya and accelerating melting of snow and glaciers which is a threat of flooding of rivers originate from Himalayan region.

  9. Development of Atmospheric Air 85Kr Monitoring Methodology on the Territory of the USSR

    NASA Astrophysics Data System (ADS)

    Pakhomov, Sergei; Dubasov, Yury

    2014-05-01

    Highly sensitive, low-background and high-performance method of beta-radioactivity measurements of the gas samples was developed in mid-eighties at Khlopin Radium institute. This method was based on the use of the serial automated installation for liquid scintillation measurements and special scintillating cells. Cells were equipped with the gas valve, and their internal surface were covered by a thin layer of organic scintillator. This method found was successfully was applied for 85Kr activity measurements in atmospheric krypton samples and for 85Kr concentration measurements in atmospheric air. For the first time, method developed for 85Kr activity measurements, was practically tested in May - June, 1986, while studying radioactive pollution characteristics in the air basin of Russia and Ukraine after the Chernobyl NPP accident. Thus for sampling of atmospheric krypton the industrial krypton-xenon mix manufactured at air-separating plants, located in the cities of Cherepovets, Lipetsk, Krivoi Rog and Enakiyevo was used. In the end of April and in the first half of May it was determined that 1,5-fold excess concentrations of 85Kr in atmospheric air were observed in atmospheric air of considerable part of the European territory of Russia and Ukraine During the period from 1987 to 1991 this method was used for monitoring of 85Kr on the territory of the former USSR in the air basin of Russia, Ukraine and Kazakhstan. Industrial krypton-xenon mix manufactured at 14 large air-separating plants was also used for sampling. Six of them were situated in Russia (Novomoskovsk, Lipetsk, Cherepovets, Chelyabinsk, Nizhni Tagil, Orsk). Seven - in Ukraine (Enakiyevo, Kommunarsk, Krivoi Rog, Makeyevka, Mariupol, Severodonetsk, Dneprodzerzhinsk). One plant was situated in Temirtau, in Kazakhstan. The analysis indicated that in Krivoi Rog; Dneprozhzerzhinsk; Severodonetsk; Makeyevka; Mariupol; Enakiyevo; Kommunarsk; Novomoskovsk and Cherepovets the average 85Kr concentration in

  10. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  11. REMOTE MONITORING OF GASEOUS POLLUTANTS BY DIFFERENTIAL ABSORPTION LASER TECHNIQUES

    EPA Science Inventory

    A single-ended laser radar (LIDAR) system was designed, built, and successfully operated to measure range-resolved concentrations of NO2, SO2, and O3 in the atmosphere using a Differential Absorption of Scattered Energy (DASE) LIDAR technique. The system used a flash-lamp pumped ...

  12. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Lin, Shih-Chieh; Chang, Shih-Yu; Lin, Chuan-Yao; Chou, Charles-C K; Wu, Yun-Jui; Chen, Yu-Chieh; Chen, Wei-Tzu; Wu, Tsai-Lin

    2011-06-01

    In autumn of 2008, the chemical characteristics of major secondary ionic aerosols at a suburban site in central Taiwan were measured during an annually occurring season of high pollution. The semicontinuous measurement system measured major soluble inorganic species, including NH(4)(+), NO(3)(-), and SO(4)(2-), in PM(10) with a 15 min resolution time. The atmospheric conditions, except for the influences of typhoons, were dominated by the local sea-land breeze with clear diurnal variations of meteorological parameters and air pollutant concentrations. To evaluate secondary aerosol formation at different ozone levels, daily ozone maximum concentration (O(3,daily max)) was used as an index of photochemical activity for dividing between the heavily polluted period (O(3,daily max) ≧80 ppb) and the lightly polluted period (O(3,daily max)<80 ppb). The concentrations of PM(10), NO(3)(-), SO(4)(2-), NH(4)(+) and total major ions during the heavily polluted period were 1.6, 1.9, 2.4, 2.7 and 2.3 times the concentrations during the lightly polluted period, respectively. Results showed that the daily maximum concentrations of PM(10) occurred around midnight and the daily maximum ozone concentration occurred during daytime. The average concentration of SO(2) was higher during daytime, which could be explained by the transportation of coastal industry emissions to the sampling site. In contrast, the high concentration of NO(2) at night was due to the land breeze flow that transport inland urban air masses toward this site. The simulations of breeze circulations and transitions were reflected in transports and distributions of these pollutants. During heavily polluted periods, NO(3)(-) and NH(4)(+) showed a clear diurnal variations with lower concentrations after midday, possibly due to the thermal volatilization of NH(4)NO(3) during daytime and transport of inland urban plume at night. The diurnal variation of PM(10) showed the similar pattern to that of NO(3)(-) and NH(4

  13. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management.

    PubMed

    Yuval, Yuval; Rimon, Yaara; Graber, Ellen R; Furman, Alex

    2014-08-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli

  14. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    PubMed

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. PMID:27341116

  15. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection

    SciTech Connect

    Chen, Gang; Lin, Yuehe; Wang, Joseph

    2006-01-15

    This is a review article. During the past decade, significant progress in the development of miniaturized microfluidic systems has Occurred due to the numerous advantages of microchip analysis. This review focuses on recent advances and the key strategies in microchip capillary electrophoresis (CE) with electrochemical detection (ECD) for separating and detecting a variety of environmental pollutants. The subjects covered include the fabrication of microfluidic chips, ECD, typical applications of microchip CE with ECD in environmental analysis, and future prospects. It is expected that microchip CE-ECD will become a powerful tool in the environmental field and will lead to the creation of truly portable devices.

  16. Novel choline esterase based sensor for monitoring of organophosphorus pollutants

    SciTech Connect

    Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.

    1996-12-31

    Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.

  17. Portable piezoelectric crystal detector for field monitoring of environmental pollutants

    SciTech Connect

    Ho, M.H.; Guilbault, G.G.; Rietz, B.

    1983-09-01

    A portable field monitor was constructed by using a coated piezoelectric crystal for direct monitoring of toluene in a Danish printing plant. Toluene vapor was adsorbed onto the Pluronic F-68 coating on a quartz crystal and a decrease in frequency was observed. Various substances which could interfere with toluene determination were tested. No interference from CO, NH/sub 3/, SO/sub 2/, HCl at 100 ppm are expected. Water vapor interfered and was selectively removed using a Nafion permeation tube. The readings from the piezoelectric detector were compared to two accepted procedures for monitoring toluene, the photoionization detector and the Drager tube. Results indicate that the piezoelectric detector gave data consistent with both other methods and with better relative standard deviations than the other two. 8 references, 2 figures, 1 table.

  18. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    NASA Astrophysics Data System (ADS)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  19. Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments.

    PubMed

    Ruiz-Fernández, Ana Carolina; Ontiveros-Cuadras, Jorge Feliciano; Sericano, José L; Sanchez-Cabeza, Joan-Albert; Liong Wee Kwong, Laval; Dunbar, Robert B; Mucciarone, David A; Pérez-Bernal, Libia Hascibe; Páez-Osuna, Federico

    2014-09-15

    Concentrations, temporal trends and fluxes of persistent organic pollutants (POPs: PAHs, PCBs and PBDEs) were determined in soil and (210)Pb-dated sediment cores from remote lacustrine environments (El Tule and Santa Elena lakes) in rural areas of Central Mexico. In both areas, the concentrations of target analytes in soil and sediment samples were comparable and indicative of slightly contaminated environments. The prevalence of low-molecular-weight PAHs in soils suggested their mainly atmospheric origin, in contrast to the aquatic sediments where runoff contribution was also significant. Increasing contamination trends of PCBs and PBDEs were evident, showing maximum fluxes of 4.8 ± 2.1 and 0.3 ± 0.1 ng cm(-2) a(-1) for PCBs and PBDEs, respectively. The predominance of lower-brominated PBDEs and lower-chlorinated PCBs in soils and sediments indicated that their presence is mostly due to long-range atmospheric transport. PMID:24971459

  20. Two years of aerosol pollution monitoring in Singapore: a review

    NASA Astrophysics Data System (ADS)

    Orlic, I.; Wen, X.; Ng, T. H.; Tang, S. M.

    1999-04-01

    An aerosol sampling campaign was initiated more than two years ago in Singapore. The aim was to determine the average elemental concentrations in fine and coarse aerosol fractions as well as to identify major pollution sources and their impact. For that purpose, two air samplers were employed at two different sampling locations; one sampler was a fine particulate aerosol sampler (PM2.5) located at the vicinity of a major industrial area. The other was a stacked filter unit (SFU) sampler designed for collection of fine and coarse fractions (PM2.5 and PM10) and installed in the residential area. Samples were taken typically twice a week and in several occasions daily. During the period of two years more than 700 aerosol samples were collected and analyzed using PIXE and RBS techniques. All samples were analyzed for 18 elements ranging between Na, Mg, Al, etc. up to As and Pb. Large daily and seasonal variations were found for most of the elements. These variations are attributed mainly to meteorological changes, in particular changes in wind speed and direction. On several occasions, short term sampling was performed to identify fingerprints of major pollution sources such as road traffic, refineries, as well as the rain-forest fires in neighboring countries. A summary of our findings is presented and discussed.

  1. Pollution monitoring in Lake Champlain using ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator); Henson, E. B.

    1973-01-01

    The author has identified the following significant results. Band 4 imagery of April 7 and 25 show contrasting pollution effects due to seasonal and discharge variations. The pollution plume emanating from the International Paper Co. mill just north of Fort Ticonderoga was first detected on October 10 ERTS-1 imagery and now has been documented during spring high lake level conditions. The plume was observed extending further to the north and east than under low water conditions of October 10. This northward extension reflects a stronger northward current flow expected in the turbid southern leg of Lake Champlain. The extensive plume of April 25 represents full plant operation while the April 5 scene shows some plume traces directly over the submerged diffuser, discharge pipe representing minimal discharge during weekend plant operation. The ERTS-1 documentation will be used in developing a model of plume behavior under varying environmental conditions and will hopefully serve to assist in a major resource decision pending at U.S. Supreme Court level.

  2. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    NASA Astrophysics Data System (ADS)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  3. Influence of monsoons on atmospheric CO2 spatial variability and ground-based monitoring over India.

    PubMed

    Tiwari, Yogesh K; Vellore, Ramesh K; Ravi Kumar, K; van der Schoot, Marcel; Cho, Chun-Ho

    2014-08-15

    This study examines the role of Asian monsoons on transport and spatial variability of atmospheric CO2 over the Indian subcontinent, using transport modeling tools and available surface observations from two atmospheric CO2 monitoring sites Sinhagad (SNG) and Cape Rama (CRI) in the western part of peninsular India. The regional source contributions to these sites arise from the horizontal flow in conduits within the planetary boundary layer. Greater CO2 variability, greater than 15 ppm, is observed during winter, while it is reduced nearly by half during summer. The SNG air sampling site is more susceptible to narrow regional terrestrial fluxes transported from the Indo-Gangetic Plains in January, and to wider upwind marine source regions from the Arabian Sea in July. The Western Ghats mountains appear to play a role in the seasonal variability at SNG by trapping polluted air masses associated with weak monsoonal winds. A Lagrangian back-trajectory analysis further suggests that the horizontal extent of regional sensitivity increases from north to south over the Indian subcontinent in January (Boreal winter). PMID:24880546

  4. Size and time-resolved roadside enrichment of atmospheric particulate pollutants

    NASA Astrophysics Data System (ADS)

    Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prévôt, A. S. H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; Moreno, T.; Pandolfi, M.; Pey, J.; Querol, X.

    2011-03-01

    Size and time-resolved roadside enrichments of atmospheric particulate pollutants in PM10 were detected and quantified in a Mediterranean urban environment (Barcelona, Spain). Simultaneous data from one urban background (UB), one traffic (T) and one heavy traffic (HT) location were analysed, and roadside PM10 enrichments (RE) in a number of elements arising from vehicular emissions were calculated. Tracers of primary traffic emissions (EC, Fe, Ba, Cu, Sb, Cr, Sn) showed the largest REs (>70%). Other traffic tracers (Zr, Cd) showed lower but still consistent REs (25-40%), similar to those obtained for mineral matter resulting from road dust resuspension (Ca, La, Ce, Ti, Ga, Sr, 30-40%). The sum of primary and secondary organic carbon showed a RE of 41%, with contributions of secondary OC (SOC) to total OC ranging from 46% at the HT site, 63% at the T site, and 78% in the UB. Finally, other trace elements (As, Co, Bi) showed unexpected but consistent roadside enrichments (23% up to 69%), suggesting a link to traffic emissions even though the emission process is unclear. Hourly-resolved PM speciation data proved to be a highly resourceful tool to determine the source origin of atmospheric pollutants in urban environments. At the HT site, up to 62% of fine Mn was attributable to industrial plumes, whereas coarse Mn levels were mainly attributed to traffic. Similarly, even though Zn showed on average no roadside enrichment and thus was classified as industrial, the hourly-resolved data proved that at least 15% of coarse Zn may be attributed to road traffic emissions. In addition, our results indicate that secondary nitrate formation occurs within the city-scale, even in the absence of long atmospheric residence times or long-range atmospheric transport processes. Characteristic tracer ratios of road traffic emissions were identified: Cu/Sb = 6.8-8.0, Cu/Sn = 4.7-5.4 and Sn/Sb = 1.5.

  5. Cavity Attenuated Phase Shift-Based Monitoring of Atmospheric Species

    NASA Astrophysics Data System (ADS)

    Kebabian, P. L.; Onasch, T. B.; Herndon, S. C.; Wood, E. C.; Wormhoudt, J.; Freedman, A.

    2009-06-01

    We are developing compact instruments for the monitoring of ambient atmospheric species, specifically nitrogen dioxide and particles, using cavity attenuated phase shift spectroscopy. The sensor, which detects the optical absorption of nitrogen dioxide within a 20 nm bandpass band centered at 440 nm, comprises a blue light emitting diode, an enclosed metal measurement cell (26 cm in length) incorporating a resonant optical cavity of near-confocal design and a vacuum photodiode detector. An analog heterodyne detection scheme is used to measure the phase shift in the waveform of the modulated light transmitted through the cell induced by the presence of nitrogen dioxide and/or particles within the cell. The entire apparatus is encased within a standard 19-inch rack-mounted enclosure. Levels of detection (1 s, 3 σ ) for nitrogen dioxide of 0.2 ppb and for aerosols of 3.5 Mm^{-1} have been achieved. Examples of high resolution field measurements and comparisons with other instrumentation will be presented.

  6. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  7. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  8. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  9. 49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that...

  10. Interpolation of extensive routine water pollution monitoring datasets: methodology and discussion of implications for aquifer management

    NASA Astrophysics Data System (ADS)

    Yuval; Rimon, Y.; Graber, E. R.; Furman, A.

    2013-07-01

    A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanization often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data between points is thus an important tool for supplementing measured data. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range (up to a few orders of magnitude) of values in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. Local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. That inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the Coastal aquifer along the Israeli

  11. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    SciTech Connect

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  12. [Monitoring and analysis of air pollutants using DOAS in winter of Beijing].

    PubMed

    Zhu, Yan-wu; Fu, Qiang; Xie, Pin-hua; Liu, Wen-qing; Peng, Fu-min; Qin, Min; Lin, Yi-hui; Si, Fu-qi; Dou, Ke

    2009-05-01

    Based on the differential optical absorption spectroscopy (DOAS) technology, the measurement of air pollutants (SOz, NO2, HONO and HCHO) was performed continuously from Jan 19, 2007 to Feb 8, 2007 in Peking University campus. The typical diurnal variation characteristic of SO2 concentration, the main source and the meteorological factors that influence the pollutants were analyzed. The results indicated that the typical diurnal variation of SO2 concentration has the same shape as the letter "V" when wind speed was low, and in the afternoon the SO2 concentration was the lowest, while in other time it was high. Coal-burning made prominent contribution to the concentration of atmospheric various pollutants in the heating period of Beijing. Wind speed played a leading role and other meteorological factors also have some effect, which resulted from the influence of the meteorology on diffusion, transmission, elimination of air pollutants. PMID:19650497

  13. Trace elements by instrumental neutron activation analysis for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Methods and technology were developed to analyze 1000 samples/yr of coal and other pollution-related samples. The complete trace element analysis of 20-24 samples/wk averaged 3-3.5 man-hours/sample. The computerized data reduction scheme could identify and report data on as many as 56 elements. In addition to coal, samples of fly ash, bottom ash, crude oil, fuel oil, residual oil, gasoline, jet fuel, kerosene, filtered air particulates, ore, stack scrubber water, clam tissue, crab shells, river sediment and water, and corn were analyzed. Precision of the method was plus or minus 25% based on all elements reported in coal and other sample matrices. Overall accuracy was estimated at 50%.

  14. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  15. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    PubMed

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions. PMID:20084432

  16. Characteristics of atmospheric visibility and its relationship with air pollution in Korea.

    PubMed

    Lee, Jeong-Young; Jo, Wan-Kuen; Chun, Ho-Hwan

    2014-09-01

    Although analysis of long-term data is necessary to obtain reliable information on characteristics of atmospheric visibility and its relationship with air pollution, it has rarely been performed. Therefore, a long-term evaluation of atmospheric visibility in characteristically different Korean cities, as well as a remote island, during 2001 to 2009, was performed in this study. In general, visibility decreased in the studied areas during the 9-yr study period. In addition, all areas displayed a distinct seasonal trend, with high visibility in the cold season relative to the warm season. Weekday visibility, however, did not significantly differ from weekend visibility. Similarly, the number of days per year for both low (<10 km) and high visibility (>19 km) fluctuated during the study period. Busan (a coastal city) exhibited the highest visibility, with an overall average of 17.6 km, followed by Daegu (a basin city), Ulsan (with concentrated petrochemical industries), Ullungdo (a remote island), and Seoul (the capital of Korea). Visibility was found to be significantly correlated with target air pollutants, except for ozone, for all metropolitan cities, whereas it was significantly correlated only with particulate matter with an aerodynamic diameter <10 μm (PM10) and ozone on the remote island (Ullungdo). Among the metropolitan cities, Seoul exhibited the lowest visibility for both the PM10 standard exceedance and non-exceedance days, followed by Ulsan, Daegu, and Busan. The results of this study can be used to establish effective strategies for improving urban visibility and air quality. PMID:25603237

  17. Limestone surfaces in built-up environment as indicators of atmospheric pollution.

    PubMed

    Vella, A J; Camilleri, A; Tabone Adami, J P

    1996-12-01

    The concentration of sulphate on limestone surfaces of the external walls of churches in Malta is shown to be related to their position and distance from a power station, the main local point source of sulphur dioxide pollution. Limestone powder collected from these surfaces was examined for the presence of particles which, under low-power optical microscopy, appear as shiny black amorphous bodies which were interpreted as soot particles; the abundance of these bodies was expressed as a 'black particle count' (BPC). The degree of sulphation and BPC were shown to be correlated with each other and both appeared to be strongly dependent on the prevailing wind. The BPC contour map indicated an important contribution to the parameter from vehicular traffic. It is suggested that the degree of sulphation and BPC of limestone surfaces from the built environment should function as environmental indicators of the relative air quality with respect to SO2 and soot pollution. This data is possibly more accurately representative of the relative long-term air-quality status of different areas of habitation than that deduced from single or episodic measurements of atmospheric pollutant levels. PMID:24194411

  18. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  19. Evaluation of genotoxicity in workers exposed to benzene and atmospheric pollutants.

    PubMed

    Göethel, Gabriela; Brucker, Natália; Moro, Angela M; Charão, Mariele F; Fracasso, Rafael; Barth, Anelise; Bubols, Guilherme; Durgante, Juliano; Nascimento, Sabrina; Baierle, Marília; Saldiva, Paulo H; Garcia, Solange C

    2014-08-01

    Gas station attendants and taxi drivers are occupationally exposed to xenobiotics which may be harmful to their health. Atmospheric pollutants and benzene can lead to DNA damage. Genotoxicity and mutagenicity assays can be used to evaluate the effects of these pollutants. We have evaluated genotoxicity and mutagenicity in workers occupationally exposed to xenobiotics, by application of the 8-hydroxy-2-deoxyguanosine (8-OHdG), comet, and micronucleus (MN) assays. Biomarkers of benzene and carbon monoxyde exposure were also measured: urinary t,t-muconic acid (t,t-MA) and carboxyhaemoglobin (COHb) in whole blood, respectively. The study groups comprised 43 gas station attendants (GSA), 34 taxi drivers (TD), and 22 persons without known occupational exposures (NE). Levels of t,t-MA in the GSA group were significantly elevated compared to the NE group (p<0.001), however these levels were below of levels established by ACGIH (American Conference of Governmental Industrial Hygienists). COHb levels were not significantly different between the TD and NE groups (p>0.05). DNA damage index (DI) and 8-OHdG levels were significantly higher for both the GSA and TD groups, compared to the NE group (p<0.001), but MN frequencies were not elevated. Spearman correlation analysis showed that the frequency of MN was positively correlated with 8-OHdG. A positive correlation between DNA DI levels and 8-OHdG was also observed. In conclusion, our results indicated that low levels of occupational exposure to benzene and atmospheric pollutants may be linked to genotoxicity and oxidative DNA damage. PMID:25344165

  20. Atmospheric Aging of Semi-volatile Pesticides: Real Time Monitoring of Cypermethrin Photo- oxidation Using FTIR

    NASA Astrophysics Data System (ADS)

    Segal-Rosenheimer, M.; Dobuwski, Y.

    2007-12-01

    Pesticides are highly toxic compounds that unlike other pollutants are intentionally introduced, in large quantities, to the environment. The vast majority of them are applied to agricultural lands, but they are also widely used in urban areas as herbicides, insecticides and fungicides. Pesticides may be promoted into the atmosphere during their application via drift of aerosols, as well as by volatilization or dust erosion from treated surfaces after application. In the atmosphere, semi-volatile pesticides may remain as pure aerosols or become adsorbed upon background aerosols or surfaces. During transport or as deposited thin films, they undergo chemical degradation processes due to interaction with atmospheric oxidants and/or solar radiation. Although previous studies indicate that a major portion of applied pesticides wind up in the atmosphere, this is the medium about which we know the least regarding pesticides' fate. Quantitative data regarding aging processes of these hazard air pollutants are important in order to asses their environmental fate and impact. The present study investigates the heterogeneous reaction of thin film of cypermethrin, a common used insecticide, with atmospheric ozone and UV radiation. The reactions are monitored in real time using novel apparatus that combines ATR/FTIR and Long-path IR gas cell for examining the condensed and gas phases, respectively. The obtained data, including oxidation rate constants and photochemical quantum yields, are used to determine atmospheric lifetime of cypermethrin and its probability to reach non-target regions. Kinetic results from the oxidation of cypermethrin with different concentrations of ozone show that its atmospheric half-life time, with regard to ozone, is in the same order of magnitude as other known degradation processes in the soil and water compartments. Also is shown that some of the condensed phase products are more water soluble than the parent molecule, hence having higher potential

  1. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    NASA Astrophysics Data System (ADS)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  2. Atmospheric mercury emissions from waste combustions measured by continuous monitoring devices.

    PubMed

    Takahashi, Fumitake; Shimaoka, Takayuki; Kida, Akiko

    2012-06-01

    Atmospheric mercury emissions have attracted great attention owing to adverse impact of mercury on human health and the ecosystem. Although waste combustion is one of major anthropogenic sources, estimated emission might have large uncertainty due to great heterogeneity of wastes. This study investigated atmospheric emissions of speciated mercury from the combustions of municipal solid wastes (MSW), sewage treatment sludge (STS), STS with waste plastics, industrial waste mixtures (IWM), waste plastics from construction demolition, and woody wastes using continuous monitoring devices. Reactive gaseous mercury was the major form at the inlet side of air pollution control devices in all combustion cases. Its concentration was 2.0-70.6 times larger than elemental mercury concentration. In particular, MSW, STS, and IWM combustions emitted higher concentration of reactive gaseous mercury. Concentrations of both gaseous mercury species varied greatly for all waste combustions excluding woody waste. Variation coefficients of measured data were nearly equal to or more than 1.0. Emission factors of gaseous elemental mercury, reactive gaseous mercury, and total mercury were calculated using continuous monitoring data. Total mercury emission factors are 0.30 g-Hg/Mg for MSW combustion, 0.21 g-Hg/Mg for STS combustion, 0.077 g-Hg/Mg for STS with waste plastics, 0.724 g-Hg/Mg for industrial waste mixtures, 0.028 g-Hg/Mg for waste plastic combustion, and 0.0026 g-Hg/Mg for woody waste combustion. All emission factors evaluated in this study were comparable or lower than other reported data. Emission inventory using old emission factors likely causes an overestimation. PMID:22788107

  3. Research plan for integrated ecosystem and pollutant monitoring at remote wilderness study sites

    SciTech Connect

    Bruns, D.A.; Wiersma, G.B.

    1988-03-01

    This research plan outlines an approach to the measurement of pollutants and ecosystem parameters at remote, high-elevation, wilderness study sites. A multimedia, systems approach to environmental monitoring is emphasized. The primary purpose of the research is to apply and field test a technical report entitled ''Guidelines for measuring the physical, chemical, and biological condition of wilderness ecosystems.'' This document intended to provide Federal Land Managers with information to establish environmental monitoring programs in wilderness areas. To date, this monitoring document has yet to be evaluated under rigorous field conditions at a remote, high-elevation Rocky Mountain site. For the purpose of field testing approaches to monitoring of pollutants and ecosystems in remote, wilderness areas, evaluation criteria were developed. These include useability, cost-effectiveness, data variability, alternative approaches, ecosystems conceptual approach, and quality assurance. Both the Forest Service and INEL environmental monitoring techniques will be evaluated with these criteria. Another objective of this research plan is to obtain an integrated data base on pollutants and ecosystem structure and function at a remote study site. The methods tested in this project will be used to acquire these data from a systems approach. This includes multimedia monitoring of air and water quality, soils, and forest, stream, and lake ecosystems. 71 refs., 1 fig., 9 tabs.

  4. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Executive summary

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R. (Editor)

    1980-01-01

    The adequacy of current technology in terms of stage of maturity, of sensing, support systems, and information extraction was assessed relative to oil spills, waste pollution, and inputs to pollution trajectory models. Needs for advanced techniques are defined and the characteristics of a future satellite system are determined based on the requirements of U.S. agencies involved in pollution monitoring.

  5. Microplate fecal coliform method to monitor stream water pollution.

    PubMed Central

    Maul, A; Block, J C

    1983-01-01

    A study has been carried out on the Moselle River by means of a microtechnique based on the most-probable-number method for fecal coliform enumeration. This microtechnique, in which each serial dilution of a sample is inoculated into all 96 wells of a microplate, was compared with the standard membrane filter method. It showed a marked overestimation of about 14% due, probably, to the lack of absolute specificity of the method. The high precision of the microtechnique (13%, in terms of the coefficient of variation for log most probable number) and its relative independence from the influence of bacterial density allowed the use of analysis of variance to investigate the effects of spatial and temporal bacterial heterogeneity on the estimation of coliforms. Variability among replicate samples, subsamples, handling, and analytical errors were considered as the major sources of variation in bacterial titration. Variances associated with individual components of the sampling procedure were isolated, and optimal replications of each step were determined. Temporal variation was shown to be more influential than the other three components (most probable number, subsample, sample to sample), which were approximately equal in effect. However, the incidence of sample-to-sample variability (16%, in terms of the coefficient of variation for log most probable number) caused by spatial heterogeneity of bacterial populations in the Moselle River is shown and emphasized. Consequently, we recommend that replicate samples be taken on each occasion when conducting a sampling program for a stream pollution survey. PMID:6360044

  6. Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends

    EPA Science Inventory

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...

  7. Advanced-technology laser-aided air pollution monitoring in Athens: the Greek differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Kambezidis, H. D.; Efthimiopoulos, Tom; Ehret, Gerhard; Kotsopoulos, Stavros A.; Zevgolis, Dimitrios; Economou, G.; Kosmidis, Constantine E.; Adamopoulos, A. D.; Doukas, A.; Gogou, P.-M.; Karaboulas, D.; Katsenos, J.

    1998-07-01

    This paper describes the needs for establishing a mobile laser laboratory (LIDAR) for air pollution monitoring in the Athens area. It also gives the specifications of the laser unit of the LIDAR system and the various studies to be performed in Athens area.

  8. 40 CFR 60.1230 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What continuous emission monitoring systems must I install for gaseous pollutants? 60.1230 Section 60.1230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW...

  9. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What continuous emission monitoring systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW...

  10. Calibration and Validation of Argus 1000 Spectrometer -- A Canadian Pollution Monitor

    NASA Astrophysics Data System (ADS)

    Jagpal, Rajinder K.

    2011-12-01

    Argus 1000 is a modern, light-weight and inexpensive micro-spectrometer. It is representative of a new generation of miniature remote sensing instruments to monitor pollutants and greenhouse-gas emissions from space. Argus was launched on aboard CanX-2 micro-satellite on the 28th of April 2008 as part of a technology demonstration mission. Operating in the near infrared and nadir-viewing mode, Argus is able to provide an efficient capability for the pollution monitoring of Earth-based sources and sinks of anthropogenic pollution. It has 136 channels in the near infrared spectrum 0.9 -- 1.7 mum with a spectral resolution of 6 nm and an instantaneous spatial resolution of 1.4 km at 640 km orbit. The instrument is a demonstrator for a future micro-satellite network that can supply near-real time monitoring of pollution events in order to facilitate the monitoring of climate change. In this thesis a description of the instrument, its in-orbit performance as well as a preliminary retrieval of space data, based on our theoretical and laboratory calibration programs, are provided and discussed.

  11. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health. PMID:24881392

  12. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Chen, Bicheng; Zheng, Hui; Zhao, Jingchuan

    2015-04-01

    Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei (BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height (PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers (EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2-2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution. The intensity of the sea-land and mountain-valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants, which is strongly affected by the local atmospheric circulations and the distribution of urban areas. PMID:25872705

  13. Developing a smartphone software package for predicting atmospheric pollutant concentrations at mobile locations

    PubMed Central

    Larkin, Andrew; Williams, David E.; Kile, Molly L.; Baird, William M.

    2014-01-01

    Background There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards. PMID:26146409

  14. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  15. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models

  16. Causes of daily cycle variability of atmospheric pollutants in a western Mediterranean urban site (DAURE campaign)

    NASA Astrophysics Data System (ADS)

    Reche, Cristina; Moreno, Teresa; Viana, Mar; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.; Pandolfi, Marco; Amato, Fulvio; Pérez, Noemí; Moreno, Natalia

    2010-05-01

    The 2009 DAURE Aerosol Campaign (23-February-2009 to 27-March-2009 and 1-July to 31-July) (see Presentation: Pandolfi et al., section AS3.2) had the objective of characterising the main sources and chemical processes controlling atmospheric pollution due to particulate matter in the Mediterranean site of Barcelona (Spain). An urban and a rural background site were selected in order to describe both kinds of pollution setting. Several parameters were taken into consideration, including the variability of mass concentration in the coarse and fine fractions, particle number, amount of black carbon and the concentration of gaseous pollutants (SO2, H2S, NO, NO2, CO, O3) present. Comparisons between the chemical composition of ambient atmospheric particles during day versus night were made using twelve-hour PM samples. The data shown here are focused on results obtained for the urban site where two main atmospheric settings were distinguishable in winter, namely Atlantic advection versus local air mass recirculation. During the warmer months Saharan dust intrusions added a third important influence on PM background. The data demonstrate that superimposed upon these background influences on city air quality are important local contributions from road traffic, construction-demolition works and shipping. There is also a major local contribution of secondary aerosols, with elevated number of particles occurring at midday (and especially in summer) when nucleation processes are favoured by photochemistry. Concentrations of SO2 peak at different times to the other gaseous pollutants due to regular daytime onshore south-easterly breezes bringing harbour emissions into the city. Road traffic in Barcelona also has a great impact on air quality, as demonstrated by daily and weekly cycles of gaseous pollutants, black carbon and the finer fraction of PM, with peaks being coincident with traffic rush-hours (8-10h and 20-22h), levels of pollution increasing from Monday to Friday, and

  17. Variational approach to direct and inverse problems of atmospheric pollution studies

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition

  18. Assessment of Near-Source Air Pollution at a Fine Spatial Scale Utilizing a Mobile Monitoring Approach

    EPA Science Inventory

    Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous po...

  19. Monitoring of natural and synthetic hormones in a polluted river.

    PubMed

    Barel-Cohen, Keren; Shore, Laurence S; Shemesh, Mordechai; Wenzel, Andrea; Mueller, Josef; Kronfeld-Schor, Noga

    2006-01-01

    Natural (estradiol, estrone, testosterone, estriol) and synthetic hormones (ethinylestradiol) are constantly excreted into the environment from human and animal sources but little is known of their transport. The purpose of this study was to determine how far along a 100 km river course that hormones could be detected after contamination with sewage effluent or fishpond effluent. Fourteen sites in the Lower Jordan River drainage were sampled (two sites above the sewage effluent contamination, eight sites below the contamination and four tributaries) before and after the dry season of 2002 (Spring and Fall). Samples were tested for testosterone, estrogen (estrone and estradiol combined), estriol, ethinylestradiol, ammonia and fecal coli. It was found that the fecal coli count dropped exponentially (from 250,000 to 60/100 ml3) and the ammonia dropped from 15 to less than 1mg/l over the initial 25 km stretch. Over the same stretch, the hormone values declined by half from their maximum values for testosterone (3.3 ng/l), estriol (8.8 ng/l), ethinylestradiol (6.1 ng/l), and estrogen (4.9 ng/l). From 67 to 100 km mark, testosterone (4.8 ng/l) and estrogen (2.4 ng/l) were still elevated while ethinylestradiol and estriol were >or=1.5 ng/l. The high level of testosterone and estrogen between 67 and 100 km marks was probably due to major discharge from fishponds between 23 and 27 km marks. Levels of ethinylestradiol above 1 ng/l, a level which can affect fish, was seen in 70% (12/16) of the samples tested. The data suggest that hormones in readily measured quantities can be transported considerable distances from the source of pollution. PMID:16095808

  20. Study of air-pollution mixing heights and atmospheric turbulence over New York City - data report

    SciTech Connect

    SethuRaman, S.; Henderson, C.; Volk, T.; Hoffert, M.I.

    1982-08-01

    A major factor that affects the variation of ground-level concentration of air pollutants such as particulates, sulfur oxide, nitrogen oxides, carbon monoxide, hydrocarbons, and photochemical oxidants is the mixing height in the earth's atmosphere close to the surface. This is the layer within which processes associated with the atmospheric turbulence generated by the surface roughness and heating dominate. In order to investigate the variation of this mixing height and associated turbulence over New York City, an experiment was performed over the Barney building of New York University located in lower Manhattan. The mixing height was measured continuously with an acoustic sounder for 10 days from the roof of the Barney building estimated to be 50m above the street level. Several meteorological instruments were used on a 16m tower located on the roof of this building to study other atmospheric variables in the mixed layer. A description is given of the instruments and the data acquisition system used in the experiment. The data reveal significant heights of the mixed layer (200 to 400m) during nocturnal conditions which are probably due to urban heat island effects. Horizontal turbulence levels vary between 10 and 20 percent.

  1. New experience in atmospheric monitoring in Moscow city on the base of WSN technology

    NASA Astrophysics Data System (ADS)

    Asavin, Alex; Litvinov, Artur; Baskakov, Sergey; Chesalova, Elena

    2016-04-01

    The aim of this report is to present the gas emission of H2 in the general composition of atmospheric pollution of Moscow city. We start the project at the beginning of 2015 year in two Moscow academicals organization -Vernadsky Institute of Geochemistry and Analytical Chemistry and Moscow Geological State Museum. One place is in the center of Moscow, near the Kremlin and other one is in the most clear zone of Moscow - Moscow State University place, Vorobyevy Mountains (high point of Moscow). We plan to compare these regions by the concentration of H2 and other gases (CH4, SO2) for green gas pollution. Application network of monitoring is composed of gas sensors (H2, CH4), complex autonomous equipment for measurement temperature, pressure, humidity and network of telecommunications (used ZigBee protocol). Our project offer the technical solutions for monitoring network on the base of WSN (wireless sensor network) technology and the high-sensitive sensors of hydrogen and methane, software and electronic equipment with a transmitter network. This work is the first project in Russia. Gas sensors for monitoring system were developed on the base of MIS-structures (metal-insulator-semiconductor). MIS-sensors are suitable for measuring the concentrations of the following gases: hydrogen, hydrogen sulphide, nitrogen dioxide, ethylmercaptan, chlorine and ammonia. The basis of the sensor is MIS - structure Pd-Ta2O5-SiO2-Si,), which capacitance changes when reaction with gases occurs. The sensor fabrication technology is based on the microelectronics device fabrication technologies and the thin film laser deposition technique. Sensor can be used for measuring the concentration of any gas among noted before, in ambient temperature range -30..+40°C and RH 30-90% (30°C).Three gas sensors with analog interface were made for our experimental monitoring system. Original calibration was made using calibration by special standard mixture of H2 and atmosphere. There are 10-15 points

  2. Using large volume samplers for the monitoring of particle bound micro pollutants in rivers

    NASA Astrophysics Data System (ADS)

    Kittlaus, Steffen; Fuchs, Stephan

    2015-04-01

    The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This

  3. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    SciTech Connect

    Aplin, K. L.; Harrison, R. G.

    2010-12-15

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  4. Spectral Optical Properties of the Polluted Atmosphere of Mexico City (Spring-Summer 1992)

    NASA Technical Reports Server (NTRS)

    Vasilyev, O. B.; Contreras, A. Leyva; Valazquez, A. Muhlia; Peralta-Fabi, R.; Ivlev, L. S.; Kovalenko, A. P.; Vasilyev, A. V.; Jukov, V. M.; Welch, Ronald M.

    1995-01-01

    A joint Mexican, Russian, and American research effort has been initiated to develop new methods to remotely sense atmospheric parameters using ground-based, aircraft, and satellite observations. As a first step in this program, ground-based spectrophotometric measurements of the direct solar radiation have been obtained for the extremely polluted Mexico City atmosphere for the period of April-June 1992. These observations were made at more than 1300 channels in the spectral range of 0.35-0.95 microns. In the UltraViolet (UV) portions of the spectrum (e.g., 0.35 microns), aerosol optical thicknesses were found to range between 0.6 and 1.2; in the visible portion of the spectrum (e. g., 0.5 microns) they ranged from 0.5 to 0.8; and in the Near-Infrared (NIR) spectra (e.g., 0.85 micron), values of 0.3 - 0.5 were found. Applying a Spectral Optical Depth (SOD) model of tau(lambda) = C + A(lambda(sup -varies as), values of 1.55 less than varies as less than 1.85 were obtained for polluted, cloudless days, with values of 1.25 less than varies as less than 1.60 on days with haze. The aerosol particles in the polluted Mexico City atmosphere were found to be strongly absorbing, with a single-scattering albedo of 0.7 - 0.9 in the UV, 0.6 - 0.8 in the visible portion of the spectrum, and 0.4 - 0.7 in the NIR. These values are possibly consistent with a high soot concentration, contributed both by vehicular traffic and heavy industry. Analysis of the measured aerosol SOD using the optical parameters of an urban aerosol model pemiits the concentration of aerosol particles to be estimated in the vertical column; a maximum value of 3 x 10(exp 9) 1/sq cm was found. This concentration of aerosol particles exceeds that found in most other regions of the globe by at least an order of magnitude. Near the ground the aerosol size distributions measured using an optical particle counter were found to be strongly multimodal.

  5. Green seaweed Ulva as a monitor for pollution in coastal waters

    SciTech Connect

    Levine, H.G.

    1983-01-01

    Methods have been developed which capitalize on the capacity of Ulva to function as a bioindicator of pollution in coastal waters. Studies have been performed evaluating the growth of both Ulva tissue discs and Ulva germlings as they relate to physical and chemical parameters of the environment. The Ulva tissue disc method for the in situ monitoring of organic load (nitrogen and phosphorus) in coastal waters was demonstrated to be marginally effective. The in situ differential growth reponse of parthenogenetically developed germlings fulfilled the monitoring objective, but multi-faceted environmental considerations introduced complications which reduced the feasibility of the germling deployment method for routine monitoring. The assessment of Ulva as a bioaccumulator was undertaken. Use of Ulva as an in situ sampling device has demonstrated appreciable success. This in situ monitor can provide concentrated samples of environmental pollutants. Analytical techniques have been employed to extract information on trace metals, pesticides, PCBs and other accumulated organohalides. Ulva is a bioacumulator which, by all standards, has much to recommend it. Precedures have been developed to reduce much of the inherent biological varation. Ulva has world-wide occurrence, and is therefore capable of providing a standard for comparison of data. This alga merits consideration as an international monitor for pollutants in the marine environment.

  6. Can car air filters be useful as a sampling medium for air pollution monitoring purposes?

    PubMed

    Katsoyiannis, Athanasios; Birgul, Askin; Ratola, Nuno; Cincinelli, Alessandra; Sweetman, Andy J; Jones, Kevin C

    2012-11-01

    Urban air quality and real human exposure to chemical environmental stressors is an issue of high scientific and political interest. In an effort to find innovative and inexpensive means for air quality monitoring, the ability of car engine air filters (CAFs) to act as efficient samplers collecting street level air, to which people are exposed to, was tested. In particular, in the case of taxis, air filters are replaced after regular distances, the itineraries are almost exclusively urban, cruising mode is similar and, thus, knowledge of the air flow can provide with an integrated city air sample. The present pilot study focused on polycyclic aromatic hydrocarbons (PAHs), the most important category of organic pollutants associated with traffic emissions. Concentrations of ΣPAHs in CAFs ranged between 650 and 2900 μg CAF(-1), with benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[123-cd]pyrene being the most abundant PAHs. Benzo[a]pyrene (BaP) ranged between 110 and 250 μg CAF(-1), accounting regularly for 5-15% of the total carcinogenic PAHs. The CAF PAH loads were used to derive road-level atmospheric PAH concentrations from a standard formula relating to the CAF air flow. Important parameters/assumptions for these estimates are the cruising speed and the exposure duration of each CAF. Based on information obtained from the garage experts, an average 'sampled air volume' of 48,750 m(3) per CAF was estimated, with uncertainty in this calculation estimated to be about a factor of 4 between the two extreme scenarios. Based on this air volume, ΣPAHs ranged between 13 and 56 ng m(-3) and BaP between 2.1 and 5.0 ng m(-3), suggesting that in-traffic BaP concentrations can be many times higher than the limit values set by the UK (0.25 ng m(-3)) and the European Union (1.0 ng m(-3)), or from active sampling stations normally cited on building roof tops or far from city centres. Notwithstanding the limitations of this approach, the very low cost, the continuous

  7. Retrieval and monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument.

    PubMed

    Sierk, B; Richter, A; Rozanov, A; Von Savigny, Ch; Schmoltner, A M; Buchwitz, M; Bovensmann, H; Burrows, J P

    2006-09-01

    The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) onboard the European Envisat spacecraft performs continuous spectral observations of reflected, scattered and transmitted sunlight in various observation geometries. A unique feature of SCIAMACHY is the capability of probing the atmosphere in three different observation geometries:The nadir, limb, and occultation measurement modes. In nadir mode, column densities of trace gases are retrieved with a spatial resolution of typically 30 x 60 km using the Differential Optical Absorption Spectroscopy (DOAS) technique (Platt and Perner, 1983). Alternating with the nadir measurement, vertical profiles of absorber concentration in the stratosphere are derived in limb and occultation. In this paper we present an overview over some applications of SCIAMACHY data in space-based monitoring of atmospheric pollution. The DOAS algorithms for the retrieval of total column amounts from nadir spectra are briefly described and case studies of pollution events are presented. We also illustrate the technique used to derive stratospheric concentration profiles from limb observations and show comparisons with other remote sensing systems. Special emphasis will be given to techniques, which take advantage of SCIAMACHY's different viewing geometries. In particular, we will discuss the potential and limits of strategies to infer tropospheric abundances of O3 and NO2. PMID:16715354

  8. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  9. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  10. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  11. Persistent organic pollutants in the equatorial atmosphere over the open Indian Ocean.

    PubMed

    Wurl, Oliver; Potter, John Robert; Obbard, Jeffrey Philip; Durville, Caroline

    2006-03-01

    Twelve air samples collected over the Indian Ocean by a high volume air sampler between August 2004 and August 2005 were analyzed for selected polychlorinated biphenyl (PCB) congeners and organochlorine pesticides. The region of the Indian Ocean and adjacent countries is likely to be acting as a source of selected POPs to the global environment. Data were compared with those reported for the last 30 years to examine historical trends of selected persistent organic pollutants (POPs) over the Indian Ocean. Compound concentrations were influenced by the proximity to land and air mass origins. Higher concentrations of atmospheric sigmaPCBs (50-114 pg m(-3)) were found on the remote islands of Chagos Archipelago and Gan, Maldives, and in the proximity of Jakarta, Indonesia, and Singapore. Military activities and unregulated waste combustion were identified as possible sources for atmospheric PCB contaminations at the more remote areas. The highest concentrations of organochlorine pesticides were found adjacent to the coastline of Sumatra and Singapore, where sigmaDDTs (dichlorodiphenyltrichloroethane) and sigmaHCHs (hexacyclohexanes) were as high as 30 and 100 pg m(-3), respectively. A comparison study for the last 30 years over six regions of the Indian Ocean showed that the concentrations of organochlorine pesticides have declined significantly, by a magnitude of two, since the mid 1970s, but were highest at the beginning of the 1990s. The time trend of PCB contamination in the atmosphere over the Indian Ocean is less apparent. The decline of atmospheric POPs over the Indian Ocean may be due to international regulation of the use of these compounds. PMID:16568756

  12. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis.

    PubMed

    Esbrí, José M; López-Berdonces, Miguel Angel; Fernández-Calderón, Sergio; Higueras, Pablo; Díez, Sergi

    2015-04-01

    An integrated analysis approach has been applied to a mercury (Hg) case study on a chlor-alkali plant located in the Ebro River basin, close to the town of Flix (NE Spain). The study focused on atmospheric Hg and its incorporation in soils and lichens close to a mercury cell chlor-alkali plant (CAP), which has been operating since the end of the 19th century. Atmospheric Hg present in the area was characterized by means of seven total gaseous mercury (TGM) surveys carried out from 2007 to 2012. Surveys were carried out by car, walking, and at fixed locations, and covered an area of some 12 km(2) (including the CAP area, the village in which workers live, Flix town, and the Sebes Wildlife Reserve). Finally, an atmospheric Hg dispersion model was developed with ISC-AERMOD software validated by a lichen survey of the area. The results for the atmospheric compartment seem to indicate that the Flix area currently has the highest levels of Hg pollution in Spain on the basis of the extremely high average concentrations in the vicinity of the CAP (229 ng m(-3)). Moreover, the Hg(0) plume affects Flix town center to some extent, with values well above the international thresholds for residential areas. Wet and dry Hg deposition reached its highest values on the banks of the Ebro River, and this contributes to increased soil contamination (range 44-12,900 ng g(-1), average 775 ng g(-1)). A good fit was obtained between anomalous areas indicated by lichens and the dispersion model for 1 year. PMID:25035055

  13. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  14. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    PubMed

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. PMID:24768744

  15. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  16. An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Luo, X. S.; Liu, P.; Tang, A. H.; Liu, J. Y.; Zong, X. Y.; Zhang, Q.; Kou, C. L.; Zhang, L. J.; Fowler, D.; Fangmeier, A.; Christie, P.; Zhang, F. S.; Liu, X. J.

    2013-08-01

    North China is known for its large population densities and rapid development of industry and agriculture. Air quality around Beijing improved substantially during the 2008 Summer Olympics. We measured atmospheric concentrations of various Nr compounds at three urban sites and three rural sites in North China from 2010 to 2012 and estimated N dry and wet deposition by inferential models and the rain gauge method to determine current air conditions with respect to reactive nitrogen (Nr) compounds and nitrogen (N) deposition in Beijing and the surrounding area. NH3, NO2, and HNO3 and particulate NH4+ and NO3-, and NH4+-N and NO3--N in precipitation averaged 8.2, 11.5, 1.6, 8.2 and 4.6 μg N m-3, and 2.9 and 1.9 mg N L-1, respectively, with large seasonal and spatial variability. Atmospheric Nr (especially oxidized N) concentrations were highest at urban sites. Dry deposition of Nr ranged from 35.2 to 60.0 kg N ha-1 yr-1, with wet deposition of Nr of 16.3 to 43.2 kg N ha-1 yr-1 and total deposition of 54.4-103.2 kg N ha-1 yr-1. The rates of Nr dry and wet deposition were 36.4 and 33.2% higher, respectively, at the urban sites than at the rural sites. These high levels reflect the occurrence of a wide range of Nr pollution in North China and suggest that further strict air pollution control measures are required.

  17. Atmospheric chemistry of some concepts for engineered intervention into large-scale pollution problems

    SciTech Connect

    Elliott, S.; Prueitt, M.

    1994-12-31

    As the era of global change approaches, serious debate has begun on the merits of regional and global-scale atmospheric engineering enterprises to repair pollution damage. Post hoc mitigation schemes often prove to be inordinately expensive, and are sometimes dangerous. Here, chemical ramifications are discussed for three engineering concepts the authors are involved in assessing. Two of their projects regard global ozone depletion. It has been proposed that additions of small quantities of the light alkanes to the ozone hole could suppress massive springtime losses over Antarctica by scavenging chlorine atoms. A newly discovered heterogeneous reaction, however, implies that hydrogen atoms released during organic oxidation will activate the scavenged chlorine and more. Alkane injections could thus deepen the hole instead of plugging it. Ground based infrared laser multiple-photon dissociation has been suggested as a means for removing chlorofluorocarbons from the atmosphere before they can reach the ozone layer and cause depletions. The process would release chlorine atoms into the tropospheric system, and might lead to localized ozone production and smog-like plumes downwind of the laser assemblages. The third engineering proposal the authors are evaluating focuses on urban pollution. Reverse convection towers can generate electricity by channeling the cooling from evaporation of water droplets into controlled downdrafts. It has been noted that if the towers were constructed in cities, the falling drops within them would sweep out visibility-degrading particles. However, alterations in NO{sub x} could increase the intensity of midday ozone episodes. Their overall experience indicates that the direction and magnitude of potential chemical side effects of post hoc environmental engineering will be difficult to predict. 99 refs.

  18. Towards a monitoring strategy to assess the anthropogenic signature of traffic derived pollution

    NASA Astrophysics Data System (ADS)

    Ojha, G.; Appel, E.; Magiera, T.; Wawer, M.

    2013-12-01

    Soil contamination along roadsides is one important factor of anthropogenic linear pollution source. In our present study we focus on typical traffic pollutants like heavy metals (HM), platinum group elements (PGEs), polycyclic aromatic hydrocarbons (PAHs) and investigate the use of magnetic parameters, in particular to discriminate the distribution of contaminants by surface runoff, splash-water and airborne transport. For monitoring we removed 10-15 cm of top soil at 1 m distance from the roadside edge and replaced it by 30 plastic boxes, and installed pillars at 1 m and 2 m distances to the roadside with samplers in different heights (ground, 0.5 m, 2 m) as well as 4 m long u-channels (surface and 2.5 cm above ground) perpendicular to the road. Clean quartz sand was used as collector material. Mass-specific magnetic susceptibility (χ) and the concentration of pollutants (HM, PAH) all show a significant increase with time in the box samples, however, there are obviously also seasonal and site-dependent effects which lead to more stable values over several months or even some decrease in the upper few cm due to vertical migration. Similar significant differences of χ, PAH and HM concentrations and an importance of splash-water were noticed in pillars and u-channels within one year of monitoring. Magnetic results revealed that magnetite-like phases are responsible for the enhancement of magnetic concentration. A good correlation between χ and semi-volatile and particle-bound PAH phases as well as HM suggests that χ can be used as a proxy for traffic derived PAH and HM pollution. SEM observations and EDX analyses identified a dominance of angular and aggregates-shaped particles with composition of Fe-Cr-Ni derived from traffic-specific activities (abrasion of tyres, exhausts and brake linings). The results from our monitoring studies will be utilized to develop new innovative roadside pollution monitoring concepts.

  19. Do N-isotopes in atmospheric nitrate deposition reflect air pollution levels?

    NASA Astrophysics Data System (ADS)

    Beyn, Fabian; Matthias, Volker; Aulinger, Armin; Dähnke, Kirstin

    2015-04-01

    Dry and wet deposition of atmospheric reactive nitrogen compounds mostly originate from anthropogenic NH3 and NOX sources. Regarding land-borne pollutants, coastal environments usually have a lower pollution level than terrestrial/urban areas, which have a greater anthropogenic imprint. To investigate this spatial characteristic, we measured NO3- and NH4+ deposition and N isotopes of NO3-(δ15N-NO3-) in 94 and 88 wet and dry deposition samples, respectively, at a coastal (List on Sylt) and a terrestrial/urban site (Geesthacht) in Germany from May 2012 to May 2013. A higher total N deposition rate was observed in Geesthacht (10.4 vs. 8.9 kg N ha-1 yr-1) due to higher NH4+ deposition, which can be explained by more agricultural influence. Surprisingly, overall NO3- fluxes were higher at the coastal site than at the terrestrial/urban site. We assume that sea-salt aerosols and the increased influence of NOX emissions from ships in most recent times compensate the higher terrestrial/urban pollution level and thus lead to higher NO3- fluxes in dry and comparable fluxes in wet deposition at the coastal site, despite a much lower impact of land-based sources. In line with this, overall mean N isotopes values of NO3- show higher values in List than in Geesthacht in dry (+3.1 vs. +1.9‰) as well as in wet deposition (-0.1 vs. -1.0‰). This surprising result can mainly be attributed to an emerging source of NOX, ship emissions, which have a distinctly higher impact at the coastal site. The usage of heavy oil and possibly new technologies in marine engines, which emit more enriched 15N in comparison to older engines, caused the spatial isotopic differences.

  20. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.

    PubMed

    Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun

    2016-08-01

    Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. PMID:27203467

  1. Extreme abundance ratios in the polluted atmosphere of the cool white dwarf NLTT 19868

    NASA Astrophysics Data System (ADS)

    Kawka, Adela; Vennes, Stéphane

    2016-05-01

    We present an analysis of intermediate-dispersion spectra and photometric data of the newly identified cool, polluted white dwarf NLTT 19868. The spectra obtained with X-shooter on the Very Large Telescope-Melipal show strong lines of calcium, and several lines of magnesium, aluminium and iron. We use these spectra and the optical-to-near-infrared spectral energy distribution to constrain the atmospheric parameters of NLTT 19868. Our analysis shows that NLTT 19868 is iron poor with respect to aluminium and calcium. A comparison with other cool, polluted white dwarfs shows that the Fe to Ca abundance ratio (Fe/Ca) varies by up to approximately two orders of magnitudes over a narrow temperature range with NLTT 19868 at one extremum in the Fe/Ca ratio and, in contrast, NLTT 888 at the other extremum. The sample shows evidence of extreme diversity in the composition of the accreted material: in the case of NLTT 888, the inferred composition of the accreted matter is akin to iron-rich planetary core composition, while in the case of NLTT 19868 it is close to mantle composition depleted by subsequent chemical separation at the bottom of the convection zone.

  2. Long Term Atmospheric and Erosional Pollution As Recorded in Lake Sediments from Yunnan, China

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Yu, J.; Bain, D.; Chiou-Peng, T.

    2014-12-01

    Human activities including agriculture, metallurgy (e.g. mining, processing, smelting), and deforestation have altered cycles of erosion and sedimentation in lake environments for thousands of years. In the Yunnan province of southwestern China, where written records are incomplete, it is unclear when, where, and how much disturbance occurred. Lake sediments offer a means to investigate a wide variety of human activities. Here, we present a lake sediment record from Erhai (25°43'N, 100°12'E) based on trace metal concentrations that reveals substantial atmospheric and erosional pollution to the lake environment over the last 4,000 years. Sediments indicate the initiation of copper-based metallurgy at 3,600 years BP, the existence of which has been debated amongst archaeologists. Beginning 2,000 years BP, sedimentation rates increase and concentrations of metals such as aluminum, titanium, lead, and zinc increase. This is likely linked to increased sediment flux to the lake associated with the initiation of terraced agriculture according to historical documents. The most prominent feature of the record is an abrupt and intense increase in lead, silver, cadmium, and zinc beginning at 700 years BP. The peak of this increase occurs at 600 years BP and is consistent with historical records that the Mongols established the first government operated silver mine in Yunnan. Notably, the concentrations of lead during this time are an order of magnitude greater than modern day levels of pollution.

  3. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling.

    PubMed

    Gonze, M-A; Sy, M M

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. PMID:27156215

  4. Marine molluscs in environmental monitoring. II. Experimental exposure to selected pollutants

    NASA Astrophysics Data System (ADS)

    Bresler, Vladimir; Mokady, Ofer; Fishelson, Lev; Feldstein, Tamar; Abelson, Avigdor

    2003-10-01

    In an effort to establish biomonitoring programmes for routine and emergency monitoring of littoral marine habitats, organismal responses are examined in two ways: firstly, in controlled, laboratory studies, where the response may be accurately characterized; secondly, in field-collected specimens, with the hope of obtaining evidence regarding disturbances such as the ones caused by anthropogenic pollution. In many cases, there is a gap between the two types of studies, and different species and experimental and/or analytical procedures are used. In a series of recent studies, we have examined responses of field-collected molluscs, and interpreted our findings with respect to pollution. Here, we report a complementary study, in which molluscs collected from reference and polluted sites were exposed to cadmium or DDT under controlled laboratory conditions. Using fluorescent probes and microfluorometry, we examined the effect of these pollutants on paracellular permeability, lysosomal stability and metabolic status of mitochondria. Our findings indicate that molluscs from polluted sites are less affected, showing significantly smaller alterations in all examined parameters. These findings are in line with previous results showing higher levels of activity of cellular defence mechanisms in molluscs collected from polluted sites. Taken together, the results may be used to establish a reliable biomonitoring system. The sensitivity of the suggested methodology is also expected to qualify such a system for early warning.

  5. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-03-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.

  6. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  7. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    NASA Astrophysics Data System (ADS)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  8. Selection of Atmospheric Environmental Monitoring Sites based on Geographic Parameters Extraction of GIS and Fuzzy Matter-Element Analysis

    PubMed Central

    Wu, Jianfa; Peng, Dahao; Ma, Jianhao; Zhao, Li; Sun, Ce; Ling, Huanzhang

    2015-01-01

    To effectively monitor the atmospheric quality of small-scale areas, it is necessary to optimize the locations of the monitoring sites. This study combined geographic parameters extraction by GIS with fuzzy matter-element analysis. Geographic coordinates were extracted by GIS and transformed into rectangular coordinates. These coordinates were input into the Gaussian plume model to calculate the pollutant concentration at each site. Fuzzy matter-element analysis, which is used to solve incompatible problems, was used to select the locations of sites. The matter element matrices were established according to the concentration parameters. The comprehensive correlation functions KA (xj) and KB (xj), which reflect the degree of correlation among monitoring indices, were solved for each site, and a scatter diagram of the sites was drawn to determine the final positions of the sites based on the functions. The sites could be classified and ultimately selected by the scatter diagram. An actual case was tested, and the results showed that 5 positions can be used for monitoring, and the locations conformed to the technical standard. In the results of this paper, the hierarchical clustering method was used to improve the methods. The sites were classified into 5 types, and 7 locations were selected. Five of the 7 locations were completely identical to the sites determined by fuzzy matter-element analysis. The selections according to these two methods are similar, and these methods can be used in combination. In contrast to traditional methods, this study monitors the isolated point pollutant source within a small range, which can reduce the cost of monitoring. PMID:25923911

  9. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-09-01

    Finding the number and best locations of fixed air quality monitoring stations at street level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Data sets of such urban parameters as land use, building morphology and street geometry in high-resolution grid cells in combination with direct measurements of airborne pollutants at high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self-Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. This proof of concept study showed that the selected urban parameters proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e., group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  10. Finding candidate locations for aerosol pollution monitoring at street level using a data-driven methodology

    NASA Astrophysics Data System (ADS)

    Moosavi, V.; Aschwanden, G.; Velasco, E.

    2015-03-01

    Finding the number and significant locations of fixed air quality monitoring stations at ground level is challenging because of the complexity of the urban environment and the large number of factors affecting the pollutants concentration. Datasets of urban parameters such as land use, building morphology and street geometry in high resolution grid cells in combination with direct measurements of airborne pollutants in high frequency (1-10 s) along a reasonable number of streets can be used to interpolate concentration of pollutants in a whole gridded domain and determine the optimum number of monitoring sites and best locations for a network of fixed monitors at ground level. In this context, a data-driven modeling methodology is developed based on the application of Self Organizing Map (SOM) to approximate the nonlinear relations between urban parameters (80 in this work) and aerosol pollution data, such as mass and number concentrations measured along streets of a commercial/residential neighborhood of Singapore. Cross-validations between measured and predicted aerosol concentrations based on the urban parameters at each individual grid cell showed satisfying results. The urban parameters used in this case proved to be an appropriate indirect measure of aerosol concentrations within the studied area. The potential locations for fixed air quality monitors are identified through clustering of areas (i.e. group of cells) with similar urban patterns. The typological center of each cluster corresponds to the most representative cell for all other cells in the cluster. In the studied neighborhood four different clusters were identified and for each cluster potential sites for air quality monitoring at ground level are identified.

  11. Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation.

    PubMed

    Bravo, Mercedes A; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J; Bell, Michelle L

    2012-07-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM(2.5)) and ozone (O(3)) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM(2.5) and O(3), respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O(3) (annual normalized mean bias=4.30%), while modeled PM(2.5) had an annual normalized mean bias of -2.09%, although bias varied seasonally, from 32% in November to -27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. PMID:22579357

  12. Comparison of exposure estimation methods for air pollutants: Ambient monitoring data and regional air quality simulation

    PubMed Central

    Bravo, Mercedes A.; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J.; Bell, Michelle L.

    2012-01-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) and ozone (O3) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM2.5 and O3, respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O3 (annual normalized mean bias = 4.30%), while modeled PM2.5 had an annual normalized mean bias of −2.09%, although bias varied seasonally, from 32% in November to −27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. PMID:22579357

  13. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we

  14. Mountain cold-trapping increases transfer of persistent organic pollutants from atmosphere to cows' milk.

    PubMed

    Shunthirasingham, Chubashini; Wania, Frank; MacLeod, Matthew; Lei, Ying Duan; Quinn, Cristina L; Zhang, Xianming; Scheringer, Martin; Wegmann, Fabio; Hungerbühler, Konrad; Ivemeyer, Silvia; Heil, Fritz; Klocke, Peter; Pacepavicius, Grazina; Alaee, Mehran

    2013-08-20

    Concentrations of long-lived organic contaminants in snow, soil, lake water, and vegetation have been observed to increase with altitude along mountain slopes. Such enrichment, called "mountain cold-trapping", is attributed to a transition from the atmospheric gas phase to particles, rain droplets, snowflakes, and Earth's surface at the lower temperatures prevailing at higher elevations. Milk sampled repeatedly from cows that had grazed at three different altitudes in Switzerland during one summer was analyzed for a range of persistent organic pollutants. Mountain cold-trapping significantly increased air-to-milk transfer factors of most analytes. As a result, the milk of cows grazing at higher altitudes was more contaminated with substances that have regionally uniform air concentrations (hexachlorobenzene, α-hexachlorocyclohexane, endosulfan sulfate). For substances that have sources, and therefore higher air concentrations, at lower altitudes (polychlorinated biphenyls, γ-hexachlorocyclohexane), alpine milk has lower concentrations, but not as low as would be expected without mountain cold-trapping. Differences in the elevational gradients in soil concentrations and air-to-milk transfer factors highlight that cold-trapping of POPs in pastures is mostly due to increased gas-phase deposition as a result of lower temperatures causing higher uptake capacity of plant foliage, whereas cold-trapping in soils more strongly depends on wet and dry particle deposition. Climatic influences on air-to-milk transfer of POPs needs to be accounted for when using contamination of milk lipids to infer contamination of the atmosphere. PMID:23885857

  15. Atmospheric mercury pollution at an urban site in central Taiwan: mercury emission sources at ground level.

    PubMed

    Huang, Jiaoyan; Liu, Chia-Kuan; Huang, Ci-Song; Fang, Guor-Cheng

    2012-04-01

    Total gaseous mercury (Hg) (TGM), gaseous oxidized Hg (GOM), and particulate-bound Hg (PBM) concentrations and dry depositions were measured at an urban site in central Taiwan. The concentrations were 6.14±3.91 ng m(-3), 332±153, and 71.1±46.1 pg m(-3), respectively. These results demonstrate high Hg pollution at the ground level in Taiwan. A back trajectory plot shows the sources of the high TGM concentration were in the low atmosphere (<500 m) and approximately 50% of the air masses coming from upper troposphere (>500 m) were associated with low TGM concentrations. This finding implies that Hg is trapped in the low atmosphere and comes from local Hg emission sources. The conditional probability function (CPF) reveals that the plumes of high TGM concentrations come from the south and northwest of the site. The plume from the south comes from two municipal solid waste incinerators (MSWIs). However, no significant Hg point source is located to the northwest of the site; therefore, the plumes from the northwest are hypothesized to be related to the combustion of agricultural waste. Dry deposition fluxes of Hg measured at this site considerably exceeded those measured in North America. Overall, this area is regarded as a highly Hg contaminated area because of local Hg emission sources. PMID:22316589

  16. Performance of Off-the-Shelf Technologies for Spacecraft Cabin Atmospheric Major Constituent Monitoring

    NASA Technical Reports Server (NTRS)

    Tatara, J. D.; Perry, J. L.

    2004-01-01

    Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.

  17. [Lichens on branches of Siberian fir (Abies sibirica Ledeb) as indicators of atmospheric pollution in forests].

    PubMed

    Otniukova, T N; Sekretenko, O P

    2008-01-01

    The abundance distribution of different ecological groups of lichens depending on bark pH has been studied on 1- to 24-year shoots of Siberian fir in the mountains of southern Siberia. Along with acidophytic lichens commonly found on the Siberian fir (Usnea sp., Bryoria sp., etc.), its young shoots are also colonized by nitrophytic species (Physcia tenella, Melanelia exasperatula, etc.), which is evidence for the increasing pH of shoot bark. The proportion of thalli of nitrophytic lichen species shows a significant positive correlation with the pH of the upper (dusted) bark layer and is greater in the Eastern Sayan (at bark pH averaging 5.4) than in the Western Sayan (pH 4.7). The trends revealed in this study may be used for indication of pollution and ecological monitoring of forest ecosystems. PMID:18771033

  18. National Oceanic and Atmospheric Administration /NOAA/ contamination monitoring instrumentation

    NASA Technical Reports Server (NTRS)

    Maag, C. R.

    1980-01-01

    The JPL has designed and built a plume contamination monitoring package to be installed on a NOAA environmental services satellite. The package is designed to monitor any condensible contamination that occurs during the ignition and burn of a TE-M-364-15 apogee kick motor. The instrumentation and system interface are described, and attention is given to preflight analysis and test.

  19. Identifying atmospheric monitoring needs for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.; Russo, Dane M.

    1990-01-01

    The monitoring needs for Space Station Freedom were identified by examining: the experiences of past missions; ground based tests of proposed life support systems; a contaminant load model; metabolic production from an 8-person crew; and a fire scenario. Continuous monitoring is recommended for components critical for life support, and that intermittent analysis be provided for all agents that may exceed one-half the spacecraft maximum allowable concentration. The minimum monitoring effort recommended includes continuous monitoring for: N2, O2, CO2, CO, H2O, H2, CH4, nonmethane hydrocarbons, aromatic hydrocarbons, refrigerants, and halons. Information on over 70 compounds is presented on the rationale for monitoring the frequency of analysis, and concentration ranges.

  20. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    PubMed

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  1. Joint Conference on Sensing of Environmental Pollutants, 2nd, Washington, D.C., December 10-12, 1973, Proceedings

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Subjects considered are related to the remote passive sensing of atmosphere pollutants, the extension of laboratory measurement techniques for field use, instrument quality and measurement standardization, the remote active sensing of atmospheric pollutants, stationary source sensing, and air quality standards and measurement accuracy. Aspects of radiological, electromagnetic, and acoustic pollution monitoring are discussed together with new methods in particulate analysis, the measurement of meteorological variables that impact on atmospheric pollutants, and the impact of meteorological parameters on pollution analysis. The in-situ sensing of acoustic chemical and biological pollutants is reported along with global scale pollution monitoring and the remote sensing of water pollutants. Individual items are announced in this issue.

  2. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Zhiming

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  3. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    PubMed Central

    Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  4. Report to the Congress on ocean pollution, monitoring, and research, October 1988 through September 1989

    SciTech Connect

    Not Available

    1990-08-01

    The report is structured along organizational and programmatic lines, and emphasizes the activities and accomplishments of the Ocean Assessments Division and the National Ocean Pollution Program Office. As in other recent annual reports, only those monitoring, research, and assessment activities that receive NOAA support under either Title II of the MPRSA or Sections 4, 6, or 8 of NOPPA are described. Activities currently conducted under the program include: a cooperative interagency analysis of marine pollution issues and priorities, and planning the necessary research and monitoring strategies to meet these priorities, a national program to assess the status and trends of coastal marine and estuarine environmental quality, including a NOAA quality assurance program for analytical measurements, a program to assess the effects of selected toxic chemicals on populations of living marine resources, and a national capability to provide scientific support services during Federal responses to spills of oil and hazardous materials and during cleanup of hazardous waste sites in coastal areas.

  5. Report to the Congress on ocean pollution, monitoring, and research, October 1987 through September 1988

    SciTech Connect

    Not Available

    1989-08-01

    The report is structured along organizational and programmatic lines, and emphasizes the activities and accomplishments of the Ocean Assessments Division and the National Ocean Pollution Program Office. As in other recent annual reports, only those monitoring, research, and assessment activities that receive NOAA support under either Title II of the MPRSA or Sections 4, 6, or 8 of NOPPA are described. Activities currently conducted under the program include: a cooperative interagency analysis of marine pollution issues and priorities, and planning the necessary research and monitoring strategies to meet these priorities, a national program to assess the status and trends of coastal marine and estuarine environmental quality, including a NOAA quality assurance program for analytical measurements, a program to assess the effects of selected toxic chemicals on populations of living marine resources and a national capability to provide scientific support services during Federal responses to spills of oil and hazardous materials and during cleanup of hazardous waste sites in coastal areas.

  6. Atmospheric modeling of air pollution. 1979-May, 1980 (a bibliography with abstracts). Report for 1979-May 80

    SciTech Connect

    Carrigan, B.

    1980-06-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 130 abstracts, 88 of which are new entries to the previous edition.)

  7. Atmospheric modeling of air pollution. 1979-October 1981 (Citations from the NTIS Data Base). Report for 1979-October 1981

    SciTech Connect

    Not Available

    1981-11-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 248 citations, 118 of which are new entries to the previous edition.)

  8. Atmospheric modeling of air pollution. 1977-78 (a bibliography with abstracts). Report for 1977-1978

    SciTech Connect

    Carrigan, B.

    1980-06-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 216 abstracts, none of which are new entries to the previous edition.)

  9. The research and development of an air pollutant monitoring system based on DOAS technology

    NASA Astrophysics Data System (ADS)

    Li, Hua; Liu, Han-peng; Zheng, Ming; Meng, Xiao-feng

    2009-07-01

    This article illuminates a kind of sensor used in measuring the concentrations of the main pollutants in flue gas streams (Dust, SO2 and NOx) based on the UV-DOAS technology in air pollutant monitoring. Using the high-level embedded microprocessors and complex programmable logic device, the sensor completes system measurement, management and signal communication, and spectrum inversion and data saving are processed by PC at the same time. Differential optical absorption spectroscopy (DOAS) technology is used in the flue gas pollutant factor analysis through the sensor construction. The absorption spectra of SO2, NOx and smoke dust are inverted to reduce the interference of other factors in flue gas streams. At the same time, the effect of light source fluctuation and optical transmission ratio is considered and removed in the measurement system. The result shows that the monitoring accuracy of concentration of sulfur dioxide and smoke dust achieves +/-2%, the concentration of nitrogen oxides accuracy achieves +/-3%, which meets the requirements of the national standard. The sensor can be directly installed in a flue. As a result, process of measuring is simplified and measurement accuracy is improved. Further more, this method increases the stability of the system and reduces the maintenance costs. Measurement data is transferred through data bus between the sensor and upper PC to realize remote control and real-time measurement. Considering the severe conditions in measuring the main pollutants in flue gas streams, applications of anti-interference and anti-corrosion etc. are taken in the system design.

  10. Estimated atmospheric emissions from biodiesel and characterization of pollutants in the metropolitan area of Porto Alegre-RS.

    PubMed

    Teixeira, Elba C; Mattiuzi, Camila D P; Feltes, Sabrina; Wiegand, Flavio; Santana, Eduardo R R

    2012-09-01

    The purpose of the present study was to estimate emissions of some pollutants (CO, NO(X), HC, SO(X), and PM) in diesel fleet due to the addition of biodiesel in different blends, as well as to assess atmospheric pollutant concentrations in the metropolitan area of Porto Alegre (MAPA). The methodology was based on inventories from mobile sources based on US EPA's technical report. Regarding air quality the following parameters were determined: PM(10), PM(2.5), CO, NO(X), O(3), SO(2), HC and PAHs. The results showed a decrease for emissions PM, CO, and HC, and a slight increase for NO(X). The characterization of atmospheric pollutants in the metropolitan area of Porto Alegre showed that they are influenced by mobile sources, particularly diesel vehicles. The diagnosis of ratios analysis that was applied to facilitate the identification of sources of PAHs, indicated an influence of diesel oil. PMID:22886159

  11. [Real-time forecasting model for monitoring pollutant with differential optical absorption spectroscopy].

    PubMed

    Li, Su-Wen; Liu, Wen-Qing; Xie, Pin-Hua; Wang, Feng-Sui; Yang, Yi-Jun

    2009-11-01

    For real-time and on-line monitoring DOAS (differential optical absorption spectroscopy) system, a model based on an improved Elman network for monitoring pollutant concentrations was proposed. In order to reduce the systematical complexity, the forecasting factors have been obtained based on the step-wise regression method. The forecasting factors were current concentrations, temperature and relative humidity, and wind speed and wind direction. The dynamic back propagation (BP) algorithm was used for creating training set. The experiment results show that the predicted value follows the real well. So the modified Elman network can meet the demand of DOAS system's real time forecasting. PMID:20101985

  12. Industry sector analysis, Hong Kong: Air pollution monitoring equipment. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the air pollution monitoring equipment market in Hong Kong. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Hong Kong consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

  13. Using Mobile Monitoring to Assess Spatial Variability in Urban Air Pollution Levels: Opportunities and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Larson, T.

    2010-12-01

    Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those

  14. Magnetic monitoring of pollution deposited on leaves, bark and soil: preliminary results

    NASA Astrophysics Data System (ADS)

    Górka-Kostrubiec, B.; Jeleńska, M.; Król, E.

    2012-04-01

    We report preliminary results of magnetic study of pollution deposited on leaves, bark and soil in six locations in Warsaw of various level of contamination. Leaves and bark samples were taken at about 1.5m height from different spots of tree crown and at about 0.5m from surface, respectively. Top-soil samples were taken at a distance of no more than 2.5 m from a tree. Samples of leaves and bark were collected from horse chestnut trees in spring and autumn after few rainless days. In spring in several places lime tree leaves were sampled. Dry leaves were crashed and closely packed in plastic boxes. Mass specific susceptibility was measured in three frequency of magnetic filed as a detector of magnetic particles of pollution. Comparison of autumn and spring data provides information about the amount of pollution deposited during vegetation season. Data for horse chestnut and lime tree leaves show that horse chestnut is better collector of particulates. Because of that we decided not to collect leaves from lime tree in the autumn. The relationship of soil susceptibility (X) with X of leaves and bark reveal linear correlation with correlation coefficient R=0.97 and 0.5 for leaves and bark, respectively. Distribution of X values well agree with exposition on roadside particulate pollution. These preliminary results demonstrate that leaves and bark can be used for magnetic monitoring as detector of pollution level and can provide us with information about seasonal variation of this level.

  15. Global monitoring plan for persistent organic pollutants (POPs) under the Stockholm Convention: Triggering, streamlining and catalyzing global POPs monitoring.

    PubMed

    Magulova, Katarina; Priceputu, Ana

    2016-10-01

    The Stockholm Convention on Persistent Organic Pollutants (POPs) aims to protect human health and the environment from POPs through a range of measures aimed at reducing and ultimately eliminating their releases into the environment and subsequent human exposure. Article 16 of the Convention sets the basis for a mechanism to assess the success of the activities undertaken worldwide to implement the Convention. One of major pillars for the evaluation of the effectiveness of the Convention is monitoring data obtained through the Global Monitoring Plan (GMP) for POPs. The implementation of the GMP over the last eleven years, since the entry into force of the Convention, shows how a global treaty such as the Stockholm Convention streamlined existing monitoring efforts and triggered harmonization and further development of a global monitoring network. In its initial stages, long term POPs monitoring programmes were available only in some parts of the globe. Over more than a decade of generation of harmonized, comparable monitoring data on 23 chemicals of global concern, a rich and extremely valuable dataset has been generated in the frame of the GMP. Long-term monitoring programmes have enlarged the scope of their activities to cover newly listed chemicals, and new programmes have emerged. Monitoring data are broadly shared through the GMP data warehouse, the Convention's clearing-house mechanism, and through other appropriate global tools. Through its global reach, the GMP contributes to the global chemicals and waste policy agenda, supports and triggers further research initiatives, and provides information to the general public at large. PMID:26794340

  16. Monitoring the pollution of river Ganga by tanneries using the multiband ground truth radiometer

    NASA Astrophysics Data System (ADS)

    Tripathi, Nitin Kumar; Venkobachar, C.; Singh, Ramesh Kumar; Singh, Shiv Pal

    The feasibility of utilising the multiband ground truth radiometer (MGTR) for monitoring the pollution of the river Ganga by tanneries at Kanpur, India is explored. Parameters targeted in the study were Secchi depth (a measure of turbidity), turbidity, tannin concentration and chemical oxygen demand (COD). MGTR offers reflectance in 11 bands within the spectral range of 0.45 to 0.90 μm. The reflectance data has been utilised to develop empirical relationships with Secchi depth, turbidity and tannin concentration. The spectral reflectance data does not directly indicate the measure of the COD. However, an empirical relationship between tannin concentration and COD has been established which allows an indirect measurement of the COD. The conventional environmental engineering laboratory approach for determination of the above parameters is time consuming, expensive and slow. This results in serious constraints in monitoring pollution parameters at frequent intervals for a large number of sampling points. The outcome of the study shows the viability of MGTR as a means of quick, repetitive and handy remote sensing for monitoring pollution caused by tanneries in narrow surface streams.

  17. Design of Laser Based Monitoring Systems for Compliance Management of Odorous and Hazardous Air Pollutants in Selected Chemical Industrial Estates at Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.

    2014-12-01

    Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.

  18. URBAN AIR POLLUTION WORLDWIDE: RESULTS OF THE GEMS (GLOBAL ENVIRONMENT MONITORING SYSTEM) AIR MONITORING PROJECT

    EPA Science Inventory

    Measurements of sulfur dioxide and suspended particulate matter in urban areas have been compiled in an international air quality monitoring project. Interpretative analyses of the 1973 to 1980 data have been completed, showing the general range of concentrations, intercity compa...

  19. Laser Remote Measurements of atmospheric pollutants (Las-R-Map): UV-Visible Laser system description and data processing

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Wyk, H. V.

    Laser radar more popularly known as LIDAR LIght Detection And Ranging is becoming one of the most powerful techniques for active remote sensing of the earth s atmosphere Around the globe several new lidar systems have been developed based on the scientific interest Particularly the DIfferential Absorption Lidar DIAL technique is only one which can provide the better accuracy of measuring atmospheric pollutants Using modern advanced techniques and instrumentation a mobile DIAL system called laser remote measurements of atmospheric pollutants hear after referred as Las-R-Map is designed at National Laser Centre NLC --Pretoria 25 r 45 prime S 28 r 17 prime E Las-R-Map is basically used for measuring atmospheric pollutants applying the principle of absorption by constituents The system designed primarily to focus on the following pollutant measurements such as SO 2 CH 4 CO 2 NO 2 and O 3 In future the system could be used to measure few particulate matter between 2 5 mu m and 10 mu m Benzene Hg 1 3-butadiene H 2 S HF and Volatile Organic Compounds VOC Las-R-map comprises of two different laser sources Alexandrite and CO 2 optical receiver data acquisition and signal processor It uses alexandrite laser in the UV-Visible region from 200 nm to 800 nm and CO 2 laser in the Far-IR region from 9 2 mu m to 10 8 mu m Such two different laser sources make feasibility for studying the wide range of atmospheric pollutants The present paper is focused on technical details

  20. Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Ghedira, H.

    2013-12-01

    A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab

  1. Detecting storage pathogens by monitoring volatiles in the storage atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogenic rot of stored potatoes results in loss of product and decreased tuber quality on an annual basis. The objective of this research project is to determine if measuring the abundance of low molecular weight volatile compounds in the atmosphere of bulk potato storages provides information tha...

  2. Atmospheric transport and dispersion of pollutants and related meteorological studies. Progress report, FY 1982

    SciTech Connect

    Draxler, R.R.; Ferber, G.J.; Heffter, J.L.; Cordella, R.H. Jr.; Miller, J.M.

    1982-09-01

    Research emphasizes model simulation and experimental verification of the transport and dispersion of atmospheric pollutants. Field experiments of mechanisms affecting long-range transport which provide dispersion data for verification of regional and continental models are stressed. A multi-layer trajectory-dispersion model that incorporates the effects of wind shear was tested against long-range concentration data. Models for prognostic trajectory calculations, using wind fields, have been recoded to permit operational procedures on interactive terminals; and will be used in tracer experiments and emergencies. A new tracer system, using perfluorocarbons, has been developed to provide for long-range dispersion experiments and model validation studies. The tracer system was used in the DOE-ASCOT studies of nocturnal drainage flows in the Geysers geothermal development area. A long-range dispersion study, the Cross-Appalachian Tracer Experiments (CAPTEX) is planned. There will be a series of perfluorocarbon tracer releases in the Ohio Valley with tracer concentration measurements from Ohio to the East Coast. A trial run is planned for September 1982 and a full-scale program in the summer of 1983. A high voluem version of the automatic sequential sampler and an inexpensive adsorption tube sampler were developed. Another tracer experiment is being carried out in collaboration with the DOE Savnnah River Laboratory to provide long-term, regional-scale transport and diffusion data for air pollution model verification. Krypton-85, is sampled at five stations from 300 to 1000 km to the northeast. This one-year twice daily sampling program may be extended to 18 months.

  3. Operations and maintenance manual, atmospheric contaminant sensor. Addendum 1: Carbon monoxide monitor model 204

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An instrument for monitoring the carbon monoxide content of the ambient atmosphere is described. The subjects discussed are: (1) theory of operation, (2) system features, (3) controls and monitors, (4) operational procedures, and (5) maintenance and troubleshooting. Block drawings and circuit diagrams are included to clarify the text.

  4. VOC Monitoring to Understand Changes in Secondary Pollution in Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Jaimes-Palomera, M.; Retama, A.; Neria, A.; Rivera, O.; Elias, G.

    2015-12-01

    Previous studies have documented the distribution, diurnal pattern, magnitude, and reactivity of the volatile organic compounds (VOCs) within and downwind of Mexico City. These studies have provided valuable data, but their duration has been restricted to a few weeks since the majority have been part of intensive field campaigns. With the aim of addressing the VOC pollution problem during longer monitoring periods and evaluating control measures to reduce the production of ozone and secondary aerosols, the environmental authorities of Mexico City through its Air Quality Monitoring Network have developed a program to monitor over 50 VOC species every hour in selected existing air quality monitoring stations inside and outside the urban sprawl. The program started with a testing period of six months in 2012 covering the ozone-season (Mar-May). Results of this first campaign are presented in this paper. Using as reference VOC data collected in 2003, reductions in the mixing ratios of light alkanes associated with the consumption of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents were observed. In contrast, a clear increase in the mixing ratio of olefins was observed. This increase is of relevance to understand the moderate success in the reduction of ozone and fine aerosols in recent years in comparison to other criteria pollutants, which have substantially decreased. Particular features of the diurnal profiles, reactivity with the hydroxyl radical and correlations between individual VOCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here expect to highlight the importance of monitoring VOCs to better understand the drivers and impacts of secondary pollution in large cities like Mexico City.

  5. Development of radiocarbon-based methods to investigate atmospheric fossil carbon pollution

    NASA Astrophysics Data System (ADS)

    Major, István; Vodila, Gergely; Furu, Enikő; Kertész, Zsófia; Haszpra, László; Hajdas, Irka; Molnár, Mihály

    2013-04-01

    Gaseous and solid state carbon containing compounds significantly affect global climate change based on current atmospheric research results. Major part of the anthropogenic changes of the atmospheric carbon dioxide can be attributed to the combustion of fossil fuels and 95% of their emission is realised in the industrially active areas of the northern hemisphere. Anthropogenic carbonaceous aerosol particles play also a key role in the atmosphere modifying indirectly climate change and the quality of the environment and affecting directly human health. Since September 2008, the CO2 concentration of the air and its specific radiocarbon content (14C) has been monitored in the city of Debrecen (Hungary) and in a rural background site, Hegyhátsál (Hungary). To obtain a more representative view regarding anthropogenic contribution of the atmospheric carbon species, our measurement programme was enhanced by including the investigation of atmospheric aerosols in 2010. An aerosol cascade sampler for continuous monitoring was installed close to the atmospheric CO2 sampling station in the inner city of Debrecen. For 14C measurements, special sample preparation system and method was developed for the tiny total carbon content of the aerosol samples collected synchronously with the carbon dioxide observations. The radiocarbon measurement of the aerosol samples was performed by a high-sensitivity accelerator mass spectrometer (AMS) dedicated to environmental samples (EnvironMICADAS) developed together with ETH Zürich. The δ13C values of the samples were measured by the Dual Inlet system of a Delta PLUS XP Isotope Ratio Mass Spectrometer from the tiny CO2 amount aimed to reserve. The atmospheric fossil CO2 and fossil PM2.5 concentration variations show high similarity in the air of Debrecen city. During the winter heating period, due to the meteorological conditions (frequent thermal inversion, decreasing rate of mixing and upwelling), significantly higher total PM2

  6. [Analysis on Emission Inventory and Temporal-Spatial Characteristics of Pollutants from Key Coal-Fired Stationary Sources in Jiangsu Province by On-Line Monitoring Data].

    PubMed

    Zhang, Ying-jie; Kong, Shao-fei; Tang, Li-li; Zhao, Tian-liang; Han, Yong-xiang; Yu, Hong-xia

    2015-08-01

    Emission inventory of air pollutants is the key to understand the spatial and temporal distribution of atmospheric pollutants and to accurately simulate the ambient air quality. The currently established emission inventories are still limited on spatial and temporal resolution which greatly influences the numerical prediction accuracy of air quality. With coal-fired stationary sources considered, this study analyzed the total emissions and monthly variation of main pollutants from them in 2012 as the basic year, by collecting the on-line monitoring data for power plants and atmospheric verifiable accounting tables of Jiangsu Province. Emission factors in documents are summarized and adopted. Results indicated that the emission amounts of SO2, NOx, TSP, PM10, PM2.5, CO, EC, OC, NMVOC and NH3 were 106.0, 278.3, 40.9, 32.7, 21.7, 582.0, 3.6, 2.5, 17.3 and 2.2 kt, respectively. They presented monthly variation with high emission amounts in February, March, July, August and December and low emissions in September and October. The reason may be that more coal are consumed which leads to the increase of pollutants emitted, to satisfy the needs, of heat and electricity power supply in cold and hot periods. Local emission factors are needed for emission inventory studies and the monthly variation should be considered when emission inventories are used in air quality simulation. PMID:26592003

  7. [Pollution characteristics and health risk assessment of atmospheric volatile organic compounds (VOCs) in pesticide factory].

    PubMed

    Tan, Bing; Wang, Tie-Yu; Pang, Bo; Zhu, Zhao-Yun; Wang, Dao-Han; Lü, Yong-Long

    2013-12-01

    A method for determining volatile organic compounds (VOCs) in air by summa canister collecting and gas chromatography/ mass spectroscopy detecting was adopted. Pollution condition and characteristics of VOCs were discussed in three representative pesticide factories in Zhangjiakou City, Hebei Province. Meanwhile, an internationally recognized four-step evaluation model of health risk assessment was applied to preliminarily assess the health risk caused by atmospheric VOCs in different exposure ways, inhalation and dermal exposure. Results showed that serious total VOCs pollution existed in all factories. Concentrations of n-hexane (6161.90-6910.00 microg x m(-3)), benzene (126.00-179.30 microg x m(-3)) and 1,3-butadiene (115.00-177.30 microg x m(-3)) exceeded the Chronic Inhalation Reference Concentrations recommended by USEPA, corresponding to 700, 30 and 2 microg x m(-3), respectively. Concentration of dichloromethane (724.00 microg x m(-3)) in factory B was also higher than the reference concentration (600 microg x m(-3)). Results of health risk assessment indicated that non-carcinogenic risk indexes of VOCs ranged from 1.00E-04 to 1.00E + 00 by inhalation exposure, and 1.00E-09 to 1.00E-05 by dermal exposure. Risk indexes of n-hexane and dichloromethane by inhalation exposure in all factories exceeded 1, and risk index of benzene by inhalation in factory B was also higher than 1. Carcinogenic risk indexes exposed to VOCs ranged from 1.00E-08 to 1.00E-03 by inhalation exposure and 1. oo00E -13 to 1.00E-08 by dermal exposure. Cancer risk of 1,3-butadiene by inhalation exceeded 1.0E-04, which lead to definite risk, and those of benzene by inhalation also exceeded the maximum allowable level recommended by International Commission on Radiological Protection (5.0E-05). The risks of dermal exposure presented the same trend as inhalation exposure, but the level was much lower than that of inhalation exposure. Thus, inhalation exposure of atmospheric VOCs was the

  8. Detection and monitoring of volatile and semivolatile pollutants in soil through different sensing strategies

    NASA Astrophysics Data System (ADS)

    De Cesare, Fabrizio; Macagnano, Antonella

    2013-04-01

    Pollutants in environments are more and more threatening the maintenance of health of habitats and their inhabitants. A proper evaluation of the impact of contaminants from several different potential sources on soil quality and health and then on organisms living therein, and the possible and sometime probable related risk of transfer of pollutants, with their toxic effects, to organisms living in different environmental compartments, through the trophic chain up to humans is strongly required by decision makers, in order to promptly take adequate actions to prevent environmental and health damages and monitor the exposure rate of individuals to toxicants. Then, a reliable detection of pollutants in environments and the monitoring of dynamics and fate of contaminants therein are of utmost importance to achieve this goal. In soil, chemical and physical techniques to detect pollutants have been well known for decades, but can often drive to both over- and underestimations of the actual bioavailable (and then toxic) fraction of contaminants, and then of the real risk for organisms, deriving from their presence therein. The use of bioindicators (both living organisms and enzyme activities somehow derived from them) can supply more reliable information about the quantification of the bioavailable fraction of soil pollutants. In the last decades, a physicochemical technique, such as SPME (solid phase microextraction) followed by GC-MS analysis, has been demonstrated to provide similar results to those obtained from some pedofaunal populations, used as bioindicators, as concerns the bioavailable pollutant quantification in soil. More recently, we have applied a sensing technology, namely electronic nose (EN), which comprises several unspecific sensors arranged in an array and that is capable of providing more qualitative than quantitative information about complex air samples, to the study of soils contaminated with semivolatile (SVOCs) pollutants, such as polycyclic

  9. The ATMOS (Atmospheric Trace MOlecule Spectroscopy) experiment - A tool for global monitoring of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Zander, R.; Gunson, M. R.; Farmer, C. B.; Norton, R. H.; Rinsland, C. P.

    1990-01-01

    A review is presented of the objectives, instrumentation, performance and results of the ATMOS program developed by NASA-JPL as part of the Spacelab 3 shuttle payload. ATMOS was developed to obtain high-resolution spectroscopic information of the middle atmosphere, from which the vertical distribution of the most possible trace and minor molecules could be retrieved. A complete occultation included not only data recorded when the optical path traversed the earth's atmosphere, but also many spectra with tangent heights big enough for no more telluric absorptions to be detected. The averaging of such 'high sun' observations has provided high quality solar spectra totally free of atmospheric absorption features.

  10. GLANCE - calculatinG heaLth impActs of atmospheric pollutioN in a Changing climatE

    NASA Astrophysics Data System (ADS)

    Vogel, Leif; Faria, Sérgio; Markandya, Anil

    2016-04-01

    Current annual global estimates of premature deaths from poor air quality are estimated in the range of 2.6-4.4 million, and 2050 projections are expected to double against 2010 levels. In Europe, annual economic burdens are estimated at around 750 bn €. Climate change will further exacerbate air pollution burdens; therefore, a better understanding of the economic impacts on human societies has become an area of intense investigation. European research efforts are being carried out within the MACC project series, which started in 2005. The outcome of this work has been integrated into a European capacity for Earth Observation, the Copernicus Atmospheric Monitoring Service (CAMS). In MACC/CAMS, key pollutant concentrations are computed at the European scale and globally by employing chemically-driven advanced transport models. The project GLANCE (calculatinG heaLth impActs of atmospheric pollutioN in a Changing climatE) aims at developing an integrated assessment model for calculating the health impacts and damage costs of air pollution at different physical scales. It combines MACC/CAMS (assimilated Earth Observations, an ensemble of chemical transport models and state of the art ECWMF weather forecasting) with downscaling based on in-situ network measurements. The strengthening of modelled projections through integration with empirical evidence reduces errors and uncertainties in the health impact projections and subsequent economic cost assessment. In addition, GLANCE will yield improved data accuracy at different time resolutions. This project is a multidisciplinary approach which brings together expertise from natural sciences and socio economic fields. Here, its general approach will be presented together with first results for the years 2007 - 2012 on the European scale. The results on health impacts and economic burdens are compared to existing assessments.

  11. Air pollution monitoring using emission inventories combined with the moss bag approach.

    PubMed

    Iodice, P; Adamo, P; Capozzi, F; Di Palma, A; Senatore, A; Spagnuolo, V; Giordano, S

    2016-01-15

    Inventory of emission sources and biomonitoring with moss transplants are two different methods to evaluate air pollution. In this study, for the first time, both these approaches were simultaneously applied in five municipalities in Campania (southern Italy), deserving attention for health-oriented interventions as part of a National Interest Priority Site. The pollutants covered by the inventory were CO, NOx, particulate matter (PM10), volatile organic compounds (VOCs), and some heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). The biomonitoring survey was based on the use of the devitalized moss Hypnum cupressiforme transplanted into bags, following a harmonized protocol. The exposure covered 40 agricultural and urban/residential sites, with half of them located in proximity to roads. The pollutants monitored were Al, As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, Se, and Zn, as well as total polycyclic aromatic hydrocarbons (PAHs) only in five sites. Using the emission inventory approach, high emission loads were detected for all the major air pollutants and the following heavy metals: Cr, Cu, Ni, Pb and Zn, over the entire study area. Arsenic, Pb, and Zn were the elements most accumulated by moss. Total PAH postexposure contents were higher than the preexposure values (~20-50% of initial value). Moss uptakes did not differ substantially among municipalities or within exposure sites. In the five municipalities, a similar spatial pattern was evidenced for Pb by emission inventory and moss accumulation. Both approaches indicated the same most polluted municipality, suggesting their combined use as a valuable resource to reveal contaminants that are not routinely monitored. PMID:26479914

  12. Atmospheric monitoring strategy for the Ali site, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Zhou, Y.; Liu, L.; Wang, H.; Yin, J.; You, X.; Fu, X.

    2015-04-01

    The astronomical site survey in China has been carried out since 2003. Remote studies and local surveys are performed over the high plateaus, and candidate sites have been selected and performed site testing measurements. The monitoring results show that Ali area in western Tibet can be the best choice for astronomical observations over East Asian regions. Ali site, near the central town of Ali area, has been further identified for small telescope projects and simultaneously for detailed site characterization, and begun construction in 2010. This paper presents the site monitoring strategy and site development plan of the new Ali observatory.

  13. Spatial distribution of selected persistent organic pollutants (POPs) in Australia's atmosphere.

    PubMed

    Wang, Xianyu; Kennedy, Karen; Powell, Jennifer; Keywood, Melita; Gillett, Rob; Thai, Phong; Bridgen, Phil; Broomhall, Sara; Paxman, Chris; Wania, Frank; Mueller, Jochen F

    2015-03-01

    A nation-wide passive air sampling campaign recorded concentrations of persistent organic pollutants in Australia's atmosphere in 2012. XAD-based passive air samplers were deployed for one year at 15 sampling sites located in remote/background, agricultural and semi-urban and urban areas across the continent. Concentrations of 47 polychlorinated biphenyls ranged from 0.73 to 72 pg m(-3) (median of 8.9 pg m(-3)) and were consistently higher at urban sites. The toxic equivalent concentration for the sum of 12 dioxin-like PCBs was low, ranging from below detection limits to 0.24 fg m(-3) (median of 0.0086 fg m(-3)). Overall, the levels of polychlorinated biphenyls in Australia were among the lowest reported globally to date. Among the organochlorine pesticides, hexachlorobenzene had the highest (median of 41 pg m(-3)) and most uniform concentration (with a ratio between highest and lowest value ∼5). Bushfires may be responsible for atmospheric hexachlorobenzene levels in Australia that exceeded Southern Hemispheric baseline levels by a factor of ∼4. Organochlorine pesticide concentrations generally increased from remote/background and agricultural sites to urban sites, except for high concentrations of α-endosulfan and DDTs at specific agricultural sites. Concentrations of heptachlor (0.47-210 pg m(-3)), dieldrin (ND-160 pg m(-3)) and trans- and cis-chlordanes (0.83-180 pg m(-3), sum of) in Australian air were among the highest reported globally to date, whereas those of DDT and its metabolites (ND-160 pg m(-3), sum of), α-, β-, γ- and δ-hexachlorocyclohexane (ND-6.7 pg m(-3), sum of) and α-endosulfan (ND-27 pg m(-3)) were among the lowest. PMID:25592874

  14. Atmospheric dry deposition of persistent organic pollutants to the Atlantic and inferences for the global oceans.

    PubMed

    Jurado, Elena; Jaward, Foday M; Lohmann, Rainer; Jones, Kevin C; Simó, Rafel; Dachs, Jordi

    2004-11-01

    Atmospheric deposition to the oceans is a key process affecting the global dynamics and sinks of persistent organic pollutants (POPs). A new methodology that combines aerosol remote sensing measurements with measured POP aerosol-phase concentrations is presented to derive dry particulate depositional fluxes of POPs to the oceans. These fluxes are compared with those due to diffusive air-water exchange. For all polychlorinated biphenyl (PCB) congeners and lower chlorinated dibenzo-p-dioxins and furans (PCDD/Fs), air-water exchange dominates the dry deposition mechanism. However, this tendency reverses in some areas, such as in marine aerosol influenced areas and dust outflow regions, consistent with the important variability encountered for the depositional fluxes. Seasonal variability is mainly found in mid-high latitudes, due to the important influence of wind speed enhancing dry deposition fluxes and temperature as a driver of the gas-particle partitioning of POPs. The average dry aerosol deposition flux of sigmaPCBs and sigmaPCDD/Fs to the Atlantic Ocean is calculated to be in the order of 66 ng m(-2) yr(-1) and 9 ng m(-2)yr(-1) respectively. The total dry aerosol deposition of sigmaPCBs and sigmaPCDD/Fs to the Atlantic Ocean is estimated to be 2200 kg yr(-1) and 500 kg yr(-1), respectively, while the net air-water exchange is higher, 22000 kg sigmaPCBs yr(-1) for PCBs and 1300 kg sigmaPCDD/Fs yr(-1). Furthermore, it is suggested that marine aerosol plays an important role in scavenging atmospheric contaminants. PMID:15575265

  15. Atmospheric pollutants in fog and rain events at the northwestern mountains of the Iberian Peninsula.

    PubMed

    Fernández-González, Ricardo; Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Simal-Gándara, Jesús; Pontevedra-Pombal, Xabier

    2014-11-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). While the hydrosphere is the main reservoir for PAHs, the atmosphere serves as the primary route for global transport of PCBs. In this study, fog and rain samples were collected during fourteen events from September 2011 to April 2012 in the Xistral Mountains, a remote range in the NW Iberian Peninsula. PAH compounds [especially of low molecular weight (LMW)] were universally found, but mainly in the fog-water samples. The total PAH concentration in fog-water ranged from non-detected to 216 ng·L(-1) (mean of 45 ng·L(-1)), and was much higher in fall than in winter. Total PAH levels in the rain and fog events varied from non-detected to 1272 and 33 ng·L(-1) for, respectively, LMW and high molecular weight (HMW) PAHs. Diagnostic ratio analysis (LMW PAHs/HMW PAHs) suggested that petroleum combustion was the dominant contributor to PAHs in the area. Total PCB levels in the rain and fog events varied from non-detected to 305 and 91 ng·L(-1) for, respectively, PCBs with 2-3 Cl atoms and 5-10 Cl atoms. PCBs, especially those with 5-10 Cl atoms, were found linked to rain events. The occurrence of the most volatile PCBs, PCBs with 2-3 Cl atoms, is related to wind transport from far away sources, whereas the occurrence of PCBs with 5-10 Cl atoms seems to be related with the increase of its deposition during rainfall at the end of summer and fall. The movement of this fraction of PCBs is facilitated by its binding to air-suspended particles, whose concentrations usually show an increase as the result of a prolonged period of drought in summer. PMID:25129155

  16. Mobile air monitoring data processing strategies and effects on spatial air pollution trends

    NASA Astrophysics Data System (ADS)

    Brantley, H. L.; Hagler, G. S. W.; Kimbrough, S.; Williams, R. W.; Mukerjee, S.; Neas, L. M.

    2013-12-01

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data analysis with complex second-by-second multipollutant data varying as a function of time and location. Data reduction and filtering techniques are often applied to deduce trends, such as pollutant spatial gradients downwind of a highway. However, rarely do mobile monitoring studies report the sensitivity of their results to the chosen data processing approaches. The study being reported here utilized a large mobile monitoring dataset collected on a roadway network in central North Carolina to explore common data processing strategies including time-alignment, short-term emissions event detection, background estimation, and averaging techniques. One-second time resolution measurements of ultrafine particles ≤ 100 nm in diameter (UFPs), black carbon (BC), particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), and nitrogen dioxide (NO2) were collected on twelve unique driving routes that were repeatedly sampled. Analyses demonstrate that the multiple emissions event detection strategies reported produce generally similar results and that utilizing a median (as opposed to a mean) as a summary statistic may be sufficient to avoid bias in near-source spatial trends. Background levels of the pollutants are shown to vary with time, and the estimated contributions of the background to the mean pollutant concentrations were: BC (6%), PM2.5-10 (12%), UFPs (19%), CO (38%), PM10 (45%), NO2 (51%), PM2.5 (56%), and CO2 (86%). Lastly, while temporal smoothing (e.g., 5 s averages) results in weak pair-wise correlation and the blurring of spatial trends, spatial averaging (e.g., 10 m) is demonstrated to increase correlation and refine spatial trends.

  17. Levels and Seasonal Variability of Persistent Organic Pollutants in Rural and Urban Atmosphere of Southern Ghana

    NASA Astrophysics Data System (ADS)

    Adu-Kumi, Sam; Klanova, Jana; Holoubek, Ivan

    2010-05-01

    Concentrations of persistent organic pollutants (POPs) in air are reported from the first full year of the RECETOX-Africa Air Monitoring (MONET_AFRICA) Project. Passive air samplers composed of polyurethane foam disks (PUF-disk samplers) were deployed for sampling background air concentrations from January-December 2008 at two urban sites in Ghana, namely, Ghana Atomic Energy Commission (Biotechnology and Nuclear Agricultural Research Institute, Kwabenya); and Ghana Meteorological Agency (East Legon). Another set of PUF-disk samplers were deployed at a rural/agricultural location (Lake Bosumtwi) from July-November 2008. For the purposes of this study, 28 days was the sampling period for polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs); and 3 months for OCPs (Drins) and dioxins/furans (PCDD/Fs) respectively. MONET_AFRICA constituted part of the activities under the Global Monitoring Plan (GMP) for the effectiveness evaluation (Article 16) of the Stockholm Convention on POPs and the air sampling survey was conducted at 26 sites across the African continent with the aim to establish baseline information on contamination of ambient air with persistent organic pollutants (POPs) as a reference for future monitoring programmes in the region. For the pesticides, endosulfans constituted the highest contaminants measured followed by HCHs and DDTs in that order. The large temporal variability in the pesticide concentrations suggested seasonal application of endosulfans and γ-HCH. Levels of endosulfans were initially found to be below detection limit during the first sampling period (January - March 2008) but recorded the highest concentration than any other pesticide from all 16 sites in the African region during the second sampling period (April - June 2008). Concentrations of DDTs and HCHs were generally low throughout the sampling periods. p,p'-DDE/p,p'-DDT ratio in ambient air showed that the metabolite DDE was the

  18. Three Years of Monitoring Mars' Atmospheric Dust (Animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Animation

    This movie shows the daily abundance of dust in the martian atmosphere over a period of three full martian years, from April 1999 through February 2005. The Thermal Emission Spectrometer instrument on NASA's Mars Global Surveyor orbiter has been tracking the weather on Mars for six years. The infrared spectrum observed by this instrument yields information about the spectral properties of the dust and the temperature of the atmosphere. These two properties can then be used to derive how much dust is in the atmosphere.

    Of particular interest are large regional and global dust storms that occur during summer in the southern hemisphere each Mars year. The 2001 storm was by far the largest, lasting over six months (June to October, 2001) and covering the entire planet. The storms in the other two Mars years shown here were much smaller and never covered the planet. The most recent storm season (June 2003 through January 2005) actually had two separate storms, one in June and a second in December. Unlike most large martian dust storms that start in the southern hemisphere, the December storm began in the north and swept toward the equator. Between storms the atmosphere becomes quite clear, with much smaller dust storms scattered throughout the year and over the planet.

    Seasons on Mars are determined by the position of Mars in its orbit around the Sun. The position is measured in degrees of solar longitude (Ls) around the orbit, beginning at 0 degrees Ls at the northern spring equinox, progressing to 90 degrees Ls at the start of northern summer, 180 degrees Ls at the fall equinox, 270 degrees Ls at the start of northern winter, and finally back to 360 degrees, or 0 degrees, Ls at the spring equinox. Dust abundance is measured as opacity (tau), with values of 0 tau representing a completely clear atmosphere, and values of 2 indicating that it is nearly impossible to see through to the surface

  19. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    PubMed

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RI<105μm) and it combines source and transport factors for road dust particles <105μm in diameter. It could quantify and differentiate the impact of the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RI<105μm in the Beijing region to assess the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RI<105μm method offers a new and useful tool for assessing the potential risks posed by metals associated with road dust on atmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. PMID:26815293

  20. Possible influence of atmospheric circulations on winter hazy pollution in Beijing-Tianjin-Hebei region, northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhang, X.; Gong, D.; Kim, S.-J.; Mao, R.; Zhao, X.

    2015-08-01

    Using the daily records derived from the synoptic weather stations and the NCEP/NCAR and ERA-Interim reanalysis data, the variability of the winter hazy pollutions (indicated by the mean visibility and number of hazy days) in Beijing-Tianjin-Hebei (BTH) region during the period 1981 to 2015 and its relationship to the atmospheric circulations in middle-high latitude were analyzed in this study. The winter hazy pollution in BTH had distinct inter-annual and inter-decadal variabilities without a significant long-term trend. According to the spatial distribution of correlation coefficients, six atmospheric circulation indices (I1 to I6) were defined from the key areas in sea level pressure (SLP), zonal and meridional winds at 850 hPa (U850, V850), geopotential height field at 500 hPa (H500), zonal wind at 200 hPa (U200), and air temperature at 200 hPa (T200), respectively. All of the six indices have significant and stable correlations with the winter visibility and number of hazy days in BTH. Both the visibility and number of hazy days can be estimated well by using the six indices and fitting and the cross-validation with leave-N-out method, respectively. The high level of the prediction statistics and the reasonable mechanism suggested that the winter hazy pollutions in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. However, we also noted that the statistic estimation models would be largely influenced by the artificial control of a pollutant discharge. Thus it is helpful for government decision-making departments to take actions in advance in dealing with probably severe hazy pollutions in BTH indicated by the atmospheric circulation conditions.

  1. The polluted atmosphere of the white dwarf NLTT 25792 and the diversity of circumstellar environments

    SciTech Connect

    Vennes, S.; Kawka, A.

    2013-12-10

    We present an analysis of X-shooter spectra of the polluted, hydrogen-rich white dwarf NLTT 25792. The spectra show strong lines of calcium (Ca H and K, near-infrared calcium triplet, and Ca Iλ4226) and numerous lines of iron along with magnesium and aluminum lines from which we draw the abundance pattern. Moreover, the photospheric Ca H and K lines are possibly blended with a circumstellar component shifted by –20 km s{sup –1} relative to the photosphere. A comparison with a sample of four white dwarfs with similar parameters show considerable variations in their abundance patterns, particularly in the calcium to magnesium abundance ratio that varies by a factor of five within this sample. The observed variations, even after accounting for diffusion effects, imply similar variations in the putative accretion source. Also, we find that silicon and sodium are significantly underabundant in the atmosphere of NLTT 25792, a fact that may offer some clues on the nature of the accretion source.

  2. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu

    2014-05-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  3. Bjerknes Lecture "Atmospheric Pollution and Climate Change, A Local and Global Perspective"

    NASA Astrophysics Data System (ADS)

    Molina, M. J.

    2004-12-01

    About half of the world's population is now living in urban areas, exposing millions of residents to harmful levels of air pollutants caused mainly by emissions from motor vehicles and industries. Slash-and-burn agricultural practices and forests fires also contribute to worsening air quality on broad regional scales. Emissions from all these fossil fuel and bio-mass burning activities have lead to increases in the amount of atmospheric particulate matter, as well as in the concentration of species such as nitrogen oxides, volatile organic compounds and carbon monoxide. Emissions of these relatively short-lived compounds in turn lead to the formation of tropospheric ozone, which together with particulate matter may also contribute to regional climate change. This deteriorating air quality problem is expected to reach global proportions in the coming decades, with potentially detrimental effects on ecological systems and on human health. On the other hand, improving air quality effectively anywhere in the world requires a holistic approach involving not only science and technology, but also a consideration of economic, social, and political factors.

  4. Elemental analysis of aerosols in Tehran's atmosphere using PIXE and identification of pollution sources.

    PubMed

    Esmaili, N; Khashman, S; Lamehi-Rachti, M; Agha Aligol, D; Shokouhi, F; Oliaiy, P; Farmahini Farahani, M

    2014-11-01

    In this study, the proton-induced X-ray emission (PIXE) technique has been applied to measure the elemental composition and concentrations of particulate matter of 220 samples of aerosols in Tehran's atmosphere within a 450-day time interval starting from March 2009 and ending in June 2010, covering all four seasons. PIXE analysis shows the samples are comprised of various elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. Also, to obtain more information about the sources of pollution and to identify the major sources of urban particulate matter, principal component analysis (PCA) was used. Furthermore, micro-PIXE was performed to study individual aerosols in some samples. Results revealed that the concentration of elements originating from vehicle emissions increases three times in winter; whereas the concentration of elements with soil origin remains constant. Based on wind rose maps, it is inferred that the high concentrations of the elements Al, Si, K, Ca, Ti, Mn, and Fe are associated with natural dust brought by winds into Tehran from the west. PMID:25027779

  5. Mapping air pollution by biological monitoring in the metropolitan Tel Aviv area.

    PubMed

    Lavi, Aya; Potchter, Oded; Omer, Itzhak; Fireman, Elizabeth

    2016-06-01

    Conventional environmental monitoring is not surrogate of personal exposure. In contrast, biomonitoring provides information on the presence of substances in the human body, making it highly relevant to the assessment of exposure to toxic substances. Induced sputum (IS) is a noninvasive technique for detecting inflammation and reflecting particulate matter content in the airways. In this study, we mapped particulate matter dispersion in metropolitan Tel Aviv by both biomonitoring techniques employing IS samples and by environmental monitoring. All adults referred to the Pulmonary Lab for respiratory symptom evaluation in 2007 and in 2009 were enrolled. Pulmonary function tests were performed by conventional methods. Particulate size distribution in IS was analyzed, and maps of air pollution were created. Biomonitoring was more informative and enabled mapping of wider areas. Integration of biomonitoring and environmental monitoring should be considered in forming public health policy on containment of airborne particles of toxic substances. PMID:26600473

  6. Monitoring of fine particle air pollutants at FWS Class 1 air quality areas

    SciTech Connect

    Porter, E.

    1995-12-31

    Fine particle samplers have been installed at five FWS wilderness areas, all Class 1 air quality areas. The samplers are designed primarily to measure the fine particles in ambient air responsible for visibility impairment and are part of the national IMPROVE (Interagency Monitoring of Protected Visual Environments) network. Filters in the samplers are analyzed for trace elements, soil elements, sulfur, hydrogen, nitrate, chloride, organic carbon, and inorganic carbon. Several composite parameters are derived from the measured parameters and include sulfate, nitrate, organic mass, light-absorbing carbon, and soil. Data indicate that fine particle concentrations at FWS sites are consistent with geographical trends observed in the national IMPROVE network. For instance, concentrations of most parameters are higher in the eastern US than in the western US, reflecting the pattern or greater air pollution and lower visibility in the east. Of the five FWS sites, Brigantine Wilderness Area experiences the greatest air pollution, receiving polluted air masses from the Ohio Valley and eastern metropolitan areas, including Philadelphia and Washington, DC. As the data record lengthens, attributing air pollution and visibility impairment at the wilderness areas to specific source types and regions will be more accurate.

  7. Reflectance spectroscopy is an effective tool for monitoring soot pollution in an urban suburb.

    PubMed

    Saaroni, H; Chudnovsky, A; Ben-Dor, E

    2010-02-01

    This study examines whether converting the fossil fuel of the Tel Aviv power station from oil to gas influences air pollution in the local urban environment. To this end, the spectral properties of accumulated dust on tree leaves and paper bags were assessed before (2004) and after (2006) the conversion. The sampling site was a garden in a neighborhood located 2700m downwind of the power station. In addition, air pollution concentrations and particulate matter parameters recorded by a local meteorological station were analyzed (PM(10), NO(x), NO(2), NO, and SO(2)). Although differences in the average monthly concentration of pollution parameters are mostly insignificant between the two periods, the accumulated particulate matter exhibits considerably different spectral patterns. All first period samples exhibit a distinctly concave slope in the spectral region between 400 and 1400nm, indicative of high amounts of soot, most likely due to the combustion products of fuel oil exhausted by the power plant. In contrast, the second period samples exhibit spectra that indicate reduced soot content and even appear slightly convex, evidencing the presence of dust of mineral origin, a feature likely masked by the soot in the first period. Thus, the spectral data support that the power plant conversion results in less pollution. More generally, this study corroborates that VIS-NIR-SWIR spectroscopy characterizes key properties of the particulate layer accumulating on sampled surfaces and thus, is a powerful method for monitoring the urban environment. PMID:19944448

  8. The European and International legal framework on monitoring and response to oil pollution from ships.

    PubMed

    Ferraro, Guido; Pavliha, Marko

    2010-03-01

    Oil spills cause damage to the marine environment. Such oil spills originate from land-based or sea-based sources. Sea-based sources are discharges coming from ships or offshore platforms. The origin of the pollution can be accidental or deliberate (defined also as operational). The European and international legislation in the field of monitoring and response to marine oil pollution is mainly based on the International Convention for the Prevention of Pollution from Ships, 1973, as amended by the Protocol of 1978 thereto (MARPOL 73/78) and the 1982 United Nations Convention on the Law of the Sea (UNCLOS). To complete the international framework, and with specific reference for European Countries, also the recent European legislation is presented. Special attention is given to the prosecution of polluting vessels. The main legal problem is the coordination and integration of the two principles on jurisdiction which co-exist: the nationality of the ship and the geographical position of the ship. PMID:20445844

  9. Development of an atmospheric monitoring plan for space station

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.

  10. Options for daytime monitoring of atmospheric visibility in optical communications

    NASA Technical Reports Server (NTRS)

    Erickson, D.; Cowles, K.

    1989-01-01

    Techniques for daytime detection of atmospheric transmission and cloud cover to determine the capabilities of future deep-space optical communications links are considered. A modification of the planned nighttime photometry program will provide the best data while minimizing the need for further equipment. Greater degrees of modification will provide increased detection capabilities. Future testing of the equipment will better define the improvement offered by each level of modification. Daytime photometry is favored at certain wavelengths because of higher transmission and lower background noise, thus giving an increased signal-to-noise ratio. A literature search has provided a list of stars brighter than second magnitude at these wavelengths.

  11. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  12. aTmcam: A Simple Atmospheric Transmission Monitoring Camera For Sub 1 Percent Photometric Precision

    NASA Astrophysics Data System (ADS)

    Li, T.; DePoy, D. L.; Kessler, R.; Burke, D. L.; Marshall, J. L.; Wise, J.; Rheault, J.-P.; Carona, D. W.; Boada, S.; Prochaska, T.; Allen, R.

    2016-05-01

    Traditional color and airmass corrections can typically achieve ˜0.02 mag precision in photometric observing conditions. A major limiting factor is the variability in atmospheric throughput, which changes on timescales of less than a night. We present preliminary results for a system to monitor the throughput of the atmosphere, which should enable photometric precision when coupled to more traditional techniques of less than 1% in photometric conditions. The system, aTmCam, consists of a set of imagers each with a narrow-band filter that monitors the brightness of suitable standard stars. Each narrowband filter is selected to monitor a different wavelength region of the atmospheric transmission, including regions dominated by the precipitable water absorption and aerosol scattering. We have built a prototype system to test the notion that an atmospheric model derived from a few color indices measurements can be an accurate representation of the true atmospheric transmission. We have measured the atmospheric transmission with both narrowband photometric measurements and spectroscopic measurements; we show that the narrowband imaging approach can predict the changes in the throughput of the atmosphere to better than ˜10% across a broad wavelength range, so as to achieve photometric precision less than 0.01 mag.

  13. Human teratogenic and mutagenic markers in monitoring about point sources of pollution

    SciTech Connect

    Hook, E.B.

    1981-06-01

    For most pollutants a full range of short-term adverse reproductive outcomes should be considered as possible markers in monitoring populations. These include sex ratio, birthweight, intrauterine growth retardations, neonatal motality, birth defects manifest at birth or very shortly thereafter, embryonic and fetal deaths (EFD), germinal chromosome abnormalities in EFD and in livebirths, specific locus mutations detectable at birth, and indicators of somatic mutation including chromosome breakage and sister chromatid exchange. It is suggested (in the absence of a defined expected effect) that the highest priority be given to study of rates of EFD and of somatic chromosome rearrangement. Where possible, data on reproductive and mutagenic outcomes in the potential target population should be sought systematically before a putative pollution source comes into operation. Reference data on human mutagenic and teratogenic outcomes are presented.

  14. Lichens as monitors of aerial heavy metal pollutants in and around Kampala

    SciTech Connect

    Nyangababo, J.T.

    1987-01-01

    The use of ion exchange resins and biological materials has aroused much interest in the search for inexpensive devices for monitoring pollution. Recent investigators have shown that plants themselves may be used as indicators of aerial fallout of heavy metals. Other workers have pursued the concept of using biological materials still further, by using mosses as indicators of aerial metal depositions. Lichens possess remarkable ion-exchange properties similar to many ion-exchange resins and are therefore suitable for the collection and retention of airborne metals. Lichens have been shown to be good indicators of pollution level; a close correlation is usually found between the distribution pattern of lichen species and the trace metal content of the surrounding air. This study was undertaken to determine the degree of contamination of the Kampala, Uganda environment by heavy metals from industries and motor traffic by using lichens as and indicator device. One type of lichen species (Calyrneferes usambaricum) was used as the test plant.

  15. Light-mediated 15N fractionation in Caribbean gorgonian octocorals: implications for pollution monitoring

    NASA Astrophysics Data System (ADS)

    Baker, D. M.; Kim, K.; Andras, J. P.; Sparks, J. P.

    2011-09-01

    The stable nitrogen isotope ratio ( δ 15N) of coral tissue is a useful recorder of anthropogenic pollution in tropical marine ecosystems. However, little is known of the natural environmentally induced fractionations that affect our interpretation of coral δ 15N values. In symbiotic scleractinians, light affects metabolic fractionation of N during photosynthesis, which may confound the identification of N pollution between sites of varied depth or turbidity. Given the superiority of octocorals for δ 15N studies, our goal was to quantify the effect of light on gorgonian δ 15N in the context of monitoring N pollution sources. Using field collections, we show that δ 15N declined by 1.4‰ over 20 m depth in two species of gorgonians, the common sea fan, Gorgonia ventalina, and the slimy sea plume, Pseudopterogorgia americana. An 8-week laboratory experiment with P. americana showed that light, not temperature causes this variation, whereby the lowest fractionation of the N source was observed in the highest light treatment. Finally, we used a yearlong reciprocal depth transplant experiment to quantify the time frame over which δ 15N changes in G. ventalina as a function of light regime . Over the year, δ 15N was unchanged and increased slightly in the deep control colonies and shallow colonies transplanted to the deep site, respectively. Within 6 months, colonies transplanted from deep to shallow became enriched by 0.8‰, mirroring the enrichment observed in the shallow controls, which was likely due to the combined effect of an increase in the source δ 15N and reduced fractionation. We conclude that light affects gorgonian δ 15N fractionation and should be considered in sampling designs for N pollution monitoring. However, these fractionations are small relative to differences observed between natural and anthropogenic N sources.

  16. Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City

    NASA Astrophysics Data System (ADS)

    Reddy Yasa, Pavan; Shiva, Nagendra S. N.

    2016-04-01

    Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.

  17. Lead Isotopes and Temporal Records of Atmospheric Aerosol and Pollutants in Lichens

    NASA Astrophysics Data System (ADS)

    Getty, S. R.; Nash, T.; Asmerom, Y.

    2001-05-01

    Lichens are useful receptors of atmospheric particulate matter (PM) and pollutants due to their retention of body parts (unlike plants), slow growth rates, fairly uniform morphologies, lack of a vascular system, and sessile character over decades to centuries. Lichen biomonitoring has been used widely to map patterns of aerosol deposition, yet few studies have tested whether lichens can preserve a temporal record of airborne PM and pollutants. We show with U-Pb data that epilithic lichens (rock as host) can retain in their porous structure an integrated, decadal-scale history of changing aerosol inputs to desert ecosystems. Three lichens resided along an 80-km transect from a copper smelter (Douglas, AZ) closed in early 1987, to the ENE into adjacent New Mexico. For the radially growing lichen (Xanthoparmelia sp.), U-Pb data were obtained along cm-scale transects in the growth direction on a single thallus. Profiles from lichen rim to interior show increasing [Pb] and [U], or net accumulation with thallus age. Total lead contents are highest near the smelter. In contrast, each lead isotope profile (206Pb/207Pb) is flat during smelter operation, showing low ratios near the smelter (1.152) and high ratios (1.175) 80 km away. This suggests comparable mixtures of crust and smelter lead per locality over decades. Since smelter closure, lichens 80 km from the smelter show a sharp upturn in lead ratio in the recently grown lichen rim, indicating that smelter lead is either dispersed by aeolian recycling, or suppressed in desert soils. The amplitude and position of the isotope signal suggests a soil recovery "half-life" of about 13 yrs, a radial growth rate of 0.57+/-0.1 mm/yr, and a total lichen age of 105+/-18 yrs. Lichens near the smelter have no upturn in isotope ratio, indicating continued aeolian recylcing of lead from soils about 11 yrs after closure. Results at a far-removed desert site (c. New Mexico) also argue that isotope profiles reflect aerosol deposition

  18. Comparative assessment of regionalisation methods of monitored atmospheric deposition loads

    NASA Astrophysics Data System (ADS)

    Reinstorf, Frido; Binder, Maja; Schirmer, Mario; Grimm-Strele, Jost; Walther, Wolfgang

    The objective of this investigation is to assess the suitability of well-known regionalisation methods of data from existing deposition monitoring networks for use in water resources management. For this purpose a comparison of the applicability and accuracy of various regionalisation methods was made. A crucial point is the data demand of the various methods. In this investigation the deterministic and geostatistical methods inverse distance weighting (IDW), ordinary kriging (OK) and external drift kriging (EDK) as well as the chemical transport models METRAS-MUSCAT, EMEP, EDACS and EUTREND have been characterised and evaluated. The methods IDW and OK have been applied to the investigation areas—the German Federal States of Lower Saxony and Saxony. An evaluation of these methods was carried out with a cross-validation procedure. The result was in most cases a higher accuracy for the OK method. The EDK method has been investigated in order to find suitable drift variables from the parameters precipitation amount, altitude and wind direction. With help of a correlation analysis a suitable drift variable could not be found. After the application of OK, verification was carried out by a comparison of the estimated data set with an independently determined data set. The result was a relatively smaller deviation of the estimated data set. The investigation considers data from routine monitoring networks as well as networks for special applications and has been carried out on the basis of monitoring networks of the two states. The investigated database was wet and bulk deposition of the substances NH 4+, SO 42-, NO 3-, Na +, Pb 2+, and Cd 2+ in Lower Saxony and SO 42- in Saxony. From this, a consistent database of bulk deposition data was built. From all applied methods OK proved to cope best with the data deficiencies that were found.

  19. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: three year atmospheric monitoring study.

    PubMed

    Sheng, Jiujiang; Wang, Xiaoping; Gong, Ping; Joswiak, Daniel R; Tian, Lide; Yao, Tandong; Jones, Kevin C

    2013-04-01

    Due to the influence of the Indian monsoon system, air mass transport in and to the Tibetan Plateau shows obvious seasonality. In order to assess the responses of atmospheric concentrations of persistent organic pollutants (POPs) to the Indian Monsoon fluctuation patterns, a three year air monitoring program (2008-2011) was conducted in an observation station close to the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. The air concentrations of polychlorinated biphenyls (PCBs) and hexachlorocyclohexanes (HCHs) are generally comparable to those of other remote regions, whereas the concentrations of DDTs are much higher than reported for the polar regions, the North American Rocky Mountains, and the European Alps. The concentrations of DDTs and PCBs were strongly linked to the cyclic patterns of the Indian monsoon, displaying higher values in the monsoon season (May-September) and lower values in the nonmonsoon season (November-March). A "bimodal" pattern was observed for α- and γ-HCH, with higher concentrations in spring and autumn and lower concentrations in the summer (monsoon season). Rain scavenging in the monsoon season likely resulted in the lower HCH concentrations in the atmosphere. This paper sheds lights on the role the Indian monsoon plays on the atmospheric transport of POPs to the Tibetan Plateau. PMID:23452228

  20. The identification and analysis of risk for sudden accidental water pollution events based on the water resources monitoring system

    NASA Astrophysics Data System (ADS)

    Chen, Jiannan

    2016-04-01

    There are always various types of sudden accidental Water Pollution Events under the development of modern Chinese economy society, leading to serious economic losses and casualties. Water resources monitoring system, a real-time monitoring system, was built to monitor water quantity and quality of the important rivers and lakes over the country. Based on the system, we had brought up an idea to calculate the possibility of pollution and the risk of pollution in the watershed, and to deal with the threat of water pollution incidents effectively. It was proposed to build the greatest possible contamination with the most serious pollution values over the past years, and similarity test was carried on over the real-time monitoring of possible contamination value and the calculated value. In our study, taking Taihu River Basin as an example, we detailed the application progress of this method in water pollution incidents, the result shows that the method has a certain timeliness for the early warning of sudden water pollution incidents.