Science.gov

Sample records for atmospheric sulfur behavior

  1. Accumulation of atmospheric sulfur in some Costa Rican soils

    USGS Publications Warehouse

    Bern, Carleton R.; Townsend, Alan R.

    2013-01-01

    Sulfur is one of the macronutrient elements whose sources to terrestrial ecosystems should shift from dominance by rock-weathering to atmospheric deposition as soils and underlying substrate undergo progressive weathering and leaching. However, the nature and timing of this transition is not well known. We investigated sources of sulfur to tropical rain forests growing on basalt-derived soils in the Osa Peninsula region of Costa Rica. Sulfur sources were examined using stable isotope ratios (δ34S) and compared to chemical indices of soil development. The most weathered soils, and the forests they supported, are dominated by atmospheric sulfur, while a less weathered soil type contains both rock-derived and atmospheric sulfur. Patterns of increasing δ34S with increasing soil sulfur concentration across the landscape suggest atmospheric sulfur is accumulating, and little rock-derived sulfur has been retained. Soil sulfur, minus adsorbed sulfate, is correlated with carbon and nitrogen, implying that sulfur accumulation occurs as plants and microbes incorporate sulfur into organic matter. Only the lower depth increments of the more weathered soils contained significant adsorbed sulfate. The evidence suggests a pattern of soil development in which sulfur-bearing minerals in rock, such as sulfides, weather early relative to other minerals, and the released sulfate is leached away. Sulfur added via atmospheric deposition is retained as organic matter accumulates in the soil profile. Adsorbed sulfate accumulates later, driven by changes in soil chemistry and mineralogy. These aspects of sulfur behavior during pedogenesis in this environment may hasten the transition to dominance by atmospheric sources.

  2. SOLID SORBENT FOR COLLECTING ATMOSPHERIC SULFUR DIOXIDE

    EPA Science Inventory

    A solid sorbent for collecting atmospheric SO2 was evaluated as part of an overall effort to develop a replacement method for the West-Gaeke method presently used to measure 24-hour ambient sulfur dioxide concentrations in ambient air. Research showed that a solid sorbent, consis...

  3. Behavior of sulfur during coal pyrolysis

    USGS Publications Warehouse

    Shao, D.; Hutchinson, E.J.; Heidbrink, J.; Pan, W.-P.; Chou, C.-L.

    1994-01-01

    The behavior of sulfur in Illinois coals during pyrolysis was evaluated by thermogravimetry/ Fourier transform-infrared spectroscopy (TG/FT-IR) techniques. SO2, COS, and H2S were major gaseous sulfur-containing products observed during coal pyrolysis. The release rates of the gaseous sulfur species showed several peaks within the temperature ranges, which were due to the emission of different forms of sulfur in coal. ?? 1994.

  4. Thermochemistry of substellar atmospheres: Water, oxygen, sulfur, and phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon Wayne

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to investigate atmospheric chemistry in substellar objects: giant planets, extrasolar giant planets (EGPs), and brown dwarfs. These studies include an assessment of the water and total oxygen inventories in the interiors of Jupiter and Saturn, and detailed modeling of sulfur and phosphorus chemistry in the atmospheres of substellar objects. In the first part of the dissertation, the water and total oxygen abundances in the deep atmospheres of Jupiter and Saturn are determined by considering the effects of H 2 O and O on the chemistry of CO, PH 3 , and SiH 4 . On Jupiter, the observed CO abundance indicates a water abundance of 0.4--1.4 times the protosolar H 2 O/H 2 ratio (8.96 × 10 -4 ). On Saturn, a combination of CO and PH 3 chemical constraints requires a water abundance of 1.9--6.1 times the protosolar abundance. Combining these results with Si mass balance considerations gives a total oxygen abundance of 0.7--1.7 and 3.2--6.4 times the protosolar O/H 2 ratio (1.16 × 10 -3 ) on Jupiter and Saturn, respectively. In both planets, oxygen is less enriched than other heavy elements (such as carbon) relative to hydrogen and the solar system composition. These results provide important constraints for giant planet formation mechanisms and models of tropospheric chemistry. The second part of the dissertation is a detailed study of sulfur and phosphorus chemistry in substellar atmospheres. The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of temperature, total pressure, and metallicity. Aside from minor amounts of sulfur removed by metal sulfide cloud formation, H 2 S is approximately representative of the sulfur inventory throughout substellar atmospheres. Silicon sulfide (SiS) is a potential tracer of weather in EGPs and L dwarfs. Phosphorus chemistry is considerably more complex than that of sulfur. Disequilibrium abundances of PH 3 approximately

  5. TOTAL SULFUR DEPOSITION (WET+DRY) FROM THE ATMOSPHERE

    EPA Science Inventory

    Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such as Sulfuric Acid and Amonium Sulfate. These compounds and their secondarily formed constituents deposit to the sur...

  6. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  7. Atmospheric deposition of nitrogen and sulfur in Louisiana

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Guo, H.

    2015-12-01

    Wet deposition and dry deposition reduce their concentrations of sulfur and nitrogen contained air pollutants in atmosphere, but lead to increase of sulfur and nitrogen fluxes to the surface. Atmospheric deposition of sulfur and nitrogen can lead to acidification of surface water bodies (lakes, rivers, and coasts) and subsequent damage to aquatic ecosystems as well as damage to forests and vegetation. Louisiana has abundant water resources with approximately 11% of the total surface area composed of water bodies. It is important to protect water resources from excessive atmospheric deposition of sulfur and nitrogen. However, the information obtained from the observation systems for understanding the deposition of sulfur and nitrogen and the adverse effects in Louisiana is limited. This study uses a source-oriented CMAQ model to simulate emission, formation, transport, and deposition of sulfur and nitrogen species in Louisiana. WRF is used to generate the meteorological inputs and SMOKE is used to generate the emissions based on national emission inventory (NEI). The forms and quantities of sulfur and nitrogen deposition from wet and dry processes in Louisiana will be discovered. The spatial and temporal variations of sulfur and nitrogen fluxes will be quantified and contributions of major source sectors or source regions will be quantified.

  8. Sulfuric acid aerosols in the atmospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Toon, Owen B.; Grinspoon, David H.

    2011-08-01

    Clouds and hazes composed of sulfuric acid are observed to exist or postulated to have once existed on each of the terrestrial planets with atmospheres in our solar system. Venus today maintains a global cover of clouds composed of a sulfuric acid/water solution that extends in altitude from roughly 50 km to roughly 80 km. Terrestrial polar stratospheric clouds (PSCs) form on stratospheric sulfuric acid aerosols, and both PSCs and stratospheric aerosols play a critical role in the formation of the ozone hole. Stratospheric aerosols can modify the climate when they are enhanced following volcanic eruptions, and are a current focus for geoengineering studies. Rain is made more acidic by sulfuric acid originating from sulfur dioxide generated by industry on Earth. Analysis of the sulfur content of Martian rocks has led to the hypothesis that an early Martian atmosphere, rich in SO 2 and H 2O, could support a sulfur-infused hydrological cycle. Here we consider the plausibility of frozen sulfuric acid in the upper clouds of Venus, which could lead to lightning generation, with implications for observations by the European Space Agency's Venus Express and the Japan Aerospace Exploration Agency's Venus Climate Orbiter (also known as Akatsuki). We also present simulations of a sulfur-rich early Martian atmosphere. We find that about 40 cm/yr of precipitation having a pH of about 2.0 could fall in an early Martian atmosphere, assuming a surface temperature of 273 K, and SO 2 generation rates consistent with the formation of Tharsis. This modeled acid rain is a powerful sink for SO 2, quickly removing it and preventing it from having a significant greenhouse effect.

  9. Relations between sulfur and heavy elements in rural atmospheres

    NASA Astrophysics Data System (ADS)

    Navarre, J. L.; Priest, P.; Ronneau, C.

    Sulfur dioxide was used as an indicator of the occurrence of air pollution episodes in a rural area of Belgium. Provided air particulates sampling operations are strictly synchronized with SO 2 immission episodes, correlations appeared between the levels in air of sulfur and the levels of some toxic metals. Comparing the relative proportions of sulfur and metals in air with emission data for combustion sources in Belgium (coal especially) leads to the conclusion that combustion is probably the main source of toxic elements likely to contaminate rural atmospheres. On the other hand, it appears that industrial zone characterization is feasible by comparing the relative proportions of some specific metals in air.

  10. BIOGENIC SULFUR COMPOUNDS IN COASTAL ATMOSPHERES OF NORTH CAROLINA

    EPA Science Inventory

    Atmospheric H2S, SO2, and particulate SO4(-2), Na(+), C1(-), NH4(-), and NO3(-) were measured in two experiments on the North Carolina coast to determine the levels of biogenic sulfur species at marsh and estuarine locations where dissimilatory bacterial sulfate reduction produce...

  11. ACCUMULATION OF ATMOSPHERIC SULFUR BY PLANTS AND SULFUR-SUPPLYING CAPACITY OF SOILS

    EPA Science Inventory

    The Tennessee Valley Authority conducted studies to measure the amount of sulfur (S) that is transferred from the atmosphere to agro-ecosystems and to determine the S-supplying capacity of soils in the Tennessee Valley. Three techniques were tested for determining the fractional ...

  12. Atmospheric sulfur and hydroxyl radical measurements at Palmer Station

    SciTech Connect

    Berresheim, H.; Eisele, F.L.; Tanner, D.J.

    1994-12-31

    The emission of dimethylsulfide (DMS) by marine algae represents the dominant natural contribution to reactive sulfur in the lower atmosphere. On a global scale, antarctic coastal waters are among the most productive oceanic regions and show extremely high DMS emission rates during austral summer. Following its release into the atmosphere, DMS is rapidly oxidized by the hydroxyl radical (OH), which itself is produced via photolysis of ozone and subsequent reaction of excited singlet oxygen [O({sup 1}D)] with water vapor. The most important stable products of the DMS+OH reaction are believed to be sulfur dioxide (SO{sub 2}), sulfuric acid (H{sub 2}SO{sub 4}), methanesulfonic acid (MSA), dimethylsulfoxide (DMSO), and dimethylsulfone (DMSO{sub 2}). Under atmospheric conditions, both H{sub 2}SO{sub 4} and MSA, due to their low vapor pressures, rapidly condense onto existing aerosol particles, thus contributing to the growth of these particles and their potential activation as cloud condensation nuclei. In addition, gas phase H{sub 2}SO{sub 4} (and, to a lesser extent, MSA) may also be responsible for new particle production via the poorly understood gas-to-particle conversion process. This potential for new particle formation is maximized (and can be most easily studied) in remote regions such as Antarctica where background levels of existing particles and rates of H{sub 2}SO{sub 4} loss onto particles are very low. In January and Bebruary 1994, project SCATE (Sulfur chemistry in the antarctic trophosphere experiment) was conducted at Palmer Station with the goal of obtaining a comprehensive database for modeling atmopsheric sulfur chemistry in high latitudes. 12 refs., 3 figs., 1 tab.

  13. Sulfur speciation and bioaccumulation in camphor tree leaves as atmospheric sulfur indicator analyzed by synchrotron radiation XRF and XANES.

    PubMed

    Zeng, Jianrong; Zhang, Guilin; Bao, Liangman; Long, Shilei; Tan, Mingguang; Li, Yan; Ma, Chenyan; Zhao, Yidong

    2013-03-01

    Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology. A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs), which were sampled from 5 local fields in Shanghai, China. Annual SO2 concentration, SO4(2-) concentration in atmospheric particulate, SO4(2-) and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs. Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg. The mainly detected sulfur states and their corresponding compounds were +6 (sulfate, include inorganic sulfate and organic sulfate), +5.2 (sulfonate), +2.2 (suloxides), +0.6 (thiols and thiothers), +0.2 (organic sulfides). Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977, which suggested that sulfur accumulated in CTLs as sulfate form. Reduced sulfur compounds (organic sulfides, thiols, thioethers, sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg. The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination. From urban to suburb place, sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced, but a dramatic increase presented near the seashore, where the marine sulfate emission and maritime activity pollution were significant. The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment. PMID:23923435

  14. Sulfur during the Transition from Anoxic to Oxic Atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Catling, David; Claire, Mark

    2006-01-01

    The invention of oxygenic photosynthesis was likely accompanied by the introduction of large amounts of O2 and complementary reduced gases (chiefly CH4) into the atmosphere. To first approximation the venting of O2 and CH4 are stochiometrically linked. We therefore present a suite of numerical photochemical models that address the anoxic-oxic transition in an atmosphere driven by large linked inputs of biogenic 02 and CH4. We find in general that, in steady state, there are two solutions, one oxic and the other anoxic. The anoxic solution appears to be linearly stable. If volcanic SO2 fluxes are large, S disproportionates into oxidized (H2S04) and reduced (S8) exit channels. As elemental sulfur is insoluble it provides a means of preserving photochemical mass-independent fractionation (MIF). On the other hand, if the source of volcanic SO2 is smaller than today, all S can leave the atmosphere as S8. Under these conditions there would be no MIF signal. The oxic solution appears to be linearly unstable. In the oxic solutions S is invariably oxidized to sulfate, and the MIF signal would be absent. The transitional atmosphere is relatively unstable and is also the most photochemically active. Consequently it is the transitional atmosphere, not the oxic or anoxic atmospheres, that has the lowest CH4 levels and weakest greenhouse warming. As a practical matter we expect the transitional atmospheres to vary strongly in response to diurnal and seasonal biological forcing.

  15. Environmental behavior and analysis of agricultural sulfur.

    PubMed

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. PMID:26108794

  16. A sensitive method for measuring atmospheric concentrations of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.

    1991-01-01

    A new method for measuring tropospheric sulfur dioxide concentrations is proposed which is based on the mist chamber sampling method. At the present stage of development, the detection limit of the method is approximately 20 parts per trillion for a 45-min sampling time, with lower concentrations detectable with lower precision. The overall reproducibility of the method (+/-95 percent confidence intervals) is estimated at +/-10 percent. The technique is relatively simple, inexpensive, and lightweight, making it ideally suited for numerous field applications in atmospheric chemistry and biogeochemical studies from both ground-based and airborne platforms.

  17. Heterogeneous atmospheric reactions - Sulfuric acid aerosols as tropospheric sinks

    NASA Technical Reports Server (NTRS)

    Baldwin, A. C.; Golden, D. M.

    1979-01-01

    The reaction probabilities of various atmospheric species incident on a bulk sulfuric acid surface are measured in order to determine the role of sulfuric acid aerosols as pollutant sinks. Reaction products and unreacted starting materials leaving a Knudsen cell flow reactor after collision at 300 K with a H2SO4 surface or a soot surface were detected by mass spectrometry. Significant collision reaction probabilities are observed on a H2SO4 surface for H2O2, HNO3, HO2NO2, ClONO2, N2O5, H2O and NH3, and on soot for NH3. Estimates of the contribution of heterogeneous reactions to pollutant removal under atmospheric conditions indicate that while aerosol removal in the stratosphere is insignificant (loss rate constants approximately 10 to the -10th/sec), heterogeneous reactions may be the dominant loss process for several tropospheric species (loss rate constant approximately 10 to the -5th/sec, comparable to photolysis rate constants).

  18. Atmospheric Sulfur Hexafluoride: Measurements and Emission Estimates from 1970 - 2008

    NASA Astrophysics Data System (ADS)

    Rigby, M. L.; Prinn, R. G.; Muhle, J.; Miller, B. R.; Dlugokencky, E. J.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Leist, M.; Weiss, R. F.; Harth, C. M.; O'Doherty, S. J.; Greally, B. R.; Simmonds, P. G.; Derek, N.; Vollmer, M. K.; Kim, J.; Kim, K.; Porter, L. W.

    2009-12-01

    We present an air history of atmospheric sulfur hexafluoride (SF6) from the early 1970s through 2008. During this period, concentrations of this extremely potent and long-lived greenhouse gas have increased by more than an order of magnitude, and its growth has accelerated in recent years. In this study, historical concentrations are determined from archived air samples measured on the Advanced Global Atmospheric Gases Experiment (AGAGE) ‘Medusa’ gas chromatography/mass spectrometry system. These data are combined with modern high-frequency measurements from the AGAGE and National Oceanic and Atmospheric Administration (NOAA) in situ networks and ˜weekly samples from the NOAA flask network, to produce a unique time series with increasing global coverage spanning almost four decades. Using the three-dimensional chemical transport Model for Ozone and Related Tracers (MOZART v4.5) and a discrete Kalman filter, we derive estimates of the annual emission strength of SF6 on hemispheric scales from 1970 - 2004 and on continental scales from 2004 - 2008. Our emission estimates are compared to the recently compiled Emissions Database for Global Atmospheric Research (EDGAR v4), and emissions reported under the United Nations Framework Convention on Climate Change (UNFCCC). The cause of the recent growth rate increase is also investigated, indicating that the origin of the required emissions rise is likely to be South-East Asia.

  19. Atmospheric sulfur deposition and streamwater quality in Finland

    NASA Astrophysics Data System (ADS)

    Lahermo, P. W.; Tarvainen, T.; Tuovinen, J.-P.

    1994-10-01

    The correlation between sulfate concentrations in Finnish headwater streams and atmospheric sulfate deposition has been studied by using data from the streamwater chemistry in August September 1990 and computed S deposition from the anthropogenic emissions. The sulfate concentrations and acidity in water are interpolated and smoothed into a deposition model grid. These data are compared with geological and pedogeochemical (glacial till) background information. The areas where the streamwater SO4 concentrations are mainly controlled by either anthropogenic S deposition or sulfur in till is estimated by applying the fuzzy Gustafsson-Kessel algorithm, which provides a soft clustering suitable for overlapping control factors. Residual areas can be well explained by the SO4-rich Littorina clay deposits. The higher overall background SO4 concentrations in streams in south Finland compared with central and northern Finland are an indisputable consequence of the heavier S deposition load in the south. However, anthropogenic sulfur deposition has a clear correlation with the sulfates in streamwaters only in northeastern Lapland impacted by the large industrial emissions in the Kola Peninsula. The secondary sulfide and sulfate minerals of marine Littorina sediments are dominating sources in the broad coastal belts, as are the primary sulfide minerals locally in the Pori-Vammala area, at the eastern end of the main sulfide ore belt between Lake Ladoga and the Gulf of Bothnia, in the Outokumpu area, and in the Peräpohja and central Lapland schist belts. Consequently, in addition to the anthropogenic deposition, there are natural sources of sulfur which cause acidity of streamwaters.

  20. Atmospheric Sulfur Hexafluoride: Sources, Sinks and Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Sze, Nien Dak; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    Model calculations using estimated reaction rates of sulfur hexafluoride (SF6) with OH and 0('D) indicate that the atmospheric lifetime due to these processes may be very long (25,000 years). An upper limit for the UV cross section would suggest a photolysis lifetime much longer than 1000 years. The possibility of other removal mechanisms are discussed. The estimated lifetimes are consistent with other estimated values based on recent laboratory measurements. There appears to be no known natural source of SF6. An estimate of the current production rate of SF6 is about 5 kt/yr. Based on historical emission rates, we calculated a present-day atmospheric concentrations for SF6 of about 2.5 parts per trillion by volume (pptv) and compared the results with available atmospheric measurements. It is difficult to estimate the atmospheric lifetime of SF6 based on mass balance of the emission rate and observed abundance. There are large uncertainties concerning what portion of the SF6 is released to the atmosphere. Even if the emission rate were precisely known, it would be difficult to distinguish among lifetimes longer than 100 years since the current abundance of SF6 is due to emission in the past three decades. More information on the measured trends over the past decade and observed vertical and latitudinal distributions of SF6 in the lower stratosphere will help to narrow the uncertainty in the lifetime. Based on laboratory-measured IR absorption cross section for SF6, we showed that SF6 is about 3 times more effective as a greenhouse gas compared to CFC 11 on a per molecule basis. However, its effect on atmospheric warming will be minimal because of its very small concentration. We estimated the future concentration of SF6 at 2010 to be 8 and 10 pptv based on two projected emission scenarios. The corresponding equilibrium warming of 0.0035 C and 0.0043 C is to be compared with the estimated warming due to CO2 increase of about 0.8 C in the same period.

  1. Atmospheric sulfur hexafluoride: Sources, sinks and greenhouse warming

    SciTech Connect

    Ko, M.K.W.; Sze, N.D.; Wang, W.C.

    1993-06-20

    Model calculations using estimated reaction rates of sulfur hexafluoride (SF{sub 6}) with OH and O({sup 1}D) indicate that the atmospheric lifetime due to these processes may be very long (25,000 years). An upper limit for the UV cross section would suggest a photolysis lifetime much longer than 1000 years. The possibility of other removal mechanisms are discussed. The estimated lifetimes are consistent with other estimated values based on recent laboratory measurements. There appears to be no known natural source of SF{sub 6}. An estimate of the current production rate of SF{sub 6} is about 5 kt/yr. Based on historical emission rates, the authors calculated a present-day atmospheric concentrations for SF{sub 6} of about 2.5 parts per trillion by volume (pptv) and compared the results with available atmospheric measurements. Even if the emission rate were precisely known, it would be difficult to distinguish among lifetimes longer than 100 years since the current abundance of SF{sub 6} is due to emission in the past three decades. More information on the measured trends over the past decade and observed vertical and latitudinal distributions of SF{sub 6} in the lower stratosphere will help to narrow the uncertainty in the lifetime. Based on laboratory-measured IR absorption cross section for SF{sub 6}, the authors showed that SF{sub 6} is about 3 times more effective as a greenhouse gas compared to CFC 11 on a per molecule basis. However, its effect on atmospheric warming will be minimal because of its very small concentration. The authors estimated the future concentration of SF{sub 6} at 2010 to be 8 and 10 pptv based on two projected emission scenarios. The corresponding equilibrium warming of 0.0035{degrees}C is to be compared with the estimated warming due to CO{sub 2} increase of about 0.8{degrees}C in the same period. 45 refs., 8 figs., 5 tabs.

  2. Atmospheric DMS and Biogenic Sulfur aerosol measurements in the Arctic

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Wentworth, G.; Burkart, J.; Leaitch, W. R.; Abbatt, J.; Sharma, S.; Desiree, T. S.

    2014-12-01

    Dimethyl Sulfide (DMS) and its oxidation products were measured on the board of the Canadian Coast Guard Ship (CCGS) Amundsen and above melt ponds in the Arctic during July 2014 in the context of the NETCARE study which seeks to understand the effect of DMS and its oxidation products with respect to aerosol nucleation, as well as its effect on cloud and precipitation properties. The objective of this study is to quantify the role of DMS in aerosol growth and activation in the Arctic atmosphere. Atmospheric DMS samples were collected from different altitudes, from 200 to 9500 feet, aboard the POLAR6 aircraft expedition to determine variations in the DMS concentration and a comparison was made to shipboard DMS measurements and its effects on aerosol size fractions. The chemical and isotopic composition of sulfate aerosol size fractions was studied. Sulfur isotope ratios (34S/32S) offer a way to determine the oceanic DMS contribution to aerosol growth. The results are expected to address the contribution of anthropogenic as well as biogenic sources of aerosols to the growth of the different aerosol size fractions. In addition, aerosol sulfate concentrations were measured at the same time within precipitation and fogs to compare with the characteristics of aerosols in each size fraction with the characteristics of the sulfate in each medium. This measurement is expected to explain the contribution of DMS oxidation in aerosol activation in the Arctic summer. Preliminary results from the measurement campaign for DMS and its oxidation products in air, fog and precipitation will be presented.

  3. Kinetics of Thermochemical Reactions Important in the Venus Atmospheric Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of this project was to experimentally measure the rates of several thermochemical gas-solid reactions between sulfur gases in the Venus atmosphere and reactive minerals on the hot Venus surface. Despite the great importance of these reactions for the maintenance of significant amounts of sulfur gases (and thus for the maintenance of the global cloud cover) in the atmosphere of Venus, essentially no kinetic data are currently available for them.

  4. Identifying the change in atmospheric sulfur sources in China using isotopic ratios in mosses

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2009-08-01

    A considerable number of studies on rainwater sulfur isotopic ratios (δ34Srain) have been conducted to trace sulfur sources at a large number of sites in the past. If longitudinal studies on the isotope composition of precipitation sulfate were conducted, it is possible to relate that to changes in sulfur emissions. But direct measurement needs considerable labor and time. So, in this study, sulfur isotopic ratios in rainwater and mosses were analyzed at Guiyang and Nanchang to evaluate the possibility of using mosses as a substitute for rainwater. We found that present moss sulfur isotopic ratios were comparable to those of present rainwater. Additionally, we investigated the changes of atmospheric sulfur sources and sulfur concentrations using an isotopic graphic analysis at five industrial cities, two forested areas, and two remote areas in China. Mosses in industrial cities show a wide range of δ34S values, with the highest occurring at Chongqing (+3.9‰) and the lowest at Guiyang (-3.1‰). But as compared to those in forested and remote areas, δ34S values of mosses in all the five industrial cities are lower. On the basis of isotopic comparisons between past rainwater (reported in the literature) and present mosses, in the plot of δ34Smoss versus δ34Srain, six zones indicating different atmospheric sulfur change are separated by the 1:1 line and δ34S values of potential sulfur sources. Our results indicate that atmospheric sulfur pollution in most of the industrial cities decreased, while at the two forested areas, no significant changes were observed, and a new anxiousness coming from new energy sources (e.g., oil) appeared in some cities. Studies on the change of ambient SO2 concentrations support these results.

  5. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce, Jr.

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. The results are independent of particular model atmospheres, and in principle, the equilibrium composition along the pressure-temperature profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant S-bearing gas throughout substellar atmospheres and approximately represents the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer of weather in substellar atmospheres. Disequilibrium abundances of phosphine (PH3) approximately representative of the total atmospheric phosphorus inventory are expected to be mixed upward into the observable atmospheres of giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g., P2, PH3, PH 2, PH, and HCP) become increasingly important at high temperatures.

  6. Atmospheric Sulfur Cycle Effects of Carbonyl Sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    McBee, Joshua

    1996-01-01

    Carbonyl Sulfide(OCS) is considered to be one of the major sources of sulfur appearing in the stratosphere due to its relative inertness, about I to 10 yearsl. However, the roles of OCS as well as other reduced sulfur compounds such as carbon disulfide (CS2), hydrogen sulfide (H2S), and dimethyl disulfide(CH3)2S2, are not completely understood in the atmosphenc sulfur cycle. Consequently vely little information is available about the effect of sulfur compounds in the stratosphere. The ability of OCS to penetrate into the stratosphere makes it an excellent tracer for study of the role of the sulfi r cycle in stratospheric chemistry. Previously techniques such as gas chromatography and whole air sampling have been used to measure OCS analytically. Each technique had its drawbacks however, with both being quite slow, and whole air sampling being somewhat unreliable. With molecular spectroscopy, however, it has been found in recent years that the tunable diode laser absorption spectrometer (TDL) provides a very rapid and accurate method of measuring OCS and other trace gases

  7. Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries

    SciTech Connect

    Han, Yamiao; Duan, Xiaobo; Li, Yanbing; Huang, Liwu; Zhu, Ding; Chen, Yungui

    2015-08-15

    Highlights: • The effects of sulfur loading on the corrosion behaviors were investigated systematically. • The corrosion became severer with increasing sulfur loading or cycle times. • The corrosion films are porous and loose and cannot prevent further reaction between lithium and polysulfides. - Abstract: The corrosion behaviors in rechargeable lithium–sulfur batteries come from the reactions between polysulfides and metal lithium anode, and they are significantly influenced by the sulfur loading. While there are limited papers reported on the effects of sulfur loading on the corrosion behaviors. In this paper, the effects have been investigated systematically. The corrosion films consisted of insulating lithium ion conductors are loose and porous, so that the corrosive reactions cannot be hindered. The thickness of the corrosion layers, consequently, increased along with increasing sulfur loading or cycle times. For instance, the thickness of corrosion layers after 50 cycles was 98 μm in the cell with 5 mg sulfur while it reached up to 518 μm when the loading increased to 15 mg. The continuous deposition of corrosion products gave rise to low active materials utilization and poor cycling performance.

  8. Behavior of sulfur in extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Takada-Hidai, Masahide; Sargent, Wallace L. W.

    The LTE abundances of sulfur (S) were explored in the sample of 15 metal-poor stars with the metallicity range of -4<[Fe/H]<-1.5, based on the equivalent widths of the S I(1) 9212 and 9237 Å lines measured on high-resolution spectra, which were observed by the Keck I HIRES. Combining our results and those of Takada-Hidai et al. (2005), we found that the behavior of [S/Fe] against [Fe/H] shows a nearly flat trend in the range of metallicity down to [Fe/H]˜-4.

  9. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  10. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  11. Low level atmospheric sulfur dioxide pollution and childhood asthma

    SciTech Connect

    Tseng, R.Y.; Li, C.K. )

    1990-11-01

    Quarterly analysis (1983-1987) of childhood asthma in Hong Kong from 13,620 hospitalization episodes in relation to levels of pollutants (SO{sub 2}, NO{sub 2}, NO, O{sub 3}, TSP, and RSP) revealed a seasonal pattern of attack rates that correlates inversely with exposure to sulfur dioxide (r = -.52, P less than .05). The same cannot be found with other pollutants. Many factors may contribute to the seasonal variation of asthma attacks. We speculate that prolonged exposure (in terms of months) to low level SO{sub 2} is one factor that might induce airway inflammation and bronchial hyperreactivity and predispose to episodes of asthma.

  12. Laboratory measurements and modeling of molecular photoabsorption in the ultraviolet for planetary atmospheres applications: diatomic sulfur and sulfur monoxide

    NASA Astrophysics Data System (ADS)

    Stark, Glenn

    2016-07-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of

  13. Reevaluating the contribution of sulfuric acid and the origin of organic compounds in atmospheric nanoparticle growth

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Tiitta, Petri; Jaars, Kerneels; Croteau, Philip; Beukes, Johan Paul; Josipovic, Miroslav; Kerminen, Veli-Matti; Kulmala, Markku; Venter, Andrew D.; Zyl, Pieter G.; Worsnop, Douglas R.; Laakso, Lauri

    2015-12-01

    Aerosol particles formed in the atmosphere are important to the Earth's climate system due to their ability to affect cloud properties. At present, little is known about the atmospheric chemistry responsible for the growth of newly formed aerosol particles to climate-relevant sizes. Here combining detailed aerosol measurements with a theoretical framework we found that depending on the gaseous precursors and size of the newly formed particles, the growth was dominated by either sulfuric acid accompanied by ammonium or organic compounds originating in either biogenic emissions or savannah fires. The contribution of sulfuric acid was larger during the early phases of the growth, but in clean conditions organic compounds dominated the growth from 1.5 nm up to climatically relevant sizes. Furthermore, our analysis indicates that in polluted environments the contribution of sulfuric acid to the growth may have been underestimated by up to a factor of 10.

  14. Strong Hydrogen Bonded Molecular Interactions between Atmospheric Diamines and Sulfuric Acid.

    PubMed

    Elm, Jonas; Jen, Coty N; Kurtén, Theo; Vehkamäki, Hanna

    2016-05-26

    We investigate the molecular interaction between methyl-substituted N,N,N',N'-ethylenediamines, propane-1,3-diamine, butane-1,4-diamine, and sulfuric acid using computational methods. Molecular structure of the diamines and their dimer clusters with sulfuric acid is studied using three density functional theory methods (PW91, M06-2X, and ωB97X-D) with the 6-31++G(d,p) basis set. A high level explicitly correlated CCSD(T)-F12a/VDZ-F12 method is used to obtain accurate binding energies. The reaction Gibbs free energies are evaluated and compared with values for reactions involving ammonia and atmospherically relevant monoamines (methylamine, dimethylamine, and trimethylamine). We find that the complex formation between sulfuric acid and the studied diamines provides similar or more favorable reaction free energies than dimethylamine. Diamines that contain one or more secondary amino groups are found to stabilize sulfuric acid complexes more efficiently. Elongating the carbon backbone from ethylenediamine to propane-1,3-diamine or butane-1,4-diamine further stabilizes the complex formation with sulfuric acid by up to 4.3 kcal/mol. Dimethyl-substituted butane-1,4-diamine yields a staggering formation free energy of -19.1 kcal/mol for the clustering with sulfuric acid, indicating that such diamines could potentially be a key species in the initial step in the formation of new particles. For studying larger clusters consisting of a diamine molecule with up to four sulfuric acid molecules, we benchmark and utilize a domain local pair natural orbital coupled cluster (DLPNO-CCSD(T)) method. We find that a single diamine is capable of efficiently stabilizing sulfuric acid clusters with up to four acid molecules, whereas monoamines such as dimethylamine are capable of stabilizing at most 2-3 sulfuric acid molecules. PMID:27128188

  15. PROTON INDUCED GAMMA-RAY ANALYSIS OF ATMOSPHERIC AEROSOLS FOR CARBON, NITROGEN, AND SULFUR COMPOSITION

    EPA Science Inventory

    A technique for the simultaneous quantitative analysis of carbon, nitrogen, and sulfur using in-beam gamma-ray spectrometry has been developed for use with atmospheric aerosol samples. Samples are collected on quartz filters, and the aerosol composition is determined by analyzing...

  16. OXYGEN ISOTOPES IN ATMOSPHERIC SULFATES, SULFUR DIOXIDE, AND WATER VAPORS FIELD MEASUREMENTS, JULY 1975

    EPA Science Inventory

    Oxygen isotope ratios were determined for atmospheric samples of sulfate aerosols, sulfur dioxide, and water vapor collected simultaneously during a six-day period in July, 1975, at St. Louis, MO; Auburn, IL; and Glasgow, IL. The collection sites were located about 100km apart. C...

  17. Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Hagens, Mathilde; Hunter, Keith A.; Liss, Peter S.; Middelburg, Jack J.

    2014-02-01

    Seawater acidification can be induced both by absorption of atmospheric carbon dioxide (CO2) and by atmospheric deposition of sulfur and nitrogen oxides and ammonia. Their relative significance, interplay, and dependency on water column biogeochemistry are not well understood. Using a simple biogeochemical model we show that the initial conditions of coastal systems are not only relevant for CO2-induced acidification but also for additional acidification due to atmospheric acid deposition. Coastal areas undersaturated with respect to CO2 are most vulnerable to CO2-induced acidification but are relatively least affected by additional atmospheric deposition-induced acidification. In contrast, the pH of CO2-supersaturated systems is most sensitive to atmospheric deposition. The projected increment in atmospheric CO2 by 2100 will increase the sensitivity of coastal systems to atmospheric deposition-induced acidification by up to a factor 4, but the additional annual change in proton concentration is at most 28%.

  18. The atmospheric sulfur cycle over the Amazon Basin. II - Wet season

    NASA Technical Reports Server (NTRS)

    Andreae, M. O.; Bingemer, H.; Berresheim, H.; Jacob, D. J.; Lewis, B. L.

    1990-01-01

    The fluxes and concentrations of atmospheric sulfur species were determined at ground level and from aircraft over the Amazon Basin during the 1987 wet season, providing a comprehensive description of the sulfur cycle over a remote tropical region. The vertical profile of dimethylsulfide (DMS) during the wet season was found to be very similar to that measured during the dry season, suggesting little seasonal variation in DMS fluxes. The concentrations of H2S were almost an order of magnitude higher than those of DMS, which makes H2S the most important biogenic source species in the atmosheric sulfur cycle over the Amazon Basin. Using the gradient-flux approach, the flux of DMS at the top of the tree canopy was estimated. The canopy was a source of DMS during the day, and a weak sink during the night. Measurements of sulfur gas emissions from soils, using the chamber method, showed very small fluxes, consistent with the hypothesis that the forest canopy is the major source of sulfur gases. The observed soil and canopy emission fluxes are similar to those measured in temperate regions. The concentrations of SO2 and sulfate aerosol in the wet season atmosphere were similar to dry season values.

  19. Contribution of anthropogenic and natural sources to atmospheric sulfur in parts of the United States

    NASA Astrophysics Data System (ADS)

    Rice, Harbert; Nochumson, D. H.; Hidy, G. M.

    This paper presents an estimate of the contributions to atmospheric sulfur of natural vs anthropogenic processes in areas of the United States. The areas were selected on the basis of population density, industrialization and potential for different kinds of geographically unique natural emissions. The sulfur emissions were estimated in part from land use practice and from geochemical arguments relating sulfur to biological carbon cycling. The natural or quasi-natural processes considered include sulfur gas production in freshwater sediments and intertidal mudflats, soil processes and vegetation. Agricultural activities and acid mine drainage were also taken into account as a perturbation to the available natural sulfur resources. The emissions appear to be heavily influenced by contributions from sulfate reduction in freshwater sediments and intertidal mudflats, and acid mine drainage. The anthropogenic emissions were calculated from the U.S. Environmental Protection Agency's inventories in the late 1960s. The natural vs man-derived sulfur were compared for 2° longitude by 2° latitude sectors in New England, the mid-Atlantic States, the Atlantic Coastal South, the Midwest, and the arid Southwest. In the sample regions where the anthropogenic emissions exceed 50-100 × 10 3 tonne S y -1 over a 2 × 2° sector, or ≳ 15-30 kg(S) ha -1 y -1, they tend to dominate the biogenic emissions. This appears to be the case for industrialized Ohio, Illinois, and New England. If 10% of the available biogenic sulfur is released to the atmosphere, natural or quasi-natural emissions may be a significant contributor in air over Minnesota and Wisconsin, Florida, and perhaps the rural areas of Virginia and remote parts of Arizona and Utah.

  20. Atmospheric sulfur hexafluoride - Sources, sinks and greenhouse warming

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien D.; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    An estimate is obtained of worldwide production of SF6, from which a global emission rate is derived and extrapolated for the next 20 years. The atmospheric lifetime of SF6 is then estimated based on a known mechanism (e.g., photolysis and atmospheric oxidation) and/or on the mass balance method. Finally, the radiative forcing of SF6 is calculated based on recent laboratory IR absorption data, and the expected warming over the time period 1950-2010 is computed for several emission scenarios. Calculations showed that SF6 is 3 times more effective as a greenhouse gas compared to CFC 11 on a per-molecule basis. However, based on projected emission scenarios, the expected warming from SF6 through 2010 is small (0.004 C), compared to the warming from CO2 and other trace gases (0.8 C).

  1. The atmospheric sulfur cycle over the Amazon Basin. 2. Wet season

    SciTech Connect

    Andreae, M.O.; Berresheim, H.; Lewis, B.L.; Li, S. ); Jacob, D.J. ); Talbot, R.W. ); Bingemer, H.

    1990-09-20

    The authors determined the fluxes and concentrations of atmospheric sulfur species at ground level and from aircraft over the Amazon Basin during the 1987 wet season, providing a comprehensive description of the sulfur cycle over a remote tropical region. The vertical profile of dimethylsulfide (DMS) during the wet season was found to be very similar to that measured during the dry season. The concentrations of hydrogen sulfide (H{sub 2}S) were almost an order of magnitude higher than those of DMS, which makes H{sub 2}S the most important biogenic source species in the atmospheric sulfur cycle over the Amazon Basin. Using the gradient-flux approach, estimated the flux of DMS at the top of the tree canopy. The canopy was a source of DMS during the day, and a weak sink during the night. Measurements of sulfur gas emissions from soils, using the chamber method, showed very small fluxes, consistent with the hypothesis that the forest canopy is the major source of sulfur gases. The observed soil and canopy emission fluxes are similar to those measured in temperate regions. The concentrations of SO{sub 2} and sulfate aerosol in the wet season atmosphere were similar to dry season values. The sulfate concentration in rainwater, on the other hand, was lower by about a factor of 5 during the wet season. Due to the higher precipitation rate, however, the wet deposition flux of sulfate was not significantly different between the seasons. The measured fluxes and concentrations of DMS, H{sub 2}S, and SO{sub 2} were consistent with a model describing transport and chemistry of these sulfur species in the boundary layer. The concentrations of aerosol and the sulfate deposition rate, on the other hand, could only be explained by import of significant amounts of marine and anthropogenic sulfate aerosol into the Amazon Basin.

  2. Chlorine, fluorine, and sulfur emissions from Mount Erebus, Antarctica and estimated contributions to the Antarctic atmosphere

    NASA Astrophysics Data System (ADS)

    Zreda-Gostynska, Grazyna; Kyle, Philip R.; Finnegan, David L.

    1993-09-01

    The discharge rates of halogens in aerosols and gases emitted from Mount Erebus between December 1986 and January 1991 were estimated by combining element-to-sulfur ratios on filter samples with SO2 output measured by COSPEC. The halogen and sulfur content of the gas vary in a quasi-cyclical pattern possibly because of a heterogeneous distribution of volatiles in the Erebus magmatic system. The emission rates of HF and HCl have increased twofold since 1986 reaching 6 and 13.3 Gg/yr, respectively, in 1991, making Erebus an important contributor of halogens to the Antarctic atmosphere.

  3. Sulfur species behavior in soil organic matter during decomposition

    NASA Astrophysics Data System (ADS)

    Schroth, Andrew W.; Bostick, Benjamin C.; Graham, Margaret; Kaste, James M.; Mitchell, Myron J.; Friedland, Andrew J.

    2007-12-01

    Soil organic matter (SOM) is a primary reservoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to speciation in SOM, particularly in conifer forests, and S species fractions in SOM change during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S.

  4. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  5. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas G.; Hopkins, Frances E.; Smyth, Timothy J.

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory (PPAO) near Plymouth, United Kingdom, between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near Plymouth Sound. A new International Maritime Organization (IMO) regulation came into force in January 2015 to reduce the maximum allowed sulfur content in ships' fuel 10-fold in sulfur emission control areas such as the English Channel. Our observations suggest a 3-fold reduction in ship-emitted SO2 from 2014 to 2015. Apparent fuel sulfur content calculated from coincidental SO2 and carbon dioxide (CO2) peaks from local ship plumes show a high level of compliance to the IMO regulation (> 95 %) in both years (˜ 70 % of ships in 2014 were already emitting at levels below the 2015 cap). Dimethyl sulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from about one-third in 2014 to about one-half in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  6. Chemical kinetics of homogeneous atmospheric oxidation of sulfur dioxide

    NASA Technical Reports Server (NTRS)

    Sander, S. P.; Seinfeld, J. H.

    1976-01-01

    A systematic evaluation of known homogeneous SO2 reactions which might be important in air pollution chemistry is carried out. A mechanism is developed to represent the chemistry of NOx/hydrocarbon/SO2 systems, and the mechanism is used to analyze available experimental data appropriate for quantitative analysis of SO2 oxidation kinetics. Detailed comparisons of observed and predicted concentration behavior are presented. In all cases, observed SO2 oxidation rates cannot be explained solely on the basis of those SO2 reactions for which rate constants have been measured. The role of ozone-olefin reactions in SO2 oxidation is elucidated.

  7. Sulfur behavior in the Sasol-Lurgi fixed-bed dry-bottom gasification process

    SciTech Connect

    M. Pat Skhonde; R. Henry Matjie; J. Reginald Bunt; A. Christien Strydom; H. Schobert

    2009-01-15

    This article reports on the findings of a study regarding the sulfur behavior across a Sasol-Lurgi gasifier. This was undertaken to understand the behavior of the various sulfur-bearing components in the coal, as they are exposed to the conditions in the gasifier. In this study, conventional characterization techniques were employed to monitor the behavior of sulfur-bearing mineral matter across the gasifier. It was observed from the study that the sulfur-bearing mineral (pyrite) in the coal structure undergoes various changes with pyrite being transformed to pyrrhotite and then to various oxides of iron with the subsequent loss of sulfur to form H{sub 2}S. A low proportion of the sulfur species including the organically associated sulfur was encapsulated by a melt that was formed by the interaction between kaolinite and fluxing minerals (pyrite, calcite, and dolomite/ankerite) present in the coal at elevated temperatures and pressure, thereby ending up in the ash. The remaining small proportions of sulfur-bearing mineral matter including pyrite and organically bound sulfur in the unburned carbon in the carbonaceous shales also report to the ash. 18 refs., 8 figs., 2 tabs.

  8. The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation

    SciTech Connect

    Kurten, T.; Kuang, C.; Gomez, P.; McMurry, P. H.; Vehkamaki, H.; Ortega, I.; Noppel, M.; Kulmala, M.

    2010-01-11

    We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation.

  9. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere

    PubMed Central

    Shaheen, Robina; Abaunza, Mariana M.; Jackson, Teresa L.; McCabe, Justin; Savarino, Joël; Thiemens, Mark H.

    2014-01-01

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984–2001) showed the highest S-isotopic anomalies (Δ33S = +1.66‰ and Δ36S = +2‰) in a nonvolcanic (1998–1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997–1998)-induced changes in troposphere–stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ36S = −0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  10. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    PubMed

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  11. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cao, J.; Li, Y.; Jiang, T.; Hu, G.

    2014-11-01

    Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits and analyzed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometers in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should to be assessed.

  12. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cao, J. J.; Li, Y. K.; Jiang, T.; Hu, G.

    2015-06-01

    Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits, and analysed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometres in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should be assessed.

  13. Dynamic behavior of biofilters degrading reduced sulfur odorous gases

    SciTech Connect

    Wani, A.H.; Lau, A.K.; Branion, R.M.R.

    1998-12-31

    The paper describes the results of a study about the transient behavior of biofilters, treating reduced sulfur pulping odors, to variations in contaminant inlet concentrations, and the effects of periods of starvation on biofilter dynamics and performance. Three bench-scale biofilters with different filter media were used. Filter media materials used were the mixtures of compost/perlite (4:1), hog fuel/perlite (4:1), and compost/hog fuel/perlite (2:2:1). Hydrogen sulfide and methyl mercaptan, the malodorous gases produced from kraft pulping processes, were used as the test contaminants. The biofilter response to variations in contaminant mass loading was studied by abruptly changing the contaminant concentration in the inlet gas stream. Contaminant concentrations were continuously measured until a new steady state, for each test, was achieved. Biofilters responded effectively to inlet concentration variations by rapidly recovering to the original removal rates within 5--15 h. However, the time required to achieve full recovery was longer in case of methyl mercaptan than that for the hydrogen sulfide. The re-acclimation time to reach full capacity, after one-week idle phase, was significantly short about 2--2.5 days as compared to the literature reported initial acclimation time of 10--12 days for hydrogen sulfide.

  14. Erosion and landscape development decouple strontium and sulfur in the transition to dominance by atmospheric inputs

    USGS Publications Warehouse

    Bern, C.R.; Porder, S.; Townsend, A.R.

    2007-01-01

    Weathering and leaching can progressively deplete the pools of soluble, rock-derived elements in soils and ecosystems over millennial time-scales, such that productivity increasingly relies on inputs from atmospheric deposition. This transition has been explored using strontium isotopes, which have been widely assumed to be a proxy for the provenance of other rock-derived elements. We compared rock versus atmospheric proportions of strontium to those for sulfur, a plant macronutrient, at several tropical forest sites in Hawaii and Costa Rica. Isotopic analyses reveal that sulfur is often decoupled from strontium in the transition to atmospheric dependence. Decoupling is likely the result of differences in chemical factors such as atmospheric input rates, mobility in the soil environment, and mineral weathering susceptibility. Strontium and sulfur decoupling appears to be accentuated by the physical process of erosion. Erosion rates are presumed to be high on the Osa Peninsula of Costa Rica, where the recent onset of rapid tectonic uplift has placed the landscape in a transient state. Decoupling is strong there, as erosion has rejuvenated the supply of rock-derived strontium but not sulfur. The landscape response to changes in tectonic uplift on the Osa Peninsula has produced decoupling at the landscape scale. Decoupling is more variable along a Hawaiian catena, presumably due to smaller scale variations in erosion rates and their influence on rejuvenation of rock-strontium inputs. These results illustrate how chemical and physical processes can interact to produce contrasting origins for different nutrient elements in soils and the ecosystems they support. ?? 2007 Elsevier B.V. All rights reserved.

  15. Marine sulfur cycling and the atmospheric aerosol over the springtime North Atlantic.

    PubMed

    Andreae, M O; Andreae, T W; Meyerdierks, D; Thiel, C

    2003-09-01

    We investigated the distribution of phytoplankton species and the associated dimethyl sulfur species, dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) on a cruise into the spring bloom region of the northern North Atlantic (near 47 degrees N, 19 degrees W). The cruise was timed to characterize the relationship between plankton dynamics and sulfur species production during the spring plankton bloom period. At the same time, we measured the DMS concentrations in the atmospheric boundary layer and determined the abundance and composition of the atmospheric aerosol. The water column studies showed that the interplay of wind-driven mixing and stratification due to solar heating controlled the evolution of the plankton population, and consequently the abundance of particulate and dissolved DMSP and DMS. The sea-to-air transfer of DMS was modulated by strong variations in wind speed, and was found to be consistent with currently available transfer parameterizations. The atmospheric concentration of DMS was strongly dependent on the sea surface emission, the depth of the atmospheric boundary layer and the rate of photooxidation as inferred from UV irradiance. Sea-salt and anthropogenic sulfate were the most abundant components of the atmospheric aerosol. On two days, a strong dust episode was observed bringing mineral dust aerosol from the Sahara desert to our northerly study region. The background concentrations of marine biogenic sulfate aerosol were low, near 30-60 ppt. These values were consistent with the rate of sulfate production estimated from the abundance of DMS in the marine boundary layer. PMID:12852983

  16. Stability of mechanical properties of vanadium catalysts for sulfuric acid manufacture in a humid atmosphere

    SciTech Connect

    Manaeva, L.N.; Malikman, V.I.; Dobkina, E.I.; Mukhlenov, I.P.

    1982-01-10

    Experience of the industrial use of catalysts in sulfuric acid manufacture shows that as the result of saturation with moisture the catalyst grains may lose strength and disintegrate during use. However, this question has not been examined experimentally and the mechanism of the effect has not been studied. Fresh catalyst may come into contact with atmospheric moisture during storage, and used catalyst as the result of uncontrolled leakages during stoppages and recharging of the catalytic converters. In the course of normal operation water vapor enters the catalytic converters together with sulfuric acid mist with the gas stream if the latter has not been adequately dried. The purpose of the present work was to study the mechanical stability, in a humid atmosphere, of industrial sulfuric acid catalysts: granulated SVD (5 mm in diameter) and SVS rings (8 x 8 x 2.5 mm). The catalysts were studied both in the fresh state and after use in a laboratory catalytic apparatus of the flow type.

  17. Organic reactions increasing the absorption index of atmospheric sulfuric acid aerosols

    NASA Astrophysics Data System (ADS)

    Nozière, B.; Esteve, W.

    2005-02-01

    Unlike most environments present at Earth's surface atmospheric aerosols can be favorable to organic reactions. Among them, the acid-catalyzed aldol condensation of aldehydes and ketones produces light-absorbing compounds. In this work the increase of the absorption index of sulfuric acid solutions 50-96 wt. % resulting from the uptake of gas-phase acetaldehyde, acetone, and 2-butanone (methyl ethyl ketone), has been measured in the near UV and visible range. Our results indicate that the absorption index between 200 and 500 nm for stratospheric sulfuric aerosols exposed to 100 pptV of acetaldehyde (1 pptV = 10-12 v/v) would increase by four orders of magnitude over a two-year lifetime. Rough estimates based on previous radiative calculations suggest that this reaction could result in an increase of the radiative forcing of sulfate aerosols of the order of 0.01 W m-2, and that these processes are worth further investigation.

  18. Assessment of the health effects of atmospheric sulfur oxides and particulate matter: evidence from observational studies.

    PubMed Central

    Ware, J H; Thibodeau, L A; Speizer, F E; Colome, S; Ferris, B G

    1981-01-01

    Steadily rising energy costs have increased the need for reliable information on the health effects of atmospheric sulfur oxides and particulate matter. Because ethical and practical considerations limit studies of this question under controlled conditions, observational studies provide an important part of the relevant information. This paper examines the currently available epidemiologic evidence from population studies of the health effects of these pollutants. Nonexperimental studies also have important limitations, including the inability to measure accurately the exposure burden of free living individuals, and the potential for serious confounding by other factors affecting health. We begin with a discussion of some of these methodologic issues. The evidence is then reviewed, first in association with fluctuations in 24 hr mean concentration of sulfur oxides and particulate matter, and then in association with differences in mean annual concentration. In the last section, this evidence is summarized and used to approximate the exposure-response relationship linking pollutant concentrations with mortality and morbidity levels. PMID:6977444

  19. Observation of dipropenyldisulfide and other organic sulfur compounds in the atmosphere of a beech forest with Allium ursinum ground cover

    NASA Astrophysics Data System (ADS)

    Puxbaum, H.; König, G.

    Dipropenyldisulfide, methylpropenyldisulfide, cis-propenylpropyldisulfide, diallylsulfide, dimethyldisulfide and 3-methylthiopropene were detected in the atmosphere of a beech forest with Allium ursinum (broad-leaved garlic) ground cover plants. Furthermore, it was shown that the Allium plants were the source of the organic sulfur compounds. The atmospheric concentrations of the organic sulfur observed on one day in May 1994 in a suburban forest in Vienna ranged from 0.3 to 7.8 ppb S with an average level of 2.9 ppb S. The atmospheric emission rate of organic sulfur species from A. ursinum determined with an enclosure box was the highest ever reported for terrestrial continental plants. The total organic sulfur flux on the average was at least 1 jug g-1h-1 (plant dry weight) or 60 gmgm-2 h-1 (per unit of ground area).

  20. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  1. Sulfur isotope dynamics in two central european watersheds affected by high atmospheric deposition of SO x

    NASA Astrophysics Data System (ADS)

    Novák, Martin; Kirchner, James W.; Groscheová, Hana; Havel, Miroslav; Černý, Jiří; Krejčí, Radovan; Buzek, František

    2000-02-01

    Sulfur fluxes and δ34S values were determined in two acidified small watersheds located near the Czech-German border, Central Europe. Sulfur of sulfate aerosol in the broader region (mean δ 34S of 7.5‰ CDT) was isotopically heavier than sulfur of airborne SO 2 (mean δ 34S of 4.7‰). The annual atmospheric S deposition to the Jezeřı´ watershed decreased markedly in 1993, 1994, and 1995 (40, 33, and 29 kg/ ha · yr), reflecting reductions in industrial S emissions. Sulfur export from Jezeří via surface discharge was twice atmospheric inputs, and increased from 52 to 58 to 85 kg/ha · yr over the same three-year period. The δ 34S value of Jezeřı´ streamflow was 4.5 ± 0.3‰, intermediate between the average atmospheric deposition (5.4 ± 0.2‰) and soil S (4.0 ± 0.5‰), suggesting that the excess sulfate in runoff comes from release of S from the soil. Bedrock is not a plausible source of the excess S, because its S concentration is very low (<0.003 wt.%) and because its δ 34S value is too high (5.8‰) to be consistent with the δ 34S of runoff. A sulfur isotope mixing model indicated that release of soil S accounted for 64 ± 33% of sulfate S in Jezeřı´ discharge. Approximately 30% of total sulfate S in the discharge were organically cycled. At Načetı´n, the same sequence of δ34S IN > δ34S OUT > δ34S SOIL was observed. The seasonality found in atmospheric input (higher δ 34S in summer, lower δ 34S in winter) was preserved in shallow (<10 cm) soil water, but not in deeper soil water. δ 34S values of deeper (>10 cm) soil water (4.8 ± 0.2‰) were intermediate between those of atmospheric input (5.9 ± 0.3‰) and Nac̆etín soils (2.4 ± 0.1‰), again suggesting that remobilization of soil S accounts for a significant fraction (roughly 40 ± 10%) of the S in soil water at Načetı´n. The inventories of soil S at both of these sites are legacies of more intense atmospheric pollution during previous decades, and are large enough (740

  2. A Sulfur-Based Survival Strategy for Putative Phototrophic Life in the Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Grinspoon, David H.; Abbas, Ousama; Irwin, Louis N.; Bullock, Mark A.

    2004-03-01

    Several observations indicate that the cloud deck of the venusian atmosphere may provide a plausible refuge for microbial life. Having originated in a hot proto-ocean or been brought in by meteorites from Earth (or Mars), early life on Venus could have adapted to a dry, acidic atmospheric niche as the warming planet lost its oceans. The greatest obstacle for the survival of any organism in this niche may be high doses of ultraviolet (UV) radiation. Here we make the argument that such an organism may utilize sulfur allotropes present in the venusian atmosphere, particularly S8, as a UV sunscreen, as an energy-converting pigment, or as a means for converting UV light to lower frequencies that can be used for photosynthesis. Thus, life could exist today in the clouds of Venus.

  3. Massive impact-induced release of carbon and sulfur gases in the early Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Black, B. A.; Elkins-Tanton, L. T.; Bottke, W. F.

    2016-09-01

    Recent revisions to our understanding of the collisional history of the Hadean and early-Archean Earth indicate that large collisions may have been an important geophysical process. In this work we show that the early bombardment flux of large impactors (>100 km) facilitated the atmospheric release of greenhouse gases (particularly CO2) from Earth's mantle. Depending on the timescale for the drawdown of atmospheric CO2, the Earth's surface could have been subject to prolonged clement surface conditions or multiple freeze-thaw cycles. The bombardment also delivered and redistributed to the surface large quantities of sulfur, one of the most important elements for life. The stochastic occurrence of large collisions could provide insights on why the Earth and Venus, considered Earth's twin planet, exhibit radically different atmospheres.

  4. Sulfur Isotope Fractionation Due to SO2 Photolysis in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lyons, J. R.; Blackie, D.; Stark, G.; Pickering, J.

    2012-12-01

    The discovery of unusual (i.e. mass-independent) sulfur isotope fractionation (or MIF) in Archean and Paleoproterozoic sedimentary rocks has promised to yield insights into the rise of O2 and the nature of the sulfur cycle on ancient Earth [1], but interpretation has been hampered by the lack of a clear mechanism for the sulfur isotope signature. Proposed MIF mechanisms include SO2 photolysis [1-4], atmospheric S3 (thiozone) formation, and thermal sulfate reduction in sediments [5]. Studies focusing only on SO2 photolysis, including measurements of isotopic cross sections [6], have yielded results differing greatly from theory [4], and have resulted in improbable interpretations [7]. In addition to ancient rocks, there are sulfur isotope MIF signatures in polar ice core sulfates associated with massive Plinian eruptions over the past ~1000 years (e.g., [8]). The ice core MIF signatures differ significantly from the ancient Earth MIF signatures, suggesting a different source mechanism. SO2 photolysis can generate sulfur isotope MIF signatures in two ways: 1) self-shielding by an optically-thick column of SO2, and 2) isotope-dependent differences in absorption line intensities and widths, which are espcially important for optically-thin conditions. The MIF signatures in ice core sulfates appear to be consistent with self-shielding in an optically-thick plume, but the Archean MIF clearly is not. To address the optically-thin case, we've made high-resolution ultraviolet cross section measurements of the sulfur isotopologues of SO2 made with the UV FTS at Imperial College. We measured cross sections at 1 cm-1 spectral resolution for 32SO2, 33SO2, 34SO2 and for a 36SO2/34SO2 mixture. Incorporating these cross sections into a simple atmospheric photochemical model with a solar UV flux, we find sulfur MIF signatures for SO and S that.are consistent with the Archean pyrites. We also find that additional mass-dependent fractionation during self-shielding by 32SO2 places an

  5. Indicating atmospheric sulfur by means of S-isotope in leaves of the plane, osmanthus and camphor trees.

    PubMed

    Xiao, Hua-Yun; Wang, Yan-Li; Tang, Cong-Guo; Liu, Cong-Qiang

    2012-03-01

    Foliar δ(34)S values of three soil-growing plant species (Platanus Orientalis L., Osmanthus fragrans L. and Cinnamomum camphora) have been analyzed to indicate atmospheric sulfur. The foliar δ(34)S values of the three plant species averaged -3.11±1.94‰, similar to those of both soil sulfur (-3.73±1.04‰) and rainwater sulfate (-3.07±2.74‰). This may indicate that little isotopic fractionation had taken place in the process of sulfur uptake by root or leaves. The δ(34)S values changed little in the transition from mature leaves to old/senescing leaves for both the plane tree and the osmanthus tree, suggestive of little isotope effect during sulfur redistribution in plant tissues. Significantly linear correlation between δ(34)S values of leaves and rainwater sulfate for the plane and osmanthus trees allowed the tracing of temporal variations of atmospheric sulfur by means of foliar sulfur isotope, while foliage δ(34)S values of the camphor is not an effective indicator of atmospheric sulfur. PMID:22243850

  6. Chlorine, fluorine, and sulfur emissions from Mount Erebus, Antarctica and estimated contributions to the Antarctic atmosphere

    SciTech Connect

    Zreda-Gostynska, G.; Kyle, P.R. ); Finnegan, D.L. )

    1993-09-15

    The authors report a study of the atmospheric release of gases from Mount Erebus, in continental Antarctica, over the period Dec 1986 to Jan 1991. This provides a case study of gas releases in a region of the planet almost devoid of anthropogenic sources. The discharge rates of chlorine, fluorine, and sulfur compounds have been monitored. The emission rates of HF and HCl were observed to double over this period to levels of 6 and 13.3 Gg/yr. Measurements were made from filter paper samples, relative to SO[sub 2] emission rates measured independently of the filter samples.

  7. Trifluoromethyl sulfur pentafluoride and its relationship to sulfur hexafluoride and chlorofluorocarbon-12 in the atmosphere near the New York City metropolitan area

    NASA Astrophysics Data System (ADS)

    Erboy, Yasemin; Smethie, William M.

    2012-08-01

    Trifluoromethyl sulfur pentafluoride (SF5CF3), sulfur hexafluoride (SF6) and dichlorodifluoromethane (CCl2F2) (also referred to as CFC-12) were measured simultaneously in the atmosphere at a site 25 km north of New York City over a period of 6 months with continuous measurements every 25 min for 4 months. The SF5CF3 record showed little variability and its concentration appeared close to the remote atmospheric concentration. The concentrations of SF6 and CFC-12 had numerous spikes well in excess of their remote atmospheric concentrations indicating the presence of local sources. The lack of SF5CF3 spikes reveals that the usage of SF6 in the New York metropolitan area does not result in significant production of SF5CF3, and also that there is no significant production by industrial and manufacturing processes in the region.

  8. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas.

    PubMed

    Lee, How Ming; Chang, Moo Been; Wu, Kuan Yu

    2004-08-01

    Sulfur hexafluoride (SF6) is an important gas for plasma etching processes in the semiconductor industry. SF6 intensely absorbs infrared radiation and, consequently, aggravates global warming. This study investigates SF6 abatement by nonthermal plasma technologies under atmospheric pressure. Two kinds of nonthermal plasma processes--dielectric barrier discharge (DBD) and combined plasma catalysis (CPC)--were employed and evaluated. Experimental results indicated that as much as 91% of SF6 was removed with DBDs at 20 kV of applied voltage and 150 Hz of discharge frequency for the gas stream containing 300 ppm SF6, 12% oxygen (O2), and 40% argon (Ar), with nitrogen (N2) as the carrier gas. Four additives, including Ar, O2, ethylene (C2H4), and H2O(g), are effective in enhancing SF6 abatement in the range of conditions studied. DBD achieves a higher SF6 removal efficiency than does CPC at the same operation condition. But CPC achieves a higher electrical energy utilization compared with DBD. However, poisoning of catalysts by sulfur (S)-containing species needs further investigation. SF6 is mainly converted to SOF2, SO2F4, sulfur dioxide (SO2), oxygen difluoride (OF2), and fluoride (F2). They do not cause global warming and can be captured by either wet scrubbing or adsorption. This study indicates that DBD and CPC are feasible control technologies for reducing SF6 emissions. PMID:15373364

  9. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  11. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 in the atmosphere

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Sinha, B.; Hoppe, P.; Crowley, J.; Borrmann, S.; Foley, S. F.; Gnauk, T.; Van Pinxteren, D.; Herrmann, H.

    2011-12-01

    Sulfate and sulfur dioxide play an important role in environmental chemistry and climate, particularly through their effect on aerosols. Processing of aerosol through sulfate addition in clouds, which causes both hygroscopicity changes and mass increases, has been shown to modify the cloud condensation nucleus spectrum, leading to important climatological effects (Bower et al. 1997, Hegg et al. 2004). However, the uptake of sulfate and SO2 to aerosol in clouds is not well constrained, nor is it resolved for different particle types and sizes (Kasper-Giebl et al. 2000, Barrie et al. 2001). Measurements of stable sulfur isotopes can be used to investigate the chemistry of SO2 in the environment, providing insight into sources, sinks and oxidation pathways. Typical isotopic compositions for many sources have been measured, and the major current limitation is the lack of reliable fractionation factors - characteristic changes in isotopic composition caused by chemical reactions - with which to interpret the data. Laboratory values of fractionation factors for the major oxidation reactions have been measured in previous work, however there are no measurements or models to represent isotopic fractionation during heterogeneous oxidation on complex atmospheric surfaces. In this work the sulfur isotopic fractionation factors for SO2 oxidation have been measured on Sahara dust, obtained from the Cape Verde Islands, and sea salt aerosol, which was synthesised in the laboratory according to Millero (1974), modified to contain no sulfate. Sulfur dioxide with a known isotopic composition was oxidised on these surfaces under a variety of conditions including irradiation and ozonation, and the sulfur isotopic composition of the product sulfate was measured with the Cameca NanoSIMS 50. These laboratory results were then used to investigate the uptake of sulfur to particles in an orographic cloud during the HCCT campaign. The campaign took place at the Schmücke mountain in Germany

  12. Analysis of the 1987 Southern California Air Quality Study (SCAQS) sulfur hexafluoride atmospheric tracer data. Final report

    SciTech Connect

    Shair, F.H.

    1991-10-01

    Eight sets of atmospheric tracer experiment data obtained during the 1987 Southern California Air Quality Study (SCAQS) are analyzed by mass balance and qualitative agreement with surface winds gathered during the same period. The sulfur hexafluoride tracer releases done near downtown Los Angeles reveal aspects of the complexity of the atmospheric emission transport from the location. The total material release of sulfur hexafluoride can be accounted for by mass balancing. The mass balances are used to examine the residence time of the tracer in the basin. The residence time for the sulfur hexafluoride tracer released from Vernon CA is 10 hours in the summer, and exceeds 24 hours for the fall. The primary exit route of the sulfur hexafluoride tracer during the summer releases was the San Fernando Valley to the northwest of downtown. The surface-level diagnostic wind model (DWM) was made operational on a PC.

  13. Sulfur Mass-Independent Fractionation in Atmospheric Formation of Volcanic Sulfate

    NASA Astrophysics Data System (ADS)

    Lanciki, A.; Cole-Dai, J.; Thiemens, M. H.; Savarino, J. P.

    2009-12-01

    Volcanic eruptions emit sulfur dioxide which oxidizes to sulfuric acid aerosols in the atmosphere. Sulfate aerosols affect global climate by altering the atmospheric radiative properties. Sulfate aerosols from stratospheric eruptions can impact global climate, through their widespread distribution and relatively long atmospheric residence times (months to years). Ice cores volcanic sulfate records are often used to assess the volcanic contribution to climate change. However, sulfate signals of tropospheric eruptions in the ice core records make it difficult to evaluate the climatic impact of stratospheric eruptions in a glaciological record. But, the isotope composition of the volcanic sulfate can be used to distinguish between sulfate from stratospheric eruptions and that of tropospheric eruptions. Mass-independent fractionation (MIF) of sulfur isotopes in sulfate aerosols arises from the high-energy UV photo-oxidation of SO2, and this can be used to determine if a volcanic eruption is stratospheric, since high-energy UV is available only in the stratosphere. The stable isotopes of sulfur are compared to a standard (Canyon Diablo Triolite, FeS) in equation 1. The small delta (δ) represents the ratio of the isotope of interest to the most abundant isotope.

    δxS (‰) = [(xS/32S)sample/ [(xS/32S)std - 1] × 1000 (1)33S, calculated with the equation below. Any significant, non-zero Δ33S values indicate that the sulfate is formed via the UV-catalyzed oxidation of SO2 in the stratosphere.
    Δ33S = δ33S - 1000 × [(1 + δ34S/1000)0.515 - 1] (2)33S MIF values and have been deemed stratospheric events by this study. The 1259 AD eruption has the largest Δ33S values ever reported, beginning at +1.63 ‰ and ending with -1.49 ‰. Tambora, which has been estimated to be 2-3 times smaller in magnitude than the 1259 event, had measured Δ33S values of +0.25 ‰ to -0.28 ‰ along the timeframe of the eruption. Two of the measured events did not exhibit any

  14. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.

    PubMed

    Doney, Scott C; Mahowald, Natalie; Lima, Ivan; Feely, Richard A; Mackenzie, Fred T; Lamarque, Jean-Francois; Rasch, Phil J

    2007-09-11

    Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO(3) and H2SO(4)) and bases (NH(3)) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO(3)(-)) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air-sea efflux of CO(2), reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air-sea CO(2) flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO(2). However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind. PMID:17804807

  15. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  16. Decreased atmospheric sulfur deposition across the Southeastern U.S.: when will watersheds release stored sulfate?

    PubMed

    Rice, Karen C; Scanlon, Todd M; Lynch, Jason A; Cosby, Bernard J

    2014-09-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO4(2-)), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States. Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in streamwater SO4(2-) concentrations have been observed in unglaciated watersheds. We calculated SO4(2-) mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO4(2-), unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO4(2-) over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO4(2-) correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO4(2-) retention to release anticipates more widespread reductions in streamwater SO4(2-) concentrations in this region. PMID:25046800

  17. Decreased atmospheric sulfur deposition across the southeastern U.S.: when will watersheds release stored sulfate?

    USGS Publications Warehouse

    Rice, Karen C.; Scanlon, Todd S.; Lynch, Jason A.; Cosby, Bernard J.

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  18. Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Forget, François; Wordsworth, Robin

    2015-11-01

    Volcanic SO2 in the martian atmosphere has been invoked as a way to create a sustained or transient greenhouse during early martian history. Many modeling studies have been performed to test the feasibility of this hypothesis, resulting in a range of conclusions, from highly feasible to highly improbable. In this study we perform a wide range of simulations using the 3-D Laboratoire de Météorologie Dynamique Generic Global Climate Model (GCM) in order to place earlier results into context and to explore the sensitivity of model outcomes to parameters such as SO2 mixing ratio, atmospheric H2O content, background atmospheric pressure, and aerosol size, abundance, and composition. We conclude that SO2 is incapable of creating a sustained greenhouse on early Mars, and that even in the absence of aerosols, local and daily temperatures rise above 273 K for only for limited periods with favorable background CO2 pressures. In the presence of even small amounts of aerosols, the surface is dramatically cooled for realistic aerosol sizes. Brief, mildly warm conditions require the co-occurrence of many improbable factors, while cooling is achieved for a wide range of model parameters. Instead of causing warming, sulfur in the martian atmosphere may have caused substantial cooling, leading to the end of clement climate conditions on early Mars.

  19. Decreased Atmospheric Sulfur Deposition Across the Southeastern U.S.: When Will Watersheds Release Stored Sulfate?

    NASA Astrophysics Data System (ADS)

    Rice, K. C.; Scanlon, T. M.; Lynch, J. A.; Cosby, B. J., Jr.

    2014-12-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  20. Atmospheric Sulfur Cycle Simulated in The Global Model GOCART: Model Description and Global Properties

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Rood, Richard B.; Lin, Shian-Jiann; Mueller, Jean-Francois; Thompson, Anne M.

    2000-01-01

    The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric sulfur cycle. The model uses the simulated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). Global sulfur budgets from a 6-year simulation for SO2, sulfate, dimethylsulfide (DMS), and methanesulfonic acid (MSA) are presented in this paper. In a normal year without major volcanic perturbations, about 20% of the sulfate precursor emission is from natural sources (biogenic and volcanic) and 80% is anthropogenic: the same sources contribute 339% and 67% respectively to the total sulfate burden. A sulfate production efficiency of 0.41 - 0.42 is estimated in the model, an efficiency which is defined as a ratio of the amount oi sulfate produced to the total amount of SO2 emitted and produced in the atmosphere. This value indicates that less than half of the SO2 entering the atmosphere contributes to the sulfate production, the rest being removed by dry and wet depositions. In a simulation for 1990, we estimate a total sulfate production of 39 Tg S /yr with 36% and 64% respectively from in-air and in-cloud oxidation of SO2. We also demonstrate that major volcanic eruptions, such as the Mt. Pinatubo eruption in 1991, can significantly change the sulfate formation pathways, distributions, abundance, and lifetime. Comparison with other models shows that the parameterizations for wet removal or wet production of sulfate are the most critical factors in determining the burdens of SO2 and sulfate. Therefore, a priority for future research should be to reduce the large uncertainties associated with the wet physical and chemical processes.

  1. Sulfur isotope fractionation by broadband UV radiation to optically thin SO2 under reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Endo, Yoshiaki; Ueno, Yuichiro; Aoyama, Shinnosuke; Danielache, Sebastian O.

    2016-11-01

    Photochemical mechanisms of Sulfur Mass-Independent Fractionation (S-MIF) are still poorly understood. Previous laboratory experiments have indicated that the S-MIF depends largely on the spectrum of the incident light source and the partial pressure of SO2, though the basic character of the Archean S-MIF (Δ36S / Δ33S = ∼ - 1) has never been reproduced. We have conducted new photochemical experiments at low pSO2 (1-10 Pa) conditions under the presence of CO and found a reasonable mechanism to reproduce the Δ36S/Δ33S slope about -1. As previously suggested (Ono et al., 2013), the low pSO2 is key to studying the self-shielding effect within a range of realistic atmospheric conditions. Also, reducing conditions are critical for simulating the O2-poor atmosphere, whereas photolysis of pure SO2 provides excess O atoms that significantly change the overall chemistry. Our experimental results confirmed that significant S-MIF (Δ36S / Δ33S = - 2.4) can be produced by self-shielding in the SO2 photolysis band (185-220 nm), even if the SO2 column density is as low as 1016 molecules cm-2. Thus, photolysis within a volcanic plume of ∼0.1 ppm SO2 is capable of producing a large S-MIF signature. The isotopic fractionations originating from the different absorption cross sections of SO2 isotopologues (i.e. wavelength dependent effect; without self-shielding) are only minor (potentially up to +4‰ for Δ33S). Under reducing conditions, however, another S-MIF signal with Δ36S/Δ33S ratio of ∼+0.7 is produced due to collision-induced intersystem crossing (ISC) from singlet to triplet states of SO2 (Whitehill et al., 2013), and should also be transferred into the final product that is responsible for changing the Δ36S/Δ33S slope. Based on a photochemical model of the S-O-C system with the two S-MIF-yielding reactions, the largest S-MIF observed in the late Archean Mt. McRae Fm. (Δ33S = + 9.4 ‰, Δ36S = - 7.5 ‰) can be reproduced by solar UV irradiation of a SO2

  2. Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Weisenstein, Debra K.; Luo, Bei-Ping; Rozanov, Eugene; Stenke, Andrea; Anet, Julien; Bingemer, Heinz; Peter, Thomas

    2015-01-01

    The global atmospheric sulfur budget and its emission dependence have been investigated using the coupled aerosol-chemistry-climate model SOCOL-AER. The aerosol module comprises gaseous and aqueous sulfur chemistry and comprehensive microphysics. The particle distribution is resolved by 40 size bins spanning radii from 0.39 nm to 3.2 μm, including size-dependent particle composition. Aerosol radiative properties required by the climate model are calculated online from the aerosol module. The model successfully reproduces main features of stratospheric aerosols under nonvolcanic conditions, including aerosol extinctions compared to Stratospheric Aerosol and Gas Experiment II (SAGE II) and Halogen Occultation Experiment, and size distributions compared to in situ measurements. The calculated stratospheric aerosol burden is 109 Gg of sulfur, matching the SAGE II-based estimate (112 Gg). In terms of fluxes through the tropopause, the stratospheric aerosol layer is due to about 43% primary tropospheric aerosol, 28% SO2, 23% carbonyl sulfide (OCS), 4% H2S, and 2% dimethyl sulfide (DMS). Turning off emissions of the short-lived species SO2, H2S, and DMS shows that OCS alone still establishes about 56% of the original stratospheric aerosol burden. Further sensitivity simulations reveal that anticipated increases in anthropogenic SO2 emissions in China and India have a larger influence on stratospheric aerosols than the same increase in Western Europe or the U.S., due to deep convection in the western Pacific region. However, even a doubling of Chinese and Indian emissions is predicted to increase the stratospheric background aerosol burden only by 9%. In contrast, small to moderate volcanic eruptions, such as that of Nabro in 2011, may easily double the stratospheric aerosol loading.

  3. Reduced sulfur compounds in the atmosphere of sewer networks in Australia: geographic (and seasonal) variations.

    PubMed

    Wang, B; Sivret, E C; Parcsi, G; Le, N M; Kenny, S; Bustamante, H; Stuetz, R M

    2014-01-01

    The management of odorous emissions from sewer networks has become an important issue for sewer system operators resulting in the need to better understand the composition of reduced sulfur compounds (RSCs). Gaseous RSCs including hydrogen sulfide (H2S), methanethiol (MeSH), dimethyl sulfide (DMS), carbon disulfide (CS2), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS) were measured in the atmosphere of selected sewer networks in two major Australian cities (Sydney and Melbourne) during 2011-2012. The RSC concentrations in the sewer air were detected in a highly variable range. H2S and MeSH were found at the highest concentrations, followed by DMS (39.2-94.0 μg/m(3)), CS2 (18.3-19.6 μg/m(3)), DMDS (7.8-49.6 μg/m(3)) and DMTS (10.4-35.3 μg/m(3)). Temporal trends in the occurrence of targeted RSCs were observed and the highest sulfur concentration occurred either in summer or spring, which are typically regarded as the warmer seasons. Statistical significant difference in the magnitude of targeted RSCs was found between samples collected in Sydney and Melbourne. PMID:24647180

  4. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions.

    PubMed

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-10-21

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus. PMID:25288761

  5. Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions

    PubMed Central

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H.; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M.; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S.; Kulmala, Markku; Worsnop, Douglas R.; Curtius, Joachim

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus. PMID:25288761

  6. Theoretical and global scale model studies of the atmospheric sulfur/aerosol system

    NASA Technical Reports Server (NTRS)

    Kasibhatla, Prasad

    1996-01-01

    The primary focus during the third-phase of our on-going multi-year research effort has been on 3 activities. These are: (1) a global-scale model study of the anthropogenic component of the tropospheric sulfur cycle; (2) process-scale model studies of the factors influencing the distribution of aerosols in the remote marine atmosphere; and (3) an investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine boundary layer. In this paper, we describe in more detail our research activities in each of these areas. A major portion of our activities during the fourth and final phase of this project will involve the preparation and submission of manuscripts describing the results from our model studies of marine boundary-layer aerosols and DMS-oxidation mechanisms.

  7. Sulfur and chlorine behavior during the last three plinian eruptions of Mt. Somma-Vesuvius.

    NASA Astrophysics Data System (ADS)

    Sintoni, M.; Lima, A.; Webster, J.; de Vivo, B.

    2005-12-01

    The volcanologic history of the Mt. Somma-Vesuvius in the last 3.8 kyr has been characterized by an alternation of major plinian and effusive interplinian eruptions. The explosivity of Vesuvius, as any other volcano, is closely related to the amount and behavior of magmatic volatile species present before and during the eruption. For the last three plinian activities (Avellino, Pompei, Pollena), which caused a major impact on the environment, we investigated the composition of heated melt-inclusions trapped within clinopyroxene phenocrysts, focusing in particular on the behavior of S and Cl. Although they are minor compared to water their injection into the atmosphere can bring important changes for the earth system. To better understand their evolution in this volcanic system we also conducted the first systematic study on the composition of Vesuvius clinopyroxene-hosted apatite, considering that apatite is a resistant mineral and can contain elevated amounts of S and Cl. Clinopyroxene represents an early crystallizing phase and for this reason melt-inclusions should record a quite primitive content of pre-eruptive volatiles in the system. Our initial results indicate at least two generations of melt-inclusions: one hosted in high Mg# (0.85-0.90 mol%) clinopyroxenes with high S/Cl ratio (0.45 ± 0.05 Avellino and Pollena) and another with a lower S/Cl ratio (0.21 ± 0.13 Pompei and Pollena) related to low Mg# (0.75-0.80 mol%) clinopyroxenes. On the other hand, the amount of S (wt%) in apatite is 0.48 ± 0.24 for Avellino, 0.11 ± 0.08 for Pompei and 0.23 ± 0.12 for Pollena samples. A positive correlation exists between the amount of S in apatite crystals and in the melt-inclusions in agreement with previous experimental data of Parat & Holtz (2004) for rhyolitic melt at oxidizing condition. These results emphasize the close relationship between apatite crystallization and the amount of S in the system with further implication for S solubility and its fluid

  8. Missing SO2 oxidant in the coastal atmosphere? - Evidence from high resolution measurements of OH and atmospheric sulfur compounds

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Adam, M.; Monahan, C.; O'Dowd, C.; Plane, J. M. C.; Bohn, B.; Rohrer, F.

    2014-01-01

    Diurnal and seasonal variations of gaseous sulfuric acid (H2SO4) and methane sulfonic acid (MSA) were measured in N.E. Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected ion/chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3 × 10 4 cm-3 at 5 min signal integration. The H2SO4 and MSA gas-phase concentrations were analysed in conjunction with the condensational sink for both compounds derived from 3 nm-10 μm (diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H2SO4 and 0.12 for MSA were assumed leading to estimated atmospheric lifetimes of the order of 7 min and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal evidence was obtained for the presence of one or more unknown oxidants of SO2 in addition to OH. Depending on the nature of the oxidant(s) their ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO2 oxidant was additionally confirmed by direct measurements of SO2 in conjunction with calculated H2SO4 concentrations. The calculated concentrations were consistently lower than the measured concentrations by a factor 4.8 ± 3.4 when considering the oxidation of SO2 by OH as the only source of H2SO4. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H2SO4 and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photo-oxidation of biogenic iodine compounds. As to the identity of the oxidant(s), we have been able to exclude ClO, BrO, IO, and OIO as possible candidates based on ab initio calculations. Stabilized Criegee intermediates (sCI) produced from

  9. Changes in Atmospheric Sulfur Dioxide (SO2) over the English Channel - 1.5 Years of Measurements from the Penlee Point Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas; Hopkins, Frances; Smyth, Timothy

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near near the Plymouth Sound. International Maritime Organization regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. We observed a three-fold reduction from 2014 to 2015 in the estimated ship-emitted SO2 during southeasterly winds. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~1/3 in 2014 to ~1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  10. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  11. International Global Atmospheric Chemistry Programme global emissions inventory activity: Sulfur emissions from volcanoes, current status

    SciTech Connect

    Benkovitz, C.M.

    1995-07-01

    Sulfur emissions from volcanoes are located in areas of volcanic activity, are extremely variable in time, and can be released anywhere from ground level to the stratosphere. Previous estimates of global sulfur emissions from all sources by various authors have included estimates for emissions from volcanic activity. In general, these global estimates of sulfur emissions from volcanoes are given as global totals for an ``average`` year. A project has been initiated at Brookhaven National Laboratory to compile inventories of sulfur emissions from volcanoes. In order to complement the GEIA inventories of anthropogenic sulfur emissions, which represent conditions circa specific years, sulfur emissions from volcanoes are being estimated for the years 1985 and 1990.

  12. Multiple oxygen and sulfur isotope compositions of atmospheric sulfate in Baton Rouge, LA, USA

    NASA Astrophysics Data System (ADS)

    Jenkins, Kathryn A.; Bao, Huiming

    Secondary atmospheric sulfates (SAS) is the ultimate oxidation product and sink for sulfur gases of biological, volcanic, and anthropogenic origins on Earth. Their presence in the atmosphere as aqueous or solid phases contributes to acid rain and climate change, thus, understanding SAS formation pathways is pertinent. There has been extensive measurement of δ34S values for SAS, which mainly aimed at source identification. Relatively fewer oxygen isotope compositions ( δ18O, Δ 17O), which are most useful for resolving competing oxidation pathways, were available, however. This study represents the first effort to characterize the Δ 17O, δ18O, and δ34S simultaneously for SAS in a tropospheric air shed. We measured a total of 20 samples collected in Baton Rouge (LA, USA) during a 600-day period. The isotope compositions for atmospheric sulfate range from +0.25‰ to +1.43‰ for Δ 17O, +11.8‰ to +19.3‰ for δ18O, and -1.4‰ to +3.8‰ for δ34S. No apparent correlation is found among Δ 17O, δ18O, or δ34S values. The Δ 17O has no seasonal variation and its values are consistent with an oxidation pathway dominated by aqueous H 2O 2. The δ18O and δ34S are within the range of those observed in other sites around the world and are not characteristic for Baton Rouge. Despite the huge variability in atmospheric condition among mid-latitude sites, the long-term average Δ 17O value for SAS appears to fall within a fairly narrow range from +0.6‰ to +0.8‰, which is ˜1‰ to 2‰ lower than those in polar sites.

  13. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  14. Bidirectional Interaction of Alanine with Sulfuric Acid in the Presence of Water and the Atmospheric Implication.

    PubMed

    Wang, Chun-Yu; Ma, Yan; Chen, Jiao; Jiang, Shuai; Liu, Yi-Rong; Wen, Hui; Feng, Ya-Juan; Hong, Yu; Huang, Teng; Huang, Wei

    2016-04-21

    Amino acids are recognized as important components of atmospheric aerosols, which impact on the Earth's climate directly and indirectly. However, much remains unknown about the initial events of nucleation. In this work, the interaction of alanine [NH2CH(CH3)COOH or Ala], one of the most abundant amino acids in the atmosphere, with sulfuric acid (SA) and water (W) has been investigated at the M06-2X/6-311++G(3df, 3pd) level of theory. We have studied thermodynamics of the hydrated (Ala)(SA) core system with up to four water molecules. We found that Ala, with one amino group and one carboxyl group, can interact with H2SO4 and H2O in two directions and that it has a high cluster stabilizing effect similar to that of ammonia, which is one of the key nucleation precursor. The corresponding Gibbs free energies of the (Ala)(SA)(W)n (n = 0-4) clusters formation at 298.15 K predicted that Ala can contribute to the stabilization of small binary clusters. Our results showed that the hydrate distribution is temperature-dependent and that a higher humidity and temperature can contribute to the formation of hydrated clusters. PMID:26997115

  15. Exploring the Capabilities of Satellite Observation of Anthropogenic Sulfur Dioxide (SO2) in the Lower Atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, K.; Krotkov, N. A.; Li, C.; He, H.; Dickerson, R. R.

    2012-12-01

    Anthropogenic activities, such as fuel combustion, oil refining, and metal smelting, emit sulfur dioxide (SO2) into the atmospheric planetary boundary layer (PBL), leading to air quality degradation near the source regions. SO2 in the air is oxidized to form sulfate aerosols, which may have a significant impact on regional air quality and climate. Sulfate aerosols are usually removed from the atmosphere through acid deposition, which can damage the environment and ecosystems. SO2 and sulfate aerosols are sometimes lifted into the middle or upper troposphere and subsequently transported over long distances, affecting remote regions. Space-borne UV instruments, such as Aura/OMI, MetOp/GOME-2, and NPP/OMPS, provide a unique perspective on the spatial and temporal distribution of SO2 over the globe. In this presentation, we will describe the recent advances in retrieval algorithm that provide improved detection and quantification of PBL SO2, and compare the new retrievals with the operational OMI SO2 products to show significant reduction in noise and bias. We will also present validation results obtained by the comparisons with co-located in-situ aircraft measurements to illustrate improved accuracy achieved with the advanced algorithm.

  16. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  17. Effect of tritium on corrosion behavior of chromium in 0.01 N sulfuric acid solution

    SciTech Connect

    Oyaidzu, M.; Isobe, K.; Hayashi, T.

    2015-03-15

    The effects of tritium on the corrosion behavior of chromium in 0.01 N sulfuric solution have been investigated in the present study. Electrochemical experiments have been carried our for pure chromium. At first, the concentration dependence of sulfuric acid solution on anodic polarization behavior of chromium was experimented, resulting in that 0.01 N one was found appropriate. The dependence of both dissolved oxygen and tritium concentration on anodic behavior of chromium were performed. It was found from that the self-passivation of chromium induced by dissolved oxygen was inhibited in tritiated solution resulting in the enhancement of the corrosion. As a consequence it is highly likely that the elution of chromium by highly oxidative radiolysis products would explain the passivation inhibitory effect of SUS304 stainless steel observed in tritiated solutions.

  18. Atmospheric behavior of the Chelyabinsk impactor

    NASA Astrophysics Data System (ADS)

    Borovička, J.; Spurný, P.; Brown, P.; Kalenda, P.; Shrbený, L.

    2014-07-01

    containing thermal hot spots, which retained their forward momentum and continued the flight in the original asteroid direction after formation. The usual assumption that the positions of dust concentrations are identical with the fragmentation points proved invalid in the case of Chelyabinsk. The nature of the hot spots will be discussed. The fragmentation analysis confirms that the Chelyabinsk asteroid was not a rubble pile, which would be expected to disintegrate under the atmospheric ram pressures experienced in the beginning of entry. On the other hand, Chelyabinsk was not a particularly strong body. About 95 % of mass was lost at heights above 30 km under the action of dynamic pressure less than 5 MPa. In many respects, the Chelyabinsk fragmentation resembles the fragmentation behavior exhibited by the Košice meteoroid (H5 chondrite, 1 meter size) [5]. Both events were characterized by catastrophic disruption above the height of 30 km and the survival of only a few large pieces in addition to numerous small meteorites. Since the bulk strength and fragmentation behavior of meter-sized objects varies from case to case [6], we do not expect that all Chelyabinsk-sized impactors will behave similarly.

  19. [Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM₂.₅ in Nanjing Region].

    PubMed

    Shi, Lei; Guo, Zhao-bing; Jiang, Wen-juan; Rui, Mao-ling; Zeng, Gang

    2016-01-15

    Potential pollution sources of atmospheric PM₂.₅ in Nanjing region were collected, and sulfur and carbon isotopic compositions were determined by EA-IRMS synchronously. The results showed that δ³⁴S and δ¹³C values ranged from 1.8‰-3.7‰ and -25.50‰- -23.57‰ in coal soot particles; 4.6‰-9.7‰ and -26.32‰- -23.57‰ in vehicle exhaust; 5.2‰-9.9‰ and -19.30‰- -30.42‰ in straw soot particles, respectively. Besides, the δ¹³C value of dust was -13.45‰. It can be observed that sulfur isotopic compositions in coal soot were lower, while the carbon isotopic composition in dust was higher. Comparing with δ³⁴S and δ¹³C values in domestic and foreign polluted sources, we found that sulfur and carbon isotopes in atmospheric PM₂.₅ in Nanjing region presented an obvious regional characteristics. Therefore, the source spectrum of sulfur and carbon isotopic compositions in Nanjing region might provide an insight into source apportionment of atmospheric PM₂.₅. PMID:27078936

  20. Ahead of his time: Jacob Lipman's 1930 estimate of atmospheric sulfur deposition for the conterminous United States

    USGS Publications Warehouse

    Landa, Edward R.; Shanley, James B.

    2015-01-01

    A 1936 New Jersey Agricultural Experiment Station Bulletin provided an early quantitative assessment of atmospheric deposition of sulfur for the United States that has been compared in this study with more recent assessments. In the early 20th century, anthropogenic sulfur additions from the atmosphere to the soil by the combustion of fossil fuels were viewed as part of the requisite nutrient supply of crops. Jacob G. Lipman, the founding editor of Soil Science, and his team at Rutgers University, made an inventory of such additions to soils of the conterminous United States during the economic depression of the 1930s as part of a federally funded project looking at nutrient balances in soils. Lipman's team gathered data compiled by the US Bureau of Mines on coal and other fuel consumption by state and calculated the corresponding amounts of sulfur emitted. Their work pioneered a method of assessment that became the norm in the 1970s to 1980s—when acid rain emerged as a national issue. Lipman's estimate of atmospheric sulfur deposition in the 1930 is in reasonable agreement with recent historic reconstructions.

  1. Atmospheric dry deposition of sulfur and nitrogen in the Athabasca Oil Sands Region, Alberta, Canada.

    PubMed

    Hsu, Yu-Mei; Bytnerowicz, Andrzej; Fenn, Mark E; Percy, Kevin E

    2016-10-15

    Due to the potential ecological effects on terrestrial and aquatic ecosystems from atmospheric deposition in the Athabasca Oil Sands Region (AOSR), Alberta, Canada, this study was implemented to estimate atmospheric nitrogen (N) and sulfur (S) inputs. Passive samplers were used to measure ambient concentrations of ammonia (NH3), nitrogen dioxide (NO2), nitric acid/nitrous acid (HNO3/HONO), and sulfur dioxide (SO2) in the AOSR. Concentrations of NO2 and SO2 in winter were higher than those in summer, while seasonal differences of NH3 and HNO3/HONO showed an opposite trend, with higher values in summer. Concentrations of NH3, NO2 and SO2 were high close to the emission sources (oil sands operations and urban areas). NH3 concentrations were also elevated in the southern portion of the domain indicating possible agricultural and urban emission sources to the southwest. HNO3, an oxidation endpoint, showed wider ranges of concentrations and a larger spatial extent. Concentrations of NH3, NO2, HNO3/HONO and SO2 from passive measurements and their monthly deposition velocities calculated by a multi-layer inference model (MLM) were used to calculate dry deposition of N and S. NH3 contributed the largest fraction of deposited N across the network, ranging between 0.70-1.25kgNha(-1)yr(-1), HNO3/HONO deposition ranged between 0.30-0.90kgNha(-1)yr(-1), and NO2 deposition between 0.03-0.70kgNha(-1)yr(-1). During the modeled period, average dry deposition of the inorganic gaseous N species ranged between 1.03 and 2.85kgNha(-1)yr(-1) and SO4-S deposition ranged between 0.26 and 2.04kgha(-1)yr(-1). Comparisons with co-measured ion exchange resin throughfall data (8.51kgSha(-1)yr(-1)) indicate that modeled dry deposition combined with measured wet deposition (1.37kgSha(-1)yr(-1)) underestimated S deposition. Gas phase NH3 (71%) and HNO3 plus NO2 (79%) dry deposition fluxes dominated the total deposition of NH4-N and NO3-N, respectively. PMID:27295600

  2. Missing SO2 oxidant in the coastal atmosphere? - observations from high-resolution measurements of OH and atmospheric sulfur compounds

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Adam, M.; Monahan, C.; O'Dowd, C.; Plane, J. M. C.; Bohn, B.; Rohrer, F.

    2014-11-01

    Diurnal and seasonal variations of gaseous sulfuric acid (H2SO4) and methane sulfonic acid (MSA) were measured in NE Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected-ion chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3 × 104 cm-3 at 5 min signal integration. The H2SO4 and MSA gas-phase concentrations were analyzed in conjunction with the condensational sink for both compounds derived from 3 nm to 10 μm (aerodynamic diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H2SO4 and 0.12 for MSA were assumed, leading to estimated atmospheric lifetimes on the order of 7 and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal, evidence was obtained for the presence of one or more unknown oxidants of SO2 in addition to OH. Depending on the nature of the oxidant(s), its ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO2 oxidant was additionally confirmed by direct measurements of SO2 in conjunction with calculated H2SO4 concentrations. The calculated H2SO4 concentrations were consistently lower than the measured concentrations by a factor of 4.7 ± 2.4 when considering the oxidation of SO2 by OH as the only source of H2SO4. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H2SO4 and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photolysis and photooxidation of biogenic iodine compounds. As to the identity of the atmospheric SO2 oxidant(s), we have been able to exclude ClO, BrO, IO, and OIO as possible candidates based on {ab initio} calculations

  3. Theoretical and modeling studies of the atmospheric chemistry of sulfur oxide and hydroxyl radical systems

    NASA Astrophysics Data System (ADS)

    El-Zanan, Hazem S.

    Models are the tools that integrate our understanding of the atmospheric processes. Box models are utilized frequently and used to simulate the fates and transformation of atmospheric pollutants. The results from models are usually used to produce one integrated system and further help the policy makers to develop control strategies. We have investigated the atmospheric chemistry of the SOx and HOx systems. The results of 15 laboratory experiments that involved the studies of the HO-SO2, reaction have been analyzed. Mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. Upon analyzing the data we have found that a very large amount of the observed SO2 oxidation (70.0 +/- 9.1%) can not be explained through the gas phase reaction of HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism, Version 2 (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. The results indicate that a mechanism(s) involving photochemical heterogeneous reactions could account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation alone. We have also investigated the distribution of the hydroxyl radical in different urban and rural areas. Photolysis of ozone and its reactions with nitrogen oxides and organic compounds, including both anthropogenic and biogenic volatile organic compounds (VOCs), control the mixing ratios of the hydroxyl radical (HO). Measurements of ozone, nitrogen oxides and volatile hydrocarbons from a deciduous forest in July 1999 and six sites located in the San Joaquin Valley obtained during the Central California Ozone Study (CCOS) measured in July 2000 and September 2000 were used to estimate the hydroxyl radical concentrations. Two methods were employed to determine the concentrations: (1) box model simulations and (2) steady state approximation of the species concentrations (Production-Loss Method). The

  4. Bimodal Distribution of Sulfuric Acid Aerosols in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Zhang, X.; Crisp, D.; Bardeen, C. G.; Yung, Y. L.

    2013-10-01

    Observations by the SPICAV/SOIR instruments aboard Venus Express have revealed that the upper haze of Venus, between 70 and 90 km, is variable on the order of days and that it is populated by two particle modes. In this work, we posit that the observed phenomena are caused by the transient mixing of the clouds and the haze, as well as another source of sulfuric acid aerosols in the upper haze that nucleate on meteoric dust. We test this hypothesis by simulating a column of the Venus atmosphere from 40 to 100 km above the surface using a model based upon the Community Aerosol and Radiation Model for Atmospheres and consider the effects of meteoric dust and polysulfur acting as condensation nuclei in the upper haze and upper cloud, respectively, as well as transient winds at the cloud tops caused by subsolar convection. Our aerosol number density results are consistent with Pioneer Venus data from Knollenberg and Hunten (1980), while our gas distribution results match the Magellan radio occultation data as analyzed by Kolodner and Steffes (1998) below 55 km. The size distribution of cloud particles shows two distinct modes in the upper clouds region and three distinct modes in the middle and lower clouds regions, qualitatively matching the observations of Pioneer Venus. The UH size distribution shows one distinct mode that is likely an upwelled cloud particle population with which an in situ meteoric dust condensation particle population has coagulated. The results of the transient wind simulations yield a variability timescale that is consistent with Venus Express observations, as well as a clear bimodal size distribution in the UH.

  5. Atmospheric sulfur hexafluoride in-situ measurements at the Shangdianzi regional background station in China.

    PubMed

    Yao, Bo; Zhou, Lingxi; Xia, Lingjun; Zhang, Gen; Guo, Lifeng; Liu, Zhao; Fang, Shuangxi

    2014-12-01

    We present in-situ measurements of atmospheric sulfur hexafluoride (SF6) conducted by an automated gas chromatograph-electron capture detector system and a gas chromatography/mass spectrometry system at a regional background site, Shangdianzi, in China, from June 2009 to May 2011, using the System for Observation of Greenhouse gases in Europe and Asia and Advanced Global Atmospheric Gases Experiment (AGAGE) techniques. The mean background and polluted mixing ratios for SF6 during the study period were 7.22 × 10⁻¹² (mol/mol, hereinafter) and 8.66 × 10⁻¹², respectively. The averaged SF6 background mixing ratios at Shangdianzi were consistent with those obtained at other AGAGE stations located at similar latitudes (Trinidad Head and Mace Head), but larger than AGAGE stations in the Southern Hemisphere (Cape Grim and Cape Matatula). SF6 background mixing ratios increased rapidly during our study period, with a positive growth rate at 0.30 × 10⁻¹² year⁻¹. The peak to peak amplitude of the seasonal cycle for SF6 background conditions was 0.07 × 10⁻¹², while the seasonal fluctuation of polluted conditions was 2.16 × 10⁻¹². During the study period, peak values of SF6 mixing ratios occurred in autumn when local surface horizontal winds originated from W/WSW/SW/SWS/S sectors, while lower levels of SF6 mixing ratios appeared as winds originated from N/NNE/NE/ENE/E sectors. PMID:25499493

  6. Origins of sulfur compounds in the atmosphere of a zone of high productivity (Gulf of Guinea)

    SciTech Connect

    Delmas, R.; Servant, J.

    1982-12-20

    Recent observations have suggested substantial emission of sulfur compounds by oceanic water which could explain the presence of SO/sub 2/ and SO/sup +//sub 4/ in the air above these waters. The emission is thought to increase with the productivity of the oceanic zones. This point is discussed in relation to the Gulf of Guinea, a zone of high productivity. During the first two campaigns between Dakar, Abidjan, and the Gulf of Guinea SO/sup +//sub 4/ concentrations were measured in the air. Between Abidjan and the Gulf of Guinea the atmospheric SO= /sub 4/ concentrations decreased from 800 to 400 ng m/sup -3/. During the third campaign, between Abidjan and the South Equatorial Current (latitude 1/sup 0/S), the H/sub 2/S and SO/sub 2/ concentrations were measured. The mean H/sub 2/S concentration was 20 ng m/sup -3/, and that of SO/sub 2/ varied between 120 and under 50 ng m/sup -3/. The origins of SO/sub 2/ and SO/sup +//sub 4/ in the air of this area are discussed through the daily variations of the H/sub 2/S content of the air and a contribution from the forested zones of West Africa.

  7. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector

    NASA Technical Reports Server (NTRS)

    Johnson, James E.; Bates, Timothy S.

    1993-01-01

    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  8. Sulfidation behavior of ZnFe2O4 roasted with pyrite: Sulfur inducing and sulfur-oxygen interface exchange mechanism

    NASA Astrophysics Data System (ADS)

    Min, Xiaobo; Zhou, Bosheng; Ke, Yong; Chai, Liyuan; Xue, Ke; Zhang, Chun; Zhao, Zongwen; Shen, Chen

    2016-05-01

    The sulfidation roasting behavior was analyzed in detail to reveal the reaction mechanism. Information about the sulfidation reaction, including phase transformation, ionic migration behavior and morphological change, were obtained by XRD, 57Fe Mossbauer spectroscopy, XPS and SEM analysis. The results showed that the sulfidation of zinc ferrite is a process of sulfur inducing and sulfur-oxygen interface exchange. This process can be divided into six stages: decomposition of FeS2, formation of the oxygen-deficient environment, migration of O2- induced by S2(g), formation of ZnFe2O4-δ, migration of Fe2+ accompanied by the precipitation of ZnO, and the sulfur-oxygen interface exchange reaction. The sulfidation products were zinc blende, wurtzite, magnetite and a fraction of zinc-bearing magnetite. These findings can provide theoretical support for controlling the process during which the recovery of Zn and Fe is achieved through the combined flotation-magnetic separation process.

  9. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    PubMed

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol. PMID:26000788

  10. Effect of atmospheric sulfur pollutants derived from acid precipitation on the benthic dynamics of lakes

    SciTech Connect

    Mitchell, M.J.

    1982-11-01

    Sulfuric acid is a major contributor to acid precipitation in the United States. The relationship of acid precipitation to the sulfur dynamics of three lakes in New York was studied. For South Lake, which has probably been acidified, the sulfur profile in the sediment corresponded to historical changes in anthropogenic sulfur inputs. In all three study lakes, the organic sulfur constituents, which generally have been ignored in limnological investigations, played a major role in sulfur dynamics. The transformations and fluxes of inorganic and organic sulfur differed among the lakes and reflected characteristic abiotic and biotic properties, including productivity parameters. The community structure and secondary production of the invertebrate benthos were ascertained and, for South Lake, were similar to other acidified lakes. The importance of benthic insects on sulfur dynamics was demonstrated. Further studies on sulfur in lakes will enhance the understanding of the role of these anthropogenic inputs on lake systems and permit a more accurate appraisal of the present and future impacts of acidic deposition on water quality. 10 references.

  11. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    NASA Technical Reports Server (NTRS)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  12. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic

    NASA Astrophysics Data System (ADS)

    Berner, Robert A.

    2005-07-01

    The results of a theoretical isotope mass balance model are presented for the time dependence of burial and weathering-plus-degassing fluxes within the combined long-term carbon and sulfur cycles. Averaged data for oceanic δ 13C and δ 34S were entered for every million years from 270 to 240 Ma (middle Permian to middle Triassic) to study general trends across the Permian-Triassic boundary. Results show a drop in the rate of global organic matter burial during the late Permian and a predominance of low values during the early-to-middle Triassic. This overall decrease with time is ascribed mainly to epochs of conversion of high biomass forests to low biomass herbaceous vegetation resulting in a decrease in the production of terrestrially derived organic debris. Additional contributions to lessened terrestrial carbon burial were increased aridity and a drop in sea level during the late Permian which led to smaller areas of low-lying coastal wetlands suitable for coal and peat deposition. Mirroring the drop in organic matter deposition was an increase in the burial of sedimentary pyrite, and a dramatic increase in the calculated global mean ratio of pyrite-S to organic-C. High S/C values resulted from an increase of deposition in marine euxinic basins combined with a decrease in the burial of low-pyrite associated terrestrial organic matter. The prediction of increased oceanic anoxia during the late Permian and early Triassic agrees with independent studies of the composition of sedimentary rocks. Weathering plus burial fluxes for organic carbon and pyrite sulfur were used to calculate changes in atmospheric oxygen. The striking result is a continuous drop in O 2 concentration from ˜30% to ˜13% over a twenty million year period. This drop was brought about mainly by a decrease in the burial of terrestrially derived organic matter. but with a possible contribution from the weathering of older organic matter on land. It must have exerted a considerable influence on

  13. Riverine Response of Sulfate to Declining Atmospheric Sulfur Deposition in Agricultural Watersheds.

    PubMed

    David, Mark B; Gentry, Lowell E; Mitchell, Corey A

    2016-07-01

    Sulfur received extensive study as an input to terrestrial ecosystems from acidic deposition during the 1980s. With declining S deposition inputs across the eastern United States, there have been many studies evaluating ecosystem response, with the exception of agricultural watersheds. We used long-term (22 and 18 yr) sulfate concentration data from two rivers and recent (6 yr) data from a third river to better understand cycling and transport of S in agricultural, tile-drained watersheds. Sulfate concentrations and yields steadily declined in the Embarras (from ∼10 to 6 mg S L) and Kaskaskia rivers (from 7 to 3.5 mg S L) during the sampling period, with an overall -23.1 and -12.8 kg S ha yr balance for the two watersheds. There was evidence of deep groundwater inputs of sulfate in the Salt Fork watershed, with a much smaller input to the Embarras and none to the Kaskaskia. Tiles in the watersheds had low sulfate concentrations (<10 mg S L), similar to the Kaskaskia River, unless the field had received some form of S fertilizer. A multiple regression model of runoff (cm) and S deposition explained much of the variation in Embarras River sulfate ( = 0.86 and 0.80 for concentrations and yields; = 46). Although atmospheric deposition was much less than outputs (grain harvest + stream export of sulfate), riverine transport of sulfate reflected the decline in inputs. Watershed S balances suggest a small annual depletion of soil organic S pools, and S fertilization will likely be needed at some future date to maintain crop yields. PMID:27380080

  14. Sulfurization behavior of cerium doped uranium oxides by CS{sub 2}

    SciTech Connect

    Sato, Nobuaki; Kato, Shintaro; Kirishima, Akira; Tochiyama, Osamu

    2007-07-01

    For the recovery of nuclear materials from the spent nuclear fuel, the sulfide process has been proposed and the voloxidation of spent fuel and selective sulfurization rare-earth elements has been proposed. In this paper, cerium was used as a stand-in of plutonium and sulfurization behavior of cerium doped uranium dioxide by CS{sub 2} was studied. UO{sub 2} was oxidized to U{sub 3}O{sub 8} in air, while the Ce doped UO{sub 2} solid solution was formed in the presence of CeO{sub 2} by the heat treatment in air. The effect of heating time, temperature and the ratio of uranium to cerium on the formation of solid solution was analyzed. The results were also compared with those of thermodynamic consideration. (authors)

  15. Implementing a market-based environmental policy: Utility behavior in the sulfur dioxide allowance trading program

    SciTech Connect

    Lober, D.J.; Bailey, M.

    1995-12-31

    This study examines the variables which influenced utility participation in the 1994 spot and forward auctions of the sulfur dioxide allowance trading program. The method is a survey of the attitudes of managers at 142 utilities. The results indicate that utility management uncertainty over the treatment of allowances by its public utility commission is an important determinant of a utility`s participation in the allowance auctions. The relative costs of the allowances compared to other sulfur dioxide control strategies also were correlated with bidding behavior. A number of other variables, such as public opinion in the utility`s region, demand growth, innovativeness of the utility, and participation in the 1993 auctions, were also determinants of utility participation in the allowance trading program.

  16. Sulfur, Chlorine, and Flourine Degassing and Atmospheric Loading by the 1783 - 1784 AD Laki (Skaftar Fires) Eruption in Iceland

    NASA Technical Reports Server (NTRS)

    Thordarson, T.; Self, S.; Hulsebosch, T.; Oskarsson, N.; McPhie, Jocelyn (Editor)

    1996-01-01

    The 1783-1784 Laki tholeiitic basalt fissure eruption in Iceland was one of the greatest atmospheric pollution events of the past 250 years, with widespread effects in the northern hemisphere. The degassing history and volatile budget of this event are determined by measurements of pre-eruption and residual contents of sulfur, chlorine, and fluorine in the products of all phases of the eruption. In fissure eruptions such as Laki, degassing occurs in two stages: by explosive activity or lava fountaining at the vents, and from the lava as it flows away from the vents. Using the measured sulfur concentrations in glass inclusions in phenocrysts and in groundmass glasses of quenched eruption products, we calculate that the total accumulative atmospheric mass loading of sulfur dioxide was 122 Mt over a period of 8 months. This volatile release is sufficient to have generated approximately 250 Mt of H2SO4 aerosols, an amount which agrees with an independent estimate of the Laki aerosol yield based on atmospheric turbidity measurements. Most of this volatile mass (approximately 60 wt.%) was released during the first 1.5 months of activity. The measured chlorine and fluorine concentrations in the samples indicate that the atmospheric loading of hydrochloric acid and hydrofluoric acid was approximately 7.0 and 15.0 Mt, respectively. Furthermore, approximately 75% of the volatile mass dissolved by the Laki magma was released at the vents and carried by eruption columns to altitudes between 6 and 13 km. The high degree of degassing at the vents is attributed to development of a separated two-phase flow in the upper magma conduit, and implies that high-discharge basaltic eruptions such as Laki are able to loft huge quantities of gas to altitudes where the resulting aerosols can reside for months, or even 1-2 years. The atmospheric volatile contribution due to subsequent degassing of the Laki lava flow is only 18 wt.% of the total dissolved in the magma, and these emissions were

  17. In situ total-electron-yield sulfur K-edge XAFS measurements during exposure of copper to an SO 2-containing humid atmosphere

    NASA Astrophysics Data System (ADS)

    Song, Inho; Rickett, Brett; Janavicius, Paul; Payer, Joe H.; Antonio, Mark R.

    1995-02-01

    A total-electron-yield (TEY) detector was designed and constructed for in situ X-ray absorption fine structure (XAFS) measurements of the sulfur-containing species formed during exposure of copper to a humid atmosphere containing SO 2. Using the detector, gas phase XAFS spectra were also collected for both dry and humid SO 2 atmospheres. This work presents the experimental technique and examples of the sulfur K-edge spectra collected during the study.

  18. Relation of long- and short-term atmospheric sulfur concentrations to sulfate deposition in New York State

    USGS Publications Warehouse

    Barnes, C.R.

    1987-01-01

    Records from 1965-80 indicate an annual decrease of 1.9% in sulfur dioxide emissions upwind of New York, an annual decrease of 1.5% in atmospheric particulate sulfate concentration in New York, and an annual decrease of 2.0% in sulfate-deposition rate in New York. Sulfate-deposition rates in bulk sampling in New York during 1965-80 were approximately 40% of the average sulfur-emission rate for the Northeast. Sulfate-deposition rates in bulk and wetfall collectors were nearly equal and were five times greater than in the dryfall collector. Scavenging ratios for sulfate averaged 8.9 ?? 105; those for sulfate plus sulfur dioxide averaged 4.6 ?? 105. Sulfate concentrations in wet deposition averaged more than twice those estimated from published regional-scale washout equations, whereas those in dry deposition averaged only 22% of those computed from deposition velocities of 0.1 cm/s for sulfate and 1.0 cm/s for sulfur dioxide. Discrepancies in the dryfalls are attributed to inefficiency of dryfall-collection equipment. -from Author

  19. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in a mega-city in central China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqian; Bao, Huiming; Gan, Yiqun; Zhou, Aiguo; Liu, Yunde

    2013-12-01

    Sulfate aerosol is an important atmosphere constituent that can be formed secondarily through the oxidation of sulfur gases. Atmospheric sulfur oxidation can take different pathways depending on meteorological conditions, which affects sulfate aerosol size and composition and therefore local or global climate. The magnitude of 17O enrichment (Δ17O) in secondary atmospheric sulfate (SAS) is a tracer for the apportionment of different sulfur oxidation pathways. Atmospheric chemistry-transport models predict a low 17O enrichment (Δ17O < 1‰) for SAS in mid-latitude continental sites. However, there are few long-term site observations to test the prediction, and data from interior metropolitan sites are entirely absent. We report here multiple oxygen and sulfur isotope compositions (Δ17O, δ18O, and δ34S) of SAS collected over a 950-day period in the city of Wuhan, central China, and to compare to data from a similar sampling campaign in the city of Baton Rouge, LA, U.S.A. The isotope compositions of bulk atmospheric sulfate closely reflect those of SAS in Wuhan, with the Δ17O ranging from 0.14‰ to 1.02‰, the δ18O from 8.0‰ to 16.1‰, and the δ34S from 2.1‰ to 7.3‰. The average Δ17O value at 0.53‰-0.59‰ is consistent with model prediction for continental interior, mid-latitude sites. The Asian monsoon-influenced meteorological condition in Wuhan appears to produce a weak but discernible seasonal pattern for Δ17O and δ18O of the SAS. The average rainwater pH value is higher in Wuhan than in Baton Rouge (5.47 versus 4.78) while the two cities have a statistically identical average SAS Δ17O value. We suggest that the higher pH does result in a higher fraction of SAS generated by aqueous O3 oxidation, but the resulted higher Δ17O value for SAS is diluted by the 17O-normal SAS generated from an enhanced transition-metal-catalyzed O2 oxidation pathway. The enhancement is corroborated with the much higher content of atmospheric particulate matter

  20. Biomonitoring of Sulfur-Containing Pollutants in an Urban Atmosphere by FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Khizhnyak, S. D.; Notov, A. A.; Pakhomov, P. M.

    2014-09-01

    The relative content of sulfur-containing compounds in samples of epiphytic lichens Hypogymnia physodes collected at recreation zones of Tver city with different levels of air pollution was determined using FTIR spectroscopy. The sulfur dioxide (SO2) concentration was also measured at the same recreation zones using an IR gas analyzer. The measurements were compared by two methods. Maps of SO2 air pollution in Tver city were constructed.

  1. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec).

    PubMed

    Thomassot, Emilie; O'Neil, Jonathan; Francis, Don; Cartigny, Pierre; Wing, Boswell A

    2015-01-20

    Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4-2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ(33)S, δ(34)S, and δ(36)S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ(33)S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in (33)S/(32)S, (34)S/(32)S, and (36)S/(32)S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth's formation, a common mechanism for S-MIF production was established in the atmosphere. PMID:25561552

  2. Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec)

    PubMed Central

    Thomassot, Emilie; O’Neil, Jonathan; Francis, Don; Cartigny, Pierre; Wing, Boswell A.

    2015-01-01

    Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4–2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ33S, δ34S, and δ36S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ33S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in 33S/32S, 34S/32S, and 36S/32S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth’s formation, a common mechanism for S-MIF production was established in the atmosphere. PMID:25561552

  3. Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China.

    PubMed

    Qiao, Xue; Xiao, Weiyang; Jaffe, Daniel; Kota, Sri Harsha; Ying, Qi; Tang, Ya

    2015-04-01

    In the last two decades, remarkable ecological changes have been observed in Jiuzhaigou National Nature Reserve (JNNR). Some of these changes might be related to excessive deposition of sulfur (S) and nitrogen (N), but the relationship has not been quantified due to lack of monitoring data, particularly S and N deposition data. In this study, we investigated the concentrations, fluxes, and sources of S and N wet deposition in JNNR from April 2010 to May 2011. The results show that SO4(2-), NO3-, and NH4+ concentrations in the wet deposition were 39.4-170.5, 6.2-34.8, and 0.2-61.2 μeq L(-1), with annual Volume-Weighted Mean (VWM) concentrations of 70.5, 12.7, and 13.4 μeq L(-1), respectively. Annual wet deposition fluxes of SO4(2-), NO3-, and NH4+ were 8.06, 1.29, and 1.39 kg S(N)ha(-1), respectively, accounting for about 90% of annual atmospheric inputs of these species at the monitoring site. The results of Positive Matrix Factorization (PMF) analysis show that fossil fuel combustion, agriculture, and aged sea salt contributed to 99% and 83% of annual wet deposition fluxes of SO4(2-) and NO3-, respectively. Agriculture alone contributed to 89% of annual wet deposition flux of NH4+. Although wet deposition in JNNR was polluted by anthropogenic acids, the acidity was largely neutralized by the Ca2+ from crust and 81% of wet deposition samples had a pH higher than 6.00. However, acid rain mainly caused by SO4(2-) continued to occur in the wet season, when ambient alkaline dust concentration was lower. Since anthropogenic emissions have elevated S and N deposition and caused acid rain in JNNR, further studies are needed to better quantify the regional sources and ecological effects of S and N deposition for JNNR. PMID:25525712

  4. Estimating Sulfur hexafluoride (SF6) emissions in China using atmospheric observations and inverse modeling

    NASA Astrophysics Data System (ADS)

    Fang, X.; Thompson, R.; Saito, T.; Yokouchi, Y.; Li, S.; Kim, J.; Kim, K.; Park, S.; Graziosi, F.; Stohl, A.

    2013-12-01

    With a global warming potential of around 22800 over a 100-year time horizon, sulfur hexafluoride (SF6) is one of the greenhouse gases regulated under the Kyoto Protocol. Global SF6 emissions have been increasing since circa the year 2000. The reason for this increase has been inferred to be due to rapidly increasing emissions in developing countries that are not obligated to report their annual emissions to the United Nations Framework Convention on Climate Change, notably China. In this study, SF6 emissions during the period 2006-2012 for China and other East Asian countries were determined using in-situ atmospheric measurements and inverse modeling. We performed various inversion sensitivity tests, which show the largest uncertainties in the a posteriori Chinese emissions are associated with the a priori emissions used and their uncertainty, the station network, as well as the meteorological input data. The overall relative uncertainty of the a posteriori emissions in China is estimated to be 17% in 2008. Based on sensitivity tests, we employed the optimal parameters in our inversion setup and performed yearly inversions for the study period. Inversion results show that the total a posteriori SF6 emissions from China increased from 1420 × 245 Mg/yr in 2006 to 2741 × 472 Mg/yr in 2009 and stabilized thereafter. The rapid increase in emissions reflected a fast increase in SF6 consumption in China, a result also found in bottom-up estimates. The a posteriori emission map shows high emissions concentrated in populated parts of China. During the period 2006-2012, emissions in northwestern and northern China peaked around the year 2009, while emissions in eastern, central and northeastern China grew gradually during almost the whole period. Fluctuating emissions are observed for southwestern China. These regional differences should be caused by changes of provincial SF6 usage and by shifts of usage among different sectors. Fig. 1. Footprint emission sensitivity

  5. 40 CFR Appendix A to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec... at the sample manifold, with the excess flow vented at atmospheric pressure. The absorbers are then... Anomalous Behavior in Tetrachloromercurate (II). Submitted for publication in Atmospheric Environment,...

  6. Tinkering With AGCMs To Investigate Atmospheric Behavior

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2014-12-01

    My experience teaching a course in global climate modeling has proven that students (and instructors) with wide-ranging backgrounds in earth-science learn effectively about the complexity of climate by tinker with model components. As an example, I will present a series of experiments in an AGCM with highly simplified geometries for ocean and land to test the response of the atmosphere to variations in basic parameters. The figure below shows an example of how the zonal wind changes with surface roughness and orography. The pinnacle of experiments explored in my course was the outcome of a homework assignment where students reduced the cloud droplet radius by 40% over ocean, and the results surprised students and instructor alike.

  7. Hubble space telescope far-ultraviolet observations of Io: Determining atmospheric abundances, mapping the sulfur dioxide distribution, and correlating the molecular and atomic atmosphere

    NASA Astrophysics Data System (ADS)

    Feaga, Lori Michelle

    2006-05-01

    Io's molecular and atomic atmosphere has been studied via far-ultraviolet spectroscopy obtained with the Hubble Space Telescope . Examination of an extensive data set reveals a sunlit SO 2 atmosphere which is temporally stable on a global scale, with only small local changes. An anti-/sub-Jovian asymmetry in the SO 2 distribution persists in all of the observations. The atmosphere is densest in the anti-Jovian equatorial regions, with a maximum column density of 5.0 × 10^16 cm -2 at 140° longitude. The SO 2 atmosphere also has greater latitudinal extent on the anti-Jovian hemisphere as compared to the sub-Jovian. The atmospheric distribution is best correlated with the location of known volcanic plumes. Theoretical sublimation atmosphere models cannot reproduce the asymmetry alone. Atomic S, O and Cl are also detected. Their abundances are derived and compared to the SO 2 . Sulfur is measured at a relative abundance of 9 × 10^-3 compared to SO 2 , oxygen at 0.05, and chlorine at 3-8.5 × 10^-4 .

  8. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Reheis, Marith C.

    2003-07-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (δ34S and δ18O) are 5.8 ± 1.4 (CDT) and 11.2 ± 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (Δ17O), with an average value of 1.0 ± 0.6‰. Except for a weak positive correlation between δ18O and Δ17O values (r2 ≈ 0.4), no correlation exists for δ18O versus δ34S, Δ17O versus δ34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive Δ17O values (up to 4.23‰) are found in samples from sites in the vicinity of large cities or major highways, and near-zero Δ17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ˜4.8‰ lower for δ18O, ˜2.1‰ higher for δ34S, and ˜0.3‰ lower for Δ17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  9. Multiple oxygen and sulfur isotopic analyses on water-soluble sulfate in bulk atmospheric deposition from the southwestern United States

    USGS Publications Warehouse

    Bao, H.; Reheis, M.C.

    2003-01-01

    Sulfate is a major component of bulk atmospheric deposition (including dust, aerosol, fog, and rain). We analyzed sulfur and oxygen isotopic compositions of water-soluble sulfate from 40 sites where year-round dust traps collect bulk atmospheric deposition in the southwestern United States. Average sulfur and oxygen isotopic compositions (??34S and ??18O) are 5.8 ?? 1.4 (CDT) and 11.2 ?? 1.9 (SMOW) (n = 47), respectively. Samples have an oxygen 17 anomaly (?? 17O), with an average value of 1.0 ?? 0.6???. Except for a weak positive correlation between ??18O and ??17O values (r2 ??? 0.4), no correlation exists for ??18O versus ??34S, ?? 17O versus ??34S, or any of the three isotopic compositions versus elevation of the sample site. Exceptional positive ?? 17O values (up to 4.23???) are found in samples from sites in the vicinity of large cities or major highways, and near-zero ?? 17O values are found in samples close to dry lakes. Comparison of isotopic values of dust trap sulfate and desert varnish sulfate from the region reveals that varnish sulfate has average isotopic values that are ???4.8??? lower for ??18O, ???2.1??? higher for ??34S , and ???0.3??? lower for ?? 17O than those of the present-day bulk deposition sulfate. Although other factors could cause the disparity, this observation suggests a possibility that varnish sulfate may have recorded a long-term atmospheric sulfate deposition during the Holocene or Pleistocene, as well as the differences between sulfur and oxygen isotopic compositions of the preindustrial bulk deposition sulfate and those of the industrial era.

  10. Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid.

    PubMed

    Schmeide, K; Sachs, S; Bernhard, G

    2012-03-01

    The role of sulfur-containing functional groups in humic acids for the Np(V) reduction in aqueous solution has been studied with the objective to specify individual processes contributing to the overall redox activity of humic substances. For this, humic acid model substances type M1-S containing different amounts of sulfur (1.9, 3.9, 6.9 wt.%) were applied. The sulfur functionalities in these humic acids are dominated by reduced-sulfur species, such as thiols, dialkylsulfides and/or disulfides. The Np(V) reduction behavior of these humic acids has been studied in comparison to that of the sulfur-free humic acid type M1 at pH 5.0, 7.0 and 9.0 under anaerobic conditions by means of batch experiments. For Np redox speciation in solution, solvent extraction and ultrafiltration were applied. In addition, redox potentials of the sample solutions were monitored. At pH 5.0, both rate and extent of Np(V) to Np(IV) reduction were found to increase with increasing sulfur content of the humic acids. At pH 7.0 and 9.0, sulfur functional groups had only a slight influence on the reduction behavior of humic acid toward Np(V). Thus, in addition to quinoid moieties and non-quinoid phenolic OH groups, generally acknowledged as main redox-active sites in humic substances, sulfur functional groups have been identified as further redox-active moieties of humic substances being active especially in the slightly acidic pH range as shown for Np(V). Due to the low sulfur content of up to 2 wt.% in natural humic substances, their contribution to the total reducing capacity is smaller than that of the other redox-active functional groups. PMID:22285088

  11. LOREP 1993 summary report: Airborne measurements of meteorological variables, atmospheric particles and sulfur hexafluoride. Technical memo

    SciTech Connect

    Wilkison, S.W.; Wellman, D.L.

    1996-03-01

    Meteorological variables and sulfur hexafluoride (SF6) were measured using the NOAA King Air research aircraft during February and March, 1993, over the Sierra Nevada Range of northern California as part of the Lake Oroville Runoff Enhancement Prototype Program (LOREP 1993). Race track pattern flights were made from approximately Sierraville, CA, to Gasner, CA. Airborne sampling was used to locate a plume containing sulfur hexafluoride as a tracer and propane as a seeding agent. The aircraft also carried an optical imaging probe. This report introduces the program in general, discusses the objectives of LOREP 1993, the instrumentation used and the data obtained by the NOAA airborne operation.

  12. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere.

    PubMed

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆(33)S and ∆(36)S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ(34)S values at ∼+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆(33)S between -1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ(34)S peak at +9‰ is associated with non-(33)S-anomalous barites displaying negative ∆(36)S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere. PMID:27330111

  13. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere

    NASA Astrophysics Data System (ADS)

    Muller, Élodie; Philippot, Pascal; Rollion-Bard, Claire; Cartigny, Pierre

    2016-07-01

    Sulfur isotopic anomalies (∆33S and ∆36S) have been used to trace the redox evolution of the Precambrian atmosphere and to document the photochemistry and transport properties of the modern atmosphere. Recently, it was shown that modern sulfate aerosols formed in an oxidizing atmosphere can display important isotopic anomalies, thus questioning the significance of Archean sulfate deposits. Here, we performed in situ 4S-isotope measurements of 3.2- and 3.5-billion-year (Ga)-old sulfates. This in situ approach allows us to investigate the diversity of Archean sulfate texture and mineralogy with unprecedented resolution and from then on to deconvolute the ocean and atmosphere Archean sulfur cycle. A striking feature of our data is a bimodal distribution of δ34S values at ˜+5‰ and +9‰, which is matched by modern sulfate aerosols. The peak at +5‰ represents barite of different ages and host-rock lithology showing a wide range of ∆33S between ‑1.77‰ and +0.24‰. These barites are interpreted as primary volcanic emissions formed by SO2 photochemical processes with variable contribution of carbonyl sulfide (OCS) shielding in an evolving volcanic plume. The δ34S peak at +9‰ is associated with non–33S-anomalous barites displaying negative ∆36S values, which are best interpreted as volcanic sulfate aerosols formed from OCS photolysis. Our findings confirm the occurrence of a volcanic photochemical pathway specific to the early reduced atmosphere but identify variability within the Archean sulfate isotope record that suggests persistence throughout Earth history of photochemical reactions characteristic of the present-day stratosphere.

  14. Atmospheric Sulfur Dioxide in the United States: Can the Standards be Justified or Afforded?

    ERIC Educational Resources Information Center

    Megonnell, William H.

    1975-01-01

    Recent reviews have concluded that there is no basis for changing the standards set by the EPA in 1971, even though the data base was insufficient then for a quantifiable, scientific definition of clean air. Examination of data shows that the United States does not have a sulfur dioxide problem. (Author/BT)

  15. Regional source identification of atmospheric aerosols in Beijing based on sulfur isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lianfang, Wei; Pingqing, Fu; Xiaokun, Han; Qingjun, Guo; Yele, Sun; Zifa, Wang

    2016-04-01

    65 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months representing the four seasons between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate aerosols were analyzed systematically. The "fingerprint" characteristics of the stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 and potential source contribution function (PSCF), were employed for identifying potential regional sources. Results obviously exhibited the distinctive seasonality for various aerosol speciation associated with PM2.5 in Beijing with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species. Elevated chloride associated with higher concentration of organics were found in autumn and winter, due to enhanced coal combustion emissions. The δ34S values of Beijing aerosol samples ranged from 2.94‰ to 10.2‰ with an average value of 6.18±1.87‰ indicating that the major sulfur source is direct fossil fuel burning-related emissions. Owning to a temperature-dependent fractionation and elevated biogenic sources of isotopically light sulfur in summer, the δ34S values had significant seasonal variations with a winter maximum ( 8.6‰)and a summer minimum ( 5.0‰). The results of trajectory clustering and the PSCF method demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios ( 4.83‰) were associated with air masses from the south, southeast or east, whereas lower sulfate concentrations with higher δ34S values ( 6.69‰) when the air masses were mainly from north or northwest. These results suggested two main different kinds of regional coal combustion sources contributed to the pollution in Beijing.

  16. Sulfuric acid vapor in the atmosphere of Venus as observed by the Venus Express Radio Science experiment VeRa

    NASA Astrophysics Data System (ADS)

    Oschlisniok, Janusz; Pätzold, Martin; Häusler, Bernd; Tellmann, Silvia; Bird, Mike; Andert, Tom

    2016-04-01

    The cloud deck within Venus' atmosphere, which covers the entire planet between approx. 50 and 70 km altitude, consists mostly of liquid and gaseous sulfuric acid. The gaseous part increases strongly just below the main clouds and builds an approx. 15 km thick haze layer of H2SO4. This region is responsible for a strong absorption of radio waves as seen in VeRa radio science observations. The amount of the absorption, which is used to derive the abundance of gaseous sulfuric acid, depends on the signal frequency. VeRa probed the atmosphere of Venus between 2006 and 2015 with radio signals at 13 cm (S-band) and 3.6 cm (X-band) wavelengths. We present H2SO4 profiles derived from S-band and X-band absorption during the first occultation season in 2006. The comparison of the H2SO4 profiles derived from both frequency bands provides a reliable picture of the H2SO4 abundance. Distinct differences in the S- and X-band profiles may give a clue to increased SO2 abundances. The derived VeRa results shall be compared with results provided by other experiments onboard Venus Express as well as with previous missions.

  17. Reactions of SIV species with organic compounds: formation mechanisms of organo-sulfur derivatives in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Passananti, Monica; Shang, Jing; Dupart, Yoan; Perrier, Sébastien; George, Christian

    2015-04-01

    Secondary organic aerosol (SOA) have an important impact on climate, air quality and human health. However the chemical reactions involved in their formation and growth are not fully understood or well-constrained in climate models. It is well known that inorganic sulfur (mainly in oxidation states (+IV) and (+VI)) plays a key role in aerosol formation, for instance sulfuric acid is known to be a good nucleating gas. In addition, acid-catalyzed heterogeneous reactions of organic compounds has shown to produce new particles, with a clear enhancement in the presence of ozone (Iinuma 2013). Organosulfates have been detected in tropospheric particles and aqueous phases, which suggests they are products of secondary organic aerosol formation process (Tolocka 2012). Originally, the production of organosulfates was explained by the esterification reaction of alcohols, but this reaction in atmosphere is kinetically negligible. Other formation pathways have been suggested such as hydrolysis of peroxides and reaction of organic matter with sulfite and sulfate radical anions (SO3-, SO4-) (Nozière 2010), but it remains unclear if these can completely explain atmospheric organo-sulfur aerosol loading. To better understand the formation of organo-sulfur compounds, we started to investigate the reactivity of SIV species (SO2 and SO32-) with respect to specific functional groups (organic acids and double bonds) on atmospherically relevant carboxylic acids and alkenes. The experiments were carried out in the homogeneous aqueous phase and at the solid-gas interface. A custom built coated-wall flow tube reactor was developed to control relativity humidity, SO2 concentration, temperature and gas flow rate. Homogeneous and heterogeneous reaction kinetics were measured and resulting products were identified using liquid chromatography coupled with an orbitrap mass spectrometer (LC-HR-MS). The experiments were performed with and without the presence of ozone in order to evaluate any

  18. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  19. The Sulfur Cycle

    ERIC Educational Resources Information Center

    Kellogg, W. W.; And Others

    1972-01-01

    A model estimating the contributions of sulfur compounds by natural and human activities, and the rate of removal of sulfur from the atmosphere, is based on a review of the existing literature. Areas requiring additional research are identified. (AL)

  20. Fusion and Thermal Degradation Behavior of Symmetric Sulfur-Containing Quaternary Ammonium Bromides.

    PubMed

    Huynh, Thai L Y; Poiroux, Kaitlyn; O'Brien, Richard A; West, Kevin N; Davis, James H; West, Christy Wheeler

    2016-02-25

    Quaternary ammonium salts are widely used in consumer products and industrial processes, where their instability at elevated temperatures limits their range of applications. In this work, the thermal behavior of a new class of quaternary ammonium salts was investigated using differential scanning calorimetry. These salts contain a sulfur atom in each chain at the fourth position from the central nitrogen and are thus termed thiaquats. The temperatures at which these salts melt and thermally degrade were determined, and enthalpies and entropies of fusion were evaluated. Their melting points increase with chain lengths, in contrast to the behavior of traditional quaternary ammonium salts. Furthermore, they exhibit enthalpies and entropies of fusion significantly lower than corresponding tetraalkyl analogues. These trends provide physical insight into the molecular-level behavior of these salts, suggesting that they do not fully dissociate upon melting. The thiaquats also exhibit thermal stability to markedly higher temperatures than traditional quaternary ammonium bromides, a phenomenon that can be explained in by strong pairing between the quaternary cation and bromide anion, which inhibits possible decomposition mechanisms. This enhanced thermal stability may enable applications of these salts in processes where traditional salts are not viable, such as phase-transfer-catalyzed systems performed at elevated temperatures. PMID:26849572

  1. Melting Behavior of the Iron-Sulfur System and Chemical Convection in Iron-rich Planetary Cores

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, B.

    2009-03-01

    We present experimental data on the high-pressure melting behavior of the Fe-S system from a synchrotron x-ray radiography study using the large volume press, with implications for the role of chemical convection in sulfur-bearing planetary cores.

  2. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-07-01

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N2 HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  3. Dynamics behavior of homogeneous dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Zhang Yan; Gu Biao; Wang Wenchun; Wang Dezhen; Peng Xuwen

    2009-07-15

    An experimental study on the dynamics behavior of homogeneous dielectric barrier discharge (HDBD) at atmospheric pressure is described in this paper. Two kinds of discharge mode, glow and Townsend discharge modes, can be easily identified according to the differential conductivity of current-voltage relationship in the ascent stage of discharge current for the atmospheric HDBD. A (three-dimensional) 3D phase space made by discharge current, gas gap voltage, and charge density of dielectric-plate surface was utilized in the study. By projecting the discharge evolution trajectory in the 3D space, the 3D trajectory of multiple current peaks discharge in atmospheric helium shows a limited cycle with convolutions and undergoes a series of bifurcation process; however, the 3D trajectory of atmospheric N{sub 2} HDBD is a limited cycle without any convolution and bifurcation process. In addition, the first ionization coefficient of working gas plays a key role to determine the discharge mode of atmospheric HDBD, the transition of discharge mode and the dynamics stability of atmospheric HDBD.

  4. Holocene Concentrations of Methane in the Atmosphere are in Part Proportional to Concentrations of Sulfur Dioxide and Inversely Proportional to the Oxidizing Capacity of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2008-12-01

    The atmosphere cleans itself by oxidizing pollutants. The primary oxidant is the hydroxyl radical (OH) formed by photodissociation of ozone in the near ultra-violet. Ozone and OH are in limited supply. Sulfur dioxide (SO2) absorbs near ultraviolet light limiting production of OH and reacts immediately with any available OH, forming sulfuric acid. Methane reacts more slowly with OH and will typically not be oxidized until there is little SO2. Thus a high concentration of methane indicates low oxidizing capacity. The rate at which SO2 is injected into the atmosphere controls oxidizing capacity and climate change in four ways: 1. Moderate rate: Large volcanic eruptions (VEI >=6) lower global temperatures for a few years when they are separated by years to decades so the oxidizing capacity of the atmosphere can fully recover. In 1991, Pinatubo volcano in the Philippines erupted 20 Mt SO2 and 491 Mt H2O, the largest volcanic eruption since 1912. The SO2 was oxidized primarily by OH to form a 99% pure aerosol of sulfuric acid and water at an elevation of 20-23 km. This aerosol reflected sunlight, lowering the world's temperature on average 0.4°C for three years. Ozone levels were reduced by 10%. Methane increased by 15 ppb for a year. The e-folding time for SO2 was 35 days. 2. High rate: When large eruptions occur once to several times per year, there is insufficient oxidizing capacity leading to increases in methane and other greenhouse gases and global warming. There were 15 times in the Holocene when large volcanoes erupted on average at least every year for 7 to 21 years. Man is now putting as much SO2 from burning fossil fuels into the atmosphere every year as one large volcano, causing current global warming. The two previous times were from 818-838 AD, the onset of the Medieval Warming Period, and from 180-143 BC, the onset of the Roman Warm Period. 3. Low rate: When there are no large eruptions for decades, the oxidizing capacity can catch up, cleaning the

  5. Kinetics studies of aqueous phase reactions of Cl atoms and Cl2(-) radicals with organic sulfur compounds of atmospheric interest.

    PubMed

    Zhu, Lei; Nicovich, J Michael; Wine, Paul H

    2005-05-01

    A laser flash photolysis-long path UV-visible absorption technique has been employed to investigate the kinetics of aqueous phase reactions of chlorine atoms (Cl) and dichloride radicals (Cl2(-)) with four organic sulfur compounds of atmospheric interest, dimethyl sulfoxide (DMSO; CH3S(O)CH3), dimethyl sulfone (DMSO2; CH3(O)S(O)CH3), methanesulfinate (MSI; CH3S(O)O-), and methanesulfonate (MS; CH3(O)S(O)O-). Measured rate coefficients at T = 295 +/- 1 K (in units of M(-1) s(-1)) are as follows: Cl + DMSO, (6.3 +/- 0.6) x 10(9); Cl2(-) + DMSO, (1.6 +/- 0.8) x 10(7); Cl + DMSO2, (8.2 +/- 1.6) x 10(5); Cl2(-) + DMSO2, (8.2 +/- 5.5) x 10(3); Cl2(-) + MSI, (8.0 +/- 1.0) x 10(8); Cl + MS, (4.9 +/- 0.6) x 10(5); Cl2(-) + MS, (3.9 +/- 0.7) x 10(3). Reported uncertainties are estimates of accuracy at the 95% confidence level and the rate coefficients for MSI and MS reactions with Cl2(-) are corrected to the zero ionic strength limit. The absorption spectrum of the DMSO-Cl adduct is reported; peak absorbance is observed at 390 nm and the peak extinction coefficient is found to be 5760 M(-1) cm(-1) with a 2sigma uncertainty of +/-30%. Some implications of the new kinetics results for understanding the atmospheric sulfur cycle are discussed. PMID:16833708

  6. Melting behavior of the iron-sulfur system and chemical convection in iron-rich planetary cores

    SciTech Connect

    Li, J.; Chen, B.

    2009-03-26

    We present experimental data on the high-pressure melting behavior of the Fe-S system from a synchrotron x-ray radiography study using the large volume press, with implications for the role of chemical convection in sulfur-bearing planetary cores. At present, Earth, Mercury and Ganymede are the only three solid bodies in the Solar System that possess intrinsic global magnetic fields. Dynamo simulation reveal that chemical buoyancy force associated with the formation of a solid inner core is critical for sustaining the Earth's magnetic field. Fluid motions in Mercury and Ganymede may be partially driven by chemical buoyancy force as well. The style of chemical convection and its influence on the thermal and chemical state and evolution of iron-rich cores are determined in part by the melting behavior of potential core-forming materials. Sulfur is widely accepted as a candidate light element in iron-rich planetary cores. In order to understand the role of chemical convection in sulfur-bearing cores, we studied the high-pressure melting behavior of Fe-S mixtures containing 9 wt% sulfur using the synchrotron x-ray radiographic method in a large volume press.

  7. Retention behavior of alkylated polycyclic aromatic sulfur heterocycles on immobilized ionic liquid stationary phases.

    PubMed

    Antle, Patrick; Zeigler, Christian; Robbat, Albert

    2014-09-26

    Polycyclic aromatic sulfur heterocycles (PASH) are prevalent components of fossil fuel-based pollutants, and their accurate analysis is of critical importance in risk assessment and hazardous waste site remediation. PASH, however, have a wide range of volatilities and polarities and, as such, often coelute with one another and other sample components on the non-polar gas chromatography (GC) columns commonly used in their analysis. Immobilized ionic liquid (IL)-based stationary phases have been shown to provide better separation of polar compounds than non-polar columns, while withstanding higher temperatures than typical polar columns. In this way, they offer the opportunity of improved performance in the analysis of PASH in complex environmental samples and as the "more polar" column in GC×GC/MS analyses. In this study, the retention behavior of 119 PASH on four commercially-available IL stationary phases is reported and compared to behavior on three polydimethylsiloxane-based columns of varying polarities (DB-5, DB-17, and DB-200). Additionally, the utility of IL columns in GC×GC analyses of PASH-containing coal tar samples is examined. PMID:25155062

  8. Microwave Remote Sensing of the Temperature and Distribution of Sulfur Compounds in the Lower Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Kolodner, Marc A.; Butler, Bryan J.; Suleiman, Shady H.; Steffes, Paul G.

    2002-08-01

    A multi-wavelength radio frequency observation of Venus was performed on April 5, 1996, with the Very Large Array to investigate potential variations in the vertical and horizontal distribution of temperature and the sulfur compounds sulfur dioxide (SO 2) and sulfuric acid vapor (H 2SO 4(g)) in the atmosphere of the planet. Brightness temperature maps were produced which feature significantly darkened polar regions compared to the brighter low-latitude regions at both observed frequencies. This is the first time such polar features have been seen unambiguously in radio wavelength observations of Venus. The limb-darkening displayed in the maps helps to constrain the vertical profile of H 2SO 4(g), temperature, and to some degree SO 2. The maps were interpreted by applying a retrieval algorithm to produce vertical profiles of temperature and abundance of H 2SO 4(g) given an assumed sub-cloud abundance of SO 2. The results indicate a substantially higher abundance of H 2SO 4(g) at high latitudes (above 45°) than in the low-latitude regions. The retrieved temperature profiles are up to 25 K warmer than the profile obtained by the Pioneer Venus sounder probe at altitudes below 40 km (depending on location and assumed SO 2 abundance). For 150 ppm of SO 2, it is more consistent with the temperature profile obtained by Mariner 5, extrapolated to the surface via a dry adiabat. The profiles obtained for H 2SO 4(g) at high latitudes are consistent with those derived from the Magellan radio occultation experiments, peaking at around 8 ppm at an altitude of 46 km and decaying rapidly away from that altitude. At low latitudes, no significant H 2SO 4(g) is observed, regardless of the assumed SO 2 content. This is well below that measured by Mariner 10 (Lipa and Tyler 1979, Icarus39, 192-208), which peaked at ˜14 ppm near 47 km. Our results favor ≤100 ppm of SO 2 at low latitudes and ≤50 ppm in polar regions. The low-latitude value is statistically consistent with the

  9. Stability of chromium (III) sulfate in atmospheres containing oxygen and sulfur

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, B. D.; Nelson, H. G.

    1978-01-01

    The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressure were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).

  10. Spectral properties of condensed phases of disulfur monoxide, polysulfur oxide, and irradiated sulfur. [in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce; Graham, Francis

    1989-01-01

    The spectral reflectances of S2O, as well as the polysulfur oxide (PSO) condensate dissociation products of SO2 and condensates of elemental sulfur irradiated with UV light and X-rays, have been ascertained in the 200-1700 nm range with a view to the relevance of these compounds to the interpretation of planetary data. While S2O is a dark red solid, PSO is a pale yellow one that absorbs strongly in the UV but exhibits no bands in either the visible or near IR. Elemental S produces strong bands in the UV, and while it is normally white at room temperature, UV irradiation causes it to turn yellow. X-ray irradiation of S turns it orange.

  11. Modeling Atmospheric Sulfur Over the Northern Hemisphere during the Aerosol Characterization Experiment 2 Experimental Period

    SciTech Connect

    Benkovitz, C; Schwartz, Stephen E.; Jensen, Michael P.; Miller, Mark A.; Easter, Richard C.; Bates, Timothy S.

    2004-11-25

    A high-resolution (1{sup o} x 1{sup o}, 27 vertical levels) Eulerian chemical transport and transformation model for sulfate, SO{sub 2}, and related species driven by analyzed forecast meteorological data has been run for the Northern Hemisphere for June-July 1997 and extensively evaluated with observational data, mainly from air-quality and precipitation chemistry networks. For {approx}5000 evaluations, 50% of the modeled sulfate 24-h mixing ratios were within a factor of 1.85 of the observations; 50% of {approx}328 concurrent subgrid observations were within a factor of 1.33. Much greater subgrid variation for 24-h SO{sub 2} mixing ratios (50% of {approx}3552 observations were within a factor of 2.32) reflects high variability of this primary species; for {approx}12,600 evaluations 50% of modeled mixing ratios were within a factor of 2.54 of the observations. These results indicate that a substantial fraction of the modeled and observed differences is due to subgrid variation and/or measurement error. Sulfate mixing ratios are identified by source type (biogenic, volcanic, and anthropogenic) and production mechanism (primary and by gas-phase and aqueous-phase oxidation). Examination of key diagnostics showed substantial variation for the different types of sulfur, e.g., SO{sub 2} aqueous-phase oxidation rates of 29 to 102% day{sup -1}, sulfate residence times of 4 to 9 days. Volcanic emissions contributed 10% of the sulfate burden and 6% of emissions, because the elevated release allows 2 large fractional conversion of SO{sub 2} and long residence time. Biogenic SO{sub 2} was generally at lower concentrations than H{sub 2}O{sub 2}, resulting in efficient aqueous-phase oxidation; this source type contributed 13% of emissions but only 5% of sulfate burden. Anthropogenic sources were the dominant contributors to sulfur emissions, 80%, and sulfate burden, 84%.

  12. Continuous-flow determination of aqueous sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry with gas-phase sample introduction

    NASA Astrophysics Data System (ADS)

    Nakahara, Taketoshi; Mori, Toshio; Morimoto, Satoru; Ishikawa, Hiroshi

    1995-06-01

    A simple continuous-flow generation of volatile hydrogen sulfide and sulfur dioxide by acidification of aqueous sulfide and sulfite ions, respectively, is described for the determination of low concentrations of sulfur by atmospheric-pressure helium microwave-induced plasma atomic emission spectrometry (MIP-AES) in the normal ultraviolet (UV) and vacuum ultraviolet (VUV) regions of the spectrum. For measuring spectral lines in the VUV region, the monochromator and the enclosed external optical path between the MIP source and the entrance slit of the monochromator have both been purged with nitrogen to minimize oxygen absorption below 190 nm. Sulfur atomic emission lines at 180.73, 182.04 and 217.05 nm have been selected as the analytical lines. Of the various acids examined, 1.0 M hydrochloric acid is the most favorable for both the generation of hydrogen sulfide from sulfide ions and sulfur dioxide from sulfite ions. Either generated hydrogen sulfide or sulfur dioxide is separated from the solution in a simple gas-liquid separator and swept into the helium stream of a microwave-induced plasma for analysis. The best attainable detection limits (3 σ criterion) for sulfur at 180.73 nm were 0.13 and 1.28 ng ml -1 for the generation of hydrogen sulfide and sulfur dioxide, respectively, with the corresponding background equivalent concentrations of 20.9 and 62.2 ng ml -1 in sulfur concentration. The typical analytical working graphs obtained under the optimized experimental conditions were rectilinear over approximately four orders of magnitude in sulfur concentration. The present method has been successfully applied to the recovery test of the sulfide spiked to waste water samples and to the determination of sulfite in some samples of commercially available wine.

  13. Leaching behaviors of high-sulfur coal wastes from two Appalachian coal-preparation plants

    SciTech Connect

    Heaton, R.C.; Williams, J.M.; Bertino, J.P.; Wangen, L.E.; Nyitray, A.M.; Jones, M.M.; Wanek, P.L.; Wagner, P.

    1982-06-01

    We have completed an assessment of the environmental behaviors of high-sulfur coal wastes obtained from two coal preparation plants located in northern Appalachia. Leachates obtained from these materials are often very acidic, with pH values sometimes less than 2, and contain high concentrations of a number of chemical elements. Aluminum, manganese, iron, nickel, and sometimes copper, zinc, and cadmium are released in environmentally harmful concentrations according to the Environmental Protection Agency Multimedia Environmental Goals/Minimum Acute Toxicity Effluent (MEG/MATE) system of evaluation. Iron is the worst case, with concentrations typically more than 30 times the acceptable level. In terms of leaching behavior, these wastes are very similar to the Illinois Basin coal wastes that we have studied in the past. Unless properly disposed of, these wastes may cause serious environmental degradation as a result of contaminated drainages. Studies of the chemical composition and morphology of these coal wastes reveal that many of the environmentally important elements leached from the solid wastes in high percentages (Fe, Co, Ni, Cu, Zn, As, Se) tend to reside among either mixed-layer clays or pyritic mineral phases. Elements associated with quartz or more orderly clays, such as kaolinite or illite, are generally leached in lower percentages. Important determinants of coal waste leaching behavior are pyrite, which determines the acid generating potential of the waste, calcite, which determines the capacity of the waste to self-neutralize the acids released by oxidation of pyrite, and the clay minerals, which serve as reservoirs for many of the leachable trace elements.

  14. INTERMEDIATE-RANGE GRID MODEL FOR ATMOSPHERIC SULFUR DIOXIDE AND SULFATE CONCENTRATIONS AND DEPOSITIONS

    EPA Science Inventory

    A three-dimensional time-dependent grid type model for two chemically reacting species which undergo atmospheric transport, diffusion and wet and dry deposition over a region of several hundred km is presented. Accuracy and sensitivity of the model are discussed. The model is app...

  15. Laboratory Measurement of the Temperature Dependence of Gaseous Sulfur Dioxide (SO2) Microwave Absorption with Application to the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Suleiman, Shady H.; Kolodner, Marc A.; Steffes, Paul G.

    1996-01-01

    High-accuracy laboratory measurements of the temperature dependence of the opacity from gaseous sulfur dioxide (SO2) in a carbon dioxide (CO2) atmosphere at temperatures from 290 to 505 K and at pressures from 1 to 4 atm have been conducted at frequencies of 2.25 GHz (13.3 cm), 8.5 GHz (3.5 cm), and 21.7 GHz (1.4 cm). Based on these absorptivity measurements, a Ben-Reuven (BR) line shape model has been developed that provides a more accurate characterization of the microwave absorption of gaseous S02 in the Venus atmosphere as compared with other formalisms. The developed BR formalism is incorporated into a radiative transfer model. The resulting microwave emission spectrum of Venus is then used to set an upper limit on the disk-averaged abundance of gaseous S02 below the main cloud layer. It is found that gaseous S02 has an upper limit of 150 ppm, which compares well with previous spacecraft in situ measurements and Earth-based radio astronomical observations.

  16. The Effects of Particle Size, Relative Humidity, and Sulfur Dioxide on Iron Solubility in Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Cartledge, B. T.; Marcotte, A.; Anbar, A. D.; Herckes, P.; Majestic, B. J.

    2014-12-01

    The current study focuses on studying how iron (Fe) solubility is affected by particle size, relative humidity, and exposure to sulfur dioxide (SO2). Fe, the most abundant transition metal in atmospheric particulate matter, plays a critical role in the atmospheric sulfur cycle and is a micronutrient for phytoplankton in remote regions of the ocean. To mimic oceanic particles, iron-containing minerals (hematite, magnetite, goethite, and illite) were resuspended with sodium chloride and size-segregated on Teflon filters into five different size fractions: 10-2.5 μm, 2.5-1.0 μm, 1.0-0.5 μm, 0.5-0.25 μm, and <0.25 μm. Mineral phases were then exposed to 5 ppm SO2 in air at marine environment humidity (>80%) and arid environment humidity (24%). Trials with no SO2 ­were also performed as comparisons. Total Fe was determined by using microwave-assisted acid digestion and soluble Fe was determined by extracting the samples in a simulated cloud water buffer (pH 4.25, 0.5 mM acetate, 0.5 mM formate, and 0.2 mM ammonium nitrate). Both total and soluble Fe concentrations were determined via inductively-coupled plasma mass spectrometry (ICP-MS). We found that, as particle size decreased, Fe percent solubility increased for hematite, magnetite, and goethite. The percent solubility of Fe in these mineral phases steadily increased from 0.5-10% as particle size decreased. In contrast, the Fe percent solubility in illite was relatively constant for the largest four size fractions but increased dramatically in the smallest size fraction. The percent solubility of Fe in illite ranged from 5-20% as the particle size decreased. Additionally, increased Fe solubility was linked to increased relative humidity with higher percent solubility generally observed in all mineral phases for the samples exposed at the higher humidity. No correlation was observed for the effects of the SO2 on Fe percent solubility. The likely lack of Fe-SO2 interactions were also supported by synchrotron

  17. Multiple oxygen and sulfur isotope compositions of secondary atmospheric sulfate in the city of Wuhan, central China

    NASA Astrophysics Data System (ADS)

    Li, X.; Bao, H.; Zhou, A.; Wang, D.

    2012-12-01

    Secondary atmospheric sulfate (SAS) is the oxidation product and sink for sulfur gases of biological, volcanic, and anthropogenic origins on Earth. SAS can be produced from gas-phase OH-radical oxidation and five aqueous-phase chemical reactions including aqueous-phase S (IV) oxidation reactions by H2O2, O3, oxygen catalyzed by Fe3+ and Mn2+, and methyle hydrogen peroxide and peroxyacetic acid. The tropospheric sulfur oxidation pathway is therefore determined by cloud-water pH, dissolved [Fe2+] or [Mn2+] content, S emission rate, meteorological condition, and other factors. The S isotope composition is a good tracer for the source while the O isotopes, especially the triple O isotope compositions are a good tracer for S oxidation pathway. Jerkins and Bao (2006) provided the first set of multiple stable isotope compositions (δ34S, δ18O and Δ17O) for SAS collected from bulk atmosphere in Baton Rouge in the relatively rural southern USA. Their study revealed a long-tern average Δ17O value of ~+0.7‰ for SAS, and speculated that much of the Earth mid-latitudes may have a similar average SAS Δ17O value. Additional sampling campaign at different sites is necessarily for constructing and testing models on sulfur oxidation and transport in the troposphere. A total of 33 sulfate samples were collected from bulk atmospheric deposition over a 950-day period from May 2009 to December 2011 in the city of Wuhan, Hubei Province, China. Differing from Baton Rouge, Wuhan is an industrial metropolis with a population of 9.8 million and a high particulate matter content (115 μg/m3). It also has a subtropical monsoon climate, with rainwater pH at ~5.3 year-around. The rainwater ion concentrations have seasonal variations, typically low in summer and high in winter. The anions are dominated by SO42-, at an average concentration of 8.5 mg/L. There is little sulfate contribution from sea-salt (SS) sulfate or dusts in Wuhan. The isotopic compositions for bulk atmospheric sulfate

  18. ATMOSPHERIC CHEMISTRY OF SELECTED SULFUR-CONTAINING COMPOUNDS OUTDOOR SMOG CHAMBER STUDY - PHASE 1

    EPA Science Inventory

    The chemical behavior of hydrogen sulfide, carbonyl sulfide, carbon sulfide, methanethiol, ethanethiol, methyl sulfide, ethylsulfide, methyl-disulfide, ethyldisulfide, methylethylsulfide, thiophene, 2-methylthiophene, 3-methylthiophene, 2,5-dimethyl-thiophene and propene (used as...

  19. Can sulfate fluxes in forest canopy throughfall be used to estimate atmospheric sulfur deposition

    SciTech Connect

    Lindberg, S.E.; Garten, C.T. Jr. ); Cape, J.N. ); Ivens, W. )

    1991-01-01

    The flux of sulfate is forest throughfall and stemflow (the sum of which is designated here as TF) may be an indicator of the atmospheric deposition of S, particularly if foliar leaching of internal plant S is small relative to washoff of deposition. Extensive data from 13 forests indicate that annual sulfate fluxes in TF and in atmospheric deposition are very similar, and recent studies with {sup 35}S tracers indicate that leaching is only a few percent of total TF. However, some short-term deposition/TF comparisons show large differences, and there remain questions about interpretation of tracer results. Considering the data, we conclude that TF may be used under some conditions to estimate deposition within acceptable uncertainty limits, but that some assumptions need further testing. If TF does reflect deposition, these data suggest that commonly used methods and models seriously underestimate total S deposition at some sites. 39 refs. ,4 figs., 1 tab.

  20. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.

    The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.

  1. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  2. Meteorite fractures and the behavior of meteoroids in the atmosphere

    NASA Astrophysics Data System (ADS)

    Bryson, K.; Ostrowski, D. R.; Sears, D. W. G.

    2015-12-01

    Arguably the major difficulty faced to model the atmospheric behavior of objects entering the atmosphere is that we know very little about the internal structure of these objects and their methods of fragmentation during fall. In a study of over a thousand meteorite fragments (mostly hand-sized, some 40 or 50 cm across) in the collections of the Natural History Museums in Vienna and London, we identified six kinds of fracturing behavior. (1) Chondrites usually showed random fractures with no particular sensitivity to meteorite texture. (2) Coarse irons fractured along kamacite grain boundaries, while (3) fine irons fragmented randomly, c.f. chondrites. (4) Fine irons with large crystal boundaries (e.g. Arispe) fragmented along the crystal boundaries. (5) A few chondrites, three in the present study, have a distinct and strong network of fractures making a brickwork or chicken-wire structure. The Chelyabinsk meteorite has the chicken-wire structure of fractures, which explains the very large number of centimeter-sized fragments that showered the Earth. Finally, (6) previous work on Sutter's Mill showed that water-rich meteorites fracture around clasts. To scale the meteorite fractures to the fragmentation behavior of near-Earth asteroids, it has been suggested that the fracturing behavior follows a statistical prediction made in the 1930s, the Weibull distribution, where fractures are assumed to be randomly distributed through the target and the likelihood of encountering a fracture increases with distance. This results in a relationship: σl = σs(ns/nl)α, where σs and σl refers to stress in the small and large object and ns and nl refer to the number of cracks per unit volume of the small and large object. The value for α, the Weibull coefficient, is unclear. Ames meteorite laboratory is working to measure the density and length of fractures observed in these six types of fracture to determine values for the Weibull coefficient for each type of object.

  3. Sulfur in the Early Martian Atmosphere Revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, L.; Forget, F.; Wordsworth, R.

    2013-09-01

    Data returned from the surface of Mars during the 1970s revealed intriguing geological evidence for a warmer and wetter early martian climate. Dendritic valley networks were discovered by Mariner 9 on ancient Noachian terrain [1], indicating that liquid water had flowed across the surface in the distant past. Since this time, geological investigations into early Martian history have attempted to ascertain the nature and level of activity of the early Martian hydrological cycle [e.g. 2-5] while atmospheric modeling efforts have focused on how the atmosphere could be warmed to temperatures great enough to sustain such activity [see 6-7 for reviews]. Geological and spectroscopic investigations have refined the history and chronology of Noachian Mars over time, and circulation of liquid water has been invoked to explain several spatially and temporally distinct morphological and chemical signatures found in the geological record. Detections of iron and magnesium-rich clays are widespread in the oldest Martian terrains, suggesting a period of pH-neutral aqueous alteration [e.g., 8]. Valley network incision also took place during the Noachian period [9]. Some chains of river valleys and craters lakes extend for thousands of kilometers, suggesting temperatures at least clement enough for sustained ice-covered flow [3,10]. The commencement of valley network incision is not well constrained, but the period of Mg/Fe clay formation appears to have ended before the termination of valley network formation, as the visible fluvial systems appear to have remobilized existing clays rather than forming them [5,8]. There is also evidence that the cessation of valley network formation was abrupt [11]. Towards the end of the Noachian, erosion rates appear to have been significantly higher than during subsequent periods, a process that has also been attributed to aqueous processes [12]. A period of sulfate formation followed, likely characterized by acidic, evaporitic playa environments

  4. Validation of coupled atmosphere-fire behavior models

    SciTech Connect

    Bossert, J.E.; Reisner, J.M.; Linn, R.R.; Winterkamp, J.L.; Schaub, R.; Riggan, P.J.

    1998-12-31

    Recent advances in numerical modeling and computer power have made it feasible to simulate the dynamical interaction and feedback between the heat and turbulence induced by wildfires and the local atmospheric wind and temperature fields. At Los Alamos National Laboratory, the authors have developed a modeling system that includes this interaction by coupling a high resolution atmospheric dynamics model, HIGRAD, with a fire behavior model, BEHAVE, to predict the spread of wildfires. The HIGRAD/BEHAVE model is run at very high resolution to properly resolve the fire/atmosphere interaction. At present, these coupled wildfire model simulations are computationally intensive. The additional complexity of these models require sophisticated methods for assuring their reliability in real world applications. With this in mind, a substantial part of the research effort is directed at model validation. Several instrumented prescribed fires have been conducted with multi-agency support and participation from chaparral, marsh, and scrub environments in coastal areas of Florida and inland California. In this paper, the authors first describe the data required to initialize the components of the wildfire modeling system. Then they present results from one of the Florida fires, and discuss a strategy for further testing and improvement of coupled weather/wildfire models.

  5. The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges

    NASA Astrophysics Data System (ADS)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2016-08-01

    An in-depth and comprehensive understanding of the complex nonlinear behaviors in atmospheric dielectric barrier discharge is significant for the stable operation and effective control of the plasma. In this paper, we study the nonlinear behaviors in argon atmospheric dielectric barrier multi pulse discharges by a one-dimensional fluid model. Under certain conditions, the multi pulse discharge becomes very sensitive with the increase of frequency, and the multi pulse period-doubling bifurcation, inverse period-doubling bifurcation and chaos appear frequently. The discharge can reach a relatively steady state only when the discharges are symmetrical between positive and negative half cycle. In addition, the effects of the voltage on these nonlinear discharges are also studied. It is found that the amplitude of voltage has no effects on the number of discharge pulses in multi-pulse period-doubling bifurcation sequences; however, to a relatively stable periodic discharge, the discharge pulses are proportional to the amplitude of the applied voltage within a certain range. supported by National Natural Science Foundation of China (No. 11447244), the Science Foundation of Hengyang Normal University of China (No. 14B41), the Construct Program of the Key Discipline in Hunan Province, and the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology of China (No. GDXX010)

  6. Segregation Behavior of Sulfur and Other Impurities onto the Free Surfaces of ED-NI Deposits

    NASA Technical Reports Server (NTRS)

    Panda, B.; Jerman, G.

    2001-01-01

    Most researchers attribute grain boundary embrittlement in electro-deposited nickel (ED-Ni) to the presence of small quantities of sulfur as an impurity. It occurs in a highly mobile form that segregates to the grain boundaries. Evaluation of sulfur segregation requires that a sample be fractured through the grain boundaries. However, this action may not always be possible. ED-Ni is inherently tough at ambient temperature, especially if a low level of sulfur was intentionally maintained. A new method was developed to study sulfur and other migrant species to the grain boundaries, which also migrate to free surfaces. A test specimen is heated by a quartz lamp within the sample preparation chamber, allowing the mobile species to migrate to polished free surfaces. There the mobile species are analyzed using X-ray photoelectron spectroscopy (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA).

  7. Segregation Behavior of Sulfur and Other Impurities Onto the Free Surfaces of ED-Ni Deposits

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Jerman, Gregory; Gentz, Steven J. (Technical Monitor)

    2000-01-01

    Most researchers attribute grain boundary embrittlement in electro-deposited Nickel (ED-Ni) to the presence of small quantities of Sulfur as an impurity. It occurs in a highly mobile form that segregates to the grain boundaries. Evaluation of Sulfur segregation requires that a sample be fractured through the grain boundaries. However, this action may not always be possible. ED-Ni is inherently tough at ambient temperature, especially if a low level of Sulfur was intentionally maintained. A new method was developed to study Sulfur and other migrant species to the grain boundaries, which also migrate to free surfaces. A test specimen is heated by a quartz lamp within the sample preparation chamber, allowing the mobile species to migrate to polished free surfaces. There the mobile species are analyzed using X-ray photoelectron spectroscopy (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA).

  8. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia.

    PubMed

    Sullivan, T J; Cosby, B J; Webb, J R; Dennis, R L; Bulger, A J; Deviney, F A

    2008-02-01

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the park have acid neutralizing capacity (ANC) less than 20 microeq/L, levels at which chronic and/or episodic adverse impacts on native brook trout are possible. Model hindcasts suggested that none of these streams had ANC less than 50 microeq/L in 1900. Model projections, based on atmospheric emissions controls representative of laws already enacted as of 2003, suggested that the ANC of those streams simulated to have experienced the largest historical decreases in ANC will increase in the future. The levels of S deposition that were simulated to cause streamwater ANC to increase or decrease to three specified critical levels (0, 20, and 50 microeq/L) ranged from less than zero (ANC level not attainable) to several hundred kg/ha/year, depending on the selected site and its inherent acid-sensitivity, selected ANC endpoint criterion, and evaluation year for which the critical load was calculated. Several of the modeled streams situated on siliciclastic geology exhibited critical loads <0 kg/ha/year to achieve ANC >50 microeq/L in the year 2040, probably due at least in part to base cation losses from watershed soil. The median modeled siliciclastic stream had a calculated critical load to achieve ANC >50 microeq/L in 2100 that was about 3 kg/ha/year, or 77% lower than deposition in 1990, representing the time of model calibration. PMID:17492359

  9. Atmospheric wet deposition of nitrogen and sulfur in the agroecosystem in developing and developed areas of Southeastern China

    NASA Astrophysics Data System (ADS)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuanqiu; Yang, Hao; Mao, Jingdong; Zhang, Mingli; Wang, Yanhua; Wang, Shuwei

    2014-06-01

    Atmospheric nitrogen (N) and sulfur (S) deposition is a significant and growing issue for ecological environment in many parts of the world such as China. However, the study on atmospheric deposition, especially N deposition, is still at the initial stage and usually neglected in agro-ecosystems. To assess the characteristics of N and S wet deposition in agro-ecosystems, we selected Yingtan Station (YTS) located in the developing area and Changshu Station (CSS) in the developed area as typical, agricultural study sites in Southeastern China during 2010-2011. In the two areas, the total N and S wet deposition were in ranges of 30.49-37.37 kg ha-1 year-1 N and 56.02-59.06 kg ha-1 year-1 S, respectively, surpassing their corresponding critical loads in China. The annual means of NH4+-N, NO3--N and dissolved organic N (DON) deposition contributed 49.6%, 26.4% and 24.0% of the total deposition, respectively. Similar total N and S deposition data were observed in the two sites, but their N species, especially DON, were different due to different numbers of slaughter pigs and types of N fertilizers applied. In conclusion, DON was identified as an important contributor to the total N deposition and should also be monitored in the future. Such high N and S deposition would deteriorate agroecosystems in Southeastern China. Related political measures on livestock industries, managements of motor vehicles and technologies of coal and oil combustion should be improved timely and implemented effectively for reducing the regional N emission and deposition in the future.

  10. Atmospheric So2 Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils

    SciTech Connect

    Lehmann,J.; Solomon, D.; Zhao, F.; McGrath, S.

    2008-01-01

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extractsreverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification.

  11. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils.

    PubMed

    Lehmann, Johannes; Solomon, Dawit; Zhao, Fang-Jie; McGrath, Steve P

    2008-05-15

    Atmospheric SO2 emissions in the UK and globally increased 6- and 20-fold, respectively, from the mid-1800s to the 1960s resulting in increased S deposition, acid rain, and concurrent acidification of terrestrial and aquatic ecosystems. Structural analyses using synchrotron-based X-ray near-edge spectroscopy (XANES) on humic substance extracts of archived samples from the Rothamsted Park Grass Experiment reveal a significant (R2 = -0.58; P < 0.05; N = 7) shift in soil organic sulfur (S) forms, from reduced to more oxidized organic S between 1876 and 1981, even though soil total S contents remained relatively constant. Over the last 30 years, a decrease in emissions and consequent S deposition has again corresponded with a change of organic S structures of humic extracts-reverting in the direction of their early industrial composition. However, the observed reversal lagged behind reductions in emissions by 19 years, which was computed using cross correlations between time series data (R2 = 0.66; P = 0.0024; N = 11). Presently, the ratio of oxidized-to-reduced organic S in humic substance extracts is nearly double that of early industrial times at identical SO2 emission loads. The significant and persistent structural changes of organic S in humic substances as a response to SO2 emissions and S deposition may have effects on recuperation of soils and surface waters from acidification. PMID:18546688

  12. Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Merikanto, Joonas; Duplissy, Jonathan; Määttänen, Anni; Henschel, Henning; Donahue, Neil M.; Brus, David; Schobesberger, Siegfried; Kulmala, Markku; Vehkamäki, Hanna

    2016-02-01

    We derive a version of Classical Nucleation Theory normalized by quantum chemical results on sulfuric acid-water hydration to describe neutral and ion-induced particle formation in the binary sulfuric acid-water system. The theory is extended to treat the kinetic regime where the nucleation free energy barrier vanishes at high sulfuric acid concentrations or low temperatures. In the kinetic regime particle formation rates become proportional to sulfuric acid concentration to second power in the neutral system or first power in the ion-induced system. We derive simple general expressions for the prefactors in kinetic-type and activation-type particle formation calculations applicable also to more complex systems stabilized by other species. The theory predicts that the binary water-sulfuric acid system can produce strong new particle formation in the free troposphere both through barrier crossing and through kinetic pathways. At cold stratospheric and upper free tropospheric temperatures neutral formation dominates the binary particle formation rates. At midtropospheric temperatures the ion-induced pathway becomes the dominant mechanism. However, even the ion-induced binary mechanism does not produce significant particle formation in warm boundary layer conditions, as it requires temperatures below 0°C to take place at atmospheric concentrations. The theory successfully reproduces the characteristics of measured charged and neutral binary particle formation in CERN CLOUD3 and CLOUD5 experiments, as discussed in a companion paper.

  13. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  14. Vertical Distributions of Sulfur Species Simulated by Large Scale Atmospheric Models in COSAM: Comparison with Observations

    SciTech Connect

    Lohmann, U.; Leaitch, W. R.; Barrie, Leonard A.; Law, K.; Yi, Y.; Bergmann, D.; Bridgeman, C.; Chin, M.; Christensen, J.; Easter, Richard C.; Feichter, J.; Jeuken, A.; Kjellstrom, E.; Koch, D.; Land, C.; Rasch, P.; Roelofs, G.-J.

    2001-11-01

    A comparison of large-scale models simulating atmospheric sulfate aerosols (COSAM) was conducted to increase our understanding of global distributions of sulfate aerosols and precursors. Earlier model comparisons focused on wet deposition measurements and sulfate aerosol concentrations in source regions at the surface. They found that different models simulated the observed sulfate surface concentrations mostly within a factor of two, but that the simulated column burdens and vertical profiles were very different amongst different models. In the COSAM exercise, one aspect is the comparison of sulfate aerosol and precursor gases above the surface. Vertical profiles of SO2, SO42-, oxidants and cloud properties were measured by aircraft during the North Atlantic Regional Experiment (NARE) experiment in August/September 1993 off the coast of Nova Scotia and during the Second Eulerian Model Evaluation Field Study (EMEFSII) in central Ontario in March/April 1990. While no single model stands out as being best or worst, the general tendency is that those models simulating the full oxidant chemistry tend to agree best with observations although differences in transport and treatment of clouds are important as well.

  15. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Donnals, G.L.; Cao, J.; Ruch, R.R.; Pan, W.P.; Shao, D.

    1992-08-01

    The goal of this project is to study the evolution of gaseous sulfur and chlorine species during temperature-controlled pyrolysis and combustion and their effect on boiler corrosion. We have been developing two techniques for determining the gas evolution profiles of sulfur and chlorine during coal pyrolysis and combustion. First, using a pyrolysis-combustion system in combination with a quadrupole gas analyzer, the evolution of sulfur dioxide (SO{sub 2}) in combustion gas during temperature-programmed coal pyrolysis-combustion was monitored. When the atmosphere of the combustion chamber was changed to a reducing condition, gaseous COS and H{sub 2}S were also detected in the combustion gas. Detection of hydrogen chloride by QGA has been improved by using a larger-diameter (75 {mu}m) capillary tubing. The HC1 evolution profile during the pyrolysis of coal IBC-109 was determined by QGA and by a chloride ion selective electrode for quantitative purposes. Second, the technique of thermogravimetry (TG) in conjunction with Fourier transform infrared (FTIR) spectroscopy was used to characterize gaseous species during coal pyrolysis. Gas evolution profiles of sulfur (SO{sub 2} and COS), chlorine (HC1), and nitrogen (NH{sub 3} and HCN) species were determined for coal IBC-109. Similar release profiles of HCI and NH{sub 3} supported an interpretation that chlorine gnd nitrogen are closely associated in coal. COS may be formed by reaction of CO with H{sub 2}S in the gas phase. A mass balance study of chlorine evolution from coal IBC-109 in a TG-FTIR experiment was completed; the chloride dissolved in solutions was determined by an ion chromatographic technique.

  16. VAPOR PRESSURE AND MELTING BEHAVIOR OF SULFURIC ACID-WATER SYSTEMS

    EPA Science Inventory

    An experimental apparatus was designed and constructed to use high vacuum and mass spectrometric techniques to determine total and partial vapor pressures above bulk liquid samples in the temperature range between -65C and 25C. Observations on the sulfuric acid-water system revea...

  17. Corrosion Behavior of 9Cr-1Mo Steel in Sulfur Dioxide Environment

    NASA Astrophysics Data System (ADS)

    Singh, V.; Kachhawaha, J. S.; Tare, V. B.

    2014-09-01

    Corrosion behavior of annealed 9Cr-1Mo steel was studied in SO2 environment at 1173 K, at flow rates from 8.33 × 10-7 to 33.33 × 10-7 m3/s, and parabolic rate law was followed. The rate constants were found to be independent of flow rate, within the range of flow rate investigated. Corrosion at temperatures from 973 to 1173 K, at a constant flow rate of 16.66 × 10-7 m3/s, at 1 atmospheric pressure, for 6 h also exhibited parabolic law, however, the rate constants were observed to increase significantly with rise in temperature. The outer layer of the scale formed at 973 K was essentially of iron oxide, with small amount of chromium oxide whereas the inner layer was predominantly of chromium sulphide and chromium oxide. The scale formed at 1173 K was multilayered, in contrast to double layered formed at 973 K and 1073 K. The outer thick layer of the scale formed at 1173 K, consisted of iron oxide followed by thin substrate of chromium sulphide, iron sulphide/iron oxide, and chromium sulphide/chromium oxide toward the substrate. A model is proposed for the process of corrosion of 9Cr-1Mo steel in SO2 environment, based on the present investigation.

  18. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  19. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  20. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption. Semiannual progress report

    SciTech Connect

    Sigurdsson, H.; Laj, P.

    1990-09-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. The authors propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  1. Laboratory Measurments of the 3.7-20 cm Wavelength Opacity of Sulfur Dioxide and Carbon Dioxide under Simulated Conditions for the Deep Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Barisich, C.

    2012-10-01

    In the past two decades, multiple observations of Venus have been made at X band (3.6 cm) using the Jansky Very Large Array (VLA) and maps have been created of the 3.6 cm emission from Venus. Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler et al., Icarus 154, 2001), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho et al., JGR 71, 1966), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10-92 Bars and temperatures from 400-700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7-20 cm are now being conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Initial results from this measurement campaign conducted at 430 K and at pressures up to 92 Bars will be presented. This work is supported by the NASA Planetary Atmospheres Program under Grant NNX11AD66G.

  2. The Corrosion Behavior of Ni3(Si,Nb) Alloys in Boiling 70 wt.% Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Larson, Christopher M.; Newkirk, Joseph W.; Brow, Richard K.; Zhang, San-Hong

    2016-02-01

    Corrosion-resistant Ni3(Si,Nb) alloys are promising materials of construction for hydrogen-production systems based on the sulfur-iodine thermochemical cycle. In this work, the corrosion rates of three different Ni3(Si,Nb) alloys were measured in boiling 70 wt.% sulfuric acid and a three-stage corrosion mechanism was identified, based on the composition and morphology of surface scale that developed. The α(Ni) + β(Ni3Si) eutectic constituent of the alloy microstructure was selectively attacked by acid and, when present, is detrimental to corrosion resistance. The G-phase (Ni16Si17Nb6) is more passive than the β-matrix and seems to contribute to a lower steady-state corrosion rate.

  3. Chemical Behavior of Sulfur in Minerals and Silicate Glasses Studied Using Inner Shell Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alonso Mori, R.; Paris, E.; Glatzel, P.; Giuli, G.; Scaillet, B.

    2008-12-01

    Understanding the chemical behaviour of sulfur is of fundamental importance in explaining different geological mechanisms ranging from volcano-climatic interactions to the genesis of ore deposits. Understanding how sulphur behaves is also of great economic importance in industrial activities including glass-forming processes and the treatment of vitreous waste material from refuse incineration. The chemical behaviour of sulfur in minerals and glasses has been widely studied via X-ray absorption near edge structure (XANES) spectroscopy, which probes the unoccupied density of states and thus provides information on the oxidation state and local structure of the species under study. However, the XANES spectral shape is influenced by various effects, namely the local symmetry, the ligand type, even up to high coordination spheres, and the valence electron occupation, making it difficult to systematically analyze the different spectral contributions. We use X-ray emission spectroscopy (XES) as a complementary technique to avoid some of the inherent difficulties of XANES analysis, and to extract additional information on the electronic structure. The Kb lines, close to the K-edge, directly yield the p-density of occupied valence states, giving valuable information on the local coordination. We have compared XANES and Kb XES experimental data on sulfur- bearing minerals with ab initio quantum-chemical calculations based on density functional theory (DFT), in order to visualize the molecular orbitals and to extract information about the chemical bonding in these compounds. The S Ka emission lines, which arise from 2p to 1s transitions, are expected to be mostly free from chemical bond effects except for small energy shifts that reflect the valence orbital electron population via screening effects. S Ka shifts can be readily used to determine the speciation of sulfur in silicate glasses. The electronic configuration of the sulfur atoms is obtained by calculating the

  4. Hydrogen Sulfide Sequestration and Storage in Geothermal System: New Mitigation Strategy to Reduce H2S from the Atmosphere and Detect its Mineralization with Multiple Sulfur Isotopic Systematics

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Stefansson, A.; Gudbrandsson, S.; Gunnarsson, I.; Aradottir, E. S.; Gunnarsson Robin, J.; Ono, S.

    2015-12-01

    Hydrogen sulfide (H2S) is one of the major components in geothermal fluids and is commonly emitted into the atmosphere from geothermal power plants causing potential environmental problems. Among several mitigation methods proposed to reduce the H2S emissions, is H2S sequestration into geothermal systems. Reykjavík Energy is undertaking a pilot project at Hellisheidi geothermal system (SW Iceland) called Sulfix project where H2S is being injected into the geothermal reservoir for permanent sequestration into pyrite. The SulFix project started its operation in June 2014: the soluble geothermal gases are dissolved in geothermal waste water, and injected at 8 bars into the high temperature reservoir (>200˚C) at 750 m below the wellhead. The reactions involving sulfur in the geothermal reservoir may be traced using sulfur fluid chemistry and multiple sulfur isotope systematics (32S, 33S, 34S and 36S), including mixing between the reservoir geothermal fluid and the injection fluid, sulfide mineralization and oxidation of sulfide to sulfate. In this study we investigated the multiple sulfur isotope systematics upon sulfide mineralization under geothermal conditions. High temperature flow through experiments were carried out in basaltic glass at 200-250°C and ~5 mmol/kg H2S to study the fluid-rock interaction. The results indicate that the sulfide mineralization occurs rapidly under geothermal conditions, highlighting the leaching rate of iron from the basaltic glass as the mineralization rate determining factor. Moreover, the formation of sulfide may be traced using the δ34S-Δ33S relationship in the fluids and pyrite formation - for example to determine if non-reactive mixing between the injection fluids and reservoir fluids occurs at Hellisheidi. The experimental results have been further supported by geochemical modeling involving multiple sulfur isotope fractionation between aqueous sulfide species and rocks upon basalt dissolution and secondary pyrite formation.

  5. Atmospheric evolution of sulfur emissions from Kı̅lauea: real-time measurements of oxidation, dilution, and neutralization within a volcanic plume.

    PubMed

    Kroll, Jesse H; Cross, Eben S; Hunter, James F; Pai, Sidhant; Wallace, Lisa M M; Croteau, Philip L; Jayne, John T; Worsnop, Douglas R; Heald, Colette L; Murphy, Jennifer G; Frankel, Sheila L

    2015-04-01

    The high atmospheric concentrations of toxic gases, particulate matter, and acids in the areas immediately surrounding volcanoes can have negative impacts on human and ecological health. To better understand the atmospheric fate of volcanogenic emissions in the near field (in the first few hours after emission), we have carried out real-time measurements of key chemical components of the volcanic plume from Kı̅lauea on the Island of Hawai'i. Measurements were made at two locations, one ∼ 3 km north-northeast of the vent and the other 31 km to the southwest, with sampling at each site spanning a range of meteorological conditions and volcanic influence. Instrumentation included a sulfur dioxide monitor and an Aerosol Chemical Speciation Monitor, allowing for a measurement of the partitioning between the two major sulfur species (gas-phase SO2 and particulate sulfate) every 5 min. During trade wind conditions, which sent the plume toward the southwest site, sulfur partitioning exhibited a clear diurnal pattern, indicating photochemical oxidation of SO2 to sulfate; this enabled the quantitative determination of plume age (5 h) and instantaneous SO2 oxidation rate (2.4 × 10(-6) s(-1) at solar noon). Under stagnant conditions near the crater, the extent of SO2 oxidation was substantially higher, suggesting faster oxidation. The particles within the plume were extremely acidic, with pH values (controlled largely by ambient relative humidity) as low as -0.8 and strong acidity (controlled largely by absolute sulfate levels) up to 2200 nmol/m(3). The high variability of sulfur partitioning and particle composition underscores the chemically dynamic nature of volcanic plumes, which may have important implications for human and ecological health. PMID:25734883

  6. Vapor-liquid phase behavior of the iodine-sulfur water-splitting process : LDRD final report for FY03.

    SciTech Connect

    Bradshaw, Robert W.; Larson, Richard S.; Lutz, Andrew E.

    2004-01-01

    This report summarizes the results of a one-year LDRD project that was undertaken to better understand the equilibrium behavior of the iodine-water-hydriodic acid system at elevated temperature and pressure. We attempted to extend the phase equilibrium database for this system in order to facilitate development of the iodine-sulfur water-splitting process to produce hydrogen to a commercial scale. The iodine-sulfur cycle for thermochemical splitting of water is recognized as the most efficient such process and is particularly well suited to coupling to a high-temperature source of process heat. This study intended to combine experimental measurements of vapor-liquid-liquid equilibrium and equation-of-state modeling of equilibrium solutions using Sandia's Chernkin software. Vapor-liquid equilibrium experiments were conducted to a limited extent. The Liquid Chernkin software that was developed as part of an earlier LDRD project was enhanced and applied to model the non-ideal behavior of the liquid phases.

  7. Estimating Effects of Atmospheric Deposition and Peat Decomposition Processes on Mercury and Sulfur Accumulation and Retention in Northern Peatlands, Minnesota

    NASA Astrophysics Data System (ADS)

    Furman, O.; Nater, E.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Kolka, R. K.

    2013-12-01

    Northern peatland ecosystems play an important role in mercury (Hg) and sulfur (S) co-cycling. Peatlands are sinks for total Hg and sources for methyl Hg through the activity of sulfate-reducing bacteria. These ecosystems are vulnerable to environmental change, and projected changes in climate for the north-central U.S. have the potential to affect Hg and S stores and cycling in the subsurface, which may stimulate the release of bioaccumulative methyl Hg to receiving water bodies. SPRUCE (Spruce and Peatland Responses under Climate and Environmental change experiment) is an interdisciplinary study of the effects of temperature and enriched carbon dioxide on the responses of northern peatland ecosystems at the Marcell Experimental Forest, Minnesota. In the first year of SPRUCE, we are investigating Hg and S accumulation rates in 12-m diameter experimental plots on a black spruce bog before peatland heating experiments start in 2014. Understanding Hg and S accumulation rates and their retention mechanisms in the subsurface are needed in order to reconstruct historical trends in Hg and S deposition, and predict peatland responses to climate change. In this study, we will attempt to separate the effects of atmospheric deposition vs peat humification on Hg and S retention. As such, peat cores were sampled from sixteen experimental SPRUCE plots in August 2012. These 'Time 0' peat subsamples have been analyzed for total Hg, methyl Hg and total S, and bulk density as a function of depth (<2 m). In addition, peat subsamples have been analyzed for 14C and 13C to determine the age of peat and derive peat, Hg and S accumulation rates. Our preliminary results indicate that both total and methyl Hg, and total S concentrations reached the peak value in the 20-40 cm peat section, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Total and methyl Hg concentrations were several times lower in deeper profiles (>50 cm

  8. Atmospheric deposition of sulfur and inorganic nitrogen in the Southern Canadian Rocky Mountains from seasonal snowpacks and bulk summer precipitation

    NASA Astrophysics Data System (ADS)

    Wasiuta, Vivian; Lafrenière, Melissa J.; Norman, Ann-Lise

    2015-04-01

    This study quantified atmospheric deposition of sulfur (S) and nitrogen (N) in the alpine of the Southern Canadian Rocky Mountains and evaluated loads relative to critical limits for ecologic effects on alpine ecosystems from N saturation and acidification. Deposition was evaluated by collecting seasonal snowpack and summer bulk precipitation samples along elevational transects in the alpine Haig Valley and given regional context using snowpack samples from six additional glacier sites. S and N deposition were evaluated in terms of two conceptual models. Model 1 representing deposition from emissions that are mainly distant and Model 2 representing deposition from a mixture of distant and local to regional emissions. Annual S and N (including ammonium (NH4+), nitrate (NO3-) and nitrite (NO2-)) deposition in the alpine Haig Valley was 0.74 ± 0.18 kg S ha-1 and 1.10 ± 0.18 kg N ha-1 yr-1, which is sufficiently high for the occurrence of detrimental ecologic effects related to N saturation in the most sensitive alpine ecosystems, but lower than the critical limit for acidification. Snowpack S and N deposition was consistent with well mixed air mainly from distant sources (Model 1), therefore indicating S and N were largely transported within the precipitating air mass and or picked up by the air mass in transit to the alpine Haig Valley. Relatively consistent deposition of S and N in seasonal glacier snowpacks at sites extending 210 km along the Continental Divide and 100 km west of the divide supports the interpretation that Model 1 describes deposition in alpine glacier snowpack. Similar deposition values for the highest site in the Haig Valley and the mean from the regional snowpack study indicate the highest site in the Haig Valley represents regional conditions of S and N deposition. Summer deposition of sulfate (SO42-) and ammonium (NH4+) was also consistent with dominantly distant emission sources (Model 1). In contrast there was enhanced transport and

  9. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. [Quarterly] technical report, March 1, 1992--May 31, 1992

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Donnals, G.L.; Cao, J.; Ruch, R.R.; Pan, W.P.; Shao, D.

    1992-10-01

    Four replicate experiments of pyrolysis with quadrupole gas analyzer and ion selective electrode were conducted to monitor the release of chlorine and sulfur from a high-chlorine Illinois coal IBC-109 (0.42% chlorine on dry basis). The chlorine in coal is released solely as HCl, and the HCl release profile shows a broad peak between 250{degree}C and 600{degree}C with a maximum at 445{degree}C. In contrast, the sulfur release profile shows three peaks; the sulfur released around 370{degree}C may be derived from a labile (possibly aliphatic) component of organic sulfur, the main peak at 475{degree}C corresponds to the release of the main component (thiophenic) of organic sulfur, and the third peak at 600{degree} results from the decomposition of pyrite. Sulfur dioxide (SO{sub 2}) is the major sulfur species under an oxidizing condition in the combustion gas; additional gaseous sulfur species (COS and H{sub 2}S) are observed when the atmosphere is changed to a reducing condition. Sodium and chlorine contents in char residues determined by neutron activation analysis showed that 98% of chlorine in coal was volatilized during pyrolysis to 800{degree}C, and all the sodium is retained in the chars. The thermogravimetry-Fourier transform infrared (FTIR) spectroscopy experiments were carried out to characterize gaseous species during pyrolysis of four Illinois coals (IBC-103, -105, -106, and -109). Gas evolution profiles of sulfur (H{sub 2}S, S0{sub 2}, and COS), chlorine (HCl), and nitrogen (NH{sub 3} and HCN) species were determined. Similar release profiles of HCl and NH{sub 3} supported an interpretation that chlorine and nitrogen are closely associated in coal. COS may be formed by reaction of CO with H{sub 2}S in the gas phase.

  10. 40 CFR Appendix A-2 to Part 50 - Reference Method for the Determination of Sulfur Dioxide in the Atmosphere (Pararosaniline Method)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of section 7 of 40 CFR part 58, appendix E (Teflon ® or glass with residence time less than 20 sec... at the sample manifold, with the excess flow vented at atmospheric pressure. The absorbers are then... Anomalous Behavior in Tetrachloromercurate (II). Submitted for publication in Atmospheric Environment,...

  11. Air Quality Criteria for Sulfur Oxides.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a literature review which comprehensively discusses knowledge of the sulfur oxides commonly found in the atmosphere. The subject content is represented by the 10 chapter titles: Physical and Chemical Properties and the Atmospheric Reactions of the Oxides of Sulfur; Sources and Methods of Measurements of Sulfur Oxides in the Atmosphere;…

  12. Method for preventing sulfur emissions from vessels containing molten sulfur

    SciTech Connect

    Hass, R. H.

    1984-10-23

    Emissions from sulfur pits or other vessels containing molten sulfur are prevented or minimized by use of an air purge drawn into the vessel from the atmosphere and subsequently utilized as a portion of the oxidant required in a process for oxidizing hydrogen sulfide to elemental sulfur.

  13. Chalcophile behavior of thallium during MORB melting and implications for the sulfur content of the mantle

    NASA Astrophysics Data System (ADS)

    Nielsen, Sune G.; Shimizu, Nobumichi; Lee, Cin-Ty A.; Behn, Mark D.

    2014-12-01

    present new laser ablation ICP-MS trace element concentration data for 28 elements in 97 mid-ocean ridge basalt (MORB) glasses that cover all major spreading centers as well as Tl concentration data for all mineral phases in five lherzolites from the Lherz massif, France. The ratio between the elements thallium (Tl) and cerium (Ce) is nearly constant in MORB, providing evidence that the depleted MORB mantle (DMM) has uniform Ce/Tl. Lherzolite mineral data reveal that sulfides are heterogeneous and contain between 23 and 430 ng/g of Tl while all other minerals contain Tl below the analytical detection limit of ˜1 ng/g. We argue that Tl in MORB is controlled by residual sulfide during mantle melting. To investigate the observed relationship between Tl and Ce, we conduct models of fractional mantle melting, which show that the constant Ce/Tl in MORB is only reproduced if the ratio between clinopyroxene and sulfide in the upper mantle varies by less than 10%. In addition, the rate of melting for these two phases must be nearly identical as otherwise melt depletion and refertilization processes would lead to Ce/Tl fractionation. These model results allow us to establish a relationship for the sulfur content of DMM: [S]DMM = SCSS × Mcpx /Rcpx, where SCSS is the sulfur concentration of a silicate melt at sulfide saturation, Rcpx is the melt reaction coefficient, and Mcpx is the modal abundance of clinopyroxene in the DMM. Using this equation, we calculate that the average upper mantle sulfur concentration is 195 ± 45 μg/g.

  14. Influence of Atmospheric CO2 Variation on Strom Track Behavior

    NASA Astrophysics Data System (ADS)

    Martynova, Yuliya; Krupchatnikov, Vladimir

    2015-04-01

    The storm tracks are the regions of strong baroclinicity where surface cyclones occur. The effect of increase with following decrease of anthropogenic load on storm tracks activity in the Northern Hemisphere was studied. The global climate system model of intermediate complexity ('Planet Simulator', Fraedrich K. et al., 2005) was used in this study. Anthropogenic forcing was set according to climatic scenario RCP8.5 continued till 4000 AD with fixed CO2 concentration till 3000 AD and linear decrease of anthropogenic load to preindustrial value at two different rates: for 100 and 1000 years. Modeling data analysis showed meridional shift of storm tracks due to atmospheric CO2 concentration variation. When CO2 concentration increases storm tracks demonstrate poleward shifting. When CO2 concentration decreases to preindustrial value storm tracks demonstrate a tendency to equator-ward shifting. Storm tracks, however, don't recover their original activity and location to the full. This manifests itself particularly for 'fast' CO2 concentration decrease. Heat and moisture fluxes demonstrate the same behavior. In addition, analysis of eddy length scale (Kidston J. Et al., 2011) showed their increase at mid-latitudes and decrease at tropic latitudes due to intensive CO2 concentration increase. This might cause poleward shift of mid-latitude jets. Acknowledgements. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, 13-05-00480, 14-05-00502 and grant of the President of the Russian Federation. Fraedrich K., Jansen H., Kirk E., Luksch U., and Lunkeit F. The Planet Simulator: Towards a user friendly model // Meteorol. Zeitschrift. 2005, 14, 299-304. Kidston J., Vallis G.K., Dean S.M., Renwick J.A. Can the increase in the eddy length scale ander global warming cause the poleward shift of the jet streams? // J. Climate. 2011, V.24. P. 3764-3780.

  15. Differentiating atmospheric and mineral sources of sulfur during snowmelt using δ 34S, 35S activity, and δ 18O of sulfate and water as tracers

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Mayer, B.; Mitchell, M. J.; Michel, R. L.; Bailey, S.; Kendall, C.

    2003-12-01

    The biogeochemical cycling of sulfur was studied during the 2000 snowmelt at Sleepers River Research Watershed in northeastern Vermont, USA using a combination of isotopic, chemical, and hydrometric measurements. The snowpack and 10 streams of varying size and land use were sampled for sulfate concentrations and isotopic analyses of 35S, δ 34S, and δ 18O of sulfate. Values of δ 18O of water were measured at one of the streams. Apportionment of atmospheric and mineral S sources based on δ 34S was possible at 7 of the 10 streams. Weathering of S-containing minerals was a major contributor to sulfate flux in streamwater, but atmospheric contributions exceeded 50% in several of the streams at peak snowmelt and averaged 41% overall. In contrast, δ 18Osulfate values of streamwater remained significantly lower than those of atmospheric sulfate throughout the melt period, indicating that atmospheric sulfate undergoes microbial redox reactions in the soil that replace the oxygen of atmospheric sulfate with isotopically lighter oxygen from soil water. Streamwater 35S activities were low relative to those of the snowpack; the youngest 35S-ages of the atmospheric S component in each of the 7 streams ranged from 184 to 320 days. Atmospheric S contributions to streamwater, as determined by δ 34S values, co-varied both with 35S activity and new water contributions as determined by δ 18Owater. However, the δ 18Osulfate and 35S ages clearly show that this new water carries very little of the atmospheric sulfate entering with the current snowmelt to the stream. Most incoming atmospheric sulfate first cycles through the organic soil S pool and ultimately reaches the stream as pedogenic sulfate.

  16. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Final technical report, September 1, 1991--August 31, 1992

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Cao, J.; Donnals, G.L.; Ruch, R.R.; Pan, W.P.; Shao, D.

    1992-12-31

    Using the pyrolysis-QGA system, samples of coal were heated from ambient temperature to 800{degrees}C at a rate of 20{degrees}C/min in the pyrolysis chamber under a nitrogen atmosphere. The volatile products were carried with the nitrogen flow to the combustion chamber which was maintained at 850{degrees}C under a constant flow of oxygen. For Illinois coals (IBC-101, 103, and -109), HCl was the only chlorine species identified by the QGA. The HCl release profiles for the coals showed a broad peak between 250{degrees}C and 600{degrees}C with a maximum at 445{degrees}C. Neutron activation analysis of pyrolysis residues showed that 98 percent of the chlorine in raw coal was volatilized. Thus, it may be inferred that the chlorine in Illinois coals is released rapidly as HCl, not as sodium chloride (NaCl), during combustion in a utility/industrial boiler. In contrast to chlorine, the sulfur release profile for IBC-109 showed three peaks: the first sulfur peak at about 350{degrees}C was probably derived from elemental sulfur, the main peak at 475{degrees}C corresponded to the release of organic sulfur, and the third peak at 600{degrees}C resulted from the decomposition of pyrite. The low-temperature peak was absent for fresh samples. Sulfur dioxide (SO{sub 2}) was the major sulfur species in combustion gases under an oxidizing condition; additional gaseous sulfur species (COS and H{sub 2}S) were observed when the atmosphere was changed to a reducing condition.

  17. Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact on the glucosinolate composition

    PubMed Central

    Aghajanzadeh, Tahereh; Kopriva, Stanislav; Hawkesford, Malcolm J.; Koprivova, Anna; De Kok, Luit J.

    2015-01-01

    The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both species contained a number of aliphatic, aromatic and indolic glucosinolates. The total glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa, which could solely be attributed to the presence of high levels of sinigrin, which was absent in the latter species. Sulfate deprivation resulted in a strong decrease in the content and an altered composition of the glucosinolates of both species. Despite the differences in patterns in foliarly uptake and metabolism, their exposure hardly affected the glucosinolate composition of the shoot, both at sulfate-sufficient and sulfate-deprived conditions. This indicated that the glucosinolate composition in the shoot was hardly affected by differences in sulfur source (viz., sulfate, sulfite and sulfide). Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur source for growth, the glucosinolate composition of roots differed from sulfate-sufficient B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than that observed in sulfur-sufficient roots. PMID:26579170

  18. Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography.

    PubMed

    Wilson, Walter B; Sander, Lane C; de Alda, Miren Lopez; Lee, Milton L; Wise, Stephen A

    2016-08-26

    Retention indices for 79 alkyl-substituted polycyclic aromatic sulfur heterocycles (PASHs) were determined by using reversed-phase liquid chromatography (LC) on a monomeric and polymeric octadecylsilane (C18) stationary phase. Molecular shape parameters [length, breadth, thickness (T), and length-to-breadth ratio (L/B)] were calculated for all the compounds studied. Based on separations of isomeric methylated polycyclic aromatic hydrocarbons on polymeric C18 phases, alkyl-substituted PASHs are expected to elute based on increasing L/B ratios. However, the correlation coefficients had a wide range of values from r=0.43 to r=0.93. Several structural features besides L/B ratios were identified to play an important role in the separation mechanism of PASHs on polymeric C18 phases. First, the location of the sulfur atom in a bay-like-region results in alkylated-PASHs being more retentive than non-bay-like-region alkylated-PASHs, and they elute later than expected based on L/B value. Second, the placement of the alkyl group in the k region of the structure resulted in a later elution than predicted by L/B. Third, highly nonplanar methyl-PASHs (i.e., 1-Me and 11-MeBbN12T) elute prior to the parent PASH (BbN12T). PMID:27477517

  19. The behavior of nitrifying sludge in presence of sulfur compounds using a floating biofilm reactor.

    PubMed

    Beristain-Cardoso, Ricardo; Gómez, Jorge; Méndez-Pampín, Ramón

    2010-11-01

    The tolerance, kinetic and oxidizing capability of a nitrifying sludge exposed to different initial concentrations of sulfide (1.7 to 18mg/L) was evaluated in batch experiments. A nitrifying sludge fed with ammonium and thiosulfate and produced in steady state conditions was used as inoculum. Sulfide induced a significant effect either on ammonium consumption rates or nitrite accumulation. In spite of the nitrifying kinetic was affected, the ammonium consumption efficiencies were close to 100%, with nitrate production yields around 1.0. The IC(50) value for ammonium oxidizing-process was 13mg/L of sulfide. Sulfide was oxidized in two steps: first sulfide was oxidized to elemental sulfur and afterward into sulfate. FISH oligonucleotide probes for Thiobacillusdenitrificans, Nitrosomonas spp., and Nitrobacter spp. were used in order to know if these bacteria were part of the microbial ecology. The obtained results showed that under nitrifying conditions are possible to carry out simultaneously two biological processes, nitrification and sulfur oxidation. PMID:20620047

  20. Retention behavior of isomeric polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography.

    PubMed

    Wilson, Walter B; Sander, Lane C; de Alda, Miren Lopez; Lee, Milton L; Wise, Stephen A

    2016-08-26

    Retention indices for 70 polycyclic aromatic sulfur heterocycles (PASHs) were determined using reversed-phase liquid chromatography (LC) on a monomeric and a polymeric C18 stationary phase. Molecular shape parameters [length, breadth, thickness (T), and length-to-breadth ratio (L/B)] were calculated for all the compounds studied. Correlations between the retention on the polymeric C18 phase and PASH geometry (L/B and T) were investigated for six specific PASH isomer groups with molecular mass (MM) 184Da, 234Da, 258Da, 284Da, 334Da, and 384Da. Similar to previous studies for polycyclic aromatic hydrocarbons (PAHs), PASH elution order on the polymeric C18 phase was generally found to follow increasing L/B values. Correlation coefficients for retention vs L/B ranged from r=0.45 (MM 184Da) to r=0.89 (MM 284Da). In the case of smaller PASHs (MM≤258Da), the location of the sulfur atom in the bay-region of the structure resulted in later than expected elution of these isomers based on L/B. In the case of the larger PASHs (MM≥284Da), nonplanarity had a significant influence on earlier than predicted elution based on L/B values. PMID:27481401

  1. Corrosion resistance and behavioral characteristics of metals exposed to 70 percent by weight sulfuric acid at elevated temperatures

    SciTech Connect

    Nguyen, D.T.; Farina, G.E.

    1994-10-01

    The development of a concentrated acid hydrolysis process may necessitate the storage, handling, and processing of concentrated solution of sulfuric acid at temperatures in excess of 70{degrees}C. Due to the corrosivity of the sulfuric acid at elevated temperatures, a series of corrosion tests was conducted to determine the corrosion performance and behavior of various construction materials using immersion and electrochemical techniques. Test results showed that among the stainless steels tested, only Carpenter 20Mo-6 performed satisfactorily up to 70{degrees}C. It passivated spontaneously and corroded at a rate less than 40 {mu}m/yr (1.6 mpy). Among numerous nickel-based alloys tested, only Hastelloy B-2 had excellent corrosion resistance up to 100{degrees}C with a corrosion rate less than 50 {mu}/yr (2 mpy), although the alloy did not passivate. Zirconium alloy Zr 702 provided excellent corrosion resistance to 100{degrees}C. The alloy passivated spontaneously, but its passive range decreased, evidently with increase in temperature. Tantalum and KBI-40 provided excellent corrosion protection at all test temperatures. The materials passivated spontaneously with a wide passive range.

  2. Evaluation of sulfur dioxide-generating pads and modified atmosphere packaging for control of postharvest diseases in blueberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postharvest diseases are a limiting factor of storage and shelf life of blueberries. Gray mold caused by Botrytis cinerea is one of the most important postharvest diseases in blueberries grown in California. In this study, we evaluated the effects of sulfur dioxide (SO2)-generating pads (designated ...

  3. Sulfur and phosphorus distribution between liquid iron and magnesia-saturated slag in molecular hydrogen/water atmosphere relevant to a novel green ironmaking technology

    NASA Astrophysics Data System (ADS)

    Mohassab Ahmed, Mohassab Yousef

    As an integral part of a research project which aimed to develop a novel green ironmaking process, an experimental determination of the sulfur and phosphorus distribution ratios, LS and LP, respectively, between molten iron and CaO-MgO(Saturated)-SiO2-Al 3O3-FeO slag was determined in the temperature range 1550-1650°C. Oxygen partial pressure was controlled by H2/H2O equilibrium in the range of 10-10-10-8 atm. For sulfur distribution, it was found that the trend of the distribution is the same as the previous work done under CO/CO2 atmosphere but LS in this case is 38-44 times less under similar oxygen partial pressure. This might be attributed to the impact of H2 on the distribution. Considering the fact that the input sulfur in the proposed process is approximately 34 times less than the blast furnace process, the proposed process would produce hot metal with approximately the same sulfur content to the hot metal produced by the blast furnace. For phosphorus distribution, LP was 450-1050 times that of the blast furnace. Also considering the amount of phosphorus input in the two processes, it was found that the expected P content in iron in the new process would be approximately three times less than in the blast furnace hot metal. This means that the proposed process will produce hot metal with much lower phosphorus which will minimize the need for dephosphorization in the steelmaking stage.

  4. Models for the Centimeter-Wavelength Opacity of Sulfur Dioxide and Carbon Dioxide based on Laboratory Measurements Conducted under Simulated Conditions for the Deep Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Shahan, P. M.

    2013-10-01

    In the past two decades, multiple observations of Venus have been made at X band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus. Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler et al., Icarus 154, 2001), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Initial measurements of the centimeter-wavelength (3.7-20 cm) of SO2 and CO2 under simulated conditions for the deep atmosphere of Venus, conducted using a new high-pressure system operating at 430 K and at pressures up to 92 Bars, were presented by Steffes and Barisich (DPS-2012, B.A.A.S., v.44, p.241). Over the past year, we have completed this measurement campaign for temperatures up to 550 K, so as to better understand the effects of SO2 and CO2 on the microwave emission from the Venus boundary layer. Results indicate that the model for the centimeter-wavelength opacity from pure CO2 (developed over 40 years ago -- Ho et al., JGR 71, 1966), is valid over the entire centimeter-wavelength range under simulated conditions for the deep atmosphere of Venus. Additionally, the laboratory results indicate that the model for the centimeter-wavelength opacity of SO2 in a CO2 atmosphere from Suleiman et al. (JGR-Planets, 101, Feb. 1996) can reliably be used under conditions of the deep atmosphere of Venus with the modifications described in this paper . This work is supported by the NASA Planetary Atmospheres Program under Grant NNX11AD66G.

  5. The formation of acid rain in the atmosphere, adjacent to the TTP with the joint-condensing of sulfur dioxide and water vapor

    NASA Astrophysics Data System (ADS)

    Gvozdyakov, D. V.; Gubin, V. E.; Matveeva, A. A.

    2014-08-01

    Presents the results of mathematical simulation of the condensation process of sulphur dioxide and water vapor on the condensation nuclei surface under the action of natural factors. Numerical investigations were carried out for the summer at a moderate speed of the wind. The influence of the parameter of condensation on the speed of the process of sulfuric acid drops formation in the air space was analyzed. Time ranges, sufficient for the formation of the acid rain sedimentation in the atmosphere, adjacent to the areas of thermal power station work were established. It is shown that the speed of air masses movement effects on the process of acid anthropogenic admixtures dispersion in the atmosphere. Approbation of the obtained results was carried out by checking the difference scheme conservative and solution of test problems.

  6. Reaction behavior of Ni-Re alloys during direct current polarization in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Elemesov, T. B.; Levchuk, O. M.; Bol'shikh, A. O.

    2016-01-01

    The macrokinetic regularities of the reactivity of synthesized Ni-Re (20 and 60 wt %) alloys in a sulfuric acid solution (100 g/L, 25-40°C) during direct current polarization are studied using physicochemical methods. The phase composition of the synthesized alloys is determined by the formation of solid solutions as a function of the initial Ni/Re weight ratio. These are two types of nickel solid solutions (Ni16Re0.2 and Ni14Re0.9) and one rhenium solution (Ni1.1Re). These solid solutions are anodically oxidized in the sequence of their structural rearrangement Ni16Re0.2 → Ni14Re0.9 → Ni1.1Re with a combined transition of the metals into an electrolyte solution. These solid solutions provide the reduction of Ni3+ to Ni2+ due to the depolarization ability of rhenium, being their component.

  7. Zeolites Remove Sulfur From Fuels

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1991-01-01

    Zeolites remove substantial amounts of sulfur compounds from diesel fuel under relatively mild conditions - atmospheric pressure below 300 degrees C. Extracts up to 60 percent of sulfur content of high-sulfur fuel. Applicable to petroleum refineries, natural-gas processors, electric powerplants, and chemical-processing plants. Method simpler and uses considerably lower pressure than current industrial method, hydro-desulfurization. Yields cleaner emissions from combustion of petroleum fuels, and protects catalysts from poisoning by sulfur.

  8. Sulfur and Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    D'Aquin, Gerard E.; Fell, Robert C.

    Sulfur is one of the few elements that is found in its elemental form in nature. Typical sulfur deposits occur in sedimentary limestone/gypsum formations, in limestone/anhydrite formations associated with salt domes, or in volcanic rock.1 A yellow solid at normal temperatures, sulfur becomes progressively lighter in color at lower temperatures and is almost white at the temperature of liquid air. It melts at 114-119°C (depending on crystalline form) to a transparent light yellow liquid as the temperature is increased. The low viscosity of the liquid begins to rise sharply above 160°C, peaking at 93 Pa·s at 188°C, and then falling as the temperature continues to rise to its boiling point of 445°C. This and other anomalous properties of the liquid state are due to equilibria between the various molecular species of sulfur, which includes small chains and rings.

  9. Sulfur Isotopic Composition and Behavior in Granitoid Intrusions, southwestern New Brunswick, Canada

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lentz, D. R.

    2004-05-01

    Bulk sulfur isotopic composition and sulfur content were determined for 12 granitoid intrusions (48 samples) associated with various types of mineralization (e.g., Au, Sb-W-Mo-Au, W-Sn-In-Zn-Pb-Cu) and the pertinent wallrocks (7 samples), in southwestern New Brunswick, Canada. This data together with data from field relations, magnetic susceptibility, sulfide mineralogy, petrology, and geochemistry, were used to characterize these intrusions. Two distinct groups can be established, although both show some features of I-type grantiods: (1) a Late Devonian granitic series (GS) including the Mount Pleasant, True Hill, Beech Hill, Pleasant Ridge, Kedron, Sorrel Ridge granites, and (2) a Late Silurian to Early Devonian granodioritic to monzogranitic series (GMS) including the Magaguadavic, Bocabec, Utopia, Tower Hill, Evandale, and Lake George intrusions. The former occur along the northwestern flank of the Saint George Batholith as satellite plutons, and the later form parts of this batholith and the Pokiok Batholith to the north. The GS rocks show the attributes of evolved I-type with some A-type features, whereas the GMS rocks are either reduced I-type (ilmenite-series), or normal I-type (magnetite-series). Strong assimilation and contamination by local metasedimentary rocks lead to the Tower Hill granite resembling S-type, e.g., the presence of muscovite and garnet. The GS type rocks have δ 34S values between -7.1 and +13 per mil with bulk-S content ranging from 33 to 3434 ppm. The GMS type rocks have relatively narrower variation in δ 34S values (-4.4 to +7.3 per mil), but with larger ranges of bulk-S content (45 to 11100 ppm). The granite samples with S contents much higher than its solubility in felsic melts are interpreted to be affected either by local metasedimentary rocks or by late stage hydrothermal alteration. The metasedimentary rocks contain variable S contents (707 to 14000 ppm) with δ 34S values of -10.6 to 0.1 per mil. In terms of mass balance, a

  10. Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1985-01-01

    A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.

  11. MECHANISM AND RATES OF THE GAS PHASE OXIDATIONS OF SULFUR DIOXIDE AND THE NITROGEN OXIDES IN THE ATMOSPHERE

    EPA Science Inventory

    As our knowledge of the atmospheric chemistry of the SO2, NO, and NO2 continues to grow, it becomes increasingly clear that many different chemical reactions contribute to the oxidation of these oxides in the atmosphere. Solution phase and gas phase chemistry are both important t...

  12. PREDICTION OF MULTICOMPONENT INORGANIC ATMOSPHERIC AEROSOL BEHAVIOR. (R824793)

    EPA Science Inventory

    Many existing models calculate the composition of the atmospheric aerosol system by solving a set of algebraic equations based on reversible reactions derived from thermodynamic equilibrium. Some models rely on an a priori knowledge of the presence of components in certain relati...

  13. Corrosion resistance and behavior of construction materials exposed to dilute sulfuric acid at elevated temperatures under static conditions

    SciTech Connect

    Nguyen, D.T.

    1994-10-01

    Laboratory investigation has been undertaken to determine the electrochemical behavior and corrosion resistance of various construction materials in a simulated hydrolysis environment (5 wt % sulfuric acid) at temperatures ranging from 90 to 220C. Tests were performed in an autoclave-type electrochemical cell. The corrosion behavior of the test materials was determined using computer-controlled DC potentiodynamic polarization. Corrosion rates of the test materials were determined using AC impedance techniques. Among the stainless steels tested, only alloy N08026 (Carpenter 20Mo-6) performed satisfactory up to a temperature of 100C. The alloy passivated spontaneously in the environment and corroded at a rate of less than 2 mpy. None of the stainless steels tested could be used at 120{degrees}C or above. A number of nickel-based alloys tested had good corrosion resistance up to 100C, but their corrosion rate exceeded 2 mpy at higher temperatures. Zirconium alloys were satisfactory up to 180C. Only tantalum and a tantalum-niobium alloy were satisfactory up to 220C.

  14. Behavior of sulfur and chlorine in coal during combustion and boiler corrosion. Final technical report, 1 September, 1992--31 August, 1993

    SciTech Connect

    Chou, C.L.; Hackley, K.C.; Cao, J.; Moore, D.M.; Xu, J.; Ruch, R.R.; Pan, W.P.; Upchurch, M.L.; Cao, H.B.

    1993-12-31

    The goals of this project are to investigate the behavior of sulfur and chlorine during pyrolysis and combustion of Illinois coals, the chemistry and mineralogy of boiler deposits, the effects of combustion gases on boiler materials, and remedial measures to reduce the sulfur and chlorine compounds in combustion gases. Replicate determinations of chlorine and sulfur evolution during coal pyrolysis-gas combustion were conducted using a pyrolysis apparatus in conjunction with a quadrupole gas analyzer. HCl is the only gaseous chlorine species measured in combustion gases. Pyrolysis of coal IBC-109 spiked with NaCl solution shows a strong peak of HCl evolution above 700C. The absence of this peak during pyrolysis of Illinois coal indicates that little chlorine in Illinois coal occurs in the NaCl form. Evolution of sulfur during coal pyrolysis was studied; the sulfur evolution profile may be explained by the sulfur forms in coal. To determine the fate of sulfur and chlorine during combustion, a set of six samples of boiler deposits from superheater and reheater tubes of an Illinois power plant was investigated. Scanning electron microscopy shows microscopic calcium sulfate droplets on cenospheres. Superheater deposits are high in mullite, hematite, and cristobalite, whereas a reheater deposit is enriched in anhydrite. The chlorine content is very low, indicating that most of the chlorine in the feed coal is lost as volatile HCl during he combustion process. The profiles of SO{sub 2} released during combustion experiments at 825 C indicate that calcium hydroxide added to the coal has a significant effect on reducing the SO{sub 2} vapors in combustion gases.

  15. Long-term variations in abundance and distribution of sulfuric acid vapor in the Venus atmosphere inferred from Pioneer Venus and Magellan radio occultation studies

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Steffes, P. G.

    1992-01-01

    Radio occultation experiments have been used to study various properties of planetary atmospheres, including pressure and temperature profiles, and the abundance profiles of absorbing constituents in those planetary atmospheres. However, the reduction of amplitude data from such experiments to determine abundance profiles requires the application of the inverse Abel transform (IAT) and numerical differentiation of experimental data. These two operations preferentially amplify measurement errors above the true signal underlying the data. A new technique for processing radio occultation data has been developed that greatly reduces the errors in the derived absorptivity and abundance profiles. This technique has been applied to datasets acquired from Pioneer Venus Orbiter radio occultation studies and more recently to experiments conducted with the Magellan spacecraft. While primarily designed for radar studies of the Venus surface, the high radiated power (EIRP) from the Magellan spacecraft makes it an ideal transmitter for measuring the refractivity and absorptivity of the Venus atmosphere by such experiments. The longevity of the Pioneer Venus Orbiter has made it possible to study long-term changes in the abundance and distribution of sulfuric acid vapor, H2SO4(g), in the Venus atmosphere between 1979 and 1992. The abundance of H2SO4(g) can be inferred from vertical profiles of 13-cm absorptivity profiles retrieved from radio occultation experiments. Data from 1979 and 1986-87 suggest that the abundance of H2SO4(g) at latitudes northward of 70 deg decreased over this time period. This change may be due to a period of active volcanism in the late 1970s followed by a relative quiescent period, or some other dynamic process in the Venus atmosphere. While the cause is not certain, such changes must be incorporated into dynamic models of the Venus atmosphere. Potentially, the Magellan spacecraft will extend the results of Pioneer Venus Orbiter and allow the continued

  16. Laboratory measurements of the 3.7-20 cm wavelength opacity of sulfur dioxide and carbon dioxide under simulated conditions for the deep atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Steffes, Paul G.; Shahan, Patrick; Christopher Barisich, G.; Bellotti, Amadeo

    2015-01-01

    In the past two decades, multiple observations of Venus have been made at X-Band (3.6 cm) using the Jansky Very Large Array (VLA), and maps have been created of the 3.6 cm emission from Venus (see, e.g., Devaraj, K. [2011]. The Centimeter- and Millimeter-Wavelength Ammonia Absorption Spectra under Jovian Conditions. PhD Thesis, Georgia Institute of Technology, Atlanta, GA). Since the emission morphology is related both to surface features and to deep atmospheric absorption from CO2 and SO2 (see, e.g., Butler, B.J., Steffes, P.G., Suleiman, S.H., Kolodner, M.A., Jenkins, J.M. [2001]. Icarus 154, 226-238), knowledge of the microwave absorption properties of sulfur dioxide in a carbon dioxide atmosphere under conditions for the deep atmosphere of Venus is required for proper interpretation. Except for a single measurement campaign conducted at a single wavelength (3.2 cm) over 40 years ago (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), no measurements of the centimeter-wavelength properties of any Venus atmospheric constituent have been conducted under conditions characteristic of the deep atmosphere (pressures from 10 to 92 bars and temperatures from 400 to 700 K). New measurements of the microwave properties of SO2 and CO2 at wavelengths from 3.7 to 20 cm have been conducted under simulated conditions for the deep atmosphere of Venus, using a new high-pressure system. Results from this measurement campaign conducted at temperatures from 430 K to 560 K and at pressures up to 92 bars are presented. Results indicate that the model for the centimeter-wavelength opacity from pure CO2 (Ho, W., Kaufman, I.A., Thaddeus, P. [1966]. J. Geophys. Res. 71, 5091-5108), is valid over the entire centimeter-wavelength range under simulated conditions for the deep atmosphere of Venus. Additionally, the laboratory results indicate that both of the models for the centimeter-wavelength opacity of SO2 in a CO2 atmosphere from Suleiman et al. (Suleiman, S

  17. Thermodynamic Properties of Sulfatian Apatite: Constraints on the Behavior of Sulfur in Calc-Alkaline Magmas

    NASA Astrophysics Data System (ADS)

    Core, D.; Essene, E. J.; Luhr, J. F.; Kesler, S. E.

    2004-12-01

    The Gibbs free energy of hydroxyellestadite [Ca10(SiO4)3(SO4)3(OH)2] was estimated using mineral equilibria applied to analyzed assemblages from the experimental charges of Luhr (1990). The apatite analyses of Peng et al. (1997) were used in conjunction with new analyses of the oxides and silicates in this study. An ideal mixing model was employed for apatite combined with mixing models from MELTS (Ghiorso & Sack, 1994) and Gibbs free energy data from Robie & Hemingway (1995) for the other crystalline phases. The resultant equation of the Gibbs free energy vs. T for hydroxyellestadite is as follows: DG°T(elem) = [2.817(T - 273) - 11831]/1000 kJ/mol, T in K. The calculated entropy for hydroxyellestadite is 1944 J/mol.K at 1073 K and 2151 J/mol.K at 1227 K. Independent estimates of the entropy of hydroxyellestadite obtained with the method of Robinson & Haas (1983) are within 5% of these values. The thermodynamic data on hydroxyellestadite were used to calculate the locus of the reactions: 2Ca10(SiO4)3(SO4)3(OH)2 + 7S2 + 21O2 = 20CaSO4 + 6SiO2 + 2H2O 6Ca10(SiO4)3(SO4)3(OH)2 + 102SiO2 + 20Fe3O4 = 60CaFeSi2O6 + 6H2O + 9S2 + 37O2 2Ca10(SiO4)3(SO4)3(OH)2 + 10Mg2Si2O6 + 14SiO2 = 20CaMgSi2O6 + 2H2O + 3S2 + 9O2 in fO2-fS2 space at fixed P-T. Application of these equilibria to apatite zoned in sulfate from oxidized granitoids reflects a drop in fS2 by more than 1 log unit during its growth. The zoning is interpreted to represent the removal of a magmatic vapor phase during crystallization of these plutons. Removal of sulfur from magmas by hydrothermal fluids is important to the ore-forming process and to the production of acid sulfate aerosols during eruption of oxidized magmas. Preservation of sulfatian apatite may yield data on the sulfidation states of ancient flood basalts such as the Deccan Traps of India and the Parana basalts of Brazil to address the environmental impact of these giant eruptions.

  18. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  19. Perrhenate and Pertechnetate Behavior on Iron and Sulfur-Bearing Compounds

    SciTech Connect

    Anderson, B.E.; Becker, U.; Helean, K.B.; Ewing, R.C.

    2007-07-01

    Investigations of the behavior of the element {sup 99}Tc frequently use a stable isotope of rhenium as an analogue. This is based on the elements? similar radii, major oxidation states of +7 and +4, and analogous eH-pH diagrams. However, recent studies [1] have shown this analogy to be imperfect. Therefore, one goal of this study is to compare the behavior of these elements, with an emphasis on the adsorption of perrhenate and pertechnetate (the major forms of Re and Tc in natural waters) onto mineral surfaces. Quantum mechanical calculations were performed for the adsorption of these two anions onto relaxed clusters of the well-characterized sulfide galena (PbS). With these calculations, we have gained insight into differences between the anions adsorption behavior, including geometry, adsorption energies, and electronic structure. Differences between interactions on terraces and step edges, the effects of co-adsorbates such as Na{sup +} and Cl{sup -}, and chloride complexation were also explored. The influence of water was calculated using homogeneous dielectric fluids.As a complement to the calculations, batch sorption tests are in progress involving ReO{sub 4}{sup -}/TcO{sub 4}{sup -} solution in contact with Fe metal, 10% Fe-doped hydroxyapatite, goethite, hematite, magnetite, pyrite, galena, pyrrhotite, and sphalerite. (authors)

  20. Perrhenate and Pertechnetate Behavior on Iron and Sulfur-Bearing Compounds.

    SciTech Connect

    B.E. Anderson; U. Becker; K.B. Helean; R.C. Ewing

    2006-09-15

    Investigations on the behavior of the radioactive element technetium frequently use a stable isotope of rhenium as an analogue. This is justified by citing the elements similar radii and major oxidation states of +7 and +4. However, at least one study [1] has shown this analogy to be imperfect. Therefore, one goal of our study is to compare the adsorption behavior of perrhenate and pertechnetate (the major forms of Re and Tc in natural waters) on a number of different mineral surfaces. Quantum mechanical calculations were performed on the adsorption of these two anions on a series of iron oxides and sulfides. With these calculations, we gain insight into any differences between the anions adsorption behavior, including geometry, adsorption energies, and electronic structure such as density of states and orbital shapes and energies at the adsorption site. Differences between interactions on terraces and step edges, the effects of co-adsorbates such as Na{sup +} or H{sup +}, and possible reduction mechanisms are also explored. The influence of water was calculated using homogeneous dielectric fluids and explicit water molecules. As a complement to the calculations, batch sorption tests are in progress involving ReO{sub 4}{sup -}/TcO{sub 4}{sup -} solution in contact with Fe metal, 10% Fe-doped hydroxyapatite, goethite, hematite, magnetite, pyrite, galena, and sphalerite.

  1. Benevolent behavior of Kleinia grandiflora leaf extract as a green corrosion inhibitor for mild steel in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Pitchaipillai, Muthukrishnan; Raj, Karthik; Balasubramanian, Jeyaprabha; Periakaruppan, Prakash

    2014-11-01

    The ethanolic extract of Kleinia grandiflora leaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and X-ray diffraction analysis. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 308 to 328 K. The inhibition efficiency was observed to increase with increasing concentration of the extract. Polarization curves revealed that the Kleinia grandiflora leaf extract is a mixed inhibitor. Impedance diagrams revealed that an increase of Kleinia grandiflora leaf extract concentration increased the charge transfer resistance and decreased the double-layer capacitance. The adsorption process obeys Langmuir's model, with a standard free energy of adsorption (Δ G ads) of -18.62 kJ/mol. The obtained results indicate that the Kleinia grandiflora leaf extract can serve as an effective inhibitor for the corrosion of mild steel in a sulfuric acid medium.

  2. Depletions of sulfur and/or zinc in IDPs: Are they reliable indicators of atmospheric entry heating?

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.; Thomas, K. L.; Keller, L. P.

    1993-01-01

    The degree of heating of interplanetary dust particles (IDP's) on Earth atmospheric entry is important in distinguishing cometary particles from main-belt asteroidal particles. Depletions in the volatile elements S and Zn were proposed as chemical indicators of significant entry heating. The S and Zn contents of cosmic dust particles were correlated with physical indicators of atmospheric entry heating, such as the production of magnetite and the loss of solar wind implanted He. The results indicate that the Zn content of IDP's is a useful indicator of entry heating, but the S content seems to be less useful.

  3. Possible influence of sulfur content on magnetic aging behaviors of non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Mao, Wei-Min; Yang, Ping; Li, Chang-Rong

    2013-12-01

    Six non-oriented steel sheets of similar grade produced by different steel companies were used to analyze the magnetic aging behaviors after aging at 200°C for 48 h. It was observed that tiny S atoms, besides C and N, could also induce certain increase of core loss during aging. Thermodynamic calculation indicated that the nucleation driving force of FeS is much higher than those of Fe3C and Fe4N at low temperature, while S atoms, which tend to segregated around dislocations and boundaries, would diffuse rapidly along the crystalline defects while FeS particles would form. Therefore, higher content of tiny S atoms could increase core loss during service time of non-oriented steel sheets.

  4. Nonequilibrium Behavior of the Daytime Atmospheric Boundary Layer, from LES

    NASA Astrophysics Data System (ADS)

    Jayaraman, Balaji; Brasseur, James; McCandless, Tyler; Haupt, Sue

    2014-11-01

    LES of the daytime atmospheric boundary layer (ABL) over flat topography is universally developed as an equilibrium ABL with steady surface heat flux Q0 and steady unidirectional ``geostrophic'' wind vector Vg above a capping inversion, where Vg also defines a spatially uniform transverse mean pressure gradient. The LES approaches a quasiequilibrium state characterized statistically by the ratio of boundary layer depth to Obukhov length scale. In contrast, the true daytime ABL is driven by surface heat flux increases to peak mid-day and drops in the afternoon, and by mesoscale wind vectors Ug that change in magnitude and direction during the day. We study the consequences of mesoscale weather on ABL dynamics by forcing ABL LES with a WRF simulation of the Midwest during 3 days of frontal passage over Kansas. Assuming horizontal homogeneity, we derive the relationship between Ug and Vg and study ABL response with systematic variation in Q0 and the magnitude and direction of Ug. Interesting results include: (1) asymmetry nonequilibrium diurnal response of the ABL; (2) directional changes in surface layer winds relevant to wind turbine function; and (3) changes in ABL stability state arising solely from changes in the direction of Ug. Supported by DOE. Computer resources by NSF/XSEDE.

  5. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth's atmosphere.

    PubMed

    Whitehill, Andrew R; Xie, Changjian; Hu, Xixi; Xie, Daiqian; Guo, Hua; Ono, Shuhei

    2013-10-29

    Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen ((16)O,(17)O,(18)O) and sulfur ((32)S, (33)S, (34)S, (36)S) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify the breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with Δ(33)S up to 78‰ and Δ(36)S up to 110‰, from the broadband excitation of SO2 in the 250-350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO2 ( (3)B1), which results from intersystem crossing from the excited singlet ( (1)A2/ (1)B1) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO2 and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO2 to the singlet states but from an isotope selective spin-orbit interaction between the singlet ( (1)A2/ (1)B1) and triplet ( (3)B1) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for (33)SO2 and (36)SO2 for the low vibrational levels of the (1)A2 state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems. PMID:23836655

  6. Sulfur Mustard

    MedlinePlus

    ... the environment. Sulfur mustard was introduced in World War I as a chemical warfare agent. Historically it ... fatal. When sulfur mustard was used during World War I, it killed fewer than 5% of the ...

  7. Atmospheric deposition of nitrogen, sulfur and base cations in jack pine stands in the Athabasca Oil Sands Region, Alberta, Canada.

    PubMed

    Fenn, M E; Bytnerowicz, A; Schilling, S L; Ross, C S

    2015-01-01

    Atmospheric deposition in the Athabasca Oil Sands Region decreased exponentially with distance from the industrial center. Throughfall deposition (kg ha(-1) yr(-1)) of NH(4)-N (.8-14.7) was double that of NO(3)-N (.3-6.7), while SO(4)-S ranged from 2.5 to 23.7. Gaseous pollutants (NO(2), HNO(3), NH(3), SO(2)) are important drivers of atmospheric deposition but weak correlations between gaseous pollutants and deposition suggest that particulate deposition is also important. The deposition (eq ha(-1)) of base cations (Ca + Mg + Na) across the sampling network was highly similar to N + S deposition, suggesting that acidic deposition is neutralized by base cation deposition and that eutrophication impacts from excess N may be of greater concern than acidification. Emissions from a large forest fire in summer 2011 were most prominently reflected in increased concentrations of HNO(3) and throughfall deposition of SO4-S at some sites. Deposition of NO(3)-N also increased as did NH(4)-N deposition to a lesser degree. PMID:25236261

  8. Atmosphere

    NASA Technical Reports Server (NTRS)

    Billings, C. E.

    1973-01-01

    Properties of elements and compounds are considered which make up or may be added to a gaseous environment suitable for humans. Oxygen and carbon dioxide are emphasized; nitrogen and the noble gases are also cited. Other gaseous compounds, such as carbon monoxide, methane, and sulfur hexafluoride, are briefly mentioned.

  9. Sulfur, Chlorine and Fluorine Degassing and Atmospheric Loading by the Roza eruption, Columbia River Basalt Group, Washington

    NASA Technical Reports Server (NTRS)

    Thordarson, Th.; Self, S

    1996-01-01

    In this study we attempt to quantify the amount of S, Cl and F released by the 1300 cu km Roza member (approximately 14.7 Ma) of the Columbia River Basalt Group, which was produced by a moderate-size flood basalt eruption in the mid-Miocene. Our results are the first indication of the potential atmospheric SO2 yield from a flood basalt eruption, and indicate the mechanism by which flood basalt eruptions may have seriously affected the environment. Glass inclusions in phenocrysts and quenched glass in products from various stages of the eruption were analyzed for concentrations of S, Cl and F and major elements. Glass inclusions contain 1965 +/- 110 ppm S, 295 +/- 65 ppm Cl and 1310 +/- 110 ppm F. Groundmass glass of Roza dike selvages contains considerably lower concentrations: 1110 +/- 90 ppm S, 245 +/- 30 ppm Cl and 1020 +/- 25 ppm F. Scoria clasts from near vent deposits contain 665 +/- 75 ppm S, 175 +/- 5 ppm Cl and 950 +/- 20 ppm F, and the groundmass glass of lava selvages contains 520 +/- 30 ppm S, 190 +/- 30 ppm Cl and 890 +/- 55 ppm F. In crystalline lava, the concentrations are 195 ppm S, 100 ppm Cl and 830 ppm F. Volatile element concentrations in these samples represent the progress of degassing through the eruption and can be used to estimate the potential amount of the volatiles S, Cl and F released by the magma into the atmosphere, as well as to evaluate the amount liberated by various phases of the eruption. The total amount of volatiles released by the Roza eruption is estimated to have been approximately 12,420 MtSO2, approximately 710 MtHCI and approximately 1780 MtHF. The Roza magma liberated approximately 9620 MtSO, (77% of the total volatile mass released), approximately 400 MtHCI (56%) and approximately 1450 MtHF (81%) at the vents and lofted by the eruption columns to altitudes of 7-13 km. Degassing of the lava is estimated to have released an additional approximately 2810 MtSO2, approximately 310 MtHCI and approximately 330 MtHF. The Roza

  10. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA

    NASA Astrophysics Data System (ADS)

    Clow, David W.; Roop, Heidi A.; Nanus, Leora; Fenn, Mark E.; Sexstone, Graham A.

    2015-01-01

    Lakes and streams in Class 1 wilderness areas in the western United States (U.S.) are at risk from atmospheric deposition of nitrogen (N) and sulfur (S), and protection of these resources is mandated under the Federal Clean Air Act and amendments. Assessment of critical loads, which are the maximum exposure to pollution an area can receive without adverse effects on sensitive ecosystems, requires accurate deposition estimates. However, deposition is difficult and expensive to measure in high-elevation wilderness, and spatial patterns in N and S deposition in these areas remain poorly quantified. In this study, ion-exchange resin (IER) collectors were used to measure dissolved inorganic N (DIN) and S deposition during June 2006-September 2007 at approximately 20 alpine/subalpine sites spanning the Continental Divide in Rocky Mountain National Park. Results indicated good agreement between deposition estimated from IER collectors and commonly used wet + dry methods during summer, but poor agreement during winter. Snowpack sampling was found to be a more accurate way of quantifying DIN and S deposition during winter. Summer DIN deposition was significantly greater on the east side of the park than on the west side (25-50%; p ≤ 0.03), consistent with transport of pollutants to the park from urban and agricultural areas to the east. Sources of atmospheric nitrate (NO3-) were examined using N isotopes. The average δ15N of NO3- from IER collectors was 3.5‰ higher during winter than during summer (p < 0.001), indicating a seasonal shift in the relative importance of regional NOx sources, such as coal combustion and vehicular sources of atmospheric NO3-. There were no significant differences in δ15N of NO3- between east and west sides of the park during summer or winter (p = 0.83), indicating that the two areas may have similar sources of atmospheric NO3-. Results from this study indicate that a combination of IER collectors and snowpack sampling can be used to

  11. Spatial patterns of atmospheric deposition of nitrogen and sulfur using ion-exchange resin collectors in Rocky Mountain National Park, USA

    USGS Publications Warehouse

    Clow, David W.; Roop, Heidi; Nanus, Leora; Fenn, Mark; Sexstone, Graham A.

    2015-01-01

    Lakes and streams in Class 1 wilderness areas in the western United States (U.S.) are at risk from atmospheric deposition of nitrogen (N) and sulfur (S), and protection of these resources is mandated under the Federal Clean Air Act and amendments. Assessment of critical loads, which are the maximum exposure to pollution an area can receive without adverse effects on sensitive ecosystems, requires accurate deposition estimates. However, deposition is difficult and expensive to measure in high-elevation wilderness, and spatial patterns in N and S deposition in these areas remain poorly quantified. In this study, ion-exchange resin (IER) collectors were used to measure dissolved inorganic N (DIN) and S deposition during June 2006–September 2007 at approximately 20 alpine/subalpine sites spanning the Continental Divide in Rocky Mountain National Park. Results indicated good agreement between deposition estimated from IER collectors and commonly used wet + dry methods during summer, but poor agreement during winter. Snowpack sampling was found to be a more accurate way of quantifying DIN and S deposition during winter. Summer DIN deposition was significantly greater on the east side of the park than on the west side (25–50%; p ≤ 0.03), consistent with transport of pollutants to the park from urban and agricultural areas to the east. Sources of atmospheric nitrate (NO3−) were examined using N isotopes. The average δ15N of NO3− from IER collectors was 3.5‰ higher during winter than during summer (p < 0.001), indicating a seasonal shift in the relative importance of regional NOxsources, such as coal combustion and vehicular sources of atmospheric NO3−. There were no significant differences in δ15N of NO3− between east and west sides of the park during summer or winter (p = 0.83), indicating that the two areas may have similar sources of atmospheric NO3−. Results from this study indicate that a combination of IER collectors and snowpack

  12. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  13. Effects of sulfur dioxide emissions on stream chemistry in the western United States

    USGS Publications Warehouse

    Campbell, D.H.; Turk, J.T.

    1988-01-01

    A 20-year record of water chemistry for seven headwater streams in the Rocky Mountain region of the western United States is compared to estimates of local and regional sulfur dioxide emissions. Emissions from smelters comprise a significant part of sulfur dioxide emissions for the 11 states upwind of acid-sensitive watersheds in the Rocky Mountains, but smelter emissions have steadily decreased since 1970. Analysis of stream chemistry indicates conservative behavior of watershed sulfate, with atmospheric deposition as the dominant source. No relation between regional stream chemistry and smelter or regional sulfur dioxide emissions is detected. Local emissions trends, however, do appear to affect sulfate concentrations in the streams. -from Authors

  14. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges

    SciTech Connect

    Shi Hong; Wang Yanhui; Wang Dezhen

    2008-12-15

    A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.

  15. Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Feng, W.; Dawkins, E.; Chipperfield, M. P.; Höffner, J.; Janches, D.; Marsh, D. R.

    2014-07-01

    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105 km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer.

  16. Resolving the Strange Behavior of Extraterrestrial Potassium in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Plane, J. M. C.; Feng, W.; Dawkins, E.; Chipperfield, M. P.; Hoeffner, J.; Janches, D.; Marsh, D. R.

    2014-01-01

    It has been known since the 1960s that the layers of Na and K atoms, which occur between 80 and 105km in the Earth's atmosphere as a result of meteoric ablation, exhibit completely different seasonal behavior. In the extratropics Na varies annually, with a pronounced wintertime maximum and summertime minimum. However, K varies semiannually with a small summertime maximum and minima at the equinoxes. This contrasting behavior has never been satisfactorily explained. Here we use a combination of electronic structure and chemical kinetic rate theory to determine two key differences in the chemistries of K and Na. First, the neutralization of K+ ions is only favored at low temperatures during summer. Second, cycling between K and its major neutral reservoir KHCO3 is essentially temperature independent. A whole atmosphere model incorporating this new chemistry, together with a meteor input function, now correctly predicts the seasonal behavior of the K layer.

  17. The Role of Family Atmosphere in the Relapse Behavior of Iranian Opiate Users: a Qualitative Study

    PubMed Central

    Peyrovi, Hamid; Seyedfatemi, Naiemeh; Jalali, Amir

    2015-01-01

    Introduction Many Iranian opiate users live with family members and family atmosphere can be influential on reducing such social behaviors of opiate users as substance use and relapses. This paper reports the impact of family atmosphere on relapse behavior as a part of the findings of a larger study that explored the relapse process among Iranian opiate users. Methods: In this qualitative research, we selected 17 participants (5 women and 12 men). The questions were been asked through semi-structured interviews. The researchers analyzed the verbatim transcripts using content analysis method. Results: "Family atmosphere" with three sub-themes (family and tribes' interaction, family challenges and family structure) was been found as determinants of relapse behavior. The quality of the family atmosphere could be in harmony with or against the willingness or motivation of the opiate user towards the relapse. Conclusion Health care providers should reinforce involvement of the family members in the treatment and rehabilitation of opiate users. The opiate user's family and even relatives may benefit from learning how to manage their own feelings and attitude towards the client and being supportive during interactions. PMID:26464835

  18. Sulfur Cycle

    NASA Technical Reports Server (NTRS)

    Hariss, R.; Niki, H.

    1985-01-01

    Among the general categories of tropospheric sulfur sources, anthropogenic sources have been quantified the most accurately. Research on fluxes of sulfur compounds from volcanic sources is now in progress. Natural sources of reduced sulfur compounds are highly variable in both space and time. Variables, such as soil temperature, hydrology (tidal and water table), and organic flux into the soil, all interact to determine microbial production and subsequent emissions of reduced sulfur compounds from anaerobic soils and sediments. Available information on sources of COS, CS2, DMS, and H2S to the troposphere in the following paragraphs are summarized; these are the major biogenic sulfur species with a clearly identified role in tropospheric chemistry. The oxidation of SO2 to H2SO4 can often have a significant impact on the acidity of precipitation. A schematic representation of some important transformations and sinks for selected sulfur species is illustrated.

  19. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  20. POSTFLAME BEHAVIOR OF NITROGENOUS SPECIES IN THE PRESENCE OF FUEL SULFUR: I. RICH, MOIST, CO/AR/O2

    EPA Science Inventory

    The paper gives results of experimental measurements of NO, N2, and other nitrogenous species in the postflame games of rich (phi = 2.17) premixed laminar CO/Ar/O2 (trace H2) flames, with fuel nitrogen as NO, C2N2, and NH3 and fuel sulfur as SO2, which allowed the nitrogen balanc...

  1. Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.

    2012-01-01

    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.

  2. Transient Scaling Behavior and Predictability of Atmospheric Moisture, Clouds and Precipitation

    NASA Astrophysics Data System (ADS)

    Barros, Ana; Nogueira, Miguel; Sun, Xiaoming

    2015-04-01

    The stochastic scaling behavior of clouds and rainfall observations exhibits transient behavior consistent with the temporal and spatial evolution of atmospheric dynamics at all scales. In mountainous regions, and regions of well-defined, spatially stationary modes of land-atmosphere interactions, analysis of remote-sensing and ground-based observations shows ubiquitous co-organization of landform, clouds and precipitation with seasonal and inter-annual variability consistent with regional climate. Recent work using both idealized and realistic model simulations of atmospheric dynamics (Nogueira and Barros, 2014; Nogueira et al., 2013) shows that transient scaling behavior at regional scales can be strictly interpreted in the light of moist processes, and in particular atmospheric stability regimes as defined by CAPE, Richardson number and normalized Brunt-Vaisala frequency among others. Furthermore, a sharp transition scaling parameters between non-convective and convective conditions is found that explains different scaling regimes reported in the literature for atmospheric wind, temperature and moisture observations. Spectral slopes around 2-2.3 arise under non-convective or very weak convective conditions, tightly related to the scaling behavior of the underlying topography. In convective situations the transient scaling exponents remain under 5/3 in agreement with the Kolmogorov turbulent regime accounting for the intermittency correction. The non-convective/convective transition is also unambiguously captured by the temporal evolution of the multifractal intermittency parameter. These findings indicate that the transient stochastic scaling of clouds and precipitation is an emergent property of complex moist processes with important implications for predictability: predictability in space conditional on landform and land-atmosphere interactions at local to regional scales, and predictability in time conditional on atmospheric dynamics, and convective activity

  3. Correlations between the behavior of recreational horses, the physiological parameters and summer atmospheric conditions.

    PubMed

    Janczarek, Iwona; Wilk, Izabela; Zalewska, Edyta; Bocian, Krzysztof

    2015-07-01

    The aim of this paper was to select atmospheric factors and their values, which may disrupt the correct behavior and physiological condition of recreational horses. The studies were carried out from 1 July until 1 September on 16 Anglo-Arabian geldings. Each day, from 09.00 to 10.00 hours, the horses worked under saddle. The riders and the authors gave a qualitative behavioral assessment for each horse. Mood and willingness to work were evaluated. The quantitative assessment was called 'incorrect behavior of the horse while riding' (IBHR). The percentage time of duration and the number of occurrences of the features while riding were calculated. Heart rate, body temperature and respiratory rate were taken at 08.00 hours (resting measurement) and at 10.05 hours (post-exercise measurement). Air temperature, relative air humidity, wind speed and atmospheric pressure were measured at 08.00 and 10.00 hours. The results showed that adverse changes in the behavior of recreational horses can occur if the horse is ridden when the air temperature is above 26°C and when wind speeds exceed 5.5 m/s. Such conditions may cause a reduction in the mood and willingness to work in horses. Physiological parameters like heart rate and body temperature seem to be more sensitive indicators of the horse body reaction to the weather than behavioral reactions. PMID:25488802

  4. [Temporal behavior of light emission of dielectric barrier discharges in air at atmospheric pressure].

    PubMed

    Yin, Zeng-qian; Dong, Li-fang; Han, Li; Li, Xue-chen; Chai, Zhi-fang

    2002-12-01

    The experimental setup of dielectric barrier discharge was designed which is propitious to optical measurement. Temporal behavior of light emission of dielectric barrier discharges (filamentary model) in air at atmospheric pressure was measured by using optical method. Temporal behavior of dielectric barrier discharges was obtained. The experimental results show that the discharge burst in each half cycle of applied voltage consists of a series of discharge pulses, the duration of each discharge pulse is about 30-50 ns, and the interval of the neighboring discharge pulses is about a few hundred ns. The result is of great importance to the application of dielectric barrier discharges. PMID:12914154

  5. Monitoring and ANN modeling of coal stockpile behavior under different atmospheric conditions

    SciTech Connect

    Ozdeniz, A.H.; Ozbay, Y.; Yilmaz, N.; Sensogut, C.

    2008-07-01

    In this study, an industrial-sized stockpile of 5 m width, 4 m height, and 10 m length was built in a coal stock area to investigate coal stockpile behavior under different atmospheric conditions. The effective parameters on the coal stockpile that were time, weather temperature, atmospheric pressure, air humidity, velocity, and direction of wind values were automatically measured by means of a computer-aided measurement system to obtain Artificial Neural Network (ANN) input data. The coal stockpiles, which should be continuously observed, are capable of spontaneous combustion and then causing serious economical losses due to the mentioned parameters. Afterwards, these measurement values were used for training and testing of the ANN model. Comparison of the experimental and ANN results, accuracy rates of training, and testing were found as 98.6% and 98.7%, respectively. It is shown that possible coal stockpile behavior with this ANN model is powerfully estimated.

  6. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-07-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair, Yemen, on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (a.s.l.), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude agrees with CALIPSO aerosol observations to within 1 2 km. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  7. Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling

    NASA Astrophysics Data System (ADS)

    Eckhardt, S.; Prata, A. J.; Seibert, P.; Stebel, K.; Stohl, A.

    2008-02-01

    An analytical inversion method has been developed to estimate the vertical profile of SO2 emissions from volcanic eruptions. The method uses satellite-observed total SO2 columns and an atmospheric transport model (FLEXPART) to exploit the fact that winds change with altitude - thus, the position and shape of the volcanic plume bear information on its emission altitude. The method finds the vertical emission distribution which minimizes the total difference between simulated and observed SO2 columns while also considering a priori information. We have tested the method with the eruption of Jebel at Tair on 30 September 2007 for which a comprehensive observational data set from various satellite instruments (AIRS, OMI, SEVIRI, CALIPSO) is available. Using satellite data from the first 24 h after the eruption for the inversion, we found an emission maximum near 16 km above sea level (asl), and secondary maxima near 5, 9, 12 and 14 km a.s.l. 60% of the emission occurred above the tropopause. The emission profile obtained in the inversion was then used to simulate the transport of the plume over the following week. The modeled plume agrees very well with SO2 total columns observed by OMI, and its altitude and width agree mostly within 1-2 km with CALIPSO observations of stratospheric aerosol produced from the SO2. The inversion result is robust against various changes in both the a priori and the observations. Even when using only SEVIRI data from the first 15 h after the eruption, the emission profile was reasonably well estimated. The method is computationally very fast. It is therefore suitable for implementation within an operational environment, such as the Volcanic Ash Advisory Centers, to predict the threat posed by volcanic ash for air traffic. It could also be helpful for assessing the sulfur input into the stratosphere, be it in the context of volcanic processes or also for proposed geo-engineering techniques to counteract global warming.

  8. Improved method for minimizing sulfur loss in analysis of particulate organic sulfur.

    PubMed

    Park, Ki-Tae; Lee, Kitack; Shin, Kyoungsoon; Jeong, Hae Jin; Kim, Kwang Young

    2014-02-01

    The global sulfur cycle depends primarily on the metabolism of marine microorganisms, which release sulfur gas into the atmosphere and thus affect the redistribution of sulfur globally as well as the earth's climate system. To better quantify sulfur release from the ocean, analysis of the production and distribution of organic sulfur in the ocean is necessary. This report describes a wet-based method for accurate analysis of particulate organic sulfur (POS) in the marine environment. The proposed method overcomes the considerable loss of sulfur (up to 80%) that occurs during analysis using conventional methods involving drying. Use of the wet-based POS extraction procedure in conjunction with a sensitive sulfur analyzer enabled accurate measurements of cellular POS. Data obtained using this method will enable accurate assessment of how rapidly sulfur can transfer among pools. Such information will improve understanding of the role of POS in the oceanic sulfur cycle. PMID:24428718

  9. The seasonal and global behavior of water vapor in the Mars atmosphere - Complete global results of the Viking atmospheric water detector experiment

    NASA Technical Reports Server (NTRS)

    Jakosky, B. M.; Farmer, C. B.

    1982-01-01

    A key question regarding the evolution of Mars is related to the behavior of its volatiles. The present investigation is concerned with the global and seasonal abundances of water vapor in the Mars atmosphere as mapped by the Viking Mars Atmospheric Water Detector (MAWD) instrument for almost 1-1/2 Martian years from June 1976 to April 1979. Attention is given to the implications of the observed variations for determining the relative importance of those processes which may be controlling the vapor cycle on a seasonal basis. The processes considered include buffering of the atmosphere water by a surface or subsurface reservior of ground ice, physically adsorbed water, or chemically bound water. Other processes are related to the supply of water from the residual or seasonal north polar ice cap, the redistribution of the vapor resulting from atmospheric circulation, and control of the vapor holding capacity of the atmosphere by the local atmospheric temperatures.

  10. Investigating connections between local-remote atmospheric variability and Greenland outlet glacier behavior

    NASA Astrophysics Data System (ADS)

    Sobolowski, Stefan; Chen, Linling; Miles, Victoria

    2016-04-01

    The outlet glaciers along the margins of the Greenland Ice Sheet (GrIS) exhibit a range of behaviors, which are crucial for understanding GrIS mass changes from a dynamical point of view. However, the drivers of this behavior are still poorly understood. Arguments (counter-arguments) have been made for a strong (weak) local oceanic influence on marine terminating outlet glaciers while decadal-scale drivers linked to fluctuations in the Ice sheet itself and the North Atlantic ocean (e.g. Atlantic Multidecadal Variability) have also been posited as drivers. Recently there have also been studies linking (e.g. seasonal to interannual) atmospheric variability, synoptic activity and the Ice Sheet variability. But these studies typically investigate atmospheric links to the large-scale behavior of the Ice Sheet itself and do not go down to the scale of the outlet glaciers. Conversely, investigations of the outlet glaciers often do not include potential links to non-local atmospheric dynamics. Here the authors attempt to bridge the gap and investigate the relationship between atmospheric variability across a range of scales and the behavior of three outlet glaciers on Greenland's southeast coast over a 33-year period (1980-2012). The glaciers - Helheim, Midgard and Fenris - are near Tasiilaq, are marine terminating and exhibit varying degree of connection to the GrIS. ERA-Interim reanalysis, sea-ice data and glacier observations are used for the investigation. Long records of mass balance are unavailable for these glaciers and front position is employed as a measure of glacier atmosphere interactions across multiple scales, as it exhibits robust relationships to atmospheric variability on time scales of seasons to many years, with the strongest relationships seen at seasonal - interannual time scales. The authors do not make the argument that front position is a suitable proxy for mass balance, only that it is indicative of the role of local and remote atmospheric

  11. Lunar sulfur

    NASA Technical Reports Server (NTRS)

    Kuck, David L.

    1991-01-01

    Ideas introduced by Vaniman, Pettit and Heiken in their 1988 Uses of Lunar Sulfur are expanded. Particular attention is given to uses of SO2 as a mineral-dressing fluid. Also introduced is the concept of using sulfide-based concrete as an alternative to the sulfur-based concretes proposed by Leonard and Johnson. Sulfur is abundant in high-Ti mare basalts, which range from 0.16 to 0.27 pct. by weight. Terrestrial basalts with 0.15 pct. S are rare. For oxygen recovery, sulfur must be driven off with other volatiles from ilmenite concentrates, before reduction. Troilite (FeS) may be oxidized to magnetite (Fe3O4) and SO2 gas, by burning concentrates in oxygen within a magnetic field, to further oxidize ilmenite before regrinding the magnetic reconcentration. SO2 is liquid at -20 C, the mean temperature underground on the Moon, at a minimum of 0.6 atm pressure. By using liquid SO2 as a mineral dressing fluid, all the techniques of terrestrial mineral separation become available for lunar ores and concentrates. Combination of sulfur and iron in an exothermic reaction, to form iron sulfides, may be used to cement grains of other minerals into an anhydrous iron-sulfide concrete. A sulfur-iron-aggregate mixture may be heated to the ignition temperature of iron with sulfur to make a concrete shape. The best iron, sulfur, and aggregate ratios need to be experimentally established. The iron and sulfur will be by-products of oxygen production from lunar minerals.

  12. 40 CFR 60.104 - Standards for sulfur oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... atmosphere from any Claus sulfur recovery plant containing in excess of: (i) For an oxidation control system... emissions to the atmosphere by 90 percent or maintain SO2 emissions to the atmosphere less than or equal to... device to reduce SO2 emission, maintain sulfur oxides emissions calculated as SO2 to the atmosphere...

  13. Mean thermal and albedo behavior of the Mars surface and atmosphere over a Martian year

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.

    1981-01-01

    A Mars average data set (MADS) has been constructed from thermal and albedo measurements of the Viking Infrared Thermal Mapper; by merging information from all longitudes, and ensuring reasonably complete longitudinal sampling, a representation of mean Mars behavior is obtained. Brightness temperatures at 7, 9, 11, 15, and 20 microns and albedo information in the band 0.3-3.0 microns have been binned using 2 deg latitude strips, 24 times of day, 3 emission angle intervals, and 23 nonoverlapping solar longitude periods covering 1.43 Mars years starting at a solar longitude of 84 deg. The MADS is ideally suited to parametric study of latitudinal, diurnal, angular, and seasonal dependences. Data are presented for surface thermal and albedo behavior in clear and dusty atmospheric conditions; the thermal response of the atmospheric temperature to a major dust storm is found to be consistent with Mariner 9 data from the 1971 storm. Examples of use of the MADS, which is available through the Mars Consortium, indicate how averaged data reveal specific surface and atmospheric phenomena.

  14. (abstract) Line Mixing Behavior of Hydrogen-Broadened Ammonia Under Jovian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas R.

    1994-01-01

    Laboratory spectral data reported last year have been used to investigate the line mixing behavior of hydrogen-broadened ammonia inversion lines. The data show that broadening parameters appearing in the modified Ben-Reuven opacity formalism of Berge and Gulkis (1976) cannot maintain constant values over pressure ranges that include low to moderate pressures and high pressures. Also, they cannot change drastically in value, as in the Spilker (1990) revision of the Berge and Gulkis formalism. It has long been recognized that at low pressures, less than about 1 bar of a Jovian atmospheric mixture, a VVW formalism yields more accurate predictions of ammonia opacity than Ben-Reuven formalisms. At higher pressures the Ben-Reuven formalisms are more accurate. Since the Ben-Reuven lineshape collapses to a VVW lineshape in the low pressure limit, this low pressure inaccuracy of the Ben-Reuven formalisms is surprising. By incorporating various behavior, a new formalism is produced that is more accurate than previous formalisms, particularly in the critical 'transition region' from 0.5 to 2 bars, and that can be used without discontinuity from pressures of zero to hundreds of bars. The new formalism will be useful in such applications as interpretation of radio astronomical and radio occultation data on giant planet atmospheres, and radiative transfer modeling of those atmospheres.

  15. Fatigue crack growth behavior and overload effect of AISI 304 stainless steel in different atmospheres

    NASA Astrophysics Data System (ADS)

    Kelestemur, Mehmet Halidun

    1998-12-01

    AISI 304 stainless steel shows strain induced martensitic transformation at the crack tip. Such transformation may have effects on crack closure during fatigue crack propagation. Due to importance of AISI 304 in structural applications, the fatigue crack propagation and martensitic transformation in this material have to be investigated thoroughly. Fatigue crack growth behavior, overload retardation and characterization of martensitic transformation at the crack tip upon fatigue loading were investigated in 304 stainless steel at three different atmospheres, namely dry argon, moist air (75% relative humidity) and hydrogen. Comparison in various atmospheres showed that moist air did not influence that fatigue crack growth rate. However, in hydrogen atmosphere the material did not show threshold behavior and the crack growth rate was considerably higher. It was found that roughness-induced crack closure was the primary mechanism in the threshold region. Fractographic pictures taken by SEM and direct observation of crack profile showed that crack deflection and branching occurred during the fatigue crack propagation and plasticity-induced crack closure was not the primary closure mechanism. The influence of fatigue crack propagation on the rate and size of martensitic transformation at the crack tip was investigated. The overload retardation of the material was lower at hydrogen atmosphere. This low degree of retardation was explained by hydrogen embrittlement mechanism. Fractographic observations show striations at the overload zone in argon atmosphere indicating ductile fracture. In hydrogen atmosphere, overload area shows secondary cracks which represent brittle fracture. Crack closure measurements and modified Paris law did not show evidence for different retardation mechanisms at different atmospheres. It is found that primary retardation mechanisms were crack deflection, crack blunting and roughness-induced crack closure after application of overload(s). An

  16. Equilibrium analysis of aggregation behavior in the solvent extraction of Cu(II) from sulfuric acid by didodecylnaphthalene sulfonic acid

    SciTech Connect

    Moyer, B.A.; Baes, C.F. Jr.; Case, G.N.; Lumetta, G.J.; Wilson, N.M.

    1993-01-01

    By use of the principles of equilibrium analysis, the liquid-liquid cation exchange of Cu(II) from aqueous sulfuric acid at 25{degrees}C by didodecylnaphthalenesulfonic acid (HDDNS) in toluene may be understood in terms of small hydrated aggregated species in the organic phase. Extraction data were measured as a function of organic-phase HDDNS molarity (1.0 {times} 10{sup {minus}4} to 1.0 {times} 10{sup {minus}1}), aqueous copper(II) sulfate molarity (1.2 {times} 10{sup {minus}8} to 1.3 {times} 10{sup {minus}2}), and aqueous sulfuric acid molarity (0.03 to 6.0). Graphical analysis of linear regions of the data support a model in which organic-phase aggregates of HDDNS function by cation exchange to incorporate Cu(II) ions with no apparent change in aggregation number at low loading. Supporting FTIR spectra and water-content measurements of HDDNS solutions in toluene show that the HDDNS aggregates are highly hydrated. By use of the computer program SXLSQA, a comprehensive equilibrium model was developed with inclusion of activity effects. Aqueous-phase activity coefficients and degree of aqueous bisulfate formation were estimated by use of the Pitzer treatment. Organic-phase nonideality was estimated by the Hildebrand-Scott treatment and was shown to be a negligible effect under the conditions tested. Excluding aqueous sulfuric acid molarities greater than 1, it was possible to model the data to within experimental error by assuming only the equilibrium extraction of Cu{sup 2+} ion by the aggregate (HDDNS){sub 4}(H{sub 2}O){sub 22} and the equilibrium dissociation of (HDDNS){sub 4}(H{sub 2}O){sub 22} to the monomer. The dependence of Cu(II) distribution on aqueous sulfuric acid molarity was shown to be quantitatively consistent with a cation-exchange process. In comparison with the graphical approach, the computer analysis allows comprehensive model testing over large, nonlinear data sets and eliminates the need to make limiting assumptions.

  17. The influence of diesel-truck exhaust particles on the kinetics of the atmospheric oxidation of dissolved sulfur dioxide by oxygen.

    PubMed

    Meena, Vimlesh Kumar; Dhayal, Yogpal; Saxena, Deepa; Rani, Ashu; Chandel, C P Singh; Gupta, K S

    2016-09-01

    The automobile exhausts are one of the major sources of particulate matter in urban areas and these particles are known to influence the atmospheric chemistry in a variety of ways. Because of this, the oxidation of dissolved sulfur dioxide by oxygen was studied in aqueous suspensions of particulates, obtained by scraping the particles deposited inside a diesel truck exhaust pipe (DEP). A variation in pH showed the rate to increase with increase in pH from 5.22 to about ∼6.3 and to decrease thereafter becoming very slow at pH = 8.2. In acetate-buffered medium, the reaction rate was higher than the rate in unbuffered medium at the same pH. Further, the rate was found to be higher in suspension than in the leachate under otherwise identical conditions. And, the reaction rate in the blank reaction was the slowest. This appears to be due to catalysis by leached metal ions in leachate and due to catalysis by leached metal ions and particulate surface both in suspensions. The kinetics of dissolved SO2 oxidation in acetate-buffered medium as well as in unbuffered medium at pH = 5.22 were defined by rate law: k obs  = k 0 + k cat [DEP], where k obs and k 0 are observed rate constants in the presence and the absence of DEP and k cat is the rate constant for DEP-catalyzed pathway. At pH = 8.2, the reaction rate was strongly inhibited by DEP in buffered and unbuffered media. Results suggest that the DEP would have an inhibiting effect in those areas where rainwater pH is 7 or more. These results at high pH are of particular significance to the Indian subcontinent, because of high rainwater pH. Conversely, it indicates the DEP to retard the oxidation of dissolved SO2 and control rainwater acidification. PMID:27230141

  18. The response of a zonally symmetric atmosphere to subtropical thermal forcing - Threshold behavior

    NASA Technical Reports Server (NTRS)

    Plumb, R. A.; Hou, Arthur Y.

    1992-01-01

    We consider the response of a zonally symmetric atmosphere to a thermal forcing that is localized in the subtropics. Specifically, the equilibrium temperature distribution has a local subtropical peak and is flat elsewhere, including at the equator. On the basis of inviscid steady-state theory, it is argued that the response to such forcing is one of two distinct types. Below a threshold forcing, the atmosphere adopts a steady state of thermal equilibrium with no meridional flow. With supercritical forcing, this state breaks down and a strong meridional circulation is predicted. The threshold forcing value is that at which the absolute vorticity of the zonal flow (in gradient balance with the equilibrium temperatures) vanishes at the upper boundary. These inviscid predictions are tested in a zonally symmetric numerical model; while the model viscosity shifts the threshold and otherwise modifies the response, the threshold is clearly evident in the model behavior.

  19. Divergent behavior of hydrogen sulfide pools and of the sulfur metabolite lanthionine, a novel uremic toxin, in dialysis patients.

    PubMed

    Perna, Alessandra F; Di Nunzio, Annarita; Amoresano, Angela; Pane, Francesca; Fontanarosa, Carolina; Pucci, Piero; Vigorito, Carmela; Cirillo, Giovanni; Zacchia, Miriam; Trepiccione, Francesco; Ingrosso, Diego

    2016-07-01

    Dialysis patients display a high cardiovascular mortality, the causes of which are still not completely explained, but are related to uremic toxicity. Among uremic toxins, homocysteine and cysteine are both substrates of cystathionine β-synthase and cystathionine γ-lyase in hydrogen sulfide biosynthesis, leading to the formation of two sulfur metabolites, lanthionine and homolanthionine, considered stable indirect biomarkers of its production. Hydrogen sulfide is involved in the modulation of multiple pathophysiological responses. In uremia, we have demonstrated low plasma total hydrogen sulfide levels, due to reduced cystathionine γ-lyase expression. Plasma hydrogen sulfide levels were measured in hemodialysis patients and healthy controls with three different techniques in comparison, allowing to discern the different pools of this gas. The protein-bound (the one thought to be the most active) and acid-labile forms are significantly decreased, while homolanthionine, but especially lanthionine, accumulate in the blood of uremic patients. The hemodialysis regimen plays a role in determining sulfur compounds levels, and lanthionine is partially removed by a single dialysis session. Lanthionine inhibits hydrogen sulfide production in cell cultures under conditions comparable to in vivo ones. We therefore propose that lanthionine is a novel uremic toxin. The possible role of high lanthionine as a contributor to the genesis of hyperhomocysteinemia in uremia is discussed. PMID:27129884

  20. Are the clouds of Venus sulfuric acid.

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1973-01-01

    It is shown that strong aqueous sulfuric acid solutions have the right refractive index and freeze at Venusian cloud temperature, explain the dryness of the Venusian stratosphere, are consistent with some features of the Venusian IR spectrum, and do not absorb in highly reflecting areas of Venus. It is also indicated that such solutions should be produced by reactions between known atmospheric constituents and most sulfur-bearing rock at the Venusian surface temperature, and require only small amounts of sulfur consistent with its cosmic abundance and with the amounts of other volatile elements present in the atmosphere. It is believed therefore that the clouds of Venus consist of sulfuric acid solutions.

  1. Exfoliation Corrosion Behavior of 2B06 Aluminum Alloy in a Tropical Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Li, X. G.; Xiao, K.; Dong, C. F.; Wang, L. W.; Zhang, D. W.; Liu, Z. Y.

    2015-01-01

    In this study, corrosion behavior of 2B06 aluminum alloy was investigated after exposure to a tropical marine atmosphere for up to 4 years. After 6 months, the specimen showed exfoliation corrosion as well as rapid increase in thickness loss and corrosion rate. Exfoliation corrosion was found to initiate from hydrogen-assisted intergranular cracks and propagate extensively due to the wedge effect of the corrosion products. During the exposure test, corrosion on the groundward surface was considerably more severe than that on the skyward surface, which could be attributed to the different exposure conditions on the two surfaces.

  2. Atmosphere corrosion behavior of plasma sprayed and laser remelted coatings on copper

    NASA Astrophysics Data System (ADS)

    Liang, Gongying; Wong, T. T.; An, Geng; MacAlpine, J. M. K.

    2006-01-01

    Nickel and chromium coatings were produced using plasma spraying and laser remelting on the copper sheet. The corrosion test was carried out in an acidic atmosphere, and the corrosive behaviors of both coatings and original copper samples were investigated by using an impedance comparison method. Experimental results show that nickel and chromium coatings display better corrosion resistance properties relative to the original pure copper sample. The corrosion rate of chromium coating is less than that of nickel coating, and corrosion resistances of laser remelted nickel and chromium samples are better than those of plasma sprayed samples. The corrosion deposit film of copper is loose compared with nickel and chromium.

  3. Effect of added atmospheric resid on process indexes in cat cracking of vacuum distillate

    SciTech Connect

    Kruglova, L.E.; Khadzhiev, S.N.; Syunyaev, Z.I.; Smidovich, E.V.; Fedoseeva, V.I.; Kapustin, V.M.

    1987-09-01

    The catalytic cracking of vacuum distillates with West Siberia atmospheric resids was investigated to determine the optimal ratio of components in the blend and to define the influence of the quantity of added resid on the product yield and quality. The feedstocks tested included a low-sulfur hydrotreated vacuum distillate and a medium-sulfur atmospheric resid. Data on the quality, hydrocarbon composition, viscosity, distillation behavior, vanadium and nickel content, and sulfur content were determined and compared against a resid from a Texas crude. Physicochemical properties were determined for the naphtha and diesel fuel cuts obtained. Coke yields are also assessed.

  4. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    SciTech Connect

    Tay, W. H.; Kausik, S. S.; Wong, C. S. Yap, S. L.; Muniandy, S. V.

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  5. Understanding sources and behavior of primary organic aerosol emissions in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish

    Organic aerosol (OA) is a major contributor to fine particle concentrations throughout the atmosphere. OA may be directly emitted from various combustion and non-combustion sources (primary OA); and also formed in the atmosphere due to oxidation of gas-phase organics (secondary OA). The relative importance of primary and secondary OA is uncertain. Till date POA is modeled as non-volatile and non-reactive in the-state-of-the-art 3D-Chemical Transport models. However, recent studies have shown that POA is semivolatile in nature and varies in the atmosphere as a function of background OA, temperature and volatility of emissions. Also low volatility primary organic vapors can be oxidized to form secondary organic aerosol. These findings point to major limitations in process representation of primary emissions in models, which are reflected in the persistent discrepancies between model predictions and atmospheric observations. This dissertation developed parameters to represent gas-particle partitioning and aging of POA in air-quality models by fitting measured partitioning behavior of diesel and wood exhaust using dilution samplers. Using the lumped parameters derived from the fits, we investigated partitioning behavior of POA in the atmosphere. POA was found to semi-volatile in nature and evaporated in the atmosphere due to atmospheric dilution favoring partitioning to the gas phase. Since measurements are made at high concentrations compared to ambient conditions, POA emission factors are biased high. Measurements need to be made at atmospheric dilution conditions to reduce this bias. In addition, POA needs to be considered as semi-volatile in 3D-Chemical Transport models such as PMCAMx to simulate the whole range of atmospheric conditions. Using the state-of-the-art 3-D Chemical Transport Model PMCAMx, we evaluated the implications for partitioning and aging on urban and regional OA levels. The predictions of the revised modeling framework were evaluated against

  6. Production of sulfur trioxide, sulfuric acid and oleum

    SciTech Connect

    Daley, W.D.; Jaffe, J.

    1987-02-17

    A process is described for the production of sulfur trioxide which comprises the steps: (a) feeding a gas mixture having a sulfur dioxide partial pressure of at least about 0.5 atmosphere, an oxygen partial pressure of at least about 0.37 atmosphere, an oxygen:-sulfur dioxide mole ratio of between about 0.7:1 and about 1:1. It also has a total pressure between about 1 atmosphere and about 10 atmospheres in plug flow through a bed of a conversion catalyst selected from the group consisting of vanadium oxide conversion catalysts and platinum conversion catalysts; (b) cooling the catalyst bed to produce a first zone wherein the gas mixture increases in temperature from the inlet temperature to a temperature between about 475/sup 0/C. and about 575/sup 0/C., a second zone wherein the temperature is substantially constant at a temperature between about 450/sup 0/C. and about 575/sup 0/C. and a third zone wherein the temperature is declining from a temperature between about 450/sup 0/C. and about 575/sup 0/C. to a temperature between about 325/sup 0/C. and about 400/sup 0/C., (c) passing the gas mixture successively through the first, second and third zones with sufficient contact times in the second and third zones to produce a product gas mixture with a sulfur trioxide to sulfur dioxide mole ratio of at least about 99:1, (d) cooling the product gas mixture to a temperature between about 35/sup 0/C. and about 45/sup 0/C. to produce liquid sulfur trioxide, and (e) separating the liquid sulfur trioxide from the remaining gas stream.

  7. INTERMEDIATE-RANGE GRID MODEL AND USER'S GUIDE FOR ATMOSPHERIC SULFUR DIOXIDE AND SULFATE CONCENTRATIONS AND DEPOSITIONS - WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    The UWATM-SOX computer model was developed to address the acid rain problem on a mesoscale. It predicts sulfur dioxide (SO2) and sulfate (SO4) ambient air concentrations and ground level dry and wet (rain or snow) depositions given certain emission and meteorological input data. ...

  8. SURFACE REACTIONS OF OXIDES OF SULFUR

    EPA Science Inventory

    Surface reactions of several sulfur-containing molecules have been studied in order to understand the mechanism by which sulfate ions are formed on atmospheric aerosols. At 25C the heterogeneous oxidation of SO2 by NO2 to sulfuric acid and sulfate ions occurred on hydrated silica...

  9. Atmosphere-entry behavior of a modular, disk-shaped, isotope heat source.

    NASA Technical Reports Server (NTRS)

    Vorreiter, J. W.; Pitts, W. C.; Stine, H. A.; Burns, J. J.

    1973-01-01

    The authors have studied the entry and impact behavior of an isotope heat source for space nuclear power that disassembles into a number of modules which would enter the earth's atmosphere separately if a flight aborted. These modules are disk-shaped units, each with its own reentry heat shield and protective impact container. In normal operation, the disk modules are stacked inside the generator, but during a reentry abort they separate and fly as individual units of low ballistic coefficient. Flight tests at hypersonic speeds have confirmed that a stack of disks will separate and assume a flat-forward mode of flight. Free-fall tests of single disks have demonstrated a nominal impact velocity of 30 m/sec at sea level for a practical range of ballistic coefficients.

  10. Field studies of biogenic sulfur aerosols in inland and coastal wetlands

    SciTech Connect

    Dill, J.A.

    1983-01-01

    Two separate field studies were conducted, each of which was designed to address a specific objective. One study was conducted around a known source of biogenic H/sub 2/S at an inland location in Monroe County, NY. The objective of the Monroe County Experiment was to determine whether or not biogenic H/sub 2/S emissions in that area contribute significantly to local atmospheric concentration levels of sulfur oxides such as SO/sub 2/ and sulfate. A second study was conducted in a coastal location at Wallops Island, Virginia, where biogenic H/sub 2/S emissions have been shown to contribute to local atmospheric concentrations of sulfur oxide species. The objective of the Wallops Island study was to investigate the properties and behavior of these biogenic sulfur gases and particulates in an attempt to ascertain which factors govern their formation. From the Monroe County field study, the properties and behavior of the collected species indicated that the sulfur oxide species were primarily of anthropogenic origin. Although it is possible that biogenic sulfur oxides could have been present in the immediate vicinity of one of the five sites, the spatial orientation of the other sites was not conducive to demonstrating that such was the case. From the Wallops Island field study, these measurements were not found to contain useful information with respect to achieving the goals of the Wallops Island Experiment. This negative result was attributed to two factors.

  11. Initial corrosion behavior of a copper-clad plate in typical outdoor atmospheric environments

    NASA Astrophysics Data System (ADS)

    Yi, Pan; Xiao, Kui; Ding, Kangkang; Yan, Lidan; Dong, Chaofang; Li, Xiaogang

    2016-01-01

    A copper-clad printed circuit board (PCB-Cu) was subjected to long-term exposure test under typical Chinese atmospheric environments to study corrosion failure mechanisms. The corrosion behavior was investigated by analyzing electrochemical impedance, scanning Kelvin probes, stereo and scanning electron microscopes, and energy-dispersive spectra. Results showed that the initial surface potential was unevenly distributed. The outdoor PCB-Cu samples suffered severe corrosion caused by dust particles, contaminated media, and microorganisms after long-term atmospheric exposure. The initial localized corrosion was exacerbated and progressed to general corrosion for samples in Turpan, Beijing, and Wuhan under prolonged exposure, whereas PCB-Cu in Xishuangbanna was only slightly corroded. The tendency for electrochemical migration (ECM) of PCB-Cu was relatively low when applied with a bias voltage of 12 V. ECM was only observed in the PCB-Cu samples in Beijing. Contaminated medium and high humidity synergistically affected ECM corrosion in PCB-Cu materials. [Figure not available: see fulltext.

  12. Isothermal Oxidation Behavior of Supersonic Atmospheric Plasma-Sprayed Thermal Barrier Coating System

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Ding, Chunhua; Li, Hongqiang; Han, Zhihai; Ding, Bingjun; Wang, Tiejun; Yu, Lie

    2013-10-01

    In this work, Y2O3 stabilized zirconia-based thermal barrier coatings (TBCs) were deposited by conventional atmospheric plasma spraying (APS) and high efficiency supersonic atmospheric plasma spraying (SAPS), respectively. The effect of Al2O3 layer stability on the isothermal growth behavior of thermally grown oxides (TGOs) was studied. The results revealed that the Al2O3 layer experienced a three-stage change process, i.e., (1) instantaneous growth stage, (2) steady-state growth stage, and (3) depletion stage. The thickness of Al2O3 scale was proved to be an important factor for the growth rate of TGOs. The SAPS-TBCs exhibited a higher Al2O3 stability and better oxidation resistance as compared with the APS-TBCs. Additionally, it was found that inner oxides, especially nucleated on the top of the crest, continually grew and swallowed the previously formed Al2O3 layer, leading to the granulation and disappearance of continuous Al2O3 scale, which was finally replaced by the mixed oxides and spinel.

  13. Atmosphere

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Mitra, S. K.

    2014-05-01

    This paper investigates the high-temperature corrosion behavior of microstructurally different regions of the weldment of 9 Cr-1 Mo steel used in thermal power plant boiler in SO2 + O2 environment. The weldment is produced by tungsten inert gas welding method, and the different regions of the weldment (weld metal, heat-affected zone, and base metal) are exposed in SO2 + O2 (ratio 2:1) environment at 973 K for 120 h. The reaction kinetics and corrosion growth rate of different regions of weldment in isothermal condition are evaluated. The post corroded scales of the different specimens are studied in SEM, EDS, and XRD. The results indicate that the weld metal shows higher corrosion rate followed by HAZ and base metal. The higher rate of corrosion of weldmetal is mainly attributed to the least protective inner scale of Cr2O3 with minimum Cr Content. This is due to the formation of delta ferrite, which leads to the precipitation of the Cr-based secondary phases and depletes the free Cr from the matrix. The thermal cycles during welding at high temperature are favorable for the formation of delta ferrite. On the other hand, in absence of delta ferrite, the base metal and HAZ regions of the weldment show lower corrosion rate than weld metal. The difference in corrosion rate in the three regions of the weldment is supplemented by post-corroded scale characterizations.

  14. TRENDS IN RURAL SULFUR CONCENTRATIONS

    EPA Science Inventory

    This paper presents an analysis of regional trends in atmospheric concentrations in sulfur dioxide (502) and particulate sulfate (50~- ) at rural monitoring sites in the Clean Air Act Status and Trends Monitoring Network (CAsTNet) from 1990 to 1999. A two-stage approach is used t...

  15. Acute and chronic effects of atmospheric oxygen on the feeding behavior of Drosophila melanogaster larvae.

    PubMed

    Farzin, Manoush; Albert, Todd; Pierce, Nicholas; VandenBrooks, John M; Dodge, Tahnee; Harrison, Jon F

    2014-09-01

    All insects studied to date show reduced growth rates in hypoxia. Drosophila melanogaster reared in moderate hypoxia (10 kPa PO2) grow more slowly and form smaller adults, but the mechanisms responsible are unclear, as metabolic rates are not oxygen-limited. It has been shown that individual fruit flies do not grow larger in hyperoxia (40 kPa PO2), but populations of flies evolve larger size. Here we studied the effect of acute and chronic variation in atmospheric PO2 (10, 21, 40 kPa) on feeding behavior of third instar larvae of D.melanogaster to assess whether oxygen effects on growth rate can be explained by effects on feeding behavior. Hypoxic-reared larvae grew and developed more slowly, and hyperoxic-rearing did not affect growth rate, maximal larval mass or developmental time. The effect of acute exposure to varying PO2 on larval bite rates matched the pattern observed for growth rates, with a 22% reduction in 10 kPa PO2 and no effect of 40 kPa PO2. Chronic rearing in hypoxia had few effects on the responses of feeding rates to oxygen, but chronic rearing in hyperoxia caused feeding rates to be strongly oxygen-dependent. Hypoxia produced similar reductions in bite rate and in the volume of tunnels excavated by larvae, supporting bite rate as an index of feeding behavior. Overall, our data show that reductions in feeding rate can explain reduced growth rates in moderate hypoxia for Drosophila, contributing to reduced body size, and that larvae cannot successfully compensate for this level of hypoxia with developmental plasticity. PMID:25008193

  16. TOTAL SULFUR DEPOSITION (WET+DRY) FROM THE ATMOSHERE

    EPA Science Inventory

    Sulfur Dioxide (SO2) is emitted primarily as a by-product of coal combustion from power plants. Sulfur Dioxide reacts in the atmosphere to form other chemical such as Sulfuric Acid and Amonium Sulfate. These compounds and their secondarily formed constituents deposit to the sur...

  17. An Approach for Measuring the Sorptive Behavior of Odorants Using a Multifunction Thermal Desorber Unit: Preliminary Tests on Reduced Sulfur Compounds

    PubMed Central

    Kim, Ki-Hyun; Choi, Ye-Jin; Yang, Hye-Soon; Joo, Sang-Woo

    2008-01-01

    In this study, the sorptive behavior of reduced sulfur compounds (RSC) was investigated using a combination of thermal desorber (TD) unit and gas chromatography (GC). To examine the sorptive properties of RSC on textile materials, two types of experiments were conducted under experimental conditions favorable for sorptive processes. In all the experiments, gaseous standards of hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide were supplied to initiate the adsorption processes on textile pieces. The textile pieces were then forced to release those adsorbed RSC under a fixed condition. It was found that the extent of adsorption, if evaluated quantitatively, occurred at approximately 1/1000 to 1/100 of the level of RSC standards supplied originally to induce adsorption. It also indicated that RSC adsorption was affected very sensitively by the initial exposure durations to induce RSC adsorption with an exponential decrease in relative recovery (RR) values with increasing exposure time. The relative sorptive patterns, when compared between different RSCs, were affected most sensitively by such factors as molecular weight and/or physical contact conditions.

  18. Influences of temperature, H2SO4 concentration and Sn content on corrosion behaviors of PbSn alloy in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Li, D. G.; Chen, D. R.; Wang, J. D.; Chen, H. S.

    2011-10-01

    The influences of temperature, H2SO4 concentration and Sn content on corrosion behaviors of PbSn alloys in sulfuric acid solution were investigated by potentiodynamic curve, cyclic voltammetry (CV), linear sweeping voltage (LSV), electrochemical impedance spectra (EIS), a.c. voltammetry (ACV) and Mott-Schottky analysis. The microstructure of the corrosion layer on PbSn alloy was analyzed by scanning electron microscopy (SEM). The results showed that the corrosion resistance of PbSn alloy increased with ascending Sn content and H2SO4 concentration, the increment of temperature can decrease the corrosion resistance of PbSn alloy in H2SO4 solution. The conductivity of the anodic film on PbSn alloy was enhanced with increasing temperature, ascending Sn content and descending H2SO4 concentration. SEM result revealed that the corrosion film after cyclic voltammetry was consisted of tetragonal crystal, the porosity enlarged with decreasing temperature, Sn content and H2SO4 concentration.

  19. Reliability of Undergraduate Student in a Research on the Relations between Behavior and Days of the Week or Atmospheric Conditions.

    ERIC Educational Resources Information Center

    Vachon, Jean

    The influence of atmospheric conditions and the day of the week on school children's behavior was investigated by undergraduates. The college students were told either that their participation in the research was compulsory and would be graded, or that their participation was voluntary and ungraded. Fifty teachers observed their pupils' behavior…

  20. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth.

    PubMed

    Farquhar, J; Wing, B A; McKeegan, K D; Harris, J W; Cartigny, P; Thiemens, M H

    2002-12-20

    Populations of sulfide inclusions in diamonds from the Orapa kimberlite pipe in the Kaapvaal-Zimbabwe craton, Botswana, preserve mass-independent sulfur isotope fractionations. The data indicate that material was transferred from the atmosphere to the mantle in the Archean. The data also imply that sulfur is not well mixed in the diamond source regions, allowing for reconstruction of the Archean sulfur cycle and possibly offering insight into the nature of mantle convection through time. PMID:12493909

  1. Temporal and spatial resolved optical emission behaviors of a cold atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Xiong, Q.; Lu, X.; Liu, J.; Xian, Y.; Xiong, Z.; Zou, F.; Zou, C.; Gong, W.; Hu, J.; Chen, K.; Pei, X.; Jiang, Z.; Pan, Y.

    2009-10-01

    The propagation behavior of cold atmospheric pressure plasma jets has recently attracted lots of attention. In this paper, a cold He plasma jet generated by a single plasma electrode jet device is studied. The spatial-temporal resolved optical emission spectroscopy measurements are presented. It is found that the emission intensity of the He 706.5 nm line of the plasma behaves similarly both inside the syringe and in the surrounding air (plasma plume). It decreases monotonously, which is different from the emission lines, such as N2 337.1 nm line, N2+ 391.4 nm line, and O 777.3 nm line. For the discharge inside the syringe, the emission intensity of the He 706.5 nm line decays more rapidly than that of the other three spectral lines mentioned above. The N2 337.1 nm line behaves a similar time evolution with the discharge current. For the N2+ 391.4 nm line and the atomic O 777.3 nm line, both of them decay slower than that of the He 706.5 nm and the N2 337.1 nm. When the plasma plume propagates further away from the nozzle, the temporal behaviors of the emission intensities of the four lines tend to be similar gradually. Besides, it is found that, when the size of the plasma bullet appears biggest, the propagation velocity of the bullet achieves its highest value while the emission intensity of the N2+ 391.4 nm line reaches its maximum. Detailed analysis shows that the Penning effect between the metastable state Hem and the air molecules may play a significant role in the propagation of the plasma bullet in the open air.

  2. Atmospheric sulfur cycling in the tropical Pacific marine boundary layer (12°S, 135°W): A comparison of field data and model results: 1. Dimethylsulfide

    NASA Astrophysics Data System (ADS)

    Yvon, S. A.; Saltzman, E. S.; Cooper, D. J.; Bates, T. S.; Thompson, A. M.

    1996-03-01

    Shipboard measurements of atmospheric and seawater DMS were made at 12°S, 135°W for 6 days during March 1992. The mean seawater DMS concentration during this period was 4.1 ± 0.45 nM (1σ, n = 260) and the mean atmospheric DMS mole fraction was 453 ± 93 pmol mol-1 (1σ, n = 843). Consistent atmospheric diel cycles were observed, with a nighttime maximum and daytime minimum and an amplitude of approximately 85 pmol mol-1. Photochemical box model calculations were made to test the sensitivity of atmospheric DMS concentrations to the following parameters: 1) sea-to-air flux, 2) boundary layer height, 3) oxidation rate, and 4) vertical entrainment velocities. The observed relationship between the mean oceanic and atmospheric DMS levels require the use of an air-sea exchange coefficient which is at the upper limit end of the range of commonly used parameterizations. The amplitude of the diel cycle in atmospheric DMS is significantly larger than that predicted by a photochemical model. This suggests that the sea-to-air DMS flux is higher than was previously thought, and the rate of daytime oxidation of DMS is substantially underestimated by current photochemical models of DMS oxidation.

  3. Biogeochemistry of sulfur in the Vienna Woods: Study of sulfur stable isotope ratios by MC-ICP-MS as indicator of biogeochemical S cycling

    NASA Astrophysics Data System (ADS)

    Hanousek, Ondrej; Berger, Torsten W.; Prohaska, Thomas

    2014-05-01

    Sulfur entering forest ecosystems originates mainly from combustion of fossil fuels. This source of sulfur has been strongly (by more than 95 %) reduced in last decades and recently, higher sulfur output (in soil solution or stream water) than sulfur input (in rain water) in an ecosystem was registered in many monitored forest ecosystems. This unbalance may be caused by weathering of sulfur-bearing rocks, desorption of sulfur adsorbed in soil in the past or (re)mineralization of organic sulfur compounds. This 'negative' balance leads to mobilization of base cations along with SO42- and as such to an acidification of soils. As hypothesis, δ34S/32S depletion in stream water will be observed if a considerable proportion of atmospherically deposited sulfate is cycled through the organic S pool. Rain water and soil solutions samples were collected for this study at 3 sites (beech stands) in the Vienna Woods, Austria twice a month from May 2010 to April 2012. Due to the expected sulfate concentration gradient with respect to the distance from a tree, sampling was carried out at 5 intervals from a stem. The sulfur concentration in the samples was determined by ion chromatography. Sulfur isotope ratios (δ34S/32SV CDT) were analyzed by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in edge-resolution mode. The method was validated using IAEA-S-1 and IAEA-S-2 isotopic certified reference materials. The combined standard uncertainty of the measurement (uc = 0.10 %, k = 1) proves the suitability of the developed method. The concentration of sulfur in rain water showed expected behavior, with a seasonal maximum in winter months, in contrast to the corresponding δ34S/32SV CDT isotope ratios, where no or low seasonal trends were observed. The sulfur isotope ratios in soil solution samples show a dependence on the distance from a tree stem and the sampling depth with lower δ34S/32SV CDT ratios as compared to the precipitation. The measured isotopic

  4. Periodic behaviors in the observed vertical column abundances of atmospheric hydroxyl

    NASA Technical Reports Server (NTRS)

    Burnett, Elizabeth Beaver; Burnett, Clyde R.; Minschwaner, Kenneth R.

    1989-01-01

    The data base for the vertical column abundance of atmospheric hydroxyl (OH) for Fritz Peak Observatory, Colorado (40 N, 105 W), now extends from 1976 through 1988 and is composed of 8849 independent data sets, averaging about 15 percent uncertainty and 20-minute time resolution each. The dominant solar zenith angle (chi) dependence of the OH abundance is characterized by an empirical curve, N(88), which has been updated from N(82) to include all valid data from 1980 through 1988. The chi-dependence of the OH abundance has been, to a first order, removed from the data base by a normalization procedure in which each data point is divided by the N(88,AM) value for the corresponding solar zenith angle. The resulting normalized OH values may then be examined for other systematic effects, particularly for periodic variations. Observations have also been made at Boca Raton, Florida (26 N, 80 W) and at Truk, Federated States of Micronesia (7 N, 152 E). These data bases are much less extensive and, as such, are less amenable to analysis for periodic behaviors. Some comparisons with the Colorado data may be made, however.

  5. Parametric Behaviors of CLUBB in Simulations of Low Clouds in the Community Atmosphere Model (CAM)

    SciTech Connect

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Bogenschutz, Peter; Gettelman, A.; Zhou, Tianjun

    2015-07-03

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained by the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. This study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.

  6. Microstructure and Electrochemical Behavior of Fe-Based Amorphous Metallic Coatings Fabricated by Atmospheric Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Wang, L.; He, D. Y.; Wang, F. C.; Liu, Y. B.

    2011-01-01

    A Fe48Cr15Mo14C15B6Y2 alloy with high glass forming ability (GFA) was selected to prepare amorphous metallic coatings by atmospheric plasma spraying (APS). The as-deposited coatings present a dense layered structure and low porosity. Microstructural studies show that some nanocrystals and a fraction of yttrium oxides formed during spraying, which induced the amorphous fraction of the coatings decreasing to 69% compared with amorphous alloy ribbons of the same component. High thermal stability enables the amorphous coatings to work below 910 K without crystallization. The results of electrochemical measurement show that the coatings exhibit extremely wide passive region and relatively low passive current density in 3.5% NaCl and 1 mol/L HCl solutions, which illustrate their superior ability to resist localized corrosion. Moreover, the corrosion behavior of the amorphous coatings in 1 mol/L H2SO4 solution is similar to their performance under conditions containing chloride ions, which manifests their flexible and extensive ability to withstand aggressive environments.

  7. Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM)

    NASA Astrophysics Data System (ADS)

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven; Ovchinnikov, Mikhail; Bogenschutz, Peter A.; Gettelman, Andrew; Zhou, Tianjun

    2015-09-01

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher-order closure (HOC) scheme, and four parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A Quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained by the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussian closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. This study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.

  8. Theoretical studies of the marine sulfur cycle

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Kasting, James B.; Liu, May S.

    1985-01-01

    Several reduced sulfur compounds are produced by marine organisms and then enter the atmosphere, where they are oxidized and ultimately returned to the ocean or the land. The oceanic dimethyl sulfide (DMS) flux, in particular, represents a significant fraction of the annual global sulfur input to the atmosphere. In the atmosphere, this gas is converted to sulfur dioxide (SO2), methane sulfonic acid, and other organic acids which are relatively stable and about which little is known. SO2 is a short lived gas which, in turn, is converted to sulfuric acid and other sulfate compounds which contribute significantly to acid rain. Because of the complexity of the sulfur system, it is not well understood even in the unperturbed atmosphere. However, a number of new observations and experiments have led to a significant increase in the understanding of this system. A number of one dimensional model experiments were conducted on the gas phase part of the marine sulfur cycle. The results indicate the measured concentration of DMS and the amplitude of its diurnal cycle are in agreement with estimates of its global flux. It was also found that DMS can make a large contribution to the background SO2 concentration in the free troposphere. Estimates of CS2 concentrations in the atmosphere are inconsistent with estimated fluxes; however, measured reaction rates are consistent with the observed steep tropospheric gradient in CS2. Observations of CS2 are extremely sparse. Further study is planned.

  9. Dielectric strength of sulfur hexafluoride upon condensation

    SciTech Connect

    Antonov, A.V.; Lyapin, A.G.; Popkov, V.I.

    1983-01-01

    The behavior of sulfur hexafluoride in a sealed high-voltage device has been modeled for cooling to the condensation point of the insulating medium. The temperature dependences of the breakdown voltages of sulfur hexafluoride have been investigated for several interelectrode separations. The dielectric strength has been shown to decrease upon condensation with formation of a bridge of boiling liquid phase between the electrodes.

  10. Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors

    SciTech Connect

    Liu, W.; Vidic, R.D.; Brown, T.D.

    2000-02-01

    Following previous success with the use of activated carbon impregnated with sulfur at elevated temperatures for elemental mercury control, possible improvements in the impregnation procedure were evaluated in this study. Adsorbents prepared by thoroughly mixing sulfur and activated carbon in the furnace at the initial sulfur-to-carbon ratio (SCR) ranging from 4:1 to 1:2 showed similar adsorptive behavior in a fixed-bed system. Maintaining a stagnant inert atmosphere during the impregnation process improves sulfur deposition resulting in the enhanced dynamic capacity of the adsorbent when compared to other sulfur impregnated carbons. The fate of spent adsorbents was assessed using a toxicity characteristics leaching procedure (TCLP). Although mercury concentration in all leachates was below the TCLP limit, virgin activated carbon lost a significant fraction of the adsorbed elemental mercury during storage, while no loss was observed for sulfur-impregnated carbons. This finding suggests that virgin activated carbon may not be appropriate adsorbent for permanent sequestration of anthropogenic elemental mercury emissions.

  11. Uses of lunar sulfur

    NASA Technical Reports Server (NTRS)

    Vaniman, D.; Pettit, D.; Heiken, G.

    1992-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource.

  12. Laboratory measurements of the microwave and millimeter-wave opacity of gaseous sulfur dioxide (SO2) under simulated conditions for the Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1992-01-01

    Laboratory measurements have been conducted of the opacity of gaseous SO2 in a CO2 atmosphere at 12.3 cm, 1.32 cm, and 0.32 cm, with a view to the effects of this gas on the mm-wave emission of the Venus atmosphere. Close agreement is noted between the results obtained and the absorptivity predicted from a Van Vleck-Weisskopf formalism at the two shortest wavelengths, but not at the longest. These results have been incorporated into a radiative transfer model in order to infer an abundance profile for gaseous SO2 in Venus' middle atmosphere, and are also used to ascertain the effects of a SO2/CO2 gaseous mixture on the mm-wavelength spectrum of Venus.

  13. Optimizing stratospheric sulfur geoengineering by seasonally changing sulfur injections

    NASA Astrophysics Data System (ADS)

    Laakso, Anton; Partanen, Antti-Ilari; Kokkola, Harri; Lehtinen, Kari; Korhonen, Hannele

    2015-04-01

    Solar radiation management (SRM) by stratospheric sulfur injection has been shown to have potential in counteracting global warming if reducing of greenhouse gases has not been achieved fast enough and if climate warming will continue. Injecting large amounts of sulfate particles to the stratosphere would increase the reflectivity of the atmosphere and less sunlight would reach the surface. However, the effectivity (per injected sulphur mass unit) of this kind of geoengineering would decrease when amount of injected sulfur is increased. When sulfur concentration increases, stratospheric particles would grow to larger sizes which have larger gravitational settling velocity and which do not reflect radiation as efficiently as smaller particles. In many previous studies, sulfur has been assumed to be injected along the equator where yearly mean solar intensity is the highest and from where sulfur is spread equally to both hemispheres. However, the solar intensity will change locally during the year and sulfate has been assumed to be injected and spread to the hemisphere also during winter time, when the solar intensity is low. Thus sulfate injection could be expected to be more effective, if sulfur injection area is changed seasonally. Here we study effects of the different SRM injection scenarios by using two versions of the MPI climate models. First, aerosol spatial and temporal distributions as well as the resulting radiative properties from the SRM are defined by using the global aerosol-climate model ECHAM6.1-HAM2.2-SALSA. After that, the global and regional climate effects from different injection scenarios are predicted by using the Max Planck Institute's Earth System Model (MPI-ESM). We carried out simulations, where 8 Tg of sulfur is injected as SO2 to the stratosphere at height of 20-22 km in an area ranging over a 20 degree wide latitude band. Results show that changing the sulfur injection area seasonally would lead to similar global mean shortwave

  14. Laboratory measurements of the microwave opacity and vapor pressure of sulfuric acid vapor under simulated conditions for the middle atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Steffes, P. G.

    1985-01-01

    Microwave absorption measurements at wavelengths of 13.4 and 3.6 cm were made in gaseous H2SO4 in a CO2 atmosphere under simulated conditions for the Venus middle atmosphere. The results suggest that abundances of gaseous H2SO4 on the order of 15-30 ppm could account for the absorption observed by radio occultation measurements at these wavelengths. They also imply that such abundances would correspond to saturation vapor pressure existing at or above the 46-48-km range, which correlates with the observed cloud base.

  15. Ultrafine aerosol size distributions and sulfuric acid vapor pressures: Implications for new particle formation in the atmosphere. Year 2 progress report

    SciTech Connect

    McMurry, P.H.

    1993-07-01

    This project has two components: (1) measurement of H{sub 2}SO{sub 4} vapor pressures in air under temperature/relative humidity conditions similar to atmospheric, and (2) measurement of ultrafine aerosol size distributions. During Year 2, more effort was put on size distribution measurements. 4 figs.

  16. Sulfuric acid-sulfur heat storage cycle

    DOEpatents

    Norman, John H.

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  17. Organic Sulfur Gas Production in Sulfidic Caves

    NASA Astrophysics Data System (ADS)

    Stern, L. A.; Engel, A. S.; Bennett, P. C.

    2001-12-01

    Lower Kane Cave, Big Horn Basin, WY, permits access to an environment where anaerobic sulfide-rich groundwater meets the aerobic vadose zone. At this interface microorganisms thrive on diverse metabolic pathways including autotrophic sulfur oxidation, sulfate reduction, and aerobic heterotrophy. Springs introduce groundwater rich in H2S to the cave where it both degasses into the cave atmosphere and is used by chemautotrophic sulfur oxidizing bacteria in the cave spring and stream habitat. The cave atmosphere in the immediate vicinity of the springs has elevated levels of CO2, H2S and methane, mirroring the higher concentration of H2S and methane in the spring water. The high CO2 concentrations are attenuated toward the two main sources of fresh air, the cave entrance and breathing holes at the rear of the cave. Conventional toxic gas monitors permit estimations of H2S concentrations, but they have severe cross sensitivity with other reduced sulfur gases, and thus are inadequate for characterization of sulfur cave gases. However employment of a field-based GC revealed elevated concentrations of carbonyl sulfide in cave atmosphere. Cultures of microorganisms collected from the cave optimized for enriching fermenters and autotrophic and heterophic sulfate reducing bacteria each produced carbonyl sulfide suggesting a biogenic in origin of the COS in addition to H2S. Enrichment cultures also produced methanethiol (methyl mercaptan) and an additional as yet undetermined volatile organic sulfur compound. In culture, the organo-sulfur compounds were less abundant than H2S, whereas in the cave atmosphere the organo-sulfur compounds were the dominant sulfur gases. Thus, these organo-sulfur gases may prove to be important sources of both reduced sulfur and organic carbon to microorganisms living on the cave wall in a subaerial habitat. Moreover groundwater has not yet been recognized as a source of sulfur gases to the atmosphere, but with the abundance of sulfidic

  18. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?

    PubMed

    Qiao, Xue; Du, Jie; Lugli, Stefano; Ren, Jinhai; Xiao, Weiyang; Chen, Pan; Tang, Ya

    2016-08-15

    Massive deposition of calcium carbonate in ambient temperature waters (tufa) can form magnificent tufa landscapes, many of which are designated as protected areas. However, tufa landscapes in many areas are threatened by both local anthropogenic activities and climate change. This study, for the first time, posed the question whether the tufa landscape degradation (characterized by tufa degradation and increased biomass of green algae) in Jiuzhaigou National Nature Reserve of China is partially caused by regional air pollution and climate warming. The results indicate that wet deposition (including rain and snow) polluted by anthropogenic SO2, NOx, and NH3 emissions dissolves exposed tufa and may considerably reduce tufa deposition rate and even cause tufa dissolution within shallow waters. These effects of wet deposition on tufa enhanced as pH of wet deposition decreased from 8.01 to 5.06. Annual Volume Weighted Mean concentration of reactive nitrogen (including NH4(+) and NO3(-)) in wet deposition (26.1μmolL(-1)) was 1.8 times of the corresponding value of runoff (14.8μmolL(-1)) and exceeded China's national standard of total nitrogen in runoff for nature reserves (14.3μmolL(-1)), indicating a direct nitrogen fertilization effect of wet deposition on green algae. As water temperature is the major limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5cm) of runoff (depth<1m, no canopy coverage of trees and shrubs) was significantly higher at the sites with increased biomass of green algae (p<0.05), climate warming in this region would favor algal growth. In sum, this study suggests that climate warming and enhanced sulfur and nitrogen deposition have contributed to the current degradation of tufa landscape in Jiuzhaigou, but in order to quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa landscape evolution. PMID:27110983

  19. Volcanic sulfur

    NASA Astrophysics Data System (ADS)

    Hobbs, Peter V.

    Although I may be overly demanding in expecting a member of the Eos staff to be familiar with recent articles in AGU journals, I am moved to make a mild protest concerning attribution in the “Volcanic Sulfur Dynamics” news item by Mario E. Godinez (Eos, June 14, 1983, p. 411).Since the news story stated that an important result of the RAVE experiment was to estimate the SO2 flux from Mount St. Helens on just one day, I must point out that both my research group and USGS scientists have monitored the emissions from Mount St. Helens and estimated SO2 (and other) fluxes over extended periods of time. Our results, which were based on in situ airborne measurements carried out over a period of a year, include estimates of the flux rates of SO2, H2S, H2O, sulfates, halides, and various other particles, prior to, during, and after the explosive eruption of Mount St. Helens on May 18, 1980 [Hobbs et al., 1983]. The USGS measurements, which are made remotely through use of an airborne correlation spectrometer, also commenced in 1980 a n d have provided data several times a week since that time [Casadevall et al., 1981]. We have also estimated the fluxes of various materials (including SO2) from eight other volcanos [Radke et al.., 1976; Stith et al.., 1978; Radke, 1982].

  20. Constitutive Model for the Time-Dependent Mechanical Behavior of 430 Stainless Steel and FeCrAlY Foams in Sulfur-Bearing Environments

    SciTech Connect

    Hemrick, James Gordon; Lara-Curzio, Edgar

    2013-01-01

    The mechanical behavior of 430 stainless steel and pre-oxidized FeCrAlY open-cell foam materials of various densities was evaluated in compression at temperatures between 450 C and 600 C in an environment containing hydrogen sulfide and water vapor. Both materials showed negligible corrosion due to the gaseous atmosphere for up to 168 hours. The monotonic stress-strain response of these materials was found to be dependent on both the strain rate and their density, and the 430 stainless steel foam materials exhibited less stress relaxation than FeCrAlY for similar experimental conditions. Using the results from multiple hardening-relaxation and monotonic tests, an empirical constitutive equation was derived to predict the stress-strain behavior of FeCrAlY foams as a function of temperature and strain rate. These results are discussed in the context of using these materials in a black liquor gasifier to accommodate the chemical expansion of the refractory liner resulting from its reaction with the soda in the black liquor.

  1. Constitutive Model for the Time-Dependent Mechanical Behavior of 430 Stainless Steel and FeCrAlY Foams in Sulfur-Bearing Environments

    NASA Astrophysics Data System (ADS)

    Hemrick, James G.; Lara-Curzio, Edgar

    2013-03-01

    The mechanical behavior of 430 stainless steel and pre-oxidized FeCrAlY open-cell foam materials of various densities was evaluated in compression at temperatures between 450°C and 600°C in an environment containing hydrogen sulfide and water vapor. Both materials showed negligible corrosion due to the gaseous atmosphere for up to 168 h. The monotonic stress-strain response of these materials was found to be dependent on both the strain rate and their density, and the 430 stainless steel foam materials exhibited less stress relaxation than the FeCrAlY for similar experimental conditions. Using the results from multiple hardening-relaxation and monotonic tests, an empirical constitutive equation was derived to predict the stress-strain behavior of FeCrAlY foams as a function of temperature, and strain rate. These results are discussed in the context of using these materials in a black liquor gasifier to accommodate the chemical expansion of the refractory liner resulting from its reaction with the soda in the black liquor.

  2. Silica- and sulfate-bearing rock coatings in smelter areas: Part II. Forensic tools for atmospheric metal(loid)- and sulfur-isotope compositions

    NASA Astrophysics Data System (ADS)

    Mantha, Nathalie M.; Schindler, Michael; Kyser, T. Kurtis

    2012-08-01

    Black silica- and sulfate-bearing rock coatings in the Greater Sudbury area, Canada provide a record of atmospheric processes and emitted particulate matter associated with historical smelting operations in this area. Coating samples collected over the Greater Sudbury region are characterized with scanning electron microscopy, electron microprobe analysis, laser ablation inductively coupled mass-spectrometry, S-stable isotope measurements and micro X-ray fluorescence. On the micrometer scale, Cu, Pb, As, Se and S occur in close association within metal-sulfate rich layers composed of Fe- and Cu-sulfates. The concentrations of these and other elements do not represent their chemical proportions in the smelter plumes due to dissolution-precipitation processes, element substitutions and the stability of various phases involved in the coating formation. On the regional scale, the atomic ratios of Pb:Ni, As:Ni and Se:Ni decrease in the coatings with increasing distance from the smelting centers. This observation is consistent with higher wet deposition rates of small diameter Pb, As and Se-bearing primary sulfate aerosols (<2.5 μm), compared to larger diameter (>2.5 μm) Ni-bearing particulate matter. The mixing of primary (higher δ34S values) and secondary (lower δ34S values) sulfates explains the δ34S values of sulfates within the coatings close to smelting centers and the decrease in these values is attributed to the decrease in the ratio of primary to secondary sulfates with distance from the smelting centers. The information preserved in mineral surface-coatings together with an understanding of stoichiometry, geochemical processes and former environmental conditions provide a valuable record of atmospheric compositions, mixing, scavenging, deposition rates and oxidation processes, and the nature and source of anthropogenic releases to the atmosphere.

  3. Smaller sulfur molecules promise better lithium-sulfur batteries.

    PubMed

    Xin, Sen; Gu, Lin; Zhao, Na-Hong; Yin, Ya-Xia; Zhou, Long-Jie; Guo, Yu-Guo; Wan, Li-Jun

    2012-11-14

    The lithium-sulfur battery holds a high theoretical energy density, 4-5 times that of today's lithium-ion batteries, yet its applications have been hindered by poor electronic conductivity of the sulfur cathode and, most importantly, the rapid fading of its capacity due to the formation of soluble polysulfide intermediates (Li(2)S(n), n = 4-8). Despite numerous efforts concerning this issue, combatting sulfur loss remains one of the greatest challenges. Here we show that this problem can be effectively diminished by controlling the sulfur as smaller allotropes. Metastable small sulfur molecules of S(2-4) were synthesized in the confined space of a conductive microporous carbon matrix. The confined S(2-4) as a new cathode material can totally avoid the unfavorable transition between the commonly used large S(8) and S(4)(2-). Li-S batteries based on this concept exhibit unprecedented electrochemical behavior with high specific capacity, good cycling stability, and superior rate capability, which promise a practicable battery with high energy density for applications in portable electronics, electric vehicles, and large-scale energy storage systems. PMID:23101502

  4. A primer on sulfur for the planetary geologist

    NASA Technical Reports Server (NTRS)

    Theilig, E.

    1982-01-01

    Sulfur has been proposed as the dominant composition for the volcanic material on Io. Sulfur is a complex element which forms many intramolecular and intermolecular allotropes exhibiting a variety of physical properties. Cyclo-S8 sulfur is the most abundant and stable molecular form. The important molecular species within liquid sulfur change in concentration with temperature. Concentrations of the allotropes control the physical properties of the melt. Discontinuities in density, viscosity, and thermal properties reflect the polymerization process within liquid sulfur. Variations in the melting point are related to autodissociation of the liquid. Many solids forms of sulfur have been identified but only orthorhombic alpha and monoclinic beta sulfur, both composed of cyclo-S8 sulfur, are stable under terrestrial conditions. Physical properties of solid sulfur are dependent on the allotrope and, in some cases, the thermal history. Three natural terrestrial sulfur flows are described: (1) Siretoko-Iosan, Japan; (2) Volcan Azufre, Galapagos Islands; and (3) Mauna Loa, Hawaii. All of the flows are associated with fumarolic areas and are considered to have formed by the melting and mobilization of sulfur deposits. Surface textures of the flows indicate a behavior of molten sulfur similar to that of silicate lava. Channels, rivulets, and lobate edges were described for the flows. The solidification of man-made sulfur flows formed as part of the Frasch mining process by which sulfur is removed from the subsurface in a liquid state is described.

  5. Phanerozoic cycles of sedimentary carbon and sulfur.

    PubMed

    Garrels, R M; Lerman, A

    1981-08-01

    A reservoir model of a Recent steady-state sedimentary system in which the reduced sulfur and oxidized sulfur reservoirs were coupled with the oxidized carbon and reduced carbon reservoirs was constructed. The time curve of the sulfur isotope ratios of the sedimentary sulfate reservoir was used to drive the model back to the beginning of Cambrian time (600 million years ago), producing the reservoir sizes and isotope values and material fluxes of the carbon-sulfur system. The predicted values of carbon isotope ratios of the carbonate reservoir agree well with observed values, showing that the model is basically sound. Some general conclusions from this success are (i) material flux rates in the carbon-oxygen-sulfur system of the geologic past (averaged over tens of millions of years) lie within about a factor of 2 of Recent rates. (ii) The oxidation-reduction balances of Phanerozoic time were dominated by reciprocal relationships between carbon and sulfur compounds. (iii) The rate of production of atmospheric oxygen by storage in sediments of organic carbon of photosynthetic origin increased from the Cambrian Period to the Permian Period and declined somewhat from the Permian Period to the Present. (iv) The storage of oxygen in oxidized sulfur compounds kept pace (within the limits of the data) with oxygen production. (v) Transfer of oxygen from CO(2) to SO(4) from the Cambrian to the Permian Period was several times the Recent free oxygen content of the atmosphere. PMID:16593066

  6. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  7. The composition, seasonal variation, and potential sources of the atmospheric wet sulfur (S) and nitrogen (N) deposition in the southwest of China.

    PubMed

    Liu, Lei; Zhang, Xiuying; Lu, Xuehe

    2016-04-01

    The composition, seasonal variation, and potential sources of sulfate (S) and nitrogen (N) deposition in precipitation in the southwest of China from 2003 to 2013 were investigated. The results showed that the concentration of SO4 (2-), NO3 (-), and NH4 (+) in rainwater were 10.57-1360, 7.16-523.71, and 7.54-1020 μeq l(-1), with an annual volume-weighted mean (VWM) concentration of 103.99, 46.73, and 97.30 μeq l(-1), respectively. The annual wet deposition of SO4 (2-), NO3 (-), and NH4 (+) was 21.66, 8.16, and 17.49 kg S (N) ha(-1), respectively. The temporal variations of the ions showed that the abrupt decreasing breakpoints were in 2008 for SO4 (2-) and in 2009 for NO3 (-) and NH4 (+), and increasing trends were observed after 2010 for the three ions. These trends reflected the effect of economy recession and the policy of controlling SO2 and NOx emissions. The acid rain type of precipitation was shifted from sulfur to a mixed one. The ions of SO4 (2-), NO3 (-), and NH4 (+) presented high values in winter and spring and low values in autumn and summer. A highly positive linear correlation between SO4 (2-) and NO3 (-) (R(2) = 0.71), SO4 (2-) and NH4 (+) (R(2) = 0.74), and NO3 (-) and NH4 (+) (R(2) = 0.84) existed while a strong negative correlation was found between the three main ionic concentrations and precipitation. The SO4 (2-) was mainly from fossil fuel combustion (60.53%), aged sea salt (19.03%), agriculture (11.38%), crust (6.66%), and biomass burning (2.40%); the NO3 (-) was mainly from fossil fuel combustion (75.41%), biomass burning (9.67%), aged sea salt (7.97%), and agriculture (6.96%); and the NH4 (+) was mainly from agriculture (86.38%), fossil fuel combustion (10.52%), and aged sea salt (3.09%). PMID:26620861

  8. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  9. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    PubMed

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  10. The transient behavior of scaling in the atmosphere: stratiform/convective transition and applications to sub-grid scale statistics

    NASA Astrophysics Data System (ADS)

    Nogueira, M.; Barros, A. P.

    2014-12-01

    Multifractal behavior holds to a remarkable approximation over wide ranges of spatial scales in orographic rainfall and cloud fields. The scaling exponents characterizing this behavior are shown to be fundamentally transient with nonlinear dependencies on the particular atmospheric state and terrain forcing. In particular, a robust transition is found in the scaling parameters between non-convective (stable) and convective (unstable) regimes, with clear physical correspondence to the transition from stratiform to organized convective orographic precipitation. These results can explain two often reported scaling regimes for atmospheric wind, temperature and water observations. On the one hand, spectral slopes around 2-2.3 arise under non-convective or very weak convective conditions when the spatial patterns are dominated by large-scale gradients and landform. On the other hand, under convective conditions the scaling exponents generally fluctuate around 5/3, in agreement with the Kolmogorov turbulent regime accounting for the intermittency correction. High-resolution numerical weather prediction (NWP) models are able to reproduce the ubiquitous scaling behavior of observed atmospheric fields down to their effective resolution length-scale, below which the variability is misrepresented by the model. The effective resolution is shown to be a transient property dependent on the particular simulated conditions and NWP formulation, implying that a blunt decrease in grid spacing without adjusting numerical techniques may not lead to the improvements desired.Finally, the application of transient spatial scaling behavior for stochastic downscaling and sub-grid scale parameterization of cloud and rainfall fields is investigated. The proposed fractal methods are able to rapidly generate large ensembles of high-resolution statistically robust fields from the coarse resolution information alone, which can provide significant improvements for stochastic hydrological prediction

  11. Performance and cost models for the direct sulfur recovery process. Task 1 Topical report, Volume 3

    SciTech Connect

    Frey, H.C.; Williams, R.B.

    1995-09-01

    The purpose of this project is to develop performance and cost models of the Direct Sulfur Recovery Process (DSRP). The DSRP is an emerging technology for sulfur recovery from advanced power generation technologies such as Integrated Gasification Combined Cycle (IGCC) systems. In IGCC systems, sulfur present in the coal is captured by gas cleanup technologies to avoid creating emissions of sulfur dioxide to the atmosphere. The sulfur that is separated from the coal gas stream must be collected. Leading options for dealing with the sulfur include byproduct recovery as either sulfur or sulfuric acid. Sulfur is a preferred byproduct, because it is easier to handle and therefore does not depend as strongly upon the location of potential customers as is the case for sulfuric acid. This report describes the need for new sulfur recovery technologies.

  12. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres

    NASA Astrophysics Data System (ADS)

    Dai, Donghua; Gu, Dongdong

    2015-11-01

    A selective laser melting (SLM) physical model of the change from heat conduction to keyhole-mode process is proposed, providing the transformation of the thermal behavior in the SLM process. Both thermo-capillary force and recoil pressure, which are the major driving forces for the molten flow, are incorporated in the formulation. The effect of the protective atmosphere on the thermal behavior, molten pool dynamics, velocity field of the evaporation material and resultant surface morphology has been investigated. It shows that the motion direction of the evaporation material plays a crucial role in the formation of the terminally solidified surface morphology of the SLM-processed part. For the application of N2 protective atmosphere, the evaporation material has a tendency to encounter in the frontier of the laser scan direction, resulting in the stack of molten material and the attendant formation of humps in the top surface. As Ar protective atmosphere is used, the vector direction of the evaporation material is typically upwards, leading to a uniform recoil pressure forced on the free surface and the formation of fine and flat melt pool surface. The surface quality and morphology are experimentally acquired, which are in a good agreement with the results predicted by simulation.

  13. Solubility of Sulfur Dioxide in Sulfuric Acid

    NASA Technical Reports Server (NTRS)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  14. Fire self-extinguishing cotton fabric: development of piperazine derivatives containing phosphorous-sulfur-nitrogen and their flame retardant and thermal behaviors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have shown interest in flame retardants containing phosphorus, nitrogen and sulfur a combination small molecule with a promising new approach in preparing an important class of flame retardant materials. Tetraethyl piperazine-1,4-diyldiphosphonate (TEPP) and O,O,O',O'-tetramethyl pip...

  15. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Liu, Yu; Wen, Zhaoyin; Huang, Lezhi; Wang, Xiuyan; Zhang, Hao

    A tubular polypyrrole (T-PPy) fiber is synthesized as a conductive matrix for the cathode of lithium-sulfur secondary battery. The sublimed sulfur is incorporated with the T-PPy by a co-heating process. The location and the content of sulfur show a significant effect on the electrochemical behavior of the composite. A reversible capacity of ca. 650 mAh g -1 is maintained for over 80 cycles for the S/T-PPy composite with 30 wt.% sulfur. The enhanced conductivity, the favorable distribution of the nano-sized sulfur in the T-PPy and the stable retention of polysulfides lead to the improvement of the cycling stability of the sulfur based electrode.

  16. Meniscus behavior of metals and oxides in molten carbonate under oxidant and reducing atmospheres. 1: Contact angle and electrolyte displacement

    SciTech Connect

    Mugikura, Y.; Selman, J.R.

    1996-08-01

    The wetting of metals and oxides by molten carbonate is an important factor affecting the performance of a molten carbonate fuel cell (MCFC). The distribution of the electrolyte among electrodes and matrix in the MCFC is dominated by the pore characteristics and wetting properties of these components. However, data on wetting, especially under load (current passage), are limited. In this study, the behavior of the meniscus at a metal is used to obtain information on wetting and electrochemical reactions. Meniscus height and current were measured under various atmospheres. The contact angle was calculated from the meniscus height. The electrolyte distribution in the MCFC was estimated using contact angles thus obtained in oxidant and reducing atmospheres. The results suggest that upon application of load the electrolyte moves from the anode to the cathode and that capillary effects can worsen the performance of a cell, especially if it is in an unbalanced state of electrolyte filling.

  17. Sulfur dioxide - Episodic injection shows evidence for active Venus volcanism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1984-01-01

    Pioneer Venus ultraviolet spectra from the first 5 years of operation show a decline (by more than a factor of 10) in sulfur dioxide abundance at the cloud tops and in the amount of submicron haze above the clouds. At the time of the Pioneer Venus encounter, the values for both parameters greatly exceeded earlier upper limits. However, Venus had a similar appearance in the late 1950's, implying the episodic injection of sulfur dioxide possibly caused by episodic volcanism. The amount of haze in the Venus middle atmosphere is about ten times that found in earth's stratosphere after the most recent major volcanic eruptions, and the thermal energy required for this injection on Venus is greater by about an order of magnitude than the largest of these recent earth eruptions and about as large as the Krakatoa eruption of 1883. The episodic behavior of sulfur dioxide implies that steady-state models of the chemistry and dynamics of cloud-top regions may be of limited use.

  18. Observation Scales of Classroom Atmosphere and Student Behavior: A Replication and Refinement.

    ERIC Educational Resources Information Center

    Coates, Carolie; And Others

    The purpose of this document is to describe two process-oriented classroom observation scales and to report a research study which offers further support for the validity of these instruments. The two observation scales, developed by Harvey, et al., are (1) Teaching Rating Scale, devised specifically as a measure of classroom atmosphere, and (2)…

  19. ATMOSPHERIC MERCURY BEHAVIOR AT DIFFERENT ALTITUDES AT NY-ALESUND DURING SPRING 2003

    EPA Science Inventory

    Intensive field measurements of atmospheric mercury and related species were carried out in Ny Alesund, Spitsbergen during the spring of 2003 at two altitudes. Measurements were made at the Italian research station Dirigibile Italia (12m a.s.l.) and on the top of Zeppelin Mountai...

  20. Influence of Nitrogen Gas Flow Rate on the Electrical Behavior of an Atmospheric Pressure Dielectric Barrier Jet Discharge

    SciTech Connect

    Choo, C. Y.; Chin, O. H.

    2011-03-30

    The dielectric barrier discharge configuration used consists of a hemispherical electrode insulated by 1 mm thick borosilicate glass and a grounded plate with a hole through which the jet is formed externally in the surrounding air. The effect of gas flow rate on the behavior of an atmospheric pressure dielectric barrier jet discharge was studied for different air-gap distance and drive voltage, V{sub DD}, to the MOSFET. It is found that at higher rate of nitrogen gas flow, the current spikes reduce in number when the driving voltage and air-gap distance are kept constant.

  1. Characterization of Atmospheric Aerosol Behavior and Climatic Effects by Analysis of SAGE 2 and Other Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    1999-01-01

    This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.

  2. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  3. Plant sulfur nutrition: From Sachs to Big Data

    PubMed Central

    Kopriva, Stanislav

    2015-01-01

    Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined. PMID:26305261

  4. Plant sulfur nutrition: From Sachs to Big Data.

    PubMed

    Kopriva, Stanislav

    2015-01-01

    Together with water and carbon dioxide plants require 14 essential mineral nutrients to finish their life cycle. The research in plant nutrition can be traced back to Julius Sachs, who was the first to experimentally prove the essentiality of mineral nutrients for plants. Among those elements Sachs showed to be essential is sulfur. Plant sulfur nutrition has been not as extensively studied as the nutrition of nitrogen and phosphate, probably because sulfur was not limiting for agriculture. However, with the reduction of atmospheric sulfur dioxide emissions sulfur deficiency has become common. The research in sulfur nutrition has changed over the years from using yeast and algae as experimental material to adopting Arabidopsis as the plant model as well as from simple biochemical measurements of individual parameters to system biology. Here the evolution of sulfur research from the times of Sachs to the current Big Data is outlined. PMID:26305261

  5. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  6. Generation of Sulfur-rich, Sulfur-undersaturated Basaltic Melts in Oxidized Arc Sources.

    NASA Astrophysics Data System (ADS)

    Jugo, P. J.; Luth, R. W.; Richards, J. P.

    2003-12-01

    Although sulfur is a minor element in the Earth, it has a disproportionate impact because it commonly occurs as sulfide. Sulfides largely control the behavior of chalcophile (e.g., Cu, Ni) and highly siderophile elements (Ru, Rh, Pd, Re, Os, Ir, Pt, and Au) that are of interest because either they are economically important or because they provide valuable information about geochemical processes. Island arc basalts are more oxidized than basalts from other tectonic settings and therefore, in these settings, sulfur maybe present not as sulfide but as sulfate. In addition to the impact on the behavior of chalcophile and siderophile elements, sulfur speciation as sulfate may have a role on the occurrence of sulfur-rich explosive volcanism, which has been linked to significant short-term variations in global climate. However, little is known about the range in oxygen fugacity for the transition from solubility as sulfide to solubility as sulfate. We used experimental data on the solubility of sulfur in basaltic melts saturated with either sulfide or sulfate at different oxygen fugacities to model this transition. Our model shows that the ten-fold increase in the solubility of sulfur (from 0.14 wt.% to 1.5 wt.%) observed experimentally occurs at oxygen fugacities between ˜FMQ+1 and ˜FMQ+2, conditions under which many arc magmas are thought to be generated. The increase in the solubility of sulfur with increasing oxygen fugacity implies that in oxidized arc sources very low degrees of partial melting are sufficient to generate basaltic melts that are simultaneously sulfur-rich and sulfur-undersaturated. In the absence of sulfides, oxides and metallic alloys may influence the behavior of some (but not all) the highly siderophile elements whereas the chalcophile and some siderophile elements become incompatible. As a consequence, melting of oxidized sources in which sulfides are not stable would favor incorporation of metals such as Cu, Ni, Au and Pd in the melts and

  7. Sulfur compound concentrations at swine and poultry facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced sulfur compounds are emitted from waste handling at animal agriculture operations. These sulfur compounds are responsible for odor production as well as participating in atmospheric chemistry. We have adapted a chromatographic method for providing 10 minute online monitoring capability of re...

  8. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  9. 40 CFR 60.173 - Standard for sulfur dioxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for sulfur dioxide. 60.173... Smelters § 60.173 Standard for sulfur dioxide. (a) On and after the date on which the performance test... subpart shall cause to be discharged into the atmosphere from any roaster any gases which contain...

  10. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-12-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for disodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, disodium malonate, disodium succinate, disodium tartrate, diammonium tartrate, sodium pyruvate, disodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The hygroscopic growth of mixtures of organic salts with ammonium sulfate, which are prepared as surrogates of atmospheric aerosols, was determined. A clear shift in deliquescence relative humidity to lower RH with increasing organic mass fraction was observed for these mixtures. Above 80% RH, the contribution to water uptake by the organic salts was close to that of ammonium sulfate for the majority of investigated compounds. The observed hygroscopic growth of the mixed particles at RH above the deliquescence relative humidity of ammonium sulfate agreed well with that predicted using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. Mixtures of ammonium sulfate with organic salts are more hygroscopic than mixtures with organic acids, indicating that neutralization by gas-phase ammonia and/or association with cations of dicarbonxylic acids may enhance the hygroscopicity of the atmospheric particles.

  11. Behavior of Listeria monocytogenes in Sliced Ready-to-Eat Meat Products Packaged under Vacuum or Modified Atmosphere Conditions.

    PubMed

    Menéndez, Rosa Ana; Rendueles, Eugenia; Sanz, José Javier; Capita, Rosa; García-Fernández, Camino

    2015-10-01

    The objective of this research was to determine the behavior of Listeria monocytogenes in three types of sliced ready-to-eat meat products packaged under vacuum or modified atmosphere conditions and stored at three temperatures. Slices of about 25 g of chorizo (a fermented dry pork sausage), jamón (cured ham), and cecina (a salted, dried beef product) were inoculated with L. monocytogenes NCTC 11994. Slices were packaged in a vacuum or in a modified atmosphere (20% CO2, 80% N2). After packaging, samples were stored for 6 months at three temperatures: 3, 11, or 20°C. Microbiological analyses were performed after 0, 1, 7, 15, 30, 45, 90, and 180 days of storage. The type of meat product, the type of packaging, the temperature, and the day of storage all influenced microbial levels (P < 0.001). L. monocytogenes counts decreased throughout the course of storage in samples of chorizo (quick decrease) and jamón (gradual decrease). In cecina samples, counts of L. monocytogenes increased from day 0 to day 1 of storage and then remained constant until day 90 of the study. These results may be of use for enhancing the safety of these ready-to-eat meat product types. Additional evaluation of the behavior of L. monocytogenes in cecina is needed. PMID:26408140

  12. Simulating Fine-Scale Atmospheric Processes: A New Core Capability and its Application to Predicting Wildfire Behavior

    SciTech Connect

    Bradley, M M; Leach, M J; Molenkamp, C R; Hall, C H; Wilder, L; Neher, L A

    2003-02-07

    This LDRD project consisted of the development, testing, and prototype application of a new capability to couple atmospheric models of different spatial and temporal scales with a state-of-the-science vegetation-fuel combustion model and a GIs-based analysis system. The research addressed the complex, multi-scale interactions of atmospheric processes, combustion, and vegetative fuel conditions, using a suite of models to simulate their impact on wildfire behavior in areas of complex terrain. During the course of the project, we made substantial progress toward the implementation of a world-class modeling system that could be used as a tool for wildfire risk assessment, wildfire consequence analysis, wildfire suppression planning, fuels management, firefighter training, and public fire-safety education. With one additional year of funding we would have been able conduct combined modeling and field experiments to evaluate the models capability to predict the behavior of prescribed burns before they are ignited. Because of its investment in this LDRD project, LLNL is very close to having a new core capability--likely the world's most generally applicable, most scientifically sound, and most respected wildfire simulation system.

  13. Sulfuric acid on Europa and the radiolytic sulfur cycle

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  14. Sulfur tolerant anode materials

    SciTech Connect

    Not Available

    1987-02-01

    The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

  15. Behavior of Particulate Mercury in the Bulk Atmospheric Aerosols Simultaneously Collected at 2 Sites in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Miyagi, Y.; Arakaki, T.; Azechi, S.; Somada, Y.; Oshiro, Y.; Tsuhako, A.; Murayama, H.; Tanahara, A.

    2013-12-01

    Mercury is toxic to animals. Mercury is emitted to the atmosphere mainly from two sources; natural and anthropogenic sources. Natural sources include volcanic eruption, forest fire and so on. Anthropogenic sources include fossil fuel combustion, metal and cement production and so on. There are three forms of mercury in the atmosphere: gaseous elemental mercury, reactive gaseous mercury and particulate mercury. Gaseous elemental mercury is the most abundant form in the atmosphere, and has long atmospheric lifetime, ca. a few years. This study focuses on particulate mercury, which has a relatively short lifetime, ca. a few days, in the atmosphere because it reflects characteristics of nearby emission sources. Objectives of this study were to elucidate the behavior of particulate mercury in aerosols and to understand relationships between mercury and other metals and water-soluble anions. Aerosol samples were collected at two sites; Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Jan.2008-Nov.2012), northern tip of Okinawa island, and University of the Ryukyus (UR, Jan.2008-Nov.2012), central and more populated area of Okinawa island. They were collected by using identical high-volume air samplers on quartz filters. Concentrations of particulate mercury in aerosols were determined by using a MA-3000 (Nippon Instruments Corporation). The results showed that particulate Hg concentrations were mostly higher for the aerosols collected at UR site than those at CHAAMS site, suggesting locally emitted Hg. Samples collected at UR showed clear seasonal variation, the lowest in summer and the highest winter. On the other hand, the CHAAMS samples showed lower concentration in winter and higher concentration in summer, but the difference was relatively small. Both UR and CHAAMS samples had similar concentration levels in summer season. Back trajectory analysis showed that particulate Hg at CHAAMS site during summer was not from Asian continent. Since samples

  16. Spectral behavior of a land-atmosphere coupled model and applications to hydrometeorology (Invited)

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Gentine, P.; Polcher, J.

    2009-12-01

    The coherence and phase lags of temperature and humidity profiles as well as heat and moisture fluxes across the soil-vegetation-atmospheric boundary layer are derived for a linearized land-atmosphere model, which is forced by incoming radiation forcing and which is analytically solved at the daily time scale. The profiles of the soil and boundary layer variables (temperature, specific humidity) and heat fluxes (sensible, latent, ground) are expressed as temporal Fourier series. The problem is inspired by a simpler version originally proposed by the pioneering work of Heinz Lettau over fifty years ago. This model allows theoretical study of the temporal and spectral response of the coupled land-atmosphere system to any (harmonic) forcing of incoming radiation at the land-surface. Land-surface and screen-level temperatures are shown to respond to the lower frequencies of the incoming radiation spectrum. Soil heat flux is shown to act as a high-pass filter, responding to high frequencies of the incoming radiation forcing, thus exhibiting its strong variability. Turbulent heat fluxes on the other side act as low-pass filter of the forcing since they are triggered and thus limited by the land-surface temperature changes. In a second part, the analytical model is used to investigate the diurnal course of evaporative fraction, i.e. the ratio between latent heat flux and available energy at the land-surface. Evaporative fraction is demonstrated to remain a diurnal constant (self-preservation) only in limiting meteorological conditions. The dependence of the evaporative fraction on land-surface parameters (soil water availability, aerodynamic resistance…) are derived and compared with in-situ measurements form the SudMed project, Marrakech, Morocco.

  17. Behavior of atmospheric ozone determined from Nimbus satellite backscatter ultraviolet data

    NASA Technical Reports Server (NTRS)

    Krueger, A. J.

    1974-01-01

    A substantial global data base on the spatial and temporal variations of high level atmospheric ozone distribution and total ozone amount for the time period 1970 through 1973 was obtained by the Backscatter Ultraviolet (BUV) instrument onboard the Nimbus 4 satellite. BUV total ozone data from all available orbits on each day of the period were processed to obtain zonal mean ozone amounts. Northern Hemisphere ozone and Southern Hemisphere ozone values are given, and the interhemispheric relationships identified. Vertical ozone profile information is interpreted to furnish data on seasonal total ozone changes. Selected ozone mixing ratio cross sections were analyzed, and the resulting zonally-symmetric patterns are presented.

  18. 40 CFR 60.104 - Standards for sulfur oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... atmosphere from any Claus sulfur recovery plant containing in excess of: (i) For an oxidation control system... affected fluid catalytic cracking unit catalyst regenerator: (1) With an add-on control device, reduce...

  19. Wear behavior of sintered hexagonal boron nitride under atmosphere and water vapor ambiences

    NASA Astrophysics Data System (ADS)

    Cao, Yuxia; Du, Lingzhong; Huang, Chuanbing; Liu, Wei; Zhang, Weigang

    2011-09-01

    Hexagonal boron nitride was pressed and sintered at 2000 °C with CaB2O4 as an additive to promote its crystallization, which was used as an abradable sealing coating for aircraft turbo engines. Microstructures, phase compositions and tribological properties of the sintered hBN were tested, and the results show that CaB2O4 can effectively promote crystal growth of hBN at 2000 °C for 5 h in N2 ambience. The friction coefficients of the sintered hBN under atmosphere ambience increase as the temperature increasing from room temperature to 400 °C, and then decrease with further increasing of temperature up to 800 °C. Under water vapor ambience, friction coefficients of the sintered hBN are much lower than those under atmosphere ambience, which are attributed to a lamella-slip of hBN and the solid lubrication effect of H3BO3.

  20. REGIONAL TRENDS IN RURAL SULFUR CONCENTRATIONS

    EPA Science Inventory

    This paper presents an analysis of trends in atmospheric concentrations of sulfur dioxide (SO,) and particulate sulfate (SO42-) at rural monitoring sites in the Clean Air Act Status and Trends Monitoring Network (CASTNet) from 1990 to 1999. A two-stage approach is used to estimat...

  1. THE MECHANISM OF SULFUR DIOXIDE INITIATED BRONCHOCONSTRICTION

    EPA Science Inventory

    Atmospheric sulfur oxides exist in chemically complex particulates of the respirable size range. Inhalation of these particulates represents a potential health hazard. This report provides the results of a series of experiments into the uptake of sulfate salts by the lung, the in...

  2. Comparative study of the oxidation behavior of sulfur-containing amino acids and glutathione by electrochemistry-mass spectrometry in the presence and absence of cisplatin.

    PubMed

    Zabel, Robert; Weber, Günther

    2016-02-01

    Small sulfur-containing compounds are involved in several important biochemical processes, including-but not limited to-redox regulation and drug conjugation/detoxification. While methods for stable redox pairs of such compounds (thiols/disulfides) are available, analytical data on more labile and short-lived redox intermediates are scarce, due to highly challenging analytical requirements. In this study, we employ the direct combination of reagentless electrochemical oxidation and mass spectrometric (EC-MS) identification for monitoring oxidation reactions of cysteine, N-acetylcysteine, methionine, and glutathione under simulated physiological conditions (pH 7.4, 37 °C). For the first time, all theoretically expected redox intermediates-with only one exception-are detected simultaneously and in situ, including sulfenic, sulfinic, and sulfonic acids, disulfides, thiosulfinates, thiosulfonates, and sulfoxides. By monitoring the time/potential-dependent interconversion of sulfur species, mechanistic oxidation routes are confirmed and new reactions detected, e.g., sulfenamide formation due to reaction with ammonia from the buffer. Furthermore, our results demonstrate a highly significant impact of cisplatin on the redox reactivity of sulfur species. Namely, the amount of thiol oxidation to sulfonic acid via sulfenic and sulfinic acid intermediates is diminished for glutathione in the presence of cisplatin in favor of the disulfide formation, while for N-acetylcysteine the contrary applies. N-acetylcysteine is the only ligand which displays enhanced oxidation currents upon cisplatin addition, accompanied by increased levels of thiosulfinate and thiosulfonate species. This is traced back to thiol reactivity and highlights the important role of sulfenic acid intermediates, which may function as a switch between different oxidation routes. PMID:26670772

  3. Biotic and abiotic carbon to sulfur bond cleavage

    SciTech Connect

    Frost, J.W.

    1991-01-01

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  4. Incipient corrosion behavior of Haynes 230 under a controlled reducing atmosphere at high temperatures

    NASA Astrophysics Data System (ADS)

    Tung, Hsiao-Ming; Stubbins, James F.

    2012-08-01

    In situ thermogravimetry analysis (TGA) was used to investigate the incipient corrosion behavior of alloy 230 exposed under a reducing environment in a temperature range of 850-1000 °C. Both oxidation and loss of alloying elements of alloy 230 were observed to occur concurrently in these conditions. The surface oxide which formed on the substrate does not appear to be as effective in providing a protective layer during the incipient corrosion period.

  5. FEASIBILITY OF USING RADIOACTIVE SULFUR IN LONG-RANGE TRANSPORT EXPERIMENTS

    EPA Science Inventory

    The radioactive isotope Sulfur-35 is an ideal tracer of sulfur emissions from anthropogenic sources because it would undergo the same chemical transformations in the atmosphere as the more common isotopes of sulfur, and further it has a very low natural background concentration. ...

  6. The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors

    NASA Astrophysics Data System (ADS)

    Kim, Inyoung; Kim, Jongryoul

    2010-11-01

    In order to overcome the serious problems posed by Cu ink, which include the strong tendency to the oxidation of Cu nanopowders, various reduction atmospheres were investigated. As a result, a resistivity of ˜4 μΩ cm was achieved in the Cu interconnectors sintered at 200 °C with a gaseous mixture of formic acid (HCOOH) and alcohol. As regards this sample, micrographs show the facet boundaries and an average grain size of ˜300 nm. The use of formic acid was an effective way to decrease the sintering temperature to 150 °C, at which temperature the resistivity was ˜72 μΩ cm. This low temperature sintering and microstructural densification was due to the decomposition of capping molecules and the reduction in Cu oxide by formic acid.

  7. Vibrational behavior of a soundbox in an atmosphere with a variable speed of sound.

    PubMed

    Chen, Mo; Kotlicki, Andrzej; Waltham, Chris; Wolfe, Nathan; Yu, Jing Fei; Zhu, Chenchong

    2012-03-01

    This paper describes a semi-quantitative method, suitable for a student laboratory exercise that shows that the acoustic properties of the soundbox of a musical instrument depend on the sound speed of the atmosphere surrounding and filling the instrument. A gas tent was constructed and used to enclose instruments in helium, carbon dioxide and mixtures thereof, allowing the sound speed to be varied from 250 to 1000 m/s. Soundboard admittance data were taken using a guitar and a violin as examples. The data, expressed as contour plots, show clearly the qualitative relationship between air and wood modes, and the guitar data are compared with a simple mechanical model. Experimental details of the construction and operation of gas tent are given, with attention paid to safety issues. PMID:22423799

  8. KINETIC STUDIES OF SIMULATED POLLUTED ATMOSPHERES

    EPA Science Inventory

    The kinetics and reaction mechanisms of several important atmospheric contaminants - SO2, formaldehyde, nitrous acid, and the nitrosamines - were assessed to help quantify some key aspects of the chemistry of polluted atmospheres. The reactions and lifetimes of excited sulfur dio...

  9. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  10. Sulfuric acid in the Venus clouds.

    NASA Technical Reports Server (NTRS)

    Sill, G. T.

    1972-01-01

    The extremely dry nature of the Venus upper atmosphere appears to demand the presence of an efficient desiccating agent as the chief constituent of the clouds of Venus. On the basis of polarization measures it is to be expected that this substance is present as spherical droplets, 1 to 2 microns in diameter, with a refractive index n of 1.46 plus or minus 0.02 at 3500A in the observed region of the atmosphere, with T about equal to 235 K. This substance must have ultraviolet, visible, and infrared reflection properties not inconsistent with the observed spectrum of Venus. Sulfuric acid, of about 86% by weight composition, roughly fulfills the first of these properties. The visible and ultraviolet transmission features of a thin layer of elemental bromine and hydrobromic acid dissolved in sulfuric acid somewhat resemble the Venus spectrum, up to 14 microns. The chemical process postulated for forming sulfuric acid involves the oxidation of sulfur and its compounds to sulfuric acid through the agency of elemental bromine produced by the photolytic decomposition of hydrogen bromide.

  11. Long term atmospheric corrosion behavior of metals exposed to tropical marine environment in India

    SciTech Connect

    Subramanian, G.; Palraj, S.; Ananth, V.; Balakrishnan, K.

    1995-10-01

    The corrosion behavior of commercially available lead and aluminium alloy tubes and rods has been studied for a period of 2 years in the tropical marine environment of Mandapam. The monthly and quarterly corrosion rate values of the alloys are directly related to and determined by the weathering conditions, such as salt content in the air, percentage relative humidity, temperature and rainfall, prevailing during a particular monsoon. The exponential decrease in the corrosion rate values of the cumulative exposures of the alloys, in general, are indicative of the protective nature of the corrosion product film on its surface. The corrosion products on lead and aluminium alloys are analyzed with X-ray diffractometer. Formation of Lead chloride on the monthly exposure surfaces lead to uniform corrosion attack, whereas formation of lead oxychloride and antimony oxychloride on cumulative exposure surfaces of lead result in localized pitting. Formation of Al{sub 2}O{sub 3}, Al(OH){sub 3}, AlCl{sub 3}{center_dot}6H{sub 2}0 and ALO(OH) on the surfaces of the aluminium alloys influences the pitting corrosion over the period of exposure. The pitting corrosion behavior of lead and aluminium alloys are discussed in the light of pit density, pitting probability and size of pit. The surface characteristics of lead over the period of exposure are highlighted with scanning electron microscope. Heterogeneity in the aluminium alloy matrix favor pitting and intergranular corrosion.

  12. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Sausen, R.; Wigley, T. M. L.; Boyle, J. S.; Achutarao, K.; Doutriaux, C.; Hansen, J. E.; Meehl, G. A.; Roeckner, E.; Ruedy, R.; Schmidt, G.; Taylor, K. E.

    2003-01-01

    We examine changes in tropopause height, a variable that has hitherto been neglected in climate change detection and attribution studies. The pressure of the lapse rate tropopause, pLRT, is diagnosed from reanalyses and from integrations performed with coupled and uncoupled climate models. In the National Centers for Environmental Prediction (NCEP) reanalysis, global-mean pLRT decreases by 2.16 hPa/decade over 1979-2000, indicating an increase in the height of the tropopause. The shorter European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis has a global-mean pLRT trend of -1.13 hPa/decade over 1979-1993. Simulated pLRT trends over the past several decades are consistent with reanalysis results. Superimposed on the overall increase in tropopause height in models and reanalyses are pronounced height decreases following the eruptions of El Chichón and Pinatubo. Interpreting these pLRT results requires knowledge of both T(z), the initial atmospheric temperature profile, and ΔT(z), the change in this profile in response to external forcing. T(z) has a strong latitudinal dependence, as does ΔT(z) for forcing by well-mixed greenhouse gases and stratospheric ozone depletion. These dependencies help explain why overall tropopause height increases in reanalyses and observations are amplified toward the poles. The pronounced increases in tropopause height in the climate change integrations considered here indicate that even AGCMs with coarse vertical resolution can resolve relatively small externally forced changes in tropopause height. The simulated decadal-scale changes in pLRT are primarily thermally driven and are an integrated measure of the anthropogenically forced warming of the troposphere and cooling of the stratosphere. Our algorithm for estimating pLRT (based on a thermal definition of tropopause height) is sufficiently sensitive to resolve these large-scale changes in atmospheric thermal structure. Our results indicate that the simulated

  13. Modeling the impact of vapor thymol concentration, temperature, and modified atmosphere condition on growth behavior of Salmonella on raw shrimp.

    PubMed

    Zhou, Siyuan; Sheen, Shiowshuh; Pang, Yu-Hsin; Liu, Linshu; Yam, Kit L

    2015-02-01

    Salmonella is a microorganism of concern on a global basis for raw shrimp. This research modeled the impact of vapor thymol concentration (0, 0.8, and 1.6 mg/liter), storage temperature (8, 12, and 16°C), and modified atmosphere condition (0.04 as in the natural atmosphere and 59.5% CO2) against the growth behavior of a Salmonella cocktail (six strains) on raw shrimp. Lag time (hour) and maximum growth rate (log CFU per gram per hour), chosen as two growth indicators, were obtained through DMFit software and then developed into polynomial as well as nonlinear modified secondary models (dimensional and/or dimensionless), consisting of two or even three impact factors in the equations. The models were validated, and results showed that the predictive values from both models demonstrated good matches to the observed experimental values, yet the prediction based on lag time was more accurate than maximum growth rate. The information will provide the food industry with insight into the potential safety risk of Salmonella growth on raw shrimp under stressed conditions. PMID:25710144

  14. Turbulent Atmosphere-Based Dominant Management Behavior of the Head Nurses in Clinical Wards: A Qualitative Study

    PubMed Central

    Salar, Ali Reza; Ahmadi, Fazlollah; Navipour, Hassan

    2016-01-01

    Background: Nursing management is the most important aspect for providing high-quality nursing care. Therefore, skillful nursing managers, such as head nurses, are required to accomplish this goal. High-quality nursing care is one of the most important principles of health organizations to ensure society’s health. Objectives: The goal of the conventional content analysis is to explain the dominant experienced-based behavior of the head nurses in clinical wards. Materials and Methods: This study was conducted by applying a quality study approach with a common content analysis model (Granheim and Lundmen). The participants were 25 head nurses who were working in the wards of various hospitals in Zahedan City. They were selected via the purposeful sampling method. The data were collected thoroughly and continued until a saturation stage was reached. Results: The result of data analysis was the theme “turbulent atmosphere-based management,” which consists of five categories as follows: the work culture of the ward, job burnout, negligent evaluation, job conflict, and decision making with limited effects. Conclusions: The analysis of the findings of the present study through considering the defined categories demonstrated that, to modify and correct the turbulent atmosphere-based management, several important measures are required and need to be continually monitored. PMID:27186386

  15. Influence of Global Atmospheric Change on the Feeding Behavior and Growth Performance of a Mammalian Herbivore, Microtus ochrogaster

    PubMed Central

    Habeck, Christopher W.; Lindroth, Richard L.

    2013-01-01

    Global atmospheric change is influencing the quality of plants as a resource for herbivores. We investigated the impacts of elevated carbon dioxide (CO2) and ozone (O3) on the phytochemistry of two forbs, Solidago canadensis and Taraxacum officinale, and the subsequent feeding behavior and growth performance of weanling prairie voles (Microtus ochrogaster) feeding on those plants. Plants for the chemical analyses and feeding trials were harvested from the understory of control (ambient air), elevated CO2 (560 µl CO2 l−1), and elevated O3 (ambient × 1.5) rings at the Aspen FACE (Free Air CO2 Enrichment) site near Rhinelander, Wisconsin. We assigned individual voles to receive plants from only one FACE ring and recorded plant consumption and weanling body mass for seven days. Elevated CO2 and O3 altered the foliar chemistry of both forbs, but only female weanling voles on the O3 diet showed negative responses to these changes. Elevated CO2 increased the fiber fractions of both plant species, whereas O3 fumigation elicited strong responses among many phytochemical components, most notably increasing the carbon-to-nitrogen ratio by 40% and decreasing N by 26%. Consumption did not differ between plant species or among fumigation treatments. Male voles were unaffected by the fumigation treatments, whereas female voles grew 36% less than controls when fed O3-grown plants. These results demonstrate that global atmospheric change has the potential to affect the performance of a mammalian herbivore through changes in plant chemistry. PMID:23977345

  16. Behavior of Listeria monocytogenes and Aeromonas spp. on fresh-cut produce packaged under equilibrium-modified atmosphere.

    PubMed

    Jacxsens, L; Devlieghere, F; Falcato, P; Debevere, J

    1999-10-01

    Storage experiments were conducted to follow the behavior of pathogens on fresh-cut vegetables (trimmed brussels sprouts, grated carrots, shredded iceberg lettuce, and shredded chicory endives) packaged under an equilibrium-modified atmosphere (EMA) (2 to 3% O2, 2 to 3% CO2, and 94 to 96% N2) and stored at 7 degrees C. As a comparison, fresh-cut vegetables were also packaged in a perforated high-barrier film (air conditions) and stored at 7 degrees C. In a first step, the shelf life of the vegetables in the two kinds of packages was determined by evaluating the microbiological quality as well as the sensorial quality (appearance, taste, and odor). In general, sensorial properties were faster in limiting the shelf life than microbiological criteria. The shelf life of the vegetables stored under an EMA was extended by 50% or more, compared with the air-stored vegetables. In a second storage experiment, the four fresh-cut vegetables were inoculated with a cocktail of psychrotrophic pathogens (Listeria monocytogenes, Aeromonas caviae [HG4]) and A. bestiarum (HG2) before packaging under an EMA and air at 7 degrees C. The inoculated pathogens were more influenced by the type of vegetable than by the type of atmosphere. No growth was detected on the brussels sprouts or on carrots (L. monocytogenes). Aeromonas spp. had a higher growth rate than L. monocytogenes on the shredded chicory endives and shredded iceberg lettuce at 7 degrees C. PMID:10528715

  17. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A.

    2011-03-01

    The hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their effects on ammonium sulfate was investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). No hygroscopic growth is observed for sodium oxalate, while ammonium oxalate shows slight growth (growth factor = 1.05 at 90%). The growth factors at 90% RH for sodium acetate, sodium malonate, sodium succinate, sodium tartrate, ammonium tartrate, sodium pyruvate, sodium maleate, and humic acid sodium salt are 1.79, 1.78, 1.69, 1.54, 1.29, 1.70, 1.78, and 1.19, respectively. The mixtures of organic salts with ammonium sulfate, which are prepared simulating the atmospheric aerosols, are determined. A clear shift in DRH of mixture to lower RH is observed with increasing organic mass fraction. Above RH = 80%, the humidograms of the different mixtures are quite close to that of pure ammonium sulfate. Köhler theory is used to predict the effective hygroscopicity parameter, κ, for mixtures at 90% RH. The results show that Köhler theory underestimated kappa for mixtures without considering the water solubility of ammonium oxalate. However, if the water solubility of ammonium oxalate is taken into account, the results show a much better agreement with those derived from H-TDMA measurements.

  18. DSRP, Direct Sulfur Production

    SciTech Connect

    Gangwal, S.K.; McMichael, W.J.; Agarwal, S.K.; Jang, B.L.; Howe, G.B.; Chen, D.H.; Hopper, J.R.

    1993-08-01

    Hot-gas desulfurization processes for IGCC and other advanced power applications utilize regenerable mixed-metal oxide sorbents to remove hydrogen sulfide (H{sub 2}S) from raw coal gas. Regeneration of these sorbents produces an off-gas typically containing I to 3 percent sulfur dioxide (SO{sub 2}). Production of elemental sulfur is a highly desirable option for the ultimate disposal of the SO{sub 2} content of this off-gas. Elemental sulfur, an essential industrial commodity, is easily stored and transported. As shown in Figure 1, the DSRP consists of two catalytic reactors, each followed by a sulfur condenser. Hot regenerator off-gas is mixed with a hot coal-gas slip stream and fed to the first DSRP reactor. Approximately 95 percent of the sulfur gas in the inlet stream of the first reactor is converted to elemental sulfur. The outlet gas of the first DSRP reactor is cooled, condensing out sulfur. The gas could be recycled after the Stage I condenser. Alteratively, by adjusting the proportion of coal gas to regenerator off-gas, the effluent composition of the first reactor can be controlled to produce an H{sub 2}S-to-SO{sub 2} ratio of 2 to 1 at 95 percent sulfur conversion. The cooled gas stream is then passed to the second DSRP reactor where 80 to 90 percent of the remaining sulfur compounds are converted to elemental sulfur via the modified Claus reaction at high pressure. The total efficiency of the two reactors for the conversion of sulfur compounds to elemental sulfur is projected to be about 99.5 percent.

  19. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  20. Localized Corrosion Behavior of Type 304SS with a Silica Layer Under Atmospheric Corrosion Environments

    SciTech Connect

    E. Tada; G.S. Frankel

    2006-03-13

    The U.S. Department of Energy (DOE) has proposed a potential repository for spent nuclear fuel and high-level radioactive waste at the Yucca Mountain site in Nevada. [I] The temperature could be high on the waste packages, and it is possible that dripping water or humidity could interact with rock dust particulate to form a thin electrolyte layer with concentrated ionic species. Under these conditions, it is possible that highly corrosion-resistant alloys (CRAs) used as packages to dispose the nuclear waste could suffer localized corrosion. Therefore, to better understand long-term corrosion performance of CRAs in the repository, it is important to investigate localized corrosion under a simulated repository environment. We measured open circuit potential (OCP) and galvanic current (i{sub g}) for silica-coated Type 304SS during drying of salt solutions under controlled RH environments to clarify the effect of silica layer as a dust layer simulant on localized corrosion under atmospheric environments. Type 304SS was used as a relatively susceptible model CRA instead of the much more corrosion resistant alloys, such as Alloy 22, that are being considered as, waste package materials.

  1. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  2. Three-dimensional behavior of mixing-limited chemistry in the atmosphere

    NASA Astrophysics Data System (ADS)

    Karamchandani, Prakash; Peters, Leonard K.

    The effect of turbulent concentration fluctuations in the near-source region on fast, second-order atmospheric reactions of the type A + B → C is investigated. The correlation term overlineC' AC' B is related to the concentration variance of emitted species A, overlineC' A2. The specific reactions studied are those pertaining to NO-O 3-NO 2 chemistry. A locally one-dimensional finite element method (LOD-FEM) is used to solve the three-dimensional transport/chemistry equations. By evaluating the differences in the photostationary-stale parameter (λ = k 3overlineC NOC O 3/k 1C NO 2) , the effect of the fluctuation term, overlineC NO'C' O 3, is shown to be substantial in the near-source region. The effect initially increases with downwind distance, and then decreases as diffusion and dissipation become dominant. Within the plume itself, the effects are smallest at the core of the plume and are most pronounced at the plume edges. The important dynamical parameters are the eddy diffusivity used for closure of the turbulent species transport equation and the dissipation of turbulent energy that controls the small-scale fluctuations. From a diurnal standpoint, the maximum effect is observed at around noontime, with minimal effects being observed in the early morning and late evening.

  3. Internet-based monitoring and prediction system of coal stockpile behaviors under atmospheric conditions.

    PubMed

    Yilmaz, Nihat; Ozdeniz, A Hadi

    2010-03-01

    Spontaneous combustion on industrial-scale stockpiles causes environmental problems and economic losses for the companies consuming large amounts of coal. In this study, an effective monitoring and prediction system based on internet was developed and implemented to prevent losses and environmental problems. The system was performed in a coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 t of weight. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. The recorded values were analyzed with artificial neural network and Statistical modeling methods for prediction of spontaneous combustion. Real-time measurement values and model outputs were published with a web page on internet. The internet-based system can also provide real-time monitoring (combustion alarms, system status) and tele-controlling (Parameter adjusting, system control) through internet exclusively with a standard web browser without the need of any additional software. PMID:19238568

  4. Comparative analysis of the mechanisms of sulfur anion oxidation and reduction by dsr operon to maintain environmental sulfur balance.

    PubMed

    Ghosh, Semanti; Bagchi, Angshuman

    2015-12-01

    Sulfur metabolism is one of the oldest known redox geochemical cycles in our atmosphere. These redox processes utilize different sulfur anions and the reactions are performed by the gene products of dsr operon from phylogenetically diverse sets of microorganisms. The operon is involved in the maintenance of environmental sulfur balance. Interestingly, the dsr operon is found to be present in both sulfur anion oxidizing and reducing microorganisms and in both types of organisms DsrAB protein complex plays a vital role. Though there are various reports regarding the genetics of dsr operon there are practically no reports dealing with the structural aspects of sulfur metabolism by dsr operon. In our present study, we tried to compare the mechanisms of sulfur anion oxidation and reduction by Allochromatium vinosum and Desulfovibrio vulgaris respectively through DsrAB protein complex. We analyzed the modes of bindings of sulfur anions to the DsrAB protein complex and observed that for sulfur anion oxidizers, sulfide and thiosulfate are the best substrates whereas for reducers sulfate and sulfite have the best binding abilities. We analyzed the binding interaction pattern of the DsrA and DsrB proteins while forming the DsrAB protein complexes in Desulfovibrio vulgaris and Allochromatium vinosum. To our knowledge this is the first report that analyzes the differences in binding patterns of sulfur substrates with DsrAB protein from these two microorganisms. This study would therefore be essential to predict the biochemical mechanism of sulfur anion oxidation and reduction by these two microorganisms i.e., Desulfovibrio vulgaris (sulfur anion reducer) and Allochromatium vinosum (sulfur anion oxidizer). Our observations also highlight the mechanism of sulfur geochemical cycle which has important implications in future study of sulfur metabolism as it has a huge application in waste remediation and production of industrial bio-products viz. vitamins, bio-polyesters and bio

  5. Comparison of Thiyl, Alkoxyl, and Alkyl Radical Addition to Double Bonds: The Unusual Contrasting Behavior of Sulfur and Oxygen Radical Chemistry.

    PubMed

    Degirmenci, Isa; Coote, Michelle L

    2016-03-17

    High-level ab initio calculations have been used to compare prototypical thiyl, alkoxyl, and alkyl radical addition reactions. Thiyl radical addition to the sulfur center of thioketones is exothermic and rapid, occurring with negative enthalpic barriers and only weakly positive Gibbs free energy barriers. In stark contrast, alkoxyl radical addition to the oxygen center of ketones is highly endothermic and occurs with very high reaction barriers, though these are also suppressed. On the basis of analysis of the corresponding alkyl radical additions to these substrates and the corresponding reactions of these heteroatom radicals with alkenes, it suggested that addition reactions involving thiyl radicals have low intrinsic barriers because their unpaired electrons are better able to undergo stabilizing resonance interactions with the π* orbitals of the substrate in the transition state. PMID:26932454

  6. Investigation on growth behavior of CNTs synthesized by atmospheric pressure plasma enhanced chemical vapor deposition system on Fe catalyzed substrate.

    PubMed

    Choi, Bum Ho; Kim, Won Jae; Kim, Young Baek; Lee, Jong Ho; Park, Jong Woon; Kim, Woo Sam; Shin, Dong Chan

    2008-10-01

    We have studied growth behavior of carbon nanotubes (CNTs) on iron (Fe) catalyzed substrate using newly developed atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) system. To investigate the improved growth performance with simple equipment and process on large scale, a new AP-PECVD system containing different concept on downstream gas was designed and manufactured. As a catalyst, either sputtered or evaporated Fe thin film on SiO2/Si substrate was used and acetylene gas was used as a carbon source. We observed growth behavior of CNTs such as height, rate and density were strongly affected by plasma power. The maximum height of 427 microm and 267 microm was synthesized under RF plasma power of 30 W for 30 min and 40 W for 3 min, respectively. The growth rate dramatically increased to 6.27 times as plasma power increased from 30 to 40 W which opens the possibility the mass production of CNTs. By SEM and TEM observation, it was verified the grown CNTs was consists of mixture of single-wall and multi-wall CNTs. The graphitization ratio was measured to be 0.93, indicating that the graphitized CNTs forest was formed and relatively high purity of CNTs was synthesized, being useful for nano-composite materials to reinforce the strength. From our experiments, we can observe that the height and growth rate of CNTs is strong function of plasma power. PMID:19198378

  7. Future Sulfur Dioxide Emissions

    SciTech Connect

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  8. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  9. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at <0.3‰ precision in simulated cave atmospheres. Bioreactors containing Madison Limestone were inoculated with either a monoculture of the mixotrophic sulfur-oxidizing Thiothrix unzii or a mixed environmental (LKC) sulfur-metabolizing community. Ca2+ and pH were also continuously logged in order to quantify the impact of microbial metabolism on limestone dissolution rate. We found an order of magnitude of variability in limestone dissolution rates that were closely tied to microbial metabolism. In monocultures, limestone dissolution was inhibited by excessive reduced sulfur as T. unzii prefers to store sulfur internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments

  10. Deep sulfur cycle

    NASA Astrophysics Data System (ADS)

    Shimizu, N.; Mandeville, C. W.

    2009-12-01

    Geochemical cycle of sulfur in near-surface reservoirs has been a subject of intense studies for decades. It has been shown that sulfur isotopic compositions of sedimentary sulfides and sulfates record interactions of the atmosphere, hydrosphere, biosphere and lithosphere, with δ34S of sedimentary sulfides continuously decreasing from 0‰ toward present-day values of ~-30 to -40‰ over the Phanerozoic (e.g., Canfield, 2004). It has also been shown that microbial reduction of the present-day seawater sulfate (δ34S=+21‰) results in large shifts in isotopic compositions of secondary pyrites in altered oceanic crust (to δ34S=-70‰: Rouxel et al., 2009). How much of these near surface isotopic variations survive during deep geochemical cycle of sulfur interacting with the mantle infinite reservoir with δ34S=0‰? Could extent of their survival be used as a tracer of processes and dynamics involved in deep geochemical cycle? As a first step toward answering these questions, δ34S was determined in-situ using a Cameca IMS 1280 ion microprobe at Woods Hole Oceanographic Institution in materials representing various domains of deep geochemical cycle. They include pyrites in altered MORB as potential subducting materials and pyrites in UHP eclogites as samples that have experienced subduction zone processes, and mantle-derived melts are represented by olivine-hosted melt inclusions in MORB and those in IAB, and undegassed submarine OIB glasses. Salient features of the results include: (1) pyrites in altered MORB (with O. Rouxel; from ODP site 801 and ODP Hole 1301B) range from -70 to +19‰, (2) pyrites in UHP eclogites from the Western Gneiss Region, Norway (with B. Hacker and A. Kylander-Clark) show a limited overall range from -3.4 to + 2.8‰ among five samples, with one of them covering almost the entire range, indicating limited scale lengths of isotopic equilibration during subduction, (3) olivine-hosted melt inclusions in arc basalts from Galunggung (-2

  11. The Phases of Sulfur.

    ERIC Educational Resources Information Center

    Birdwhistell, Kurt R.

    1995-01-01

    Presents a demonstration that illustrates the dramatic changes that sulfur undergoes upon heating to 200 degrees centigrade and then cooling to room temperature. Supplements the demonstration of the rubberlike properties of catenasulfur made by rapid cooling of the sulfur melt in ice water. (JRH)

  12. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  13. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    The nature and distribution of sulfides within type I PO, POP and PP chondrules of the carbonaceous chondrite Vigarano (CV3) have been studied by secondary electron microscopy and electron microprobe. They occur predominantly as spheroidal blebs composed entirely of low-Ni iron sulfide (troilite, FeS) or troilite + magnetite but in less abundance in association with metallic Fe-Ni beads in opaque assemblages. Troilites are mainly located within the low-Ca pyroxene outer zone and their amounts increase with the abundance of low-Ca pyroxene within chondrules, suggesting co-crystallization of troilite and low-Ca pyroxene during high-temperature events. We show that sulfur concentration and sulfide occurrence in chondrules obey high temperature sulfur solubility and saturation laws. Depending on the fS2 and fO2 of the surrounding gas and on the melt composition, mainly the FeO content, sulfur dissolved in chondrule melts may eventually reach a concentration limit, the sulfur content at sulfide saturation (SCSS), at which an immiscible iron sulfide liquid separates from the silicate melt. The occurrence of both a silicate melt and an immiscible iron sulfide liquid is further supported by the non-wetting behavior of sulfides on silicate phases in chondrules due to the high interfacial tension between their precursor iron-sulfide liquid droplets and the surrounding silicate melt during the high temperature chondrule-forming event. The evolution of chondrule melts from PO to PP towards more silicic compositions, very likely due to high PSiO(g) of the surrounding nebular gas, induces saturation of FeS at much lower S content in PP than in PO chondrules, leading to the co-crystallization of iron sulfides and low-Ca pyroxenes. Conditions of co-saturation of low-Ca pyroxene and FeS are only achieved in non canonical environments characterized by high partial pressures of sulfur and SiO and redox conditions more oxidizing than IW-3. Fe and S mass balance calculations also

  14. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  15. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  16. Nanostructured sulfur cathodes.

    PubMed

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. PMID:23325336

  17. Aircraft exhaust sulfur emissions

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Anderson, M. R.; Miake-Lye, R. C.; Kolb, C. E.; Sorokin, A. A.; Buriko, Y. Y.

    The conversion of fuel sulfur to S(VI) (SO3 + H2SO4) in supersonic and subsonic aircraft engines is estimated numerically. Model results indicate between 2% and 10% of the fuel sulfur is emitted as S(VI). It is also shown that, for a high sulfur mass loading, conversion in the turbine is kinetically limited by the level of atomic oxygen. This results in a higher oxidation efficiency at lower sulfur loadings. SO3 is the primary S(VI) oxidation product and calculated H2SO4 emission levels were less than 1% of the total fuel sulfur. This source of S(VI) can exceed the S(VI) source due to gas phase oxidation in the exhaust wake.

  18. 40 CFR Appendix A-1 to Part 50 - Reference Measurement Principle and Calibration Procedure for the Measurement of Sulfur Dioxide...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Calibration Procedure for the Measurement of Sulfur Dioxide in the Atmosphere (Ultraviolet Fluorescence Method... the Atmosphere (Ultraviolet Fluorescence Method) 1.0Applicability 1.1This ultraviolet fluorescence... Atmospheres containing accurately known concentrations of sulfur dioxide are prepared using a compressed...

  19. 40 CFR Appendix A-1 to Part 50 - Reference Measurement Principle and Calibration Procedure for the Measurement of Sulfur Dioxide...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Calibration Procedure for the Measurement of Sulfur Dioxide in the Atmosphere (Ultraviolet Fluorescence Method... the Atmosphere (Ultraviolet Fluorescence Method) 1.0Applicability 1.1This ultraviolet fluorescence... Atmospheres containing accurately known concentrations of sulfur dioxide are prepared using a compressed...

  20. 40 CFR Appendix A-1 to Part 50 - Reference Measurement Principle and Calibration Procedure for the Measurement of Sulfur Dioxide...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Calibration Procedure for the Measurement of Sulfur Dioxide in the Atmosphere (Ultraviolet Fluorescence Method... the Atmosphere (Ultraviolet Fluorescence Method) 1.0Applicability 1.1This ultraviolet fluorescence... Atmospheres containing accurately known concentrations of sulfur dioxide are prepared using a compressed...

  1. 40 CFR Appendix A-1 to Part 50 - Reference Measurement Principle and Calibration Procedure for the Measurement of Sulfur Dioxide...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Calibration Procedure for the Measurement of Sulfur Dioxide in the Atmosphere (Ultraviolet Fluorescence Method... the Atmosphere (Ultraviolet Fluorescence Method) 1.0Applicability 1.1This ultraviolet fluorescence... Atmospheres containing accurately known concentrations of sulfur dioxide are prepared using a compressed...

  2. Regional river sulfur runoff

    SciTech Connect

    Husar, R.B.; Husar, J.D.

    1985-01-20

    The water and sulfur runoff data for 54 large river basins were assembled, covering 65% of the nondesert land area of the world. The sulfur concentration ranges from 0.5 mg S/L for the West African rivers Niger and Volta to 100 mg S/L in the Colorado River; the world average is 3.2 mg S/L. The concentrations in central and eastern Europe as well as central and eastern North America exceed 8 mg S/L. The sulfur runoff density is also highest in the river basins over these industrialized regions, exceeding 2 g S/m/sup 2//yr. However, high sulfur runoff density in excess of 3 g S/m/sup 2//yr is also measured over the Pacific islands New Zealand and New Guinea and the archipelagos of Indonesia and the Philippines. The natural background sulfur runoff was estimated by assuming that South America, Africa, Australia, and the Pacific Islands are unperturbed by man and that the average river sulfur concentration is in the range 1--3 mg S/L. Taking these background concentration values, the man-induced sulfur runoff for Europe ranges between 2 and 8 times the natural flow, and over North America, man's contribution ranges between 1 and 5 times the natural runoff. The global sulfur flow from nondesert land to the oceans and the Caspian Sea is estimated as 131 Tg S/yr, of which 46--85 Tg S/yr is attributed to natural causes. The regional river sulfur runoff pattern discussed in this paper does not have enough spatial resolution to be directly applicable to studies of the environmental effects of man-induced sulfur flows. However, it points to the continental-size regions where those perturbations are most evident and to the magnitude of the perturbations as expressed in units of the natural flows.

  3. Regional river sulfur runoff

    NASA Astrophysics Data System (ADS)

    Husar, Rudolf B.; Husar, Janja Djukic

    1985-01-01

    The water and sulfur runoff data for 54 large river basins were assembled, covering 65% of the nondesert land area of the world. The sulfur concentration ranges from 0.5 mg S/L for the West African rivers Niger and Volta to 100 mg S/L in the Colorado River; the world average is 3.2 mg S/L. The concentrations in central and eastern Europe as well as central and eastern North America exceed 8 mg S/L. The sulfur runoff density is also highest in the river basins over these industrialized regions, exceeding 2 g S/m2/yr. However, high sulfur runoff density in excess of 3 g S/m2/yr is also measured over the Pacific islands New Zealand and New Guinea and the archipelagos of Indonesia and the Philippines. The natural background sulfur runoff was estimated by assuming that South America, Africa, Australia, and the Pacific Islands are unperturbed by man and that the average river sulfur concentration is in the range 1-3 mg S/L. Taking these background concentration values, the man-induced sulfur runoff for Europe ranges between 2 and 8 times the natural flow, and over North America, man's contribution ranges between 1 and 5 times the natural runoff. The global sulfur flow from nondesert land to the oceans and the Caspian Sea is estimated as 131 Tg S/yr, of which 46-85 Tg S/yr is attributed to natural causes. The regional river sulfur runoff pattern discussed in this paper does not have enough spatial resolution to be directly applicable to studies of the environmental effects of man-induced sulfur flows. However, it points to the continental-size regions where those perturbations are most evident and to the magnitude of the perturbations as expressed in units of the natural flows.

  4. Seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking atmospheric water detector experiment

    SciTech Connect

    Jakosky, B.M.; Farmer, C.B.

    1982-04-10

    The water vapor content of the Mars atmosphere was measured from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) for a period of more than 1 Martian year, from June 1976 through April 1979. Results are presented in the form of global maps of column abundance for 24 periods throughout each Mars year. The data reduction incorporates spatial and seasonal variations in surface pressure and supplements earlier published versions of less complete data.

  5. Numerical investigation on three-dimensional dispersion and conversion behaviors of silicon tetrachloride release in the atmosphere.

    PubMed

    Jianwen, Zhang; Xinxin, Yin; Yanan, Xin; Jian, Zhang; Xiaoping, Zheng; Chunming, Jiang

    2015-05-15

    The world has experienced heavy thirst of energy as it has to face a dwindling supply of fossil fuel and polycrystalline silicon photovoltaic solar energy technology has been assigned great importance. Silicon tetrachloride is the main byproducts of polysilicon industry, and it's volatile and highly toxic. Once silicon tetrachloride releases, it rapidly forms a dense gas cloud and reacts violently with water vapor in the atmosphere to form a gas cloud consisting of the mixture of silicon tetrachloride, hydrochloric acid and silicic acid, which endangers environment and people. In this article, numerical investigation is endeavored to explore the three dimensional dispersion and conversion behaviors of silicon tetrachloride release in the atmosphere. The k-ϵ model with buoyancy correction on k is applied for turbulence closure and modified EBU model is applied to describe the hydrolysis reaction of silicon tetrachloride. It is illustrated that the release of silicon tetrachloride forms a dense cloud, which sinks onto the ground driven by the gravity and wind and spreads both upwind and downwind. Complicated interaction occurs between the silicon tetrachloride cloud and the air mass. The main body of the dense cloud moves downwind and reacts with the water vapor on the interface between the dense cloud and the air mass to generate a toxic mixture of silicon tetrachloride, hydrogen chloride and silicic acid. A large coverage in space is formed by the toxic mixture and imposes chemical hazards to the environment. The exothermic hydrolysis reaction consumes water and releases reaction heat resulting in dehydration and temperature rise, which imposes further hazards to the ecosystem over the affected space. PMID:25682513

  6. Sulfur-oxidizing bacteria in environmental technology.

    PubMed

    Pokorna, Dana; Zabranska, Jana

    2015-11-01

    Hydrogen sulfide is widely known as the most undesirable component of biogas that caused not only serious sensoric and toxic problems, but also corrosion of concrete and steel structures. Many agricultural and industrial waste used in biogas production, may contain a large amount of substances that serve as direct precursors to the formation of sulfide sulfur-sources of hydrogen sulfide in the biogas. Biological desulfurization methods are currently promoted to abiotic methods because they are less expensive and do not produce undesirable materials which must be disposed of. The final products of oxidation of sulfides are no longer hazardous. Biological removal of sulfide from a liquid or gaseous phase is based on the activity of sulfur-oxidizing bacteria. They need an oxidizing agent such as an acceptor of electrons released during the oxidation of sulfides-atmospheric oxygen or oxidized forms of nitrogen. Different genera of sulfur-oxidizing bacteria and their technological application are discussed. PMID:25701621

  7. Triple sulfur isotope composition of Late Archean seawater sulfate

    NASA Astrophysics Data System (ADS)

    Paris, G.; Fischer, W. W.; Sessions, A. L.; Adkins, J. F.

    2013-12-01

    Multiple sulfur isotope ratios in Archean sedimentary rocks have provided powerful insights into the behavior of the ancient sulfur cycle, the redox state of fluid Earth, and the timing of the rise of atmospheric oxygen [1]. Most processes fractionate sulfur isotopes in proportion to their mass differences, but the Archean sulfur isotope record is marked by pronounced mass-independent fractionation (MIF, Δ33S≠0). The origin of these signatures has been traditionally interpreted as the result of photolysis of SO2 from short wavelength UV light, with positive Δ33S values recorded in pyrite and negative Δ33S values in sulfate-bearing phases [2]. This long-held hypothesis rests on observations of negative Δ33S from enigmatic barite occurrences from mixed volcanic sedimentary strata in Mesoarchean greenstone terrains. Despite forming the framework for understanding Archean sulfur cycle processes [3], it is largely untested [3]. It is largely untested. Consequently, the biggest challenge to our current understanding of the early sulfur cycle is a poor understanding of the isotopic composition of seawater sulfate. Sulfate evaporite minerals are absent from Archean strata and the sulfur isotope record is written entirely by measurements of pyrite. Carbonate associated sulfate (CAS) provides an important archive for assaying the isotopic composition of ancient seawater sulfate It has been exploited in many studies of Phanerozoic and Proterozoic sulfate but have been only marginally used thus far for Archean samples because of the extremely low concentration of CAS in limestones and dolomites from this era. We have developed a novel MC-ICP-MS approach to solve this problem [4]. This new method lowers the detection limit by up to three orders of magnitude for δ34S and Δ33S measurements, enabling to work on a few nmols of sulfate which represent only tens of mg of sample powders micromilled from specific carbonate textures. Two stratigraphic sections from the 2

  8. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Elemental sulfur from regenerable FGD processes

    SciTech Connect

    Little, R.C.; Nelson, S.G.

    1995-12-31

    Sorbent Technologies Corporation (Sorbtech) engineers recently discovered a new catalyst that effectively reduces sulfur dioxide (SO{sub 2}) in concentrated SO{sub 2} streams directly to elemental sulfur as a one-step process. The discovery was made during Sorbtech`s development work with the Magsorbent Process, a new regenerable Flue Gas Desulfurization (FGD) process. In laboratory studies, the catalyst demonstrated good SO{sub 2}-to-elemental sulfur yields. Yields of 95% or more were observed. The process, which is carried out at atmospheric pressure, employs reformed methane and the catalyst, which is heated, to reduce SO{sub 2} to elemental sulfur. The new catalyst process should be of interest to anyone who currently has an SO{sub 2} stream containing high concentrations of SO{sub 2}, and wishes to convert it into a useful product. The process is expected to be a low-cost alternative to a modified Claus plant. This paper describes laboratory tests that were conducted to examine the effects of gas composition, sulfur dioxide concentration, and long-term use on the performance of the catalyst. It also describes the scale up of the new technology to a size suitable for treating the total SO{sub 2}-rich regenerator off-gas stream at DOE`s new Copper Oxide Process flue-gas desulfurization pilot facility, located at the Pittsburgh Energy Technology Center.

  10. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  11. Emissions of sulfur gases from wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.

    1992-01-01

    Data on the emissions of sulfur gases from marine and freshwater wetlands are summarized with respect to wetland vegetation type and possible formation mechanisms. The current data base is largest for salt marshes inhabited by Spartina alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH), carbonyl sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being emitted. High emission rates of DMS are associated with vegetation that produces the DMS precursor dimethylsulfonionpropionate (DMSP). Although large quantities of H2S are produced in marshes, only a small percentage escapes to the atmosphere. High latitude marshes emit less sulfur gases than temperate ones, but DMS still dominates. Mangrove-inhabited wetlands also emit less sulfur than temperate S. alterniflora marshes. Few data are available on sulfur gas emissions from freshwater wetlands. In most instances, sulfur emissions from temperate freshwater sites are low. However, some temperate and subtropical freshwater sites are similar in magnitude to those from marine wetlands which do not contain vegetation that produces DMSP. Emissions are low in Alaskan tundra but may be considerably higher in some bogs and fens.

  12. Corrosion Behavior of Field-Exposed 7A04 Aluminum Alloy in the Xisha Tropical Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Li, X. G.; Man, C.; Xiao, K.; Dong, C. F.; Wang, X.; Liu, Z. Y.

    2015-08-01

    Atmospheric corrosion behavior of 7A04 aluminum alloy exposed to a tropical marine environment for 4 years was investigated by weight loss test, morphology observation, and electrochemical impendence spectroscopy (EIS). The results showed that the weight loss of 7A04 alloy in the log-log coordinates can be approximately fitted with two liner segments, in which the slope value of the second segment is significantly lower than that of the first segment. This was mainly attributed to the protectiveness of the corrosion product layer formed on the specimen exposed for 12 and 24 months, which was further confirmed by the EIS results. Corrosion rate presented a significant fluctuation during the exposure test which is due to the deterioration effect caused by chloride ions and time of wetness and the stabilization process of the corrosion product layer. Intergranular corrosion occurred on the 7A04 alloy and then transformed into exfoliation corrosion because of the synergetic effect of the hydrogen-assisted crack initiation and the wedge effect-induced matrix delamination.

  13. Preparation of Aluminum Coatings by Atmospheric Plasma Spraying and Dry-Ice Blasting and Their Corrosion Behavior

    NASA Astrophysics Data System (ADS)

    Dong, Shu-Juan; Song, Bo; Zhou, Gen-Shu; Li, Chang-Jiu; Hansz, Bernard; Liao, Han-Lin; Coddet, Christian

    2013-10-01

    Aluminum coating, as an example of spray coating material with low hardness, was deposited by atmospheric plasma spraying while dry-ice blasting was applied during the deposition process. The deposited coatings were characterized in terms of microstructure, porosity, phase composition, and the valence states. The results show that the APS aluminum coatings with dry-ice blasting present a porosity of 0.35 ± 0.02%, which is comparable to the bulk material formed by the mechanical compaction. In addition, no evident oxide has been detected, except for the very thin and impervious oxide layer at the outermost layer. Compared to plasma-sprayed Al coatings without dry-ice blasting, the adhesion increased by 52% for Al substrate using dry-ice blasting, while 25% for steel substrate. Corrosion behavior of coated samples was evaluated in 3.5 wt.% NaCl aqueous using electrochemistry measurements. The electrochemical results indicated that APS Al coating with dry-ice blasting was more resistant to pitting corrosion than the conventional plasma-sprayed Al coating.

  14. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Nash, Douglas B.

    1991-01-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  15. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  16. Hydrolysis of Sulfur Dioxide in Small Clusters of Sulfuric Acid: Mechanistic and Kinetic Study.

    PubMed

    Liu, Jingjing; Fang, Sheng; Wang, Zhixiu; Yi, Wencai; Tao, Fu-Ming; Liu, Jing-Yao

    2015-11-17

    The deposition and hydrolysis reaction of SO2 + H2O in small clusters of sulfuric acid and water are studied by theoretical calculations of the molecular clusters SO2-(H2SO4)n-(H2O)m (m = 1,2; n = 1,2). Sulfuric acid exhibits a dramatic catalytic effect on the hydrolysis reaction of SO2 as it lowers the energy barrier by over 20 kcal/mol. The reaction with monohydrated sulfuric acid (SO2 + H2O + H2SO4 - H2O) has the lowest energy barrier of 3.83 kcal/mol, in which the cluster H2SO4-(H2O)2 forms initially at the entrance channel. The energy barriers for the three hydrolysis reactions are in the order SO2 + (H2SO4)-H2O > SO2 + (H2SO4)2-H2O > SO2 + H2SO4-H2O. Furthermore, sulfurous acid is more strongly bonded to the hydrated sulfuric acid (or dimer) clusters than the corresponding reactant (monohydrated SO2). Consequently, sulfuric acid promotes the hydrolysis of SO2 both kinetically and thermodynamically. Kinetics simulations have been performed to study the importance of these reactions in the reduction of atmospheric SO2. The results will give a new insight on how the pre-existing aerosols catalyze the hydrolysis of SO2, leading to the formation and growth of new particles. PMID:26450714

  17. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  18. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  19. Iron and sulfur in the pre-biologic ocean

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Brimblecombe, P.

    1985-01-01

    Tentative geochemical cycles for the pre-biologic Earth are developed by comparing the relative fluxes of oxygen, dissolved iron, and sulfide to the atmosphere and ocean. The flux of iron is found to exceed both the oxygen and the sulfide fluxes. Because of the insolubility of iron oxides and sulfides the implication is that dissolved iron was fairly abundant and that oxygen and sulfide were rare in the atmosphere and ocean. Sulfate, produced by the oxidation of volcanogenic sulfur gases, was the most abundant sulfur species in the ocean, but its concentration was low by modern standards because of the absence of the river-borne flux of dissolved sulfate produced by oxidative weathering of the continents. These findings are consistent with the geologic record of the isotopic composition of sedimentary sulfates and sulfides. Except in restricted environments, the sulfur metabolism of the earliest organisms probably involved oxidized sulfur species not sulfide.

  20. Effects of Wet Air and Synthetic Combustion Gas Atmospheres on the Oxidation Behavior of Mo-Si-B Alloys

    SciTech Connect

    Kramer, M.J.; Thom, A.J.; Mandal, P.; Behrani, V.; Akinc, M.

    2003-04-24

    Continuing our work on understanding the oxidation behavior of multiphase composite alloys based on the Mo-Si-B system, we investigated three alloys in the Mo-Si-B system, designated as A1, A2, and A3. The nominal phase assemblages of these alloys are: A1 = Mo{sub 5}Si{sub 3}B{sub x} (T1)-MoSi{sub 2}-MoB, A2 = T1-Mo{sub 5}SiB{sub 2} (T2)-Mo{sub 3}Si, and A3 = Mo-T2-Mo{sub 3}Si. Our previous work showed that for exposures to 1100 C, all alloys formed a protective oxide scale in dry air. Exposures to wet air containing about 150 Torr water promoted the formation of a multiphase layer near the scale/alloy interface composed of Mo and MoO{sub 2}. Interrupted mass loss measurements indicated a near zero mass change. In the present study, isothermal mass measurements were conducted in order to quantitatively determine the oxidation rate constants at 1000 C in both dry and wet air. These measurements are critical for understanding the nature of scale development during the initial exposure, as well as the nature of scale stability during the long-term exposure. Isothermal measurements were also conducted at 1600 C in dry air to make an initial determination of alloy stability with respect to Vision 21 goals. We also conducted alloy oxidation testing in a synthetic oxidizing combustion atmosphere. Alloys were exposed up to 300 hours at 1100 C to a gas mixture having an approximate gas composition of N{sub 2} - 13 CO{sub 2} - 10 H{sub 2}O - 4 O{sub 2}. This gas composition simulates oxidizing flue gas, but does not contain a sulfidizing agent that would also be present in flue gas. The oxidized samples were carefully analyzed by SEM/EDS. This analysis will be discussed to provide an understanding of the role of water vapor and the synthetic combustion atmosphere on the oxidative stability of Mo-Si-B alloys.

  1. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  2. Sulfur cycling in freshwater sediments

    NASA Technical Reports Server (NTRS)

    Klug, M. J.

    1985-01-01

    Organic sulfur containing compounds represent greater than 80% of the total sulfur in sediments of eutrophic freshwater lakes. Although sedimentary sulfur is predominantly in the form of organic compounds, more sulfur is transformed by sulfate reduction than by any other process. Rates of sulfate reduction in these sediments average 7 mmol/sq m/day. This rate is 19 times greater than the net rate of production of inorganic sulfur from organic compounds on an annual basis.

  3. SULFUR CHEMISTRY. Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride.

    PubMed

    Mackenzie, Rebecca B; Dewberry, Christopher T; Leopold, Kenneth R

    2015-07-01

    We report the observation of a covalently bound species, formic sulfuric anhydride (FSA), that is produced from formic acid and sulfur trioxide under supersonic jet conditions. FSA has been structurally characterized by means of microwave spectroscopy and further investigated by using density functional theory and ab initio calculations. Theory indicates that a π2 + π2 + σ2 cycloaddition reaction between SO3 and HCOOH is a plausible pathway to FSA formation and that such a mechanism would be effectively barrierless. We speculate on the possible role that FSA may play in the Earth's atmosphere. PMID:26138972

  4. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, Richard; Steinberg, Meyer

    1981-01-01

    This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  5. Terpolymerization of ethylene, sulfur dioxide and carbon monoxide

    DOEpatents

    Johnson, R.; Steinberg, M.

    This invention relates to high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280/sup 0/C and containing as little as 36 mo1% ethylene and about 41 to 51 mo1% sulfur dioxide, and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10 to 50/sup 0/C, and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

  6. Changes in organic sulfur compounds in coal macerals during liquefaction

    SciTech Connect

    Winans, R.E.; Joseph, J.T.; Fisher, R.B.

    1994-12-31

    Environmentally sound use of coal for energy production involves effective sulfur removal from the feed coal and/or coal-derived products. Physical cleaning of coal is effective in removing substantial quantities of inorganic sulfur compounds such a pyrite. However, removal of organic sulfur by physical means has not been extremely successful. It is likely that only chemical methods will be useful in substantial removal of organic sulfur. A thorough knowledge of the chemistry of organic sulfur in coal will be valuable in attempts to remove organic sulfur from coal or its liquefaction or pyrolysis products by chemical methods. Since different coal macerals have different liquefaction reactivities, the analysis of sulfur functionalities on separated macerals is deemed to be more meaningful than studying the whole coal. Liquefaction behavior and organic sulfur speciation of the macerals separated from Lewiston-Stockton coal (Argonne Premium Coal Sample bank, APCS-7) by XPS, XANES, and HRMS has been previously described. This paper describes the preliminary speciation of sulfur compounds in the asphaltene fraction of the liquefaction products from these macerals.

  7. Middle Atmosphere Program. Handbook for MAP. Volume 12: Coordinated Study of the Behavior of the Middle Atmosphere in Winter (PMP-1) Workshops

    NASA Technical Reports Server (NTRS)

    Rodgers, C. D. (Editor)

    1984-01-01

    Intercomparison of middle atmosphere meteorological data from a variety of sources is discussed. The primary aim was to intercompare data on stratospheric and mesospheric temperatures from a variety of sounding systems in order to characterize the differences, to understand the reasons for them, and to help users of the data to understand how these differences will affect derived quantities such as heat and momentum fluxes which are significant in studies of stratospheric dynamics.

  8. Organic sulfur biodesulfurization status and non-aqueous biocatalysis

    SciTech Connect

    Finnerty, W.R.

    1993-12-31

    The use of microorganisms for biodesulfurization bioprocessing has attracted attention as a potential precombustion technology for reduction of the organosulfur content of high-sulfur fossil fuels. Several microorganisms have been reported as capable of reducing the organosulfur content of sulfur-containing heterocycles as well as high sulfur petroleum and coal in aqueous media. Currently, two microbial oxidative mechanisms are classified as carbon-targeted and sulfur-targeted reactions. The former results in hydroxylated products and do not address the removal of the sulfur atom without significant losses in fuel value. Sulfur-targeted reactions result in the loss of organosulfur and incorporation of oxygen into the final product(s). An alternative approach to water-based biodesulfurization technologies is non-aqueous biocatalysis. Non-aqueous biodesulfurization systems have been developed that convert sulfur-containing heterocycles to aromatic hydrocarbons and hydrogen sulfide under a hydrogen atmosphere. The development of functional biocatalysts that selectively abstract organosulfur in organic media such as dimethylformamide, tetrahydrofuran, and carbon tetrachloride offer numerous advantages in the bioprocessing of high-sulfur fossil fuels. The potential to couple non-aqueous biocatalysis with chemical catalysis to perform chemoenzymatic transformations offers new opportunities for the performance- and cost-effective bioprocessing of fossil fuels.

  9. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide

  10. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    NASA Astrophysics Data System (ADS)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  11. Sulfur speciation in hard coal by means of a thermal decomposition method.

    PubMed

    Spiewok, W; Ciba, J; Trojanowska, J

    2002-02-01

    A new method for the determination of organic and pyritic sulfur in hard coal is presented. The method is based on controlled thermal decomposition of coal sample in oxygen-free and oxygen atmospheres. The results for sulfur liberated in an argon atmosphere at temperatures up to 773 K were close to organic sulfur contents (Sorg), although owing to the definition of 'organic sulfur' the values were not directly comparable. Sorg contents are calculated from the difference between total sulfur content in coal and contents of this element in the form of sulfides, sulfates and pyrites. Sulfur contents, found in the second stage of analysis, were close to pyritic sulfur contents. The difference between total sulfur content and the sum of sulfur values obtained in stages I and II corresponded to sulfur contents in those samples which were neither decomposed nor oxidized at temperatures up to 1173 K. Although not comparable with such conventional concepts for industrial purposes these data are attractive due to the ease and rapidity of the new method for the control of sulfur streams in industrial processes. PMID:11939541

  12. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  13. Effect of sulfur removal on Al2O3 scale adhesion

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1991-01-01

    The effect of removing sulfur impurity on the adhesion of Al2O3 scale to NiCrAl was investigated in four experiments. It was found that removing sulfur to concentration less than 1 ppm per weight is sufficient to produce a very significant degree of alpha-Al2O3 scale adhesion to undoped NiCrAl alloys. Results of experiments show that repeated oxidation, and polishing after each oxidation cycle, of pure NiCrAl alloy lowered sulfur content from 10 to 2 ppm by weight (presumably by removing the segregated interfacial layer after each cycle); thinner samples became adherent after fewer oxidation-polishing cycles because of more limited supply of sulfur. It was found that spalling in subsequent cyclic oxidation tests was a direct function of the initial sulfur content. The transition between the adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  14. Total sulfate vs. sulfuric acid monomer concenterations in nucleation studies

    NASA Astrophysics Data System (ADS)

    Neitola, K.; Brus, D.; Makkonen, U.; Sipilä, M.; Mauldin, R. L., III; Sarnela, N.; Jokinen, T.; Lihavainen, H.; Kulmala, M.

    2015-03-01

    Sulfuric acid is known to be a key component for atmospheric nucleation. Precise determination of sulfuric-acid concentration is a crucial factor for prediction of nucleation rates and subsequent growth. In our study, we have noticed a substantial discrepancy between sulfuric-acid monomer concentrations and total-sulfate concentrations measured from the same source of sulfuric-acid vapor. The discrepancy of about 1-2 orders of magnitude was found with similar particle-formation rates. To investigate this discrepancy, and its effect on nucleation, a method of thermally controlled saturator filled with pure sulfuric acid (97% wt.) for production of sulfuric-acid vapor is applied and rigorously tested. The saturator provided an independent vapor-production method, compared to our previous method of the furnace (Brus et al., 2010, 2011), to find out if the discrepancy is caused by the production method itself. The saturator was used in a H2SO4-H2O nucleation experiment, using a laminar flow tube to check reproducibility of the nucleation results with the saturator method, compared to the furnace. Two independent methods of mass spectrometry and online ion chromatography were used for detecting sulfuric-acid or sulfate concentrations. Measured sulfuric-acid or total-sulfate concentrations are compared to theoretical predictions calculated using vapor pressure and a mixing law. The calculated prediction of sulfuric-acid concentrations agrees very well with the measured values when total sulfate is considered. Sulfuric-acid monomer concentration was found to be about 2 orders of magnitude lower than theoretical predictions, but with a temperature dependency similar to the predictions and the results obtained with the ion-chromatograph method. Formation rates are reproducible when compared to our previous results with both sulfuric-acid or total-sulfate detection and sulfuric-acid production methods separately, removing any doubts that the vapor-production method would

  15. Advanced sulfur control concepts

    SciTech Connect

    Harrison, D.P.; Lopez-Ortiz, A.; White, J.D.; Groves, F.R. Jr.

    1995-11-01

    The primary objective of this study is the direct production of elemental sulfur during the regeneration of high temperature desulfurization sorbents. Three possible regeneration concepts were identified as a result of a literature search. The potential for elemental sulfur production from a number of candidate metal oxide sorbents using each regeneration concept was evaluated on the basis of a thermodynamic analysis. Two candidate sorbents, Fe{sub 2}O{sub 3} and CeO{sub 2} were chosen for experimental testing. The experimental test program using both electrobalance and fixed-bed reactor sis now getting underway. The objective is to determine reaction conditions--temperature, pressure, space velocity, and regeneration feed gas composition--which will maximize the yield of elemental sulfur in the regeneration product gas. Experimental results are to be used to define a conceptual desulfurization-regeneration process and to provide a preliminary economic evaluation.

  16. Interstellar sulfur chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.; Huntress, W. T., Jr.

    1980-01-01

    The results of a chemical model of SO, CS, and OCS chemistry in dense clouds are summarized. The results are obtained from a theoretical study of sulfur chemistry in dense interstellar clouds using a large-scale time-dependent model of gas-phase chemistry. Among the results are the following: (1) owing to activation energy, the reaction of CS with O atoms is efficient as a loss mechanism of CS during the early phases of cloud evolution or in hot and oxygen-rich sources such as the KL nebula; (2) if sulfur is not abnormally depleted in dense clouds, then the observed abundances of SO, SO2, H2S, CS, OCS, H2CS, and SiS indicate that sulfur is mostly atomic in dense clouds; and (3) OCS is stable against reactions with neutral atoms and radicals in dense clouds.

  17. Sodium sulfur battery seal

    DOEpatents

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  18. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  19. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    NASA Astrophysics Data System (ADS)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.

  20. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Yun; Yu, Qiquan; Chang, Shih-Ger

    1996-01-01

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h.sup.-1. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications.

  1. Sulfur in achondritic meteorites

    NASA Technical Reports Server (NTRS)

    Gibson, E. K.; Moore, C. B.; Primus, T. M.; Lewis, C. F.

    1985-01-01

    The sulfur abundances of samples of nearly 50 achondrites were examined to enlarge the database on the sulfur contents of various categories of achondrites. The study covered eucrites, howardites, diogenites, shergottites, chassignites, nakhilites, aubrites and three unique specimens. The study was spurred by the possibility that the S abundances could help identify the meteorites as originating on Mars or Venus. The S abundances and distributions varied widely, but confirmed that the data were valid indicators of the brecciation and thermal metamorphic history of each meteorite.

  2. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    NASA Astrophysics Data System (ADS)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl

    2016-04-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  3. Reduced sulfur cycling in the marine boundary layer

    SciTech Connect

    Cooper, D.J.

    1989-01-01

    This study is a field and laboratory investigation of the cycling of biogenic sulfur gases over the oceans. The sources of atmospheric reduced sulfur compounds are characterized over the remote oceans. Possible conversion pathways and turnover times are assessed on both clean marine air and more polluted air. The role of biogenic emissions in the global sulfur cycle is assessed. Implications for the origin of non-sea-salt sulfate over the oceans are discussed. Field data from the remote marine atmosphere are reported in this study in reasonable agreement with previous work. Simultaneous measurements of dimethylsulfide (DMS) with hydrogen sulfide (H{sub 2}S) and carbon disulfide (CS{sub 2}) suggest that estimates of the contribution of the latter two compounds to the sulfur burden of the marine atmosphere may have been overestimated in the past. Measurements of DMS in the pollutant plume over the western Atlantic ocean show significant diurnal variation, in contrast to previous reports. This report can be explained largely through meteorological effects, but also indicates a higher DMS loss rate during the day than seen in more remote locations. This daytime loss rate is also higher than evident at night. These observations suggest that the presence of pollutants leads to enhanced daytime oxidation rather than enhanced nighttime oxidation, as previously suggested. Both the field data and the results of laboratory gas exchange experiments indicate that the flux of dimethylsulfide from the sea surface to the atmosphere is approximately a factor of two lower than previously believed. Using this lowered flux in models of sulfur cycling resolves many of the current inconsistencies in the literature concerning DMS levels and diurnal cycling. This lower flux suggests that biogenic sulfur plays only a minor role in the global sulfur cycle.

  4. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle

    PubMed Central

    Canfield, Donald E.

    2013-01-01

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth’s surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth’s history, and our understanding of this history is based mainly on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in coal. Indeed, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through the Phanerozoic Eon. PMID:23650346

  5. Sulfur isotopes in coal constrain the evolution of the Phanerozoic sulfur cycle.

    PubMed

    Canfield, Donald E

    2013-05-21

    Sulfate is the second most abundant anion (behind chloride) in modern seawater, and its cycling is intimately coupled to the cycling of organic matter and oxygen at the Earth's surface. For example, the reduction of sulfide by microbes oxidizes vast amounts of organic carbon and the subsequent reaction of sulfide with iron produces pyrite whose burial in sediments is an important oxygen source to the atmosphere. The concentrations of seawater sulfate and the operation of sulfur cycle have experienced dynamic changes through Earth's history, and our understanding of this history is based mainly on interpretations of the isotope record of seawater sulfates and sedimentary pyrites. The isotope record, however, does not give a complete picture of the ancient sulfur cycle. This is because, in standard isotope mass balance models, there are more variables than constraints. Typically, in interpretations of the isotope record and in the absence of better information, one assumes that the isotopic composition of the input sulfate to the oceans has remained constant through time. It is argued here that this assumption has a constraint over the last 390 Ma from the isotopic composition of sulfur in coal. Indeed, these compositions do not deviate substantially from the modern surface-water input to the oceans. When applied to mass balance models, these results support previous interpretations of sulfur cycle operation and counter recent suggestions that sulfate has been a minor player in sulfur cycling through the Phanerozoic Eon. PMID:23650346

  6. Correlation for the total sulfur content in char after devolatilization

    SciTech Connect

    Vasilije Manovic; Borislav Grubor

    2006-02-01

    The overall process of coal combustion takes place in two successive steps: devolatilization and char combustion. The fate of sulfur during the devolatilization of coal of different rank was investigated. The significance of the investigation is in fact that a major part of sulfur release occurs during devolatilization of coal, (i.e., emission of sulfur oxides during combustion of coal largely depends on sulfur release during devolatilization). The experimental investigations were conducted to obtain the data about the quantitative relation between sulfur content in the coal and sulfur content in the char. Standard procedures were used for obtaining the chars in a laboratory oven and determining the sulfur forms in the coal and char samples. The experiments were done with ground coal samples ({lt}0.2 mm), at the temperatures in the range of 500-1000{sup o}C. We showed that the amount of sulfur remaining in the char decreases, but not significantly in the temperature range 600-900{sup o}C. On the basis of the theoretical consideration of behavior of sulfur forms during devolatilization, certain simplifying assumptions, and obtained experimental data, we propose two correlations to associate the content of sulfur in the coal and in the char. The correlations are based on the results of the proximate analysis and sulfur forms in coal. Good agreement was found when the proposed correlations were compared with the experimental results obtained for investigated coals. Moreover, the correlations were verified by results found in the literature for numerous Polish, Albanian, and Turkish coals. Significant correlations (P {lt}0.05) between observed and calculated data with correlation coefficient, R {gt}0.9, were noticed in the case of all coals. 25 refs., 3 figs., 2 tabs.

  7. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Petäjä, T.; Aufmhoff, H.; Aalto, P.; Hämeri, K.; Arnold, F.; Laaksonen, A.; Kulmala, M.

    2006-10-01

    Freshly formed atmospheric aerosol particles are neither large enough to efficiently scatter incoming solar radiation nor able to act as cloud condensation nuclei. As the particles grow larger, their hygroscopicity determines the limiting size after which they are important in both of the aforementioned processes. The condensing species resulting in growth alter the hygroscopicity of the particles. We have measured hygroscopic growth of aerosol particles present in a boreal forest, along with the very hygroscopic atmospheric trace gas sulfuric acid. The focus was on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with gaseous phase sulfuric acid concentrations. This correlation had a strong size dependency; the smaller the particle, the more condensing sulfuric acid is bound to alter the GF due to initially smaller mass. In addition, water uptake of nucleation mode particles was monitored during new particle formation events and followed during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that initially more hygroscopic particles transformed into less hygroscopic or even hydrophobic particles. A similar behavior was seen also during days with no particle formation, with GF decreasing during the evenings and increasing during early morning. This can be tentatively explained by day- and nighttime differences in the hygroscopicity of condensable vapors.

  8. Sulfur aerosol in the clouds of Venus

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2016-08-01

    The photochemical model for the middle atmosphere of Venus (Krasnopolsky, V.A. [2012] Icarus, 218, 230-246) predicts sulfur aerosol as a product of the OCS photolysis at 55-60 km. The calculated mass loading is much smaller than that of the mode 1 particles in the upper cloud layer. The chemical kinetic model for the lower atmosphere (Krasnopolsky, V.A. [2013], Icarus, 225, 570-580) results in a constant mixing ratio of 20 ppm for OCS + XSX. This means the S8 mixing ratio of 2.5 ppm near the model upper boundary at 47 km. Using this abundance, the calculated profile of the sulfur aerosol has a bottom that coincides with the lower boundary of modes 2 and 3 and constitutes ∼10% of the total mass loading in the lower cloud layer. Sulfur aerosol cannot be the near UV absorber because its abundance is too low at the cloud tops and disagrees with the profile of the absorber observed by Venera 14.

  9. Effects of atmospheric composition on respiratory behavior, weight loss, and appearance of Camembert-type cheeses during chamber ripening.

    PubMed

    Picque, D; Leclercq-Perlat, M-N; Corrieu, G

    2006-08-01

    Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses. PMID:16840643

  10. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  11. COAL SULFUR MEASUREMENTS

    EPA Science Inventory

    The report describes a new technique for sulfur forms analysis based on low-temperature oxygen plasma ashing. The technique involves analyzing the low-temperature plasma ash by modified ASTM techniques after selectively removing the organic material. The procedure has been tested...

  12. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  13. Sodium sulfur battery seal

    DOEpatents

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  14. Sulfur, ultraviolet radiation, and the early evolution of life.

    PubMed

    Kasting, J F; Zahnle, K J; Pinto, J P; Young, A T

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. We suggest here that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. The concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, which is a strong function of temperature. Hence, it would have depended on the magnitude of the atmospheric greenhouse effect. Surface temperatures of 45 degrees C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. Two additional requirements are that the ocean was saturated with sulfite and bisulfite, and that linear S8 chains must tend to reform rings faster than they are destroyed by photolysis. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur. PMID:2685712

  15. Process for forming sulfuric acid

    DOEpatents

    Lu, Wen-Tong P.

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  16. SULFUR POLYMER ENCAPSULATION.

    SciTech Connect

    KALB, P.

    2001-08-22

    Sulfur polymer cement (SPC) is a thermoplastic polymer consisting of 95 wt% elemental sulfur and 5 wt% organic modifiers to enhance long-term durability. SPC was originally developed by the U.S. Bureau of Mines as an alternative to hydraulic cement for construction applications. Previous attempts to use elemental sulfur as a construction material in the chemical industry failed due to premature degradation. These failures were caused by the internal stresses that result from changes in crystalline structure upon cooling of the material. By reacting elemental sulfur with organic polymers, the Bureau of Mines developed a product that successfully suppresses the solid phase transition and significantly improves the stability of the product. SPC, originally named modified sulfur cement, is produced from readily available, inexpensive waste sulfur derived from desulfurization of both flue gases and petroleum. The commercial production of SPC is licensed in the United States by Martin Resources (Odessa, Texas) and is marketed under the trade name Chement 2000. It is sold in granular form and is relatively inexpensive ({approx}$0.10 to 0.12/lb). Application of SPC for the treatment of radioactive, hazardous, and mixed wastes was initially developed and patented by Brookhaven National Laboratory (BNL) in the mid-1980s (Kalb and Colombo, 1985; Colombo et al., 1997). The process was subsequently investigated by the Commission of the European Communities (Van Dalen and Rijpkema, 1989), Idaho National Engineering Laboratory (Darnell, 1991), and Oak Ridge National Laboratory (Mattus and Mattus, 1994). SPC has been used primarily in microencapsulation applications but can also be used for macroencapsulation of waste. SPC microencapsulation has been demonstrated to be an effective treatment for a wide variety of wastes, including incinerator hearth and fly ash; aqueous concentrates such as sulfates, borates, and chlorides; blowdown solutions; soils; and sludges. It is not

  17. Sulfur deposition and cycling in two forests of the Georgia Piedmont

    SciTech Connect

    Cappellato, R. )

    1994-06-01

    Because of the increase in SO[sub 2] emissions in Georgia since the late 70's, a study was undertaken in adjacent deciduous and coniferous forests to estimate the atmospheric input and above-ground cycling of sulfur. During this study, which was conducted in 1988-89, total annual sulfur input to these forests was 17 kg/ha, which was comparable to sulfur inputs to other sites in the eastern United States. Dry deposition accounted for more than 50% of the total atmospheric sulfur input, and SO[sub 2] was the major source of dry deposition of the canopy. Net flux of sulfur in (throughfall flux minus precipitation flux) under the deciduous canopy was 1.8 times higher than that under the conferous canopy. Although the net sulfur throughfall flux was very similar to the total sulfur dry deposition in the deciduous forest, the net sulfur throughfall was only about half of the total sulfur dry deposition. The lower throughfall sulfur flux in the coniferous forest was attributed to retention of SO[sub 2] by the canopy. Lower sulfur concentration in needles from the litterfall (0.68 mg/g) than in needles from the canopy (1.38 mg/g) indicates that sulfur could be accumulating in coniferous wood. Total annual sulfur deposition to the forest floor by throughfall, stemflow, and litterfall was 2.3 and 1.3 times greater than the sulfur required by the deciduous and coniferous forests, respectively, for annual wood and foliage production.

  18. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    SciTech Connect

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-12-15

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 {+-} 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last {approx}4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 {+-} 0.012 dex kpc{sup -1}.

  19. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    SciTech Connect

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  20. Sulfuric acid measurements in the exhaust plume of a jet aircraft in flight: Implications for the sulfuric acid formation efficiency

    NASA Astrophysics Data System (ADS)

    Curtius, J.; Arnold, F.; Schulte, P.

    2002-04-01

    Sulfuric acid concentrations were measured in the exhaust plume of a B737-300 aircraft in flight. The measurements were made onboard of the German research aircraft Falcon using the Volatile Aerosol Component Analyzer (VACA). The VACA measures total H2SO4, which is the sum of gaseous H2SO4 and aerosol H2SO4. Measurements took place at distances of 25-200 m behind the B737 corresponding to plume ages of about 0.1-1 seconds. The fuel sulfur content (FSC) of the fuel burned by the B737 engines was alternatively 2.6 and 56 mg sulfur per kilogram fuel (ppmm). H2SO4 concentrations measured in the plume for the 56 ppmm sulfur case were up to ~600 pptv. The average concentration of H2SO4 measured in the ambient atmosphere outside the aircraft plume was 88 pptv, the maximum ambient atmospheric H2SO4 was ~300 pptv. Average efficiencies ɛΔCO2 = 3.3 +/- 1.8% and ɛΔT = 2.9 +/- 1.6% for fuel sulfur conversion to sulfuric acid were inferred when relating the H2SO4 data to measurements of the plume tracers ΔCO2 and ΔT.

  1. Effects of sulfur oxides on eicosanoids

    SciTech Connect

    Chen, L.C.; Miller, P.D.; Amdur, M.O. )

    1989-01-01

    Ultrafine metal oxides and SO2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SOx layer. Ongoing work in this laboratory has examined the effects of sulfur oxides on pulmonary functions of guinea pigs. We have previously reported that 20 micrograms/m3 acidic sulfur oxide as a surface layer on ultrafine ZnO particles decreases lung volumes, decreases carbon monoxide diffusing capacity, and causes lung inflammation in guinea pigs after 4 daily 3-h exposures. It also produces bronchial hypersensitivity following a single 1-h exposure. The importance of this surface layer is demonstrated by our observation that 200 micrograms/m3 of sulfuric acid droplets of equivalent size are needed to produce the same degree of hypersensitivity. This study characterized the concentration-dependent effects of in vivo exposures to sulfur oxides on arachidonic acid metabolism in the guinea pig lung, and investigated the time course and the relation between eicosanoid composition and pulmonary functions. We focused specifically on four cyclooxygenase metabolites of arachidonic acid, that is, prostaglandins (PG) E1, F2 alpha, 6-keto prostaglandin F1 alpha, and thromboxane (Tx) B2, and two groups of sulfidopeptide leukotrienes (C4, D4, E4, and F4). Guinea pigs were exposed to ultrafine ZnO aerosol (count median diameter = 0.05 microns, sigma g = 1.80) with a layer of acidic sulfur oxide on the surface of the particles. Lung lavage was collected after exposures, and the levels of arachidonic acid metabolites were determined using radioimmunoassay (RIA). Concentration-dependent promotion of PGF2 alpha and concentration-dependent suppression of LtB4 were observed. The increased PGF2 alpha was associated with depressed vital capacity and diffusing capacity of the lungs measured in guinea pigs exposed to the same atmosphere described in a previous study.

  2. Analyzing Sulfur Dioxide Emissions of Nyamuragira Volcano

    NASA Astrophysics Data System (ADS)

    Guth, A. L.; Bluth, G. J.; Carn, S. A.

    2002-05-01

    Nyamuragira volcano, located in the Democratic Republic of Congo, is Africa's most active volcano, having erupted 13 times (every 1-3 years) since 1980. The eruption frequency, and the large amounts of sulfur dioxide emitted by this rift volcano, may produce a significant impact on the global sulfur budget. In this project we are attempting to quantify the sulfur dioxide emissions from this volcano over the past 20+ years using satellite data. Since 1978, satellites carrying NASA's Total Ozone Mapping Spectrometer (TOMS) instruments have been orbiting the earth collecting atmospheric data. These instruments use six wavelength bands located within the ultraviolet spectrum to measure solar irradiance and the energy reflected and backscattered by the Earth's surface and atmosphere. Sunlit planetary coverage is provided once per day by TOMS data. The spatial resolution of these satellites varies from 24 km (Earth Probe, 1996-1997, but raised to 39 km from 1997 to present) to 62 km (Meteor-3, 1991-1994). Nimbus-7, the satellite operating for the longest span of time (1978-1993), had a nadir footprint of 50 km. The (instantaneous) mass retrievals of sulfur dioxide cloud masses are derived using several different image processing schemes and net tonnages are calculated using a background correction. Volcanic activity associated with this volcano typically consists of long term (weeks to months), and often continuous, effusive emissions. Work to date has discovered over 120 days in which sulfur dioxide plumes were observed from the 13 eruptions (ranging from a minimum of one day to a maximum of 32 days). Most (82%) of the sulfur dioxide clouds measured are relatively low-level, below 100 kilotonnes (kt); 16% of the emissions are between 100 and 1000 kt, and 1.5% were measured to have more than 1000 kt. Current work is focusing on deriving net emission fluxes, integrating the TOMS instantaneous measurements of relatively continuous emission activity. The eruptive activity

  3. Peculiarities of the behavior of the W-Al2O3 system in a controlled reducing atmosphere

    NASA Astrophysics Data System (ADS)

    Kostomarov, D. V.

    2016-03-01

    The W-Al2O3 system at T = 2400 K and standard pressure (controlled Ar + H2 atmosphere) has been calculated by stochastic simulation. It is shown that the presence of hydrogen leads to the formation of aluminum hydrides, hydrogen oxides, and aluminum hydroxides; the compounds from the two latter groups (except for water) can interact directly with tungsten. The main chemical reactions occurring in the system are determined, based on which a conclusion about the cyclic character of the processes is drawn. Some recommendations on the composition and pressure of controlled atmosphere for growing sapphire crystals are given.

  4. Growth behavior prediction of fresh catfish fillet with Pseudomonas aeruginosa under stresses of allyl isothiocyanate, temperature and modified atmosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas aeruginosa, a common spoilage microorganism in fish, grows rapidly when temperature rises above 4 degree C. The combination of allyl isothiocyanate (AIT) and modified atmosphere (MA) was applied and proved to be effective to retard the growth of P. aeruginosa. The objective of this resea...

  5. Behaviorism

    ERIC Educational Resources Information Center

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  6. Acidophilic sulfur disproportionation

    NASA Astrophysics Data System (ADS)

    Hardisty, Dalton S.; Olyphant, Greg A.; Bell, Jonathan B.; Johnson, Adam P.; Pratt, Lisa M.

    2013-07-01

    Bacterial disproportionation of elemental sulfur (S0) is a well-studied metabolism and is not previously reported to occur at pH values less than 4.5. In this study, a sediment core from an abandoned-coal-mine-waste deposit in Southwest Indiana revealed sulfur isotope fractionations between S0 and pyrite (Δ34Ses-py) of up to -35‰, inferred to indicate intense recycling of S0 via bacterial disproportionation and sulfide oxidation. Additionally, the chemistry of seasonally collected pore-water profiles were found to vary, with pore-water pH ranging from 2.2 to 3.8 and observed seasonal redox shifts expressed as abrupt transitions from Fe(III) to Fe(II) dominated conditions, often controlled by fluctuating water table depths. S0 is a common product during the oxidation of pyrite, a process known to generate acidic waters during weathering and production of acid mine drainage. The H2S product of S0 disproportionation, fractionated by up to -8.6‰, is rapidly oxidized to S0 near redox gradients via reaction with Fe(III) allowing for the accumulation of isotopically light S0 that can then become subject to further sulfur disproportionation. A mass-balance model for S0 incorporating pyrite oxidation, S0 disproportionation, and S0 oxidation readily explains the range of observed Δ34Ses-py and emphasizes the necessity of seasonally varying pyrite weathering and metabolic rates, as indicated by the pore water chemistry. The findings of this research suggest that S0 disproportionation is potentially a common microbial process at a pH < 4.5 and can create large sulfur isotope fractionations, even in the absence of sulfate reduction.

  7. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  8. Final Report - From Measurements to Models: Cross-Comparison of Measured and Simulated Behavioral States of the Atmosphere

    SciTech Connect

    Del Genio, Anthony D; Hoffman, Forrest M; Hargrove, Jr, William W

    2007-10-22

    The ARM sites and the ARM Mobile Facility (AMF) were constructed to make measurements of the atmosphere and radiation system in order to quantify deficiencies in the simulation of clouds within models and to make improvements in those models. While the measurement infrastructure of ARM is well-developed and a model parameterization testbed capability has been established, additional effort is needed to develop statistical techniques which permit the comparison of simulation output from atmospheric models with actual measurements. Our project establishes a new methodology for objectively comparing ARM measurements to the outputs of leading global climate models and reanalysis data. The quantitative basis for this comparison is provided by a statistical procedure which establishes an exhaustive set of mutually-exclusive, recurring states of the atmosphere from sets of multivariate atmospheric and cloud conditions, and then classifies multivariate measurements or simulation outputs into those states. Whether measurements and models classify the atmosphere into the same states at specific locations through time provides an unequivocal comparison result. Times and locations in both geographic and state space of model-measurement agreement and disagreement will suggest directions for the collection of additional measurements at existing sites, provide insight into the global representativeness of the current ARM sites (suggesting locations and times for use of the AMF), and provide a basis for improvement of models. Two different analyses were conducted: One, using the Parallel Climate Model, focused on an IPCC climate change scenario and clusters that characterize long-term changes in the hydrologic cycle. The other, using the GISS Model E GCM and the ARM Active Remotely Sensed Cloud Layers product, explored current climate cloud regimes in the Tropical West Pacific.

  9. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  10. Sulfur and Nitrogen Deposition on Ecosystems in the United States

    EPA Science Inventory

    The ecological impacts of atmospheric sulfur and nitrogen deposition first gained attention in the United States in the early 1970s with reports of "acid rain" falling to earth, causing lakes and streams to become acidic and resulting in conditions that were unsuitable for repro...

  11. Sulfur, ultraviolet radiation, and the early evolution of life

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Zahnle, K. J.; Pinto, J. P.; Young, A. T.

    1989-01-01

    The present biosphere is shielded from harmful solar near ultraviolet (UV) radiation by atmospheric ozone. It is suggested that elemental sulfur vapor could have played a similar role in an anoxic, ozone-free, primitive atmosphere. Sulfur vapor would have been produced photochemically from volcanogenic SO2 and H2S. It is composed of ring molecules, primarily S8, that absorb strongly throughout the near UV, yet are expected to be relatively stable against photolysis and chemical attack. It is also insoluble in water and would thus have been immune to rainout or surface deposition over the oceans. Since the concentration of S8 in the primitive atmosphere would have been limited by its saturation vapor pressure, surface temperatures of 45 C or higher, corresponding to carbon dioxide partial pressures exceeding 2 bars, are required to sustain an effective UV screen. A warm, sulfur-rich, primitive atmosphere is consistent with inferences drawn from molecular phylogeny, which suggest that some of the earliest organisms were thermophilic bacteria that metabolized elemental sulfur.

  12. Biotic and abiotic carbon to sulfur bond cleavage. Technical report, July 1, 1991--September 30, 1991

    SciTech Connect

    Frost, J.W.

    1991-12-31

    Cleavage of aliphatic organosulfonate carbon to sulfur (C-S) bonds, a critical link in the global biogeochemical sulfur cycle, has been identified in Escherichia coli K-12. Enormous quantities of inorganic sulfate are continuously converted (Scheme I) into methanesulfonic acid 1 and acylated 3-(6-sulfo-{alpha}-D-quinovopyranosyl)-L-glycerol 2. Biocatalytic desulfurization (Scheme I) of 1 and 2, which share the structural feature of an aliphatic carbon bonded to a sulfonic acid sulfur, completes the cycle, Discovery of this desulfurization in E. coli provides an invaluable paradigm for study of a biotic process which, via the biogeochemical cycle, significantly influences the atmospheric concentration of sulfur-containing molecules.

  13. Ice core sulfur and methanesulfonic acid (MSA) records from southern Greenland document North American and European air pollution and suggest a decline in regional biogenic sulfur emissions.

    NASA Astrophysics Data System (ADS)

    Pasteris, D. R.; McConnell, J. R.; Burkhart, J. F.; Saltzman, E. S.

    2014-12-01

    Sulfate aerosols have an important cooling effect on the Earth because they scatter sunlight back to space and form cloud condensation nuclei. However, understanding of the atmospheric sulfur cycle is incomplete, leading to uncertainty in the assessment of past, present and future climate forcing. Here we use annually resolved observations of sulfur and methanesulfonic acid (MSA) concentration in an array of precisely dated Southern Greenland ice cores to assess the history of sulfur pollution emitted from North America and Europe and the history of biogenic sulfate aerosol derived from the North Atlantic Ocean over the last 250 years. The ice core sulfur time series is found to closely track sulfur concentrations in North American and European precipitation since records began in 1965, and also closely tracks estimated sulfur emissions since 1850 within the air mass source region as determined by back trajectory analysis. However, a decline to near-preindustrial sulfur concentrations in the ice cores after 1995 that is not so extensive in the source region emissions indicates that there has been a change in sulfur cycling over the last 150 years. The ice core MSA time series shows a decline of 60% since the 1860s, and is well correlated with declining sea ice concentrations around Greenland, suggesting that the phytoplankton source of biogenic sulfur has declined due to a loss of marginal sea ice zone habitat. Incorporating the implied decrease in biogenic sulfur in our analysis improves the match between the ice core sulfur record and the source region emissions throughout the last 150 years, and solves the problem of the recent return to near-preindustrial levels in the Greenland ice. These findings indicate that the transport efficiency of sulfur air pollution has been relatively stable through the industrial era and that biogenic sulfur emissions in the region have declined.

  14. Lunar Sulfur Capture System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  15. Immobilization of sulfur in microgels for lithium-sulfur battery.

    PubMed

    Chang, Aiping; Wu, Qingshi; Du, Xue; Chen, Shoumin; Shen, Jing; Song, Qiuyi; Xie, Jianda; Wu, Weitai

    2016-03-25

    Immobilization of sulfur in microgels is achieved via free radical polymerization of commercial poly(ethylene glycol) dimethacrylate in the solution of sulfur-terminated poly(3-oligo(ethylene oxide)4-thiophene), a copolymer prepared by the inverse vulcanization of S8 with allyl-terminated poly(3-oligo(ethylene oxide)4-thiophene). This microgelation leads to enhanced Li-S battery performance over the sulfur-terminated polymer. PMID:26936016

  16. Monitoring variations of dimethyl sulfide and dimethylsulfoniopropionate in seawater and the atmosphere based on sequential vapor generation and ion molecule reaction mass spectrometry.

    PubMed

    Iyadomi, Satoshi; Ezoe, Kentaro; Ohira, Shin-Ichi; Toda, Kei

    2016-04-20

    To monitor the fluctuations of dimethyl sulfur compounds at the seawater/atmosphere interface, an automated system was developed based on sequential injection analysis coupled with vapor generation-ion molecule reaction mass spectrometry (SIA-VG-IMRMS). Using this analytical system, dissolved dimethyl sulfide (DMSaq) and dimethylsulfoniopropionate (DMSP), a precursor to DMS in seawater, were monitored together sequentially with atmospheric dimethyl sulfide (DMSg). A shift from the equilibrium point between DMSaq and DMSg results in the emission of DMS to the atmosphere. Atmospheric DMS emitted from seawater plays an important role as a source of cloud condensation nuclei, which influences the oceanic climate. Water samples were taken periodically and dissolved DMSaq was vaporized for analysis by IMRMS. After that, DMSP was hydrolyzed to DMS and acrylic acid, and analyzed in the same manner as DMSaq. The vaporization behavior and hydrolysis of DMSP to DMS were investigated to optimize these conditions. Frequent (every 30 min) determination of the three components, DMSaq/DMSP (nanomolar) and DMSg (ppbv), was carried out by SIA-VG-IMRMS. Field analysis of the dimethyl sulfur compounds was undertaken at a coastal station, which succeeded in showing detailed variations of the compounds in a natural setting. Observed concentrations of the dimethyl sulfur compounds both in the atmosphere and seawater largely changed with time and similar variations were repeatedly observed over several days, suggesting diurnal variations in the DMS flux at the seawater/atmosphere interface. PMID:27046734

  17. Atmospheric behaviors of polycyclic aromatic hydrocarbons at a Japanese remote background site, Noto peninsula, from 2004 to 2014

    NASA Astrophysics Data System (ADS)

    Tang, Ning; Hakamata, Mariko; Sato, Kousuke; Okada, Yumi; Yang, Xiaoyang; Tatematsu, Michiya; Toriba, Akira; Kameda, Takayuki; Hayakawa, Kazuichi

    2015-11-01

    Total suspended particulates were collected at a Japanese remote background site (Noto Air Monitoring Station; NAMS) on the Noto Peninsula from September 2004 to June 2014. Nine polycyclic aromatic hydrocarbons (PAHs) in the particulates (fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene and indeno[1,2,3-cd]pyrene) were determined by HPLC with fluorescence detection. The mean total concentrations of the nine PAHs in the cold season (November to May for the years 2004-2014) was 670 pg m-3 (range 37-4100 pg m-3). The mean total concentration in the warm season (June to October for the same period) was 170 pg m-3 (range 31-960 pg m-3). The atmospheric PAH level at NAMS decreased in recent years, although no significant change was found in the warm season. An analysis of meteorological conditions showed that the atmospheric PAHs at NAMS were long range transported from Northeast China in the cold seasons and were contributed to by Japanese domestic sources in the warm seasons. Lower concentration ratios of reactive PAHs to their isomers at NAMS also supported these results. Activities associated with the Beijing Olympic and Paralympic Games in 2008 and reconstruction after the 2007 Noto Hanto earthquake may have contributed to the yearly variations of atmospheric PAH levels at NAMS during the period 2007-2009. Source control measures implemented by the Chinese and Japanese governments appear to have been effective in decreasing the atmospheric PAH levels at NAMS in recent years.

  18. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOEpatents

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  19. Sulfur dioxide emissions and sulfur deposition from international shipping in Asian waters

    NASA Astrophysics Data System (ADS)

    Streets, David G.; Carmichael, Gregory R.; Arndt, Richard L.

    Emissions of sulfur dioxide from international shipping in Asian waters have been estimated using information on typical shipping parameters and quantities of goods shipped to and from the major ports. Emissions are estimated to be 236,000 t SO 2 per year in 1988. This represents 11.7% of emissions in Southeast Asia and 0.7% of total continental Asian emissions. Emissions from vessels in transit between ports are estimated to be 226,000 t SO 2 per year, and emissions from port activities are estimated to be 10,200 t SO 2 per year. Deposition of this sulfur was calculated using the ATMOS model of atmospheric transport and deposition. Shipping emissions were found to be the dominant source of sulfur deposition in large areas of the Indian Ocean, the western Pacific Ocean, and the South China Sea. Land areas most heavily affected are those bordering the Strait of Malacca, where portions of Sumatra, peninsular Malaysia, and Singapore have contributions from shipping in excess of 10% of total sulfur deposition. Observational data in Malaysia are consistent with these findings. It is suggested that emissions from shipping may be contributing to ecological damage in areas surrounding the Strait of Malacca.

  20. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance

    PubMed Central

    Ghosh, Arnab; Shukla, Swapnil; Khosla, Gaganpreet Singh; Lochab, Bimlesh; Mitra, Sagar

    2016-01-01

    A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g−1 at 2nd cycle and maintained the capacity of 528 mA h g−1 after 50 cycles at 200 mA g−1. Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g−1 after 100 cycles at 200 mA g−1 current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g−1. PMID:27121089

  1. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    Ghosh, Arnab; Shukla, Swapnil; Khosla, Gaganpreet Singh; Lochab, Bimlesh; Mitra, Sagar

    2016-04-01

    A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g‑1 at 2nd cycle and maintained the capacity of 528 mA h g‑1 after 50 cycles at 200 mA g‑1. Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g‑1 after 100 cycles at 200 mA g‑1 current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g‑1.

  2. Sustainable Sulfur-rich Copolymer/Graphene Composite as Lithium-Sulfur Battery Cathode with Excellent Electrochemical Performance.

    PubMed

    Ghosh, Arnab; Shukla, Swapnil; Khosla, Gaganpreet Singh; Lochab, Bimlesh; Mitra, Sagar

    2016-01-01

    A sulfur-rich copolymer, poly(S-r-C-a) has been synthesized via a sustainable route, showing the utility of two major industrial wastes- elemental sulfur (petroleum waste) and cardanol (agro waste), to explore its potential as cathode material for Li-S batteries. The sulfur-rich copolymer exhibited a reduction in the active material dissolution into the electrolyte and a low self-discharge rate behavior during the rest time compared to an elemental sulfur cathode, indicating the chemical confinement of sulfur units. The presence of organosulfur moieties in copolymer suppress the irreversible deposition of end-discharge products on electrode surfaces and thus improve the electrochemical performances of Li-S batteries. This sulfur copolymer offered a reversible capacity of 892 mA h g(-1) at 2nd cycle and maintained the capacity of 528 mA h g(-1) after 50 cycles at 200 mA g(-1). Reduced graphene oxide (rGO) prepared via a sustainable route was used as a conductive filler to extract the better electrochemical performances from this sulfur copolymer. Such sustainable origin batteries prepared via economically viable showed an improved specific capacity of ~975 mA h g(-1) after 100 cycles at 200 mA g(-1) current rate with capacity fading of 0.15% per cycle and maintained a stable performance over 500 cycles at 2000 mA g(-1). PMID:27121089

  3. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Liu, Wei

    1995-01-01

    A catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(OF.sub.2).sub.1-n (RO.sub.1)n].sub.1-k M.sub.k, [(FO.sub.2).sub.1-n (RO.sub.1.5).sub.n ].sub.1-k M.sub.k, or [Ln.sub.x Zr.sub.1-x O.sub.2-0.5x ].sub.1-k M.sub.k wherein FO.sub.2 is a fluorite-type oxide; RO represents an alkaline earth oxide; RO.sub.1.5 is a Group IIIB or rare earth oxide; Ln is a rare earth element having an atomic number from 57 to 65 or mixtures thereof; M is a transition metal or a mixture of transition metals; n is a number having a value from 0.0 to 0.35; k is a number having a value from 0.0 to about 0.5; and x is a number having a value from about 0.45 to about 0.55.

  4. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  5. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  6. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines

    USGS Publications Warehouse

    de Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P.

    2004-01-01

    Basaltic fragments enclosed in andesitic dome lavas and pyroclastic flows erupted during the early stages of the 1991 eruption of Mount Pinatubo, Philippines, contain amphiboles that crystallized during the injection of mafic magma into a dacitic magma body. The amphiboles contain abundant melt inclusions, which recorded the mixing of andesitic melt in the mafic magma and rhyolitic melt in the dacitic magma. The least evolved melt inclusions have high sulfur contents (up to 1,700 ppm) mostly as SO42, which suggests an oxidized state of the magma (NNO + 1.4). The intrinsically oxidized nature of the mafic magma is confirmed by spinel-olivine oxygen barometry. The value is comparable to that of the dacitic magma (NNO + 1.6). Hence, models invoking mixing as a means of releasing sulfur from the melt are not applicable to Pinatubo. Instead, the oxidized state of the dacitic magma likely reflects that of parental mafic magma and the source region in the sub-arc mantle. Our results fit a model in which long-lived SO2 discharge from underplated mafic magma accumulated in the overlying dacitic magma and immiscible aqueous fluids. The fluids were the most likely source of sulfur that was released into the atmosphere during the cataclysmic eruption. The concurrence of highly oxidized basaltic magma and disproportionate sulfur output during the 1991 Mt. Pinatubo eruption suggests that oxidized mafic melt is an efficient medium for transferring sulfur from the mantle to shallow crustal levels and the atmosphere. As it can carry large amounts of sulfur, effectively scavenge sulfides from the source mantle and discharge SO2 during ascent, oxidized mafic magma forms arc volcanoes with high sulfur fluxes, and potentially contributes to the formation of metallic sulfide deposits. ?? Springer-Verlag 2003.

  7. A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Wang, Hongqiang; Zhang, Wenchao; Liu, Huakun; Guo, Zaiping

    2016-03-14

    Lithium-sulfur batteries are regarded as promising candidates for energy storage devices owing to their high theoretical energy density. The practical application is hindered, however, by low sulfur utilization and unsatisfactory capacity retention. Herein, we present a strategy for configuration of the sulfur cathode, which is composed of an integrated carbon/sulfur/carbon sandwich structure on polypropylene separator that is produced using the simple doctor-blade technique. The integrated electrode exhibits excellent flexibility and high mechanical strength. The upper and bottom carbon layers of the sandwich-structured electrode not only work as double current collectors, which effectively improve the conductivity of the electrode, but also serve as good barriers to suppress the diffusion of the polysulfide and buffer the volume expansion of the active materials, leading to suppression of the shuttle effect and low self-discharge behavior. PMID:26889652

  8. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries.

    PubMed

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-12-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material. PMID:26586150

  9. A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yin, Fuxing; Zhang, Yongguang; Zhang, Chengwei; Mentbayeva, Almagul; Umirov, Nurzhan; Xie, Hongxian; Bakenov, Zhumabay

    2015-11-01

    A free-standing sulfur/nitrogen-doped carbon nanotube (S/N-CNT) composite prepared via a simple solution method was first studied as a cathode material for lithium/sulfur batteries. By taking advantage of the self-weaving behavior of N-CNT, binders and current collectors are rendered unnecessary in the cathode, thereby simplifying its manufacturing and increasing the sulfur weight ratio in the electrode. Transmission electronic microscopy showed the formation of a highly developed core-shell tubular structure consisting of S/N-CNT composite with uniform sulfur coating on the surface of N-CNT. As a core in the composite, the N-CNT with N functionalization provides a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material.

  10. Rethinking the Ancient Sulfur Cycle

    NASA Astrophysics Data System (ADS)

    Fike, David A.; Bradley, Alexander S.; Rose, Catherine V.

    2015-05-01

    The sulfur biogeochemical cycle integrates the metabolic activity of multiple microbial pathways (e.g., sulfate reduction, disproportionation, and sulfide oxidation) along with abiotic reactions and geological processes that cycle sulfur through various reservoirs. The sulfur cycle impacts the global carbon cycle and climate primarily through the remineralization of organic carbon. Over geological timescales, cycling of sulfur is closely tied to the redox state of Earth's exosphere through the burial of oxidized (sulfate) and reduced (sulfide) sulfur species in marine sediments. Biological sulfur cycling is associated with isotopic fractionations that can be used to trace the fluxes through various metabolic pathways. The resulting isotopic data provide insights into sulfur cycling in both modern and ancient environments via isotopic signatures in sedimentary sulfate and sulfide phases. Here, we review the deep-time δ34S record of marine sulfates and sulfides in light of recent advances in understanding how isotopic signatures are generated by microbial activity, how these signatures are encoded in marine sediments, and how they may be altered following deposition. The resulting picture shows a sulfur cycle intimately coupled to ambient carbon cycling, where sulfur isotopic records preserved in sedimentary rocks are critically dependent on sedimentological and geochemical conditions (e.g., iron availability) during deposition.

  11. Evidence for an elemental sulfur component of the clouds from Venus spectrophotometry

    NASA Technical Reports Server (NTRS)

    Hapke, B.; Nelson, R.

    1975-01-01

    The decrease in the reflectivity of Venus in the near-UV can be explained if the clouds contain particles of elemental sulfur in addition to sulfuric acid. The low-resolution McDonald-Pittsburgh spectrum can be fitted by two sulfur-containing, multiple-scattering cloud models: (1) a mixed cloud consisting of one particle of elemental sulfur of radius 10 microns for every 670 particles of sulfuric acid of radius 1 micron, and (2) a layered cloud of optical thickness tau = 1.0 consisting of one-micron particles of sulfuric acid overlying a thick cloud of elemental sulfur particles of radius 3.6 microns. Some of the sulfur is incompletely polymerized. The source of the sulfur is photo-dissociation of COS, although some may also be recycled from the lower atmosphere. The sulfur plays a crucial role in the planetary meteorology of Venus since it is responsible for the bulk of the absorption of solar energy.

  12. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOEpatents

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  13. Sulfur isotope homogeneity of oceanic DMSP and DMS

    PubMed Central

    Amrani, Alon; Said-Ahmad, Ward; Shaked, Yeala; Kiene, Ronald P.

    2013-01-01

    Oceanic emissions of volatile dimethyl sulfide (DMS) represent the largest natural source of biogenic sulfur to the global atmosphere, where it mediates aerosol dynamics. To constrain the contribution of oceanic DMS to aerosols we established the sulfur isotope ratios (34S/32S ratio, δ34S) of DMS and its precursor, dimethylsulfoniopropionate (DMSP), in a range of marine environments. In view of the low oceanic concentrations of DMS/P, we applied a unique method for the analysis of δ34S at the picomole level in individual compounds. Surface water DMSP collected from six different ocean provinces revealed a remarkable consistency in δ34S values ranging between +18.9 and +20.3‰. Sulfur isotope composition of DMS analyzed in freshly collected seawater was similar to δ34S of DMSP, showing that the in situ fractionation between these species is small (<+1‰). Based on volatilization experiments, emission of DMS to the atmosphere results in a relatively small fractionation (−0.5 ± 0.2‰) compared with the seawater DMS pool. Because δ34S values of oceanic DMS closely reflect that of DMSP, we conclude that the homogenous δ34S of DMSP at the ocean surface represents the δ34S of DMS emitted to the atmosphere, within +1‰. The δ34S of oceanic DMS flux to the atmosphere is thus relatively constant and distinct from anthropogenic sources of atmospheric sulfate, thereby enabling estimation of the DMS contribution to aerosols. PMID:24167289

  14. Diamine-sulfuric acid reactions are a potent source of new particle formation

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  15. Process for removing sulfur from sulfur-containing gases

    DOEpatents

    Rochelle, Gary T.; Jozewicz, Wojciech

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  16. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  17. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  18. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  19. 40 CFR 50.4 - National primary ambient air quality standards for sulfur oxides (sulfur dioxide).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for sulfur oxides (sulfur dioxide). 50.4 Section 50.4 Protection of Environment ENVIRONMENTAL....4 National primary ambient air quality standards for sulfur oxides (sulfur dioxide). (a) The level...). (c) Sulfur oxides shall be measured in the ambient air as sulfur dioxide by the reference...

  20. The effect of sulfur and zirconium co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1988-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys (less than 500 ppma), the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S(0.2) (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggest that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  1. The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    1987-01-01

    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys.

  2. ATMOSPHERIC ACIDIFICATION CHEMISTRY: A REVIEW

    EPA Science Inventory

    Atmospheric acidification is the result of the oxidation of sulfur, nitrogen, and organic compounds to form their corresponding acids. The gas and aqueous-phase pathways depend on the production of oxidizing free radicals (HO, CH3O2) that react directly with these compounds or pr...

  3. Liquid sulfur mustard exposure.

    PubMed

    Newmark, Jonathan; Langer, Janice M; Capacio, Benedict; Barr, John; McIntosh, Roger G

    2007-02-01

    A 35-year-old active duty service member sustained a 6.5% body surface area burn as a result of exposure to the chemical warfare agent sulfur mustard, which is the most severe mustard exposure of a U.S. military member since World War II that is known to us. New techniques were used to demonstrate the detectable persistence of mustard metabolites in the patient's blood for at least 41 days after exposure, validating these techniques for the first time for a human mustard patient; they were also used for the first time with human mustard blister fluid. The techniques extend eightfold the period of time that mustard exposure can be definitively diagnosed, compared with previous techniques. Although this patient's lesions were never life-threatening, he required 2 weeks of intensive burn care. He has been left with ongoing posttraumatic stress disorder and has had an incomplete dermatological recovery. In a major terrorist attack involving many patients exposed to sulfur mustard, care resources would be depleted quickly. PMID:17357776

  4. Sulfur in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.

    1997-01-01

    The computer-intensive project consisted of the analysis and synthesis of existing data on composition of comet Halley dust particles. The main objective was to obtain a complete inventory of sulfur containing compounds in the comet Halley dust by building upon the existing classification of organic and inorganic compounds and applying a variety of statistical techniques for cluster and cross-correlational analyses. A student hired for this project wrote and tested the software to perform cluster analysis. The following tasks were carried out: (1) selecting the data from existing database for the proposed project; (2) finding access to a standard library of statistical routines for cluster analysis; (3) reformatting the data as necessary for input into the library routines; (4) performing cluster analysis and constructing hierarchical cluster trees using three methods to define the proximity of clusters; (5) presenting the output results in different formats to facilitate the interpretation of the obtained cluster trees; (6) selecting groups of data points common for all three trees as stable clusters. We have also considered the chemistry of sulfur in inorganic compounds.

  5. Heterogeneous Photochemical Oxidation of Sulfur Dioxide

    NASA Astrophysics Data System (ADS)

    El-Zanan, H. S.; Stockwell, W. R.

    2007-12-01

    The gas phase oxidation of sulfur dioxide by the hydroxyl radical is a significant source of sulfate aerosol in the troposphere and stratosphere. Stockwell and Calvert (1983) performed fifteen chamber experiments where mixtures of HONO, NO, NO2, H2O, SO2 and CO were photolyzed in synthetic air or in nitrogen containing approximately 50 ppm oxygen. They found that the atmospheric oxidation of SO2 by hydroxyl radical was a chain process that occurs through the production of an HO2 radical followed by reaction with NO to reproduce HO. We have reanalyzed this dataset and we have found that a very large amount of the observed SO2 oxidation (70.0 ± 9.1 %) is not explained through the HO + SO2 reaction alone. The Regional Atmospheric Chemistry Mechanism (RACM2) was used to investigate additional chemical pathways for the oxidation of SO2. A mechanism consisting of photochemical heterogeneous reactions is proposed to account for the observed additional sulfur dioxide oxidation not accounted for by gas phase oxidation. The analysis showed that the measured time dependent SO2, CO2 and nitrogenous compound concentrations could be simulated by the photochemical heterogeneous mechanism in conjunction with the RACM2 mechanism.

  6. The rate and magnitude of atmospheric pressure change that aggravate pain-related behavior of nerve injured rats

    NASA Astrophysics Data System (ADS)

    Funakubo, Megumi; Sato, Jun; Obata, Kouei; Mizumura, Kazue

    2011-05-01

    Complaints of patients with chronic pain may increase when the weather changes. The exact mechanism for weather change-induced pain has not been clarified. We have previously demonstrated that artificially lowering barometric pressure (LP) intensifies pain-related behaviors in rats with neuropathic pain [chronic constriction injury (CCI) and spinal nerve ligation (SNL)]. In the present study, we examined the rate and magnitude of LP that aggravates neuropathic pain. We measured pain-related behaviors [number of paw lifts to von Frey hair (VFH) stimulation] in awake rats after SNL or CCI surgery, and found that rates of decompression ≥5 hPa/h and ≥10 hPa/h and magnitudes of decompression ≥5 hPa and ≥10 hPa augmented pain-related behaviors in SNL and CCI rats, respectively. These results indicate that LP within the range of natural weather patterns augments neuropathic pain in rats, and that SNL rats are more sensitive to LP than CCI rats.

  7. A ToF-SIMS investigation of the corrosion behavior of Mg alloy AM50 in atmospheric environments

    NASA Astrophysics Data System (ADS)

    Esmaily, M.; Malmberg, P.; Shahabi-Navid, M.; Svensson, J. E.; Johansson, L. G.

    2016-01-01

    The redistribution of chloride and sodium ions after the NaCl-induced atmospheric corrosion of Mg alloy AM50 was investigated by means of Time-of-Flight Ion Mass Spectroscopy (ToF-SIMS). The samples were exposed at -4 and 22 °C in the presence of 400 ppm CO2. The results confirm the presence of less conductive electrolyte, and thus, less movement of ionic species (including sodium and chloride) in the electrolyte layer formed on the surface of samples exposed at the sub-zero temperature. Besides, ToF-SIMS analysis showed the presence of an Al-containing surface film formed on the alloy surface after exposure at high relative humidity.

  8. Quantifying the Land-Atmosphere Coupling Behavior in Modern Reanalysis Products over the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Santanello, J. A.; Roundy, J. K.; Dirmeyer, P.

    2014-12-01

    The coupling of the land with the planetary boundary layer (PBL) on diurnal timescales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve our understanding of land-atmosphere (L-A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this paper, we apply a suite of local land-atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-year period over the U. S. Southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation are applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface-PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land-PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. The implications for moist processes are also discussed, which warrants further investigation into the potential downstream impacts of land-PBL coupling on the diurnal cycle of clouds, convection, and precipitation. Lastly, the results are put into context of community investigations into drought assessment and predictability over the region and underscore that caution should be used when treating RAs as truth, as the coupled water and energy cycle representation in each can vary considerably.

  9. Demonstrating Allotropic Modifications of Sulfur.

    ERIC Educational Resources Information Center

    McCarty, Jillian L.; Dragojlovic, Veljko

    2002-01-01

    Shows how a common demonstration that consists of slowly heating sulfur powder in a test tube to illustrate sulfur's allotropic modifications can convince students of conclusions about the moon Io which they often find surprising. Describes the demonstration in full. (Author/MM)

  10. Volume efficient sodium sulfur battery

    DOEpatents

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  11. SULFUR RETENTION IN COAL ASH

    EPA Science Inventory

    The report gives results of an analytical study to assess the potential for sulfur retention in various types of coal-fired boilers. Results of a field test of 10 industrial coal-fired boilers were used to evaluate the impact on sulfur retention of the operating variables (load a...

  12. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jun; Chen, Yang; Zhang, Zhi-Feng; You, Xiao-Long; Walle, Maru Dessie; Li, Ya-Juan; Liu, You-Nian

    2016-09-01

    The electrochemical properties of sulfur cathode with Ni foam current collector are investigated in detail. Different from sulfur cathode with stain steel current collector, it is interesting found that novel redox peaks at 1.95 V/1.35 V are observed for sulfur cathode with Ni foam. The electrochemical behavior is further verified by ex-situ XRD, SEM and XPS analyses. The results indicate that Ni foam current collector is involved in the redox reaction in Li/S rechargeable battery, and NiS forms at the surface of the Ni foam. These results demonstrate that the sulfur electrode is transformed into NiS.

  13. Information on the sulfur content of bark and its contribution to SO2 emissions when burned as a fuel

    SciTech Connect

    Oglesby, H.S.; Blosser, R.O.

    1980-07-01

    The sulfur dioxide content of bark and wood residues that are used in wood energy boilers was analyzed. About 5% of the sulfur found in bark and wood is released into the atmosphere as SO2 during combustion; the 5% amounts to an emission rate of 0.001-0.02 lb SO2/million Btu energy. Sulfur content in wood is not stoichiometrically converted to SO2. (14 references, 2 tables)

  14. Effects of hydrogen annealing, sulfur segregation and diffusion on the cyclic oxidation resistance of superalloys: A review

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.

    1994-01-01

    This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content, and is related to the classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is described by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.

  15. Effects of Hydrogen Annealing, Sulfur Segregation and Diffusion on the Cyclic Oxidation Resistance of Superalloys: a Review

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.

    1994-01-01

    This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content and related to classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is governed by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.

  16. Electrochemical Behavior of CoNiCrAlY/ZrO2-Y2O3 Coated Layers with Atmospheric Pressure Plasma Technology in Seawater

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Jong; Woo, Yong-Bin; Lee, Seung-Jun; Jeong, Jae-Yong

    2013-11-01

    Application of surface treatment has become common for protecting machine parts from oxidation, abrasion and corrosion induced by external environment. In particular, thermal spraying techniques are widely employed to improve wear, corrosion and thermal resistance. And compared to other methods they are simple and cost effective. However, the presence of porosity in the thermal spray coating can be highly detrimental because it provides access to penetration of corrosive matters, lowering corrosion resistance. Therefore, this research evaluate the electrochemical behavior under marine environment for aluminum-bronze alloy coated with MCrAlY and yttria-stabillized zirconia (YSZ) by atmospheric pressure plasma (APP) coating technology. Further application of carbon-based sealer removed voids and defects in the coating. The result reveled that, in case the voids and defects are completely removed, excellent corrosion resistance can be archived by application of good coating material along with formation of compact sealing layer.

  17. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    SciTech Connect

    Hiroshi Fukui; Isao Minatsuki; Kazuo Ishino

    2006-07-01

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO{sub 2} gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9 m in height, 1.0 m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder

  18. A Development of Ceramics Cylinder Type Sulfuric Acid Decomposer for Thermo-Chemical Iodine-Sulfur Process Pilot Plant

    NASA Astrophysics Data System (ADS)

    Minatsuki, Isao; Fukui, Hiroshi; Ishino, Kazuo

    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry

  19. Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems

    USGS Publications Warehouse

    Bern, Carleton R.; Chadwick, Oliver A.; Kendall, Carol; Pribil, Michael J.

    2015-01-01

    Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ34S VCDT) of − 0.8‰. Bulk deposition on the island of Maui had a δ34S VCDT that varied temporally, spanned a range from + 8.2 to + 19.7‰, and reflected isotopic mixing from three sources: sea-salt (+ 21.1‰), marine biogenic emissions (+ 15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+ 0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to + 2.7‰) to relatively high (+ 17.8 to + 19.3‰) soil δ34S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from + 8.1 to + 20.3‰ and generally decreased with increasing elevation (0–2000 m), distance from the coast (0–12 km), and annual rainfall (180–5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls

  20. Sulfur Isotope Composition of Volcanic Sulfate in Polar Ice Cores (Invited)

    NASA Astrophysics Data System (ADS)

    Cole-Dai, J.; Savarino, J.; Thiemens, M. H.

    2011-12-01

    Explosive volcanic eruptions often emit copious amounts of sulfur gases into the atmosphere. Similar to that of anthropogenic aerosols, volcanic aerosols can influence climate by altering the atmosphere's radiative properties. Traces of sulfate aerosols from past explosive eruptions are preserved in the snow strata of polar ice sheets and can be retrieved with ice cores. We have been measuring sulfur isotope composition of volcanic sulfate in Antarctica and Greenland ice cores to investigate the kinetics of atmospheric oxidation chemistry and to determine the climatic impact of the eruptions. We have found that the chemical conversion process of volcanic sulfur dioxide into sulfuric acid and sulfate aerosols in the stratosphere proceeds through oxidation reaction pathways different from those for sulfur dioxide in the troposphere. Recent laboratory experiments and modeling efforts by other investigators support the hypothesis that short wavelength ultra-violet radiation above the stratospheric ozone layer plays a key role in the chemical conversion or oxidation and can cause mass independent fractionation (MIF) of sulfur isotopes (33S, 34S, 36S). The discovery of the sulfur MIF isotope signatures in the volcanic sulfate offers a unique and dependable way to distinguish the signals of large, stratospheric eruptions in the ice core volcanic records from those of eruptions with little or no climate impact. Identification of the climate-impacting eruptions helps to improve our understanding of the volcano-climate connection.