Science.gov

Sample records for atom wire formation

  1. Quantum stability and magic lengths of metal atom wires

    NASA Astrophysics Data System (ADS)

    Cui, Ping; Choi, Jin-Ho; Lan, Haiping; Cho, Jun-Hyung; Niu, Qian; Yang, Jinlong; Zhang, Zhenyu

    2016-06-01

    Metal atom wires represent an important class of nanomaterials in the development of future electronic devices and other functional applications. Using first-principles calculations within density functional theory, we carry out a systematic study of the quantum stability of freestanding atom wires consisting of prototypical metal elements with s -, s p -, and s d -valence electrons. We explore how the quantum mechanically confined motion and local bonding of the valence electrons in these different wire systems can dictate their overall structural stability and find that the formation energy of essentially all the wires oscillates with respect to their length measured by the number n of atoms contained in the wires, establishing the existence of highly preferred (or magic) lengths. Furthermore, different wire classes exhibit distinctively different oscillatory characteristics and quantum stabilities. Alkali metal wires possessing an unpaired s valence electron per atom exhibit simple damped even-odd oscillations. In contrast, Al and Ga wires containing three s2p1 valence electrons per atom generally display much larger and undamped even-odd energy oscillations due to stronger local bonding of the p orbitals. Among the noble metals, the s -dominant Ag wires behave similarly to the linear alkali metal wires, while Au and Pt wires distinctly prefer to be structurally zigzagged due to strong relativistic effects. These findings are discussed in connection with existing experiments and should also be instrumental in future experimental realization of different metal atom wires in freestanding or supported environments with desirable functionalities.

  2. Realization of a Strained Atomic Wire Superlattice.

    PubMed

    Song, Inkyung; Goh, Jung Suk; Lee, Sung-Hoon; Jung, Sung Won; Shin, Jin Sung; Yamane, Hiroyuki; Kosugi, Nobuhiro; Yeom, Han Woong

    2015-11-24

    A superlattice of strained Au-Si atomic wires is successfully fabricated on a Si surface. Au atoms are known to incorporate into the stepped Si(111) surface to form a Au-Si atomic wire array with both one-dimensional (1D) metallic and antiferromagnetic atomic chains. At a reduced density of Au, we find a regular array of Au-Si wires in alternation with pristine Si nanoterraces. Pristine Si nanoterraces impose a strain on the neighboring Au-Si wires, which modifies both the band structure of metallic chains and the magnetic property of spin chains. This is an ultimate 1D version of a strained-layer superlattice of semiconductors, defining a direction toward the fine engineering of self-assembled atomic-scale wires. PMID:26446292

  3. Magnetism and spin-polarized transport in carbon atomic wires

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Sheng, W.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-09-01

    We report ab initio calculations of magnetic and spin-polarized quantum transport properties of pure and nitrogen-doped carbon atomic wires. For finite-sized wires with even number of carbon atoms, total magnetic moment of 2μB is found. On the other hand, wires with odd number atoms have no net magnetic moment. Doped with one or two nitrogen atom(s), the carbon atomic wires exhibit a spin-density-wave-like state. The magnetic properties can be rationalized through bonding patterns and unpaired states. When the wire is sandwiched between Au electrodes to form a transport junction, perfect spin filtering effect can be induced by slightly straining the wire.

  4. Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.

    PubMed

    Rong, Youmin; Warner, Jamie H

    2014-12-23

    Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N. PMID:25474120

  5. Current-assisted cooling in atomic wires.

    PubMed

    McEniry, Eunan J; Todorov, Tchavdar N; Dundas, Daniel

    2009-05-13

    The effects of inelastic interactions between current-carrying electrons and vibrational modes of a nanoscale junction are a major limiting factor on the stability of such devices. A method for dynamical simulation of inelastic electron-ion interactions in nanoscale conductors is applied to a model system consisting of an adatom bonded to an atomic wire. It is found that the vibrational energy of such a system may decrease under bias, and furthermore that, as the bias is increased, the rate of cooling, within certain limits, will increase. This phenomenon can be understood qualitatively through low-order perturbation theory, and is due to the presence of an anti-resonance in the transmission function of the system at the Fermi level. Such current-assisted cooling may act as a stabilization mechanism, and may form the basis for a nanoscale cooling 'fan'. PMID:21825478

  6. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  7. Rectification in substituted atomic wires: a theoretical insight.

    PubMed

    Asai, Yoshihiro

    2012-04-25

    Recently, there have been discussions that the giant diode property found experimentally in diblock molecular junctions could be enhanced by the many-body electron correlation effect beyond the mean field theory. In addition, the effect of electron-phonon scattering on an electric current through the diode molecule, measured by inelastic tunneling spectroscopy (IETS), was found to be symmetric with respect to the voltage sign change even though the current is asymmetric. The reason for this behavior is a matter of speculation. In order to clarify whether or not this feature is limited to organic molecules in the off-resonant tunneling region, we discuss the current asymmetry effect on IETS in the resonant region. We introduced heterogeneous atoms into an atomic wire and found that IETS becomes asymmetric in this substituted atomic wire case. Our conclusion gives the other example of intrinsic differences between organic molecules and metallic wires. While the contribution of electron-phonon scattering to IETS is not affected by the current asymmetry in the former case, it is affected in the latter case. The importance of the contribution of the electron-hole excitation to phonon damping in bringing about the current asymmetry effect in IETS in the latter case is discussed. PMID:22466527

  8. Carbon-atom wires: 1-D systems with tunable properties.

    PubMed

    Casari, C S; Tommasini, M; Tykwinski, R R; Milani, A

    2016-02-28

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp(2)-carbon architectures. PMID:26847474

  9. Carbon-atom wires: 1-D systems with tunable properties

    NASA Astrophysics Data System (ADS)

    Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A.

    2016-02-01

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp2-carbon architectures.

  10. Substrate effect on the band gap of semiconducting atomic wires

    NASA Astrophysics Data System (ADS)

    Simbeck, Adam J.; Nayak, Saroj K.

    2014-03-01

    The electronic structure of free-standing and supported semiconducting atomic wires is investigated using a combination of first-principles density functional theory (DFT) and many-body perturbation theory (MBPT). The band gaps predicted from DFT for SiH2 and GeH2 atomic wires are unaffected by the presence of the substrate, whereas the gaps calculated using MBPT under the GW approximation are reduced by about 1eV when the wires are supported. The reduction in the band gap is attributed to a change in the electronic correlation energy, which can be understood as a screened Coulomb interaction. These results highlight the importance of the role played by the substrate in manipulating the electronic and optical properties of quantum confined Si and Ge systems. Work supported by the Interconnect Focus Center (MARCO program), State of New York, NSF IGERT Program, Grant no. 0333314, NSF Petascale Simulations and Analysis (PetaApps) program, Grant No. 0749140, and computing resources of the CCNI at RPI.

  11. Droplet Formation in Wire Array Plasmas

    NASA Astrophysics Data System (ADS)

    de Groot, J. S.; Rosenthal, S.; Cochrane, K.; Haill, T.; Mehlhorn, T.

    2003-10-01

    Wires in high power z-pinch wire array implosions are heated so rapidly that the liquid metal is heated beyond the normal boiling temperature and becomes metastable. The metastable liquid is heated to a point close to the spinodal, where explosive, homogeneous boiling rapidly ( ns) transforms the liquid to a mixed phase consisting of liquid fragments, droplets, and vapor. It is important to understand this process since the metastable liquid and the mixed state have an EOS and resistivity that can be quite different than equilibrium models. In addition, the liquid droplets can pass through the confining magnetic field so that mass is left behind the imploding plasma. We have modified the 3-D MHD code Alegra to incorporate of the nonequilibrium state. Initial 1-D Alegra calculations of the heating of a tungsten wire indicates that the explosive boiling occurs first near the outside of the plasma and then occurs successively into the center of the plasma. We are also using models to calculate the dynamics of the mixed state and to predict the fraction of the mass that is left behind. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy Under Contract DE-AC04-94AL85000.

  12. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    NASA Astrophysics Data System (ADS)

    Sharma, A. C.

    2011-07-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C & 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  13. Electronic instabilities in self-assembled atom wires

    SciTech Connect

    Snijders, Paul C; Weitering, Harm H

    2010-01-01

    Low dimensional systems have fascinated physicists for a long time due to their unusual properties such as charge fractionalization, semionic statistics, and Luttinger liquid behavior among others. In nature, however, low dimensional systems often suffer from thermal fluctuations that can make these systems structurally unstable. Human beings, however, can trick nature by producing artificial structures which are not naturally produced. This Colloquium reviews the problem of self-assembled atomic wires on solid surfaces from an experimental and theoretical point of view. These materials represent a class of one-dimensional systems with very unusual properties that can open doors to the study of exotic physics that cannot be studied otherwise.

  14. Single-molecule conductance in atomically precise germanium wires.

    PubMed

    Su, Timothy A; Li, Haixing; Zhang, Vivian; Neupane, Madhav; Batra, Arunabh; Klausen, Rebekka S; Kumar, Bharat; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2015-09-30

    While the electrical conductivity of bulk-scale group 14 materials such as diamond carbon, silicon, and germanium is well understood, there is a gap in knowledge regarding the conductivity of these materials at the nano and molecular scales. Filling this gap is important because integrated circuits have shrunk so far that their active regions, which rely so heavily on silicon and germanium, begin to resemble ornate molecules rather than extended solids. Here we unveil a new approach for synthesizing atomically discrete wires of germanium and present the first conductance measurements of molecular germanium using a scanning tunneling microscope-based break-junction (STM-BJ) technique. Our findings show that germanium and silicon wires are nearly identical in conductivity at the molecular scale, and that both are much more conductive than aliphatic carbon. We demonstrate that the strong donor ability of C-Ge σ-bonds can be used to raise the energy of the anchor lone pair and increase conductance. Furthermore, the oligogermane wires behave as conductance switches that function through stereoelectronic logic. These devices can be trained to operate with a higher switching factor by repeatedly compressing and elongating the molecular junction. PMID:26373928

  15. Band-Structure Engineering of Gold Atomic Wires on Silicon by Controlled Doping

    NASA Astrophysics Data System (ADS)

    Choi, Won Hoon; Kang, Pil Gyu; Ryang, Kyung Deuk; Yeom, Han Woong

    2008-03-01

    We report on the systematic tuning of the electronic band structure of atomic wires by controlling the density of impurity atoms. The atomic wires are self-assembled on Si(111) by substitutional gold adsorbates and extra silicon atoms are deposited as the impurity dopants. The one-dimensional electronic band of gold atomic wires, measured by angle-resolved photoemission, changes from a fully metallic to semiconducting one with its band gap increasing above 0.3 eV along with an energy shift as a linear function of the Si dopant density. The gap opening mechanism is suggested to be related to the ordering of the impurities.

  16. Cooperative interplay between impurities and charge density wave in the phase transition of atomic wires

    NASA Astrophysics Data System (ADS)

    Shim, Hyungjoon; Lee, Geunseop; Hyun, Jung-Min; Kim, Hanchul

    2015-09-01

    Impurities interact with a charge density wave (CDW) and affect the phase transitions in low-dimensional systems. By using scanning tunneling microscopy, we visualize the interaction between oxygen impurities and the CDW in indium atomic wires on Si(111), a prototypical one-dimensional electronic system, and unveil the microscopic mechanism of the intriguing O-induced increase of the transition temperature (Tc). Driven by the fluctuating CDW, the O atoms adopt an asymmetric structure. By adjusting the asymmetry, a pair of O impurities in close distance can pin the one-dimensional CDW, which develops into the two-dimensional domains. First-principles calculations showed that the asymmetric interstitially-incorporated O defects induce shear strains, which assists the formation of hexagon structure of the CDW phase. The cooperative interplay between the O impurities and the CDW is responsible for the enhancement of the CDW condensation and the consequent increase in Tc.

  17. The effect of semi-infinite crystalline electrodes on transmission of gold atomic wires using DFT

    NASA Astrophysics Data System (ADS)

    Sattar, Abdul; Amjad, Raja Junaid; Yasmeen, Sumaira; Javed, Hafsa; Latif, Hamid; Mahmood, Hasan; Iqbal, Azmat; Usman, Arslan; Akhtar, Majid Niaz; Khan, Salman Naeem; Dousti, M. R.

    2016-05-01

    First principle calculations of the conductance of gold atomic wires containing chain of 3-8 atoms each with 2.39 Å bond lengths are presented using density functional theory. Three different configurations of wire/electrodes were used. For zigzag wire with semi-infinite crystalline electrodes, even-odd oscillation is observed which is consistent with the previously reported results. A lower conductance is observed for the chain in semi-infinite crystalline electrodes compared to the chains suspended in wire-like electrode. The calculated transmission spectrum for the straight and zig-zag wires suspended between semi-infinite crystalline electrodes showed suppression of transmission channels due to electron scattering occurring at the electrode-wire interface.

  18. Microscopic mechanism of templated self-assembly: Indium metallic atomic wires on Si(553)-Au

    NASA Astrophysics Data System (ADS)

    Kang, Pil-Gyu; Jeong, Hojin; Yeom, Han Woong

    2009-03-01

    We report on the self-assembly of metallic atomic wires utilizing a templated semiconductor surface. A well-ordered template is provided by a vicinal Si surface reacted with Au, Si(553)-Au, which has a regular and robust step array. The scanning tunneling microscopy study shows that In atoms preferentially adsorb and diffuse actively along step edges to form well-ordered atomic wires. The local spectroscopy indicates the metallic property of In atomic wires formed. Ab initio calculations reveal the microscopic mechanism of the templated self-assembly as based on well-aligned preferential adsorption sites and the strongly anisotropic surface diffusion. This template can, thus, be widely applied to fabricate various atomic or molecular wires.

  19. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    SciTech Connect

    Nigam, Sandeep Majumder, Chiranjib; Sahoo, Suman K.; Sarkar, Pranab

    2014-04-24

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  20. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    NASA Astrophysics Data System (ADS)

    Nigam, Sandeep; Sahoo, Suman K.; Sarkar, Pranab; Majumder, Chiranjib

    2014-04-01

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  1. Characterization of Launched Atoms Leading to Observations of Cold Rydberg Atoms in the Field of a Charged Wire

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Erwin, Emma

    2016-05-01

    We are preparing to accelerate and decelerate cold Rydberg atoms in the field of a charged wire. We cool and launch rubidium atoms and observe the distribution of atoms up to 16 mm above the trap location. We report a transverse speed less than 1/10 of the longitudinal launch speed. For Rydberg-atom observations, the cold cloud will be illuminated in mid-flight to promote atoms into the desired Rydberg state (e.g. n = 33-40). With a three-photon sequence we will access nf states and the nearby manifolds with linear Stark shifts. We observed the first two steps of this process using counter-propagating beams of 780 nm and 776 nm in a Rb cell. For cold Rydberg atoms, we will compare states that are strongly accelerated to states that are strongly decelerated by the field around the charged-wire target. We calculate that the displacement during the Rydberg lifetime (e.g. n = 35, τ = 30 μs) will be 200-300 μm farther for extreme attracted states. Detection will occur by spatially-dependent field ionization. Observations of atoms with zero angular momentum around the wire can be extended to atoms with nonzero angular momentum and also to study dynamics of Rydberg atoms with a quadratic Stark shift, building on previous work with ground-state atoms.

  2. Intermetallic compound formation at Cu-Al wire bond interface

    SciTech Connect

    Bae, In-Tae; Young Jung, Dae; Chen, William T.; Du Yong

    2012-12-15

    Intermetallic compound (IMC) formation and evolution at Cu-Al wire bond interface were studied using focused ion beam /scanning electron microscopy, transmission electron microscopy (TEM)/energy dispersive x-ray spectroscopy (EDS), nano beam electron diffraction (NBED) and structure factor (SF) calculation. It was found that discrete IMC patches were formed at the Cu/Al interface in as-packaged state and they grew toward Al pad after high temperature storage (HTS) environment at 150 Degree-Sign C. TEM/EDS and NBED results combined with SF calculation revealed the evidence of metastable {theta} Prime -CuAl{sub 2} IMC phase (tetragonal, space group: I4m2, a = 0.404 nm, c= 0.580 nm) formed at Cu/Al interfaces in both of the as-packaged and the post-HTS samples. Two feasible mechanisms for the formation of the metastable {theta} Prime -CuAl{sub 2} phase are discussed based on (1) non-equilibrium cooling of wire bond that is attributed to highly short bonding process time and (2) the epitaxial relationships between Cu and {theta} Prime -CuAl{sub 2}, which can minimize lattice mismatch for {theta} Prime -CuAl{sub 2} to grow on Cu.

  3. Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires

    SciTech Connect

    Li, An-Ping; Qin, Shengyong; Kim, Tae Hwan; Ouyang, Wenjie; Zhang, Yanning; Weitering, Harm H; Shih, Chih-Kang; Baddorf, Arthur P; Wu, Ruiqian

    2012-01-01

    Quantum wires, as a smallest electronic conductor, are expected to be a fundamental component in all quantum architectures. The electronic conductance in quantum wires, however, is often dictated by structural instabilities and electron localization at the atomic scale. Here we report on the evolutions of electronic transport as a function of temperature and interwire coupling as the quantum wires of GdSi{sub 2} are self-assembled on Si(100) wire-by-wire. The correlation between structure, electronic properties, and electronic transport are examined by combining nanotransport measurements, scanning tunneling microscopy, and density functional theory calculations. A metal-insulator transition is revealed in isolated nanowires, while a robust metallic state is obtained in wire bundles at low temperature. The atomic defects lead to electron localizations in isolated nanowire, and interwire coupling stabilizes the structure and promotes the metallic states in wire bundles. This illustrates how the conductance nature of a one-dimensional system can be dramatically modified by the environmental change on the atomic scale.

  4. Preparation for Acceleration and Deceleration of Cold Rydberg Atoms in the Field of a Charged Wire

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Nawarat, Poomirat; Harper, W. Colleen

    2015-05-01

    We are preparing for experiments using cold Rydberg atoms in linear Stark states. We cool and launch Rb atoms at 2-12 m/s toward a charged wire with a cylindrically-symmetric electric field. The cold cloud will be illuminated in mid-flight to promote atoms into the desired Rydberg state (e.g. n = 33-40). With a three-photon sequence we will access nf states and the nearby manifolds (parabolic quantum number 0 <=n1 <= (n -4)) with linear Stark shifts. This requires specific detuning of the the excitation laser, which allows us to selectively compare states that are strongly accelerated to states that are strongly decelerated. With the wire at +10 V, atoms launched at 10 m/s, and excitation near 750 μm from the wire, the displacement during the Rydberg lifetime (e.g. n = 35, τ = 30 μs) will be 200-300 μm farther for extreme attracted states (n1 = 0) than for extreme repelled states (n1 = 31). Detection will occur by spatially-dependent field ionization. Observations of atoms with zero angular momentum around the wire can be extended to atoms with nonzero angular momentum and also to study the dynamics of Rydberg atoms with a quadratic Stark shift, building on previous work with ground-state atoms. (Current address: Rensselaer Polytechnic Institute, Troy, NY).

  5. Impurity-Mediated Early Condensation of a Charge Density Wave in an Atomic Wire Array.

    PubMed

    Yeom, Han Woong; Oh, Deok Mahn; Wippermann, Stefan; Schmidt, Wolf Gero

    2016-01-26

    We directly show how impurity atoms induce the condensation of a representative electronic phase, the charge density wave (CDW) phase, in atomic scale with scanning tunneling microscopy. Oxygen impurity atoms on the self-assembled metallic atomic wire array on a silicon crystal condense the CDW locally above the pristine transition temperature. More interestingly, the CDW along the wires is induced not by a single atomic impurity but by the cooperation of multiple impurities. First-principles calculations disclose the mechanism of the cooperation as the coherent superposition of the local lattice strain induced by impurities, stressing the coupled electronic and lattice degrees of freedom for the CDW. This opens the possibility of the strain engineering over electronic phases of atomic-scale systems. PMID:26634634

  6. A model of optical trapping cold atoms using a metallic nano wire with surface plasmon effect

    NASA Astrophysics Data System (ADS)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    In this work, we construct a new model of optical trapping cold atoms with a metallic nano wire by using surface plasmon effect generated by strong field of laser beams. Using the skin effect, we send a strong oscillated electromagnetic filed through the surface of a metallic nano wire. The local field generated by evanescent effect creates an effective attractive potential near the surface of metallic nano wires. The consideration of some possible boundary and frequency conditions might lead to non-trivial bound state solution for a cold atom. We discus also the case of the laser reflection optical trap with shell-core design, and compare our model with another recent schemes of cold atom optical traps using optical fibers and carbon nanotubes.

  7. Wire melting and droplet atomization in a high velocity oxy-fuel jet

    SciTech Connect

    Neiser, R.A.; Brockmann, J.E.; O`Hern, T.J.

    1995-07-01

    Coatings produced by feeding a steel wire into a high-velocity oxy-fuel (HVOF) torch are being intensively studied by the automotive industry as a cost-effective alternative to the more expensive cast iron sleeves currently used in aluminum engine blocks. The microstructure and properties of the sprayed coatings and the overall economics of the process depend critically on the melting and atomization occurring at the wire tip. This paper presents results characterizing several aspects of wire melting and droplet breakup in an HVOF device. Fluctuations in the incandescent emission of the plume one centimeter downstream from the wire tip were recorded using a fast photodiode. A Fourier transform of the light traces provided a measure of the stripping rate of molten material from the wire tip. Simultaneous in-flight measurement of atomized particle size and velocity distributions were made using a Phase Doppler Particle Analyzer (PDPA). The recorded size distributions approximate a log-normal distribution. Small particles traveled faster than large particles, but the difference was considerably smaller than simple aerodynamic drag arguments would suggest. A set of experiments was carried out to determine the effect that variations in torch gas flow rates have on wire melt rate, average particle size, and average particle velocity. The observed variation of particle size with spray condition is qualitatively consistent with a Weber breakup of the droplets coming off the wire. The measurements also showed that it was possible to significantly alter atomized particle size and velocity without appreciably changing the wire melt rate.

  8. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  9. Searching for efficient X-ray radiators for wire array Z-pinch plasmas using mid-atomic-number single planar wire arrays on Zebra at UNR

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Esaulov, A. A.; Kantsyrev, V. L.; Ouart, N. D.; Shlyaptseva, V.; Weller, M. E.; Keim, S. F.; Williamson, K. M.; Shrestha, I.; Osborne, G. C.

    2011-12-01

    We continue to search for more efficient X-ray radiators from wire array Z-pinch plasmas. The results of recent experiments with single planar wire array (SPWA) loads made from mid-atomic-number material wires such as Alumel, Cu, Mo, and Ag are presented and compared. In particular, two new efficient X-ray radiators, Alumel (95% Ni, 2% Al, and 2% Si) and Ag, are introduced, and their radiative properties are discussed in detail. The experiments were performed on the 1 MA Zebra generator at UNR. The X-ray yields from such mid-atomic-number SPWAs exceed twice those from low-atomic-number SPWAs, such as Al, and increase with the atomic number to reach more than 27-29 kJ for Ag. To consider the main contributions to the total radiation, we divided the time interval of the Z-pinch dynamic where wire ablation and implosion, stagnation, and plasma expansion occur in corresponding phases and studied the radiative and implosion characteristics within them. Theoretical tools such as non-LTE kinetics and wire ablation dynamic models were applied in the data analysis. These results and the models developed have much broader applications, not only for SPWAs on Zebra, but for other HED plasmas with mid-atomic-number ions.

  10. Electronic conductance via atomic wires: a phase field matching theory approach

    NASA Astrophysics Data System (ADS)

    Szczęśniak, D.; Khater, A.

    2012-06-01

    A model is presented for the quantum transport of electrons, across finite atomic wire nanojunctions between electric leads, at zero bias limit. In order to derive the appropriate transmission and reflection spectra, familiar in the Landauer-Büttiker formalism, we develop the algebraic phase field matching theory (PFMT). In particular, we apply our model calculations to determine the electronic conductance for freely suspended monatomic linear sodium wires (MLNaW) between leads of the same element, and for the diatomic copper-cobalt wires (DLCuCoW) between copper leads on a Cu(111) substrate. Calculations for the MLNaW system confirm the correctness and functionality of our PFMT approach. We present novel transmission spectra for this system, and show that its transport properties exhibit the conductance oscillations for the odd- and even-number wires in agreement with previously reported first-principle results. The numerical calculations for the DLCuCoW wire nanojunctions are motivated by the stability of these systems at low temperatures. Our results for the transmission spectra yield for this system, at its Fermi energy, a monotonic exponential decay of the conductance with increasing wire length of the Cu-Co pairs. This is a cumulative effect which is discussed in detail in the present work, and may prove useful for applications in nanocircuits. Furthermore, our PFMT formalism can be considered as a compact and efficient tool for the study of the electronic quantum transport for a wide range of nanomaterial wire systems. It provides a trade-off in computational efficiency and predictive capability as compared to slower first-principle based methods, and has the potential to treat the conductance properties of more complex molecular nanojunctions.

  11. Transport through single-channel atomic wires: Effects of connected sites on scattering phase and odd-even parity oscillations

    NASA Astrophysics Data System (ADS)

    Zhai, Feng; Xu, H. Q.

    2005-11-01

    Theoretical studies of scattering phase and odd-even parity oscillations of the conductance are presented for a finite atomic wire system, which is either connected with two single-channel leads or side-coupled to a single-channel perfect wire. The effects of connected sites on the scattering properties are examined. For a uniform atomic wire connected with two single-channel leads, it is found that when the number of atoms in the wire, n , and the two sequence numbers of the connected atomic sites, n1 and n2 (1⩽n1⩽n2⩽n) , satisfy the condition that (n+1)/gcd(n1,n+1-n2) is not an integer, the transmission coefficient, as a function of the incident electron energy, has zeros of second order. At these zeros the transmission phase is continuous. The zeros of the reflection coefficient, however, are always of first order, and the reflection phase has a lapse precisely by π at each of these zeros. For an atomic wire system side coupled to a perfect lead, the conclusions are reversed: the transmission zeros are always of first order, while the reflection zeros can be of high order. It is also shown that in this side-coupled configuration, both the transmission zeros and the reflection zeros are related to the generic properties of the isolated atomic wire system. The odd-even oscillations of the conductance have also been investigated for finite atomic wire systems in both configurations. It is found that the transmission of a finite atomic wire system depends not only on the parity of the number of atomic sites in the system, but also on the parity of the sequence numbers of the atomic sites through which the atomic wire system is connected with the leads. Finally, by taking a simple one-dimensional quantum wire system with several attached side branches as an example, we show that the transmission zeros of higher order can be found in a quantum system built from one-dimensional wires.

  12. Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel

    NASA Astrophysics Data System (ADS)

    Wen, Peng; Feng, Zhenhua; Zheng, Shiqing

    2015-01-01

    Laser cladding is an advantaged repairing technology due to its low heat input and high flexibility. With preheating wire by resistance heat, laser hot wire cladding shows better process stability and higher deposition efficiency compared to laser cold wire/powder cladding. Multi-pass layer were cladded on the surface of martensite precipitation hardening stainless steel FV520B by fiber laser with ER410NiMo wire. Wire feed rate and preheat current were optimized to obtain stable wire transfer, which guaranteed good formation quality of single pass cladding. Response surface methodology (RSM) was used to optimize processing parameters and predict formation quality of multi-pass cladding. Laser power P, scanning speed Vs, wire feed rate Vf and overlap ratio η were selected as the input variables, while flatness ratio, dilution and incomplete fusion value as the responses. Optimal clad layer with flat surface, low dilution and no incomplete fusion was obtained by appropriately reducing Vf, and increasing P, Vs and η. No defect like pore or crack was found. The tensile strength and impact toughness of the clad layer is respectively 96% and 86% of those of the substrate. The clad layer showed nonuniform microstructure and was divided into quenched areas with coarse lath martensite and tempered areas with tempered martensite due to different thermal cycles in adjacent areas. The tempered areas showed similar hardness to the substrate.

  13. Adsorbate-induced reconstruction of an array of atomic wires: Indium on the Si(553)-Au surface

    NASA Astrophysics Data System (ADS)

    Ahn, J. R.; Kang, P. G.; Byun, J. H.; Yeom, H. W.

    2008-01-01

    The In-induced surface reconstruction of the Si(553)-Au surface has been studied using the combined experiment of low-energy-electron diffraction, scanning tunneling microscopy, and angle-resolved photoemission spectroscopy. Low-energy-electron diffraction revealed that In adsorbates interact actively with the surface above 150°C , widening the terraces uniformly and forming a new atomic wire array. This wire structure has a ×2 period along the wires, where the phase coherence across the wires was much better than that of the pristine Si(553)-Au surface. The In-induced uniform terrace widening was confirmed by scanning tunneling microscopy. More interestingly, the In adsorbates alter the metallic atomic wires of the Si(553)-Au surface with highly dispersive one-dimensional bands into insulating ones with still large dispersion.

  14. On the formation of silicon wires produced by high-energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dang, Z. Y.; Song, J.; Azimi, S.; Breese, M. B. H.; Forneris, J.; Vittone, E.

    2013-02-01

    We present a detailed study of simulated and experimentally observed factors which influence the formation of wires in p-type silicon which is irradiated with a high energy, small diameter proton beam, and subsequently electrochemically etched in dilute hydrofluoric acid. A better understanding of the variety of factors influencing wire formation enables a better control of their size, gap between adjacent wires and shape. This addresses a previous limitation in fabricating such structures, such as uncontrollable wire shape and undefined minimum gaps. Furthermore it removes limitations in their application in photonics, such as the difficulty in coupling light between adjacent waveguides, a smearing of the band gap of photonic crystals due to imperfect periodicity, and difficulty in moving the photonic band gap towards near infra-red range. Therefore, the present work allows better control in fabricating components for three dimensional silicon machining and silicon photonics using ion irradiation in conjunction with electrochemical etching.

  15. Zinc oxide formation in galvanized metallic wire by simple selective growth method

    NASA Astrophysics Data System (ADS)

    Sivanantham, A.; Abinaya, C.; Vishnukanthan, V.; Jayabal, P.; Boobalan, K.; Mohanraj, S.; Mayandi, J.

    2015-06-01

    ZnO nanostructures were synthesized by a simple method of oxidizing metallic wire by direct electrical heating. A galvanized iron wire was used as the source of zinc. Several optical techniques were employed on the synthesized ZnO nanostructure such as photoluminescence, Raman and FTIR spectroscopy. The formation of ZnO nanostructures was confirmed from the spectra of different optical studies and also determined by XRD. SEM analysis shows the signature of nanorod formation on the surface of the wire. The oxidation state and ferromagnetic property of these oxidized metallic wires were discussed with the help of EPR spectrum. In summation to the properties studied, a growth mechanism was suggested based on the observations and method of the oxidation procedure.

  16. Fabrication and Characterization of Oriented Carbon Atom Wires Assembled on Gold

    SciTech Connect

    Xue,K.H.; Wu,L.; Chen, S.-P.; Wanga, L.X.; Wei, R.-B.; Xu, S.-M.; Cui, L.; Mao, B.-W.; Tian, Z.-Q.; Zen, C.-H.; Sun, S.-G.; Zhu, Y.-M.

    2009-02-17

    Carbon atom wires (CAWs) are of the sp-hybridized allotrope of carbon. To augment the extraordinary features based on sp-hybridization, we developed an approach to make CAWs be self-assembled and orderly organized on Au substrate. The self-assembling process was investigated in situ by using scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The properties of the assembled film were characterized by voltammetry, Raman spectroscopy, electron energy loss spectroscopy (EELS), and the contact angle measurements. Experimental results indicated that the assembled CAW film was of the good structural integrity and well organized, with the sp-hybridized features enhanced.

  17. Study of the strata formation during the explosion of a wire in vacuum

    SciTech Connect

    Rousskikh, A. G.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Shishlov, A. V.; Beilis, I. I.; Baksht, R. B.

    2008-10-15

    The formation of strata during fast electrical explosions of aluminum wires at current densities of (1-1.4)x10{sup 8} A/cm{sup 2} has been studied experimentally. To observe the strata, the soft x radiation generated at the hot point of an x-pinch was used. It has been revealed that strata are formed before the voltage collapse, that is, at the stage of heating of the wire metal. Two wire explosion modes were realized: with and without cutoff of the current carried by the exploding wire. Analysis of the experimental results shows that the stratification is most probably due to the thermal instability that develops as a consequence of the increase in metal resistivity with temperature.

  18. Study of the strata formation during the explosion of a wire in vacuum

    NASA Astrophysics Data System (ADS)

    Rousskikh, A. G.; Oreshkin, V. I.; Chaikovsky, S. A.; Labetskaya, N. A.; Shishlov, A. V.; Beilis, I. I.; Baksht, R. B.

    2008-10-01

    The formation of strata during fast electrical explosions of aluminum wires at current densities of (1-1.4)×108 A/cm2 has been studied experimentally. To observe the strata, the soft x radiation generated at the hot point of an x-pinch was used. It has been revealed that strata are formed before the voltage collapse, that is, at the stage of heating of the wire metal. Two wire explosion modes were realized: with and without cutoff of the current carried by the exploding wire. Analysis of the experimental results shows that the stratification is most probably due to the thermal instability that develops as a consequence of the increase in metal resistivity with temperature.

  19. Formation of extended directional breakdown channels produced by a copper wire exploding in the atmosphere

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Pletnev, N. V.

    2013-12-01

    Experimental data for switching initiated by the electrical breakdown of air gaps up to 1.9 m long with an arbitrary geometry that are produced by an exploding copper wire 90 μm in diameter are presented. At an initial voltage of 11 kV, the stored energy equals 100-2100 J. Two channel formation conditions are possible: explosion of a wire without electrical breakdown and electrical breakdown in a channel produced by an exploding wire with a delay (current pause) no longer than 250 μs. Current and voltage waveforms across the discharge gap, as well as the resistivity values, under the electrical breakdown conditions are shown. Mechanisms and conditions for streamer initiation at a mean electric field strength in the discharge gap of 5.3-17.0 kV/m are discussed. The geometrical dimensions of plasma objects in the forming channel, the run of the electrical current under breakdown, and the formation mechanism of wire explosion products are found from color microphotographs. The formation mechanism of large aerosols in the form of tiny spherical copper and copper oxide (CuO, Cu2O) particles under wire explosion conditions is discussed.

  20. Non-equilibrium 8π Josephson effect in atomic Kitaev wires.

    PubMed

    Laflamme, C; Budich, J C; Zoller, P; Dalmonte, M

    2016-01-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses. PMID:27481540

  1. Atomic absorption determination of traces of cadmium in urine after electrodeposition onto a tungsten wire.

    PubMed

    Zhang, G; Li, J; Fu, D; Hao, D; Xiang, P

    1993-03-01

    A three-coil tungsten wire is used as electrode for the preconcentration of cadmium, which is then placed in a graphite tube for atomization and atomic absorption measurement. The heating parameters of the graphite furnace are optimized using the Modified and Weighted Centroid Simplex Method (MWCS), and computer program for automatic calculation. Sulphuric acid is selected as the supporting electrolyte for electrodeposition. The linear range of the calibration graph is 0.00-0.55 ng/ml. The detection limit is 0.01 ng/ml. For 0.1 ng/ml cadmium the coefficient of variation is 3.35% for ten parallel determinations. No interference occurs in the presence of more than 20 coexisting ions. Traces of cadmium in urine of normal people and in river water and the recoveries for cadmium are determined. The results are satisfactory. PMID:18965645

  2. Non-equilibrium 8π Josephson effect in atomic Kitaev wires

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.

    2016-08-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses.

  3. Non-equilibrium 8π Josephson effect in atomic Kitaev wires

    PubMed Central

    Laflamme, C.; Budich, J. C.; Zoller, P.; Dalmonte, M.

    2016-01-01

    The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses. PMID:27481540

  4. Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates

    SciTech Connect

    Moroni, Stefano T.; Dimastrodonato, Valeria; Chung, Tung-Hsun; Juska, Gediminas; Gocalinska, Agnieszka; Pelucchi, Emanuele; Vvedensky, Dimitri D.

    2015-04-28

    We report a model for metalorganic vapor-phase epitaxy on non-planar substrates, specifically V-grooves and pyramidal recesses, which we apply to the growth of InGaAs nanostructures. This model—based on a set of coupled reaction-diffusion equations, one for each facet in the system—accounts for the facet-dependence of all kinetic processes (e.g., precursor decomposition, adatom diffusion, and adatom lifetimes) and has been previously applied to account for the temperature-, concentration-, and temporal-dependence of AlGaAs nanostructures on GaAs (111)B surfaces with V-grooves and pyramidal recesses. In the present study, the growth of In{sub 0.12}Ga{sub 0.88}As quantum wires at the bottom of V-grooves is used to determine a set of optimized kinetic parameters. Based on these parameters, we have modeled the growth of In{sub 0.25}Ga{sub 0.75}As nanostructures formed in pyramidal site-controlled quantum-dot systems, successfully producing a qualitative explanation for the temperature-dependence of their optical properties, which have been reported in previous studies. Finally, we present scanning electron and cross-sectional atomic force microscopy images which show previously unreported facetting at the bottom of the pyramidal recesses that allow quantum dot formation.

  5. Evolution of atomic structure during nanoparticle formation

    PubMed Central

    Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M. Ø.; Christensen, Mogens; Bøjesen, Espen D.; Emerich, Hermann; Vaughan, Gavin; Billinge, Simon J. L.; Iversen, Bo B.

    2014-01-01

    Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries. PMID:25075335

  6. Evolution of atomic structure during nanoparticle formation.

    PubMed

    Tyrsted, Christoffer; Lock, Nina; Jensen, Kirsten M Ø; Christensen, Mogens; Bøjesen, Espen D; Emerich, Hermann; Vaughan, Gavin; Billinge, Simon J L; Iversen, Bo B

    2014-05-01

    Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries. PMID:25075335

  7. Experimental observation of plasma formation and current transfer in fine wire expansion experiments.

    SciTech Connect

    Deeney, Christopher E.; Duselis, Peter U. (Cornell University, Ithaca, NY); Kusse, Bruce; Sinars, Daniel Brian

    2003-05-01

    When several kA pulses are passed through single, fine 25 {micro}m diameter wires, the wire material heats, melts, vaporizes and expands. Initially the voltage across--and current through--a wire increases until an abrupt voltage collapse occurs. After this collapse the voltage remains at a relative small value while the current continues to increase. In order to understand how this early time behavior may affect the subsequent implosion, small-scale experiments at Cornell University's Laboratory of Plasma Studies concentrated on diagnosing expanding single wire dynamics. X-ray backlighting, interferometry and Schlieren imaging as well as current and voltage measurements have been employed. The voltage collapse has been attributed to the formation of plasma around the wire and a transfer of current to this highly conducting coronal plasma. Interferometry has confirmed the plasma formation, but the current transfer has only been postulated. Subsequent experiments on the Z-Facility at Sandia National Laboratories have produced impressive x-ray yields etc.

  8. Hopping Domain Wall Induced by Paired Adatoms on an Atomic Wire: Si(111)-(5×2)-Au

    NASA Astrophysics Data System (ADS)

    Kang, Pil-Gyu; Jeong, Hojin; Yeom, Han Woong

    2008-04-01

    We observed an inhomogeneous fluctuation along one-dimensional atomic wires self-assembled on a Si(111) surface using scanning tunneling microscopy. The fluctuation exhibits dynamic behavior at room temperature and is observed only in a specific geometric condition; the spacing between two neighboring adatom defects is discommensurate with the wire lattice. Upon cooling, the dynamic fluctuation freezes to show the existence of an atomic-scale dislocation or domain wall induced by such “unfavorably” paired adatoms. The microscopic characteristics of the dynamic fluctuation are explained in terms of a hopping solitonic domain wall, and a local potential for this motion imposed by the adatoms is quantified.

  9. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires.

    PubMed

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco; Casari, Carlo S

    2015-01-01

    Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single-triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  10. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  11. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces.

    PubMed

    Liu, Jing; Chen, Qiwei; Xiao, Lianghong; Shang, Jian; Zhou, Xiong; Zhang, Yajie; Wang, Yongfeng; Shao, Xiang; Li, Jianlong; Chen, Wei; Xu, Guo Qin; Tang, Hao; Zhao, Dahui; Wu, Kai

    2015-06-23

    Surface reactions of 2,5-diethynyl-1,4-bis(phenylethynyl)benzene on Ag(111), Ag(110), and Ag(100) were systematically explored and scrutinized by scanning tunneling microscopy, molecular mechanics simulations, and density functional theory calculations. On Ag(111), Glaser coupling reaction became dominant, yielding one-dimensional molecular wires formed by covalent bonds. On Ag(110) and Ag(100), however, the terminal alkynes reacted with surface metal atoms, leading to one-dimensional organometallic nanostructures. Detailed experimental and theoretical analyses revealed that such a lattice dependence of the terminal alkyne reaction at surfaces originated from the matching degree between the periodicities of the produced molecular wires and the substrate lattice structures. PMID:25990647

  12. Effects of gapless bosonic fluctuations on Majorana fermions in an atomic wire coupled to a molecular reservoir

    NASA Astrophysics Data System (ADS)

    Hu, Ying; Baranov, Mikhail A.

    2015-11-01

    We discuss the effects of quantum and thermal fluctuations on the Majorana edge states in a topological atomic wire coupled to a superfluid molecular gas with gapless excitations. We find that the coupling between the Majorana edge states remains exponentially decaying with the length of the wire, even at finite temperatures smaller than the energy gap for bulk excitations in the wire. This exponential dependence is controlled solely by the localization length of the Majorana states. The fluctuations, on the other hand, provide the dominant contribution to the preexponential factor, which increases with temperature and the length of the wire. More important is that thermal fluctuations give rise to a decay of an initial correlation between Majorana edge states to its stationary value after some thermalization time. This stationary value is sensitive to the temperature and to the length of the wire and, although vanishing in the thermodynamic limit, can still be feasible in a mesoscopic system at sufficiently low temperatures. The thermalization time, on the other hand, is found to be much larger than the typical time scales in the wire and is sufficient for quantum operations with Majorana fermions before the temperature-induced decoherence sets in.

  13. Plasma formation and dynamics in conical wire arrays in the Llampudken pulsed power generator

    SciTech Connect

    Muñoz, C. Gonzalo E-mail: fveloso@fis.puc.cl; Valenzuela, Vicente E-mail: fveloso@fis.puc.cl; Veloso, Felipe E-mail: fveloso@fis.puc.cl; Favre, Mario E-mail: fveloso@fis.puc.cl; Wyndham, Edmund E-mail: fveloso@fis.puc.cl

    2014-12-15

    Plasma formation and dynamics from conical wire array is experimentally studied. Ablation from the wires is observed, forming plasma accumulation at the array axis and subsequently a jet outflow been expelled toward the top of the array. The arrays are composed by 16 equally spaced 25μ diameter tungsten wires. Their dimensions are 20mm height, with base diameters of 8mm and 16mm top diameter. The array loads are design to be overmassed, hence no complete ablation of the wires is observed during the current rise. The experiments have been carried out in the Llampudken. pulsed power generator (∼350kA in ∼350ns). Plasma dynamics is studied in both side-on and end-on directions. Laser probing (shadowgraphy) is achieved using a frequency doubled Nd:YAG laser (532nm, 12ps FWHM) captured by CCD cameras. Pinhole XUV imaging is captured using gated microchannel plate cameras with time resolution ∼5ns. Results on the jet velocity and the degree of collimation indicating the plausibility on the use of these jets as comparable to the study astrophysically produced jets are presented and discussed.

  14. A highly sensitive method for the determination of mercury using vapor generation gold wire microextraction and electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hashemi, Payman; Rahimi, Akram

    2007-04-01

    The study introduces a new simple and highly sensitive method for headspace solid phase microextraction (HS-SPME) coupled with electrothermal atomic absorption spectrometric determination of mercury. In the proposed method, a gold wire, mounted in the headspace of a sample solution in a sealed bottle, is used for collection of mercury vapor generated by addition of sodium tetrahydroborate. The gold wire is then simply inserted in the sample introduction hole of a graphite furnace of an electrothermal atomic absorption spectrometry instrument. By applying an atomization temperature of 600 °C, mercury is rapidly desorbed from the wire and determined with high sensitivity. Factorial design and response surface analysis methods were used for optimization of the effect of five different variables in order to maximize the mercury signal. By using a 0.75 mm diameter gold wire, a sample volume of about 8 ml and an extraction time of 11 min, the sensitivity of mercury determination was enhanced up to 10 4 times in comparison to its ordinary ETAAS determination with direct injection of 10 μl sample solutions. A detection limit of 0.006 ng ml - 1 and a precision better than 4.6% (relative standard deviation) were obtained. The method was successfully applied to the determination of mercury in industrial wastewaters and tuna fish samples.

  15. Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions

    NASA Astrophysics Data System (ADS)

    Morikawa, Takanori; Arima, Akihide; Tsutsui, Makusu; Taniguchi, Masateru

    2014-06-01

    We developed a method for simultaneous measurements of conductance and thermopower of atomic and molecular junctions by using a microheater-embedded mechanically-controllable break junction. We find linear increase in the thermoelectric voltage of Au atomic junctions with the voltage added to the heater. We also detect thermopower oscillations at several conductance quanta reflecting the quantum confinement effects in the atomic wire. Under high heater voltage conditions, on the other hand, we observed a peculiar behaviour in the conductance dependent thermopower, which was ascribed to a disordered contact structure under elevated temperatures.

  16. Radially arrayed nanopillar formation on metallic stent wire surface via radio-frequency plasma.

    PubMed

    Loya, Mariana C; Park, Eunsung; Chen, Li Han; Brammer, Karla S; Jin, Sungho

    2010-04-01

    MP35N (Co-Ni-Cr-Mo alloy) is an important stent implant material for which many aspects, that include nanostructured surfaces, are yet to be understood. The present study provides the first creation of radially emanating metallic nanopillar structures on the surface of MP35N stent alloy wires; a novel textured surface structuring derived via controlled RF processing technique. The goal of this study was to characterize the newly found structures, identify evolution stages of nanopillar formations, as well as optimize RF process parameters for controlled surface texturing technique for stent wire materials. The exposure of a stent alloy wire, 250 microm diameter Co-Ni-Cr-Mo alloy (MP35N), to parameter-controlled RF environment resulted in dense surface nanostructures consisting of high-aspect-ratio dendritic nanopillars/nanowires. Extensive surface characterization and local compositional analyses by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) show increased values of Mo contents on the outer edges of protruding nanopillars, indicating a possibility of the higher Mo content phase contributing to the differential plasma sputter etching on the MP35N surface and resultant nanowire formation. A comparative investigation on single phase alloy versus multi-phase alloy seems to point to the importance of phase segregation for successful nanowire formation by RF plasma treatment. In addition to MP35N, some specific single phased materials, such as Fe-Ni and Fe-Cr alloys or Pt metal wire, were exposed in same RF plasma conditions and results did not form the complex structures found on MP35N samples. For the purpose of this study, metallic stent wires that have nanostructured surfaces can be considered a "polymer-less" approach to surface modification, The creation and characterization of radially arrayed nanostructured surfaces has been demonstrated on MP35N stent alloy wires using this RF plasma

  17. Effect of Base Sequence on G-Wire Formation in Solution

    PubMed Central

    Spindler, Lea; Rigler, Martin; Drevenšek-Olenik, Irena; Ma'ani Hessari, Nason; Webba da Silva, Mateus

    2010-01-01

    The formation and dimensions of G-wires by different short G-rich DNA sequences in solution were investigated by dynamic light scattering (DLS) and polyacrilamide gel electrophoresis (PAGE). To explore the basic principles of wire formation, we studied the effects of base sequence, method of preparation, temperature, and oligonucleotide concentration. Both DLS and PAGE show that thermal annealing induces much less macromolecular self-assembly than dialysis. The degree of assembly and consequently length of G-wires (5-6 nm) are well resolved by both methods for DNA sequences with intermediate length, while some discrepancies appear for the shortest and longest sequences. As expected, the longest DNA sequence gives the longest macromolecular aggregates with a length of about 11 nm as estimated by DLS. The quadruplex topologies show no concentration dependence in the investigated DNA concentration range (0.1 mM–0.4 mM) and no structural change upon heating. PMID:20725621

  18. InAs/InP single quantum wire formation and emission at 1.5 {mu}m

    SciTech Connect

    Alen, B.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.; Martinez-Pastor, J.

    2006-12-04

    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 {mu}m. Additional sharp features are related to monolayer fluctuations of the two-dimensional InAs layer present during the early stages of the quantum wire self-assembling process.

  19. Exploring the Formation and Evolution of Plasma from Exploding Single Wires

    NASA Astrophysics Data System (ADS)

    Duselis, P. U.; McCrorey, D. L.; Hu, Min; Kusse, B. R.

    2001-10-01

    At Cornell’s Laboratory of Plasma Studies, single wires of Ag, Cu, Au, Al, and W 1 to 3 cm in length and 10 to 25 microns in diameter were driven by a 100ns current pulse with a current rise time of 20 A/ns. Previously it has been found that the wires generally experienced a 50-85 ns resistive heating phase that was terminated by a rapid collapse of voltage [1]. We attributed this voltage collapse to the formation of a coronal plasma around the wire and used a framing camera, streak camera, laser interferometry, and a vacuum diode to examine the temporal and spatial dynamics of the plasma expansion. Results from the different diagnostics will be compared. Calculations are made to see if sufficient plasma is present to account for voltage collapse. [1] D. B. Sinars, Min Hu, K. M. Chandler, T. A. Shelkovenko, S. A. Pikuz, J. B. Greenly, D. A. Hammer, and B. R. Kusse, Physics of Plasmas 8, pp216-230.

  20. Regularities in positronium formation for atoms and molecules

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Blanco, F.; Garcia, G.; Buckman, S. J.; Sullivan, J. P.

    2016-03-01

    In an effort to aid the modelling of positron and positronium (Ps) transport in biological media we have compiled recent experimental results for the total Ps formation in positron scattering from atoms and molecules. A simple function was found to adequately describe the total Ps formation cross section for both atoms and molecules. The parameters of this function describe the magnitude and shape of the Ps formation cross section and are compared to physical characteristics of the target atoms and molecules. A general trend in the magnitude of the total Ps formation cross section is observed as a function of the target atom/molecule dipole polarisability. The functional form may enable quick estimation of the Ps cross section for molecules for which experimental measurements or theoretical estimates do not exist.

  1. Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra

    DOE PAGESBeta

    Stafford, A; Safronova, A. S.; Kantsyrev, V. L.; Coverdale, Christine Anne; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Chuvatin, A. S.

    2014-12-30

    The precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. Additionally, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. Our results show an increase in amore » linear radiation yield of ~50% (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.« less

  2. Mid-Atomic-Number Cylindrical Wire Array Precursor Plasma Studies on Zebra

    SciTech Connect

    Stafford, A; Safronova, A. S.; Kantsyrev, V. L.; Coverdale, Christine Anne; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Chuvatin, A. S.

    2014-12-30

    The precursor plasmas from low wire number cylindrical wire arrays (CWAs) were previously shown to radiate at temperatures >300 eV for Ni-60 (94% Cu and 6% Ni) wires in experiments on the 1-MA Zebra generator. Continued research into precursor plasmas has studied additional midatomic-number materials including Cu and Alumel (95% Ni, 2% Al, 2% Mn, and 1% Si) to determine if the >300 eV temperatures are common for midatomic-number materials. Additionally, current scaling effects were observed by performing CWA precursor experiments at an increased current of 1.5 MA using a load current multiplier. Our results show an increase in a linear radiation yield of ~50% (16 versus 10 kJ/cm) for the experiments at increased current. However, plasma conditions inferred through the modeling of X-ray time-gated spectra are very similar for the precursor plasma in both current conditions.

  3. Glass formation and local topological instability of atomic structure

    SciTech Connect

    Egami, T.

    1997-12-31

    A direct connection between the local topology of the atomic structure of liquids and glasses and thermodynamic quantities through the atomic level stresses is suggested for metallic alloys. In particular the role of local topological instability in the phase transformation involving liquid and glass will be discussed. It is pointed out that a single local geometrical criterion can explain various phase transformations, such as melting, glass transition, and glass formation by solid state reaction and liquid quenching.

  4. Determination of heavy metals in bee honey with connected and not connected metal wires using inductively coupled plasma atomic emission spectrometry (ICP-AES).

    PubMed

    Özcan, Mehmet Musa; Al Juhaimi, Fahad Y

    2012-04-01

    Two honey samples are taken from two parts of the same honeycomb: one that contacts to the surface of the wire and the other taken from the surface that does not contact the wires. Heavy metal contents of these two samples were determined by inductively coupled plasma atomic emission spectrometry). The Mo, Cd, Cr, Fe, Mn, Ni and Zn contents of the honey in contact with wire is higher when compared to the other. Especially, Fe and Zn contents of honey in contact with wire is much higher than the non-contact one. These values are, respectively, 190.21 and 112.76 ppm. Besides, Ni content of honey in contact with wire is approximately 50% higher. PMID:21573852

  5. Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing.

    PubMed

    Li, Y J; Choi, P; Goto, S; Borchers, C; Raabe, D; Kirchheim, R

    2013-09-01

    A local electrode atom probe has been employed to analyze the redistribution of alloying elements including Si, Mn, and Cr in pearlitic steel wires upon cold-drawing and subsequent annealing. It has been found that the three elements undergo mechanical mixing upon cold-drawing at large strains, where Mn and Cr exhibit a nearly homogeneous distribution throughout both ferrite and cementite, whereas Si only dissolves slightly in cementite. Annealing at elevated temperatures leads to a reversion of the mechanical alloying. Si atoms mainly segregate at well-defined ferrite (sub)grain boundaries formed during annealing. Cr and Mn are strongly concentrated in cementite adjacent to the ferrite/cementite interface due to their lower diffusivities in cementite than in ferrite. PMID:23237772

  6. Studies on Beam Formation in an Atomic Beam Source

    SciTech Connect

    Nass, A.; Steffens, E.; Stancari, M.

    2009-08-04

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC)[2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  7. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    SciTech Connect

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  8. Molecular hydrogen formation by excited atom radiative association

    NASA Technical Reports Server (NTRS)

    Latter, William B.; Black, John H.

    1991-01-01

    The results from a semiclassical calculation of the thermal rate coefficient for the radiative association process H(n = 2) + H(n = 1) - H2 + hv are presented (n is the principal quantum number of the separated hydrogen atoms). The relative importance of this reaction in various environments is briefly discussed. Models of the early universe around the epoch of recombination and protostellar winds have been calculated which include the excited atom process. Not surprisingly, it is shown that the excited atom process will not be important in the general interstellar medium, except possibly in environments where the amount of Ly-alpha photon trapping is large. Examples may be the material surrounding quasars, active galactic nuclei, and bright H II regions. The most likely application of this process might be within rapidly evolving systems where a large transient n = 2 population of neutral hydrogen could result in a burst of molecular hydrogen formation.

  9. Fabrication of Microstripline Wiring for Large Format Transition Edge Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.; Adams, J. M.; Bailey, C. N.; Bandler, S.; Brekosky, R. P.; Eckart, M. E.; Erwin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadlier, J. E.; Smith, S. J.

    2012-01-01

    We have developed a process to integrate microstripline wiring with transition edge sensors (TES). The process includes additional layers for metal-etch stop and dielectric adhesion to enable recovery of parameters achieved in non-microstrip pixel designs. We report on device parameters in close-packed TES arrays achieved with the microstrip process including R(sub n), G, and T(sub c) uniformity. Further, we investigate limits of this method of producing high-density, microstrip wiring including critical current to determine the ultimate scalability of TES arrays with two layers of wiring.

  10. Formation spectra of pionic atoms in the Green's function method

    NASA Astrophysics Data System (ADS)

    Ikeno, Natsumi; Yamagata-Sekihara, Junko; Nagahiro, Hideko; Hirenzaki, Satoru

    2015-03-01

    We study the formation spectra of deeply bound pionic atoms in the (d, ^3He) reactions using the Green's function method, stimulated by recent developments in experimental techniques. The Green's function method is considered to be a better theoretical formalism than the effective number approach to evaluate the formation rate of unstable systems. We compare the calculated results by the Green's function method with those by the effective number approach in various cases. We find that the differences between the results obtained by both methods are reasonably small and we can reaffirm that the effective number approach is a good theoretical method for the analyses of the previous experimental data with typical binding-energy errors of Δ B.E. ≳ 20keV for the deeply bound pionic atoms. On the other hand, we think that theoretical results using the Green's function method will be necessary in the near future to deduce precise information on the pion properties in nuclei from analyses of the pionic atom data with better accuracy than before.

  11. Autoionization following nanoplasma formation in atomic and molecular clusters

    NASA Astrophysics Data System (ADS)

    Schütte, Bernd; Lahl, Jan; Oelze, Tim; Krikunova, Maria; Vrakking, Marc J. J.; Rouzée, Arnaud

    2016-05-01

    Nanoplasmas resulting from the ionization of nano-scale particles by intense laser pulses are typically described by quasiclassical models, where electron emission is understood to take place via thermal processes. Recently, we discovered that, following the interaction of intense near-infrared (NIR) laser pulses with molecular oxygen clusters, electron emission from nanoplasmas can also occur from atomic bound states via autoionization [Schütte et al., Phys. Rev. Lett. 114, 123002 (2015)]. Here we extend these studies and demonstrate that the formation and decay of doubly-excited atoms and ions is a very common phenomenon in nanoplasmas. We report on the observation of autoionization involving spin-orbit excited states in molecular oxygen and carbon dioxide clusters as well as in atomic krypton and xenon clusters ionized by intense NIR pulses, for which we find clear bound-state signatures in the electron kinetic energy spectra. By applying terahertz (THz) streaking, we show that the observed autoionization processes take place on a picosecond to nanosecond timescale after the interaction of the NIR laser pulse with the clusters. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  12. Atom formation processes in the presence of ammonium thiocyanate in a thin-wall tungsten tube atomizer for atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Ohta, Kiyohisa; Mizuno, Takayuki

    Processes of atom formation of Ag, Al, As, Bi, Cd, Cr, Fe, Mn, Ni, Pb, Sb, Se, Sn, Sr and Te in the presence of ammonium thiocyanate in a thin-wall tungsten tube atomizer are described. It was found from a thermodynamic approach that AI, Bi, Cd, Cr, Fe, Ni and Te formed complexes with ammonium thiocyanate and are atomized through the sulfides in argon-hydrogen atmosphere. Atom formation processess for the other elements are different.

  13. Effect of Punica granatum L. Flower Water Extract on Five Common Oral Bacteria and Bacterial Biofilm Formation on Orthodontic Wire

    PubMed Central

    VAHID DASTJERDI, Elahe; ABDOLAZIMI, Zahra; GHAZANFARIAN, Marzieh; AMDJADI, Parisa; KAMALINEJAD, Mohammad; MAHBOUBI, Arash

    2014-01-01

    Background: Use of herbal extracts and essences as natural antibacterial compounds has become increasingly popular for the control of oral infectious diseases. Therefore, finding natural antimicrobial products with the lowest side effects seems necessary. The present study sought to assess the effect of Punica granatum L. water extract on five oral bacteria and bacterial biofilm formation on orthodontic wire. Methods: Antibacterial property of P. granatum L. water extract was primarily evaluated in brain heart infusion agar medium using well-plate method. The minimum inhibitory concentration and minimum bactericidal concentration were determined by macro-dilution method. The inhibitory effect on orthodontic wire bacterial biofilm formation was evaluated using viable cell count in biofilm medium. At the final phase, samples were fixed and analyzed by Scanning Electron Microscopy. Results: The growth inhibition zone diameter was proportional to the extract concentration. The water extract demonstrated the maximum antibacterial effect on Streptococcus sanguinis ATCC 10556 with a minimum inhibitory concentration of 6.25 mg/ml and maximum bactericidal effect on S. sanguinis ATCC 10556 and S. sobrinus ATCC 27607 with minimum bactericidal concentration of 25 mg/ml. The water extract decreased bacterial biofilm formation by S. sanguinis, S. sobrinus, S. salivarius, S. mutans ATCC 35608 and E. faecalis CIP 55142 by 93.7–100%, 40.6–99.9%, 85.2–86.5%, 66.4–84.4% and 35.5–56.3% respectively. Conclusion: Punica granatum L. water extract had significant antibacterial properties against 5 oral bacteria and prevented orthodontic wire bacterial biofilm formation. However, further investigations are required to generalize these results to the clinical setting. PMID:26171362

  14. Origin of the metal-insulator transition of indium atom wires on Si(111)

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Woo; Cho, Jun-Hyung

    2016-06-01

    As a prototypical one-dimensional electron system, self-assembled indium (In) nanowires on the Si(111) surface have been believed to drive a metal-insulator transition by a charge-density-wave (CDW) formation due to Fermi surface nesting. Here, our first-principles calculations demonstrate that the structural phase transition from the high-temperature 4 ×1 phase to the low-temperature 8 ×2 phase occurs through an exothermic reaction with the consecutive bond-breaking and bond-making processes, giving rise to an energy barrier between the two phases as well as a gap opening. This atomistic picture for the phase transition not only identifies its first-order nature but also solves a long-standing puzzle of the origin of the metal-insulator transition in terms of the ×2 periodic lattice reconstruction of In hexagons via bond breakage and new bond formation, not by the Peierls-instability-driven CDW formation.

  15. Rydberg-atom formation in strongly correlated ultracold plasmas

    SciTech Connect

    Bannasch, G.; Pohl, T.

    2011-11-15

    In plasmas at very low temperatures, the formation of neutral atoms is dominated by collisional three-body recombination, owing to the strong {approx}T{sup -9/2} scaling of the corresponding recombination rate with the electron temperature T. While this law is well established at high temperatures, the unphysical divergence as T{yields}0 clearly suggests a breakdown in the low-temperature regime. Here, we present a combined molecular dynamics Monte Carlo study of electron-ion recombination over a wide range of temperatures and densities. Our results reproduce the known behavior of the recombination rate at high temperatures, but reveal significant deviations with decreasing temperature. We discuss the fate of the kinetic bottleneck and resolve the divergence problem as the plasma enters the ultracold, strongly coupled domain.

  16. Improvements in the Formation of Boron-Doped Diamond Coatings on Platinum Wires Using the Novel Nucleation Process (NNP)

    PubMed Central

    Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.

    2010-01-01

    In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759

  17. Positron impact excitations of hydrogen atom embedded in weakly coupled plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-09-15

    Formation of Rydberg atoms due to 1s→nlm excitations of hydrogen, for arbitrary n, l, m, by positron impact in weakly coupled plasma has been investigated using a distorted-wave theory in the momentum space. The interactions among the charged particles in the plasma have been represented by Debye-Huckel potentials. Making use of a simple variationally determined wave function for the hydrogen atom, it has been possible to obtain the distorted-wave scattering amplitude in a closed analytical form. A detailed study has been made on the effects of plasma screening on the differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1s→nlm inelastic positron-hydrogen collisions for arbitrary n, l, m in weakly coupled plasmas is the first reported in the literature.

  18. Sintered wire annode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2007-12-25

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  19. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  20. Positron impact excitations of hydrogen atom embedded in dense quantum plasmas: Formation of Rydberg atoms

    SciTech Connect

    Rej, Pramit; Ghoshal, Arijit

    2014-11-15

    Formation of Rydberg atoms due to 1 s → nlm excitations of hydrogen by positron impact, for arbitrary n, l, m, in dense quantum plasma has been investigated using a distorted wave theory which includes screened dipole polarization potential. The interactions among the charged particles in the plasma have been represented by exponential cosine-screened Coulomb potentials. Making use of a simple variationally determined hydrogen wave function, it has been possible to obtain the distorted wave scattering amplitude in a closed analytical form. A detailed study has been made to explore the structure of differential and total cross sections in the energy range 20–300 eV of incident positron. For the unscreened case, our results agree nicely with some of the most accurate results available in the literature. To the best of our knowledge, such a study on the differential and total cross sections for 1 s → nlm inelastic positron-hydrogen collisions in dense quantum plasma is the first reported in the literature.

  1. Space Charge Formation and Electrical Breakdown at High Temperature Region in PVC for Electrical Wiring Assembly

    NASA Astrophysics Data System (ADS)

    Miura, Masakazu; Fukuma, Masumi; Kishida, Satoru

    The Polyvinyl chloride (PVC), the most popular insulating material, is used as an insulating material of various electric products. When using an electrical wiring assembly code over the power capacity, PVC could melt by the joule heating and cause an electrical breakdown. Therefore, it is necessary to clarify the electrical breakdown phenomena near the melting point (170°C) in PVC. In this paper, space charge distribution and conduction current have been measured in PVC sheets up to the electrical breakdown in the range from room temperature to 200°C under DC electric field. The breakdown strength decreases with temperature in PVC. Small hetero-space charges are accumulated near both of the electrodes at room temperature region. At high temperature region above 100°C, it is observed that positive charges are injected from anode and move toward the cathode; the electric field is emphasized near the cathode due to the packet-like positive charge in PVC. It shows a thermal breakdown process of the electric fields due to positive charge behavior and conduction current increase with temperature near the melting point in PVC.

  2. Wurtzite GaAs Quantum Wires: One-Dimensional Subband Formation.

    PubMed

    Vainorius, Neimantas; Lehmann, Sebastian; Gustafsson, Anders; Samuelson, Lars; Dick, Kimberly A; Pistol, Mats-Erik

    2016-04-13

    It is of contemporary interest to fabricate nanowires having quantum confinement and one-dimensional subband formation. This is due to a host of applications, for example, in optical devices, and in quantum optics. We have here fabricated and optically investigated narrow, down to 10 nm diameter, wurtzite GaAs nanowires which show strong quantum confinement and the formation of one-dimensional subbands. The fabrication was bottom up and in one step using the vapor-liquid-solid growth mechanism. Combining photoluminescence excitation spectroscopy with transmission electron microscopy on the same individual nanowires, we were able to extract the effective masses of the electrons in the two lowest conduction bands as well as the effective masses of the holes in the two highest valence bands. Our results, combined with earlier demonstrations of thin crystal phase nanodots in GaAs, set the stage for the fabrication of crystal phase quantum dots having full three-dimensional confinement. PMID:27004550

  3. Formation of positron-atom bound states in collisions between Rydberg Ps and neutral atoms

    NASA Astrophysics Data System (ADS)

    Swann, A. R.; Cassidy, D. B.; Deller, A.; Gribakin, G. F.

    2016-05-01

    Predicted 20 years ago, positron binding to neutral atoms has not yet been observed experimentally. A scheme is proposed to detect positron-atom bound states by colliding Rydberg positronium (Ps) with neutral atoms. Estimates of the charge-transfer reaction cross section are obtained using the first Born approximation for a selection of neutral atom targets and a wide range of incident Ps energies and principal quantum numbers. We also estimate the corresponding Ps ionization cross section. The accuracy of the calculations is tested by comparison with earlier predictions for charge transfer in Ps collisions with hydrogen and antihydrogen. We describe an existing Rydberg Ps beam suitable for producing positron-atom bound states and estimate signal rates based on the calculated cross sections and realistic experimental parameters. We conclude that the proposed methodology is capable of producing such states and of testing theoretical predictions of their binding energies.

  4. Formation Mechanism of SiO2-Type Inclusions in Si-Mn-Killed Steel Wires Containing Limited Aluminum Content

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Jiang, Min; Wang, Xinhua; Wang, Ying; Zhao, Haoqian; Cao, Zhanmin

    2015-10-01

    The origin, formation mechanism, and evolution of SiO2-type inclusions in Si-Mn-killed steel wires were studied by pilot trials with systematical samplings at the refining ladle, casting tundish, as-cast bloom, reheated bloom, and hot-rolled rods. It was found that the inclusions in tundish were well controlled in the low melting point region. By contrast, MnO-SiO2-Al2O3 inclusions in the as-cast bloom were with compositions located in the primary region of SiO2, and most CaO-SiO2-Al2O3-MnO inclusions lied in primary phase region of anorthite. Therefore, precipitation of SiO2 particles in MnO-SiO2-Al2O3 inclusions can be easier than in CaO-SiO2-Al2O3-MnO inclusions to form dual-phase inclusions in the as-cast bloom. Thermodynamic calculation by the software FactSage 6.4 (CRCT-ThermFact Inc., Montréal, Canada) showed that mass transfer between liquid steel and inclusions resulted in the rise of SiO2 content in inclusions from tundish to as-cast bloom and accelerated the precipitation of pure SiO2 phase in the formed MnO-SiO2-Al2O3 inclusions. As a result, the inclusions characterized by dual-phase structure of pure SiO2 in MnO-SiO2-Al2O3 matrix were observed in both as-cast and reheated blooms. Moreover, the ratio of such dual-phase SiO2-type inclusions witnessed an obvious increase from 0 to 25.4 pct before and after casting, whereas it changed little during the reheating and rolling. Therefore, it can be reasonably concluded that they were mainly formed during casting. Comparing the evolution of the inclusions composition and morphology in as-cast bloom and rolled products, a formation mechanism of the SiO2-type inclusions in wire rods was proposed, which included (1) precipitation of SiO2 in the formed MnO-SiO2-Al2O3 inclusion during casting and (2) solid-phase separation of the undeformed SiO2 precipitation from its softer MnO-SiO2-Al2O3 matrix during multipass rolling.

  5. Crossed-Wire Laser Microwelding of Pt-10 Pct Ir to 316 Low-Carbon Vacuum Melted Stainless Steel: Part I. Mechanism of Joint Formation

    NASA Astrophysics Data System (ADS)

    Zou, G. S.; Huang, Y. D.; Pequegnat, A.; Li, X. G.; Khan, M. I.; Zhou, Y.

    2012-04-01

    The excellent biocompatibility and corrosion properties of Pt alloys and 316 low-carbon vacuum melted (LVM) stainless steel (SS) make them attractive for biomedical applications. With the increasing complexity of medical devices and in order to lower costs, the challenge of joining dissimilar materials arises. In this study, laser microwelding (LMW) of crossed Pt-10 pct Ir to 316 LVM SS wires was performed and the weldability of these materials was determined. The joint geometry, joining mechanism, joint breaking force (JBF), and fracture modes were investigated using optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and microtensile testing. It was shown that the mechanisms of joint formation transitioned from (1) brazing, (2) a combination of brazing and fusion welding, and (3) fusion welding with increasing pulsed laser energy. The joints demonstrated various tensile failure modes including (1) interfacial failure below a peak power of 0.24 kW, (2) partial interfacial failure that propagated into the Pt-Ir wire, (3) failure in the Pt-Ir wire, and (4) failure in the SS wire due to porosity and severe undercutting caused by overwelding. During this study, the optimal laser peak power range was identified to produce joints with good joint geometry and 90 pct of the tensile strength of the Pt-10 pct Ir wire.

  6. Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots.

    PubMed

    Rodriguez-Villalon, Antia

    2016-04-01

    45 I. 45 II. 46 III. 46 IV. 47 V. 48 VI. 48 49 References 49 SUMMARY: In plants, phloem conduits form a specialized vascular network mediating the exchange of nutrients and signaling molecules between distantly separated organs. To become effective transport elements, protophloem cells undergo a rather unique, differentiation program that involves nucleus degradation, organelle rearrangement and cell wall thickening. Yet, protophloem sieve elements remain alive because their essential metabolic functions are supported by their neighboring companion cells. In spite of the importance of the phloem, the molecular mechanisms orchestrating protophloem specification and differentiation remain still poorly understood. In this review, I provide a summary of recent discoveries regarding morphogenetic events that determine phloem formation, and also a discussion of the systemic effects on root architecture derived from impaired protophloem differentiation programs. PMID:26171671

  7. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational introduction; general safety;…

  8. Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires

    PubMed Central

    Li, G. Z.; Sumption, M. D.; Collings, E. W.

    2015-01-01

    Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431

  9. Infrared atomic hydrogen line formation in luminous stars

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Smith, H. A.

    1981-01-01

    Infrared atomic hydrogen lines observed in luminous stars, generally attributed to compact circumstellar H II regions, can also be formed in the winds likely to emanate from these stars. Implications are discussed for the class of obscured infrared point sources showing these lines, and an illustrative model is derived for the BN object in Orion. Such stellar winds should also produce weak, but detectable, radio emission.

  10. Passage time statistics in the formation of ultracold dimers from fermionic atoms

    NASA Astrophysics Data System (ADS)

    Uys, Hermann

    2005-05-01

    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via either photoassociation or a Feshbach resonance. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. A heuristic classical stochastic model yields an excellent agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations.

  11. Electronic structure of Ag-induced atomic wires on Si(5 5 7) investigated by STS and angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Morikawa, Harumo; Kang, Pil Gyu; Yeom, Han Woong

    2008-12-01

    One-dimensional (1D) superstructures on the Si(5 5 7) surface induced by Ag adsorption have been investigated by scanning tunneling microscopy/spectroscopy (STM/STS) and angle-resolved photoemission. The deposition of ˜0.3 ML of Ag at 450-620 °C yields three different kinds of 1D structures along step edges. These structures form domains of different morphology, whose areal ratio depends on the growth temperature. They commonly share a characteristic atomic-scale wire structure with a ×2 periodicity. These structures are insulating with a band gap of about 0.5 eV as revealed by STS and confirmed consistently by angle-resolved photoemission, in clear contrast to the very recent inverse photoemission result (Phys. Rev. B 77 (2008) 125419).

  12. Structure and Formation of Kaonic Atoms and Kaonic Nuclei

    NASA Astrophysics Data System (ADS)

    Yamagata, Junko; Hirenzaki, Satoru; Nagahiro, Hideko; Jido, Daisuke

    We study theoretically the in-flight (K-, N) reactions for the formation of bar {K}NN systems using the microscopic chiral unitary s-wave bar {K}N amplitude to get deeper physical insights on the expected spectra, and to investigate the experimental feasibility of the reaction at J-PARC facility. We show the missing mass spectra of the (K-, N) reactions accompanied by the particle emissions due to bar {K} absorption in nucleus.

  13. Fluctuations in the formation time of ultracold dimers from fermionic atoms

    NASA Astrophysics Data System (ADS)

    Uys, H.; Miyakawa, T.; Meiser, D.; Meystre, P.

    2005-11-01

    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via Raman photoassociation. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. Assuming degeneracy of kinetic energies of atoms in the strong coupling limit, we find that a heuristic classical stochastic model yields qualitative agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations. Finally, we explore effects due to the nondegeneracy of atomic kinetic energies.

  14. WIP and WICH/WIRE co-ordinately control invadopodium formation and maturation in human breast cancer cell invasion

    PubMed Central

    García, Esther; Ragazzini, Chiara; Yu, Xinzi; Cuesta-García, Elena; Bernardino de la Serna, Jorge; Zech, Tobias; Sarrió, David; Machesky, Laura M.; Antón, Inés M.

    2016-01-01

    Cancer cells form actin-rich degradative protrusions (invasive pseudopods and invadopodia), which allows their efficient dispersal during metastasis. Using biochemical and advanced imaging approaches, we demonstrate that the N-WASP-interactors WIP and WICH/WIRE play non-redundant roles in cancer cell invasion. WIP interacts with N-WASP and cortactin and is essential for invadopodium assembly, whereas WICH/WIRE regulates N-WASP activation to control invadopodium maturation and degradative activity. Our data also show that Nck interaction with WIP and WICH/WIRE modulates invadopodium maturation; changes in WIP and WICH/WIRE levels induce differential distribution of Nck. We show that WIP can replace WICH/WIRE functions and that elevated WIP levels correlate with high invasiveness. These findings identify a role for WICH/WIRE in invasiveness and highlight WIP as a hub for signaling molecule recruitment during invadopodium generation and cancer progression, as well as a potential diagnostic biomarker and an optimal target for therapeutic approaches. PMID:27009365

  15. Local Control of Lung Derived Tumors by Diffusing Alpha-Emitting Atoms Released From Intratumoral Wires Loaded With Radium-224

    SciTech Connect

    Cooks, Tomer; Schmidt, Michael; Bittan, Hadas; Lazarov, Elinor; Arazi, Lior; Kelson, Itzhak; Keisari, Yona

    2009-07-01

    Purpose: Diffusing alpha-emitters radiation therapy (DART) is a new form of brachytherapy enabling the treatment of solid tumors with alpha radiation. The present study examines the antitumoral effects resulting from the release of alpha emitting radioisotopes into solid lung carcinoma (LL2, A427, and NCI-H520). Methods and Materials: An in vitro setup tested the dose-dependent killing of tumor cells exposed to alpha particles. In in vivo studies, radioactive wires (0.3 mm diameter, 5 mm long) with {sup 224}Ra activities in the range of 21-38 kBq were inserted into LL/2 tumors in C57BL/6 mice and into human-derived A427 or NCI-H520 tumors in athymic mice. The efficacy of the short-lived daughters of {sup 224}Ra to produce tumor growth retardation and prolong life was assessed, and the spread of radioisotopes inside tumors was measured using autoradiography. Results: The insertion of a single DART wire into the center of 6- to 7-mm tumors had a pronounced retardation effect on tumor growth, leading to a significant inhibition of 49% (LL2) and 93% (A427) in tumor development and prolongations of 48% (LL2) in life expectancy. In the human model, more than 80% of the treated tumors disappeared or shrunk. Autoradiographic analysis of the treated sectioned tissue revealed the intratumoral distribution of the radioisotopes, and histological analysis showed corresponding areas of necrosis. In vitro experiments demonstrated a dose-dependent killing of tumors cells exposed to alpha particles. Conclusions: Short-lived diffusing alpha-emitters produced tumor growth retardation and increased survival in mice bearing lung tumor implants. These results justify further investigations with improved dose distributions.

  16. Search for laser-induced formation of antihydrogen atoms.

    PubMed

    Amoretti, M; Amsler, C; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Ejsing, A M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Lodi Rizzini, E; Macrì, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Posada, L G C; Pruys, H; Regenfus, C; Rotondi, A; Telle, H H; Testera, G; Van der Werf, D P; Variola, A; Venturelli, L; Yamazaki, Y; Zurlo, N

    2006-11-24

    Antihydrogen can be synthesized by mixing antiprotons and positrons in a Penning trap environment. Here an experiment to stimulate the formation of antihydrogen in the n = 11 quantum state by the introduction of light from a CO2 continuous wave laser is described. An overall upper limit of 0.8% with 90% C.L. on the laser-induced enhancement of the recombination has been found. This result strongly suggests that radiative recombination contributes negligibly to the antihydrogen formed in the experimental conditions used by the ATHENA Collaboration. PMID:17155742

  17. Formation of massive protostars in atomic cooling haloes

    NASA Astrophysics Data System (ADS)

    Becerra, Fernando; Greif, Thomas H.; Springel, Volker; Hernquist, Lars E.

    2015-01-01

    We present the highest-resolution three-dimensional simulation to date of the collapse of an atomic cooling halo in the early Universe. We use the moving-mesh code AREPO with the primordial chemistry module introduced in Greif, which evolves the chemical and thermal rate equations for over more than 20 orders of magnitude in density. Molecular hydrogen cooling is suppressed by a strong Lyman-Werner background, which facilitates the near-isothermal collapse of the gas at a temperature of about 104 K. Once the central gas cloud becomes optically thick to continuum emission, it settles into a Keplerian disc around the primary protostar. The initial mass of the protostar is about 0.1 M⊙, which is an order of magnitude higher than in minihaloes that cool via molecular hydrogen. The high accretion rate and efficient cooling of the gas catalyse the fragmentation of the disc into a small protostellar system with 5-10 members. After about 12 yr, strong gravitational interactions disrupt the disc and temporarily eject the primary protostar from the centre of the cloud. By the end of the simulation, a secondary clump has collapsed at a distance of ≃ 150 au from the primary clump. If this clump undergoes a similar evolution as the first, the central gas cloud may evolve into a wide binary system. High accretion rates of both the primary and secondary clumps suggest that fragmentation is not a significant barrier for forming at least one massive black hole seed.

  18. Developing new theoretical models of the formation of atomic collision cascades and subcascades in irradiated solids

    SciTech Connect

    Metelkin, E. V.; Ryazanov, A. I. Semenov, E. V.

    2008-09-15

    A new theoretical model is developed for the investigation of atomic collision cascades and subcascades in irradiated solids consisting of atoms of a single type. The model is based on an analytical description of the elastic collisions between moving atoms knocked out of the crystal lattice sites and the immobile atoms of the lattice. The description is based on the linear kinetic Boltzmann equation describing the retardation of primary recoil atoms (PRAs) in irradiated solids. The laws of conservation for the total number and the kinetic energy of moving atoms, which follow from the kinetic Boltzmann equation, are analyzed using the proposed model. An analytical solution is obtained for the stationary kinetic Boltzmann equation, which describes the retardation of PRAs for a given source responsible for their production. A kinetic equation for the moving atoms and the corresponding laws of conservation are also analyzed with allowance for the binding energy of atoms at the crystal lattice sites. A criterion for determining the threshold energy of subcascade formation in irradiated solids is formulated. Based on this criterion, the threshold energy of subcascade formation is calculated using the Thomas-Fermi potential. Formulas are presented for determining the mean size and number of subcascades formed in a solid as functions of the PRA energy.

  19. Point defects along metallic atomic wires on vicinal Si surfaces: Si(5 5 7)-Au and Si(5 5 3)-Au

    NASA Astrophysics Data System (ADS)

    Kang, Pil-Gyu; Shin, Jin Sung; Yeom, Han Woong

    2009-08-01

    Point defects on the metallic atomic wires induced by Au adsorbates on vicinal Si surfaces were investigated using scanning tunneling microscopy and spectroscopy (STM and STS). High-resolution STM images revealed that there exist several different types of defects on the Si(5 5 7)-Au surface, which are categorized by their apparent bias-dependent images and compared to the previous report on Si(5 5 3)-Au [Phys. Rev. B (2007) 205325]. The chemical characteristics of these defects were investigated by monitoring them upon the variation of the Au coverage and the adsorption of water molecules. The chemical origins and the tentative atomic structures of the defects are suggested as Si adatoms (and dimers) in different registries, the Au deficiency on terraces, and water molecules adsorbed dissociatively on step edges, respectively. STS measurements disclosed the electronic property of the majority kinds of defects on both Si(5 5 7)-Au and Si(5 5 3)-Au surfaces. In particular, the dominating water-induced defects on both surfaces induce a substantial band gap of about 0.5 eV in clear contrast to Si adatom-type defects. The conduction channels along the metallic step-edge chains thus must be very susceptible to the contamination through the electronic termination by the water adsorption.

  20. Atomic and electronic structure peculiarities of silicon wires formed on substrates with varied resistivity according to ultrasoft X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Turishchev, S. Yu.; Terekhov, V. A.; Nesterov, D. N.; Koltygina, K. G.; Sivakov, V. A.; Domashevskaya, E. P.

    2015-04-01

    Silicon wires arrays have been produced by metal-assisted wet chemical etching with the use of crystalline silicon substrates. The arrays and individual nanowires have been studied by scanning and transmission electron microscopy. The electronic structure and phase composition of the surface and near-surface layers of the arrays have been studied by ultrasoft X-ray emission spectroscopy. It is shown that the morphologically more developed sample formed on a substrate with low resistivity is considerably more strongly subject to oxidation with noticeable formation of phases of intermediate silicon oxides. The array of nanowires formed on a substrate with high resistivity also undergoes natural oxidation, but does so to a substantially lesser extent and, with increasing depth of analysis, mostly contains the phase of crystalline silicon constituting the bulk of the nanowires being formed.

  1. Measurement of Rydberg atom formation in low-density ultracold neutral plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob

    2016-05-01

    Rydberg atoms are formed in ultracold neutral plasmas primarily through three-body recombination for typical experimental conditions. At low densities the relative importance of electron-Rydberg state-changing collisions in the dynamical evolution of the Rydberg atom state populations is increased, leading to temperature scalings significantly different from the usual T - 9 / 2 scaling associated with the three-body recombination rate. We report our measurement of Rydberg atoms in low-density ultracold neutral plasmas and discuss their utility in calibrating the electron temperature and determining the amount of heating due to continuum lowering that occurs during the formation of the ultracold plasma. This work supported by the AFOSR.

  2. Formation of nanostructures on HOPG surface in presence of surfactant atom during low energy ion irradiation

    NASA Astrophysics Data System (ADS)

    Ranjan, M.; Joshi, P.; Mukherjee, S.

    2016-07-01

    Low energy ions beam often develop periodic patterns on surfaces under normal or off-normal incidence. Formation of such periodic patterns depends on the substrate material, the ion beam parameters, and the processing conditions. Processing conditions introduce unwanted contaminant atoms, which also play strong role in pattern formation by changing the effective sputtering yield of the material. In this work we have analysed the effect of Cu, Fe and Al impurities introduced during low energy Ar+ ion irradiation on HOPG substrate. It is observed that by changing the species of foreign atoms the surface topography changes drastically. The observed surface topography is co-related with the modified sputtering yield of HOPG. Presence of Cu and Fe amplify the effective sputtering yield of HOPG, so that the required threshold for the pattern formation is achieved with the given fluence, whereas Al does not lead to any significant change in the effective yield and hence no pattern formation occurs.

  3. Kinetics of spin relaxation in quantum wires and channels: Boundary spin echo and formation of a persistent spin helix

    SciTech Connect

    Slipko, Valeriy A.; Pershin, Yuriy V.

    2011-10-15

    In this paper we use a spin kinetic equation to study spin-polarization dynamics in one-dimensional (1D) wires and 2D channels. The spin kinetic equation is valid in both diffusive and ballistic spin transport regimes and therefore is more general than the usual spin drift-diffusion equations. In particular, we demonstrate that in infinite 1D wires with Rashba spin-orbit interaction the exponential spin-relaxation decay can be modulated by an oscillating function. In the case of spin relaxation in finite length 1D wires, it is shown that an initially homogeneous spin polarization spontaneously transforms into a persistent spin helix. We find that a propagating spin-polarization profile reflects from a system boundary and returns back to its initial position similarly to the reflectance of sound waves from an obstacle. The Green's function of the spin kinetic equation is derived for both finite and infinite 1D systems. Moreover, we demonstrate explicitly that the spin relaxation in specifically oriented 2D channels with Rashba and Dresselhaus spin-orbit interactions of equal strength occurs similarly to that in 1D wires of finite length. Finally, a simple transformation mapping 1D spin kinetic equation into the Klein-Gordon equation with an imaginary mass is found thus establishing an interesting connection between semiconductor spintronics and relativistic quantum mechanics.

  4. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  5. Theoretical survey on positronium formation and ionisation in positron atom scattering

    NASA Technical Reports Server (NTRS)

    Basu, Madhumita; Ghosh, A. S.

    1990-01-01

    The recent theoretical studies are surveyed and reported on the formation of exotic atoms in positron-hydrogen, positron-helium and positron-lithium scattering specially at intermediate energy region. The ionizations of these targets by positron impact was also considered. Theoretical predictions for both the processes are compared with existing measured values.

  6. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  7. Formation of surface oxides and Ag2O thin films with atomic oxygen on Ag(111)

    NASA Astrophysics Data System (ADS)

    Derouin, Jonathan; Farber, Rachael G.; Heslop, Stacy L.; Killelea, Daniel R.

    2015-11-01

    The nature of the oxygen species adsorbed to silver surfaces is a key component of the heterogeneously catalyzed epoxidation of ethylene and partial oxidation of methanol over silver catalysts. We report the formation of two different silver-oxygen species depending on the flux and energy of incident gas-phase oxygen atoms on an Ag(111) surface. A combination of surface science techniques was used to characterize the oxidized surfaces. Atomic oxygen was generated with an Ir filament; lower temperatures created surface oxides previously reported. When O was deposited with a higher filament temperature, the surface became highly corrugated, little subsurface oxygen was observed, and thin layers of Ag2O were likely formed. These results show that the energy and flux of oxygen are important parameters in the chemical identity and abundance of oxygen on silver surfaces and suggest that formation of the Ag2O thin film hinders formation of subsurface oxygen.

  8. Designing potentials by sculpturing wires

    SciTech Connect

    Della Pietra, Leonardo; Aigner, Simon; Groth, Soenke; Hagen, Christoph von; Schmiedmayer, Joerg; Bar-Joseph, Israel; Lezec, Henri J.

    2007-06-15

    Magnetic trapping potentials for atoms on atom chips are determined by the current flow in the chip wires. By modifying the shape of the conductor we can realize specialized current flow patterns and therefore microdesign the trapping potentials. We have demonstrated this by nano-machining an atom chip using the focused ion beam technique. We built a trap, a barrier, and using a Bose-Einstein Condensate as a probe we showed that by polishing the conductor edge the potential roughness on the selected wire can be reduced. Furthermore, we give different other designs and discuss the creation of a one-dimensional magnetic lattice on an atom chip.

  9. Study of the effect of current rise time on the formation of the precursor column in cylindrical wire array Z pinches at 1 MA

    SciTech Connect

    Bott, S. C.; Haas, D. M.; Eshaq, Y.; Ueda, U.; Beg, F. N.; Hammer, D. A.; Kusse, B.; Greenly, J.; Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Douglass, J. D.; Bell, K.; Knapp, P.; Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Suzuki Vidal, F. A.

    2009-07-15

    The limited understanding of the mechanisms driving the mass ablation rate of cylindrical wires arrays is presently one of the major limitations in predicting array performance at the higher current levels required for inertial confinement fusion (ICF) ignition. Continued investigation of this phenomenon is crucial to realize the considerable potential for wire arrays to drive both ICF and inertial fusion energy, by enabling a predictive capability in computational modeling. We present the first study to directly compare the mass ablation rates of wire arrays as a function of the current rise rate. Formation of the precursor column is investigated on both the MAPGIE (1 MA, 250ns [Mitchell et al., Rev. Sci. Instrum. 67, 1533 (1996)]) and COBRA (1 MA, 100ns [Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]) generators, and results are used to infer the change in the effective ablation velocity induced by the rise rate of the drive current. Laser shadowography, gated extreme ultraviolet (XUV) imaging, and x-ray diodes are used to compare the dynamical behavior on the two generators, and X-pinch radiography and XUV spectroscopy provide density evolution and temperature measurements respectively. Results are compared to predictions from an analytical scaling model developed previously from MAGPIE data, based on a fixed ablation velocity. For COBRA the column formation time occurs at 116{+-}5 ns and for Al arrays and 146{+-}5 ns for W arrays, with Al column temperature in the range of 70-165 eV. These values lie close to model predictions, inferring only a small change in the ablation velocity is induced by the factor of 2.5 change in current rise time. Estimations suggest the effective ablation velocities for MAGPIE and COBRA experiments vary by a maximum of 30%.

  10. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  11. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  12. Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718

    SciTech Connect

    Newton, Thomas R; Melkote, Shreyes N; Watkins, Thomas R; Trejo, Rosa M; Riester, Laura

    2009-01-01

    Inconel 718 is a high nickel content superalloy possessing high strength at elevated temperatures and resistance to oxidation and corrosion. The non-traditional manufacturing process of wire-electrical discharge machining (EDM) possesses many advantages over traditional machining during the manufacture of Inconel 718 parts. However, certain detrimental effects are also present and are due in large part to the formation of the recast layer. An experimental investigation was conducted to determine the main EDM parameters which contribute to recast layer formation in Inconel 718. It was found that average recast layer thickness increased primarily with energy per spark, peak discharge current, and current pulse duration. Over the range of parameters tested, the recast layer was observed to be between 5 and 9 {micro}m in average thickness, although highly variable in nature. The recast material was found to possess in-plane tensile residual stresses, as well as lower hardness and elastic modulus than the bulk material.

  13. Modeling the Formation of Tropical Rings of Atomic Bromine and Iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Fernandez, R.; Salawitch, R. J.; Kinnison, D. E.; Lamarque, J. F.; Ordoñez, C.; Gomez Martin, J. C.; Tilmes, S.

    2014-12-01

    Very short-lived (VSL) bromo- and iodocarbons are produced at a prodigious rate by ocean biology and these source compounds (SGVSL), together with their degradation inorganic products (PGVSL), are lofted by vigorous convection to the tropical tropopause layer (TTL). Using a state-of-the-art photochemical mechanism within a global model, we investigate the partitioning and loading of reactive inorganic halogens within the TTL. The specific low ozone and low temperature conditions of this region of the atmosphere changes the steady-state between halogen atoms and oxides, making the atoms the dominant species. We suggest that this leads to the formation of two daytime "tropical rings" of both atomic bromine and iodine that circle the tropics with the sun. In addition to a description of this photochemical phenomenon, this communication the partitioning of inorganic halogen reservoirs within the TTL and assess its relevance for the injection of bromine to stratosphere.

  14. Modeling the formation of tropical rings of atomic bromine and iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Fernandez, Rafael; Gomez Martin, Juan Carlos; Salawitch, Ross; Kinnison, Douglas; Lamarque, Jean-Francois; Tilmes, Simone

    2015-04-01

    Very short-lived (VSL) bromo- and iodocarbons are produced at a prodigious rate by ocean biology and these source compounds (SGVSL), together with their degradation inorganic products (PGVSL), are lofted by vigorous convection to the tropical tropopause layer (TTL). Using a state-of-the-art photochemical mechanism within a global model, we investigate the partitioning and loading of reactive inorganic halogens within the TTL. The specific low ozone and low temperature conditions of this region of the atmosphere changes the steady-state between halogen atoms and oxides, making the atoms the dominant species. We suggest that this leads to the formation of two daytime "tropical rings" of both atomic bromine and iodine that circle the tropics with the sun. In addition to a description of this photochemical phenomenon, this communication the partitioning of inorganic halogen reservoirs within the TTL and assess its relevance for the injection of bromine to stratosphere.

  15. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  16. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  17. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  18. Measurements of Polyatomic Molecule Formation on an Icy Grain Analog Using Fast Atoms

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Madsunkov, S.; Shortt, B. J.; MacAskill, J. A.; Darrach, M. R.

    2006-01-01

    Carbon dioxide has been produced from the impact of a monoenergetic O(P-3) beam upon a surface cooled to 4.8 K and covered with a CO ice. Using temperature-programmed desorption and mass spectrometer detection, we have detected increasing amounts of CO2 formation with O(P-3) energies of 2, 5, 10, and 14 eV. This is the first measurement of polyatomic molecule formation on a surface with superthermal atoms. The goal of this work is to detect other polyatomic species, such as CH3OH, which can be formed under conditions that simulate the grain temperature, surface coverage, and superthermal atoms present in shock-heated circumstellar and interstellar regions.

  19. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    NASA Astrophysics Data System (ADS)

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-07-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps).

  20. Muonic Atom Deexcitation via Formation of Metastable Molecular States, in Light of Experimental Verification

    NASA Astrophysics Data System (ADS)

    Wallenius, J.; Jonsell, S.; Kino, Y.; Froelich, P.

    2001-12-01

    In a recent experiment performed at PSI, a peak in the time-of-flight distribution of pμ(1s) atoms could be identified with decay of ppμ* molecular ions situated below the 2s threshold, providing 900 eV of kinetic energy to the pμ atom. This finding may be interpreted in terms of the side path model which suggests that metastable muonic molecules may form with high probability in resonant collisions between muonic hydrogen in the 2s state and hydrogen molecules, e.g. pμ (2s) + {text{H}}_{text{2}} to [(ppμ ^* )_{vJ}^{pq} - pee]_{vK} to [(ppμ ^* )_{v'J'}^{p'q'} - pe]^ + + e^ - . The Coulombic decay of the Auger stabilised ppμ* molecular ion then leads to the formation of highly energetic pμ(1s) atoms. In the present paper calculations of resonant formation rates in pure hydrogen are presented and compared to the quenching rate of pμ(2s) atoms measured at low hydrogen density.

  1. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing.

    PubMed

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  2. Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing

    PubMed Central

    Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun

    2016-01-01

    Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267

  3. The effects of cooking on wire and stone barbecue at different cooking levels on the formation of heterocyclic aromatic amines and polycyclic aromatic hydrocarbons in beef steak.

    PubMed

    Oz, Fatih; Yuzer, M Onur

    2016-07-15

    The effects of type of barbecue (wire and stone) and cooking levels (rare, medium, well-done and very well-done) on the formation of heterocyclic aromatic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) in beef steak were investigated. Varying levels of IQx (up to 0.29 ng/g), IQ (up to 0.93 ng/g), MeIQx (up to 0.08 ng/g), MeIQ (up to 0.75 ng/g), 7,8-DiMeIQx (up to 0.08 ng/g), 4,8-DiMeIQx (up to 4.95 ng/g), PhIP (up to 6.24 ng/g) and AαC (up to 0.20 ng/g) were determined, while MeAαC was not detected. The total HCA amounts in wire barbecued samples were higher than stone barbecued samples. Total HCA contents of the samples ranged between nd and 13.52 ng/g. In terms of PAHs, varying levels of BaA (up to 0.34 ng/g), Chry (up to 0.28 ng/g), BbF (up to 0.39 ng/g), BkF (up to 0.90 ng/g), BaP (up to 0.29 ng/g) and Bghip (up to 0.43 ng/g) were determined, while DahA and IncdP were not detected. The total PAH amounts in stone barbecued samples were higher than those of wire barbecued samples. Total PAH amounts of the samples ranged between nd and 2.63 ng/g. PMID:26948589

  4. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  5. A density functional study of silver clusters on a stepped graphite surface: formation of self-assembled nano-wires.

    PubMed

    Singh, Akansha; Sen, Prasenjit

    2015-05-21

    Adsorption and diffusion of silver adatoms and clusters containing up to eight atoms on an HOPG substrate with an armchair step are studied using density functional methods. Step edges act as attractive sinks for adatoms and clusters. The diffusion barrier of an Ag adatom along the step edge is much larger than that on a clean terrace. At zero temperature, Ag clusters either distort or dissociate by forming covalent bonds with the edge C atoms. At 600 K, Ag5 and Ag8 clusters diffuse to the step edges, and then break up so as to maximize Ag-C bonds. The Ag atoms try to form a nanowire structure along the step edge. At such high temperatures, diffusion of clusters along the step edge involves diffusion of individual Ag atoms not bonded to the edge C atoms. Assumption of complete immobility of clusters trapped at step edges in the Gates-Robins model is not valid at high temperatures in this particular system. PMID:25903308

  6. Kinetics of Mo atom formation and consumption in UV multiphoton dissociation of Mo(CO)6 at room temperature

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Gurentsov, E. V.; Musikhin, S. A.

    2015-12-01

    This study is devoted to the investigation of molybdenum atom formation and consumption after UV laser pulse photolysis of molybdenum hexacarbonyl vapor diluted by various bath gases. The processes of formation and consumption of Mo atoms were observed using atomic resonance absorption spectroscopy (ARAS) technique at the Mo-I resonance line (λ = 386.41 nm) providing the time profiles of molybdenum atoms concentration in the ground state. The increase of Mo atoms concentration was detected immediately after laser pulse and was determined mainly by spontaneous radiative quenching of excited Mo atoms produced in photolysis of molybdenum hexacarbonyl. It was found that collision quenching with bath gas molecules played a minor role. The following decrease of Mo atoms concentration after a maximum was attributed to the reactions of recombination, cluster formation and other secondary reactions. Based on the experimental data obtained, the kinetic mechanism of Mo atoms formation and consumption in photo-dissociation of Mo(CO)6 was developed. The rate constants of basic reactions responsible for this mechanism were estimated using the frequencies of gas-kinetics collisions or were extracted directly from experimental data by the fitting of measured and calculated time profiles of Mo atoms concentration.

  7. Effect of Current Rise-time on the Formation of Precursor Structures and Mass Ablation Rate in Cylindrical Wire Array Z-Pinches

    SciTech Connect

    Bott, S. C.; Eshaq, Y.; Ueda, U.; Haas, D. M.; Beg, F. N.; Hammer, D. A.; Kusse, B.; Greenly, J.; Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Douglass, J. D.; Bell, K.; Knapp, P.; Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Suzuki, F. A.

    2009-01-21

    We present the first study to directly compare the mass ablation rates of cylindrical wire arrays as a function of the current rise-rate. Formation of the precursor column is investigated on both the MAPGIE (1 MA, 250 ns) and COBRA (1 MA, 100 ns) generators, and results are used to infer the change in the mass ablation rate induced by the rise-rate of the drive current. Laser shadowography, gated XUV imaging and x-ray diodes are used to compare the dynamical behavior both generators, and x-pinch radiography and XUV spectroscopy and provide density evolution and temperature measurements respectively. Results are compared to predictions from an analytical scaling model based on a fixed ablation rate, and the close correlation achieved suggests that the effective ablation velocity is not a strong function of the current rise rate.

  8. Galaxy Zoo and ALFALFA: atomic gas and the regulation of star formation in barred disc galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Nichol, Robert C.; Haynes, Martha P.; Keel, William C.; Lintott, Chris; Simmons, Brooke; Skibba, Ramin; Bamford, Steven; Giovanelli, Riccardo; Schawinski, Kevin

    2012-08-01

    We study the observed correlation between atomic gas content and the likelihood of hosting a large-scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies' H I content from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) blind H I survey. Our main result is that the bar fraction is significantly lower among gas-rich disc galaxies than gas-poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate-mass disc galaxies. This publication has been made possible by the participation of more than 200 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at South East Physics Network, E-mail: karen.masters@port.ac.ukEinstein fellow.

  9. Gas-phase formation of silicon carbides, oxides, and sulphides from atomic silicon ions

    NASA Technical Reports Server (NTRS)

    Bohme, Diethard K.; Wlodek, Stanislaw; Fox, Arnold

    1989-01-01

    A systematic experimental study of the kinetics and mechanisms of the chemical reactions in the gas phase between ground-state Si(+)2p and a variety of astrophysical molecules. The aim of this study is to identify the reactions which trigger the formation of chemical bonds between silicon and carbon, oxygen and sulphur, and the chemical pathways which lead to further molecular growth. Such knowledge is valuable in the identification of new extraterrestrial silicon-bearing molecules and for an assessment of the gas-phase transition from atomic silicon to silicon carbide and silicate grain particles in carbon-rich and oxygen-rich astrophysical environments.

  10. H{sup −} formation by neutral resonant ionization of H(n=2) atoms

    SciTech Connect

    Vogel, John S.

    2015-04-08

    A mechanism for producing hydrogen anions in a low density, low energy hydrogen plasma is proposed. The observation in a plasma ion source that the anion output is quadratically related to the Lyman-α radiation suggests that anions could be formed in collisions between atoms in the first excited state. A potential energy plot for the hydrogen molecule is developed that includes a high energy ionic state, comprising a proton and the weakly bound H{sup −}(2p{sup 2} {sup 3}P{sup e}) ion, revealing a path to stable anion formation.

  11. Positronium formation in the n = 2 level in positron scattering from hydrogen and helium atoms

    SciTech Connect

    Khan, P.; Mazumdar, P.S.; Ghosh, A.S.

    1985-03-01

    A distorted-wave model (Phys. Rev. A 27, 1904 (1983); 28, 2180 (1983)) is applied to calculate the formation of positronium in the n = 2 states in e/sup +/ scattering from hydrogen and helium atoms. The incident wave is represented by a polarized-orbital method. The first-Born-approximation results of the 2p-excited-state capture cross section in the case of helium is reported for the first time. The first Born approximation is found to be unsuitable for prediction of the rearrangement processes. The present total (ground- and excited-state) positronium-formation cross sections have been compared with the corresponding observed values of Fornari et al. (Phys. Rev. Lett. 51, 2276 (1983)) and of Charlton et al. (J. Phys. B 16, L465 (1983)).

  12. Formation of heavy-Rydberg ion-pair states in Rydberg atom collisions with attaching targets

    NASA Astrophysics Data System (ADS)

    Wang, Changhao; Kelley, Michael; Buathong, Sitti; Dunning, F. Barry

    2014-05-01

    Electron transfer in collisions between K(np)Rydberg atoms and electron attaching molecules can lead to formation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair orbiting at large internuclear separations. In the present work ion-pair states are created in a small collision cell and allowed to exit into an analysis region where their binding energy and velocity distributions are determined with the aid of electric-field-induced dissociation and a position sensitive detector. Ion pair production is analyzed using a Monte Carlo collision code that models both the initial Rydberg electron capture and the subsequent behavior of the product ion pair. The data demonstrate that collisions with SF6 and CCl4 lead to formation of long-lived ion pair states with a broad distribution of binding energies whose velocity distribution is strongly peaked in the forward direction. Research supported by the Robert A. Welch Foundation.

  13. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes

    NASA Astrophysics Data System (ADS)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2014-11-01

    High-redshift quasar observations imply that supermassive black holes (SMBHs) larger than ˜109 M⊙ formed before z ˜ 6. That such large SMBHs formed so early in the history of the Universe remains an open theoretical problem. One possibility is that gas in atomic cooling haloes exposed to strong Lyman-Werner (LW) radiation forms 104-106 M⊙ supermassive stars which quickly collapse into black holes. We propose a scenario for direct collapse black hole (DCBH) formation based on synchronized pairs of pristine atomic cooling haloes. We consider haloes at very small separation with one halo being a subhalo of the other. The first halo to surpass the atomic cooling threshold forms stars. Soon after these stars are formed, the other halo reaches the cooling threshold and due to its small distance from the newly formed galaxy, it is exposed to the critical LW intensity required to form a DCBH. The main advantage of this scenario is that synchronization can potentially prevent photoevaporation and metal pollution in DCBH-forming haloes. We use N-body simulations and an analytic approximation to estimate the abundance of DCBHs formed in this way. The density of DCBHs formed in this scenario could explain the SMBHs implied by z ˜ 6 quasar observations. Metal pollution and photoevaporation could potentially reduce the abundance of DCBHs below that required to explain the observations in other models that rely on a high LW flux.

  14. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  15. Unified treatment of hadronic annihilation and protonium formation in slow collisions of antiprotons with hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Sakimoto, Kazuhiro

    2013-07-01

    Antiproton (p¯) collisions with hydrogen atoms, resulting in the hadronic process of particle-antiparticle annihilation and the atomic process of protonium (p¯p) formation (or p¯ capture), are investigated theoretically. As the collision energy decreases, the collision time required for the p¯ capture becomes necessarily longer. Then, there is the possibility that the p¯-p annihilation occurs significantly before the p¯ capture process completes. In such a case, one can no longer consider the annihilation decay separately from the p¯ capture process. The present study develops a rigorous unified quantum-mechanical treatment of the annihilation and p¯ capture processes. For this purpose, an R-matrix approach for atomic collisions is extended to have complex-valued R-matrix elements allowing for the hadronic annihilation. Detailed calculations are carried out at low collision energies ranging from 10-8 to 10-1 eV, and the annihilation and the p¯ capture (total and product-state selected) cross sections are reported. Consideration is given to the difference between the direct annihilation occurring during the collision and the annihilation of p¯p occurring after the p¯ capture. The present annihilation process is also compared with the annihilation in two-body p¯+p collisions.

  16. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGESBeta

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with themore » metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  17. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  18. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    SciTech Connect

    Lagos, M. J.; Autreto, P. A. S.; Galvao, D. S. Ugarte, D.; Bettini, J.; Sato, F.; Dantas, S. O.

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  19. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  20. Creation and recovery of a W(111) single atom gas field ion source

    SciTech Connect

    Pitters, Jason L.; Urban, Radovan; Wolkow, Robert A.

    2012-04-21

    Tungsten single atom tips have been prepared from a single crystal W(111) oriented wire using the chemical assisted field evaporation and etching method. Etching to a single atom tip occurs through a symmetric structure and leads to a predictable last atom unlike etching with polycrystalline tips. The single atom tip formation procedure is shown in an atom by atom removal process. Rebuilds of single atom tips occur on the same crystalline axis as the original tip such that ion emission emanates along a fixed direction for all tip rebuilds. This preparation method could be utilized and developed to prepare single atom tips for ion source development.

  1. Log-normal diameter distribution of Pd-based metallic glass droplet and wire

    PubMed Central

    Yaginuma, S.; Nakajima, C.; Kaneko, N.; Yokoyama, Y.; Nakayama, K. S.

    2015-01-01

    We have studied the formation of Pd42.5Cu30Ni7.5P20 metallic glass droplets and wires in the gas atomization process. We demonstrate that the sizes of droplets and wires can be distinguished by the Ohnesorge number (Oh), which is the proportion of the spinnability to the capillary instability, and the diameter distributions follow a log-normal distribution function, implying cascade fragmentation. For droplets, the number significantly increases at Oh < 1 but the diameter gradually decreases. For wires, the number greatly increases at Oh > 1 while the diameter steadies below 400 nm. Further, the wire diameter is quadrupled at Oh = 16 due to the high viscosity which suppresses both capillary breakup and ligament elongation. PMID:26030090

  2. Coke formation in a zeolite crystal during the methanol-to-hydrocarbons reaction as studied with atom probe tomography

    DOE PAGESBeta

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D. A. Matthijs; Meirer, Florian; Bare, Simon R.; Weckhuysen, Bert M.

    2016-08-03

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

  3. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    PubMed

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation. PMID:27485276

  4. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    NASA Astrophysics Data System (ADS)

    Kouza, Maksim; Co, Nguyen Truong; Nguyen, Phuong H.; Kolinski, Andrzej; Li, Mai Suan

    2015-04-01

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  5. Preformed template fluctuations promote fibril formation: insights from lattice and all-atom models.

    PubMed

    Kouza, Maksim; Co, Nguyen Truong; Nguyen, Phuong H; Kolinski, Andrzej; Li, Mai Suan

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  6. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    SciTech Connect

    Kouza, Maksim Kolinski, Andrzej; Co, Nguyen Truong; Nguyen, Phuong H.; Li, Mai Suan

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  7. Effect of an Axial Wire on Conical Wire Array Z-Pinch Radiation

    SciTech Connect

    Presura, R.; Martinez, D.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a wire on the axis of wire arrays significantly affects the x-ray emission of the conical arrays, and much less that of the cylindrical ones. The radiation of the conical wire arrays increases with the thickness of the central wire, surpassing that of the equivalent cylindrical arrays. Significant energy is emitted early on, around the time of the conical shock formation, before the pinch stagnation.

  8. Secondary aerosol formation from the oxidation of biogenic hydrocarbons by chlorine atoms

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi; Griffin, Robert J.

    2006-07-01

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal and industrialized areas. The purpose of this paper is to test this hypothesis and to quantify the SOA formation potentials of the common monoterpenes α-pinene, β-pinene, and d-limonene when oxidized by Cl in laboratory chamber experiments. Results indicate that the oxidation of these monoterpenes generates significant amounts of aerosol. The SOA yields of α-pinene, β-pinene, and d-limonene in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 μg m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. For d-limonene, data indicate two yield curves that depend on the initial concentration ratio of Cl precursor to d-limonene. It is argued theoretically that multiple SOA yield curves may be common for VOCs, depending on the initial concentration ratio of oxidant to VOC. SOA formation from the three typical monoterpenes when oxidized by Cl in the marine boundary layer, coastal areas, and inland industrialized areas could be a source of organic aerosol in the early morning.

  9. An assessment of the formation of electrodeposited scales using scanning electron and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Morizot, A. P.; Neville, A.; Taylor, J. D.

    2002-04-01

    The deposition of insoluble salts onto surfaces in process systems represents an important operational problem. Mineral scale formation (e.g. CaCO 3 and BaSO 4) can result from fluid streams becoming supersaturated when incompatible waters combine (e.g. in oil recovery) or can be formed when cathodic protection is applied and electrodeposition occurs. In this study, electrodeposition is studied on metal rotating disk electrodes (RDE) in artificial seawater under static conditions and under rotation at 400 rpm. Also, a Ca-free brine and a Mg-free brine of the same dissolved solids level were used in static tests. The focus of the study is the assessment of the electrochemical response of the system under potentiostatic control and correlation of the current versus time measurements to the characteristics of the scale determined via scanning electron microscopy and atomic force microscopy analysis.

  10. Formation of a Single Attosecond Pulse via Interaction of Resonant Radiation with a Strongly Perturbed Atomic Transition

    NASA Astrophysics Data System (ADS)

    Antonov, V. A.; Radeonychev, Y. V.; Kocharovskaya, Olga

    2013-05-01

    We propose a technique to form a single few-cycle attosecond pulse from vacuum ultraviolet or extreme ultraviolet radiation via resonant interaction with hydrogenlike atoms, irradiated by a high-intensity far-off-resonant laser field. The laser field strongly perturbs excited atomic energy levels via the Stark effect and ionizes atoms from the excited states. We show that an isolated attosecond pulse can be formed using either a short incident femtosecond pulse of the resonant radiation or a steep front edge of the laser field. We propose an experimental realization of a single subfemtosecond pulse formation at 121.6 nm in atomic hydrogen and a single sub-100 as pulse formation at 13.5 nm in Li2+ plasma.

  11. Threshold for formation of atom-photon bound states in a coherent photonic band-gap reservoir

    NASA Astrophysics Data System (ADS)

    Wu, Yunan; Wang, Jing; Zhang, Hanzhuang

    2016-05-01

    We study the threshold for the formation of atom-photon bound (APB) states from a two-level atom embedded in a coherent photonic band-gap (PBG) reservoir. It is shown that the embedded position of the atom plays an important role in the threshold. By varying the atomic embedded position, a part of formation range of APB states can be moved from inside to outside the band gap. The direct link between the steady-state entanglement and APB states is also investigated. We show that the values of entanglement between reservoir modes reflect the amount of bounded energy caused by APB states. The feasible experimental systems for verifying the above phenomena are discussed. Our results provide a clear clue on how to form and control APB states in PBG materials.

  12. First analysis of radiative properties of moderate-atomic-number planar wire arrays on Zebra at UNR at higher current of 1.7 MA.

    SciTech Connect

    Keim, S. F.; Chuvatin, Alexander S.; Osborne, Glenn C.; Esaulov, Andrey A.; Presura, R.; Shrestha, I.; Kantsyrev, Victor Leonidovich; Shlyaptseva, V.; Coverdale, Christine Anne; Williamson, K. M.; Ouart, Nicholas D.; Astanovitsky, A. L.; Weller, M. E.; Safronova, Alla S.; LeGalloudec, B.

    2010-11-01

    The analysis of implosions of Cu and Ag planar wire array (PWA) loads recently performed at the enhanced 1.7 MA Zebra generator at UNR is presented. Experiments were performed with a Load Current Multiplier with a 1cm anode-cathode gap (twice shorter than in a standard 1 MA mode). A full diagnostic set included more than ten different beam-lines with the major focus on time-gated and time-integrated x-ray imaging and spectra, total radiation yields, and fast, filtered x-ray detector data. In particular, the experimental results for a double PWA load consisting of twelve 10 {micro}m Cu wires in each row (total mass M {approx} 175 {micro}g) and a much heavier single PWA load consisting of ten 30 {micro}m Ag wires (M {approx} 750 {micro}g) were analyzed using a set of theoretical codes. The effects of both a decreased a-c gap and an increased current on radiative properties of these loads are discussed.

  13. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  14. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  15. Formation of hydrogen atom in 2s state in proton-sodium inelastic scattering

    NASA Astrophysics Data System (ADS)

    Sabbah, A. Elkilany

    2015-03-01

    The inelastic collision of protons with sodium atoms are treated for the first time within the framework of the coupled-static and frozen core approximations. The method is used for calculating partial and total cross-sections with the assumption that only two channels (elastic and hydrogen formation in 2s state) are open. In each case, the calculations are carried out for seven values of the total angular momentum ℓ(0 ≤ ℓ ≤ 6). The target is described using the Clementi Roetti wave functions within the framework of the one valence electron model. We use Lipmann-Swinger equation to solve the derived equations of the problem, then apply an iterative numerical method to obtain the code of computer to calculate iterative partial cross-sections. This can be done through calculating the reactance matrix at different values of considered energies to obtain the transition matrix that gives partial and total cross sections. The present results for total hydrogen (2s state) formation cross sections are in agreement with results of other available ones in wide range of incident energy.

  16. Atomic arrangement and the formation of partially coherent interfaces in the Ti-V-N system

    NASA Astrophysics Data System (ADS)

    Chen, J. K.; Purdy, G. R.; Weatherly, G. C.; Kroupa, A.

    1998-08-01

    The precipitation of (V,Ti) (bcc structure) in a (Ti,V)N (NaCl structure) matrix is considered in the current study. The lattice parameter ratio of this system, a f /a b =1.34, is quite different from most previous studies ( a f /a b ˜ 1.26) and provides an opportunity to test recent models proposed for the formation of precipitate morphology and the interface structure. Like many other fcc:bcc precipitation systems, the Ti-V-N system involves an invariant line transformation strain. In this system, the invariant line is associated with a high-index orientation relationship (OR). The observed OR is in good agreement with a predicted relationship based upon a geometric matching criterion proposed by Ryan et al. The Burgers vectors for the interfacial defects were determined directly by making high-resolution transmission electron microscope (HRTEM) observations along three different directions. The observations confirm that the formation of the precipitate facets, the spacings of misfit dislocations, and the direction of interfacial defects all agree with atom-matching considerations.

  17. Atomic arrangement and the formation of partially coherent interfaces in the Ti-V-N system

    SciTech Connect

    Chen, J.K.; Purdy, G.R.; Weatherly, G.C.; Kroupa, A.

    1998-08-01

    The precipitation of (V,Ti) (bcc structure) in a (Ti,V)N (NaCl structure) matrix is considered in the current study. The lattice parameter ratio of this system, a{sub f}/a{sub b} = 1.34, is quite different from most previous studies (a{sub f}/a{sub b} {approximately} 1.26) and provides an opportunity to test recent models proposed for the formation of precipitate morphology and the interface structure. Like many other fcc:bcc precipitation systems, the Ti-V-N system involves an invariant line transformation strain. In this system, the invariant line is associated with a high-index orientation relationship (OR). The observed OR is in good agreement with a predicted relationship based upon a geometric matching criterion proposed by Ryan et al. The Burgers vectors for the interfacial defects were determined directly by making high-resolution transmission electron microscope (HRTEM) observations along three different directions. The observations confirm that the formation of the precipitate facets, the spacings of misfit dislocations, and the direction of interfacial defects all agree with atom-matching considerations.

  18. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  19. Structure of the alkali-metal-atom + strontium molecular ions: Towards photoassociation and formation of cold molecular ions

    SciTech Connect

    Aymar, M.; Dulieu, O.; Guerout, R.

    2011-08-14

    The potential energy curves, permanent and transition dipole moments, and the static dipolar polarizability, of molecular ions composed of one alkali-metal atom and a strontium ion are determined with a quantum chemistry approach. The molecular ions are treated as effective two-electron systems and are treated using effective core potentials including core polarization, large gaussian basis sets, and full configuration interaction. In the perspective of upcoming experiments aiming at merging cold atom and cold ion traps, possible paths for radiative charge exchange, photoassociation of a cold lithium or rubidium atom and a strontium ion are discussed, as well as the formation of stable molecular ions.

  20. Morphological evolution of InAs/InP quantum wires through aberration-corrected scanning transmission electron microscopy.

    PubMed

    Sales, D L; Varela, M; Pennycook, S J; Galindo, P L; González, L; González, Y; Fuster, D; Molina, S I

    2010-08-13

    Evolution of the size, shape and composition of self-assembled InAs/InP quantum wires through the Stranski-Krastanov transition has been determined by aberration-corrected Z-contrast imaging. High resolution compositional maps of the wires in the initial, intermediate and final formation stages are presented. (001) is the main facet at their very initial stage of formation, which is gradually reduced in favour of [114] or [118], ending with the formation of mature quantum wires with {114} facets. Significant changes in wire dimensions are measured when varying slightly the amount of InAs deposited. These results are used as input parameters to build three-dimensional models that allow calculation of the strain energy during the quantum wire formation process. The observed morphological evolution is explained in terms of the calculated elastic energy changes at the growth front. Regions of the wetting layer close to the nanostructure perimeters have higher strain energy, causing migration of As atoms towards the quantum wire terraces, where the structure is partially relaxed; the thickness of the wetting layer is reduced in these zones and the island height increases until the (001) facet is removed. PMID:20647625

  1. Wire diameter dependence in the catalytic decomposition of H2

    NASA Astrophysics Data System (ADS)

    Umemoto, Hironobu

    2014-01-01

    Jansen et al. have demonstrated that the dissociaiton rate of H2 molecules on hot wire surfaces, normalized per unit surface area, depends on the wire diameter based on the electrical power consumption measurements [J. Appl. Phys. 66, 5749 (1989)]. Mathematical modeling calculations have also been presented to support their experimental results. In the present paper, it is shown that such a wire diameter dependence cannot be observed and that the H-atom density normalized by the wire surface area depends little on the wire diameter. Modeling calculations also show that the wire diameter dependence of the dissociation rate cannot be expected under typical decomposition conditions.

  2. On the interplay between relaxation, defect formation, and atomic Sn distribution in Ge{sub (1−x)}Sn{sub (x)} unraveled with atom probe tomography

    SciTech Connect

    Kumar, A. Bran, J. Melkonyan, D. Shimura, Y. Vandervorst, W.; Demeulemeester, J. Bogdanowicz, J. Fleischmann, C. Loo, R.; Gencarelli, F. Wang, W.

    2015-07-14

    Ge{sub (1−x)}Sn{sub (x)} has received a lot of interest for opto-electronic applications and for strain engineering in advanced complementary-metal-oxide-semiconductor technology, because it enables engineering of the band gap and inducing strain in the alloy. To target a reliable technology for mass application in microelectronic devices, the physical problem to be addressed is to unravel the complex relationship between strain relaxation (as induced by the growth of large layer thicknesses or a thermal anneal) and defect formation, and/or stable Sn-cluster formation. In this paper, we study the onset of Sn-cluster formation and its link to strain relaxation using Atom Probe Tomography (APT). To this end, we also propose a modification of the core-linkage [Stephenson et al., Microsc. Microanal. 13, 448 (2007)] cluster analysis method, to overcome the challenges of limited detection efficiency and lateral resolution of APT, and the quantitative assessment for very small clusters (<40 atoms) embedded in a random distribution of Sn-atoms. We concluded that the main relaxation mechanism for these layers is defect generation (misfit dislocations, threading dislocations, etc.), irrespective of the cause (thickness of layer or thermal anneal) of relaxation and is independent of the cluster formation. The low thermodynamic solubility limit of Sn in Ge seems to be the driving force for Sn-cluster formation. Finally, we also discuss the spatial distribution of Sn in clusters and relate them to the theoretically predicted stable Sn clusters [Ventura et al., Phys. Rev. B 79, 155202 (2009)].

  3. Secondary Aerosol Formation from Oxidation of Aromatics Hydrocarbons by Cl atoms

    NASA Astrophysics Data System (ADS)

    Cai, X.; Griffin, R.

    2006-12-01

    Aerosol Formation From the Oxidation of Aromatic Hydrocarbons by Chlorine Atmospheric secondary organic aerosol (SOA) affects regional and global air quality. The formation mechanisms of SOA via the oxidation of volatile organic compounds by hydroxyl radicals, ozone, and nitrate radicals have been studied intensively during the last decade. Chlorine atoms (Cl) also have been hypothesized to be effective oxidants in marine and industrially influenced areas. Recent work by the authors has indicated that significant amounts of SOA are formed from the oxidation of monoterpenes by Cl. Aromatic hydrocarbons are important for generation of both SOA and ozone in urban areas because of their large emission rates and high reactivity. The goal of this work was to quantify the SOA formation potentials of two representative aromatic hydrocarbons through laboratory chamber experiments in which oxidation was initiated by Cl. The system constructed for this study includes an experimental chamber, a gas chromatograph for quantification of aromatic mixing ratios, a Scanning Mobility Particle Spectrometer to measure SOA size distributions, a zero air generator, and an illuminating system. The model aromatic hydrocarbons chosen for this study are toluene and m-xylene. Aerosol yields are estimated based on measured aerosol volume concentration, the concentration of consumed hydrocarbon, and estimation of wall loss of the newly formed aerosol. Toluene and m-xylene exhibit similar SOA yields from the oxidation initiated by Cl. The toluene SOA yield from Cl-initiated oxidation, however, depends on the ratio between the mixing ratios of the initial chlorine source and toluene in the chamber. For toluene experiments with higher such ratios, SOA yields vary from 0.05 to 0.079 for generated aerosol ranging from 4.2 to12.0 micrograms per cubic meter. In the lower ratio experiments, SOA yields are from 0.033 to 0.064, corresponding to generated aerosol from 3.0 to 11.0 micrograms per cubic

  4. Thioether bond formation by SPASM domain radical SAM enzymes: Cα H-atom abstraction in subtilosin A biosynthesis.

    PubMed

    Benjdia, Alhosna; Guillot, Alain; Lefranc, Benjamin; Vaudry, Hubert; Leprince, Jérôme; Berteau, Olivier

    2016-05-01

    AlbA is a radical SAM enzyme catalyzing the formation of three unusual thioether bonds in the antibiotic subtilosin A. We demonstrate here that AlbA catalyzes direct Cα H-atom abstraction and likely contains three essential [4Fe-4S] centers. This leads us to propose novel mechanistic perspectives for thioether bond catalysis by radical SAM enzymes. PMID:27087315

  5. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  6. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    PubMed Central

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of −3.0 ± 0.4 nN and −330 ± 43 aJ (10−18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  7. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    PubMed

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-01-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions. PMID:26585552

  8. Pregalactic Black Hole Formation with an Atomic Hydrogen Equation of State

    NASA Astrophysics Data System (ADS)

    Spaans, Marco; Silk, Joseph

    2006-12-01

    The polytropic equation of state of an atomic hydrogen gas is examined for primordial halos with baryonic masses of Mh~107-109 Msolar. For roughly isothermal collapse around 104 K, we find that line trapping of Lyα (H I and He II) photons causes the polytropic exponent to stiffen to values significantly above unity. Under the assumptions of zero H2 abundance and very modest pollution by metals (<10-4 solar), fragmentation is likely to be inhibited for such an equation of state. We argue on purely thermodynamic grounds that a single black hole of ~(0.02-0.003)Mh can form at the center of a halo for z=10-20 when the free-fall time is less than the time needed for a resonantly scattered Lyα photon to escape from the halo. The absence of H2 follows naturally from the high temperatures, >104 K, that are attained when Lyα photons are trapped in the dense and massive halos that we consider. An H2-dissociating UV background is needed if positive feedback effects on H2 formation from X-rays occur. The black hole-to-baryon mass fraction is suggestively close to what is required for these intermediate-mass black holes, of mass MBH~104-106 Msolar, to act as seeds for forming the supermassive black holes of mass ~0.001Mspheroid found in galaxies today.

  9. Inhibitive formation of nanocavities by introduction of Si atoms in Ge nanocrystals produced by ion implantation

    SciTech Connect

    Cai, R. S.; Shang, L.; Liu, X. H.; Zhang, Y. J.; Wang, Y. Q. E-mail: barba@emt.inrs.ca; Ross, G. G.; Barba, D. E-mail: barba@emt.inrs.ca

    2014-05-28

    Germanium nanocrystals (Ge-nc) were successfully synthesized by co-implantation of Si and Ge ions into a SiO{sub 2} film thermally grown on (100) Si substrate and fused silica (pure SiO{sub 2}), respectively, followed by subsequent annealing at 1150 °C for 1 h. Transmission electron microscopy (TEM) examinations show that nanocavities only exist in the fused silica sample but not in the SiO{sub 2} film on a Si substrate. From the analysis of the high-resolution TEM images and electron energy-loss spectroscopy spectra, it is revealed that the absence of nanocavities in the SiO{sub 2} film/Si substrate is attributed to the presence of Si atoms inside the formed Ge-nc. Because the energy of Si-Ge bonds (301 kJ·mol{sup −1}) are greater than that of Ge-Ge bonds (264 kJ·mol{sup −1}), the introduction of the Si-Ge bonds inside the Ge-nc can inhibit the diffusion of Ge from the Ge-nc during the annealing process. However, for the fused silica sample, no crystalline Si-Ge bonds are detected within the Ge-nc, where strong Ge outdiffusion effects produce a great number of nanocavities. Our results can shed light on the formation mechanism of nanocavities and provide a good way to avoid nanocavities during the process of ion implantation.

  10. Three-wire magnetic trap for direct forced evaporative cooling

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Oh, Eun

    2009-01-01

    We propose a simple three-wire-based magnetic trap potential for direct forced evaporative cooling of neutral atoms without using induced spin-flip technologies. We have devised a method for controlling the trap depth without sacrificing its frequencies by only varying wire currents and external magnetic fields. By having multiples of these wires on different levels integrated into an atom chip, it is possible to attain Bose-Einstein condensation without the conventional forced evaporation technique.

  11. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H{sub 2} FORMATION

    SciTech Connect

    Thrower, J. D.; Jorgensen, B.; Friis, E. E.; Baouche, S.; Luntz, A. C.; Andersen, M.; Hammer, B.; Hornekaer, L.; Mennella, V.

    2012-06-10

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H{sub 2} formation, in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H{sub 2} loss indicating that abstraction reactions may be the dominant route to H{sub 2} formation involving neutral polycyclic aromatic hydrocarbons (PAHs). The results indicate that highly superhydrogenated PAHs could well be formed and could act as efficient catalysts for H{sub 2} formation in the interstellar medium in low UV flux regions.

  12. In situ studies on controlling an atomically-accurate formation process of gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Cheng, Hao; Jiang, Yong; Huang, Ting; Bao, Jie; Sun, Zhihu; Jiang, Zheng; Ma, Jingyuan; Sun, Fanfei; Liu, Qinghua; Yao, Tao; Deng, Huijuan; Wang, Shuxin; Zhu, Manzhou; Wei, Shiqiang

    2015-08-01

    Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the ``top-down'' synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 <= n <= 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct fragmentation of the initial larger Aun clusters into metastable intermediate Au8-Au13 smaller clusters. This is a critical step, which allows for the secondary size-growth step of the intermediates toward the atomically monodisperse Au13 clusters via incorporating the reactive Au(i)-Cl species in the solution. Such a secondary-growth pathway is further confirmed by the successful growth of Au13 through reaction of isolated Au11 clusters with AuClPPh3 in the HCl environment. This work addresses the importance of reaction intermediates in guiding the way towards controllable synthesis of metal nanoclusters.Knowledge of the molecular formation mechanism of metal nanoclusters is essential for developing chemistry for accurate control over their synthesis. Herein, the ``top-down'' synthetic process of monodisperse Au13 nanoclusters via HCl etching of polydisperse Aun clusters (15 <= n <= 65) is traced by a combination of in situ X-ray/UV-vis absorption spectroscopy and time-dependent mass spectrometry. It is revealed experimentally that the HCl-induced synthesis of Au13 is achieved by accurately controlling the etching process with two distinctive steps, in sharp contrast to the traditional thiol-etching mechanism through release of the Au(i) complex. The first step involves the direct

  13. Influence of supersaturation and spontaneous catalyst formation on the growth of PbS wires: toward a unified understanding of growth modes.

    PubMed

    Nichols, Patricia L; Sun, Minghua; Ning, Cun-Zheng

    2011-11-22

    High quality stoichiometric lead sulfide (PbS) wires were synthesized by a simple chemical vapor deposition (CVD) process using pure PbS powder as the material source. Growth mechanisms were systematically investigated under various growth conditions, with three modes of growth identified: direct vapor-liquid-solid (VLS) wire growth nucleating from the substrate surface, bulk PbS crystallites by vapor-solid (VS) deposition, and subsequent VLS growth nucleating on top of the bulk deposition through spontaneously formed catalyst particles. Furthermore, we found that these growth modes can be organized in terms of different levels of supersaturation, with VS bulk deposition dominating at high supersaturation and VLS wire growth on the substrate dominating at low supersaturation. At intermediate supersaturation, the bulk VS deposition can form larger crystallites with domains of similarly oriented wires extending from the flat facets. Both predeposited catalysts and spontaneously formed Pb particles were observed as nucleation catalysts, and their interplay leads to various interesting growth scenarios such as reversely tapered growth with increasing diameter. The VLS growth mechanism was confirmed by the presence of Pb-rich caps revealed in an elaborate cross-sectional transmission electron microscopy (TEM) experiment after focused ion beam milling in a modified lift-out procedure. Temperature-dependent photoluminescence (PL) of PbS wires was performed in the mid-infrared wavelength range for the first time, demonstrating strong light emission from band edge, blue-shifted with increasing temperature. The high optical quality of PbS wires may lead to important applications in mid-infrared photonics. The substrate growth temperature as low as 400 °C allows for silicon-compatible processing for integrated optoelectronics applications. PMID:21981350

  14. Hypernuclei formation probability as a function of the atomic mass number A

    NASA Astrophysics Data System (ADS)

    Bonomi, G.; Finuda Collaboration

    2012-09-01

    The creation of a hypernucleus [2], that is a nucleus in which a nucleon is replaced by an hyperon, requires the injection of strangeness into the nucleus. This is possible in different ways [3], mainly using π+ or K- beams on nuclear targets; recently, also electron beams have been used. The FINUDA experiment at the DAΦNE Φ factory of the INFN "Laboratori Nazionali di Frascati" produced Λ-hypernuclei by stopping, in thin nuclear targets (0.1-0.2 g/cm2), the negative kaons originating from the Φ decay through the strangeness-exchange reaction Kstop-+AZ→A/ΛZ+π-, where AZ indicates the target nucleus and A/ΛZ the Λ hypernucleus in which a Λ particle replaced a neutron. FINUDA, an unconventional and innovative apparatus, allowed the positioning of 8 different target modules around the interaction region. In this way different targets could be studied contemporaneously, with the same apparatus and with the same analysis technique, allowing for a direct comparison between different nuclei. In particular FINUDA could study the production of Λ-hypernuclei on 7Li, 9Be, 12C, 13C and 16O targets. Both the Λ binding energy and the hypernuclei production probabilities have been measured [1]. The new measurements on 7/ΛLi, 9/ΛBe, 13/ΛC and 16/ΛO, along with previous measurements on 12/ΛC, allowed for a meaningful study of the formation of p-shell hypernuclei from the two-body capture of K- at rest, giving for the first time the possibility of disentangling the effects due to atomic wave-function of the captured K- from those due to the pion optical nuclear potential and from those due to the specific hypernuclear states [4].

  15. Thermodynamic properties of arsenic compounds and the heat of formation of the As atom from high level electronic structure calculations.

    PubMed

    Feller, David; Vasiliu, Monica; Grant, Daniel J; Dixon, David A

    2011-12-29

    Structures, vibrational frequencies, atomization energies at 0 K, and heats of formation at 0 and 298 K are predicted for the compounds As(2), AsH, AsH(2), AsH(3), AsF, AsF(2), and AsF(3) from frozen core coupled cluster theory calculations performed with large correlation consistent basis sets, up through augmented sextuple zeta quality. The coupled cluster calculations involved up through quadruple excitations. For As(2) and the hydrides, it was also possible to examine the impact of full configuration interaction on some of the properties. In addition, adjustments were incorporated to account for extrapolation to the frozen core complete basis set limit, core/valence correlation, scalar relativistic effects, the diagonal Born-Oppenheimer correction, and atomic spin orbit corrections. Based on our best theoretical D(0)(As(2)) and the experimental heat of formation of As(2), we propose a revised 0 K arsenic atomic heat of formation of 68.86 ± 0.8 kcal/mol. While generally good agreement was found between theory and experiment, the heat of formation of AsF(3) was an exception. Our best estimate is more than 7 kcal/mol more negative than the single available experimental value, which argues for a re-examination of that measurement. PMID:22091635

  16. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  17. Torsional Deformations in Subnanometer MoS Interconnecting Wires.

    PubMed

    Koh, Ai Leen; Wang, Shanshan; Ataca, Can; Grossman, Jeffrey C; Sinclair, Robert; Warner, Jamie H

    2016-02-10

    We use aberration-corrected transmission electron microscopy to track the real time atomic level torsional dynamics of subnanometer wires of MoS interconnecting monolayer regions of MoS2. An in situ heating holder is used inside the transmission electron microscope to raise the temperature of the sample to 400 °C to increase crystallization rates of the wires and reduce contamination effects. Frequent rotational twisting of the MoS wire is captured, demonstrating elastic torsional deformation of the MoS wires. We show that torsional rotations of the crystal structure of the MoS wires depend upon the specific atomic structure of the anchored sections of the suspended wire and the number of unit cells that make up the wire length. Elastic torsional flexibility of the MoS wires is revealed to help their self-adapting connectivity during the structural changes. Plastic torsional deformation is also seen for MoS wires that contain defects in their crystal structure, which produce small scale rotational disorder within the wires. Upon removal of the defects, the wire returns back to pristine form. These results provide detailed insights into how the atomic structure of the anchoring site significantly influences the nanowire configurations relative to the monolayered MoS2. PMID:26785319

  18. Crystal structure control in Au-free self-seeded InSb wire growth.

    PubMed

    Mandl, Bernhard; Dick, Kimberly A; Kriegner, Dominik; Keplinger, Mario; Bauer, Günther; Stangl, Julian; Deppert, Knut

    2011-04-01

    In this work we demonstrate experimentally the dependence of InSb crystal structure on the ratio of Sb to In atoms at the growth front. Epitaxial InSb wires are grown by a self-seeded particle assisted growth technique on several different III-V substrates. Detailed investigations of growth parameters and post-growth energy dispersive x-ray spectroscopy indicate that the seed particles initially consist of In and incorporate up to 20 at.% Sb during growth. By applying this technique we demonstrate the formation of zinc-blende, 4H and wurtzite structure in the InSb wires (identified by transmission electron microscopy and synchrotron x-ray diffraction), and correlate this sequential change in crystal structure to the increasing Sb/In ratio at the particle-wire interface. The low ionicity of InSb and the large diameter of the wire structures studied in this work are entirely outside the parameters for which polytype formation is predicted by current models of particle seeded wire growth, suggesting that the V/III ratio at the interface determines crystal structure in a manner well beyond current understanding. These results therefore provide important insight into the relationship between the particle composition and the crystal structure, and demonstrate the potential to selectively tune the crystal structure in other III-V compound materials as well. PMID:21346304

  19. Preparation and characterization of Sc doped MgB2 wires

    NASA Astrophysics Data System (ADS)

    Grivel, J.-C.; Burdusel, M.

    2016-09-01

    The in-situ technique was used to manufacture scandium (Sc) doped MgB2 wires in a composite Cu-Nb sheath. After reaction at 700 °C, at most 1 at.% Mg was replaced by Sc in the MgB2 phase, without significant influence on its superconducting transition temperature. For higher Sc concentrations in the nominal composition, the formation of Sc-rich impurity phases was evidenced by SEM/EDS observations. The critical current density and accommodation field of the wires are weakly dependant on the Sc content. It is believed that these effects are related more to modifications of the thermal behaviour of the precursor powders revealed by DTA measurements than to actual doping. The best performance was obtained in a wire with Mg:Sc = 0.995_0.005 atomic ratio.

  20. Unusual Conductance in Cumulene Molecular Wires

    NASA Astrophysics Data System (ADS)

    Prasongkit, Jariyanee; Grigoriev, Anton; Wendin, Göran; Ahuja, Rajeev

    2009-03-01

    We report current-voltage curves and conductance of cumulene molecular wire suspended between Au(111) surfaces via thiolate bonds with full self-consistent ab initio calculation under external bias. The conductance of cumulene wires shows oscillatory behavior depending on the number of carbon atoms. Among all conjugated oligomers, we find that odd-number cumulene wires yield the highest conductance and present ballistic-like transport behavior. The reason has been traced to two factors: high density of state at the Fermi level, and the alignment of molecular orbital closed to Fermi level. Since the conductance depends weakly on applied bias, and the current voltage characteristic is linear under bias region -0.9 to 0.9 V, odd-number cumulene wire is a possible candidate as a near- perfect, ballistic one-dimensional molecular wire.

  1. On the formation of tropical rings of atomic halogens: Causes and implications

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Fernandez, Rafael P.

    2016-03-01

    Halogens produced by ocean biological and photochemical processes reach the tropical tropopause layer (TTL), where cold temperatures and the prevailing low ozone abundances favor the diurnal photochemical enhancement of halogen atoms. Under these conditions atomic bromine and iodine are modeled to be the dominant inorganic halogen species in the sunlit TTL, surpassing the abundance of the commonly targeted IO and BrO radicals. We suggest that due to the rapid photochemical equilibrium between halogen oxides and halogen atoms a natural atmospheric phenomenon evolves, which we have collectively termed "tropical rings of atomic halogens." We describe the main causes controlling the modeled appearance and variability of these superposed rings of bare bromine and iodine atoms that circle the tropics following the Sun. Some potential implications for atmospheric oxidizing capacity are also explored. Our model results suggest that if experimentally confirmed, the extent and intensity of the halogen rings would directly respond to changes in oceanic halocarbon emissions, their atmospheric transport, and photochemistry.

  2. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  3. Formation of Triplet Positron-helium Bound State by Stripping of Positronium Atoms in Collision with Ground State Helium

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2006-01-01

    Formation of triplet positron-helium bound state by stripping of positronium atoms in collision with ground state helium JOSEPH DI RlENZI, College of Notre Dame of Maryland, RICHARD J. DRACHMAN, NASA/Goddard Space Flight Center - The system consisting of a positron and a helium atom in the triplet state e(+)He(S-3)(sup e) was conjectured long ago to be stable [1]. Its stability has recently been established rigorously [2], and the values of the energies of dissociation into the ground states of Ps and He(+) have also been reported [3] and [4]. We have evaluated the cross-section for this system formed by radiative attachment of a positron in triplet He state and found it to be small [5]. The mechanism of production suggested here should result in a larger cross-section (of atomic size) which we are determining using the Born approximation with simplified initial and final wave functions.

  4. Formation of two-dimensional nonspreading atomic wave packets in the field of two standing light waves

    SciTech Connect

    Efremov, M A; Fedorov, Mikhail V; Petropavlovsky, S V; Yakovlev, V P; Schleich, Wolfgang P

    2005-08-31

    The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid decay of the atomic wave function away from the field nodes due to spontaneous transitions to nonresonance states and the quantum broadening of the wave packets formed in the close vicinity of field nodes. Coordinate-dependent amplitudes and phases of the two-dimensional wave packets were found for the j{sub g}=0 {r_reversible} j{sub e}=1 transition. (fourth seminar to the memory of d.n. klyshko)

  5. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    PubMed

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms. PMID:27172452

  6. THE FORMATION OF IRIS DIAGNOSTICS. I. A QUINTESSENTIAL MODEL ATOM OF Mg II AND GENERAL FORMATION PROPERTIES OF THE Mg II h and k LINES

    SciTech Connect

    Leenaarts, J.; Pereira, T. M. D.; Carlsson, M.; De Pontieu, B.; Uitenbroek, H. E-mail: tiago.pereira@astro.uio.no E-mail: bdp@lmsal.com

    2013-08-01

    NASA's Interface Region Imaging Spectrograph (IRIS) space mission will study how the solar atmosphere is energized. IRIS contains an imaging spectrograph that covers the Mg II h and k lines as well as a slit-jaw imager centered at Mg II k. Understanding the observations will require forward modeling of Mg II h and k line formation from three-dimensional (3D) radiation-MHD models. This paper is the first in a series where we undertake this forward modeling. We discuss the atomic physics pertinent to h and k line formation, present a quintessential model atom that can be used in radiative transfer computations, and discuss the effect of partial redistribution (PRD) and 3D radiative transfer on the emergent line profiles. We conclude that Mg II h and k can be modeled accurately with a four-level plus continuum Mg II model atom. Ideally radiative transfer computations should be done in 3D including PRD effects. In practice this is currently not possible. A reasonable compromise is to use one-dimensional PRD computations to model the line profile up to and including the central emission peaks, and use 3D transfer assuming complete redistribution to model the central depression.

  7. The Star Formation Rate Efficiency of Atomic-dominated Hydrogen Gas from z~1 to z~3

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Gardner, Jonathan P.; Teplitz, Harry I.; Neeleman, Marcel; Fumagalli, Michele; UVUDF

    2016-01-01

    Current observational evidence suggests that the star formation rate (SFR) efficiency of neutral atomic hydrogen gas measured in Damped Lyman-alpha System (DLAs) at z~3 is a factor of 10 lower than predicted by the Kennicutt-Schmidt relation. To understand the origin of this deficit, we measure the SFR efficiency of atomic gas at z~1, z~2, and z~3 to investigate possible coevolution with galactic properties. We use new robust photometric redshifts to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency. We conclude that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a second order effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies or local dwarf galaxies.

  8. Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

    PubMed Central

    Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald

    2015-01-01

    Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471

  9. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  10. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  11. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    NASA Astrophysics Data System (ADS)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  12. Chemically etched modulation in wire radius for wire array Z-pinch perturbation studies

    SciTech Connect

    Jones, B.; Deeney, C.; McKenney, J.L.; Garrity, J.E.; Lobley, D.K.; Martin, K.L.; Griego, A.E.; Ramacciotti, J.P.; Bland, S.N.; Lebedev, S.V.; Bott, S.C.; Ampleford, D.J.; Palmer, J.B.A.; Rapley, J.; Hall, G.

    2004-11-01

    A technique for manufacturing wires with imposed modulation in radius with axial wavelengths as short as 1 mm is presented. Extruded aluminum 5056 with 15 {mu}m diameter was masked and chemically etched to reduce the radius by {approx}20% in selected regions. Characterized by scanning electron microscopy, the modulation in radius is a step function with a {approx}10 {mu}m wide conical transition between thick and thin segments, with some pitting in etched regions. Techniques for mounting and aligning these wires in arrays for fast z-pinch experiments will be discussed. Axially mass-modulated wire arrays of this type will allow the study of seeded Rayleigh-Taylor instabilities in z pinches, corona formation, wire initiation with varying current density in the wire core, and correlation of perturbations between adjacent wires. This tool will support magnetohydrodynamics code validation in complex three-dimensional geometries, and perhaps x-ray pulse shaping.

  13. Numerical simulation of atomic nitrogen formation in plasma of glow discharge in nitrogen-argon mixture

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Ryabtsev, A. V.; Didyk, E. G.; Zhovtyansky, V. A.; Nazarenko, V. G.

    2010-10-01

    We consider the problem of determining the content of atomic nitrogen as an active component responsible for the efficiency of metal surface modification in plasma of stationary low-pressure glow discharge in nitrogen-argon mixture (widely used in this technology). The influence of the gas mixture composition on the rate constant of molecular nitrogen dissociation, which determines the atomic nitrogen production, has been calculated, The parameters of plasma have been experimentally determined using the method of double probes. The electron energy distribution function is found by numerically integrating the Boltzmann equation in a two-term approximation for the molecular nitrogen-argon mixture.

  14. Atomic structure of Ag(111) saturated with chlorine: Formation of Ag3Cl7 clusters

    NASA Astrophysics Data System (ADS)

    Andryushechkin, B. V.; Cherkez, V. V.; Gladchenko, E. V.; Zhidomirov, G. M.; Kierren, B.; Fagot-Revurat, Y.; Malterre, D.; Eltsov, K. N.

    2011-08-01

    The structure of saturated chlorine layer on Ag(111) has been studied with low temperature scanning tunneling microscopy and density functional theory. For the first time atomic-resolution STM images of saturated chlorine coverage have been obtained. STM images demonstrate coexistence of the domain with (3 × 3)-like reconstruction and numerous bright objects identified as Ag3Cl7 clusters. According to our model supported by DFT calculations, clusters are formed on the boundaries between the adjacent (3×3) antiphase domains. These boundaries have a characteristic triangular shape and are formed by six chlorine atoms chemisorbed on the triangular silver island with local periodicity (1 × 1).

  15. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  16. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  17. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  18. Mechanism of Electromigration in Ag-Alloy Bonding Wires with Different Pd and Au Content

    NASA Astrophysics Data System (ADS)

    Chuang, Tung-Han; Lin, Hsin-Jung; Wang, Hsi-Ching; Chuang, Chien-Hsun; Tsai, Chih-Hsin

    2015-02-01

    The mechanism of electromigration in Ag-alloy wires containing different amounts of Pd and Au has been studied. Thinning and thickening accompanying grain growth were observed in worn bonding wire after current stress. The mean time-to-failure of bonding wires stressed with different current densities is highly dependent on their electrical resistivity, and wire temperature increases during current stress, owing to the Joule effect. An indirect method is proposed for in situ assessment of the temperatures of these fine wires under current stress. A mode of failure of these bonding wires was deduced by kinetic analysis. This mode can be correlated with atomic diffusion in the wire.

  19. Photoinduced ethane formation from reaction of ethene with matrix-isolated Ti, V, or Nb atoms.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2005-10-27

    The reactions of matrix-isolated Ti, V, or Nb atoms with ethene (C(2)H(4)) have been studied by FTIR absorption spectroscopy. Under conditions where the ethene dimer forms, metal atoms react with the ethene dimer to yield matrix-isolated ethane (C(2)H(6)) and methane. Under lower ethene concentration conditions ( approximately 1:70 ethene/Ar), hydridic intermediates of the types HMC(2)H(3) and H(2)MC(2)H(2) are also observed, and the relative yield of hydrocarbons is diminished. Reactions of these metals with perdeuterioethene, and equimolar mixtures of C(2)H(4) and C(2)D(4), yield products that are consistent with the production of ethane via a metal atom reaction involving at least two C(2)H(4) molecules. The absence of any other observed products suggests the mechanism also involves production of small, highly symmetric species such as molecular hydrogen and metal carbides. Evidence is presented suggesting that ethane production from the ethene dimer is a general photochemical process for the reaction of excited-state transition-metal atoms with ethene at high concentrations of ethene. PMID:16866395

  20. Ripples and the formation of anisotropic lipid domains: imaging two-component supported double bilayers by atomic force microscopy.

    PubMed Central

    Leidy, Chad; Kaasgaard, Thomas; Crowe, John H; Mouritsen, Ole G; Jørgensen, Kent

    2002-01-01

    Direct visualization of the fluid-phase/ordered-phase domain structure in mica-supported bilayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine mixtures is performed with atomic force microscopy. The system studied is a double bilayer supported on a mica surface in which the top bilayer (which is not in direct contact with the mica) is visualized as a function of temperature. Because the top bilayer is not as restricted by the interactions with the surface as single supported bilayers, its behavior is more similar to a free-standing bilayer. Intriguing straight-edged anisotropic fluid-phase domains were observed in the fluid-phase/ordered-phase coexistence temperature range, which resemble the fluid-phase/ordered-phase domain patterns observed in giant unilamellar vesicles composed of such phospholipid mixtures. With the high resolution provided by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples. In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems. PMID:12414696

  1. The Mopra-STO-Nanten2 Atomic and Molecular Gas Survey: The Formation of Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Burton, Michael; Rathborne, Jill; Pineda Galvez, Jorge Luis; Simon, Robert; Urquhart, James; Stark, Antony A.; Rowell, Gavin; Tothill, Nick; Storey, John; Langer, William D.; Martin, Christopher; Walker, Chris; Kulesa, Craig; Stutzki, Juergen; Hollenbach, David; Au, Cheryl; Glueck, Christian

    2012-04-01

    We propose to continue our Mopra CO survey across a spiral arm in the fourth quadrant of our Galaxy, covering a region containing ~25% of the Galaxy's molecular gas. Mopra will provide the distribution and dynamics of the CO molecule here, measuring the emission from its three brightest isotopologues. As one application of this survey, we will determine how the formation of giant molecular clouds occurs. This fundamental process, which is the rate-determining step for star formation, has not yet been observed. To do so, we will make use of the high spectral and spatial resolution of the Mopra, Nanten2 and STO telescopes, combined with archival 21 cm atomic hydrogen data, to measure the best cloud tracers via the spectral lines emitted from the molecular and atomic gas in the interstellar medium along the galactic plane. These lines (from CO, [CI], [CII] and HI) provide diagnostics that can trace the state and dynamics of the gas, including how and where molecular cloud formation is taking place.

  2. Laser Wire Stripper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  3. [Prognostic assessment for formation of a group of cardiovascular high risk among personnel participating in atomic submarines utilization].

    PubMed

    Sosiukin, A E; Vasiliuk, V B; Ivanchenko, A V; Saenko, S A; Semenchuk, O A; Dokhov, M A; Verveda, A B

    2014-01-01

    Ultrasound scanning of main vessels (common carotid, internal carotid, common and superficial femoral, posterior tibial arteries) in staffers of shipyard "Nerpa"--branch of JSC "Shipbuilding center Zvezdochka" (Snezhnogorsk city Murmansk region)--engaged into atomic submarines utilization. Findings are atherosclerotic changes in common carotid and common femoral arteries--increased thickness of intima-media complex over the reference values or atherosclerotic plaque formation. The changes were maximal in a group of males aged over 50 with length of service over 25 years. Discriminant analysis helped to suggest a mathematic model to forecast cardiovascular diseases in personnel of "Nerpa" shipyard. PMID:25845142

  4. Dynamical resonant electron capture in atom surface collisions: H- formation in H-Al(111) collisions

    NASA Astrophysics Data System (ADS)

    Borisov, A. G.; Teillet-Billy, D.; Gauyacq, J. P.

    1992-05-01

    The formation of H- ion by grazing-angle collisions of hydrogen on an Al(111) surface is investigated with the newly developed coupled angular mode method. The capture process involves a dynamical resonant process induced by the collision velocity. All the resonance properties of the H- level in front of an Al(111) surface are determined: position, width, and angular distribution of ejected electrons. The results are shown to account for the recent observations on H- formation by Wyputta, Zimny, and Winter.

  5. Formation rate for Rb 2 + molecular ions created in collisions of Rb Rydberg and ground-state atoms

    NASA Astrophysics Data System (ADS)

    Stanojevic, Jovica; Côté, Robin

    2016-05-01

    We calculate the formation rate of the molecular Rb2+ion in its various bound states produced in the associative ionization of a Rydberg and a ground-state atom. Before the formation takes place, the colliding atoms are accelerated by an attractive force between the collision partners. In this way the ground-state atom is first captured by the Rydberg electron and then guided towards the positive ion-core where a molecular ion is subsequently formed. As recently demonstrated, this process results in giant collisional cross sections for the molecular ion formation, with the cross sections essentially determined by the size of the Rydberg atom. For sufficient high principal quantum numbers and atomic densities, many ground-state atoms are already located inside the Rydberg atom and ready to participate in the associative ionization. The same process can occur between a Rydberg and a ground-state atom that form a long-range Rydberg molecule, possibly contributing to the shortening of the lifetimes of Rydberg atoms and molecules. Partial support from the US Army Research Office (ARO-MURI W911NF-14-1-0378), and from NSF (Grant No. PHY-1415560).

  6. Heavy-Rydberg ion-pair formation in collisions of Rydberg atoms with attaching targets

    NASA Astrophysics Data System (ADS)

    Wang, Changhao; Kelley, Michael; Dunning, F. Barry

    2012-06-01

    Collisions between K(np) Rydberg atoms and electron attaching targets can lead to the creation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair orbiting at large internuclear separations. The lifetimes of such states and their correlation with binding energy and the channels available for decay, which can be controlled by varying n, the Rydberg atom velocity, and the target species, are being investigated. The ion-pair states are produced in a small collision cell and allowed to exit to form a beam that passes between a pair of electrodes where their number and binding energy distribution is determined by electric field induced dissociation. Ion-pair production is analyzed with the aid of a Monte Carlo collision code that models both initial Rydberg electron capture and the subsequent evolution of the product ion pair. Research supported by the Robert A Welch Foundation.

  7. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  8. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    PubMed Central

    Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger

    2015-01-01

    Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407

  9. Formation of hydrogen atoms in pyrolysis of 2,2-dimethylpropane behind shock waves

    SciTech Connect

    Bernfeld, D.; Skinner, G.B.

    1983-09-15

    Dilute mixtures (5 to 20 ppM) of 2,2-dimethylpropane (neopentane) were pyrolyzed behind reflected shock waves at temperatures of 1140 to 1300 K and total pressures of 2 to 3 atm. Progress of the reaction was followed by analysis for H atoms using resonance absorption spectroscopy. Appearance of H atoms was a first-order process with respect to time, an Arrhenius equation for the appearance of H atoms, based on 61 experiments, being k/sub H/ = 2.65 x 10/sup 17/ exp(-86300/RT) s/sup -1/, where the activation energy is in calories. Taking into account two minor side reactions, the first-order rate constant for the first step in neopentane pyrolysis, (CH/sub 3/)/sub 4/C ..-->.. (CH/sub 3/)/sub 3/C. + CH/sub 3/ (1) was found to be k/sub 1/ = 1.7 x 10/sup 17/ exp(-84000/RT) s/sup -1/ with an estimated uncertainty of a factor of 2 in k/sub H/ and k/sub 1/. 2 figures.

  10. Force-controlled lifting of molecular wires

    NASA Astrophysics Data System (ADS)

    Fournier, N.; Wagner, C.; Weiss, C.; Temirov, R.; Tautz, F. S.

    2011-07-01

    Lifting a single molecular wire off the surface with a combined frequency-modulated atomic force and tunneling microscope it is possible to monitor the evolution of both the wire configuration and the contacts simultaneously with the transport conductance experiment. In particular, critical points where individual bonds to the surface are broken and instabilities where the wire is prone to change its contact configuration can be identified in the force gradient and dissipation responses of the junction. This additional mechanical information can be used to unambiguously determine the conductance of a true molecular wire, that is, of a molecule that is contacted via a pointlike “crocodile clip” to each of the electrodes but is otherwise free.

  11. FORMATION OF CARBON DIOXIDE, METHANOL, ETHANOL, AND FORMIC ACID ON AN ICY GRAIN ANALOG USING FAST OXYGEN ATOMS

    SciTech Connect

    Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.

    2010-03-20

    Carbon dioxide (CO{sub 2}), methanol (CH{sub 3}OH), ethanol (CH{sub 3}CH{sub 2}OH), and formic acid (HCOOH) have been formed in collisions of a superthermal, 9 eV beam of O({sup 3} P) atoms with CH{sub 4} molecules, with an over coat of CO molecules, adsorbed on a gold surface at 4.8 K. The products are detected using temperature programmed-desorption and quadrupole mass spectrometry. Identification of the species is carried out through use of the Metropolis random walk algorithm as constrained by the fractionation patterns of the detected species. Relative formation yields are reported and reaction sequences are given to account for possible formation routes.

  12. 'Chrysanthemum petal' arrangements of silver nano wires.

    PubMed

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2014-12-01

    Highly ordered 'Chrysanthemum petal' arrangements of silver nano wires were fabricated in a biodegradable polymer of polyvinyl alcohol using a simple one-step blending method without any template. The degree of the arrangement increased with the decreasing content of polyvinyl alcohol. The mechanism for the formation of these 'Chrysanthemum petal' arrangements was discussed specifically. These 'Chrysanthemum petal' arrangements will be helpful to increase the electrical conductivity of silver nano wires films. PMID:25397618

  13. Transfer of a weakly bound electron in collisions of Rydberg atoms with neutral particles. II. Ion-pair formation and resonant quenching of the Rb(nl) and Ne(nl) States by Ca, Sr, and Ba atoms

    SciTech Connect

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S.

    2013-10-15

    Electron-transfer processes are studied in thermal collisions of Rydberg atoms with alkaline-earth Ca(4s{sup 2}), Sr(5s{sup 2}), and Ba(6s{sup 2}) atoms capable of forming negative ions with a weakly bound outermost p-electron. We consider the ion-pair formation and resonant quenching of highly excited atomic states caused by transitions between Rydberg covalent and ionic terms of a quasi-molecule produced in collisions of particles. The contributions of these reaction channels to the total depopulation cross section of Rydberg states of Rb(nl) and Ne(nl) atoms as functions of the principal quantum number n are compared for selectively excited nl-levels with l Much-Less-Than n and for states with large orbital quantum numbers l = n - 1, n - 2. It is shown that the contribution from resonant quenching dominates at small values of n, and the ion-pair formation process begins to dominate with increasing n. The values and positions of the maxima of cross sections for both processes strongly depend on the electron affinity of an alkaline-earth atom and on the orbital angular momentum l of a highly excited atom. It is shown that in the case of Rydberg atoms in states with large l {approx} n - 1, the rate constants of ion-pair formation and collisional quenching are considerably lower than those for nl-levels with l Much-Less-Than n.

  14. Modeling three-dimensional network formation with an atomic lattice model: Application to silicic acid polymerization

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Auerbach, Scott M.; Monson, Peter A.

    2011-04-01

    We present an atomic lattice model for studying the polymerization of silicic acid in sol-gel and related processes for synthesizing silica materials. Our model is based on Si and O atoms occupying the sites of a body-centered-cubic lattice, with all atoms arranged in SiO4 tetrahedra. This is the simplest model that allows for variation in the Si-O-Si angle, which is largely responsible for the versatility in silica polymorphs. The model describes the assembly of polymerized silica structures starting from a solution of silicic acid in water at a given concentration and pH. This model can simulate related materials—chalcogenides and clays—by assigning energy penalties to particular ring geometries in the polymerized structures. The simplicity of this approach makes it possible to study the polymerization process to higher degrees of polymerization and larger system sizes than has been possible with previous atomistic models. We have performed Monte Carlo simulations of the model at two concentrations: a low density state similar to that used in the clear solution synthesis of silicalite-1, and a high density state relevant to experiments on silica gel synthesis. For the high concentration system where there are NMR data on the temporal evolution of the Qn distribution, we find that the model gives good agreement with the experimental data. The model captures the basic mechanism of silica polymerization and provides quantitative structural predictions on ring-size distributions in good agreement with x-ray and neutron diffraction data.

  15. Atomic pattern formation at the onset of stress-induced elastic instability: Fracture versus phase change

    NASA Astrophysics Data System (ADS)

    Milstein, Frederick; Zhao, Jianhua; Maroudas, Dimitrios

    2004-11-01

    A systematic theoretical study is presented of the stress-induced structural response of initially cubic single crystals to uniaxial [100] loading based on elastic stability analysis and isostress molecular-dynamics simulations through a classical description of interatomic interactions in model metallic crystals. Special emphasis is placed on the study of the atomic pattern formation characteristics in the crystal’s structural response to loading at and beyond the onset of elastic instability. The instability is reached at a rigorously defined critical stress level that occurs in association with the vanishing of a shear modulus, i.e., when C22/C23-1=0 , where Crs are stress-dependent elastic moduli. Although the atomic mechanism for the onset of instability is invariant, two divergent atomic processes are found to occur beyond the onset of instability, depending on subtle differences in the elastic properties of the crystals. Our analyses and simulations of a crystal model with the relatively small initial value of C22/C23-1=0.41 (based on the elastic moduli of copper) reveal an inhomogeneous structural transformation mechanism, through the creation of individual rotating domains that lead to formation of a new hexagonal single crystal without loss of strength. This theoretical result is consistent with what is known experimentally for metals with relatively small values of (C22/C23-1) , e.g., certain copper alloys and the alkali metals, which can undergo various cubic-to-hexagonal structural transformations. However, a crystal model based on the elastic moduli of nickel, with the larger initial value of C22/C23-1=0.73 , fails to exhibit domain rotation beyond the onset of elastic instability and, as a result, the initial destabilization of the crystal structure then leads to fracture.

  16. Induced water condensation and bridge formation by electric fieldsin Atomic Force Microscopy

    SciTech Connect

    Sacha, G.M.; Verdaguer, A.; Salmeron, M.

    2006-02-22

    We present an analytical model that explains how in humidenvironments the electric field near a sharp tip enhances the formationof water meniscii and bridges between tip and sample. The predictions ofthe model are compared with experimental measurements of the criticaldistance where the field strength causes bridge formation.

  17. Characterization of plasma formation and outflow emission from different wire-based z-pinch experiments driven at the 350kA, 1kA/ns Llampudken pulsed power driver

    NASA Astrophysics Data System (ADS)

    Veloso, Felipe; Muñoz-Cordovez, Gonzalo; Valenzuela-Villaseca, Vicente; Vescovi, Milenko; Favre, Mario; Wyndham, Edmund

    2015-11-01

    We present results on tungsten and aluminium wire-based z-pinch plasma experiments driven by the 350kA, 1kA/ns Llampudken generator at P Universidad Catolica de Chile. Our experiments are concentrated in the formation and subsequent emission of plasma from two different configurations: conical arrays and modified cylindrical arrays using different wire diameters within the load. The former produce collimated jet-like outflows by the zippering effect at the axis of the conical array, whereas the latter produce emission of an unstructured dense plasma object by the temporal variations on the global magnetic field topology of the cylindrical array. We present measurements of the ablation process in both configurations and the main features of the outflows obtained, such as plasma densities and propagation velocities. It is found that an appropriate mass per unit length in the load is particularly important for producing outflows from modified cylindrical arrays, and that high pressure background gas embedding the load hampers the emission of plasma outflows in conical arrays. In addition, the analysis of the dimensionless parameters that characterize each outflow will be presented. This work has been funded by FONDECYT 11121621. G Munoz is funded by a doctorate scholarship awarded by CONICYT.

  18. Fabrication of mesoscopic floating Si wires by introducing dislocations

    NASA Astrophysics Data System (ADS)

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  19. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  20. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  1. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  2. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  3. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  4. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  5. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  6. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  7. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  8. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires...

  9. Formation of dimers of light noble atoms under encapsulation within fullerene's voids.

    PubMed

    Nikolaienko, Tymofii Yu; Kryachko, Eugene S

    2015-01-01

    Van der Waals (vdW) He2 diatomic trapped inside buckminsterfullerene's void and preserving its diatomic bonding is itself a controversial phenomenon due to the smallness of the void diameter comparing to the He-He equilibrium distance. We propound a computational approach, including smaller fullerenes, C20 and C28, to demonstrate that encapsulation of He2 inside the studied fullerenes exhibits an interesting quantum behavior resulting in a binding at shorter, non-vdW internuclear distances, and we develop a computational model to interpret these He-He bonding patterns in terms of Bader's atom-in-molecule theory. We also conjecture a computational existence of He2@C60 on a solid basis of its theoretical UV absorption spectrum and a comparison with that of C60. PMID:25983673

  10. Formation of molecular ions by radiative association of cold trapped atoms and ions

    NASA Astrophysics Data System (ADS)

    Dulieu, Olivier; da Silva, Humberto, Jr.; Aymar, Mireille; Raoult, Maurice

    2015-05-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca+ , Sr+ , Ba+) and Yb+ are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radiative charge transfer one. Partial and total rate constants are also calculated and compared to available experiments. Narrow shape resonances are expected, which could be detectable at low temperature with an experimental resolution at the limit of the present standards. Vibrational distributions show that the final molecular ions are not created in their ground state level. Supported by the Marie-Curie ITN ``COMIQ: Cold Molecular Ions at the Quantum limit'' of the EU (#607491).

  11. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-11-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  12. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  13. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array

    SciTech Connect

    Antonov, O.; Efimov, S.; Gurovich, V. Tz.; Krasik, Ya. E.; Bernshtam, V.

    2015-05-15

    The results of visible spectroscopy of the plasma formed inside a copper capillary placed at the equatorial plane of an underwater electrically exploded spherical wire array (30 mm in diameter; 40 wires, each of 100 μm in diameter) are reported. In the experiments, a pulsed power generator with current amplitude of ∼300 kA and rise time of ∼1.1 μs was used to produce wire array explosion accompanied by the formation of a converging strong shock wave. The data obtained support the assumption of uniformity of the shock wave along the main path of its convergence. The spectroscopic measurements show that this rather simple method of formation of a converging strong shock wave can be used successfully for studying the shock wave's interaction with matter and the evaporation processes of atoms from a target.

  14. Zinc wired rebar

    SciTech Connect

    Zhang, X.G.; Hwang, J.

    1997-02-01

    A novel method for corrosion protection of rebar in concrete is reported wherein it is galvanically protected by attaching a zinc wire along its length. The self-corrosion and galvanic-corrosion loss of the zinc wire is dependent on the water/cement ratio, the size of the cathode, and the concrete cover thickness. The wire acts as a sacrificial anode when the rebar embedded in concrete is exposed to corrosive environments.

  15. Using Nested Contractions and a Hierarchical Tensor Format To Compute Vibrational Spectra of Molecules with Seven Atoms.

    PubMed

    Thomas, Phillip S; Carrington, Tucker

    2015-12-31

    We propose a method for solving the vibrational Schrödinger equation with which one can compute hundreds of energy levels of seven-atom molecules using at most a few gigabytes of memory. It uses nested contractions in conjunction with the reduced-rank block power method (RRBPM) described in J. Chem. Phys. 2014, 140, 174111. Successive basis contractions are organized into a tree, the nodes of which are associated with eigenfunctions of reduced-dimension Hamiltonians. The RRBPM is used recursively to compute eigenfunctions of nodes in bases of products of reduced-dimension eigenfunctions of nodes with fewer coordinates. The corresponding vectors are tensors in what is called CP-format. The final wave functions are therefore represented in a hierarchical CP-format. Computational efficiency and accuracy are significantly improved by representing the Hamiltonian in the same hierarchical format as the wave function. We demonstrate that with this hierarchical RRBPM it is possible to compute energy levels of a 64-D coupled-oscillator model Hamiltonian and also of acetonitrile (CH3CN) and ethylene oxide (C2H4O), for which we use quartic potentials. The most accurate acetonitrile calculation uses 139 MB of memory and takes 3.2 h on a single processor. The most accurate ethylene oxide calculation uses 6.1 GB of memory and takes 14 d on 63 processors. The hierarchical RRBPM shatters the memory barrier that impedes the calculation of vibrational spectra. PMID:26555177

  16. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  17. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  18. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  19. Ferromagnetism of the repulsive atomic Fermi gas: three-body recombination and domain formation

    NASA Astrophysics Data System (ADS)

    Zintchenko, Ilia; Wang, Lei; Troyer, Matthias

    2016-08-01

    The simplest model for itinerant ferromagnetism, the Stoner model, has so far eluded experimental observation in repulsive ultracold fermions due to rapid three-body recombination at large scattering lengths. Here we show that a ferromagnetic phase can be stabilised by imposing a moderate optical lattice. The reduced kinetic energy drop upon formation of a polarized phase in an optical lattice extends the ferromagnetic phase to smaller scattering lengths where three-body recombination is small enough to permit experimental detection of the phase. We also show, using time dependent density functional theory, that in such a setup ferromagnetic domains emerge rapidly from a paramagnetic initial state.

  20. 1998 wire development workshop proceedings

    SciTech Connect

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  1. Discharge formation systems for generating atomic iodine in a pulse-periodic oxygen–iodine laser

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Gerasimov, A Yu; Gostev, I V; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-01-31

    Generation characteristics of a pulse-periodic oxygen–iodine laser with the electro-discharge production of atomic iodine were compared with inductively stabilised edged or anisotropic- resistive cathodes used for ignition of the volume discharge. The discharge was initiated by the radiation of a barrier discharge from the side of a grid anode. It was found that at equal specific electrical energy depositions to the gas-discharge plasma, the system with the anisotropic-resistive cathode provides a more stable and uniform volume discharge with the possibility of varying the composition and pressure of working mixtures over a wide range and a greater specific extraction of laser energy is observed (up to 2.4 J L{sup -1}). At a high pulse repetition rate of laser pulses (50 – 100 Hz) and long duration of the pulse trains (longer than a minute) the surface of anisotropic-resistive cathode became eroded. (laser applications and other topics in quantum electronics)

  2. Partial Redistribution in Multilevel Atoms. I. Method and Application to the Solar Hydrogen Line Formation

    NASA Astrophysics Data System (ADS)

    Hubeny, I.; Lites, B. W.

    1995-12-01

    We present a robust method for solution of multilevel non-LTE line transfer problems including the effects of partial frequency redistribution (PRD). This method allows the self-consistent solution for redistribution of scattered line photons simultaneously in multiple transitions of a model atom, including the effects of resonant Raman scattering ("cross-redistribution") among lines sharing common upper levels. The method is incorporated into the framework of the widely used non-LTE complete redistribution code MULTI. We have applied this method to the problem of transfer in hydrogen lines in a plane-parallel solar model atmosphere, including cross-redistribution between the Hα and Lβ, using general redistribution functions for the Lα and Lβ lines which are not restricted by the impact approximation. The convergence properties of this method are demonstrated to be comparable to that of the equivalent complete redistribution problem. In this solar model, PRD in the Lα line produces the dominant influence on the level populations. It changes considerably the populations of the excited states of hydrogen, as well as the proton number density, in the middle and upper chromosphere, owing to modification of the Lα wing radiation. The population of the hydrogen ground state undergoes only modest changes, however. The influence of cross-redistribution and PRD in Lβ has a much smaller influence on the level populations but a considerable influence on the wing intensity of the Lβ line.

  3. Defect formation on the GaSb (001) surface induced by hydrogen atom adsorption

    NASA Astrophysics Data System (ADS)

    Bermudez, V. M.

    2015-06-01

    Density functional theory has been used to characterize the effects of adsorbed H on the electronic structure of the GaSb (001)-α(4×3) surface, which consists of a combination of Ga-Sb and Sb-Sb dimers. Adsorption of two H atoms at a Ga-Sb adatom dimer either has little effect on surface states above the bulk valence band maximum (VBM) or else eliminates them, depending on the mode of adsorption. However, adsorption at the Sb-Sb dimer in the terminating layer produces a state farther into the gap at ~0.10 eV above the clean-surface VBM. Relaxation accompanying the breaking of the Sb-Sb dimer bond leads to increased interactions involving three-fold-coordinated Sb sites in the terminating layer, which in turn raises the energies of the non-bonding lone-pair orbitals. This defect state, which appears to be unique to the reconstructed GaSb (001) surface, could potentially function as a hole trap on the surface of p-type GaSb.

  4. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures

    PubMed Central

    Chen, Hailong; Wen, Xiewen; Zhang, Jing; Wu, Tianmin; Gong, Yongji; Zhang, Xiang; Yuan, Jiangtan; Yi, Chongyue; Lou, Jun; Ajayan, Pulickel M.; Zhuang, Wei; Zhang, Guangyu; Zheng, Junrong

    2016-01-01

    Van der Waals heterostructures composed of two-dimensional transition-metal dichalcogenides layers have recently emerged as a new family of materials, with great potential for atomically thin opto-electronic and photovoltaic applications. It is puzzling, however, that the photocurrent is yielded so efficiently in these structures, despite the apparent momentum mismatch between the intralayer/interlayer excitons during the charge transfer, as well as the tightly bound nature of the excitons in 2D geometry. Using the energy-state-resolved ultrafast visible/infrared microspectroscopy, we herein obtain unambiguous experimental evidence of the charge transfer intermediate state with excess energy, during the transition from an intralayer exciton to an interlayer exciton at the interface of a WS2/MoS2 heterostructure, and free carriers moving across the interface much faster than recombining into the intralayer excitons. The observations therefore explain how the remarkable charge transfer rate and photocurrent generation are achieved even with the aforementioned momentum mismatch and excitonic localization in 2D heterostructures and devices. PMID:27539942

  5. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures.

    PubMed

    Chen, Hailong; Wen, Xiewen; Zhang, Jing; Wu, Tianmin; Gong, Yongji; Zhang, Xiang; Yuan, Jiangtan; Yi, Chongyue; Lou, Jun; Ajayan, Pulickel M; Zhuang, Wei; Zhang, Guangyu; Zheng, Junrong

    2016-01-01

    Van der Waals heterostructures composed of two-dimensional transition-metal dichalcogenides layers have recently emerged as a new family of materials, with great potential for atomically thin opto-electronic and photovoltaic applications. It is puzzling, however, that the photocurrent is yielded so efficiently in these structures, despite the apparent momentum mismatch between the intralayer/interlayer excitons during the charge transfer, as well as the tightly bound nature of the excitons in 2D geometry. Using the energy-state-resolved ultrafast visible/infrared microspectroscopy, we herein obtain unambiguous experimental evidence of the charge transfer intermediate state with excess energy, during the transition from an intralayer exciton to an interlayer exciton at the interface of a WS2/MoS2 heterostructure, and free carriers moving across the interface much faster than recombining into the intralayer excitons. The observations therefore explain how the remarkable charge transfer rate and photocurrent generation are achieved even with the aforementioned momentum mismatch and excitonic localization in 2D heterostructures and devices. PMID:27539942

  6. VIEW SOUTHEASTBUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST-BUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING MACHINE - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  7. Design for a compact CW atom laser

    NASA Astrophysics Data System (ADS)

    Power, Erik; Raithel, Georg

    2011-05-01

    We present a design for a compact continuous-wave atom laser on a chip. A 2D spiral-shaped quadrupole guide is formed by two 0.5 mm × 0.5 mm wires carrying 5 A each embedded in a Si wafer; a 1.5 mm × 0.5 mm wire on the bottom layer carries -10 A, producing a horizontal B-field that pushes the guiding channel center above the chip surface. The center-to-center separation between the top wires is varied from 1.6 mm at the start of the guide to 1 mm at the end, decreasing the guide height from ~ 500 μm to ~ 25 μm above the surface as the atoms travel the 70 cm-long guide. The magnetic gradient of the guiding channel gradually increases from ~ 100 G /cm to ~ 930 G /cm . These features result in continuous surface adsorption evaporative cooling and progressive magnetic compression. Spin flip losses are mitigated by a solenoid sewn around the guide to produce a longitudinal B-field. 87Rb atoms are gravitationally loaded into the guide. A far off-resonant light shift barrier at the end of the guide traps the atoms and allows formation of a BEC. Tuning the barrier height to create a non-zero tunneling rate equal to the loading rate completes the implementation of a CW atom laser. Two options for atom interferometry are implemented on the first-generation chip (matter-wave Fabry-Perot interferometer and guide-based Mach-Zehnder interferometer). Current construction status and challenges will be discussed, along with preliminary results.

  8. Generation of Projector Augmented-Wave atomic data: A 71 element validated table in the XML format

    NASA Astrophysics Data System (ADS)

    Jollet, François; Torrent, Marc; Holzwarth, Natalie

    2014-04-01

    In the Projector Augmented Wave (PAW) method developed by Blöchl (1994), a PAW data file is needed for each element, taking the role of the pseudopotential file used with the norm-conserving or ultrasoft formalisms. In this paper, we review methods for generating PAW data files and for evaluating their accuracy, transferability, and numerical efficiency in simulations of bulk solids. We have developed a new set of PAW atomic data files for most of the stable elements in the periodic table. These files are provided in a standard XML format for use in any PAW electronic structure code. The new dataset performs well as measured by the "Δ" evaluation criterion introduced by Lejaeghere et al. (2014), and also performs well in a modified evaluation scheme proposed in the present paper.

  9. Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-κ silicates

    NASA Astrophysics Data System (ADS)

    Talbot, E.; Roussel, M.; Genevois, C.; Pareige, P.; Khomenkova, L.; Portier, X.; Gourbilleau, F.

    2012-05-01

    Hafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine microstructural analyses of the films were performed by means of high-resolution transmission electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous films leads to a phase separation process. The formation of SiO2 and HfO2 phases as well as pure Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and (2.9 ± 0.4) × 1017 Si-ncs/cm3, respectively. The mechanism of the decomposition process was proposed. The obtained results pave the way for future microelectronic and photonic applications of Hf-based high-κ dielectrics with embedded Si nanoclusters.

  10. Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-{kappa} silicates

    SciTech Connect

    Talbot, E.; Roussel, M.; Genevois, C.; Pareige, P.; Khomenkova, L.; Portier, X.; Gourbilleau, F.

    2012-05-15

    Hafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine microstructural analyses of the films were performed by means of high-resolution transmission electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous films leads to a phase separation process. The formation of SiO{sub 2} and HfO{sub 2} phases as well as pure Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and (2.9 {+-} 0.4) x 10{sup 17} Si-ncs/cm{sup 3}, respectively. The mechanism of the decomposition process was proposed. The obtained results pave the way for future microelectronic and photonic applications of Hf-based high-{kappa} dielectrics with embedded Si nanoclusters.