Science.gov

Sample records for atmospheric pressure nitrogen

  1. Heat transport of nitrogen in helium atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Xu, S. F.; Zhong, X. X.

    2013-07-01

    Stable DC atmospheric pressure normal glow discharges in ambient air were produced between the water surface and the metallic capillary coupled with influx of helium gas. Multiple independent repeated trials indicated that vibrational temperature of nitrogen rises from 3200 to 4622 K, and rotational temperature of nitrogen decreases from 1270 to 570 K as gas flux increasing from 20 to 80 sccm and discharge current decreasing from 11 to 3 mA. Furthermore, it was found that the vibrational degree of the nitrogen molecule has priority to gain energy than the rotational degree of nitrogen molecule in nonequilibrium helium microplasma.

  2. A simplified nitrogen laser setup operated at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ruangsri, Artit; Wungmool, Piyachat; Tesana, Siripong; Suwanatus, Suchat; Hormwantha, Tongchai; Chiangga, Surasak; Luengviriya, Chaiya

    2015-07-01

    A transversely excited atmospheric pressure nitrogen laser (TEA N2 Laser) is a molecular pulse gas laser, operated at atmospheric pressure, which generates an electromagnetic wave in ultraviolet wavelength of 337.1 nm. It can operate without an optical resonator. We present a TEA N2 laser setup excited by an electronic discharge circuit known as the Blumlein circuit. Our setup is composed of simple components commonly found in everyday life. The setup can be utilized in classroom to demonstrate the dependence of the laser intensity on the flow rate of nitrogen gas.

  3. Electron kinetics in a microdischarge in nitrogen at atmospheric pressure

    SciTech Connect

    Levko, Dmitry

    2013-12-14

    Electron kinetics during a microdischarge in nitrogen at atmospheric pressure is studied using the one-dimensional Particle-in-Cell/Monte Carlo Collisions model. It is obtained that the electron energy distribution function can be divided into three parts, namely, the non-equilibrium low-energy part, the Maxwellian function at moderate energies, and the high-energy tail. Simulation results showed that the role of the high-energy tail of electron energy distribution increases, when the distance between electrodes increases.

  4. A new DBD-driven atmospheric pressure plasma jet source on air or nitrogen

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victir A.; Skakun, Victor S.; Tarasenko, Victor F.; Pechenitsin, Dmitrii S.; Kuznetsov, Vladimir S.

    2015-12-01

    The paper proposes a new atmospheric pressure plasma jet (APPJ) source for operation in air and nitrogen. The conditions for the formation of stable plasma jets 4 cm long are determined. Energy and spectral measurement data are presented.

  5. Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Popov, N. A.

    2013-05-15

    Nitrogen molecule dissociation in a pulse-periodic atmospheric-pressure dielectric barrier discharge is numerically analyzed. It is shown that the quenching rate of predissociation states at atmospheric pressure is relatively low and the production of nitrogen atoms in this case can be adequately described using the cross section for electron-impact dissociation of N{sub 2} molecules taken from the paper by P.C. Cosby [J. Chem. Phys. 98, 9544 (1993)].

  6. Multiple (eight) plasma bullets in helium atmospheric pressure plasma jet and the role of nitrogen

    NASA Astrophysics Data System (ADS)

    Park, Sanghoo; Youn Moon, Se; Choe, Wonho

    2013-11-01

    As many as eight multiple plasma bullets produced at atmospheric pressure were observed in one voltage period in a capillary helium dielectric barrier plasma jet. We found that the number of the bullets strongly depends on the nitrogen fraction added to the helium supply gas. Using optical emission spectroscopy and ionization rate calculation, this study demonstrates that nitrogen gas plays an important role in the generation and dynamics of multiple plasma bullets through Penning ionization of nitrogen by helium metastables.

  7. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  8. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  9. Manufacture of high-nitrogen corrosion-resistant steel by an aluminothermic method in a high-pressure nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Dorofeev, G. A.; Karev, V. A.; Kuzminykh, E. V.; Lad'yanov, V. I.; Lubnin, A. N.; Vaulin, A. S.; Mokrushina, M. I.

    2013-01-01

    The conditions of aluminothermic synthesis of high-nitrogen Cr-N and Cr-Mn-N steels in a high-pressure nitrogen atmosphere are studied by thermodynamic simulation and metallurgical experiments. Thermodynamic analysis shows that the aluminothermic reduction reactions are incomplete. The most important synthesis parameter is the ratio of the aluminum to the oxygen content in a charge, and its optimum value ensures a compromise between the degree of oxide reduction, the aluminum and oxygen contents in steel (degree of deoxidation), and steel contamination by aluminum nitride. An analysis of experimental heats demonstrates good agreement between the experimental results and the data calculated by a thermodynamic model. As-cast ingots have the structure of nitrogen pearlite, and quenched ingots have an austenitic structure.

  10. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    SciTech Connect

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  11. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  12. Analytically useful spectra excited in an atmospheric pressure active nitrogen afterglow

    SciTech Connect

    Rice, G.W.; D'Silva, A.P.; Fassel, V.A.

    1984-03-01

    An atmospheric pressure active nitrogen (APAN) discharge has been utilized for producing characteristic molecular emissions from nonmetallic species introduced into the afterglow region of the discharge. The addition of inorganic S-, P-, B-, Cl-, and Br-containing compounds into the afterglow has resulted in the formation of excited S/sub 2/, PN, BO, NCl, and NBr species, respectively. Intense molecular Br/sub 2/ emission and I/sub 2/ emission, as well as atomic I emission, have also been observed. Preliminary analytical utilization of the molecular or atomic emissions observed revealed that the APAN afterglow may serve as a potentially useful detector for the aforementioned elements.

  13. Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarges

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Electron kinetics in atmospheric-pressure argon and nitrogen microwave (4 GHz) microdischarges is studied using a self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. The reversal of electric field (i.e., inverted sheath formation) is obtained in nitrogen and is not obtained in argon. This is explained by the different energy dependencies of electron-neutral collision cross sections in atomic and molecular gases and, as a consequence, different drag force acting on electrons. A non-local behavior of electron energy distribution function is obtained in both gases owing to electrons are generated in the plasma sheath. In both gases, electron energy relaxation length is comparable with the interelectrode gap, and therefore, they penetrate the plasma bulk with large energies.

  14. Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas

    SciTech Connect

    Luo Siqi; Denning, C. Mark; Scharer, John E.

    2008-07-01

    A laser initiation and radio frequency (rf) sustainment technique has been developed and improved from our previous work to create and sustain large-volume, high-pressure air and nitrogen plasmas. This technique utilizes a laser-initiated, 15 mTorr partial pressure tetrakis (dimethylamino) ethylene seed plasma with a 75 Torr background gas pressure to achieve high-pressure air/nitrogen plasma breakdown and reduce the rf power requirement needed to sustain the plasma. Upon the laser plasma initiation, the chamber pressure is raised to 760 Torr in 0.5 s through a pulsed gas valve, and the end of the chamber is subsequently opened to the ambient air. The atmospheric-pressure plasma is then maintained with the 13.56 MHz rf power. Using this technique, large-volume (1000 cm{sup 3}), high electron density (on the order of 10{sup 11-12} cm{sup -3}), 760 Torr air and nitrogen plasmas have been created while rf power reflection is minimized during the entire plasma pulse utilizing a dynamic matching method. This plasma can project far away from the antenna region (30 cm), and the rf power budget is 5 W/cm{sup 3}. Temporal evolution of the plasma electron density and total electron-neutral collision frequency during the pulsed plasma is diagnosed using millimeter wave interferometry. Optical emission spectroscopy (OES) aided by SPECAIR, a special OES simulation program for air-constituent plasmas, is used to analyze the radiating species and thermodynamic characteristics of the plasma. Rotational and vibrational temperatures of 4400-4600{+-}100 K are obtained from the emission spectra from the N{sub 2}(2+) and N{sub 2}{sup +}(1-) transitions by matching the experimental spectrum results with the SPECAIR simulation results. Based on the relation between the electron collision frequency and the neutral density, utilizing millimeter wave interferometry, the electron temperature of the 760 Torr nitrogen plasma is found to be 8700{+-}100 K (0.75{+-}0.1 eV). Therefore, the plasma

  15. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  16. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  17. Effect of near atmospheric pressure nitrogen plasma treatment on Pt/ZnO interface

    NASA Astrophysics Data System (ADS)

    Nagata, Takahiro; Yamashita, Yoshiyuki; Yoshikawa, Hideki; Uehara, Tsuyoshi; Haemori, Masamitsu; Kobayashi, Keisuke; Chikyow, Toyohiro

    2012-12-01

    The effect of near atmospheric pressure nitrogen plasma (NAP) treatment of platinum (Pt)/zinc oxide (ZnO) interface was investigated. NAP can nitride the ZnO surface at even room temperature. Hard x-ray photoelectron spectroscopy revealed that NAP treatment reduced the surface electron accumulation at the ZnO surface and inhibited the Zn diffusion into the Pt electrode, which are critical issues affecting the Schottky barrier height and the ideality factor of the Pt/ZnO structure. After NAP treatment, the Pt Schottky contact indicated an improvement of electrical properties. NAP treatment is effective for the surface passivation and the Schottky contact formation of ZnO.

  18. Particle densities of the pulsed dielectric barrier discharges in nitrogen at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Li, Li

    2015-02-01

    Pulsed dielectric barrier discharges (DBDs) have become a promising solution to generate atmospheric-pressure non-equilibrium plasmas. In this work, a one-dimensional fluid model is carried out to research particle densities of the pulsed nitrogen DBDs at atmospheric pressure. Averaged particle densities, time evolutions of axial distributions of particle densities and influences of discharge gap distance dg on the particle densities are systematically illustrated and discussed. The calculation results show that averaged electron densities are lower than averaged N2+ densities, but higher than other averaged ion densities. Time evolutions of axial distributions of electron, N+ and N2+ densities show two peaks during rising and falling phases of applied voltage when dg is 0.2 cm but present gradual increases during pulse width when dg is 0.6 cm, which are similar to those of N2(a‧) and N2(B). Maximums of N3+ densities are close to the momentary cathode under dg of 0.2 cm but locate near the grounded electrode under dg of 0.6 cm, which are alike to those of N2(A) and N2(C). Besides, N4+ densities nearby the momentary anode are higher than those nearby the momentary cathode when dg is 0.2 cm. N(2D) has low averaged particle densities and complex time evolutions compared to N.

  19. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  20. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    PubMed

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  1. Influence of nitrogen impurities on the population of plasma species in atmospheric-pressure helium microwave plasmas

    NASA Astrophysics Data System (ADS)

    Muñoz, J.; Margot, J.; Benhacene-Boudam, M. K.

    2012-02-01

    The characteristics of a helium microwave plasma produced at atmospheric pressure have been studied by means of laser induced fluorescence and emission spectroscopy. The influence of nitrogen impurities on discharge parameters (electron density and gas temperature) has been studied together with the variation of the He metastable (23S and 21S) populations. A strong decrease of the He metastable densities for nitrogen concentrations as small as 1% was found. The dependence of the populations of nitrogen molecular and atomic species has been examined as a function of the electron density and nitrogen concentration in helium. Comparison with a theoretical model accounting for the presence of nitrogen in the discharge shows that Penning ionization by both atomic and molecular nitrogen play an important role on the metastable quenching.

  2. Unique erosion features of hafnium cathode in atmospheric pressure arcs of air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Ghorui, S.; Meher, K. C.; Kar, R.; Tiwari, N.; Sahasrabudhe, S. N.

    2016-07-01

    Experimental investigation of cathode erosion in atmospheric pressure hafnium-electrode plasma torches is reported under different plasma environments along with the results of numerical simulation. Air, nitrogen and oxygen are the plasma gases considered. Distinct differences in the erosion features in different plasmas are brought out. Cathode images exhibiting a degree of erosion and measured erosion rates are presented in detail as a function of time of arc operation and arc current. Physical erosion rates are determined using high precision balance. The changes in the surface microstructures are investigated through scanning electron microscopy (SEM). Evolution of cathode chemistry is determined using energy dispersive x-ray spectroscopy (EDX). Numerical simulation with proper consideration of the plasma effects is performed for all the plasma gases. The important role of electromagnetic body forces in shaping the flow field and the distribution of pressure in the region is explored. It is shown that the mutual interaction between fluid dynamic and electromagnetic body forces may self-consistently evolve a situation of an extremely low cathode erosion rate.

  3. Low temperature, atmospheric pressure, direct current microplasma jet operated in air, nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Mohamed, A.-A. H.; Kolb, J. F.; Schoenbach, K. H.

    2010-12-01

    Micro-plasma jets in atmospheric pressure molecular gases (nitrogen, oxygen, air) were generated by blowing these gases through direct current microhollow cathode discharges (MHCDs). The tapered discharge channel, drilled through two 100 to 200 μm thick molybdenum electrodes separated by a 200 μm thick alumina layer, is 150 to 450 μm in diameter in the cathode and has an opening of 100 to 300 μm in diameter in the anode. Sustaining voltages are 400 to 600 V, the maximum current is 25 mA. The gas temperature of the microplasma inside the microhollow cathode varies between ~2000 K and ~1000 K depending on current, gas, and flow rate. Outside the discharge channel the temperature in the jet can be reduced by manipulating the discharge current and the gas flow to achieve values close to room temperature. This cold microplasma jet can be used for surface treatment of heat sensitive substances, and for sterilization of contaminated areas.

  4. Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma `

    SciTech Connect

    Gleiman, S. S.; Phillips, J.

    2001-01-01

    We have developed a method for producing spherically-shaped, hexagonal phase boron nitride (hBN) particles of controlled diameter in the 10-100 micron size range. Specifically, platelet-shaped hBN particles are passed as an aerosol through a microwave-generated, atmospheric pressure, nitrogen plasma. In the plasma, agglomerates formed by collisions between input hBN particles, melt and forms spheres. We postulate that this unprecedented process takes place in the unique environment of a plasma containing a high N-atom concentration, because in such an environment the decomposition temperature can be raised above the melting temperature. Indeed, given the following relationship [1]: BN{sub (condensed)} {leftrightarrow} B{sub (gas)} + N{sub (gas)}. Standard equilibrium thermodynamics indicate that the decomposition temperature of hBN is increased in the presence of high concentrations of N atoms. We postulate that in our plasma system the N atom concentration is high enough to raise the decomposition temperature above the (undetermined) melting temperature. Keywords Microwave plasma, boron nitride, melting, spherical, thermodynamics, integrated circuit package.

  5. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  6. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  7. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  8. On the dynamics of a subnanosecond breakdown in nitrogen below atmospheric pressures

    SciTech Connect

    Shklyaev, V. A. E-mail: beh@loi.hcei.tsc.ru; Baksht, E. Kh. E-mail: beh@loi.hcei.tsc.ru; Tarasenko, V. F.

    2015-12-07

    The dynamics of a breakdown in a gas-filled diode with a highly inhomogeneous electric field was studied in experiments at a time resolution of ∼100 ps and in numerical simulation by the 2D axisymmetric particle-in-cell (PIC) code XOOPIC. The diode was filled with nitrogen at pressures of up to 100 Torr. The dynamics of the electric field distribution in the diode during the breakdown was analyzed, and the factors that limit the pulse duration of the runaway electron beam current at different pressures were determined.

  9. Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Jie; Li, Shou-Zhe

    2015-06-01

    Atmospheric-pressure microwave induced N2 plasma is diagnosed by optical emission spectroscopy with respect to the plasma gas temperature. The spectroscopic measurement of plasma gas temperature is discussed with respect to the spectral line broadening of Ar I and the various emission rotational-vibrational band systems of N2(B-A), N2(C-B) and \\text{N}2+(\\text{B-X}). It is found that the Boltzmann plot of the selective spectral lines from \\text{N}2+(\\text{B-X}) at 391.4 nm is preferable to others with an accuracy better than 5% for an atmospheric-pressure plasma of high gas temperature. On the basis of the thermal balance equation, the dependences of the plasma gas temperature on the absorbed power, the gas flow rate, and the gas composition are investigated experimentally with photographs recording the plasma morphology.

  10. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    SciTech Connect

    Boutchich, M.; Arezki, H.; Alamarguy, D.; Güneş, F.; Alvarez, J.; Kleider, J. P.; Ho, K.-I.; Lai, C. S.; Sediri, H.; Ouerghi, A.

    2014-12-08

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicating that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.

  11. Influence of Nitrogen Gas Flow Rate on the Electrical Behavior of an Atmospheric Pressure Dielectric Barrier Jet Discharge

    SciTech Connect

    Choo, C. Y.; Chin, O. H.

    2011-03-30

    The dielectric barrier discharge configuration used consists of a hemispherical electrode insulated by 1 mm thick borosilicate glass and a grounded plate with a hole through which the jet is formed externally in the surrounding air. The effect of gas flow rate on the behavior of an atmospheric pressure dielectric barrier jet discharge was studied for different air-gap distance and drive voltage, V{sub DD}, to the MOSFET. It is found that at higher rate of nitrogen gas flow, the current spikes reduce in number when the driving voltage and air-gap distance are kept constant.

  12. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  13. Preparation of nitrogen doped silicon oxides thin films by plasma polymerization of 3-aminopropyltriethoxylsilane using atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chun; Wang, Meng-Jiy

    2016-01-01

    Surface modification techniques have been applied in various applications including self-cleaning surface, antibacterial filter, and biomaterials. In this study we employed the atmospheric pressure plasma jet (APPJ) deposition, a dry process for surface modification, to deposit 3-aminopropyltriethoxylsilane (APTES) on stainless steel (SS) on the purposes of simultaneously incorporating SiOx and nitrogen containing functionalities for the modulation of biofunctionality. The APPJ deposition allowed to form a thin layer of APTES with linear growth rate by controlling the deposition time. In addition, the surface chemical and physical properties, such as surface chemical composition, wettability, film thickness, and interactions with mammalian cells were evaluated by using different analytical methods. The results showed that the surface wettability was improved significantly due to the APTES deposition along with the increase of the incorporated nitrogen content. Moreover, the viability of L-929 fibroblasts was clearly promoted on the APTES deposited SS, which is most probably due to the thicker deposited films and higher density of nitrogen-containing functional groups. The outcomes of this research showed great potential to apply on metallic substrates in real time for biomedical related applications.

  14. Formation of reactive oxygen and nitrogen species by repetitive negatively pulsed helium atmospheric pressure plasma jets propagating into humid air

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-06-01

    Atmospheric pressure plasma jets have many beneficial effects in their use in surface treatment and, in particular, plasma medicine. One of these benefits is the controlled production of reactive oxygen and nitrogen species (RONS) in the active discharge through the molecular gases added to the primary noble gas in the input mixture, and through the interaction of reactive species in the plasma effluent with the ambient air. In this computational investigation, a parametric study was performed on the production of RONS in a multiply pulsed atmospheric pressure plasma jet sustained in a He/O2 mixture and flowing into ambient humid air. The consequences of flow rate, O2 fraction, voltage, and repetition rate on reactant densities after a single discharge pulse, after 30 pulses, and after the same total elapsed time were investigated. At the end of the first discharge pulse, voltage has the greatest influence on RONS production. However, the systematic trends for production of RONS depend on repetition rate and flow rate in large part due to the residence time of RONS in the plasma zone. Short residence times result in reactive species produced by the previous pulse still being in the discharge tube or in the path of the ionization wave at the next pulse. The RONS therefore accumulate in the tube and in the near effluent on a pulse-to-pulse basis. This accumulation enables species requiring multiple reactions among the primary RONS species to be produced in greater numbers.

  15. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    PubMed

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs. PMID:26462014

  16. Cellular Attachment and Differentiation on Titania Nanotubes Exposed to Air- or Nitrogen-Based Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity

  17. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    SciTech Connect

    Li, Shou-Zhe Zhang, Xin; Chen, Chuan-Jie; Zhang, Jialiang; Wang, Yong-Xing; Xia, Guang-Qing

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch, the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.

  18. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 ‑, and NO3 ‑ are detected after plasma exposure and only NO3 ‑ after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 ‑ production and long-lifetime species in NO3 ‑ production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 ‑, and the off-gas sparging of the PB-DBD for the production of NO3 ‑.

  19. Atmospheric Pressure Plasma CVD of Amorphous Hydrogenated Silicon Carbonitride (a-SiCN:H) Films Using Triethylsilane and Nitrogen

    SciTech Connect

    Srinivasan Guruvenket; Steven Andrie; Mark Simon; Kyle W. Johnson; Robert A. Sailer

    2011-10-04

    Amorphous hydrogenated silicon carbonitride (a-SiCN:H) thin films are synthesized by atmospheric pressure plasma enhanced chemical vapor (AP-PECVD) deposition using the Surfx Atomflow{trademark} 250D APPJ source with triethylsilane (HSiEt{sub 3}, TES) and nitrogen as the precursor and the reactive gases, respectively. The effect of the substrate temperature (T{sub s}) on the growth characteristics and the properties of a-SiCN:H films was evaluated. The properties of the films were investigated via scanning electron microscopy (SEM), atomic force microscopy (AFM) for surface morphological analyses, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) for chemical and compositional analyses; spectroscopic ellipsometry for optical properties and thickness determination and nanoindentation to determine the mechanical properties of the a-SiCN:H films. Films deposited at low T{sub s} depict organic like features, while the films deposited at high T{sub s} depict ceramic like features. FTIR and XPS studies reveal that an increases in T{sub s} helps in the elimination of organic moieties and incorporation of nitrogen in the film. Films deposited at T{sub s} of 425 C have an index of refraction (n) of 1.84 and hardness (H) of 14.8 GPa. A decrease in the deposition rate between T{sub s} of 25 and 250 C and increase in deposition rate between T{sub s} of 250 and 425 C indicate that the growth of a-SiCN:H films at lower T{sub s} are surface reaction controlled, while at high temperatures film growth is mass-transport controlled. Based on the experimental results, a potential route for film growth is proposed.

  20. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode-anode gap by rather dense plasma (˜1013 cm-3) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizing it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.

  1. Generation Of Atmospheric Pressure Non-Thermal Plasma By Diffusive And Constricted Discharges In Rest And Flowing Gases (Air And Nitrogen)

    NASA Astrophysics Data System (ADS)

    Akishev, Y.; Grushin, M.; Karalnik, V.; Kochetov, I.; Napartovich A.; Trushkin N.

    2010-07-01

    Weekly ionized non-thermal plasma (NTP) is of great interest for many applications because of its strong non-equilibrium state wherein an average electron energy Te exceeds markedly gas temperature Tg, i.e. electrons in the NTP are strongly overheated compared to neutral gas. Energetic electrons due to frequent collisions with the neutrals excite and dissociate effectively atoms and molecules of the plasma-forming gas that results in a creation of physically-, and bio-chemically active gaseous medium in a practically cold background gas. At present there are many kinds of plasma sources working at low and atmospheric pressure and using MW, RF, low frequency, pulsed and DC power supplies for NTP generation. The NTP at atmospheric pressure is of considerable interest for practice. A reason is that sustaining the NTP at atmospheric pressure at first allows us to avoid the use of expensive vacuum equipment and second gives opportunity to use the NTP for treatment of the exhausted gases and polluted liquids. The second opportunity cannot be realized at all with use of the NTP at low pressure. Main subject of this talk is low current atmospheric pressure gas discharges powering with DC power supplies. Plasma forming gases are air and nitrogen which are much cheaper compared to rare gases like He or Ar. Besides, great interest to molecular nitrogen as plasma forming gas is caused first of all its unique capability to accumulate huge energy in vibration, electron (metastables) and dissociated (atomic) states providing high chemical reactivity of the activated nitrogen. All active particles mentioned above have a long lifetime, and they can be therefore transported for a long distance away from place of their generation. Different current modes (diffusive and constricted) of these discharges are discussed. Experimental and numerical results on generation of chemically active species in the diffusive and constricted mode are presented. Some data on the usage of the

  2. Plasma effects on the generation of reactive oxygen and nitrogen species in cancer cells in-vitro exposed by atmospheric pressure pulsed plasma jets

    NASA Astrophysics Data System (ADS)

    Kim, Sun Ja; Chung, T. H.

    2015-08-01

    Atmospheric pressure pulsed helium plasma jets are utilized for plasma-cell interactions. The effect of operating parameters such as applied voltage, pulse repetition frequency, and duty ratio on the generation of specific reactive oxygen and nitrogen species in gas and liquid phases and within cells is investigated. The apoptotic changes detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling assay in cells caused by plasma exposure are observed to correlate well with the levels of extracellular and intracellular reactive oxygen and nitrogen species.

  3. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  4. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  5. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  6. Atomic nitrogen: a parameter study of a micro-scale atmospheric pressure plasma jet by means of molecular beam mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schneider, Simon; Dünnbier, Mario; Hübner, Simon; Reuter, Stephan; Benedikt, Jan

    2014-12-01

    Absolute atomic nitrogen densities (N) in the effluent of a micro-scale atmospheric pressure plasma jet (µ-APPJ) operated in He with small admixtures of molecular nitrogen (N2) are measured by means of molecular beam mass spectrometry. Focusing on changes of the external plasma parameters, the dependency of the atomic nitrogen density on the admixture of molecular nitrogen to the plasma, the variation of applied electrode voltage and the variation of distance between the jet nozzle and the sampling orifice of the mass spectrometer are analysed. When varying the N2 admixture, a maximum density of atomic nitrogen of approximately 1.5  ×  1014 cm-3 (~6 ppm) is reached at about 0.25% N2 admixture. Moreover, the N density increases approximately linearly with the applied voltage. Both results are comparable to atomic oxygen (O) behaviour of the µ-APPJ operated at equal plasma conditions except for admixing molecular O2 instead of nitrogen (Ellerweg et al 2010 New J. Phys. 12 013021). The N density decreases continuously with increasing distance, but the decrease is slower than in the case of O atoms in He/O2 plasma. N atoms with a density of 2.0  ×  1013 cm-3 (~0.8 ppm) are still detected at 40 mm distance from the jet nozzle in controlled He/N2 atmosphere. The simple fluid simulation of N diffusion does not reproduce the measured densities of N. Nevertheless, a simulation taking into account atomic nitrogen reactions with gas impurities are able to reproduce the measured data, indicating that these reactions are an important loss mechanism of N atoms. The presented results are relevant for the future investigation of interactions of reactive nitrogen species with biological substrates.

  7. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  8. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  9. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  10. Light emission spectra of molecules in negative and positive back discharges in nitrogen with carbon dioxide mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol

    2015-10-01

    Results of spectroscopic investigations and current-voltage characteristics of back discharge generated in point-plane electrode geometry with plate covered fly ash layer in a mixture of N2 + CO2 at atmospheric pressure, for positive and negative polarity of the discharge electrode are presented in this paper. Point-plane electrode configuration was chosen in these studies in order to simulate the physical processes occurring in electrostatic precipitator. Three forms of back discharge for both polarities were investigated: glow, streamers and low-current back-arc. Diatomic reactions and dissociation products of N2 and CO2 (OH, NO, CN), atoms from fly ash layer (N, Ti, Na), free radicals, molecules or ions, which have unpaired valence electrons, and other active species, e.g., N2 (in C,B,A-state), N 2 + (B) were identified in the discharges by the method of optical emission spectroscopy (OES). The measurements shown that atomic and molecular optical emission spectral lines from back discharge depend on the forms of discharge and the discharge current. In normal electrical discharges, the emission spectra are dominated by gaseous components, but in the case of back discharge, atomic lines belonging to chemical compounds of fly ash were also recorded and identified.

  11. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  12. Electron density change of atmospheric-pressure plasmas in helium flow depending on the oxygen/nitrogen ratio of the surrounding atmosphere

    NASA Astrophysics Data System (ADS)

    Tomita, Kentaro; Urabe, Keiichiro; Shirai, Naoki; Sato, Yuta; Hassaballa, Safwat; Bolouki, Nima; Yoneda, Munehiro; Shimizu, Takahiro; Uchino, Kiichiro

    2016-06-01

    Laser Thomson scattering was applied to an atmospheric-pressure plasma produced in a helium (He) gas flow for measuring the spatial profiles of electron density (n e) and electron temperature (T e). Aside from the He core flow, the shielding gas flow of N2 or synthesized air (\\text{N}2:\\text{O}2 = 4:1) surrounding the He flow was introduced to evaluate the effect of ambient gas components on the plasma parameters, eliminating the effect of ambient humidity. The n e at the discharge center was 2.7 × 1021 m‑3 for plasma generated with N2/O2 shielding gas, 50% higher than that generated with N2 shielding.

  13. Ambient Pressure LIF Instrument for Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Parra, J.; George, L. A.

    2009-12-01

    Concerns about the health effects of nitrogen dioxide (NO2) and its role in forming deleterious atmospheric species have made it desirable to have low-cost, sensitive ambient measurements of NO2. A continuous-wave laser-diode Laser Induced Fluorescence (LIF) system for NO2 that operates at ambient pressure has been developed, thereby eliminating the need for an expensive pumping system. The use of high quality optical filters has facilitated low-concentration detection of NO2 using atmospheric pressure LIF by providing substantial discrimination against scattered laser photons without the use of time-gated electronics, which add complexity and cost to the LIF instrumentation. This improvement allows operation at atmospheric pressure with a low-cost diaphragm sampling pump. The current prototype system has achieved sensitivity several orders of magnitude beyond previous efforts at ambient pressure (LOD of 2 ppb, 60 s averaging time). Ambient measurements of NO2 were made in Portland, OR using both the standard NO2 chemiluminescence method (CL-NO2) and the LIF instrument and showed good agreement (r2 = 0.92). Our instrument is currently being developed as a “back-end” detector for a more field portable NOy system. In addition, we are currently utilizing this instrument to study surface chemistry involving NO2 at atmospherically relevant concentrations and pressures.

  14. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    NASA Astrophysics Data System (ADS)

    Pendleton, S. J.; Montello, A.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2012-12-01

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  15. Shuttle Orbiter Atmospheric Revitalization Pressure Control Subsystem

    NASA Technical Reports Server (NTRS)

    Walleshauser, J. J.; Ord, G. R.; Prince, R. N.

    1982-01-01

    The Atmospheric Revitalization Pressure Control Subsystem (ARPCS) provides oxygen partial pressure and total pressure control for the habitable atmosphere of the Shuttle for either a one atmosphere environment or an emergency 8 PSIA mode. It consists of a Supply Panel, Control Panel, Cabin Pressure Relief Valves and Electronic Controllers. The panels control and monitor the oxygen and nitrogen supplies. The cabin pressure relief valves protect the habitable environment from overpressurization. Electronic controllers provide proper mixing of the two gases. This paper describes the ARPCS, addresses the changes in hardware that have occurred since the inception of the program; the performance of this subsystem during STS-1 and STS-2; and discusses future operation modes.

  16. Effects of nitrogen on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon-based cold atmospheric pressure plasma.

    PubMed

    Tabuchi, Yoshiaki; Uchiyama, Hidefumi; Zhao, Qing-Li; Yunoki, Tatsuya; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Kondo, Takashi

    2016-06-01

    Cold atmospheric pressure plasma (CAP) is known as a source of biologically active agents, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present study, we examined the effects of nitrogen (N2) on the apoptosis of and changes in gene expression in human lymphoma U937 cells exposed to argon (Ar)-CAP. Enormous amounts of hydroxyl (·OH) radicals in aqueous solution were produced using Ar‑CAP generated using a 20 kHz low frequency at 18 kV with a flow rate of 2 l/min. The increase in the levels of ·OH radicals was significantly attenuated by the addition of N2 to Ar gas. On the other hand, the level of total nitrate/nitrite in the supernatant was significantly elevated in the Ar + N2-CAP‑exposed U937 cells. When the cells were exposed to Ar‑CAP, a significant increase in apoptosis was observed, whereas apoptosis was markedly decreased in the cells exposed to Ar + N2-CAP. Microarray and pathway analyses revealed that a newly identified gene network containing a number of heat shock proteins (HSPs), anti-apoptotic genes, was mainly associated with the biological function of the prevention of apoptosis. Quantitative PCR revealed that the expression levels of HSPs were significantly elevated in the cells exposed to Ar + N2-CAP than those exposed to Ar‑CAP. These results indicate that N2 gas in Ar‑CAP modifies the ratio of ROS to RNS, and suppresses the apoptosis induced by Ar‑CAP. The modulation of gaseous conditions in CAP may thus prove to be useful for future clinical applications, such as for switching from a sterilizing mode to cytocidal effect for cancer cells. PMID:27121589

  17. Microwave Atmospheric-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  18. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  19. Research on atmospheric pressure plasma processing sewage

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  20. Atmospheric Pressure During Landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  1. Atmospheric nitrogen evolution on Earth and Venus

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.

    2016-08-01

    Nitrogen is the most common element in Earth's atmosphere and also appears to be present in significant amounts in the mantle. However, its long-term cycling between these two reservoirs remains poorly understood. Here a range of biotic and abiotic mechanisms are evaluated that could have caused nitrogen exchange between Earth's surface and interior over time. In the Archean, biological nitrogen fixation was likely strongly limited by nutrient and/or electron acceptor constraints. Abiotic fixation of dinitrogen becomes efficient in strongly reducing atmospheres, but only once temperatures exceed around 1000 K. Hence if atmospheric N2 levels really were as low as they are today 3.0-3.5 Ga, the bulk of Earth's mantle nitrogen must have been emplaced in the Hadean, most likely at a time when the surface was molten. The elevated atmospheric N content on Venus compared to Earth can be explained abiotically by a water loss redox pump mechanism, where oxygen liberated from H2O photolysis and subsequent H loss to space oxidises the mantle, causing enhanced outgassing of nitrogen. This mechanism has implications for understanding the partitioning of other Venusian volatiles and atmospheric evolution on exoplanets.

  2. Fixation of nitrogen in the prebiotic atmosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Mcelroy, M. B.

    1979-01-01

    Reactions between nitrogen and water in the air surrounding lightning discharges can provide an important source of nitric oxide even under conditions where oxygen is a minor atmospheric constituent. Estimates are given for the associated source of soluble nitrite and nitrate. It is shown that lightning and subsequent atmospheric chemistry can provide a source of nitrate for the primitive ocean as large as one million tons of nitrogen per year, sufficient to fill the ocean to its present level of nitrate in less than one million years.

  3. Gas-phase synthesis of nitrogen-doped TiO{sub 2} nanorods by microwave plasma torch at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Kim, Jong Hun; Bang, Chan Uk; Uhm, Han Sup

    2005-11-15

    Nitrogen (N)-doped titanium dioxide (TiO{sub 2}) nanorods were directly synthesized via decomposition of gas-phase titanium tetrachloride (TiCl{sub 4}) by an atmospheric microwave plasma torch. X-ray diffraction, field-emission scanning electron microscope, field-emission transmission electron microscope, and electron-energy-loss spectroscopy (EELS) have been employed to investigate fraction of the anatase and rutile phases, diameter and length, and chemical composition of the nanorods, respectively. The diameters of the nanorods are approximately 30-80 nm and the length is several micrometers. EELS data show that incorporation of N into the O site of TiO{sub 2} nanorods was enhanced in N{sub 2} gas by the microwave plasma torch. Also, a growth model of the rods was proposed on the basis of vapor-liquid-solid mechanism.

  4. Nitrogen metastable (N2(A3 Σu + )) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition

    NASA Astrophysics Data System (ADS)

    Iseni, Sylvain; Bruggeman, Peter J.; Weltmann, Klaus-Dieter; Reuter, Stephan

    2016-05-01

    N 2 ( A 3 Σu + ) metastable species are detected and measured in a non-equilibrium atmospheric pressure plasma jet by laser induced fluorescence. A shielding device is used to change the ambient conditions additionally to the feeding gas composition. Varying the amount of N2 and air admixed to the feeding gas as well as changing the shielding gas from N2 to air reveals that the highest N 2 ( A 3 Σu + ) is achieved in the case of air admixtures in spite of the enhanced collisional quenching due to the presence of O2. The reasons for these observations are discussed in detail.

  5. Atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  6. The Atmospheric Fate of Organic Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  7. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    PubMed

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. PMID:26446274

  8. Assessing nitrogen pressures on European surface water

    NASA Astrophysics Data System (ADS)

    Grizzetti, B.; Bouraoui, F.; de Marsily, G.

    2008-12-01

    The European environmental legislation on water, in particular the 2000 Water Framework Directive, requires the evaluation of nutrient pressures and the assessment of mitigation measures at the river basin scale. Models have been identified as tools that can contribute to fulfill these requirements. The objective of this research was the implementation of a modeling approach (Geospatial Regression Equation for European Nutrient losses (GREEN)) to assess the actual nitrogen pressures on surface water quality at medium and large basin scale (European scale) using readily available data. In particular the aim was to estimate diffuse nitrogen emissions into surface waters, contributions by different sources (point and diffuse) to the nitrate load in rivers, and nitrogen retention in river systems. A comprehensive database including nutrient sources and physical watershed characteristics was built at the European scale. The modeling partially or entirely covered some of the larger and more populated European river basins, including the Danube, Rhine, Elbe, Weser, and Ems in Germany, the Seine and Rhone in France, and the Meuse basin shared by France and Belgium. The model calibration was satisfactory for all basins. The source contribution to the in-stream nitrogen load, together with the diffuse nitrogen emissions and river nitrogen retention were estimated and were found to be in the range of values reported in the literature. Finally, the model results were extrapolated to estimate the diffuse nitrogen emission and source apportionment at the European scale.

  9. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  10. Photochemistry of nitrogen in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Kong, T. Y.; Mcelroy, M. B.; Strobel, D. E.

    1977-01-01

    Models are developed for the photochemistry of a CO2-H2O-N2 atmosphere on Mars. Estimates are given for the concentrations of N, NO, NO2, NO3, N2O5, HNO2, HNO3, and N2O as a function of altitude. Nitric oxide is the most abundant form of odd nitrogen, present with a mixing ratio relative to CO2 of the order of 1 hundred-millionth. Deposition rates for nitrite and nitrate minerals could be as large as 300,000 N equivalent atoms per sq cm/sec under present conditions and may have been higher in the past.

  11. Domestic atmospheric pressure thermal deaerators

    NASA Astrophysics Data System (ADS)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p < 0.15 MPa) and jet trays are used, and in deaerator tank, a developed "flooded" sparger is applied, which allows to significantly increase the intensity of the heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a "flooded" sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or "superheated" water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  12. Liquid Nitrogen Subcooler Pressure Vessel Engineering Note

    SciTech Connect

    Rucinski, R.; /Fermilab

    1997-04-24

    The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.

  13. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure.

    PubMed

    Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki; Ito, Yasuhiko

    2003-01-15

    Ammonia was successfully synthesized by using a new electrochemical reaction with high current efficiency at atmospheric pressure and at lower temperatures than the Haber-Bosch process. In this method, nitride ion (N3-), which is produced by the reduction from nitrogen gas at the cathode, is anodically oxidized and reacts with hydrogen to produce ammonia at the anode. PMID:12517136

  14. Atmospheric pressure fluctuations and oxygen enrichment in waste tanks

    SciTech Connect

    Kurzeja, R.J.; Weber, A.H.

    1993-07-01

    During In-Tank Precipitation (ITP) processing radiolytic decomposition of tetraphenylborate and water can produce benzene and hydrogen, which, given sufficiently high oxygen concentrations, can deflagrate. To prevent accumulations of benzene and hydrogen and avoid deflagration, continuous nitrogen purging is maintained. If the nitrogen purging is interrupted by, for example, a power failure, outside air will begin to seep into the tank through vent holes and cracks. Eventually a flammable mixture of benzene, hydrogen, and oxygen will occur (deflagration). However, this process is slow under steady-state conditions (constant pressure) and mechanisms to increase the exchange rate with the outside atmosphere must be considered. The most important mechanism of this kind is from atmospheric pressure fluctuations in which an increase in atmospheric pressure forces air into the tank which then mixes with the hydrogen-benzene mixture. The subsequent decrease in atmospheric pressure causes venting from the tank of the mixture -- the net effect being an increase in the tank`s oxygen concentration. Thus, enrichment occurs when the atmospheric pressure increases but not when the pressure decreases. Moreover, this natural atmospheric {open_quotes}pumping{close_quotes} is only important if the pressure fluctuations take place on a time scale longer than the characteristic mixing time scale (CMT) of the tank. If pressure fluctuations have a significantly higher frequency than the CMT, outside air will be forced into the tank and then out again before any significant mixing can occur. The CMT is not known for certain, but is estimated to be between 8 and 24 hours. The purpose of this report is to analyze yearly pressure fluctuations for a five year period to determine their statistical properties over 8 and 24-hour periods. The analysis also includes a special breakdown into summer and winter seasons and an analysis of 15-minute data from the SRTC Climatology Site.

  15. [Characteristics of atmospheric nitrogen wet deposition in Beijing urban area].

    PubMed

    He, Cheng-Wu; Ren, Yu-Fen; Wang, Xiao-Ke; Mao, Yu-Xiang

    2014-02-01

    With the ion-exchange resin method, the atmospheric nitrogen wet deposition in Beijing urban area within the Fifth Ring Road was investigated from June to October, 2012. The relationship between atmospheric nitrogen wet deposition and rainfall precipitation was investigated, the differences of nitrogen wet deposition in different months, different ring roads (the Fifth Ring Road, the Fourth Ring Road, the Third Ring Road and the Second Ring Road) and different functional areas (institutes and colleges district, ring-road, residential areas, railway station and public garden) were also investigated. The results showed that the average value and standard deviation of ammonia-nitrogen, nitrate-nitrogen and nitrite-nitrogen were significantly different during different months in 2012. The atmospheric nitrite nitrogen deposition first decreased and then increased, the maximum value appeared in September. The positive relationships between ammonia nitrogen (nitrate nitrogen) and mean monthly precipitation and negative relationships between nitrite nitrogen and mean monthly precipitation were both significant (P < 0.05). The three nitrogen depositions of ring-road and railway station were higher than other functional areas, but only the nitrite nitrogen deposition had obvious regional difference. The differences of the three nitrogen depositions among different ring roads were all not significant and it meant that the nitrogen wet deposition was equally distributed in Beijing urban area. PMID:24812938

  16. An Atmospheric Pressure Ping-Pong "Ballometer"

    ERIC Educational Resources Information Center

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  17. Determining Atmospheric Pressure Using a Water Barometer

    NASA Astrophysics Data System (ADS)

    Lohrengel, C. Frederick; Larson, Paul R.

    2012-12-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the mass of the water that is used as the fluid medium in the barometer. Simple calculations based upon the mass of water collected from the barometer yield the mass of the atmosphere per square unit of area at the site where the experiment is conducted.

  18. Does low atmospheric pressure independently trigger migraine?

    PubMed

    Bolay, Hayrunnisa; Rapoport, Alan

    2011-10-01

    Although atmospheric weather changes are often listed among the common migraine triggers, studies to determine the specific weather component(s) responsible have yielded inconsistent results. Atmospheric pressure change produces air movement, and low pressure in particular is associated with warm weather, winds, clouds, dust, and precipitation, but how this effect might generate migraine is not immediately obvious. Humans are exposed to low atmospheric pressure in situations such as ascent to high altitude or traveling by airplane in a pressurized cabin. In this brief overview, we consider those conditions and experimental data delineating other elements in the atmosphere potentially related to migraine (such as Saharan dust). We conclude that the available data suggest low atmospheric pressure unaccompanied by other factors does not trigger migraine. PMID:21906054

  19. 74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR LIQUID NITROGEN PUMPING STATION - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    NASA Astrophysics Data System (ADS)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  1. Effects of high pressure nitrogen on the thermal stability of SiC fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    1991-01-01

    Polymer-derived SiC fibers were exposed to nitrogen gas pressures of 7 and 50 atm at temperatures up to 1800 C. The fiber weight loss, chemical composition, and tensile strength were then measured at room temperature in order to understand the effects of nitrogen exposure on fiber stability. High pressure nitrogen treatments limited weight loss to 3 percent or less for temperatures up to 1800 C. The bulk Si-C-O chemical composition of the fiber remained relatively constant up to 1800 C with only a slight increase in nitrogen content after treatment at 50 atm; however, fiber strength retention was significantly improved. To further understand the effects of the nitrogen atmosphere on the fiber stability, the results of previous high pressure argon treatments were compared to those of the high pressure nitrogen treatments. High pressure inert gas can temporarily maintain fiber strength by physically inhibiting the evolution of gaseous species which result from internal reactions. In addition to this physical effect, it would appear that high pressure nitrogen further improved fiber temperature capability by chemically reacting with the fiber surface, thereby reducing the rate of gas evolution. Subsequent low pressure argon treatments following the initial nitrogen treatments resulted in stronger fibers than after argon treatment alone, further supporting the chemical reaction mechanism and its beneficial effects on fiber strength.

  2. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  3. The effect of atmospheric nitrogen deposition on marine nitrogen cycling throughout the global ocean

    NASA Astrophysics Data System (ADS)

    Somes, Christopher; Oschlies, Andreas

    2014-05-01

    The rapidly increasing rate of anthropogenic nitrogen deposition has the potential to perturb marine ecosystems and biogeochemical cycles because nitrogen is one of the major limiting nutrients in the ocean. We use an Earth System Climate Model that includes ocean biogeochemistry to assess the impact of atmospheric nitrogen deposition. Experiments are conducted where we artificially add nitrogen to nearly all locations individually throughout the global surface ocean using a nitrogen deposition rate of 700 mg N m-2 yr-1, which is consistent with modern estimates near industrial areas. We identify oceanic "biomes" that respond differently to atmospheric nitrogen deposition. (1) When nitrogen is deposited near oxygen minimum zones where water column denitrification occurs, locally increased primary production stimulates additional denitrification. Since water column denitrification removes 7 mol N for every mol N of newly formed organic matter respired, the global oceanic nitrogen inventory declines in response to nitrogen deposition in these areas. This slow, but steady decline persists for at least 1,000 years. (2) When nitrogen is deposited above shallow continental shelves where benthic denitrification occurs, our benthic denitrification model predicts an increase that is nearly equal to the nitrogen deposited and thus no net change in the global nitrogen inventory. (3) When nitrogen is deposited into the high latitude open ocean far removed from nitrogen fixation and denitrification, all of this deposited nitrogen initially accumulates in the ocean. This nitrogen eventually circulates into the tropical oxygen minimum zones where it fuels additional primary production and denitrification, which removes nitrogen at a rate equal to the deposition after 1,000 years and leads to a stable, but increased nitrogen inventory in our model. (4) When nitrogen is deposited into the open ocean where nitrogen fixation occurs, nitrogen fixation decreases due to less nitrogen

  4. Formation of nitrogenated organic aerosols in the Titan upper atmosphere

    PubMed Central

    Imanaka, Hiroshi; Smith, Mark A.

    2010-01-01

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074

  5. Reactive Nitrogen in Atmospheric Emission Inventories

    EPA Science Inventory

    Excess reactive Nitrogen (NT) has become one of the most pressing environmental problems leading to air pollution, acidification and eutrophication of ecosystems, biodiversity impacts, leaching of nitrates into groundwater and global warming. This paper investigates how current i...

  6. Atmospheric deposition of nitrogen and sulfur in Louisiana

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2015-12-01

    Wet deposition and dry deposition reduce their concentrations of sulfur and nitrogen contained air pollutants in atmosphere, but lead to increase of sulfur and nitrogen fluxes to the surface. Atmospheric deposition of sulfur and nitrogen can lead to acidification of surface water bodies (lakes, rivers, and coasts) and subsequent damage to aquatic ecosystems as well as damage to forests and vegetation. Louisiana has abundant water resources with approximately 11% of the total surface area composed of water bodies. It is important to protect water resources from excessive atmospheric deposition of sulfur and nitrogen. However, the information obtained from the observation systems for understanding the deposition of sulfur and nitrogen and the adverse effects in Louisiana is limited. This study uses a source-oriented CMAQ model to simulate emission, formation, transport, and deposition of sulfur and nitrogen species in Louisiana. WRF is used to generate the meteorological inputs and SMOKE is used to generate the emissions based on national emission inventory (NEI). The forms and quantities of sulfur and nitrogen deposition from wet and dry processes in Louisiana will be discovered. The spatial and temporal variations of sulfur and nitrogen fluxes will be quantified and contributions of major source sectors or source regions will be quantified.

  7. Spectroscopic diagnosis of an atmospheric-pressure waveguide-based microwave N2-Ar plasma torch

    NASA Astrophysics Data System (ADS)

    Li, Shou-Zhe; Chen, Chuan-Jie; Zhang, Xin; Zhang, Jialiang; Wang, Yong-Xing

    2015-04-01

    An atmospheric-pressure N2-Ar plasma is investigated by means of optical emission spectroscopic diagnosis concerning the variation of its fundamental parameters, electron density and plasma temperature, and concentrations of ionized molecular nitrogen, atomic nitrogen, and excited argon with the tuning variables, such as the input power and the ratio of N2 in N2-Ar mixture gas, in the discharge region of the plasma torch. Moreover, qualitative discussions are delivered with respect to the mechanisms for nitrogen dissociation and influence of the Ar component on the N2 plasma discharge at atmospheric pressure.

  8. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  9. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  10. Quality characteristics of the radish grown under reduced atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  11. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-01

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis. PMID:27082434

  12. Nanoparticle heating in atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas; Aydil, Eray; Kortshagen, Uwe

    2015-09-01

    The plasma environment offers a number of attractive properties that allow for the generation of nanoparticle materials that are otherwise hard to produce by other means. Among these are the generally high temperatures that nanoparticles can attain within plasmas, enabling the generation of nanocrystals of high melting point materials. In low pressure discharges, these high temperatures are the result of energetic surface reactions that strongly heat the small nanoparticles combined with the relatively slow heat transfer to the neutral gas. At atmospheric pressure, the nanoparticle intrinsic temperature is much more closely coupled to the neutral gas temperature. We study the heating of nanoparticles in atmospheric pressure plasmas based on a Monte Carlo simulation that takes into account the most important plasma-surface reactions as well as the conductive cooling of nanoparticles through the neutral gas. We find that, compared to low pressure plasmas, significantly higher plasma densities and densities of reactive species are required in order to achieve nanoparticle temperatures comparable to those in low pressure plasmas. These findings have important implications for the application of atmospheric pressure plasmas for the synthesis of nanoparticle materials. This work was supported by the DOE Plasma Science Center for Predictive Control of Plasma Kinetics.

  13. Runaway electron beam in atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  14. Atmospheric pressure femtosecond laser imaging mass spectrometry

    NASA Astrophysics Data System (ADS)

    Coello, Yves; Gunaratne, Tissa C.; Dantus, Marcos

    2009-02-01

    We present a novel imaging mass spectrometry technique that uses femtosecond laser pulses to directly ionize the sample. The method offers significant advantages over current techniques by eliminating the need of a laser-absorbing sample matrix, being suitable for atmospheric pressure sampling, and by providing 10μm resolution, as demonstrated here with a chemical image of vegetable cell walls.

  15. Quantifying atmospheric nitrogen outflow from the Front Range of Colorado

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.

    2015-12-01

    Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.

  16. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexaboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, and external magnetic fields were all found to reduce electrode mass loss.

  17. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  18. Response of cyanobacteria to low atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  19. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  20. Electric probe investigations of microwave generated, atmospheric pressure, plasma jets

    SciTech Connect

    Porteanu, H. E.; Kuehn, S.; Gesche, R.

    2010-07-15

    We examine the applicability of the Langmuir-type of characterization for atmospheric pressure plasma jets generated in a millimeter-size cavity microwave resonator at 2.45 GHz. Wide range I-V characteristics of helium, argon, nitrogen, air and oxygen are presented for different gas fluxes, distances probe-resonator, and microwave powers. A detailed analysis is performed for the fine variation in the current around the floating potential. A simplified theory specially developed for this case is presented, considering the ionic and electronic saturation currents and the floating potential. Based on this theory, we conclude that, while the charge carrier density depends on gas flow, distance to plasma source, and microwave absorbed power, the electron temperature is quite independent of these parameters. The resulting plasma parameters for helium, argon, and nitrogen are presented.

  1. Large area atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  2. Low surface pressure models for Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1978-01-01

    The inversion model for the atmosphere of Titan is reviewed. The basic features of the model are: a cold surface (80 K), a warm stratosphere (160 K) and a low surface pressure (20 mbar). The model is consistent with all existing thermal infrared spectrophotometry, but it cannot preclude the existence of an opaque, cloud, thick atmosphere. The model excludes other gases than methane as bulk constituents. Radio wavelengths observations, including recent data from the very large array, are discussed. These long wavelength observations may be the only direct means of sampling the surface environment before an entry probe or flyby.

  3. Mars atmosphere pressure periodicities from Viking observations

    NASA Technical Reports Server (NTRS)

    Sharman, R. D.; Ryan, J. A.

    1980-01-01

    The first Martian year of pressure data taken by the Viking landers on Mars is subjected to power spectrum analysis. The analysis suggests that strong periodicities are present in the Martian atmosphere, especially at the high-latitude (48 deg N) site of the second lander. Most of these periodicities are probably due to the passage of baroclinic waves. Inspection of individual segments of data shows that the periodicities of the dominant waves vary significantly with time of year. This may be related to the amount of dust in the atmosphere since the dominant frequencies of the waves during times of major dust storms are quite different than at other times.

  4. The Effect of Simultaneous Shear and Pressure Loading On Nitrogen-rich Energetic Materials

    NASA Astrophysics Data System (ADS)

    Forohar, Farhad; Joshi, Vasant; Wilson, Dan; Gump, Jared

    2015-06-01

    Current research in energetic material is focused on synthesis of high density materials. Efforts to obtain metastable high pressure and high temperature states of nitrogen using Diamond Anvil Cell (DAC) have indicated that some high density compounds may physically exist, but recovery of these materials at atmospheric pressure and temperature is still elusive. Stable poly-nitrogen compounds can be theoretically achieved by attaching them to non-nitrogen atoms. Use of combined pressure and shear is a new approach to transform material to metastable condition easier than long duration-pure pressure application of force. This new method is being applied in an attempt to synthesize and recover novel energetic materials from pre-synthesized precursors. Nitrogen rich precursors used in the present study include ammonium azide (N4H4) , di-amino-tetra-azidocyclotriphosphazene (P3N17H4) , and hexa-azidocyclotriphosphazene (P3N21) . In order to get intramolecular interaction, co-crystallizations of mixtures were also made and subjected to pressure-shear loading. Successful decomposition of materials at low pressure has been achieved for some precursors. Additionally, the effects of pressure and shear on generating poly-nitrogen on carbon nanotubes were studied. Experimental fixture, method, results and analysis of recovered products will be presented. Support from ILIR program at NSWC IHEODTD is acknowledged.

  5. The effect of high pressure on nitrogen compounds of milk

    NASA Astrophysics Data System (ADS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-04-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, tconst. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, pconst. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration.

  6. 141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF CONTROL ROOM (214), LSB (BLDG. 751), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  9. Trends in Atmospheric Reactive Nitrogen for the Eastern United States

    EPA Science Inventory

    Reactive nitrogen can travel far from emission sources and impact sensitive ecosystems. From 2002-2006, policy actions have led to decreases in NOx emissions from power plants and motor vehicles. In this study, atmospheric chemical transport modeling demonstrates tha...

  10. Modeling atmospheric pressure plasmas for biomedical applications

    NASA Astrophysics Data System (ADS)

    Graves, David

    2007-10-01

    The use of cold, atmospheric pressure plasmas for biomedical treatments is an exciting new application in gaseous electronics. Investigations to date include various tissue treatments and surgery, bacterial destruction, and the promotion of wound healing, among others. In this talk, I will present results from modeling the `plasma needle,' an atmospheric pressure plasma configuration that has been explored by several groups around the world. The biomedical efficacy of the plasma needle has been demonstrated but the mechanisms of cell and tissue modification or bacterial destruction are only just being established. One motivation for developing models is to help interpret experiments and evaluate postulated mechanisms. The model reveals important elements of the plasma needle sustaining mechanisms and operating modes. However, the extraordinary complexity of plasma-tissue interactions represents a long-term challenge for this burgeoning field.

  11. Atmospheric deposition of nitrogen: Potential benefits to agricultural production

    SciTech Connect

    Coveney, E.A.; Medeiros, W.H.; Moskowitz, P.D.

    1986-11-01

    Effects of indirect fertilization on agricultural lands by atmospheric deposition are examined for the four most valuable crops in the US: corn, soybean, wheat, and pasture grasses. A literature search was conducted to find suitable dose-response functions for the effects of fertilization on yield of each crop. Predicted yield changes were computed from the deposition of nitrogen to the soil in addition to nitrogen applied in accordance with current agronomic practices using these dose-response functions. Low to high nitrogen inputs from atmospheric deposition (1 to 7 kg/ha) are expected to increase the average yield of corn by 0.2 to 1.1%, soybean by 0.1 to 0.7%, wheat by 0.1 to 0.4%, and pasture grasses by 1.6 to 14%. Pasture land is predicted to receive the greatest impact because it is usually unfertilized.

  12. Soft x-ray spectroscopy in atmospheric pressure helium

    SciTech Connect

    Roper, M.D.; van der Laan, G.; Flaherty, J.V.; Padmore, H.A. )

    1992-01-01

    We report on an environmental chamber, which is attached to a UHV beamline, in which soft x-ray measurements can be done at atmospheric pressure in helium. X-ray measurements in air can only be performed at energies above about 3 keV because of the strong absorption of soft x rays by oxygen and nitrogen. However, a low-{ital Z} scatterer such as helium has a long absorption length for soft x rays even at atmospheric pressure. Thus, this new chamber allows soft x-ray experiments to be performed on samples with physical properties that are incompatible with UHV conditions, e.g., liquid and frozen aqueous solutions, corrosive materials, etc. A helium-tight tank has been installed behind the vacuum experimental chamber of the double crystal beamline 3.4 at the Daresbury SRS. The tank is purged with helium at atmospheric pressure and the gas in the tank is isolated from the high vacuum of the rest of the beamline by a thin mylar window which is supported on a capillary array. The tank contains a sample stage, two ionization chambers and a parallel-plate gas proportional counter for fluorescence detection of dilute samples, which has produced good results on the {ital K} edges of Cl, S, and P.

  13. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  14. Special issue: diagnostics of atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  15. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  16. Likelihood of nitrogen condensation in Titan's present-day atmosphere

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2016-04-01

    The temperature in Titan's upper troposphere measured by the Huygens Probe is relatively close to the nitrogen condensation point. This poses the question as to whether seasonal nitrogen condensation might occur on Titan analogously to seasonal carbon dioxide condensation on Mars. The likelihood of nitrogen condensation in Titan's atmosphere is investigated using tropospheric temperature data obtained by Cassini radio occultations and simulation with a general circulation model (GCM). The observed tropospheric temperature generally decreases towards both poles but does not reach the nitrogen condensation point anywhere. However, Cassini may not have sounded the coldest season and area in Titan's troposphere. The GCM simulation shows that in the upper troposphere the variable solar distance associated with Saturn's orbital eccentricity has a larger impact on the seasonal polar temperature variation than the variable solar declination associated with Saturn's obliquity. In the upper troposphere relevant for nitrogen condensation the annual minimum polar temperature is predicted to occur around the northern autumnal equinox, approximately one season after aphelion. This temperature is then 1-2 K lower than in the season of the Cassini/Huygens mission. It is possible if not certain that some nitrogen condensation with cloud formation occurs in the northern and southern polar region in the upper troposphere around the northern autumnal equinox. Under the present orbital parameters of Saturn and Titan nitrogen condensation may occur more frequently near the south pole than near the north pole.

  17. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  18. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  19. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    NASA Astrophysics Data System (ADS)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean

  20. Dysbarism: the medical problems from high and low atmospheric pressure.

    PubMed

    James, P B

    1993-10-01

    The most serious problems resulting from a change in ambient pressure are pulmonary barotrauma with air embolism and decompression sickness. The small differential pressures used in ventilators at atmospheric pressure may tear lung tissue and, in diving, deaths have occurred from the expansion of pulmonary gas on an ascent of less than two metres. The bubbles of respired gas that enter the systemic circulation often occlude cerebral arteries and may cause infarction. In decompression sickness, bubbles form in the tissues from supersaturation of the nitrogen or helium absorbed under pressure. Joint pain--the 'bends'--is associated with gas in particular connective tissue. Serious decompression sickness results from the entry of microbubbles into the systemic veins. Large numbers of bubbles trapped in the lung cause an acute respiratory syndrome known as 'chokes'. If the lung filter is overwhelmed, or microbubbles pass into the systemic arteries through an atrial septal defect, they may open the blood-brain barrier, affecting brain and spinal cord function. Untreated, demyelination with relative preservation of axons may occur, the pathological hallmarks of multiple sclerosis. Gas bubble disease requires urgent compression in a hyperbaric chamber and the use of high partial pressures of oxygen. PMID:8289154

  1. Deposition of Functional Coatings from an Acetylene-Containing Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Plevako, F. V.; Gorbatov, S. V.; Davidovich, P. A.; Prikhod‧ko, E. M.; Shushkov, S. V.; Krul‧, L. P.; Butovskaya, G. V.; Shakhno, O. V.; Gusakova, S. V.; Korolik, O. V.; Mazanik, A. V.

    2016-03-01

    Properties of thin coatings formed on polymer and glass substrates by plasma-enhanced chemical vapor deposition from a mixture of nitrogen with acetylene at atmospheric pressure were investigated. It was established that chemically stable transparent films with a mass ratio of fixed carbon and nitrogen C:N ~ 2:1 are formed on the surface of these substrates. When the deposition time was increased, arrays of dendrite-like structures were formed on the substrates.

  2. Reactivity zones around an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Birer, Özgür

    2015-11-01

    The reactivity zones around an atmospheric pressure plasma jet are revealed by XPS mapping of chemical moieties on a polyethylene surface treated with a 3-mm plasma jet. The area directly hit by the helium plasma jet initially oxidizes and later etches away as the plasma treatment continues. The oxidation initially starts at the center and expands outwards as a ring pattern with different spatial potency. At the end of 10 min plasma jet treatment, distinct ring patterns for -NO, -COO, -CO and -NO3 species can be detected with respectively increasing diameters. The plasma jet can cause chemical changes at locations several millimeters away from the center. The spatial distribution of oxidized species suggests presence of chemical reactivity zones. Introduction of nitrogen into the helium plasma jet, not only increases the type of nitrogen moieties, but enriches the reactivity zones by generating nitrogen molecular ions within the plasma jet. The complex competing reaction mechanisms among the radicals, ions, metastable atoms and UV photons lead to unusual etching patterns on the surfaces.

  3. Solid Nitrogen at Extreme Conditions of High Pressure and Temperature

    SciTech Connect

    Goncharov, A; Gregoryanz, E

    2004-04-05

    We review the phase diagram of nitrogen in a wide pressure and temperature range. Recent optical and x-ray diffraction studies at pressures up to 300 GPa and temperatures in excess of 1000 K have provided a wealth of information on the transformation of molecular nitrogen to a nonmolecular (polymeric) semiconducting and two new molecular phases. These newly found phases have very large stability (metastability) range. Moreover, two new molecular phases have considerably different orientational order from the previously known phases. In the iota phase (unlike most of other known molecular phases), N{sub 2} molecules are orientationally equivalent. The nitrogen molecules in the theta phase might be associated into larger aggregates, which is in line with theoretical predictions on polyatomic nitrogen.

  4. Isotopic composition of nitrogen - Implications for the past history of Mars' atmosphere

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.; Yung, Y. L.; Nier, A. O.

    1976-01-01

    Models are presented for the past history of nitrogen on Mars, based on Viking measurements showing that the atmosphere is enriched in N-15. The enrichment is attributed to selective escape, with fast atoms formed in the exosphere by electron impact dissociation of N2 and by dissociative recombination of N2(+). The initial partial pressure of N2 should have been at least as large as several millibars and could have been as large as 30 millibars if surface processes were to represent an important sink for atmospheric HNO2 and HNO3.

  5. Governing processes for reactive nitrogen compounds in the European atmosphere

    NASA Astrophysics Data System (ADS)

    Hertel, O.; Skjøth, C. A.; Reis, S.; Bleeker, A.; Harrison, R. M.; Cape, J. N.; Fowler, D.; Skiba, U.; Simpson, D.; Jickells, T.; Kulmala, M.; Gyldenkærne, S.; Sørensen, L. L.; Erisman, J. W.; Sutton, M. A.

    2012-12-01

    Reactive nitrogen (Nr) compounds have different fates in the atmosphere due to differences in the governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3) and its reaction product ammonium (NH4+)), oxidized nitrogen (NOy: nitrogen monoxide (NO) + nitrogen dioxide (NO2) and their reaction products) as well as organic nitrogen compounds (organic N). Pollution abatement strategies need to take into account the differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions generally have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3) before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3-). In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3- contribute significantly to background PM2.5 and PM10 (mass of aerosols with an aerodynamic diameter of less than 2.5 and 10 μm, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant fraction of wet-deposited N, and is present in both gaseous and particulate forms. Further studies are needed to characterise the sources, air chemistry and

  6. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications. PMID:27116255

  7. Atmospheric-pressure Penning ionization mass spectrometry.

    PubMed

    Hiraoka, Kenzo; Fujimaki, Susumu; Kambara, Shizuka; Furuya, Hiroko; Okazaki, Shigemitsu

    2004-01-01

    A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry. PMID:15384154

  8. Mass spectrometry of atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Große-Kreul, S.; Hübner, S.; Schneider, S.; Ellerweg, D.; von Keudell, A.; Matejčík, S.; Benedikt, J.

    2015-08-01

    Atmospheric pressure non-equilibrium plasmas (APPs) are effective source of radicals, metastables and a variety of ions and photons, ranging into the vacuum UV spectral region. A detailed study of these species is important to understand and tune desired effects during the interaction of APPs with solid or liquid materials in industrial or medical applications. In this contribution, the opportunities and challenges of mass spectrometry for detection of neutrals and ions from APPs, fundamental physical phenomena related to the sampling process and their impact on the measured densities of neutrals and fluxes of ions, will be discussed. It is shown that the measurement of stable neutrals and radicals requires a proper experimental design to reduce the beam-to-background ratio, to have little beam distortion during expansion into vacuum and to carefully set the electron energy in the ionizer to avoid radical formation through dissociative ionization. The measured ion composition depends sensitively on the degree of impurities present in the feed gas as well as on the setting of the ion optics used for extraction of ions from the expanding neutral-ion mixture. The determination of the ion energy is presented as a method to show that the analyzed ions are originating from the atmospheric pressure plasma.

  9. Analytical vacuum force, atmospheric pressure dispute

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    Typically, the gap gas molecules is 10-9 m, since the center speed of the tornado is over 100 m / sec, it divided by the speed of a tornado, the gap of the gas molecules becomes 10-11m. Equivalent to the gap when there is no tornado that the gas molecules allow radiation to pass through, equivalent to the gap is reduced gas molecules 100 times by a tornado. There is no change in the Earth's radiate, the Earth's radiation is reduced to one percent of the original intensity by the radiation through the tornado periphery into the center of the tornado. According to the APS Division of Nuclear Physics in APS -2013 Fall Meeting - Event - Gravitational radiation theory http://meetings.aps.org/Meeting/DNP13/Session/FB.8, which I published, the gravity will br reduced to the original gravity percentage one. Waterspout by the Earth's gravity to become the original one percent. Cause the external of the tornadoes atmospheric pressure is constant, the height waterspout should support column height atmospheric pressure is 100 times,that height waterspout may reach nearly kilometers.

  10. Neurochemistry of Pressure-Induced Nitrogen and Metabolically Inert Gas Narcosis in the Central Nervous System.

    PubMed

    Rostain, Jean-Claude; Lavoute, Cécile

    2016-01-01

    Gases that are not metabolized by the organism are thus chemically inactive under normal conditions. Such gases include the "noble gases" of the Periodic Table as well as hydrogen and nitrogen. At increasing pressure, nitrogen induces narcosis at 4 absolute atmospheres (ATAs) and more in humans and at 11 ATA and more in rats. Electrophysiological and neuropharmacological studies suggest that the striatum is a target of nitrogen narcosis. Glutamate and dopamine release from the striatum in rats are decreased by exposure to nitrogen at a pressure of 31 ATA (75% of the anesthetic threshold). Striatal dopamine levels decrease during exposure to compressed argon, an inert gas more narcotic than nitrogen, or to nitrous oxide, an anesthetic gas. Inversely, striatal dopamine levels increase during exposure to compressed helium, an inert gas with a very low narcotic potency. Exposure to nitrogen at high pressure does not change N-methyl-d-aspartate (NMDA) glutamate receptor activities in Substantia Nigra compacta and striatum but enhances gama amino butyric acidA (GABAA) receptor activities in Substantia Nigra compacta. The decrease in striatal dopamine levels in response to hyperbaric nitrogen exposure is suppressed by recurrent exposure to nitrogen narcosis, and dopamine levels increase after four or five exposures. This change, the lack of improvement of motor disturbances, the desensitization of GABAA receptors on dopamine cells during recurrent exposures and the long-lasting decrease of glutamate coupled with the higher sensitivity of NMDA receptors, suggest a nitrogen toxicity induced by repetitive exposures to narcosis. These differential changes in different neurotransmitter receptors would support the binding protein theory. © 2016 American Physiological Society. Compr Physiol 6:1579-1590, 2016. PMID:27347903

  11. Response of cyanobacteria to low atmosphere pressure

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  12. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  13. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    SciTech Connect

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  14. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  15. Integrated method for the measurement of trace nitrogenous atmospheric bases

    NASA Astrophysics Data System (ADS)

    Key, D.; Stihle, J.; Petit, J.-E.; Bonnet, C.; Depernon, L.; Liu, O.; Kennedy, S.; Latimer, R.; Burgoyne, M.; Wanger, D.; Webster, A.; Casunuran, S.; Hidalgo, S.; Thomas, M.; Moss, J. A.; Baum, M. M.

    2011-12-01

    Nitrogenous atmospheric bases are thought to play a key role in the global nitrogen cycle, but their sources, transport, and sinks remain poorly understood. Of the many methods available to measure such compounds in ambient air, few meet the current need of being applicable to the complete range of potential analytes and fewer still are convenient to implement using instrumentation that is standard to most laboratories. In this work, an integrated approach to measuring trace, atmospheric, gaseous nitrogenous bases has been developed and validated. The method uses a simple acid scrubbing step to capture and concentrate the bases as their phosphite salts, which then are derivatized and analyzed using GC/MS and/or LC/MS. The advantages of both techniques in the context of the present measurements are discussed. The approach is sensitive, selective, reproducible, as well as convenient to implement and has been validated for different sampling strategies. The limits of detection for the families of tested compounds are suitable for ambient measurement applications (e.g., methylamine, 1 pptv; ethylamine, 2 pptv; morpholine, 1 pptv; aniline, 1 pptv; hydrazine, 0.1 pptv; methylhydrazine, 2 pptv), as supported by field measurements in an urban park and in the exhaust of on-road vehicles.

  16. Structure formation of atmospheric pressure discharge

    NASA Astrophysics Data System (ADS)

    Medvedev, Alexey E.

    2016-02-01

    In this paper it is shown, by analyzing the results of experimental studies, that the outer boundary of the atmospheric pressure discharge pinch is determined by the condition of equality of plasma flows based on the thermal and electric field energy. In most cases, the number of charged particles coming from near-electrode zones is sufficient to compensate for losses in the discharge bulk. At large currents and enhanced heating, plasma is in the diffusion mode of losses, with recombination of charged particles at the pinch boundary. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  17. Propagation of an atmospheric pressure plasma plume

    SciTech Connect

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-15

    The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  18. Possible Nuclear Transmutation of Nitrogen in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio

    2006-02-01

    An attempt to give a possible answer to a question why nitrogen exists so abundantly in Earth's atmosphere and how it was formed in Archean era (3.8-2.5 billion years ago) is presented. The nitrogen is postulated to be the result of an endothermic nuclear transmutation of carbon and oxygen nuclei confined in carbonate MgCO3 lattice of the mantle with an enhanced rate by attraction effect of catalysis of neutral pions, produced by electron emission: 12C + 16O - 2π0 → 2 14N. The excited electrons were generated by rapid fracture or sliding of carbonate crystals due to volcanic earthquake, and many of the neutrinos were derived from stars, mainly the young sun. The formation of nitrogen would continued for 1.3 billion years from 2.5 to 3.8 billion years in Archean era, until the active volcanism or storm of neutrinos ceased. The transformation is possible by the combined effects of the screening attraction of free electrons and thermal activation in deeper mantle. The possible nuclear transmutation rate of nitrogen atoms could be calculated as 2.3 × 106 atom/s.

  19. Special issue: diagnostics of atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  20. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Raman Scattering from Atmospheric Nitrogen in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Garvey, M. J.; Kent, G. S.

    1973-01-01

    The Mark II laser radar system at Kingston, Jamaica, has been used to make observations on the Raman shifted line from atmospheric nitrogen at 828.5 nm. The size of the system makes it possible to detect signals from heights of up to 40 kilometres. The effects of aerosol scattering observed using a single wavelength are almost eliminated, and a profile of nitrogen density may be obtained. Assuming a constant mixing ratio, this may be interpreted as a profile of atmospheric density whose accuracy is comparable to that obtained from routine meteorological soundings. In order to obtain an accurate profile several interfering effects have had to be examined and, where necessary, eliminated. These include: 1) Fluorescence in optical components 2) Leakage of signal at 694.3 nm. 3) Overload effects and non-linearities in the receiving and counting electronics. Most of these effects have been carefully examined and comparisons are being made between the observed atmospheric density profiles and local meteorological radio-sonde measurements. Good agreement has been obtained over the region of overlap (15 - 30 KID), discrepancies being of the same order as the experimental accuracy (1-10%), depending on height and length of period of observation.

  2. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  3. Characterization of an atmospheric double arc argon-nitrogen plasma source

    SciTech Connect

    Tu, X.; Cheron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.

    2008-05-15

    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  4. Cold plasma brush generated at atmospheric pressure

    SciTech Connect

    Duan Yixiang; Huang, C.; Yu, Q. S.

    2007-01-15

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 deg. C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds.

  5. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    USGS Publications Warehouse

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  6. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    PubMed

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis. PMID:14658160

  7. Dissolved organic nitrogen in precipitation: Collection, analysis and atmospheric flux

    SciTech Connect

    Scudlark, J.R.; Church, T.M.; Russell, K.M.; Montag, J.A.; Maben, J.R.; Keene, W.C.; Galloway, J.N.

    1995-12-31

    Recent studies have documented the importance of atmosphere inorganic nitrogen deposition to coastal waters. However, due to the limited number of field measurements and concerns about the reliability of measurement techniques, the aeolian flux of organic N is very uncertain. Coordinated studies have been initiated at Lewes, DE and Charlottesville, VA to evaluate collection and analysis techniques for dissolved organic nitrogen (DON) in precipitation and to provide preliminary estimate of DON wet fluxes. Sampling was conducted both manually and employing an automated wet-only collector (ACM) on a daily basis. A total of 37 events were analyzed from October 1993 through December 1994. Side-by-side comparisons of standard white HDPE buckets and stainless steel and glass collection vessels indicate sampling artifacts associate with plastic buckets. DON in precipitation appears to be highly labile, with significant losses observed in some samples within 12 hours. Analytical methods evaluated include persulfate wet chemical oxidation, UV photo-oxidation and a modified high temperature instrumental (ANTEK 7000) technique. Based on preliminary results, the volume-weighted average concentration of DON in precipitation at the mid-Atlantic coast is 9.1 {micro}moles/1. On an annual basis, DON compromises 23% of the total dissolved nitrogen in precipitation, varying from 0--64% on an event basis. From an ecological perspective, DON wet flux represents a quantitatively important exogenous source of N to coastal waters such as Chesapeake Bay.

  8. Impact of increased anthropogenic atmospheric nitrogen deposition on ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2015-04-01

    In the last century, the strong increase in anthropogenic emissions and agricultural activities brought about a tripling in atmospheric nitrogen deposition (AND) rates to oceans. There is growing evidence for a strong fingerprint of increased AND on aquatic systems. Increases in excess N over P (N*) have been attributed to the growing anthropogenically sourced N-deposition in the North western Pacific (Kim et al. 2011) and the North Pacific (Kim et al. 2014). In this study, we use the ocean component of the global earth system model CESM and forced it with transient atmospheric nitrogen deposition from 1850 to 2000 (Lamarque et al. 2013) to study the impact of increased N-deposition on ocean biogeochemistry. We simulate detectable signals in N* in the northern hemisphere as well as a complex pattern of increases and decreases in ocean productivity, with the former causing an expansion of oxygen minimum zones and an increase in water column denitrification. The increase in AND also reduces the ecological niches for N2-fixers, causing a substantial decrease in global ocean N-fixation. Despite this increase in N-loss by denitrification and decrease in N-gain by N-fixation, the increase in AND has put the global marine N-budget severely out of balance ( 10 TgN.yr-1). Finally, we extend our simulation to 2100 using the RCP 8.5 emission scenario to find that these changes will probably grow in the future.

  9. Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale.

    PubMed

    Rebane, Riin; Kruve, Anneli; Liigand, Piia; Liigand, Jaanus; Herodes, Koit; Leito, Ivo

    2016-04-01

    Recent evidence has shown that the atmospheric pressure chemical ionization (APCI) mechanism can be more complex than generally assumed. In order to better understand the processes in the APCI source, for the first time, an ionization efficiency scale for an APCI source has been created. The scale spans over 5 logIE (were IE is ionization efficiency) units and includes 40 compounds with a wide range of chemical and physical properties. The results of the experiments show that for most of the compounds the ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source. Most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. At the same time, low-polarity hydrocarbons pyrene and anthracene are ionized in the APCI source but not in the ESI source. These results strongly imply that in APCI several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed. PMID:26943482

  10. Three Modes of Air Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam H.

    2015-09-01

    Atmospheric pressure plasma jet operating in air have gained a high interest due to its various applications in industry and biomedical. The presented air plasma jet system is consisted of stainless steel hollow needle electrode of 1 mm inner diameter which is covered with a quartz tube with a 1 mm diameter side hole. The hole is above the tube nozzle by 5 mm and it is covered by a copper ring which is connected to the ground. The needle is connected to sinusoidal 27 kHz high voltage power supply (25 kV) though a current limiting resistor of 50 k Ω. The tested distance between the needle tip and the side hole was 1 mm or 2.1 mm gape. The electric and plasma jet formation characteristics show three modes of operations. Through these modes the plasma length changes with air flow rate to increase in the first mode and to confine inside the quartz tube in the second mode, then it start to eject from the nozzle again and increase with flow rate to reach a maximum length of 7 mm at 4.5 SLM air flow rate in the third mode. The measured gas temperature of the plasma jet can approach room temperature (300 K). Moreover, the plasma jet emission spectra shows the presence of reactive O and OH radical in the plasma jet. These results indicate that the generated air plasma jet can be used a plasma sterilization.

  11. On the use of the double floating probe method to infer the difference between the electron and the heavy particles temperatures in an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect

    Prevosto, L. Mancinelli, B. R.; Kelly, H.

    2014-05-15

    Sweeping double probe measurements in an atmospheric pressure direct current vortex-stabilized plasma jet are reported (plasma conditions: 100 A discharge current, N{sub 2} gas flow rate of 25 Nl/min, thoriated tungsten rod-type cathode, copper anode with 5 mm inner diameter). The interpretation of the double probe characteristic was based on a generalization of the standard double floating probe formulae for non-uniform plasmas coupled to a non-equilibrium plasma composition model. Perturbations caused by the current to the probe together with collisional and thermal processes inside the probe perturbed region were taken into account. Radial values of the average electron and heavy particle temperatures as well as the electron density were obtained. The calculation of the temperature values did not require any specific assumption about a temperature relationship between different particle species. An electron temperature of 10 900 ± 900 K, a heavy particle temperature of 9300 ± 900 K, and an electron density of about 3.5 × 10{sup 22} m{sup −3} were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found toward the outer border of the plasma jet. These results showed good agreement with those previously reported by the authors by using a single probe technique. The calculations have shown that this method is particularly useful for studying spraying-type plasma torches operated at power levels of about 15 kW.

  12. Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure

    NASA Astrophysics Data System (ADS)

    Morent, R.; de Geyter, N.; Gengembre, L.; Leys, C.; Payen, E.; van Vlierberghe, S.; Schacht, E.

    2008-09-01

    Surface treatment of polymer films is usually necessary to improve surface wetting and adhesion characteristics. Traditional liquid chemical processes have several disadvantages in contrast to dry finishing processes, like plasma technology. Dielectric barrier discharges at atmospheric pressure are extensively studied for surface treatment, however, almost no research has been done on surface treatment with a dielectric barrier discharge at medium pressure. Therefore, in this paper, a polypropylene (PP) film is plasma-treated with a dielectric barrier discharge (DBD) in nitrogen at medium pressure (5.0 kPa). The surface properties of the plasma-treated samples are examined using contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results show that the surface wettability is significantly enhanced after plasma treatment. The incorporation of nitrogen on the surface is significant (10 at%), demonstrating the ability of the used DBD set-up to generate nitrogen-containing functional groups on the PP surface. Nevertheless, a considerable amount of oxygen (10 at%) is incorporated onto the PP surface underlining the extreme reactivity of oxygen active species and the difficulty in overcoming the air contamination problem. Moreover, AFM analysis reveals that the nitrogen plasma creates large changes in the surface morphology of the PP film due to the selective etching of the amorphous regions of the polymer film.

  13. The effect of atmospheric pressure on ventricular assist device output.

    PubMed

    Goto, Takeshi; Sato, Masaharu; Yamazaki, Akio; Fukuda, Wakako; Watanabe, Ken-Ichi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Suzuki, Yasuyuki; Fukuda, Ikuo

    2012-03-01

    The effect of cabin pressure change on the respiratory system during flight is well documented in the literature, but how the change in atmospheric pressure affects ventricular assist device (VAD) output flow has not been studied yet. The purpose of our study was to evaluate the change in VAD output using a mock circulatory system in a low-pressure chamber mimicking high altitude. Changes in output and driving pressure were measured during decompression from 1.0 to 0.7 atm and pressurization from 0.7 to 1.0 atm. Two driving systems were evaluated: the VCT system and the Mobart system. In the VCT system, output and driving pressure remained the same during decompression and pressurization. In the Mobart system, the output decreased as the atmospheric pressure dropped and recovered during pressurization. The lowest output was observed at 0.7 atm, which was 80% of the baseline driven by the Mobart system. Under a practical cabin pressure of 0.8 atm, the output driven by the Mobart system was 90% of the baseline. In the Mobart system, the output decreased as the atmospheric pressure dropped, and recovered during pressurization. However, the decrease in output was slight. In an environment where the atmospheric pressure changes, it is necessary to monitor the diaphragmatic motion of the blood pump and the driving air pressure, and to adjust the systolic:diastolic ratio as well as the positive and negative pressures in a VAD system. PMID:21915797

  14. On the Generation of Multiple Atmospheric Pressure Waves Observed During Violent Volcanic Eruptions.

    NASA Astrophysics Data System (ADS)

    Medici, E. F.; Waite, G. P.

    2015-12-01

    One or more atmospheric pressure waves followed by a supersonic jet may be generated during the over pressurized vapor-solid-liquid mixture ejection of a violent volcanic eruption. The source of these multiple atmospheric pressure waves could have different origins. Among the physical mechanisms that could explain these behaviors are pulsating eruptions, the dynamics of shock waves, coupled pressure wave-supersonic jet interaction, or a combination of all these factors. In order to elucidate the causes of these complex fluid flow dynamics, a series of analog volcanic eruption experiments using an atmospheric shock tube were performed. During the testing, single and multiple pressure waves and the subsequent supersonic jet were generated. The controlled laboratory conditions enable studies of the most relevant variables potentially responsible for the formation of the multiple pressure waves. The tests were performed using dry, compressed nitrogen at standard room temperature that was free of particles. Yet, under this idealization of a real volcanic eruption, multiple pressure waves were observed on the high-speed video imaging and recorded on the pressure transducer. The amount of energy being released on each test was varied to achieve different discharge dynamics and the formation of single and multiple pressure waves. The preliminary experimental observations indicate a coupled pressure wave-jet interaction as source of multiple pressure waves.

  15. Enhanced apatite formation on Ti metal heated in PO2-controlled nitrogen atmosphere.

    PubMed

    Hashimoto, Masami; Hayashi, Kazumi; Kitaoka, Satoshi

    2013-10-01

    The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (PO2) of 10(-14)Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a PO2 of 10(-14)Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO2 (interstitial N) was formed on pure Ti heated under a PO2 of 10(-14)Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a PO2 of 10(-14)Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO4(3-) ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami-Erofeev equation with an Avrami index of n=2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a PO2 of 10(-14)Pa. PMID:23910327

  16. Carboxylation of Phenols with CO2 at Atmospheric Pressure.

    PubMed

    Luo, Junfei; Preciado, Sara; Xie, Pan; Larrosa, Igor

    2016-05-10

    A convenient and efficient method for the ortho-carboxylation of phenols under atmospheric CO2 pressure has been developed. This method provides an alternative to the previously reported Kolbe-Schmitt method, which requires very high pressures of CO2 . The addition of a trisubstituted phenol has proved essential for the successful carboxylation of phenols with CO2 at standard atmospheric pressure, allowing the efficient preparation of a broad variety of salicylic acids. PMID:26989848

  17. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  18. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  19. Viscosity of fluid nitrogen to pressures of 10 GPa.

    PubMed

    Abramson, Evan H

    2014-10-01

    Shear viscosities of supercritical nitrogen have been measured in the high-pressure diamond-anvil cell, to 673 K and pressures in excess of 10 GPa, using a rolling-sphere technique. The entire set of data, along with lower pressure data from the literature, can be fit to a two-parameter expression in reduced viscosity and reduced residual entropy. The fit spans densities from the dilute gas to 5x the critical density, and two orders magnitude in temperature and in viscosity, with a maximum deviation of 20%. Reduced viscosities scale as ρ(4)/T and comport with the theory of state "isomorphs" for "Roskilde-simple" systems. The new data allow direct comparison with results of molecular dynamic simulations at high densities. PMID:25215593

  20. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  1. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements

    PubMed Central

    Arnold, Tim; Harth, Christina M.; Mühle, Jens; Manning, Alistair J.; Salameh, Peter K.; Kim, Jooil; Ivy, Diane J.; Steele, L. Paul; Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Weiss, Ray F.

    2013-01-01

    Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing. PMID:23341630

  2. A Termolecular Reaction Mechanism for Nitrogen Incorporation in Aerosol Produced by Far UV Irradiation of CH4-N2 Atmospheres

    NASA Astrophysics Data System (ADS)

    Hicks, R. K.; Trainer, M. G.; Jimenez, J. L.; Yung, Y. L.; Toon, O. B.; Tolbert, M. A.

    2012-12-01

    Results from the Aerosol Collector and Pyrolyser located onboard the Huygens lander reveal the presence of carbon and nitrogen in Titan's aerosols. Nitrogen incorporation is thought to be initiated by energy sources strong enough to break the N-N triple bond of molecular nitrogen (9.8eV). Such energy sources include extreme UV photons (λ <120 nm) and electrons from Saturn's magnetosphere. Less energetic photons in the far UV (120-200 nm) penetrate to the stratosphere of Titan and are only expected to affect hydrocarbon photochemistry there. However, recent results from our laboratory indicate a surprising amount of nitrogen incorporation- up to 16% by mass- in Titan aerosol analog produced by photochemistry initiated by far UV irradiation of CH4/N2 mixtures. The termolecular reaction CH + N2 + M --> HCN2 has been proposed to account for this observation. Here, we test this hypothesis by using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the mass loading and chemical composition of aerosol produced at a range of pressures from roughly 0.1 to 1 atm. Even though these gas mixtures spanned an order of magnitude in pressure, they experienced the same residence time in the photochemical chamber and had the same methane optical depth. We report a 150% increase in aerosol mass loading across the range of pressures studied, indicating that the mechanism controlling the total mass produced depends on pressure. We also report an overall increase with pressure in the ratio of nitrogen-bearing organic species to hydrocarbon-only species. These observations support the hypothesis that the termolecular reaction above is responsible for the incorporation of nitrogen into Titan aerosol analog produced from CH4/N2 gas mixtures irradiated in the far UV. These findings have implications for our understanding of the evolution of Titan's atmosphere, and the atmospheric synthesis of biologically relevant N-containing molecules.

  3. Regional and historical variation in the nitrogen content of Racomitrium lanuginosum in Britain in relation to atmospheric nitrogen deposition.

    PubMed

    Baddeley, J A; Thompson, D B; Lee, J A

    1994-01-01

    The moss Racomitrium lanuginosum (Hedw.) Brid. is an important component of the drier parts of ombrotrophic mires and montane heaths in north-western Britain. The extent and quality of the montane heaths dominated by R. lanuginosum has declined in recent decades, perhaps in part due to the effects of acidic deposition at high elevations. This paper examines the effect of atmospheric nitrogen deposition, which has increased during this century, on the nitrogen content of R. lanuginosum in Britain. The nitrogen content of the moss reflects the magnitude of the atmospheric supply being least in north-western Scotland and greatest (as much as six-fold greater) near to urban centres in northern England. This regional difference was less marked (only approx. two-fold) during the 19th century (as revealed from the analysis of herbarium specimens) when nitrogen concentrations were appreciably lower. Transplant studies both between regions and between sites within a mountain system demonstrated the importance of atmospheric deposition in determining the tissue nitrogen concentration of the moss. The results are discussed in relation to the potential importance of the enhanced atmospheric nitrogen supply to the normally nitrogen-impoverished montane heaths, and to the growth and persistence of the moss. PMID:15091715

  4. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  5. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  6. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  7. Controlled microdroplet transport in an atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Maguire, P. D.; Mahony, C. M. O.; Kelsey, C. P.; Bingham, A. J.; Montgomery, E. P.; Bennet, E. D.; Potts, H. E.; Rutherford, D. C. E.; McDowell, D. A.; Diver, D. A.; Mariotti, D.

    2015-06-01

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 μm falling to 13 μm with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of <100 μs. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for plasma medicine.

  8. Contamination of liquid oxygen by pressurized gaseous nitrogen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  9. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-06-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.

  10. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    PubMed Central

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-01-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition. PMID:26059183

  11. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  12. Origin and Evolution of Titan's Nitrogen Atmosphere - A Cassini-Huygens Perspective

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil K.

    2014-05-01

    Prior to Cassini-Huygens, it was debated how Titan acquired its earth-like atmosphere of nitrogen [1]. This talk will review the history of Titan's atmosphere, models, and the unique role of Cassini-Huygens in understanding the origin and evolution of an atmosphere of nitrogen on Titan. After hydrogen and helium, nitrogen is the fourth most abundant element in the solar system. In the colder outer solar system beyond 5 AU, nitrogen is bound to hydrogen in the giant planets. Thus ammonia (NH3), not N2, is the dominant reservoir of nitrogen in these objects. The satellites that form in the relatively warm and dense subnebula of the gas giant planets, Jupiter and Saturn, may acquire nitrogen as NH3 during their accretion [2], although some models had proposed N2, not NH3, as the stable form of nitrogen in the subnebulae. The latter is reflected in the atmosphere of Triton, which almost certainly accreted nitrogen directly as N2, since N2 can be the stable form of nitrogen in the very cold environment of Neptune. Before Cassini-Huygens, it was debated whether Titan, the largest moon of Saturn, also acquired its nitrogen directly as N2, putting it in the same class as Neptune's moon Triton half its size, or the nitrogen on Titan was secondary atmosphere, produced from a nitrogen bearing molecule, putting Titan in the class with terrestrial planets. The evidence from Cassini-Huygens to be discussed in this talk leaves no doubt that Titan's nitrogen atmosphere is secondary [3]. Probable scenarios of the sustenance, evolution and reduction or demise of this atmosphere will also be explored. References: [1]Owen T. (2000), Planet. Space Sci. 48, 747-752. [2]Prinn R.G., Fegley B. (1981), Astrophys J. 249, 308-317. [3]Atreya S.K., Lorenz R.D., Waite J.H. (2009), pp 177-199, in Titan (R.H. Brown et al., eds.) Springer.

  13. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Roelle, Paul A.; Murray, George C.; Southerland, James; Erisman, Jan Willem; Fowler, David; Asman, Willem A. H.; Patni, Naveen

    The Atmospheric Nitrogen Compounds II: Emissions, Transport, Transformation, Deposition and Assessment workshop was held in Chapel Hill, NC from 7 to 9 June 1999. This international conference, which served as a follow-up to the workshop held in March 1997, was sponsored by: North Carolina Department of Environment and Natural Resources; North Carolina Department of Health and Human Services, North Carolina Office of the State Health Director; Mid-Atlantic Regional Air Management Association; North Carolina Water Resources Research Institute; Air and Waste Management Association, RTP Chapter; the US Environmental Protection Agency and the North Carolina State University (College of Physical and Mathematical Sciences, and North Carolina Agricultural Research Service). The workshop was structured as an open forum at which scientists, policy makers, industry representatives and others could freely share current knowledge and ideas, and included international perspectives. The workshop commenced with international perspectives from the United States, Canada, United Kingdom, the Netherlands, and Denmark. This article summarizes the findings of the workshop and articulates future research needs and ways to address nitrogen/ammonia from intensively managed animal agriculture. The need for developing sustainable solutions for managing the animal waste problem is vital for shaping the future of North Carolina. As part of that process, all aspects of environmental issues (air, water, soil) must be addressed as part of a comprehensive and long-term strategy. There is an urgent need for North Carolina policy makers to create a new, independent organization that will build consensus and mobilize resources to find technologically and economically feasible solutions to this aspect of the animal waste problem.

  14. Measuring Viscosities of Gases at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  15. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-04-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  16. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ. PMID:27126470

  17. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  18. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  19. Short total synthesis of indolizidine alkaloids using the atmospheric nitrogen fixation method

    SciTech Connect

    Mori, Miwako; Hori, Masanori; Sato, Yoshihiro, Sato

    1995-12-31

    The authors have already reported the nitrogen fixation method using N{sub 2}-TiCl{sub 4}-TMSCl-Li system. Now they have succeeded in the incorporation of atmospheric nitrogen into organic compounds and the total synthesis of monomorine I using. From triketone 2 and molecular nitrogen, pyrolizidine and indolizidine derivatives were obtained in good yields. For the synthesis of natural product, monomorine I, using molecular nitrogen, triketone 6 was required, which was easily obtained from cyclopentene derivative 7.

  20. Atmospheric pressure sample inlet for mass spectrometers

    NASA Astrophysics Data System (ADS)

    Dheandhanoo, Seksan; Ciotti, Ralph J.; Ketkar, Suhas N.

    2000-12-01

    An inlet for a mass spectrometer has been developed for direct sampling of gases over a wide range of pressure (1-760 Torr). The sample inlet is composed of two small orifices that form a pressure reduction region. These orifices are used to limit the flow of sample gas into the mass spectrometer. The pressure inside the pressure reduction region is regulated by a needle valve and a vacuum pump. The flow of gas through the orifices is viscous. The inlet is made of stainless steel and operated at high temperature to prevent surface adsorption and corrosion. Its adaptability to a wide range of pressures is very useful for monitoring process gases during manufacturing processes of microelectronic devices. This inlet can be used for effluent gas analysis at 760 Torr as well as for in situ monitoring of the semiconductor equipment at pressures less than 5 Torr. The inlet provides a fast response to changes in the constituents of gas samples without memory effects. The sample inlet has been tested extensively in the laboratory as well as in field environments.

  1. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  2. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  3. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  4. Electron-Nitrogen Collision Processes Relevant to Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, Paul

    2011-06-01

    Electron-N2 collisions play an important role in the nitrogen-rich upper atmospheres of Titan, Triton, and Earth. Modeling these processes requires accurate laboratory data. Despite the recognized importance of such data, there remained an unsatisfactory degree of consensus among much of the available laboratory collision cross section data. To address this situation, our group has devoted considerable effort over the past decade to improve the status of low energy electron collision data. In doing so, we have measured direct excitation cross sections for at least 17 electronic states of neutral N2 and a variety of key UV emission cross sections. Here we review the result of this effort, highlighting how the picture of electron collision processes has evolved, where consensus has been reached and where discrepancies still exist. New electron energy-loss measurements will be presented for excitation of the valence states, with finely spaced (<1eV) impact energy increments in the threshold-to-peak region where excitation is not in proportion to the Franck-Condon factors. These data are novel in that they include measurements at fixed electron scattering angles, differential in impact energy over a range of scattering angle. Also, new near-threshold integral cross sections are provided and compared to existing data.

  5. Laser-assisted plasma coating at atmospheric pressure: production of yttria-stabilized zirconia thermal barriers

    NASA Astrophysics Data System (ADS)

    Ouyang, Zihao; Meng, Liang; Raman, Priya; Cho, Tae S.; Ruzic, D. N.

    2011-07-01

    A laser-assisted plasma-coating technique at atmospheric pressure (LAPCAP) has been investigated. The electron temperature, electron density and gas temperature of the atmospheric-pressure plasma have been measured using optical emission spectroscopy (OES). LAPCAP utilizes laser ablation of 3 mol% yttria-stabilized zirconia into an atmospheric helium/nitrogen plasma to deposit thermal barrier coatings on a nickel-based substrate. The deposited film shows columnar structures similar to films prepared by high-vacuum deposition methods, such as physical vapour deposition and conventional pulsed-laser deposition. However, the LAPCAP films have smaller columns and higher porosity, compared with the films deposited by other techniques. The morphology and characteristics of the films have been analysed by scanning electron microscope, focused ion beam and x-ray diffraction.

  6. Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Wang, Kunlei; Wang, Wenchun; Yang, Dezheng; Huo, Yan; Wang, Dezhen

    2010-09-01

    In this paper, a dielectric barrier discharge operating in nitrogen at atmospheric pressure has been used to improve the surface hydrophilic property of polypropylene (PP) non-woven fabric. The changes in the hydrophilic property of the modified PP samples are investigated by the contact angle measurements and the variation of water contact angle is obtained as a function of the energy density; micrographs of the PP before and after plasma treatment are observed by scanning electron microscopy (SEM) and the chemical composition of the PP surface before and after plasma treatment is also analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The results show that the surface hydrophilic property of the PP samples is greatly improved with plasma treatment for a few seconds, as evidenced by the fact that the contact angle of the treated PP samples significantly decreases after plasma treatment. The analysis of SEM shows that the surface roughness of the treated PP samples increases due to bonding and etching in plasma processing. The analyses of FTIR and the C1s peak in the high-resolution XPS indicate that oxygen-containing and nitrogen-containing polar functional groups are introduced into PP surface in plasma processing. It can be concluded that the surface hydrophilic property of the modified PP samples has been obviously improved due to the introduction of oxygen-containing and nitrogen-containing polar groups and the increase of the surface roughness on the PP surface.

  7. A Spectacular Experiment Exhibiting Atmospheric Pressure

    ERIC Educational Resources Information Center

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  8. Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms

    SciTech Connect

    Michaels, A.F.; Johnson, R.J. ); Siegel, D.A. ); Galloway, J.N. )

    1993-06-01

    This paper compares a recent atmospheric wet deposition record (including all measurable daily rainfall events between October 1988 and June 1991) with concurrent measurements of nitrogen cycling and biomass at the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time Series Study station. The two data sets, among the most complete synoptic records of atmospheric nitrogen deposition and ocean nitrogen cycling, provide an opportunity to directly assess the importance of nitrogen deposition in the ocean. The results indicate that individual nitrogen wet deposition events are usually small compared to the ambient nitrogen cycle and that only under sustained calm conditions following large deposition events will nitrogen deposition processes be an important signal for the understanding of ocean biochemistry. 46 refs., 7 figs.

  9. Atmospheric inorganic nitrogen deposition to a typical red soil forestland in southeastern China.

    PubMed

    Fan, Jian-Ling; Hu, Zheng-Yi; Wang, Ti-Jian; Zhou, Jing; Wu, Cong-Yang-Hui; Xia, Xu

    2009-12-01

    A 2-year monitoring study was conducted to estimate nitrogen deposition to a typical red soil forestland in southeastern China. The dry deposition velocities (V(d)) were estimated using big leaf resistance analogy model. Atmospheric nitrogen dry deposition was estimated by combing V(d) and nitrogen compounds concentrations, and the wet deposition was calculated via rainfall and nitrogen concentrations in rainwater. The total inorganic nitrogen deposition was 83.7 kg ha(-1) a(-1) in 2004 and 81.3 kg ha(-1) a(-1) in 2005, respectively. The dry deposition contributed 78.6% to total nitrogen deposition, in which ammonia was the predominant contributor that accounted for 86.1%. Reduced nitrogen compounds were the predominant contributors, accounting for 78.3% of total nitrogen deposition. The results suggested that atmospheric inorganic nitrogen could be attributed to intensive agricultural practices such as excessive nitrogen fertilization and livestock production. Therefore, impacts of atmospheric nitrogen originated from agriculture practices on nearby forest ecosystems should be evaluated. PMID:18998222

  10. Nitrogen Isotopes in Tree Rings: A Record of Atmospheric Deposition or Tree Physiology?

    NASA Astrophysics Data System (ADS)

    Showers, W. J.; Genna, B.; Coon, M.

    2008-12-01

    Dendroisotopic analysis of nitrogen in tree rings has suggested that changes in nitrogen availability can be determined over time. These records match lake sediment and stream N flux measurements. Other studies suggest that tree ring nitrogen isotope data match foliar samples and not soil isotope data. In this study we compare the nitrogen isotope record from loblolly pine and American beech tree rings to a 10 year rainfall record and groundwater samples taken in isolated forested areas, next to a roadway and adjacent to agricultural fields. The influence of atmospheric nitrogen was determined by O17 analysis on groundwater nitrate. In areas where nutrient availability was low and O17 in groundwater nitrate was high, the tree ring nitrogen isotope record was similar to the nitrate nitrogen isotope trend. In areas where there was increased amounts of nitrate in groundwater due to local land use and O17 in groundwater nitrate was low, the nitrogen isotopic record in tree rings did not correlate to the atmospheric deposition record and probably represent internal recycling of nitrogen in the tree. These results suggest that nitrogen isotopes in tree rings can be used to monitor long term trends of atmospheric deposition of nitrogen in areas of low nutrient availability.

  11. Biodiversity Risks from Atmospheric Nitrogen Deposition in California

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2004-12-01

    Atmospheric nitrogen deposition alters structure and function of terrestrial ecosystems, because nitrogen availability is often limits overall productivity. These alterations can drive losses of biodiversity, as nitrophilous species increase in abundance and outcompete species adapted to more oligotrophic conditions. California is recognized as a "biodiversity hotspot," with a high fraction of endemic taxa with narrow ranges. A state-wide risk screening includes: 1) a 36 x 36 km map of total N-deposition for 2002, developed from the Community Multiscale Air Quality Model (CMAQ); 2) identification of sensitive habitat types from literature and local expertise; 3) overlay of a statewide vegetation map (FRAP); 4) overlay of species occurrence data from the California Natural Diversity Data Base (CNDDB); and 5)species life-history and habitat requirements. The CMAQ model indicates that 55,000 km2 (total area 405,205 km2) are exposed to >5 kg-N ha -1 year -1, and 10,000 km2 are exposed to >10 kg-N ha -1 year -1. Deposition hotspots include coastal urban areas (Los Angeles-San Diego, and the San Francisco Bay Area), the agricultural Central Valley, and parts of the Sierra Nevada foothills. The major known impact of N-deposition in California is increased growth and dominance of invasive annual grasses in low biomass ecosystems, such as coastal sage scrub, serpentine grassland, desert scrub, and vernal pools. For example, 800 km2 out of a total 6300 km2 of coastal sage scrub are exposed to more than 10 kg-N ha -1 year -1, primarily in Southern California. Of 225 federal and state "Threatened" and "Endangered" plant taxa, 101 are exposed on average to >5 kg-N ha -1 year -1. Of an additional 1022 plant taxa listed as "rare," 288 are exposed to >5 kg-N ha -1 year -1. Many of these highly exposed taxa are associated with sensitive habitat types and are vulnerable to annual grass invasions. This broad-scale screening outlines potential impacts on California's biodiversity, and

  12. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto.

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot; Soto, Alejandro; Michaels, Timothy

    2016-04-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the unexpected and highly heterogeneous distribution of nitrogen surface ice imaged by the New Horizons spacecraft on the surface of Pluto. The GCM is based on the GFDL Flexible Modeling System (FMS) dynamical core, solved on a discretized latitude/longitude horizontal grid and a pressure-based hybrid vertical coordinate. Model physics include a 3-band radiative scheme, molecular thermal conduction within the atmosphere, subsurface thermal conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4, including non-local thermodynamic equilibrium effects. The subsurface conduction model assumes a water ice regolith. In the case of nitrogen surface ice deposition, additional super-surface layers are added above the water ice regolith to properly account for conductive energy flow through the nitrogen ice. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile surface ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient resulting primarily from the slow seasonal variations of radiative-conductive equilibrium. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Furthermore, the circulation, and thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows (so-called "condensation flows") associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over topography of substantial geologic diversity. To maintain such an ice distribution, the atmospheric circulation and

  13. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2014-04-01

    The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50-400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O_{2aq}^{-} , ONOO_{aq}^{-} , NO_{3aq}^{-} and hydronium (H_{3} O_{aq}^{+} ) dominate the water ions with H_{3} O_{aq}^{+} determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer.

  14. Potassium kinetics in heavily seeded atmospheric pressure laminar methane flames

    SciTech Connect

    Slack, M.; Cox, J.W.; Grillo, A.; Ryan, R. )

    1989-09-01

    Hydroxl radical decay rates were measured in laminar atmospheric pressure CH/sub 4//O/sub 2-/N/sub 2-/Ar flames (phi=0.85-1.1) with and without the addition of potassium (mole fractions up to 3.6 x 10/sup -4/). Flames were stabilized on a flat-flame burner shrouded by nitrogen. OH number density profiles were determined from laser absorption at 309.28nm (A-X, O-O Q/sub 2/(6)). Potassium profiles were obtained from laser absorption on the 404.53-nm transition. Addition of potassium was observed to accelerate the OH decay rate, with the additive influence being most pronounced at higher equivalence ratios. The influence of {Kappa} was nonlinear, and increasing seeding levels produced progressively less acceleration of the OH decay rate. The measured potassium atom number density decayed slowly with distance above the burner for fuel-rich conditions but decayed rapidly in lean flames. Potassium reaction mechanisms were tested against the experimental data in a series of numerical simulations. Based on a best fit to the experimental data, a rate coefficient for K + OH + M {yields} KOH + M was estimated as 5 X 10/sup 32/cm/sup 6/molec/sup -2/s/sup -1/ at 2000{Kappa}. A two-reaction model suggested by Jensen appears to be a global approximation of the above mechanism. also, addition of sodium to a phi=1.1 flame produced an OH decay profile indistinguishable from that measured with potassium seeding, suggesting similar chemistry for both alkali metals.

  15. Analysis of Atmospheric Nitrogen Inputs to the Forest Through Isotope Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wright, A. J.; Alexander, B.; Michalski, G. M.; Shepson, P. B.

    2010-12-01

    Understanding the fate of atmospheric nitrogen is essential to understanding the forest nitrogen cycle. Recent studies have indicated that atmospheric nitrogen deposition has an important role in the nitrogen cycle for nitrogen-limited forests. Since most of the forests of the northern hemisphere are nitrogen-limited, wet and dry deposition of atmospheric nitrogen may have a significant impact on carbon sequestration. The current study hypothesizes that a significant fraction of nitrogen that is in the soil is deposited from the atmosphere. In this study, we sampled soil, rainfall, and cloud water in the vicinity of the University of Michigan Biological Station, and determined the value for Δ17O in NO3- from those samples. The average tropospheric Δ17O value for NO3-atm (nitrate aerosol and gaseous HNO3) for the U. S. Midwest region is approximately 23‰ based on recent measurements and modeling considerations. In contrast, nitrate from microbial nitrification of fertilizer or plant matter has Δ17O of zero. This makes Δ17O signals in soil and water nitrate a positive indicator of un-cycled atmospherically-derived nitrate. For this work, the nitrate was extracted, purified, and converted to N2O, which was then separated by GC and detected using a Thermo Delta V continuous flow isotope ratio mass spectrometer. Here we will present and discuss the results of Δ17O measurements for NO3- in these samples, to accurately quantify the proportion of atmospheric nitrate in soils. The dissolved nitrate Δ17O values give both the atmospheric component and the biological component through a two source mixing model. This quantification contributes to the long term effort on improving our understanding of the nature, chemistry, and impact of atmospheric nitrogen on the carbon cycle.

  16. Free-floating atmospheric pressure ball plasmas

    NASA Astrophysics Data System (ADS)

    Wurden, G. A.; Ticos, C.; Wang, Z.; Wurden, C. J. V.

    2007-11-01

    A long-lived (0.3 second, 10-20 cm diameter) ball plasma floating in the air above a water surface has been formed and studied in the laboratory. A 0.4 - 1 mF capacitor is charged to 4-5 kV, and subsequently discharged (30-60 Amps, 20-50 msec duration) into central copper cathode held fixed just below the surface of a bucket of water (with a weak solution of various salts in distilled water, such as CuSO4 or CuCl2, LiCl or NaCl). An underwater ring anode completes the circuit. A bubble of hot vapor from the water surface rises up in the first few milliseconds, and changes from a mushroom cloud with stalk, to a detached quasi-spherical object, finally evolving into a vortex ring. The plasma consists of ionized water vapor, with positive salts and OH- radicals, as well as molecular species, and it completely excludes nitrogen or oxygen from the rising plasma structure. A fine boundary layer is visible in orange, in contrast to a green ball interior when using Cu/CuSO4, and filamentary structures are visible at late times. Finally, a whisp of smoke ring is observed as a residue. A variety of visible and infrared imaging (both video and still cameras) are used, along with 200-800 nm time & space resolved spectroscopy, to identify features of this laboratory analog to ball lightning. Possible applications include a windowless ball- plasma powered pulsed copper vapor laser operating at 510 nm.

  17. Application of Relationship Between Groundwater Level and Atmospheric Pressure Change

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lee, K.

    2013-12-01

    Change in atmospheric pressure affects ground water levels. Barometric efficiency, which is an indicator for different exposure to the atmospheric pressure of observation well and adjacent ground cover, can be used as an effective tool for estimating some groundwater properties. If the top of an observation well is sealed and contact with the atmosphere is blocked, there would be no pressure difference between the well and adjacent ground cover. As a result, the difference between barometric efficiency values of sealed and unsealed well of identical condition can indicates the effect of atmospheric pressure changes on the groundwater level. One month observation data of hydraulic head and atmospheric pressure at Wonju-si in Gangwon-do, Korea are used. Two different methods, Clark's method and graphical method, are adopted to estimate the barometric efficiency. Because the efficiency has implication on the properties of aquifer covering condition, mapping of this efficiency might be used for estimating groundwater vulnerability of contamination from surface-loaded sources.

  18. Atmospheric Pressure Error of GRACE in Antarctic Ice Mass Change

    NASA Astrophysics Data System (ADS)

    Kim, B.; Eom, J.; Seo, K. W.

    2014-12-01

    As GRACE has observed time-varying gravity longer than a decade, long-term mass changes have been emerged. In particular, linear trends and accelerated patterns in Antarctica were reported and paid attention for the projection of sea level rise. The cause of accelerated ice mass loss in Antarctica is not known since its amplitude is not significantly larger than ice mass change associated with natural climate variations. In this study, we consider another uncertainty in Antarctic ice mass loss acceleration due to unmodeled atmospheric pressure field. We first compare GRACE AOD product with in-situ atmospheric pressure data from SCAR READER project. GRACE AOD (ECMWF) shows spurious jump near Transantarctic Mountains, which is due to the regular model update of ECMWF. In addition, GRACE AOD shows smaller variations than in-situ observation in coastal area. This is possibly due to the lower resolution of GRACE AOD, and thus relatively stable ocean bottom pressure associated with inverted barometric effect suppresses the variations of atmospheric pressure near coast. On the other hand, GRACE AOD closely depicts in-situ observations far from oceans. This is probably because GRACE AOD model (ECMWF) is assimilated with in-situ observations. However, the in-situ observational sites in interior of Antarctica are sparse, and thus it is still uncertain the reliability of GRACE AOD for most region of Antarctica. To examine this, we cross-validate three different reanalysis; ERA Interim, NCEP DOE and MERRA. Residual atmospheric pressure fields as a measure of atmospheric pressure errors, NCEP DOE - ERA Interim or MERRA - ERA Interim, show long-term changes, and the estimated uncertainty in acceleration of Antarctic ice mass change is about 9 Gton/yr^2 from 2003 to 2012. This result implies that the atmospheric surface pressure error likely hinders the accurate estimate of the ice mass loss acceleration in Antarctica.

  19. Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe.

    PubMed

    Harmens, H; Norris, D A; Cooper, D M; Mills, G; Steinnes, E; Kubin, E; Thöni, L; Aboal, J R; Alber, R; Carballeira, A; Coşkun, M; De Temmerman, L; Frolova, M; González-Miqueo, L; Jeran, Z; Leblond, S; Liiv, S; Maňkovská, B; Pesch, R; Poikolainen, J; Rühling, A; Santamaria, J M; Simonèiè, P; Schröder, W; Suchara, I; Yurukova, L; Zechmeister, H G

    2011-10-01

    In 2005/6, nearly 3000 moss samples from (semi-)natural location across 16 European countries were collected for nitrogen analysis. The lowest total nitrogen concentrations in mosses (<0.8%) were observed in northern Finland and northern UK. The highest concentrations (≥ 1.6%) were found in parts of Belgium, France, Germany, Slovakia, Slovenia and Bulgaria. The asymptotic relationship between the nitrogen concentrations in mosses and EMEP modelled nitrogen deposition (averaged per 50 km × 50 km grid) across Europe showed less scatter when there were at least five moss sampling sites per grid. Factors potentially contributing to the scatter are discussed. In Switzerland, a strong (r(2) = 0.91) linear relationship was found between the total nitrogen concentration in mosses and measured site-specific bulk nitrogen deposition rates. The total nitrogen concentrations in mosses complement deposition measurements, helping to identify areas in Europe at risk from high nitrogen deposition at a high spatial resolution. PMID:21620544

  20. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them. PMID:24975415

  1. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.

    PubMed

    Palani, Sundarambal; Tkalich, Pavel; Balasubramanian, Rajasekhar; Palanichamy, Jegathambal

    2011-06-01

    The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region. PMID:21481425

  2. Development of a combinatorial atmospheric pressure cold plasma processor

    NASA Astrophysics Data System (ADS)

    Terajima, Takeshi; Koinuma, Hideomi

    2004-02-01

    Low-temperature plasma can be generated under atmospheric pressure by applying an RF (13.56 MHz) voltage between parallel electrodes, the surfaces of which are preferably covered with an insulator. Applications of this atmospheric pressure cold plasma include thin film deposition, chemical synthesis, etching, resist-ashing, surface treatment, and sterilization. For seeking further improvement of the system and more applications, we have developed a combinatorial atmospheric pressure cold plasma generator to fabricate composition spread thin films by synchronizing the variation of feeding gas ratio with the substrate stage motion. This system can be extended to fabricating a variety of combinatorial libraries by controlling other parameters in the operation such as the gas flow rate, the RF power, substrate temperature, and the treatment time. The utility of this combinatorial plasma process has been demonstrated with the plasma copolymerization of CO 2 with ethylene to fix CO 2 into the plasma polymerized film in the form of ester linkage.

  3. MicroScale - Atmospheric Pressure Plasmas

    SciTech Connect

    Sankaran, Mohan

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  4. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  5. Atmospheric pressure gasification process for power generation

    SciTech Connect

    Morris, M.

    1996-12-31

    Since 1987 TPS Termiska Processer AB has been working on the development of both a biomass-fueled circulating fluidized bed (CFB) gasification process and a downstream dolomite catalytic tar removal process. The combined process has been developed in a 2 MWth pilot plant which was built originally for investigating the use of the product gas in a diesel motor cogeneration plant. A prototype gasification plant comprising two waste-fueled 15 MWth CFB gasifiers has been installed in Greve-in-Chianti, Italy. Since 1990, TPS has been working on the development of a biomass-fueled integrated gasification combined-cycle scheme utilizing both a CFB gasifier and a CFB tar cracker. In 1992, TPS was contracted by the Global Environmental Facility (GEF) to perform work for Phase II of the Brazilian BIG-GT (Biomass Integrated Gasification-Gas Turbine) project. This stage of the project involved both experimental and engineering studies and the basic engineering for a 30 MWe eucalyptus-fueled power plant in Brazil. The plant is based on the GE LM 2500 gas turbine. During this stage of the project the TPS process was in competition with a process from a pressurized gasification technology vendor. However, in 1995 TPS was selected for participation in Phase III of the project. Phase III of the project includes construction and commissioning of the plant. Involvement in the Brazilian BIG-GT project has served as a springboard for the participation of TPS in similar projects in the Netherlands and the UK. In the UK, ARBRE Energy Limited is constructing a coppice-fueled 8 MWe plant with support from the EU THERMIE program and the UKs NFFO (Non Fossil Fuel Obligation). The design contract will be awarded in late 1996. In the Netherlands, a number of projects for biomass and wastes are being pursued by TPS in cooperation with Royal Schelde of the Netherlands.

  6. Dissociation degree of nitrogen molecule in low-pressure microwave-discharge nitrogen plasma with various rare-gas admixtures

    NASA Astrophysics Data System (ADS)

    Kuwano, Kei; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2016-08-01

    The dissociation degree of nitrogen molecules is examined in a microwave discharge nitrogen–rare gas mixture plasma with a total discharge pressure of 1 Torr, by actinometry measurement. Although the spectral line from the excited nitrogen atoms is overlapped by the band spectrum of the N2 first positive system (1PS), the subtraction of the 1PS spectrum fitted theoretically can successfully extract the atomic nitrogen line, which enables actinometry measurement. The nitrogen dissociation degree decreases with increasing mixture ratio of Ar to Kr, whereas it increases with He, which is attributed to the variations in the electron temperature and density. When we dilute the nitrogen with neon, however, we find an anomalous increase in the nitrogen dissociation degree by several orders of magnitude even at a downstream region in the discharge tube. The reason for the dissociation enhancement upon adding neon is discussed in terms of atomic and molecular processes in the plasma.

  7. Statistical analysis of ionosphere parameters and atmospheric pressure correlations

    NASA Astrophysics Data System (ADS)

    Voloskov, Dmitriy; Bochkarev, Vladimir; Maslennikova, Yulia; Zagidullin, Bulat

    Ionosphere parameters such as Total electron content (TEC) and Doppler frequency shift characterize ionosphere influence on signals propagation, and therefore information about these parameters is important for radio communication tasks. Meteorological effects such as atmospheric pressure variations can influence on ionosphere parameters. This work is dedicated to analysis of correlations between meteorological and ionosphere parameters. NCEP/NCAR reanalysis meteorological maps, Jet Propulsion Laboratory (JPL) global TEC maps and data from Doppler phase goniometric complex “Spectr” were analysed. Data for 2009-2011 were investigated. Coherent oscillations with periods of 29-32 and 4 days were detected in atmospheric pressure and Doppler frequency shift variations.

  8. EDITORIAL: Atmospheric pressure non-thermal plasmas for processing and other applications

    NASA Astrophysics Data System (ADS)

    Massines, Françoise

    2005-02-01

    Interest has grown over the past few years in applying atmospheric pressure plasmas to plasma processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing. There have been considerable efforts to efficiently generate large volumes of homogeneous atmospheric pressure non-thermal plasmas to develop environmentally friendly alternatives for surface treatment, thin film coating, sterilization, decontamination, etc. Many interesting questions have arisen that are related to both fundamental and applied research in this field. Many concern the generation of a large volume discharge which remains stable and uniform at atmospheric pressure. At this pressure, depending on the experimental conditions, either streamer or Townsend breakdown may occur. They respectively lead to micro-discharges or to one large radius discharge, Townsend or glow. However, the complexity arises from the formation of large radius streamers due to avalanche coupling and from the constriction of the glow discharge due to too low a current. Another difficulty is to visually distinguish many micro-discharges from one large radius discharge. Other questions relate to key chemical reactions in the plasma and at the surface. Experimental characterization and modelling also need to be developed to answer these questions. This cluster collects up-to-date research results related to the understanding of different discharges working at atmospheric pressure and the application to polymer surface activation and thin film coating. It presents different solutions for generating and sustaining diffuse discharges at atmospheric pressure. DC, low-frequency and radio-frequency excitations are considered in noble gases, nitrogen or air. Two specific methods developed to understand the transition from Townsend to streamer breakdown are also presented. They are based on the cross-correlation spectroscopy and an electrical

  9. Tooth Whitening Effects by Atmospheric Pressure Cold Plasmas with Different Gases

    NASA Astrophysics Data System (ADS)

    Choi, Hye-sook; Kim, Kyoung-Nam; You, Eun-Mi; Choi, Eun-Ha; Kim, Yong-Hee; Kim, Kwang-Mahn

    2013-11-01

    The aim of the present study was to investigate the effects of atmospheric pressure cold plasma with different gases on external tooth bleaching. After 10 min treatment, the air (50%) + oxygen (50%) group shows a remarkable color change (ΔE*), and nitrogen and air groups indicate some color change, although not as much as that shown by the air + oxygen group. Also, the argon group shows the least amount of color change among the various gases in this experiment. Atomic oxygen species exists during this tooth bleaching as determined by optical emission spectroscopy. Hence, atmospheric pressure cold plasma treatment could significantly accelerate the tooth bleaching process owing to this atomic oxygen species, and the intensity of tooth bleaching depends on the type of gas in the cold plasma.

  10. Engineering a laser remote sensor for atmospheric pressure and temperature

    NASA Technical Reports Server (NTRS)

    Kalshoven, J. E., Jr.; Korb, C. L.

    1978-01-01

    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  11. On the permanent hip-stabilizing effect of atmospheric pressure.

    PubMed

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. PMID:24938930

  12. Atmospheric nitrogen in the Mississippi River Basin - Amissions, deposition and transport

    USGS Publications Warehouse

    Lawrence, G.B.; Goolsby, D.A.; Battaglin, W.A.; Stensland, G.J.

    2000-01-01

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NO(x) Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  13. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  14. Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2001-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  15. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  16. ANNUAL REPORT. ATMOSPHERIC-PRESSURE PLASMA CLEANING OF CONTAMINATED SURFACES

    EPA Science Inventory

    The objective of this work is to demonstrate a practical, atmospheric pressure plasma tool for the surface decontamination of nuclear waste. Decontamination of radioactive materials that have accumulated on the surfaces of equipment and structures is a challenging and costly unde...

  17. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  18. Preparation of nanodiamonds from carbon nanoparticles at atmospheric pressure.

    PubMed

    Kamali, Ali Reza; Fray, Derek J

    2015-04-01

    A route for producing diamond nanocrystals is reported in this paper. Li2CO3 containing carbon nanostructures synthesised in molten LiCl were transformed to nanodiamonds by simple heating at atmospheric pressure, far less severe conditions than conventional processes. The method presented offers the possibility of bulk production. PMID:25650151

  19. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    ERIC Educational Resources Information Center

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  20. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  1. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  2. Atmospheric pressure and suicide attempts in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P < 0.001), and may explain the clustering of suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  3. Carbonation of epoxy methyl soyate at atmospheric pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbonated methyl soyates were prepared from epoxy methyl soyate by the introduction of carbon dioxide at the oxirane position. Carbonation was performed with carbon dioxide gas by sparging carbon dioxide through the epoxy esters at atmospheric pressure in the presence of tetrabutylammonium bromide...

  4. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clement, F.; Antimisiaris, S. G.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  5. Atmospheric-pressure guided streamers for liposomal membrane disruption

    NASA Astrophysics Data System (ADS)

    Svarnas, P.; Matrali, S. H.; Gazeli, K.; Aleiferis, Sp.; Clément, F.; Antimisiaris, S. G.

    2012-12-01

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  6. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  7. Limited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model

    NASA Astrophysics Data System (ADS)

    Somes, Christopher J.; Landolfi, Angela; Koeve, Wolfgang; Oschlies, Andreas

    2016-05-01

    The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradually in the slowly expanding oxygen deficient zones. Counterintuitively, nitrogen deposition near oxygen deficient zones causes a net loss of marine nitrogen due to the stoichiometry of denitrification. In our idealized atmospheric deposition simulations that only account for nitrogen cycle perturbations, these combined stabilizing feedbacks largely compensate deposition and suppress the increase in global marine productivity to <2%, in contrast to a simulation that neglects nitrogen cycle feedbacks that predicts an increase of >15%. Our study emphasizes including the dynamic response of nitrogen fixation and denitrification to atmospheric nitrogen deposition to predict future changes of the marine nitrogen cycle and productivity.

  8. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  9. Ir/thz Double Resonance Signatures at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Phillips, Dane J.; Tanner, Elizabeth A.; Everitt, Henry O.; Medvedev, Ivan R.; Neese, Christopher F.; Holt, Jennifer; De Lucia, Frank C.

    2010-06-01

    IR/THz double resonance (DR) spectroscopy, historically used to investigate molecular collision dynamics and THz molecular lasers at low pressures (< 1 Torr), shows promise for trace gas remote sensing at atmospheric pressure. Molecular specificity is obtained through the rare coincidence(s) between molecule-specific ro-vibrational energy levels and CO2 laser lines. The resulting molecule-specific, DR-induced, THz spectroscopic signatures strongly depend on the type of ro-vibrational transition involved (P, Q, or R), the type of vibrational level excited (stretching or bending), and the molecular mass. To illustrate these sensitivities, calculated DR spectra of prototypical molecules such as methyl fluoride, methyl chloride, and methyl cyanide will be discussed. Although atmospheric pressure broadening obfuscates pure rotational spectra, we show how it can enhance the DR signature in two ways: by relaxing the pump coincidence requirement and by adding the DR signatures of multiple nearby transitions. We will present estimates of this enhancement, including cases where the coincidences that produce the strongest DR signatures at atmospheric pressure do not exist at low pressures.

  10. Model of a stationary microwave argon discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  11. Photocatalytic anatase titanium dioxide thin films deposition by an atmospheric pressure blown arc discharge

    NASA Astrophysics Data System (ADS)

    Boscher, Nicolas D.; Olivier, Sébastien; Maurau, Rémy; Bulou, Simon; Sindzingre, Thierry; Belmonte, Thierry; Choquet, Patrick

    2014-08-01

    TiO2 thin films are deposited by means of an atmospheric pressure blown arc discharge fed with nitrogen and titanium bis(acetylacetonate) diisopropoxide (TIPO) as precursor. Different power densities and distances between the plasma nozzle, the precursor injector and the substrate are investigated and different morphologies, compositions and crystallinities of the coatings are generated. The photocatalytic properties of the coatings, determined from the degradation of stearic acid shined by a 254 nm UV light, are shown to be strongly related to the film characteristic and therefore to the deposition parameters.

  12. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    SciTech Connect

    Tang, Jie Jiang, Weiman; Wang, Yishan; Zhao, Wei; Li, Jing; Duan, Yixiang

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  13. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Jiang, Weiman; Li, Jing; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2015-08-01

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  14. Surface modification of aluminum by runaway electron preionized diffuse discharges in different gases at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, Mikhail V.; Shulepov, Mikhail A.; Tarasenko, Victor F.

    2015-12-01

    The paper presents the results of an examination of aluminum samples exposed to runaway electron preionized diffuse discharges in air, nitrogen, and argon at atmospheric pressure. The changes in the chemical composition, structure, and hardness of the aluminum surface layers caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses and on the chemical composition of the working gas. The goal of the study was to find possible uses of runaway electron preionized diffuse discharges in research and industry.

  15. Potential geographic distribution of atmospheric nitrogen deposition from intensive livestock production in North Carolina, USA.

    PubMed

    Costanza, Jennifer K; Marcinko, Sarah E; Goewert, Ann E; Mitchell, Charles E

    2008-07-15

    To examine the consequences of increased spatial aggregation of livestock production facilities, we estimated the annual production of nitrogen in livestock waste in North Carolina, USA, and analyzed the potential distribution of atmospheric nitrogen deposition from confined animal feeding operations ("CAFO") lagoons. North Carolina is a national center for industrial livestock production. Livestock is increasingly being raised in CAFOs, where waste is frequently held, essentially untreated, in open-air lagoons. Reduced nitrogen in lagoons is volatilized as ammonia (NH(3)), transported atmospherically, and deposited to other ecosystems. The Albemarle-Pamlico Sound, NC, is representative of nitrogen-sensitive coastal waters, and is a major component of the second largest estuarine complex in the U.S. We used GIS to model the area of water in the Sound within deposition range of CAFOs. We also evaluated the number of lagoons within deposition range of each 1 km(2) grid cell of the state. We considered multiple scenarios of atmospheric transport by varying distance and directionality. Modeled nitrogen deposition rates were particularly elevated for the Coastal Plain. This pattern matches empirical data, suggesting that observed regional patterns of reduced nitrogen deposition can be largely explained by two factors: limited atmospheric transport distance, and spatial aggregation of CAFOs. Under our medium-distance scenario, a small portion (roughly 22%) of livestock production facilities contributes disproportionately to atmospheric deposition of nitrogen to the Albemarle-Pamlico Sound. Furthermore, we estimated that between 14-37% of the state receives 50% of the state's atmospheric nitrogen deposition from CAFO lagoons. The estimated total emission from livestock is 134,000 t NH(3) yr(-1), 73% of which originates from the Coastal Plain. Stronger waste management and emission standards for CAFOs, particularly those on the Coastal Plain nearest to sensitive water

  16. Treatment of polycarbonate by dielectric barrier discharge (DBD) at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostov, K. G.; Hamia, Y. A. A.; Mota, R. P.; dos Santos, A. L. R.; Nascente, P. A. P.

    2014-05-01

    Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

  17. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. PMID:21087023

  18. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  19. Temperature measurement of cryogenic nitrogen jets at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Tani, H.; Teramoto, S.; Toki, T.; Yoshida, S.; Yamaguchi, K.; Okamoto, K.

    2016-07-01

    The temperatures of transcritical and supercritical nitrogen jets were measured to explore the influence of "pseudovaporization" upon cryogenic propellant mixing in high-pressure rocket chambers. Pseudovaporization is the large thermodynamic transition near the pseudocritical temperature under transcritical conditions, which can include a drastic density change and large peak of isobaric specific heat. A decline in the rise of temperature along the jet centerline of the transcritical jet was caused at the position where the local temperature reached nearpseudocritical temperature. This can be considered to be due to the large peak of isobaric specific heat. The density jump appeared near the pseudocritical temperature, which can be correlated to the sudden expansion due to pseudovaporization. The axial profiles of the temperature and density of the supercritical jet monotonically increased and decreased, respectively, in the downstream region of the end of the jet potential core. Similar to the axial profiles, the radial profiles of the temperature were influenced by the pseudovaporization - i. e., the temperature rise in the radial direction became very shallow in the region where the local temperature was still lower than the pseudocritical temperature. The full width at half maximum of the density profiles stayed almost constant further downstream of the end of the jet potential core, whereas that of the mass fraction profiles of the incompressible variable-density jet began to increase near the end of the potential core. Hence, the evolutions of jet mixing layers of transcritical jets and variable-density jets can be considered to differ due to pseudovaporization.

  20. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    PubMed Central

    Ren, Sen; Yuan, Weizheng; Qiao, Dayong; Deng, Jinjun; Sun, Xiaodong

    2013-01-01

    A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  1. Atmospheric pressure loading parameters from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  2. Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Yu, Yang; Zhang, Cheng; Jiang, Hui; Yan, Ping; Zhou, Yuanxiang

    2011-12-01

    Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime. Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.

  3. Production of carbon nanotubes by microwave plasma torch at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2005-05-15

    The key requirements of nanotube formation are an atomic carbon source and a source of nanometal particles. Carbon nanotubes (CNTs) have been synthesized by an argon/nitrogen microwave plasma torch using a mixture of acetylene and vapor-phase iron pentacarbonyl at the atmospheric pressure. The synthesized CNTs have been analyzed by scanning electron microscopy, field-emission transmission electron microscopy, and Raman spectroscopy, and are shown to be multiwalled and have a bamboo-shaped structure. The synthesized CNTs in some areas are well aligned. It is also found that the higher the content of nitrogen gas used, the higher the number of rough and wavy surfaces and the inner intersecting layers.

  4. Atmospheric Nitrogen Deposition: An increasingly Important Source of "new" Nitrogen Supporting Coastal Eutrophication

    NASA Astrophysics Data System (ADS)

    Paerl, H. W.; Whitall, D. R.; Dennis, R. L.

    2004-12-01

    Atmospheric deposition of nitrogen (AD-N) to the North Atlantic Ocean (NAO) basin arises from diverse pollution sources in North America and Western Europe; these sources have increased by 5 to10 fold since the Industrial Revolution, agricultural expansion and urbanization in the NAO airshed and continue to increase in both geographic and depositional magnitudes. Based on recent estimates, AD-N flux (11.2 Tg N per year) accounts for 46-57 per cent of the total new or externally-supplied anthropogenic N flux to the NAO. In US estuarine and coastal waters, from 10 to over 40 per cent of new N loading is attributed to AD-N; estimates for North Carolina's Albemarle-Pamlico Sound system range from 20 to over 30 per cent. In developing regions of the world, AD-N is one of the most rapidly expanding sources of new N. AD-N has been linked to eutrophication in N-sensitive coastal waters. In North Carolina, N deposition has increased since the 1960's as a result of urbanization (chiefly NOx) and more recently agricultural growth (NH4+ and organic N). In particular, rapidly-expanding livestock operations have led to increases in the generation of N-enriched wastes and manures; a substantial proportion (30- >70 per cent) of which may be emitted as NH3 gas. Recent growth and intensification of animal operations in the midwest and coastal regions (e.g., Mid-Atlantic coastal plain) have been linked to increasing amounts of NH4+ deposition, according to a 2 decadal analysis of the National Acid Deposition Program (NADP) network. The impacts of both increasing amounts and altered chemical composition of AD-N are being examined in the N-limited, eutrophying (i.e., expanding algal blooms, hypoxia and anoxia) Neuse River Estuary, Pamlico Sound and coastal waters of North Carolina. Because of its relatively large contribution to total new N loading and potential biogeochemical and ecological importance in N sensitive waters, AD-N requires attention from air/watershed nutrient budgeting

  5. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2009-09-01

    Atmospheric nitrous oxide concentrations have been increasing since the industrial revolution and currently account for 6% of total anthropogenic radiative forcing. Microbial production in soils is the dominant nitrous oxide source; this has increased with increasing use of nitrogen fertilizers. However, fertilizer use alone cannot account for the historical trends of atmospheric concentrations of nitrous oxide. Here, I analyse atmospheric concentrations, industrial sources of nitrous oxide, and fertilizer and manure production since 1860. Before 1960, agricultural expansion, including livestock production, may have caused globally significant mining of soil nitrogen, fuelling a steady increase in atmospheric nitrous oxide. After 1960, the rate of the increase rose, due to accelerating use of synthetic nitrogen fertilizers. Using a regression model, I show that 2.0% of manure nitrogen and 2.5% of fertilizer nitrogen was converted to nitrous oxide between 1860 and 2005; these percentage contributions explain the entire pattern of increasing nitrous oxide concentrations over this period. Consideration of processes that re-concentrate soil nitrogen, such as manure production by livestock, improved `hind-casting' of nitrous oxide emissions. As animal protein consumption in human diets increases globally, management of manure will be an important component of future efforts to reduce anthropogenic nitrous oxide sources.

  6. Diagnostics of transient non-equilibrium atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter

    2015-09-01

    Atmospheric pressure plasmas have received a renewed interest in last decades for a variety of applications ranging from environmental remediation, material processing and synthesis to envisioned medical applications such as wound healing. While most low pressure plasmas are diffuse, atmospheric pressure plasmas are often filamentary in nature. The existence of these filaments is correlated with strong gradients in plasma properties both in space and time that can significantly affect the plasma chemistry. As these filaments are often randomly appearing in space and time, it poses great challenges for diagnostics often requiring the stabilization of the filament to study the in situ plasma kinetics. In this contribution, diagnostics of a stabilized nanosecond pulsed plasma filament in a pin-pin geometry and a filament in a nanosecond pulsed atmospheric pressure plasma jet will be presented. We will focus on electron kinetics and OH and H radical production in water containing plasmas. The extension of these diagnostics to plasmas in liquids will also be discussed. The author acknowledges support from NSF PHYS1500135, Department of Energy Plasma Science Center through the U.S. Department of Energy, Office of Fusion Energy Sciences (Contract No. DE-SC0001939), University of Minnesota and STW (Netherlands).

  7. Atmospheric-pressure plasma synthesis of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Yoshida, Shinpei; Karatsu, Takuya; Okazaki, Ken

    2011-05-01

    An atmospheric-pressure radio-frequency discharge (APRFD) has great advantages over vacuum-oriented plasma-enhanced chemical vapour deposition (PECVD) as well as other types of atmospheric-pressure plasma sources in terms of single-walled carbon nanotube (SWCNT) growth. We first provide an overview on the recent advances in PECVD synthesis of CNTs, ranging from low pressure to atmospheric pressure, and then we present our current work focusing on the analysis of reactive species generated in the cathodic plasma sheath for further understanding of the SWCNT growth mechanism in PECVD. It was found that the plasma-generated C2H2 is the main CNT growth precursor in PECVD. Approximately 30% of the CH4 (initial feedstock) was converted into C2H6, C2H4 and C2H2. A trace amount of C2H2 enabled the synthesis of SWCNTs in the thermal chemical vapour deposition (CVD) regime. H2 is necessary to grow SWCNTs using PECVD because H2 suppresses the formation of excess amount of C2H2; however, H2 does not eliminate amorphous carbon even at H2/C2H2 ratios of 300. PECVD using a binary mixture of C2H2 and isotope-modified 13CH4 demonstrated that CH4 does not contribute to CNT growth in C2H2-assisted thermal CVD. Atmospheric-pressure PECVD performed with a He/CH4/H2 system is equivalent to C2H2-assisted thermal CVD without an etching gas. APRFD appears to produce a hidden species, which influences the CNT growth process.

  8. Impacts of atmospheric nutrient deposition on marine productivity: Roles of nitrogen, phosphorus, and iron

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; Baker, Alex R.; Tegen, Ina; Mahowald, Natalie M.; Dentener, Frank J.; Duce, Robert A.; Galloway, James N.; Hunter, Keith; Kanakidou, Maria; Kubilay, Nilgun; Prospero, Joseph M.; Sarin, Manmohan; Surapipith, Vanisa; Uematsu, Mitsuo; Zhu, Tong

    2011-06-01

    Nutrients are supplied to the mixed layer of the open ocean by either atmospheric deposition or mixing from deeper waters, and these nutrients drive nitrogen and carbon fixation. To evaluate the importance of atmospheric deposition, we estimate marine nitrogen and carbon fixation from present-day simulations of atmospheric deposition of nitrogen, phosphorus, and iron. These are compared with observed rates of marine nitrogen and carbon fixation. We find that Fe deposition is more important than P deposition in supporting N fixation. Estimated rates of atmospherically supported carbon fixation are considerably lower than rates of marine carbon fixation derived from remote sensing, indicating the subsidiary role atmospheric deposition plays in total C uptake by the oceans. Nonetheless, in high-nutrient, low-chlorophyll areas, the contribution of atmospheric deposition of Fe to the surface ocean could account for about 50% of C fixation. In marine areas typically thought to be N limited, potential C fixation supported by atmospheric deposition of N is only ˜1%-2% of observed rates. Although these systems are N-limited, the amount of N supplied from below appears to be much larger than that deposited from above. Atmospheric deposition of Fe has the potential to augment atmospherically supported rates of C fixation in N-limited areas. In these areas, atmospheric Fe relieves the Fe limitation of diazotrophic organisms, thus contributing to the rate of N fixation. The most important uncertainties in understanding the relative importance of different atmospheric nutrients are poorly understood speciation and solubility of Fe as well as the N:Fe ratio of diazotrophic organisms.

  9. Characterization of Atmospheric Pressure Plasma Torch and the Surface Interaction for Material Removal

    NASA Astrophysics Data System (ADS)

    McWilliams, Anthony Joseph

    An atmospheric pressure plasma torch has been developed and characterized for removal of organic based coatings. The focus of the Strategic Environmental Research & Development Program (SERDP) project WP-1762, that funded the bulk of this dissertation work, is removal of paint from US Navy vessels. The goal is to develop a novel technology for coating removal that is capable of reducing the amount of environmental waste produced during the commonly used grit blasting process. The atmospheric pressure air plasma torch was identified as having the capacity to remove the paint systems while using only compressed air and electricity as a media-less removal system with drastically reduced waste generation. Any improvements to the existing technology need to be based on scientific knowledge and thus the plasma removal mechanisms or material warranted investigation. The removal of material does not show a strong relation to the plasma parameters of power, frequency, and gas flow, nor is there a strong relation to the presences of inorganic fillers impeding or altering the removal rates. The underlying removal mechanisms also do not show a strong correlation to the rotational temperature of the plasma but do show a strong correlation to the optical emission intensity. Primarily, the emission from atomic oxygen and molecular nitrogen were identified significant contributors and were investigated further. The plasma feed gas was then varied from the nitrogen and oxygen ratio present in ambient air to pure nitrogen to identify the effect of oxygen on the removal mechanism. From these experiments it was concluded that the oxygen present in air does contribute to the overall removal mechanism; however, it is not the sole contributing factor with the other major factor being nitrogen.

  10. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.