Science.gov

Sample records for atomic ag-o chains

  1. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  2. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  3. Doping Scheme of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomic chains, precise structures of atomic scale created on an atomically regulated substrate surface, are candidates for future electronics. A doping scheme for intrinsic semiconducting Mg chains is considered. In order to suppress the unwanted Anderson localization and minimize the deformation of the original band shape, atomic modulation doping is considered, which is to place dopant atoms beside the chain periodically. Group I atoms are donors, and group VI or VII atoms are acceptors. As long as the lattice constant is long so that the s-p band crossing has not occurred, whether dopant atoms behave as donors or acceptors is closely related to the energy level alignment of isolated atomic levels. Band structures are calculated for Br-doped (p-type) and Cs-doped (n-type) Mg chains using the tight-binding theory with universal parameters, and it is shown that the band deformation is minimized and only the Fermi energy position is modified.

  4. Doping Scheme in Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada

    1997-01-01

    Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome

  5. On Substrate for Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Bauschlicher, Charles W., Jr.; Partridge, Harry; Saini, Subhash (Technical Monitor)

    1998-01-01

    A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. However, the two requirements conflict. For excellent electronic isolation, we may seek adatom confinement via van der Waals interaction without chemical bonding to the substrate atoms, but the confinement turns out to be very weak and hence unsatisfactory. An alternative chemical bonding scheme with excellent structural strength is examined, but even fundamental adatom chain properties such as whether chains are semiconducting or metallic are strongly influenced by the nature of the chemical bonding, and electronic isolation is not always achieved. Conditions for obtaining semiconducting chains with well-localized surface-modes, leading to good isolation, are clarified and discussed.

  6. Substrate Effects for Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    A substrate for future atomic chain electronics, where adatoms are placed at designated positions and form atomically precise device components, is studied theoretically. The substrate has to serve as a two-dimensional template for adatom mounting with a reasonable confinement barrier and also provide electronic isolation, preventing unwanted coupling between independent adatom structures. For excellent structural stability, we demand chemical bonding between the adatoms and substrate atoms, but then good electronic isolation may not be guaranteed. Conditions are clarified for good isolation. Because of the chemical bonding, fundamental adatom properties are strongly influenced: a chain with group IV adatoms having two chemical bonds, or a chain with group III adatoms having one chemical bond is semiconducting. Charge transfer from or to the substrate atoms brings about unintentional doping, and the electronic properties have to be considered for the entire combination of the adatom and substrate systems even if the adatom modes are well localized at the surface.

  7. Defect-induced conductance oscillations in short atomic chains

    NASA Astrophysics Data System (ADS)

    Wawrzyniak-Adamczewska, M.; Kostyrko, T.

    2012-05-01

    Electronic transport through a junction made of two gold electrodes connected with a gold chain containing a silver impurity is analyzed with a tight binding model and the density-functional theory. It is shown that the conductance depends in a simple way on the position of the impurity in the chain and the parity of the total number of atoms of the chain. For an odd chain the conductance takes on a higher value when the Ag impurity substitutes an even Au atom in the chain, and a lower one for an odd position of the Ag atom. In the case of an even chain the conductance hardly depends on the position of the Ag atom. This new kind of a defect-induced parity oscillation of the conductance is significantly more prominent than the well-known even-odd effect related to the dependence of the conductance on the parity of number of atoms in perfect chains.

  8. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  9. Ultrasonic atomization of liquids in drop-chain acoustic fountains

    PubMed Central

    Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.; Bailey, Michael R.

    2015-01-01

    When focused ultrasound waves of moderate intensity in liquid encounter an air interface, a chain of drops emerges from the liquid surface to form what is known as a drop-chain fountain. Atomization, or the emission of micro-droplets, occurs when the acoustic intensity exceeds a liquid-dependent threshold. While the cavitation-wave hypothesis, which states that atomization arises from a combination of capillary-wave instabilities and cavitation bubble oscillations, is currently the most accepted theory of atomization, more data on the roles of cavitation, capillary waves, and even heat deposition or boiling would be valuable. In this paper, we experimentally test whether bubbles are a significant mechanism of atomization in drop-chain fountains. High-speed photography was used to observe the formation and atomization of drop-chain fountains composed of water and other liquids. For a range of ultrasonic frequencies and liquid sound speeds, it was found that the drop diameters approximately equalled the ultrasonic wavelengths. When water was exchanged for other liquids, it was observed that the atomization threshold increased with shear viscosity. Upon heating water, it was found that the time to commence atomization decreased with increasing temperature. Finally, water was atomized in an overpressure chamber where it was found that atomization was significantly diminished when the static pressure was increased. These results indicate that bubbles, generated by either acoustic cavitation or boiling, contribute significantly to atomization in the drop-chain fountain. PMID:25977591

  10. Emerging magnetic order in platinum atomic contacts and chains

    PubMed Central

    Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten

    2015-01-01

    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size. PMID:25649440

  11. Substrate Effects on Electronic Properties of Atomic Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Atomic chains, precise structures of adatoms created on an atomically regulated surface, are candidates for constituent elements in future electronics. It was predicted that Si chains were metallic and Mg chains were semiconducting, and a doping method was also discussed. The substrate was assumed to work as a non-interacting template holding the adatoms. However, this scheme requires a low-temperature environment so that the adatoms will not displace from their ideal positions due to unwanted thermal agitation. For better structural stability, we may seek a scheme to allow the adatoms to form chemical bonding with the substrate atoms and secure their positions. The chemical bonding has two major effects on the chain electronic properties. First, only the remaining s and p orbitals in an adatom not used for the chemical bonding can decide chain band structures, rather than the full set of orbitals previously assumed. Second, because of a possible HOMO energy difference between adatom and substrate atom, semiconducting chains are unintentionally doped. These effects are studied with a self-consistent tight-binding method with universal parameters. With one adatom per unit cell, adatom chains are semiconducting: (1) if adatoms are of group III and form one chemical bond per adatom, or (2) if adatoms are of group IV and form two chemical bonds. 'Me previous result [I I of realizing semiconducting chains by group II adatoms without chemical bonds is consistent with this picture. When the HOMO energy in an adatom is shallower than that in a substrate atom, the entire chain is positively polarized, unintentionally achieving p-type doping. When deeper, the chain is negatively charged, achieving n-type doping.

  12. Spin-polarized currents generated by magnetic Fe atomic chains.

    PubMed

    Lin, Zheng-Zhe; Chen, Xi

    2014-06-13

    Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)). PMID:24849670

  13. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed

    Banhart, Florian

    2015-01-01

    Linear strings of sp(1)-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp(2)-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed. PMID:25821697

  14. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed Central

    2015-01-01

    Summary Linear strings of sp1-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp2-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed. PMID:25821697

  15. Encapsulating "armchair" carbon nanotubes with "zigzag" chains of Fe atoms

    NASA Astrophysics Data System (ADS)

    Boutko, V. G.; Gusev, A. A.; Shevtsova, T. N.; Pashkevich, Yu. G.

    2016-05-01

    Ab initio calculations of structural, electron, and magnetic properties of "armchair" carbon nanotubes (NT) encapsulated by a "zigzag" chain of Fe atoms Fe2@(n,n)m (m = 1, 2; n = 4, 5, 6, 7, 8, 9), are performed within the framework of the density functional theory. It is shown that optimizing the structure along the NT axis can significantly impact the binding energy of the NT and the Fe atom chain. It follows from the calculations that Fe2@(5,5) is the most stable of all the investigated encapsulated nanotubes. A two-fold decrease in the concentration of Fe in an encapsulated NT converts the system from exothermic to endothermic (Fe2@(5,5)m) and vice versa (Fe2@(6,6)m)). For large radii of an encapsulated NT (>4.13 Å) the binding energy of the NT and the Fe atom chain goes to zero, and the magnetic moments of the Fe atoms and the deviation of the Fe atoms from the NT axis go toward analogous values of the free "zigzag" Fe atom chain.

  16. Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire

    NASA Astrophysics Data System (ADS)

    Sharma, A. C.

    2011-07-01

    Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C & 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.

  17. Stability of conductance oscillations in carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Yu, Jing-Xin; Hou, Zhi-Wei; Liu, Xiu-Ying

    2015-06-01

    The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green’s function method combined with density functional theory. Regular even-odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current-voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, and 51201059), the Priority Scientific and Technological Project of Henan Province, China (Grant No. 14A140027), the School Fund (Grant No. 2012BS055), and the Plan of Natural Science Fundamental Research of Henan University of Technology, China (Grant No. 2014JCYJ15).

  18. Substrate Effects on Electronic Properties of Atomic Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    When the device size is reduced down to 0.07 micrometers, the number of dopant atoms in the channel will no longer be macroscopic, typically less than a hundred. A spatial distribution of these dopant atoms will fluctuate statistically from device to device even in identically designed devices, and this places a serious limitation for integration. It is, however, impractical to control dopant positions within atomic dimension. One fundamental solution to this problem is to create electronics with atomically precise, but preferably simple structures. Atomic chains, precise structures of adatoms created on an atomically regulated surface, are candidates for constituent components in future electronics. All the adatoms will be placed at designated positions on the substrate, and all the device structures will be precise, free from any deviations. It was predicted using the tight-binding calculation with universal parameters that silicon chains were metallic and magnesium chains were semiconducting regardless of the lattice spacing, and a possible doping method was also proposed. In these treatments, the substrate was assumed to serve as a non-interacting template holding the adatoms without a formation of chemical bonding with substrate atoms. However, this scheme may not be easy to implement experimentally. Adatoms will have to be fixed with a van der Waals force on the substrate, but the force is generally weak and an extremely low temperature environment has to be prepared to suppress their unwanted thermal displacement. It may be logical to seek a scheme to allow the adatoms to form chemical bonding with the substrate atoms and secure their positions. The substrate effects are studied in detail.

  19. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    SciTech Connect

    Dave, Mudra R.; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  20. Approaching the quantum limit for plasmonics: linear atomic chains

    NASA Astrophysics Data System (ADS)

    Bryant, Garnett W.

    2016-07-01

    Optical excitations in atomic-scale materials can be strongly mixed, with contributions from both single-particle transitions and collective response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To develop a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective excitations can be identified. Linear atomic chains, such as atom chains on surfaces, linear arrays of dopant atoms in semiconductors, or linear molecules, provide ideal testbeds for studying collective excitations in small atomic-scale systems. We use exact diagonalization to study the many-body excitations of finite (10 to 25) linear atomic chains described by a simplified model Hamiltonian. Exact diagonalization results can be very different from the density functional theory (DFT) results usually obtained. Highly correlated, multiexcitonic states, strongly dependent on the electron–electron interaction strength, dominate the exact spectral and optical response but are not present in DFT excitation spectra. The ubiquitous presence of excitonic many-body states in the spectra makes it hard to identify plasmonic excitations. A combination of criteria involving a many-body state’s transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution do strongly suggest which many-body states should be considered as plasmonic. This analysis can be used to reveal the few plasmonic many-body states hidden in the dense spectrum of low-energy single-particle-like states and many higher-energy excitonic-like states. These excitonic states are the predominant excitation because of the many possible ways to develop local correlations.

  1. Dynamical entanglement purification using chains of atoms and optical cavities

    SciTech Connect

    Gonta, Denis; Loock, Peter van

    2011-10-15

    In the framework of cavity QED, we propose a practical scheme to purify dynamically a bipartite entangled state using short chains of atoms coupled to high-finesse optical cavities. In contrast to conventional entanglement purification protocols, we avoid controlled-not gates, thus reducing complicated pulse sequences and superfluous qubit operations. Our interaction scheme works in a deterministic way and, together with entanglement distribution and swapping, opens a route toward efficient quantum repeaters for long-distance quantum communication.

  2. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  3. Structure of Self-Assembled Mn Atom Chains on Si(001).

    PubMed

    Villarreal, R; Longobardi, M; Köster, S A; Kirkham, Ch J; Bowler, D; Renner, Ch

    2015-12-18

    Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) images. This has prompted complicated structural models involving up to three Mn atoms per chain unit. Combining STM, atomic force microscopy, and density functional theory we find that a simple necklacelike chain of single Mn atoms reproduces all their prominent features, including their asymmetry not captured by current models. The upshot is a remarkably simpler structure for modeling the electronic and magnetic properties of Mn atom chains on Si(001). PMID:26722930

  4. Atomic spin chains as testing ground for quantum magnetism

    NASA Astrophysics Data System (ADS)

    Otte, Sander

    2015-03-01

    The field of quantum magnetism aims to capture the rich emergent physics that arises when multiple spins interact, in terms of elementary models such as the spin 1/2 Heisenberg chain. Experimental platforms to verify these models are rare and generally do not provide the possibility to detect spin correlations locally. In my lab we use low-temperature scanning tunneling microscopy to design and build artificial spin lattices with atomic precision. Inelastic electron tunneling spectroscopy enables us to identify the ground state and probe spin excitations as a function of system size, location inside the lattice and coupling parameter values. Two types of collective excitations that play a role in many dynamic magnetic processes are spin waves (magnons) and spinons. Our experiments enable us to study both types of excitations. First, we have been able to map the standing spin wave modes of a ferromagnetic bit of six atoms, and to determine their role in the collective reversal process of the bit (Spinelli et al., Nature Materials 2014). More recently, we have crafted antiferromagnetic spin 1/2 XXZ chains, which allow us to observe spinon excitations, as well as the stepwise transition to a fully aligned phase beyond the critical magnetic field (Toskovic et al., in preparation). These findings create a promising experimental environment for putting quantum magnetic models to the test. Research funded by NWO and FOM.

  5. Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO-polyaniline hybrid nanocomposite.

    PubMed

    Kaushik, Ajeet; Vasudev, Abhay; Arya, Sunil K; Bhansali, Shekhar

    2013-12-15

    Cortisol, a steroid hormone, is an important biomarker for psychological stress and its detection is gaining prominence for personalized health monitoring. In present work, electrophoretically deposited nanocomposite films of polyaniline (PANI) and core-shell Ag@AgO nanoparticles (NP~5 nm) have been explored as an electro-active nanostructured platform for Anti-cortisol antibody (Anti-Cab) immobilization for electrochemical immunosensing of cortisol. Covalent binding of Anti-Cab onto Ag@AgO-PANI nanocomposite was achieved using EDC/NHS chemistry, which results in the amide bond formation between amino groups of PANI and COOH groups of anti-Cab. Nonspecific binding sites on the immunosensing electrodes were blocked using bovine serum albumin (BSA). The uniform distribution of electro-active and surface charged Ag@AgO NP in PANI matrix results in a nanoporous granular morphology (roughness~10 nm) that provides a functionalized conductive microenvironment for Anti-Cab immobilization. The BSA/Anti-Cab/Ag@AgO-PANI/Au bioelectrodes have been characterized using electrochemical impedance technique (EIS), cyclic voltammetric (CV) technique and atomic force microscopic (AFM) technique, respectively. In CV studies nanocomposite exhibited characteristic response current peak corresponding to AgO NP (0.25 V) with large magnitude of current response and resulted in high electron transport at the electrode-electrolyte interface without a mediator. Electrochemical response studies via CV for the fabricated BSA/Anti-Cab/Ag@AgO-PANI/Au immunosensor as a function of cortisol concentration exhibited a wide linear detection range of 1 pM-1 µM, a detection limit of 0.64 pM mL(-1)(lower than ELISA), and high sensitivity 66 µA M(-1) with a regression coefficient of 0.998. The findings of present work may explore the application of Ag@AgO-PANI hybrid nanocomposite to detect cortisol and other biomarkers for point-of-care application. PMID:23831854

  6. Helical [110] gold nanowires make longer linear atomic chains

    NASA Astrophysics Data System (ADS)

    Amorim, Edgard; da Silva, Edison

    2009-03-01

    Experiments performed on nanowires (NWs) synthesized by electron beam irradiation technique have shown that gold NWs formed along the [110] direction become helical when the NWs are sufficiently thin [1]. Moreover, helical and other non-crystalline structures have been theoretically predicted to other few metals [2]. Our study using tight-binding molecular dynamics show that gold NWs formed along the [110] direction reconstruct upon stress to form helical NWs. We discuss this formation and our results seem to indicate that an intrinsic mechanism is responsible for the formation of the helical structure. These helical NWs evolve on stretching to form linear atomic chains (LACs) and because they do not form symmetrical tips, these NWs produce longer LACs than other NWs. We use ab initio calculations to study the NW obtained from the tigth-binding simulations at stages close to rupture and compare LAC distances obtained with both methods. Furthermore, we investigate the electronic structure of the NW close to rupture [3]. [1] Y. Kondo, and K. Takayanagi, Science 289, 606 (2000). [2] O. Gulseren, F. Ercolessi and E. Tosatti, Phys. Rev. Lett. 80, 3775 (1998). [3] E.P.M. Amorim and E.Z. da Silva, Phys. Rev. Lett. 101, 125502 (2008).

  7. Surface-enhanced Raman scattering from Ag nanoparticles formed by visible laser irradiation of thermally annealed AgO{sub x} thin films

    SciTech Connect

    Fujimaki, Makoto; Awazu, Koichi; Tominaga, Junji; Iwanabe, Yasuhiko

    2006-10-01

    Visible laser irradiation of AgO{sub x} thin films forms Ag nanoparticles, which then results in surface-enhanced Raman scattering (SERS). The efficiency of this Ag nanoparticle formation strongly depends on the properties of the AgO{sub x} thin films. Thermal annealing causes changes in physical properties such as deoxidization of the films and aggregation of Ag atoms in the films. In the present research, the effects of the changes induced by thermal annealing on SERS efficiency were examined. It was found that AgO{sub x} thin films annealed at 300 deg. C for 5 min in a N{sub 2} atmosphere were suitable for the formation of Ag nanoparticles effective for SERS, while films that were not annealed were not. From these results, it was deduced that the Ag aggregation resulting from thermal annealing in AgO{sub x} thin films promotes the Ag nanoparticle formation.

  8. The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.

    PubMed

    An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun

    2016-07-28

    Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied. PMID:27475355

  9. Strain-induced metal–semiconductor transition observed in atomic carbon chains

    PubMed Central

    La Torre, A.; Botello-Mendez, A.; Baaziz, W.; Charlier, J. -C.; Banhart, F.

    2015-01-01

    Carbyne, the sp1-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. While the bulk phases of carbyne remain elusive, the elementary constituents, that is, linear chains of carbon atoms, have already been observed using the electron microscope. Isolated atomic chains are highly interesting one-dimensional conductors that have stimulated considerable theoretical work. Experimental information, however, is still very limited. Here we show electrical measurements and first-principles transport calculations on monoatomic carbon chains. When the 1D system is under strain, the chains are semiconducting corresponding to the polyyne structure with alternating bond lengths. Conversely, when the chain is unstrained, the ohmic behaviour of metallic cumulene with uniform bond lengths is observed. This confirms the recent prediction of a metal–insulator transition that is induced by strain. The key role of the contacting leads explains the rectifying behaviour measured in monoatomic carbon chains in a nonsymmetric contact configuration. PMID:25818506

  10. Area-efficient nonvolatile carry chain based on pass-transistor/atom-switch hybrid logic

    NASA Astrophysics Data System (ADS)

    Bai, Xu; Tsuji, Yukihide; Sakamoto, Toshitsugu; Morioka, Ayuka; Miyamura, Makoto; Tada, Munehiro; Banno, Naoki; Okamoto, Koichiro; Iguchi, Noriyuki; Hada, Hiromitsu

    2016-04-01

    For the first time, an area-efficient nonvolatile carry chain combining look-up tables and a pass-transistor-logic-based adder is newly developed using complementary atom switches without additional CMOS circuits. A proposed tristate switch composed of three pairs of complementary atom switches selects one of “0”, “1”, and the “carry_in” signal as the input of a common multiplexer for both a look-up table and an adder. The developed nonvolatile carry chain achieves the reductions of 20% area, 17% delay, and 17% power consumption, respectively, in comparison with a conventional nonvolatile carry chain using dedicated CMOS gates.

  11. Plasmon-induced dynamics of H{sub 2} splitting on a silver atomic chain

    SciTech Connect

    Yan, Lei; Ding, Zijing; Song, Peng; Wang, Fangwei; Meng, Sheng

    2015-08-24

    Localized surface plasmon resonances (LSPR) supported in metal nanostructures can be efficiently harnessed to drive photocatalytic reactions, whose atomic scale mechanism remains a challenge. Here, real-time dynamics of H{sub 2} photosplitting on a linear silver atomic chain, upon exposure to femtosecond laser pulses, has been investigated using time-dependent density functional theory. The wavelength dependent H{sub 2} splitting process is strongly coupled to LSPR excitation in silver chain. We identify that hot electrons produced in the silver chain by plasmon excitation are transferred to the antibonding state of the adsorbed H{sub 2} and trigger H{sub 2} dissociation, consistent with experimental observations. Increasing illumination intensity and the length of atomic chain promote H{sub 2} splitting, thanks to stronger LSPR. Dynamic electronic response can be quantitatively described within the present approach, providing insights towards a complete fundamental understanding on plasmon-induced chemical reactions at the microscopic scale.

  12. Study on nitrogen doped carbon atom chains with negative differential resistance effect

    NASA Astrophysics Data System (ADS)

    Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping

    2016-05-01

    Recent calculations (Mahmoud and Lugli, 2013, [21]) of gold leads sandwiching carbon chains which are separated by diphenyl-dimethyl demonstrated that the negative differential resistance (NDR) effect appears only for "odd" numbers of carbon atoms. In this paper, according to a first-principles study based on non-equilibrium Green's function combining density functional theory, we find that the NDR effect appears both for "odd" and for "even" numbers of carbon atoms when the chains are doped by nitrogen atom. Our calculations remove the restriction of "odd/even" chains for the NDR effect, which may promise the potential applications of carbon chains in the nano-scale or molecular devices in the future.

  13. Observation of Aubry-type transition in finite atom chains via friction.

    PubMed

    Bylinskii, Alexei; Gangloff, Dorian; Counts, Ian; Vuletić, Vladan

    2016-07-01

    The highly nonlinear many-body physics of a chain of mutually interacting atoms in contact with a periodic substrate gives rise to complex static and dynamical phenomena, such as structural phase transitions and friction. In the limit of an infinite chain incommensurate with the substrate, Aubry predicted a transition with increasing substrate potential, from the chain's intrinsic arrangement free to slide on the substrate, to a pinned arrangement favouring the substrate pattern. So far, the Aubry transition has not been observed. Here, using spatially resolved position and friction measurements of cold trapped ions in an optical lattice, we observed a finite version of the Aubry transition and the onset of its hallmark fractal atomic arrangement. Notably, the observed critical lattice depth for few-ion chains agrees well with the infinite-chain prediction. Our results elucidate the connection between competing ordering patterns and superlubricity in nanocontacts-the elementary building blocks of friction. PMID:26998915

  14. One-dimensional Mn atom chains templated on a Si(001) surface

    NASA Astrophysics Data System (ADS)

    Köster, Sigrun A.; Owen, James H. G.; Bianco, François; Sena, Alex M. P.; Bowler, David R.; Renner, Christoph

    2011-03-01

    Single-atom chains on a wide gap substrate are a very attractive embodiment of a truly one-dimensional system to explore the remarkable physical properties emerging in such low dimensions. We present self-assembled single-atom Mn chains on a Si(001) surface with Bi nanolines, which serve to increase greatly the average length of the Mn chains. They grow perpendicular to the Si(001) dimer rows, at densities which can be adjusted by means of the growth parameter. High resolution scanning tunneling microscopy (STM) micrographs are in perfect agreement with density functional theory (DFT), providing detailed insight into the chain structure. We further discuss low temperature STM spectroscopy and spin dependent DFT modeling suggesting Mn-chains are indeed a suitable candidate to observe electronic and magnetic properties in one-dimension experimentally. This work was supported by the MaNEP research program via the swiss national science foundation (SNF).

  15. Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap

    NASA Astrophysics Data System (ADS)

    Murmann, S.; Deuretzbacher, F.; Zürn, G.; Bjerlin, J.; Reimann, S. M.; Santos, L.; Lompe, T.; Jochim, S.

    2015-11-01

    We report on the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up to four fermionic atoms in a one-dimensional trap. These chains are stabilized by strong repulsive interactions between the two spin components without the need for an external periodic potential. We independently characterize the spin configuration of the chains by measuring the spin orientation of the outermost particle in the trap and by projecting the spatial wave function of one spin component on single-particle trap levels. Our results are in good agreement with a spin-chain model for fermionized particles and with numerically exact diagonalizations of the full few-fermion system.

  16. Fractional Band Filling in an Atomic Chain Structure

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  17. Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.

    PubMed

    Rong, Youmin; Warner, Jamie H

    2014-12-23

    Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N. PMID:25474120

  18. Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Zeng, Xiaodong; Zhu, Shi-Yao; Zubairy, M. Suhail

    2015-08-01

    We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100 % . The spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case. Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum information.

  19. Accelerated CO2 transport on surface of AgO nanoparticles in ionic liquid BMIMBF4

    PubMed Central

    Ji, Dahye; Kang, Yong Soo; Kang, Sang Wook

    2015-01-01

    The AgO nanoparticles were utilized for a CO2 separation membrane. The AgO nanoparticles were successfully generated in ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4) by favorable interaction between the surface of particles and the counteranion of BMIMBF4. The generated AgO nanoparticles were confirmed by TEM, and the average size was 20 nm. Coordinative interactions of dissociated AgO particles with BMIM+BF4− were investigated by FT-Raman spectroscopy. When the ionic liquid BMIMBF4 containing AgO nanoparticles was utilized as a CO2 separation membrane, the separation performance was largely enhanced. PMID:26549605

  20. Quantum Spin Dimers from Chiral Dissipation in Cold-Atom Chains

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Pichler, Hannes; Daley, Andrew J.; Zoller, Peter

    2014-12-01

    We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in a magnetized phase, while the spins are identified with motional states of a separate species of atoms in an optical lattice. The chirality of reservoir excitations allows the spins to couple differently to left- and right-moving modes, which in our atomic setup can be tuned from bidirectional to purely unidirectional. Remarkably, this leads to a pure steady state in which pairs of neighboring spins form dimers that decouple from the remainder of the chain. Our results also apply to current experiments with two-level emitters coupled to photonic waveguides.

  1. One-photon scattering by an atomic chain in a two-mode resonator: cyclic conditions

    PubMed Central

    2014-01-01

    In this work, a chain of N identical two-level atoms coupled with a quantized electromagnetic field, initially prepared via a single-photon Fock state, is investigated. The N-particle state amplitude of the system is calculated for several space configurations of the atoms in the Weisskopf-Wigner approximation. It was shown that the space configuration of an atomic chain, the total number of atoms, and even the available volume for the field modes define the behavior of the system state amplitude with time. Applying the condition of ‘cyclic bonds’, presented in this work, to the elaborated theory allows to describe the system time evolution, practically, for any space configuration. PMID:24860278

  2. One-photon scattering by an atomic chain in a two-mode resonator: cyclic conditions

    NASA Astrophysics Data System (ADS)

    Sizhuk, Andrii S.; Yezhov, Stanislav M.

    2014-05-01

    In this work, a chain of N identical two-level atoms coupled with a quantized electromagnetic field, initially prepared via a single-photon Fock state, is investigated. The N-particle state amplitude of the system is calculated for several space configurations of the atoms in the Weisskopf-Wigner approximation. It was shown that the space configuration of an atomic chain, the total number of atoms, and even the available volume for the field modes define the behavior of the system state amplitude with time. Applying the condition of `cyclic bonds', presented in this work, to the elaborated theory allows to describe the system time evolution, practically, for any space configuration.

  3. One-photon scattering by an atomic chain in a two-mode resonator: cyclic conditions.

    PubMed

    Sizhuk, Andrii S; Yezhov, Stanislav M

    2014-01-01

    In this work, a chain of N identical two-level atoms coupled with a quantized electromagnetic field, initially prepared via a single-photon Fock state, is investigated. The N-particle state amplitude of the system is calculated for several space configurations of the atoms in the Weisskopf-Wigner approximation. It was shown that the space configuration of an atomic chain, the total number of atoms, and even the available volume for the field modes define the behavior of the system state amplitude with time. Applying the condition of 'cyclic bonds', presented in this work, to the elaborated theory allows to describe the system time evolution, practically, for any space configuration. PMID:24860278

  4. Crystallization behavior of single isotactic poly(methyl methacrylate) chains visualized by atomic force microscopy.

    PubMed

    Anzai, Takahiro; Kawauchi, Mariko; Kawauchi, Takehiro; Kumaki, Jiro

    2015-01-01

    We have, for the first time, successfully visualized the crystallization behavior of a single isolated polymer chain at the molecular level by atomic force microscopy (AFM). Previously, we found that isotactic poly(methyl methacrylate) (it-PMMA) formed two-dimensional folded chain crystals composed of double-stranded helices upon compression of its Langmuir monolayer on a water surface, and the molecular images of the crystals deposited on mica were clearly visualized by AFM (Kumaki, J.; et al. J. Am. Chem. Soc. 2005, 127, 5788). In the present study, a high-molecular-weight it-PMMA was diluted in a monolayer of an it-PMMA oligomer which cannot crystallize at the experimental temperature due to its low molecular weight. At a low surface pressure, isolated amorphous chains of the high-molecular-weight it-PMMA solubilized in the oligomer monolayer were observed. On compression, the isolated chains converted to crystals composed of a single chain, typically some small crystallites linked by an amorphous chain like a necklace. Detailed AFM observations of the crystals indicated that the crystalline nuclei preferentially formed at the ends of the chains, and the size of the nuclei was almost independent of the molecular weight of it-PMMA over a wide range. At an extremely slow compression, crystallization was promoted, resulting in crystallization of the whole chain. The crystallization behavior of a single isolated chain provides new insights in understanding the polymer crystallization process. PMID:25496047

  5. Catalytic behavior of `Pt-atomic chain encapsulated gold nanotube': A density functional study

    NASA Astrophysics Data System (ADS)

    Nigam, Sandeep; Majumder, Chiranjib

    2016-05-01

    With an aim to design novel material and explore its catalytic performance towards CO oxidation, Pt atomic chain was introduced inside gold nanotube (Au-NT). Theoretical calculations at the level of first principles formalism was carried out to investigate the atomic and electronic properties of the composite. Geometrically Pt atoms prefer to align in zig-zag fashion. Significant electronic charge transfer from inside Pt atoms to the outer wall Au atoms is observed. Interaction of O2 with Au-NT wall follows by injection of additional electronic charge in the anti-bonding orbital of oxygen molecule leading to activation of the O-O bond. Further interaction of CO molecule with the activated oxygen molecule leads to spontaneous oxidation reaction and formation of CO2.

  6. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface.

    PubMed

    Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M

    2016-07-20

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. PMID:27228462

  7. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  8. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu

    2014-11-01

    Materials with reduced dimensionality have attracted much interest in various fields of fundamental and applied science. True one-dimensional (1D) crystals with single-atom thickness have been realized only for few elemental metals (Au, Ag) or carbon, all of which showed very short lifetimes under ambient conditions. We demonstrate here a successful synthesis of stable 1D ionic crystals in which two chemical elements, one being a cation and the other an anion, align alternately inside carbon nanotubes. Unusual dynamical behaviours for different atoms in the 1D lattice are experimentally corroborated and suggest substantial interactions of the atoms with the nanotube sheath. Our theoretical studies indicate that the 1D ionic crystals have optical properties distinct from those of their bulk counterparts and that the properties can be engineered by introducing atomic defects into the chains.

  9. Dissociation energies of Ag-RG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies.

    PubMed

    Cooper, Graham A; Kartouzian, Aras; Gentleman, Alexander S; Iskra, Andreas; van Wijk, Robert; Mackenzie, Stuart R

    2015-09-28

    The near ultraviolet photodissociation dynamics of silver atom-rare gas dimers have been studied by velocity map imaging. Ag-RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ((2)Σ(+))←X ((2)Σ(+)) continuum leading to direct, near-threshold dissociation generating Ag* ((2)P3/2) + RG ((1)S0) products. Images recorded at excitation wavelengths throughout the C ((2)Σ(+))←X ((2)Σ(+)) continuum, coupled with known atomic energy levels, permit determination of the ground X ((2)Σ(+)) state dissociation energies of 85.9 ± 23.4 cm(-1) (Ag-Ar), 149.3 ± 22.4 cm(-1) (Ag-Kr), and 256.3 ± 16.0 cm(-1) (Ag-Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm(-1), which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag2. PMID:26429006

  10. Visualizing Majorana fermions in a chain of magnetic atoms on a superconductor

    NASA Astrophysics Data System (ADS)

    Yazdani, Ali

    2015-12-01

    A chain of magnetic atoms on the surface of a superconductor provides a versatile platform for realizing a one-dimensional topological superconductivity phase with edge-bounded Majorana fermions zero modes. This platform lends itself to spatial resolved measurements with scanning tunneling microscope (STM) that enables direct visualization of the presence of a localized Majorana zero mode. Experiments on self-assembled chains of Fe atoms on the surface of Pb show that such a system can be experimentally fabricated and studied using various high-resolution STM measurement techniques. Spatial and energy resolved STM experiments provide strong evidence for Majorana bound states that emerge due to the combination of Fe’s ferromagnetism and spin-orbit coupling of the superconducting Pb substrate. These studies provide a roadmap for optimizing topological superconductivity in this one-dimensional platform and its extension to realize chiral two-dimensional superconductors.

  11. Atomic spin-chain realization of a model for quantum criticality

    NASA Astrophysics Data System (ADS)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I. S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A. F.

    2016-07-01

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be used as fundamental building blocks for the realization of textbook many-body quantum models, illustrating key concepts such as quantum phase transitions, topological order or frustration as a function of system size. Here, we use low-temperature scanning tunnelling microscopy to construct arrays of magnetic atoms on a surface, designed to behave like spin-1/2 XXZ Heisenberg chains in a transverse field, for which a quantum phase transition from an antiferromagnetic to a paramagnetic phase is predicted in the thermodynamic limit. Site-resolved measurements on these finite-size realizations reveal a number of sudden ground state changes when the field approaches the critical value, each corresponding to a new domain wall entering the chains. We observe that these state crossings become closer for longer chains, suggesting the onset of critical behaviour. Our results present opportunities for further studies on quantum behaviour of many-body systems, as a function of their size and structural complexity.

  12. Electronic transport in large systems through a QUAMBO-NEGF approach: Application to atomic carbon chains

    NASA Astrophysics Data System (ADS)

    Fang, X. W.; Zhang, G. P.; Yao, Y. X.; Wang, C. Z.; Ding, Z. J.; Ho, K. M.

    2011-10-01

    The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green's function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC's parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR.

  13. Atomic-Level Characterization of the Chain-Flipping Mechanism in Fatty-Acids Biosynthesis.

    PubMed

    Colizzi, Francesco; Masetti, Matteo; Recanatini, Maurizio; Cavalli, Andrea

    2016-08-01

    During fatty acids biosynthesis the elongating acyl chain is sequestered within the core of the highly conserved acyl carrier protein (ACP). At each catalytic step, the acyl intermediates are transiently delivered from ACP to the active site of the enzymatic counterparts and, at the same time, are protected from the solvent to prevent nonselective reactivity. Yet, the molecular determinants of such a universal transition-termed chain flipping-remain poorly understood. Here we capture the atomic-level details of the chain-flipping mechanism by using metadynamics simulations. We observe the fatty-acid chain gliding through the protein-protein interface with barely 30% of its surface exposed to water molecules. The small ACP's helix III acts as gatekeeper of the process, and we find its conformational plasticity critical for a successful substrate transfer. The results are in agreement with a wide range of experimental observations and provide unprecedented insight on the molecular determinants and driving forces of the chain-flipping process. PMID:27409360

  14. A New One-dimensional Quantum Material - Ta2Pd3Se8 Atomic Chain

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Antipina, Liubov; Sorokin, Pavel; Sanchez, Ana

    Since the discovery of carbon nanotube, there has been a persistent effort to search for other one dimensional (1D) quantum systems. However, only a few examples have been found. We report a new 1D example - semiconducting Ta2Pd3Se8. We demonstrate that the Ta2Pd3Se8 nanowire as thin as 1.3nm can be easily obtained by applying simple mechanical exfoliation from its bulk counterpart. High resolution TEM shows an intrinsic 1D chain-like crystalline morphology on these nano wires, indicating weak bonding between these atomic chains. Theoretical calculation shows a direct bandgap structure, which evolves from 0.53eV in the bulk to 1.04eV in single atomic chain. The field effect transistor based on Ta2Pd3Se8 nanowire achieved a promising performance with 104On/Off ratio and 80 cm2V-1s-1 mobility. Low temperature transport study reflects two different mechanisms, variable range hopping and thermal activation, which dominate the transport properties at different temperature regimes. Ta2Pd3Se8 nanowire provides an intrinsic 1D material system for the study low dimensional condensed matter physics.

  15. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor

    NASA Astrophysics Data System (ADS)

    Nadj-Perge, Stevan

    2015-03-01

    Majorana fermions are zero-energy excitations predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron atomic chains on the surface of superconducting lead. Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations and theoretical modeling, for the formation of a topological phase and edge-bound Majorana states in this system. Our results demonstrates that atomic chains are viable platform for future experiments to manipulate Majorana bound states and to realize other related 1D or 2D topological superconducting phases. This work has done in collaboration with Ilya K. Drozdov, Jian Li, Hua Chen, Sangjun Jeon, Jungpil Seo, Allan H. MacDonald, B. Andrei Bernevig and Ali Yazdani. We acknowledge ONR, NSF-MRSEC, ARO-MRUI, NSF-DMR and EU Marie Curie for support.

  16. Ferromagnetic ground state for a hypothetical iron-based extended metal atom chain.

    PubMed

    Szarek, Paweł; Wegner, Wojciech; Grochala, Wojciech

    2016-03-01

    Theoretical calculations for the first tri-iron-based extended metal atom chain (EMAC) molecule are reported. The studied triple-high-spin (S = 6) complex exhibits ferromagnetic ordering (according to Ising and spin-projection approximations), which renders it unique among all previously prepared and theoretically calculated EMAC compounds. This ordering originates from the prevailing ferromagnetic nearest-neighbor interactions, while the magnetic superexchange between terminal Fe(2+) sites is weaker and antiferromagnetic. Calculations indicate that this linear chain system based on a tri-iron core shows potential for the development of spin-frustrated behavior, which could be achieved through rational modification of the equatorial and axial ligands. PMID:26910724

  17. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    NASA Astrophysics Data System (ADS)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.; Zinner, N. T.

    2016-04-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly perfect state transfer.

  18. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  19. Harnack Inequalities and Discrete—Continuous Error Estimates for a Chain of Atoms with Two—Body Interactions

    NASA Astrophysics Data System (ADS)

    Benguria, R.; Dolbeault, J.; Monneau, R.

    2009-01-01

    We consider deformations in ℝ3 of an infinite linear chain of atoms where each atom interacts with all others through a two-body potential. We compute the effect of an external force applied to the chain. At equilibrium, the positions of the particles satisfy an Euler-Lagrange equation. For large classes of potentials, we prove that every solution is well approximated by the solution of a continuous model when applied forces and displacements of the atoms are small. We establish an error estimate between the discrete and the continuous solution based on a Harnack lemma of independent interest. Finally we apply our results to some Lennard-Jones potentials.

  20. Spin-polarised edge states in atomic Mn chains supported on Cu2N/Cu (100)

    NASA Astrophysics Data System (ADS)

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Rubio-Verdú, Carmen; Lorente, Nicolás; Pascual, José Ignacio

    2016-06-01

    Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at ∼ 1 eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at ∼   ‑1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences.

  1. Spin-polarised edge states in atomic Mn chains supported on Cu2N/Cu (100).

    PubMed

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Rubio-Verdú, Carmen; Lorente, Nicolás; Ignacio Pascual, José

    2016-06-15

    Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at [Formula: see text] eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at [Formula: see text]  -1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences. PMID:27158116

  2. Average-atom model combined with the hypernetted chain approximation applied to warm dense matter.

    PubMed

    Hou, Yong; Bredow, Richard; Yuan, Jianmin; Redmer, Ronald

    2015-03-01

    We have combined the average-atom model with the hypernetted chain approximation (AAHNC) to describe the electronic and ionic structure in the warm dense matter regime. On the basis of the electronic and ionic structures, the x-ray Thomson scattering (XRTS) spectrum is calculated using the random-phase approximation. While the electronic structure is described within the average-atom model, the effects of other ions on the electronic structure are considered using an integral equation method of the theory of liquids, namely the hypernetted chain approximation. The ion-ion pair potential is calculated using the modified Gordon-Kim model based on the electronic density distribution. Finally, the electronic and ionic structures are determined self-consistently. The XRTS spectrum is calculated according to the Chihara formula, where the scattering contributions are divided into three components: elastic, bound-free, and free-free. Comparison of the present AAHNC results with other theoretical models and experimental data shows very good agreement. Thus the AAHNC model can give a reasonable description of the electronic and ionic structure in warm dense matter. PMID:25871231

  3. Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains

    NASA Astrophysics Data System (ADS)

    Sliozberg, Yelena R.; Kröger, Martin; Chantawansri, Tanya L.

    2016-04-01

    Equilibrated systems of entangled polymer melts cannot be produced using direct brute force equilibration due to the slow reptation dynamics exhibited by high molecular weight chains. Instead, these dense systems are produced using computational techniques such as Monte Carlo-Molecular Dynamics hybrid algorithms, though the use of soft potentials has also shown promise mainly for coarse-grained polymeric systems. Through the use of soft-potentials, the melt can be equilibrated via molecular dynamics at intermediate and long length scales prior to switching to a Lennard-Jones potential. We will outline two different equilibration protocols, which use various degrees of information to produce the starting configurations. In one protocol, we use only the equilibrium bond angle, bond length, and target density during the construction of the simulation cell, where the information is obtained from available experimental data and extracted from the force field without performing any prior simulation. In the second protocol, we moreover utilize the equilibrium radial distribution function and dihedral angle distribution. This information can be obtained from experimental data or from a simulation of short unentangled chains. Both methods can be used to prepare equilibrated and highly entangled systems, but the second protocol is much more computationally efficient. These systems can be strictly monodisperse or optionally polydisperse depending on the starting chain distribution. Our protocols, which utilize a soft-core harmonic potential, will be applied for the first time to equilibrate a million particle system of polyethylene chains consisting of 1000 united atoms at various temperatures. Calculations of structural and entanglement properties demonstrate that this method can be used as an alternative towards the generation of entangled equilibrium structures.

  4. Conductance and spin-filter effects of oxygen-incorporated Au, Cu, and Fe single-atom chains

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaolong; Xie, Yi-Qun; Ye, Xiang; Ke, San-Huang

    2015-01-01

    We studied the spin-polarized electron transport in oxygen-incorporated Au, Cu, and Fe single-atom chains (SACs) by first-principles calculations. We first investigated the mechanism responsible for the low conductance (<1G0) of the Au and Cu SACs in an oxygen environment reported in recent experiments. We found that for the Au SACs, the low conductance plateau around 0.6G0 can be attributed to a distorted chain doped with a single oxygen atom, while the 0.1G0 conductance comes from a linear chain incorporated with an oxygen molecule and is caused by an antibonding state formed by oxygen's occupied frontier orbital with dz orbitals of adjacent Au atoms. For the Cu SACs, the conductance about 0.3G0 is ascribed to a special configuration that contains Cu and O atoms in an alternating sequence. This exhibits an even-odd conductance oscillation with an amplitude of ˜0.1G0. In contrast, for the alternating Fe-O SACs, conductance overall decreases with an increase in O atoms and it approaches nearly zero for the chain with more than four O atoms. While the Cu-O SACs behave as perfect spin filters for one spin channel due to the half metallic nature, the Fe-O SACs can serve as perfect spin filters for two spin channels depending on the polarity of the applied gate voltage.

  5. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope.

    PubMed

    Liu, Mingjie; Artyukhov, Vasilii I; Lee, Hoonkyung; Xu, Fangbo; Yakobson, Boris I

    2013-11-26

    We report an extensive study of the properties of carbyne using first-principles calculations. We investigate carbyne's mechanical response to tension, bending, and torsion deformations. Under tension, carbyne is about twice as stiff as the stiffest known materials and has an unrivaled specific strength of up to 7.5 × 10(7) N·m/kg, requiring a force of ∼10 nN to break a single atomic chain. Carbyne has a fairly large room-temperature persistence length of about 14 nm. Surprisingly, the torsional stiffness of carbyne can be zero but can be "switched on" by appropriate functional groups at the ends. Further, under appropriate termination, carbyne can be switched into a magnetic semiconductor state by mechanical twisting. We reconstruct the equivalent continuum elasticity representation, providing the full set of elastic moduli for carbyne, showing its extreme mechanical performance (e.g., a nominal Young's modulus of 32.7 TPa with an effective mechanical thickness of 0.772 Å). We also find an interesting coupling between strain and band gap of carbyne, which is strongly increased under tension, from 2.6 to 4.7 eV under a 10% strain. Finally, we study the performance of carbyne as a nanoscale electrical cable and estimate its chemical stability against self-aggregation, finding an activation barrier of 0.6 eV for the carbyne-carbyne cross-linking reaction and an equilibrium cross-link density for two parallel carbyne chains of 1 cross-link per 17 C atoms (2.2 nm). PMID:24093753

  6. Numerical experiments on the modulation theory for the nonlinear atomic chain

    NASA Astrophysics Data System (ADS)

    Dreyer, W.; Herrmann, M.

    2008-02-01

    Modulation theory with periodic travelling waves is a powerful, but not rigorous tool to derive a thermodynamic description for atomic chains with nearest neighbour interactions (FPU chains). This theory is sufficiently complex to deal with strong oscillations on the microscopic scale, and therefore it is capable to describe the creation of temperature and the transport of heat on a macroscopic scale. In this paper we investigate the validity of modulation theory by means of several numerical experiments. We start with a survey on the foundations of modulation theory. In particular, we discuss the hyperbolic scaling, the notion of cold data, microscopic oscillations and Young measures, periodic and modulated travelling waves, and, finally, the resulting macroscopic conservation laws. Afterwards we discuss how the validity of a macroscopic theory may be tested within numerical simulations of the microscopic dynamics. To this end we describe an approach to thermodynamic data exploration which is motivated by the theory of Young measures, and relies on mesoscopic windows in space and time. The last part is devoted to several numerical experiments including examples with periodic boundary conditions and smooth initial data, and macroscopic Riemann problems. We interpret the outcome of these experiments in the framework of thermodynamics, and end up with two conclusions. (1) There are many examples for which modulation theory provides in fact the right thermodynamic description because it can predict both the structure of the microscopic oscillations and their macroscopic evolution correctly. (2) Modulation theory will fail if the oscillations exhibit a more complicate structure.

  7. Quantifying the atomic-level mechanics of single long physisorbed molecular chains

    PubMed Central

    Kawai, Shigeki; Koch, Matthias; Gnecco, Enrico; Sadeghi, Ali; Pawlak, Rémy; Glatzel, Thilo; Schwarz, Jutta; Goedecker, Stefan; Hecht, Stefan; Baratoff, Alexis; Grill, Leonhard; Meyer, Ernst

    2014-01-01

    Individual in situ polymerized fluorene chains 10–100 nm long linked by C–C bonds are pulled vertically from an Au(111) substrate by the tip of a low-temperature atomic force microscope. The conformation of the selected chains is imaged before and after manipulation using scanning tunneling microscopy. The measured force gradient shows strong and periodic variations that correspond to the step-by-step detachment of individual fluorene repeat units. These variations persist at constant intensity until the entire polymer is completely removed from the surface. Calculations based on an extended Frenkel–Kontorova model reproduce the periodicity and magnitude of these features and allow us to relate them to the detachment force and desorption energy of the repeat units. The adsorbed part of the polymer slides easily along the surface during the pulling process, leading to only small oscillations as a result of the high stiffness of the fluorenes and of their length mismatch with respect to the substrate surface structure. A significant lateral force also is caused by the sequential detachment of individual units. The gained insight into the molecule–surface interactions during sliding and pulling should aid the design of mechanoresponsive nanosystems and devices. PMID:24591611

  8. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s.

    PubMed

    Kurnosov, Arkady A; Rubtsov, Igor V; Maksymov, Andrii O; Burin, Alexander L

    2016-07-21

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed. PMID:27448902

  9. Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s

    NASA Astrophysics Data System (ADS)

    Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.

    2016-07-01

    We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.

  10. Dissociation energies of Ag–RG (RG = Ar, Kr, Xe) and AgO molecules from velocity map imaging studies

    SciTech Connect

    Cooper, Graham A.; Gentleman, Alexander S.; Iskra, Andreas; Wijk, Robert van; Mackenzie, Stuart R.; Kartouzian, Aras

    2015-09-28

    The near ultraviolet photodissociation dynamics of silver atom—rare gas dimers have been studied by velocity map imaging. Ag–RG (RG = Ar, Kr, Xe) species generated by laser ablation are excited in the region of the C ({sup 2}Σ{sup +})←X ({sup 2}Σ{sup +}) continuum leading to direct, near-threshold dissociation generating Ag* ({sup 2}P{sub 3/2}) + RG ({sup 1}S{sub 0}) products. Images recorded at excitation wavelengths throughout the C ({sup 2}Σ{sup +})←X ({sup 2}Σ{sup +}) continuum, coupled with known atomic energy levels, permit determination of the ground X ({sup 2}Σ{sup +}) state dissociation energies of 85.9 ± 23.4 cm{sup −1} (Ag–Ar), 149.3 ± 22.4 cm{sup −1} (Ag–Kr), and 256.3 ± 16.0 cm{sup −1} (Ag–Xe). Three additional photolysis processes, each yielding Ag atom photoproducts, are observed in the same spectral region. Two of these are markedly enhanced in intensity upon seeding the molecular beam with nitrous oxide, and are assigned to photodissociation of AgO at the two-photon level. These features yield an improved ground state dissociation energy for AgO of 15 965 ± 81 cm{sup −1}, which is in good agreement with high level calculations. The third process results in Ag atom fragments whose kinetic energy shows anomalously weak photon energy dependence and is assigned tentatively to dissociative ionization of the silver dimer Ag{sub 2}.

  11. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-05-01

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green’s function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias.

  12. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour

    PubMed Central

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-01-01

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green’s function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias. PMID:27211110

  13. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour.

    PubMed

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-01-01

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green's function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias. PMID:27211110

  14. Fourier Transform Spectroscopy of theA2Σ+-X2ΠiTransition of AgO

    NASA Astrophysics Data System (ADS)

    O'Brien, L. C.; Wall, S. J.; Sieber, M. K.

    1997-05-01

    TheA2Σ+-X2Πinear-infrared electronic transition of AgO was observed for the first time. The spectrum was recorded with the high resolution Fourier transform spectrometer associated with the McMath-Pierce Solar Telescope at Kitt Peak. The excited AgO molecules were produced in a low pressure silver hollow cathode sputter source. Constants for theA2Σ+state of107AgO and109AgO and improvedX2Πiconstants for107AgO and109AgO are presented. These two states are not a unique perturber pair and they do not follow the pure precession model.

  15. Conductance and spin-filter effects of oxygen-incorporated Au, Cu, and Fe single-atom chains

    SciTech Connect

    Zheng, Xiaolong; Xie, Yi-Qun Ye, Xiang; Ke, San-Huang

    2015-01-28

    We studied the spin-polarized electron transport in oxygen-incorporated Au, Cu, and Fe single-atom chains (SACs) by first-principles calculations. We first investigated the mechanism responsible for the low conductance (<1G{sub 0}) of the Au and Cu SACs in an oxygen environment reported in recent experiments. We found that for the Au SACs, the low conductance plateau around 0.6G{sub 0} can be attributed to a distorted chain doped with a single oxygen atom, while the 0.1G{sub 0} conductance comes from a linear chain incorporated with an oxygen molecule and is caused by an antibonding state formed by oxygen's occupied frontier orbital with d{sub z} orbitals of adjacent Au atoms. For the Cu SACs, the conductance about 0.3G{sub 0} is ascribed to a special configuration that contains Cu and O atoms in an alternating sequence. This exhibits an even-odd conductance oscillation with an amplitude of ∼0.1G{sub 0}. In contrast, for the alternating Fe-O SACs, conductance overall decreases with an increase in O atoms and it approaches nearly zero for the chain with more than four O atoms. While the Cu-O SACs behave as perfect spin filters for one spin channel due to the half metallic nature, the Fe-O SACs can serve as perfect spin filters for two spin channels depending on the polarity of the applied gate voltage.

  16. Evaluation of the end-to-end distance of chains solubilized in a polymer Langmuir monolayer by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kumaki, Jiro

    Polymer chain packing in two-dimensional (2D) condense state is still not well understood. Direct observation of the chain packing in a monolayer should be the best way to understand this, however, it is still difficult even using atomic force microscopy (AFM) except for extraordinarily thick polymers. In this study, we successfully evaluate the end-to-end distance of the chains in a Langmuir-Blodgett monolayer composed of a conventional polymer by AFM. We successfully solubilized a small amount of a polystyrene-b-poly(methyl methacrylate)-b-polystyrene (PS-b-PMMA-b-PS) triblock copolymer in a PMMA Langmuir monolayer with the PS blocks being condensed as single-PS-block particles which could be used as a probe of the position of the chain ends. The evaluated end-to-end distance was 2.5 times longer than that of the 2D ideal chain, indicating the chains in the 2D monolayer are not strongly segregated but interpenetrates into other chains.

  17. One-dimensionality in atomic nuclei: A candidate for linear-chain α clustering in 14C

    NASA Astrophysics Data System (ADS)

    Fritsch, A.; Beceiro-Novo, S.; Suzuki, D.; Mittig, W.; Kolata, J. J.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Bucher, B.; Chajecki, Z.; Fang, X.; Febbraro, M.; Howard, A. M.; Kanada-En'yo, Y.; Lynch, W. G.; Mitchell, A. J.; Ojaruega, M.; Rogers, A. M.; Shore, A.; Suhara, T.; Tang, X. D.; Torres-Isea, R.; Wang, H.

    2016-01-01

    The clustering of α particles in atomic nuclei results in the self-organization of various geometrical arrangements at the femtometer scale. The one-dimensional alignment of multiple α particles is known as linear-chain structure, evidence of which has been highly elusive. We show via resonant elastic and inelastic α scattering of a radioactive 10Be beam that excited states in the neutron-rich nucleus 14C agree with recent predictions of linear-chain structure based on an antisymmetrized molecular dynamics model.

  18. Anion-radical oxygen centers in small (AgO)n clusters: Density functional theory predictions

    NASA Astrophysics Data System (ADS)

    Trushin, Egor V.; Zilberberg, Igor L.

    2013-02-01

    Anion-radical form of the oxygen centers O- is predicted at the DFT level for small silver oxide particles having the AgO stoichiometry. Model clusters (AgO)n appear to be ferromagnetic with appreciable spin density at the oxygen centers. In contrast to these clusters, the Ag2O model cluster have no unpaired electrons in the ground state. The increased O/Ag ratio in the oxide particles is proved to be responsible for the spin density at oxygen centers.

  19. Evidence for non-conservative current-induced forces in the breaking of Au and Pt atomic chains

    PubMed Central

    Sabater, Carlos; Untiedt, Carlos

    2015-01-01

    Summary This experimental work aims at probing current-induced forces at the atomic scale. Specifically it addresses predictions in recent work regarding the appearance of run-away modes as a result of a combined effect of the non-conservative wind force and a ‘Berry force’. The systems we consider here are atomic chains of Au and Pt atoms, for which we investigate the distribution of break down voltage values. We observe two distinct modes of breaking for Au atomic chains. The breaking at high voltage appears to behave as expected for regular break down by thermal excitation due to Joule heating. However, there is a low-voltage breaking mode that has characteristics expected for the mechanism of current-induced forces. Although a full comparison would require more detailed information on the individual atomic configurations, the systems we consider are very similar to those considered in recent model calculations and the comparison between experiment and theory is very encouraging for the interpretation we propose. PMID:26734525

  20. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    PubMed Central

    Balogh, Zoltán; Makk, Péter

    2015-01-01

    Summary We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference. PMID:26199840

  1. Alternative types of molecule-decorated atomic chains in Au-CO-Au single-molecule junctions.

    PubMed

    Balogh, Zoltán; Makk, Péter; Halbritter, András

    2015-01-01

    We investigate the formation and evolution of Au-CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference. PMID:26199840

  2. Producing high-accuracy lattice models from protein atomic coordinates including side chains.

    PubMed

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models. PMID:22934109

  3. Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains

    PubMed Central

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M.

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models. PMID:22934109

  4. Generation and Control of Chains of Entangled Atom-Ion Pairs with Quantum Light

    SciTech Connect

    Shapiro, Moshe; Brumer, Paul

    2011-04-15

    Coherent control using quantum light incident upon molecules in an optical lattice is shown to give rise to a direct way of writing arbitrary sequences of entangled atom-ion pairs. There is no evident limitation on the length of the word (i.e., the number of qbits) that can be formed.

  5. DFT modelling of the [M-Pd-M] 6+ metal atom chains (M = Ni, Pd): Structural, electronic and magnetic issues

    NASA Astrophysics Data System (ADS)

    López, Xavier; Rohmer, Marie-Madeleine; Bénard, Marc

    2008-11-01

    Following the recent findings on heterometallic string complexes, we extend the recently published work on NiPdNi(dpa) 4Cl 2 to discuss the Ni-Pd-Ni and Pd 3 chains with equatorial ligands (L) being dipyridylamide (dpa), 2,6-bis(phenylamido)pyridine (BPAP) and N, N'-bis-( p-toluenesulfonyl)-pyridyldiamide (Lpts), using the DFT formalism. The analysis of such a hypothetical series of linear trimetallics anticipates that, for NiPdNi(dpa) 4Cl 2, the extended valence shell of palladium strengthens the antiferromagnetic coupling between high-spin terminal nickel atoms. For L = BPAP the system, as expected, becomes diamagnetic, and antiferromagnetism reappears for L = Lpts. The theoretical modelling of the coupling following the Heisenberg Hamiltonian applied to two magnetic centres (H^=-2JS·S) gives -2 J = 320 and 497 cm -1 for L = dpa and Lpts, respectively. Pd 3 chains display an enhanced tendency to be diamagnetic with various ligands. More specifically with dpa, Pd 3(dpa) 4Cl 2—should it be synthesized—could be magnetically inactive since the strongly antiferromagnetic state generated by the coupling of two terminal, high-spin Pd atoms (-2 J = 1393 cm -1) is computed to be in close competition with the diamagnetic, closed-shell state. For L = Lpts as for BPAP, the hypothetic [Pd 3] 6+ chain is predicted to be diamagnetic, resulting from the high energy of the antibonding d(Pd)-p(N) orbital. The shift toward diamagnetism induced by the replacement of Ni by Pd in terminal position is therefore assigned to a stronger N → M donation interaction with M = Pd.

  6. The Luttinger liquid in superlattice structures: atomic gases, quantum dots and the classical Ising chain

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aranya B.; Jha, Pradip; Kumar, Tarun; Mohan, Man

    2011-01-01

    We study the physical properties of a Luttinger liquid in a superlattice that is characterized by alternating two tunneling parameters. Using the bosonization approach, we describe the corresponding Hubbard model by the equivalent Tomonaga-Luttinger model. We analyze the spin-charge separation and transport properties of the superlattice system. We suggest that cold Fermi gases trapped in a bichromatic optical lattice and coupled quantum dots offer the opportunity to measure these effects in a convenient manner. We also study the classical Ising chain with two tunneling parameters. We find that the classical two-point correlator decreases as the difference between the two tunneling parameters increases.

  7. Average atom model based on Quantum Hyper-Netted Chain method

    NASA Astrophysics Data System (ADS)

    Chihara, Junzo

    2016-06-01

    The study shows how to define, without any ad hoc assumption, the average ion charge ZI in the electron-ion model for plasmas and liquid metals: this definition comes out of the condition that a plasma consisting of electrons and nuclei can be described as an electron-ion mixture. Based on this definition of the average ion charge, the Quantum Hyper-Netted Chain (QHNC) method takes account of the thermal ionization and the resonant-state contribution to the bound electrons forming an ion. On the other hand, Blenski and Cichocki (2007) have derived a formula to determine the uniform electron density in a plasma as an electron-ion mixture by using the variational method with the help of the local density approximation. Without use of any approximation, we derived the formula determining the electron density in an extended form on the basis of the density functional theory. This formula is shown to be valid also for the QHNC method.

  8. Helical order in one-dimensional magnetic atom chains and possible emergence of Majorana bound states

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Cheng, Meng; Bauer, Bela; Lutchyn, Roman M.; Das Sarma, S.

    2014-08-01

    We theoretically obtain the phase diagram of localized magnetic impurity spins arranged in a one-dimensional chain on top of a one- or two-dimensional electron gas. The interactions between the spins are mediated by the Ruderman-Kittel-Kasuya-Yosida mechanism through the electron gas. Recent work predicts that such a system may intrinsically support topological superconductivity without spin-orbit coupling when a helical spin-density wave is spontaneously formed in the spins, and superconductivity is induced in the electron gas. We analyze, using both analytical and numerical techniques, the conditions under which such a helical spin state is stable in a realistic situation in the presence of disorder. We show that (i) it appears only when the spins are coupled to a (quasi-) one-dimensional electron gas, and (ii) it becomes unstable towards the formation of (anti)ferromagnetic domains if the disorder in the impurity spin positions δR becomes comparable with the Fermi wavelength. We also examine the stability of the helical state against Gaussian potential disorder in the electronic system using a diagrammatic approach. Our results suggest that in order to stabilize the helical spin state and thus the emergent topological superconductivity under realistic experimental conditions, a sufficiently strong Rashba spin-orbit coupling, giving rise to Dzyaloshinskii-Moriya interactions, is required.

  9. Fractional Quantum Hall Effects for Bosonic Atoms in a Chain of Rotating Traps

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Jacome, Louis; Gemelke, Nathan

    2015-05-01

    Fractional quantum Hall (FQH) physics familiar from two-dimensional electron systems has also been predicted to appear in a gas of interacting bosons that are confined to a rapidly rotating trap. Due to the emergent gauge physics, such states exhibit novel properties, including excitations with fractionalized mass and statistics. In this talk, we consider an experimental strategy of creating many FQH samples along a chain of lattice sites, coupled together via tunneling. We calculate a mean-field phase diagram and derive an effective field theory to describe this system and find that it supports novel insulator and superfluid states with localized FQH behavior. The coarse structure of the phase diagram and transport properties near phase transitions reveal novel properties of excitations in the parent FQH states, and exhibit new observable relations between thermodynamic quantities such as compressibility and moment of inertia attributable to topological constraints. We describe experimental pathways to create such states and extract new smoking gun signatures of FQH physics. Supported by NSF Grant No. PHY-1068570.

  10. Analytic study of the chain dark decomposition reaction of iodides - atomic iodine donors - in the active medium of a pulsed chemical oxygen-iodine laser: 2. Limiting parameters of the branching chain dark decomposition reaction of iodides

    SciTech Connect

    Andreeva, Tamara L; Kuznetsova, S V; Maslov, Aleksandr I; Sorokin, Vadim N

    2009-08-31

    The final stages in the development of a branching chain decomposition reaction of iodide in the active medium of a pulsed chemical oxygen-iodine laser (COIL) are analysed. Approximate expressions are derived to calculate the limiting parameters of the chain reaction: the final degree of iodide decomposition, the maximum concentration of excited iodine atoms, the time of its achievement, and concentrations of singlet oxygen and iodide at that moment. The limiting parameters, calculated by using these expressions for a typical composition of the active medium of a pulsed COIL, well coincide with the results of numerical calculations. (active media)

  11. AgH, Ag/sub 2/, and AgO revisited: Basis set extensions

    SciTech Connect

    Martin, R.L.

    1987-05-01

    An extended basis set has been developed for Ag which significantly improves the agreement between theoretical and experimental spectroscopic parameters for AgH, AgO, and Ag/sub 2/. The major improvement comes about as a result of the improved treatment of electron correlation in the Ag d shell upon the introduction of f functions. Their inclusion produces very slight differences at the SCF level, but significant reductions in r/sub e/ and increases in ..omega../sub e/ and D/sub e/ in the Mo-dash-barller--Plesset perturbation theory expansion. At the MP4(SDTQ) level, typical results are 0.02 A too long for r/sub e/, 4% too low for ..omega../sub e/, and 10 kcal too small for D/sub e/. From a pragmatic standpoint, MP2 give results very similar to this at a much reduced level of effort.

  12. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    SciTech Connect

    Lagos, M. J.; Autreto, P. A. S.; Galvao, D. S. Ugarte, D.; Bettini, J.; Sato, F.; Dantas, S. O.

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  13. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t–J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t–J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  14. Main-Chain and Side-Chain Sequence-Regulated Vinyl Copolymers by Iterative Atom Transfer Radical Additions and 1:1 or 2:1 Alternating Radical Copolymerization.

    PubMed

    Soejima, Takamasa; Satoh, Kotaro; Kamigaito, Masami

    2016-01-27

    Main- and side-chain sequence-regulated vinyl copolymers were prepared by a combination of iterative atom transfer radical additions (ATRAs) of vinyl monomers for side-chain control and 1:1 or 2:1 alternating radical copolymerization of the obtained side-chain sequenced "oligomonomers" and vinyl comonomers for main-chain control. A complete set of sequence-regulated trimeric vinyl oligomers of styrene (S) and/or methyl acrylate (A) were first synthesized via iterative ATRAs of these monomers to a halide of monomeric S or A unit (X-S or X-A) under optimized conditions with appropriate ruthenium or copper catalysts, which were selected depending on the monomers and halides. The obtained halogen-capped oligomers were then converted into a series of maleimide (M)-ended oligomonomers with different monomer compositions and sequences (M-SSS, M-ASS, M-SAS, M-AAS, M-SSA, M-ASA, M-SAA, M-AAA) by a substitution reaction of the halide with furan-protected maleimide anion followed by deprotection of the furan units. These maleimide-ended oligomonomers were then radically copolymerized with styrene or limonene to enable the 1:1 or 2:1 monomer-sequence regulation in the main chain and finally result in the main- and side-chain sequence-regulated vinyl copolymers with high molecular weights in high yield. The properties of the sequence-regulated vinyl copolymers depended on not only the monomer compositions but also the monomer sequences. The solubility was highly affected by the outer monomer units in the side chains whereas the glass transition temperatures were primarily affected by the two successive monomer sequences. PMID:26761148

  15. Solvothermal Preparation of ZnO Nanorods as Anode Material for Improved Cycle Life Zn/AgO Batteries

    PubMed Central

    Ullah, Shafiq; Ahmed, Fiaz; Badshah, Amin; Ali Altaf, Ataf; Raza, Ramsha; Lal, Bhajan; Hussain, Rizwan

    2013-01-01

    Nano materials with high surface area increase the kinetics and extent of the redox reactions, thus resulting in high power and energy densities. In this study high surface area zinc oxide nanorods have been synthesized by surfactant free ethylene glycol assisted solvothermal method. The nanorods thus prepared have diameters in the submicron range (300∼500 nm) with high aspect ratio. They have uniform geometry and well aligned direction. These nanorods are characterized by XRD, SEM, Specific Surface Area Analysis, solubility in alkaline medium, EDX analysis and galvanostatic charge/discharge studies in Zn/AgO batteries. The prepared zinc oxide nanorods have low solubility in alkaline medium with higher structural stability, which imparts the improved cycle life stability to Zn/AgO cells. PMID:24146807

  16. Interrelationship between long-wave current sensitivity and thermionic current of Ag-O-Cs photocathode and problems of its tolerable physical model

    NASA Astrophysics Data System (ADS)

    Rabinovich, A. I.; Pakhomov, M. T.

    1993-01-01

    Interrelation between current sensitivity at (lambda) >= 1.06 micrometers and thermoemission current (calculate data and their correlation with experimental results) is used as an indicator of choice between the donor and acceptor models of Ag-O-Cs-photocathode.

  17. Fast atoms and negative chain-cluster fragments from laser-induced Coulomb explosions in a super-fluid film of ultra-dense deuterium D(-1)

    NASA Astrophysics Data System (ADS)

    Andersson, Patrik U.; Holmlid, Leif

    2012-10-01

    Fragments from laser-induced Coulomb explosions (CE) in a thin super-fluid film of ultra-dense deuterium D(-1) on a vertical surface are now observed by both negative and positive time-of-flight mass spectrometry. The so-called normal phase of the super-fluid is probably associated with D4 clusters and gives only neutral atomic fragments with a kinetic energy from the CE of 945 eV. The super-fluid phase is associated with long chain clusters D2N with N deuteron pairs and gives cluster fragments by CE mainly with a kinetic energy of 315 eV from the central cleavage in a neutral, positive or negative form. This indicates that the chain clusters are standing perpendicularly to the surface. The fragment charge state is influenced by the external field, which indicates efficient charge transfer processes.

  18. Diffusion across the modified polyethylene separator GX in the heat-sterilizable AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1973-01-01

    Models of diffusion across an inert membrane have been studied using the computer program CINDA. The models were constructed to simulate various conditions obtained in the consideration of the diffusion of Ag (OH)2 ions in the AgO-Zn battery. The effects on concentrations across the membrane at the steady state and on the fluxout as a function of time were used to examine the consequences of stepwise reducing the number of sources of ions, of stepwise blocking the source and sink surfaces, of varying the magnitude of the diffusion coefficient for a uniform membrane, of varying the diffusion coefficient across the membrane, and of excluding volumes to diffusion.

  19. The Unique Gas-Phase Chemistry of the [AuO](+) /CH4 Couple: Selective Oxygen-Atom Transfer to, Rather than Hydrogen-Atom Abstraction from, Methane.

    PubMed

    Zhou, Shaodong; Li, Jilai; Schlangen, Maria; Schwarz, Helmut

    2016-08-26

    The thermal reaction of [AuO](+) with methane has been explored using FT-ICR mass spectrometry complemented by high-level quantum chemical calculations. In contrast to the previously studied congener [CuO](+) , and to [AgO](+) , [AuO](+) reacts with CH4 exclusively via oxygen-atom transfer to form CH3 OH, and a novel mechanistic scenario for this selective oxidation process has been revealed. Also, the origin of the inertness of the [AgO](+) /CH4 couple has been addressed computationally. PMID:27390885

  20. Controllable magnetic solitons excitations in an atomic chain of spinor Bose-Einstein condensates confined in an optical lattice

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-Dong; Geng, Z.; Zhao, Xu; Qian, J.; Zhou, Lu; Li, Y.; Zhang, Weiping

    2014-06-01

    We propose an experimental scheme to show that the nonlinear magnetic solitary excitations can be achieved in an atomic spinor Bose-Einstein condensate confined in a blue-detuned optical lattice. Through exact theoretical calculations, we find that the magnetic solitons can be generated by the static magnetic dipole-dipole interaction (MDDI), of which the interaction range can be well controlled. We derive the existence conditions of the magnetic solitons under the nearest-neighboring, the next-nearest-neighboring approximations as well as the long-range consideration. It is shown that the long-range feature of the MDDI plays an important role in determining the existence of magnetic solitons in this system. In addition, to facilitate the experimental observation, we apply an external laser field to drive the lattice, and the existence regions for the magnetic soliton induced by the anisotropic light-induced dipole-dipole interaction are also investigated.

  1. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  2. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    PubMed

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  3. Inulin crystal initiation via a glucose-fructose cross-link of adjacent polymer chains: atomic force microscopy and static molecular modelling.

    PubMed

    Cooper, Peter D; Rajapaksha, K Harinda; Barclay, Thomas G; Ginic-Markovic, Milena; Gerson, Andrea R; Petrovsky, Nikolai

    2015-03-01

    Semi-crystalline microparticles of inulin (MPI) have clinical utility as potent human vaccine adjuvants but their relevant surface structure and crystal assembly remain undefined. We show inulin crystal surfaces to resemble multi-layered, discoid radial spherulites resulting from very rapid formation of complex tertiary structures, implying directed crystal initiation. Physical and in silico molecular modelling of unit cells confirm steric feasibility of initiation by hydrogen-bonded cross-linking of terminal glucose to a fructose of another chain, mimicking bonding in sucrose crystals. A strong, chelate-like dual H-bond is proposed to compel the known antiparallel alignment of inulin chains. Such cross-linking would require one extra fructose per chain in the native inulin crystal, as observed. Completion of five H-bonded internal ring-domains would 'lock in' each new 6-fructose structural unit of each antiparallel helix pair to create a new isoform. All known properties of inulin isoforms follow readily from these concepts. PMID:25498723

  4. Characterization of the molecular species of glycerophospholipids from rabbit kidney: an alternative approach to the determination of the fatty acyl chain position by negative ion fast atom bombardment combined with mass-analysed ion kinetic energy analysis.

    PubMed

    Chen, S; Curcuruto, O; Catinella, S; Traldi, P; Menon, G

    1992-12-01

    An alternative approach to identifying fatty acid chain position in the molecular species of glycerophospholipids has been studied and developed. The fatty acyl groups esterified to the glycerol backbone in isomeric glycerophosphatidyl-choline, -serine and -ethanolamine as well as glycerophosphatidic acid can be detected by the presence of a pair of anions derived from phosphatidic acid parent ions (M minus the polar head groups in glycerophospholipids), designed to be [M--polar head--R2COOH]- and [M--polar head--R2CO--H]-, produced by negative ion fast atom bombardment combined with mass-analysed ion kinetic energy analysis. Because of the significant abundance of [M--polar head--R2COOH]- anion, fatty acid chains differing by 2 Da can be distinguished by accurate measurements of the electrostatic voltage related to this ion. Three-volt differences can be evidenced. Using this approach, the molecular species of glycerophosphatidyl-choline, -serine, -ethanolamine and -inositol from rabbit kidney were characterized after the separation of both class and species by normal and reversed-phase high-performance liquid chromatography, respectively. We identified 11 arachidonoyl-containing molecular species of glycerophospholipids and the other 17 lipid molecules in this biological material. A couple of 1- alkenyl-2-arachidonoyl-sn-glycerol-3-phosphoethanolamine species, identified as plasmalogen GPE 16:0-20:4 and plasmalogen GPE 18:0-20:4, were found for the first time in rabbit kidney. PMID:1477110

  5. Combined dynamic scanning tunneling microscopy and frequency modulation atomic force microscopy investigations on polythiophene chains on graphite with a tuning fork sensor

    NASA Astrophysics Data System (ADS)

    Polesel-Maris, Jérôme; Lubin, Christophe; Thoyer, François; Cousty, Jacques

    2011-04-01

    Polythiophene molecules adsorbed on a highly oriented pyrolytic graphite surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM) with a quartz tuning fork sensor operating in Qplus mode and equipped with a Pt/Ir tip. Upon completing a careful sub-angström oscillation amplitude calibration of the probe, experiments were conducted in an ultra high vacuum at room temperature. By selecting the tip/surface distance regulation parameter, one can select the type of simultaneous information obtained in an area. For distance regulation based on the mean tunneling current, dynamic STM images together with maps of tip/surface force gradient were obtained. FM-AFM images with maps of the tunneling current were also acquired when the distance regulation was based on the frequency shift. Comparison between these images reveals interesting features. For example the tip which operates in STM mode with ultra low current (<10 pA) generates different interaction forces above molecules or graphite. Changes in energy dissipation processes as small as tens of millielectronvolts per cycle were recorded when the tip oscillates above the polymer or on the graphite surface. Hence data demonstrates that a stiff piezoelectric tuning fork of several kilonewtons/meters working as an AFM/STM probe with sub-angström amplitude can characterize weakly adsorbed molecules.

  6. Electron transfer and multi-atom abstraction reactions between atomic metal anions and NO, NO2 and SO2

    NASA Astrophysics Data System (ADS)

    Butson, J. M.; Curtis, S.; Mayer, P. M.

    2016-05-01

    The atomic metal anions Fe-, Cs-, Cu- and Ag- were reacted with NO, NO2 and SO2 to form intact NO-, NO2- and SO2- with no fragmentation. Yields for the molecular anions ranged from 4 to 97% and were found to correlate to the exothermicity of the electron transfer process. Sequential oxygen atom extraction was found to take place between the metal anions and NO and NO2. Reactions between NO2 and Fe- resulted in FeO-, FeO2- and FeO3- while reactions of Cu- with NO2 resulted in CuO- and CuO2-. Reactions of Cu- and Ag- with NO resulted in CuO- and AgO- respectively.

  7. Lattice Vibrations in a Linear Triatomic Chain

    ERIC Educational Resources Information Center

    Kesavasamy, K.; Krishnamurthy, N.

    1978-01-01

    Discusses the vibrations of a linear triatomic chain and shows that the addition of the third atom gives rise to an extra optical branch. The nature of the normal modes in ionic crystals and molecular crystals is also discussed. (GA)

  8. Smallest Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    This viewgraph presentation is focused on the general aspect of atomic chain electronics that I have been studying. Results have been published before, but are being rederived here using a new physical/mathematical picture/model, which deepens the physical understanding. Precise adatom structures can be used as a template on a regulated surface with no uncertainty.

  9. Precise Nanoelectronics with Adatom Chains

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    1999-01-01

    Adatom chains on an atomically regulated substrate will be building components in future precise nanoelectronics. Adatoms need to be secured with chemical bonding, but then electronic isolation between the adatom and substrate systems is not guaranteed. A one-dimensional model shows that good isolation with existence of surface states is expected on an s-p crossing substrate such as Si, Ge, or GaAs, reflecting the bulk nature of the substrate. Isolation is better if adatoms are electronically similar to the substrate atoms, and can be manipulated by hydrogenation. Chain structures with group IV adatoms with two chemical bonds, or group III adatoms with one chemical bond, are semiconducting, reflecting the surface nature of the substrate. These structures are unintentionally doped due to the charge transfer across the chemical bonds. Physical properties of adatom chains have to be determined for the unified adatom-substrate system.

  10. Modeling of polypeptide chains as C alpha chains, C alpha chains with C beta, and C alpha chains with ellipsoidal lateral chains.

    PubMed

    Fogolari, F; Esposito, G; Viglino, P; Cattarinussi, S

    1996-03-01

    In an effort to reduce the number of degrees of freedom necessary to describe a polypeptide chain we analyze the statistical behavior of polypeptide chains when represented as C alpha chains, C alpha chains with C beta atoms attached, and C alpha chains with rotational ellipsoids as models of side chains. A statistical analysis on a restricted data set of 75 unrelated protein structures is performed. The comparison of the database distributions with those obtained by model calculation on very short polypeptide stretches allows the dissection of local versus nonlocal features of the distributions. The database distribution of the bend angles of polypeptide chains of pseudo bonded C alpha atoms spans a restricted range of values and shows a bimodal structure. On the other hand, the torsion angles of the C alpha chain may assume almost all possible values. The distribution is bimodal, but with a much broader probability distribution than for bend angles. The C alpha - C beta vectors may be taken as representative of the orientation of the lateral chain, as the direction of the bond is close to the direction of the vector joining C alpha to the ad hoc defined center of the "steric mass" of the side chain. Interestingly, both the bend angle defined by C alpha i-C alpha i+1-C beta i+1 and the torsional angle offset of the pseudo-dihedral C alpha i-C alpha i+1-C alpha i+2-C beta i+2 with respect to C alpha i-C alpha i+1-C alpha i+2-C alpha i+3 span a limited range of values. The latter results show that it is possible to give a more realistic representation of polypeptide chains without introducing additional degrees of freedom, i.e., by just adding to the C alpha chain a C beta with given side-chain properties. However, a more realistic description of side chains may be attained by modeling side chains as rotational ellipsoids that have roughly the same orientation and steric hindrance. To this end, we define the steric mass of an atom as proportional to its van der

  11. Structure and Stability of Monatomic Metallic Chains

    NASA Astrophysics Data System (ADS)

    Batra, Inder P.; Sen, Prasenjit; Ciraci, S.

    2001-03-01

    We have investigated atomic and electronic structure of Au and Al monatomic chains by using first-principle plane wave method within density-functional theory. Despite their different valencies, Au and Al form planar zigzag chains with each atom having four nearest neighbors. The zigzag structure is stable against linearization and non-planar deformations. We performed an extensive charge density analysis and finite temperature calculations to reveal the origin of the unusual atomic structure in these one dimensional metallic systems. The implications of the zigzag structure on the electronic properties and the balistic electron conduction have been examined.

  12. Liquid atomization

    NASA Astrophysics Data System (ADS)

    Bayvel, L.; Orzechowski, Z.

    The present text defines the physical processes of liquid atomization, the primary types of atomizers and their design, and ways of measuring spray characteristics; it also presents experimental investigation results on atomizers and illustrative applications for them. Attention is given to the macrostructural and microstructural parameters of atomized liquids; swirl, pneumatic, and rotary atomizers; and optical drop sizing methods, with emphasis on nonintrusive optical methods.

  13. Anisotropic Transport of Electrons in a Novel FET Channel with Chains of InGaAs Nano-Islands Embedded along Quasi-Periodic Multi-Atomic Steps on Vicinal (111)B GaAs

    SciTech Connect

    Akiyama, Y.; Kawazu, T.; Noda, T.; Sakaki, H.

    2010-01-04

    We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G{sub para}(V{sub g}) parallel to the steps and G{sub perp}(V{sub g}) perpendicular to them were measured at 80 K as functions of gate voltage V{sub g}. At sufficiently high V{sub g}, G{sub para} at 80 K is several times as high as G{sub perp}, which manifests the anisotropic two-dimensional transport of electrons. When V{sub g} is reduced to -0.7 V, G{sub perp} almost vanishes, while {sub Gpara} stays sizable unless V{sub g} is set below -0.8 V. These results indicate that 'inter-chain' barriers play stronger roles than 'intra-chain' barriers.

  14. Crater Chains

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  15. An innovative method for joining materials at low temperature using silver (nano)particles derived from [AgO2C(CH2OCH2)3H

    NASA Astrophysics Data System (ADS)

    Oestreicher, Annerose; Röhrich, Tobias; Wilden, Johannes; Lerch, Martin; Jakob, Alexander; Lang, Heinrich

    2013-01-01

    A novel method for the manufacture of compact sintered silver layers as joining materials at low temperatures without applying pressure is described. The metal-organic silver complex [AgO2C(CH2OCH2)3H] (3) is used, which generates silver nanoparticles with heat treatment below 200 °C. Complex (3) provides the features for the formation of a molten metal-like silver phase in which silver particles in the nanometer and submicron size range, respectively, are completely miscible. Within this study, copper specimens were bonded, and the joints were evaluated by cross-sectional scanning electron microscope (SEM) images. Moreover, this approach enables the incorporation of copper. An example is given with an average amount of 20 at.% copper content in the silver layer.

  16. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  17. Dangling chain elastomers as repeatable fibrillar adhesives.

    PubMed

    Sitti, Metin; Cusick, Brian; Aksak, Burak; Nese, Alper; Lee, Hyung-il; Dong, Hongchen; Kowalewski, Tomasz; Matyjaszewski, Krzysztof

    2009-10-01

    This work reports on repeatable adhesive materials prepared by controlled grafting of dangling hetero chains from polymer elastomers. The dangling chain elastomer system was prepared by grafting poly(n-butyl acrylate) (PBA) chains from prefunctionalized polydimethylsiloxane (PDMS) elastomer networks using atom transfer radical polymerization. To study the effects of chain growth and network strain as they relate to network adhesion mechanics, various lengths of PBA chains with degree of polymerizations (DP) of 65, 281, 508, and 1200 were incorporated into the PDMS matrix. PBA chains with a DP value of 281 grafted from a flat PDMS substrate showed the highest (approximately 3.5-fold) enhancement of nano- and macroscale adhesion relative to a flat raw (ungrafted and not prefunctionalized) PDMS substrate. Moreover, to study the effect of PBA dangling chains on adhesion in fibrillar elastomer structures inspired by gecko foot hairs, a dip-transfer fabrication method was used to graft PBA chains with a DP value of 296 from the tip endings of mushroom-shaped PDMS micropillars. A PBA chain covered micropillar array showed macroscale adhesion enhancement up to approximately 7 times relative to the flat ungrafted prefunctionalized PDMS control substrate, showing additional nonoptimized approximately 2-fold adhesion enhancement due to fibrillar structuring and mushroom-shaped tip ending. These dangling hetero chains on elastomer micro-/nanofibrillar structures may provide a novel fabrication platform for multilength scale, repeatable, and high-strength fibrillar adhesives inspired by gecko foot hairs. PMID:20355863

  18. Dissipative Quantum Control of a Spin Chain

    NASA Astrophysics Data System (ADS)

    Morigi, Giovanna; Eschner, Jürgen; Cormick, Cecilia; Lin, Yiheng; Leibfried, Dietrich; Wineland, David J.

    2015-11-01

    A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms.

  19. Realization of a Strained Atomic Wire Superlattice.

    PubMed

    Song, Inkyung; Goh, Jung Suk; Lee, Sung-Hoon; Jung, Sung Won; Shin, Jin Sung; Yamane, Hiroyuki; Kosugi, Nobuhiro; Yeom, Han Woong

    2015-11-24

    A superlattice of strained Au-Si atomic wires is successfully fabricated on a Si surface. Au atoms are known to incorporate into the stepped Si(111) surface to form a Au-Si atomic wire array with both one-dimensional (1D) metallic and antiferromagnetic atomic chains. At a reduced density of Au, we find a regular array of Au-Si wires in alternation with pristine Si nanoterraces. Pristine Si nanoterraces impose a strain on the neighboring Au-Si wires, which modifies both the band structure of metallic chains and the magnetic property of spin chains. This is an ultimate 1D version of a strained-layer superlattice of semiconductors, defining a direction toward the fine engineering of self-assembled atomic-scale wires. PMID:26446292

  20. Health supply chain management.

    PubMed

    Zimmerman, Rolf; Gallagher, Pat

    2010-01-01

    This chapter gives an educational overview of: * The actual application of supply chain practice and disciplines required for service delivery improvement within the current health environment. * A rationale for the application of Supply Chain Management (SCM) approaches to the Health sector. * The tools and methods available for supply chain analysis and benchmarking. * Key supply chain success factors. PMID:20407173

  1. Adjusting the Chain Gear

    NASA Astrophysics Data System (ADS)

    Koloc, Z.; Korf, J.; Kavan, P.

    The adjustment (modification) deals with gear chains intermediating (transmitting) motion transfer between the sprocket wheels on parallel shafts. The purpose of the adjustments of chain gear is to remove the unwanted effects by using the chain guide on the links (sliding guide rail) ensuring a smooth fit of the chain rollers into the wheel tooth gap.

  2. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  3. Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  4. Liquid atomization

    SciTech Connect

    Walzel, P. )

    1993-01-01

    A systematic review of different liquid atomizers is presented, accompanied by a discussion of various mechanisms of droplet formation in a gas atmosphere as a function of the liquid flow-regime and the geometry of the atomizer. Equations are presented for the calculation of the mean droplet-diameter. In many applications, details of the droplet size distribution are, also, important, e.g., approximate values of the breadth of the droplet formation are given. The efficiency of utilization of mechanical energy in droplet formation is indicated for the different types of atomizers. Atomization is used, in particular, for the following purposes: (1) atomization of fuels; (2) making granular products; (3) carrying out mass-transfer operations; and (4) coating of surfaces.

  5. Nuclear structure notes on element 115 decay chains

    SciTech Connect

    Rudolph, D. Sarmiento, L. G.; Forsberg, U.

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  6. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand. PMID:25988294

  7. Increased frequency of CD4{sup -}8{sup -}T cells bearing T-cell receptor {alpha}{beta} chains in peripheral blood of atomic bomb survivors exposed to high doses

    SciTech Connect

    Yoichiro Kusunoki; Seishi Kyoizumi; Yuko Hirai; Shoichiro Fujita; Mitoshi Akiyama

    1994-07-01

    A rare T-cell subpopulation, CD4{sup -z}8{sup -}{alpha}{beta} cells, may be differentiated through a pathway (or pathways) different from the pathway(s) of conventional CD4+ or CD8+ cells. In the present study, the frequencies of CD4{sup -}8{sup -} T cells in peripheral-blood {alpha}{beta} T cells in 409 atomic bomb survivors were determined to investigate late effects of radiation on the composition of human T-cell subpopulations. The frequency of CD4{sup -}8{sup -}{alpha}{beta} T-cell decreased significantly with the subject`s age and was higher in females than males. A significant increase in the frequency was found in the survivors exposed to more than 1.5Gy, suggesting that the previous radiation exposure altered differentiation and development of T cells. 25 refs., 4 figs., 3 tabs.

  8. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  9. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  10. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  11. Newton's Atom

    NASA Astrophysics Data System (ADS)

    Chaney, Andrea; Espinosa, James; Espinosa, James

    2006-10-01

    At the turn of the twentieth century, physicists and chemists were developing atomic models. Some of the phenomena that they had to explain were the periodic table, the stability of the atom, and the emission spectra. Niels Bohr is known as making the first modern picture that accounted for these. Unknown to much of the physics community is the work of Walter Ritz. His model explained more emission spectra and predates Bohr's work. We will fit several spectra using Ritz's magnetic model for the atom. The problems of stability and chemical periodicity will be shown to be challenges that this model has difficulty solving, but we will present some potentially useful adaptations to the Ritzian atom that can account for them.

  12. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  13. Cold Atoms

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    This chapter and the following one address collective effects of quantum particles, that is, the effects which are observed when we put together a large number of identical particles, for example, electrons, helium-4 or rubidium-85 atoms. We shall see that quantum particles can be classified into two categories, bosons and fermions, whose collective behavior is radically different. Bosons have a tendency to pile up in the same quantum state, while fermions have a tendency to avoid each other. We say that bosons and fermions obey two different quantum statistics, the Bose-Einstein and the Fermi-Dirac statistics, respectively. Temperature is a collective effect, and in Section 5.1 we shall explain the concept of absolute temperature and its relation to the average kinetic energy of molecules. We shall describe in Section 5.2 how we can cool atoms down thanks to the Doppler effect, and explain how cold atoms can be used to improve the accuracy of atomic clocks by a factor of about 100. The effects of quantum statistics are prominent at low temperatures, and atom cooling will be used to obtain Bose-Einstein condensates at low enough temperatures, when the atoms are bosons.

  14. Fibonacci chain polynomials: Identities from self-similarity

    NASA Technical Reports Server (NTRS)

    Lang, Wolfdieter

    1995-01-01

    Fibonacci chains are special diatomic, harmonic chains with uniform nearest neighbor interaction and two kinds of atoms (mass-ratio r) arranged according to the self-similar binary Fibonacci sequence ABAABABA..., which is obtained by repeated substitution of A yields AB and B yields A. The implications of the self-similarity of this sequence for the associated orthogonal polynomial systems which govern these Fibonacci chains with fixed mass-ratio r are studied.

  15. Superheavy-element spectroscopy: Correlations along element 115 decay chains

    NASA Astrophysics Data System (ADS)

    Rudolph, D.; Forsberg, U.; Sarmiento, L. G.; Golubev, P.; Fahlander, C.

    2016-05-01

    Following a brief summary of the region of the heaviest atomic nuclei yet created in the laboratory, data on more than hundred α-decay chains associated with the production of element 115 are combined to investigate time and energy correlations along the observed decay chains. Several of these are analysed using a new method for statistical assessments of lifetimes in sets of decay chains.

  16. Relations in Chains

    ERIC Educational Resources Information Center

    Mineur, B. W.

    1973-01-01

    The criticisms made against chain indexing are reviewed, and PRECIS briefly considered as a possible (but improbable) general substitute for indexing. The failures of chain indexing arise mainly from an overemphasis on generic relationships. The use of symbols to represent relations between terms is suggested for the chain index. (80 references)…

  17. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  18. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  19. Structural, morphological and optical properties of Ag-AgO thin films with the effect of increasing film thickness and annealing temperature

    NASA Astrophysics Data System (ADS)

    Pal, Anil Kumar; Bharathi Mohan, D.

    2015-10-01

    Ag films of thickness ranging from 5 to 60 nm were deposited by thermal evaporation technique followed by air annealing process with temperature varying from 50 to 250 °C. Morphological properties such as particle size, shape, surface roughness and number particles density were studied by atomic force microscope (AFM). The structural transition from quasi-amorphous to nanocrystalline to crystalline upon increasing film thickness and annealing temperature were studied. Ag films with smallest particle size and surface roughness were achieved up to film thickness of 7 nm. The possibility of surface oxidation of Ag on both as deposited and annealed films was studied through Raman mapping by using confocal Raman spectroscopy. Ag film was X-ray amorphous even after annealing process up to the film thickness of 7 nm and above which the crystallinity reached maximum at 250 °C. The surface plasmon resonance (SPR) with a symmetric line shape due to dipole-dipole interactions was found to be very strong for film thickness of 5 nm at 100 °C, attributed to the formation of smaller Ag NPs size of ∼22 nm with least size distribution and higher particles number density of ∼1625 μm-2 in a self-organized fashion. With an increase of film thickness and annealing temperature, an asymmetric broad absorption arose due to increase in damping of collective electron oscillation on bulky NPs. Theoretical absorption spectra were simulated using extended Maxwell garnet method showing a decent agreement with experimental data. The real and imaginary parts of dielectric constants were determined and plotted for different film thicknesses of as deposited Ag films. Even though the film is oxidized at the surface level, it still can be used for plasmonic sensor applications however the film thickness should be approximately 7 nm for the enhanced result.

  20. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  1. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  2. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  3. Structure of Human Ferritin L Chain

    SciTech Connect

    Wang,Z.; Li, C.; Ellenburg, M.; Soistman, E.; Ruble, J.; Wright, B.; Ho, J.; Carter, D.

    2006-01-01

    Ferritin is the major iron-storage protein present in all cells. It generally contains 24 subunits, with different ratios of heavy chain (H) to light chain (L), in the shape of a hollow sphere hosting up to 4500 ferric Fe atoms inside. H-rich ferritins catalyze the oxidation of iron(II), while L-rich ferritins promote the nucleation and storage of iron(III). Several X-ray structures have been determined, including those of L-chain ferritins from horse spleen (HoSF), recombinant L-chain ferritins from horse (HoLF), mouse (MoLF) and bullfrog (BfLF) as well as recombinant human H-chain ferritin (HuHF). Here, structures have been determined of two crystal forms of recombinant human L-chain ferritin (HuLF) obtained from native and perdeuterated proteins. The structures show a cluster of acidic residues at the ferrihydrite nucleation site and at the iron channel along the threefold axis. An ordered Cd{sup 2+} structure is observed within the iron channel, offering further insight into the route and mechanism of iron transport into the capsid. The loop between helices D and E, which is disordered in many other L-chain structures, is clearly visible in these two structures. The crystals generated from perdeuterated HuLF will be used for neutron diffraction studies.

  4. Gushing metal chain

    NASA Astrophysics Data System (ADS)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  5. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  6. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  7. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  8. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  9. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  10. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  11. Critical Chain Exercises

    ERIC Educational Resources Information Center

    Doyle, John Kevin

    2010-01-01

    Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…

  12. Single-Chain Semiconducting Polymer Dots

    PubMed Central

    2015-01-01

    This work describes the preparation and validation of single-chain semiconducting polymer dots (sPdots), which were generated using a method based on surface immobilization, washing, and cleavage. The sPdots have an ultrasmall size of ∼3.0 nm as determined by atomic force microscopy, a size that is consistent with the anticipated diameter calculated from the molecular weight of the single-chain semiconducting polymer. sPdots should find use in biology and medicine as a new class of fluorescent probes. The FRET assay this work presents is a simple and rapid test to ensure methods developed for preparing sPdot indeed produced single-chain Pdots as designed. PMID:25521606

  13. Predicting the chemical stability of monatomic chains

    NASA Astrophysics Data System (ADS)

    Lin, Zheng-Zhe; Chen, Xi

    2013-02-01

    A simple model for evaluating the thermal atomic transfer rates in nanosystems (Lin Z.-Z. et al., EPL, 94 (2011) 40002) was developed to predict the chemical reaction rates of nanosystems with small gas molecules. The accuracy of the model was verified by MD simulations for molecular adsorption and desorption on a monatomic chain. By the prediction, a monatomic carbon chain should survive for 1.2 × 102 years in the ambient of 1 atm O2 at room temperature, and it is very invulnerable to N2, H2O, NO2, CO and CO2, while a monatomic gold chain quickly ruptures in vacuum. It is worth noting that since the model can be easily applied via common ab initio calculations, it could be widely used in the prediction of chemical stability of nanosystems.

  14. Cooperative spin decoherence in finite spin chains

    NASA Astrophysics Data System (ADS)

    Delgado, Fernando; Fernandez-Rossier, Joaquin

    2014-03-01

    Overcoming the problem of relaxation and decoherence of magnetic nanostructures is one of the mayor goals in magnetic data storage. Although spin chains with as few as 12 magnetic atoms have revealed stability in cryogenic conditions, understanding the mechanism leading to these effects is essential for the engineered of stable structures. Here we consider the problem of spin decoherence and relaxation of finite size quantum spin chains due to elastic and spin conserving interactions with an electron gas. Specifically, we consider how the decoherence (T2) and relaxation (T1) times between the two degenerate ground states of a chain of N coupled spins compares with the one of an isolated spin in the same environment. We find that the spin decoherence time of Ising chains can be either enhanced or suppressed depending on the matching between the Fermi wavelength 2 π /kF and the inter-spin distance a. In particular, we find that depending on the values of kF a , it can show, for certain values that depends on the dimensionality of the electron gas, a cooperative enhancement proportional to N2 of the decoherence, analogous to super radiance decay of atom ensembles, or a suppression.

  15. Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Wynands, Robert

    Time is a strange thing. On the one hand it is arguably the most inaccessible physical phenomenon of all: both in that it is impossible to manipulate or modify—for all we know—and in that even after thousands of years mankind's philosophers still have not found a fully satisfying way to understand it. On the other hand, no other quantity can be measured with greater precision. Today's atomic clocks allow us to reproduce the length of the second as the SI unit of time with an uncertainty of a few parts in 1016—orders of magnitude better than any other quantity. In a sense, one can say [1

  16. Majorana states in helical Shiba chains and ladders

    NASA Astrophysics Data System (ADS)

    Ojanen, Teemu; Poyhonen, Kim; Westsrom, Alex; Rontynen, Joel; Nanotheory Team

    2014-03-01

    Motivated by recent proposals to realize Majorana bound states in chains and arrays of magnetic atoms deposited on top of a superconductor, we study the topological properties of various chain structures, ladders and two-dimensional arrangements exhibiting magnetic helices. We show that magnetic domain walls where the chirality of a magnetic helix is inverted support two protected Majorana states giving rise to a tunneling conductance peak twice the height of a single Majorana state. Multiple overlapping Majorana states are protected by chiral symmetry which is present in systems exhibiting planar magnetic textures. Thus the topological properties of coupled chains exhibit nontrivial behaviour as a function of the number of chains beyond the even-odd dichotomy expected from Z2 classification. In addition, it is possible that a ladder of two or more coupled chains exhibit Majorana edge states even when decoupled chains are trivial. The authors acknowledge the Academy of Finland for support.

  17. SUMO chains: polymeric signals.

    PubMed

    Vertegaal, Alfred C O

    2010-02-01

    Ubiquitin and ubiquitin-like proteins are conjugated to a wide variety of target proteins that play roles in all biological processes. Target proteins are conjugated to ubiquitin monomers or to ubiquitin polymers that form via all seven internal lysine residues of ubiquitin. The fate of these target proteins is controlled in a chain architecture-dependent manner. SUMO (small ubiquitin-related modifier) shares the ability of ubiquitin to form chains via internal SUMOylation sites. Interestingly, a SUMO-binding site in Ubc9 is important for SUMO chain synthesis. Similar to ubiquitin-polymer cleavage by USPs (ubiquitin-specific proteases), SUMO chain formation is reversible. SUMO polymers are cleaved by the SUMO proteases SENP6 [SUMO/sentrin/SMT3 (suppressor of mif two 3)-specific peptidase 6], SENP7 and Ulp2 (ubiquitin-like protease 2). SUMO chain-binding proteins including ZIP1, SLX5/8 (synthetic lethal of unknown function 5/8), RNF4 (RING finger protein 4) and CENP-E (centromere-associated protein E) have been identified that interact non-covalently with SUMO chains, thereby regulating target proteins that are conjugated to SUMO multimers. SUMO chains play roles in replication, in the turnover of SUMO targets by the proteasome and during mitosis and meiosis. Thus signalling via polymers is an exciting feature of the SUMO family. PMID:20074033

  18. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  19. Translocation of reptating chains

    NASA Astrophysics Data System (ADS)

    Żurek, S.; Drzewiński, A.; van Leeuwen, J. M. J.

    2011-05-01

    Voltage-driven translocation is modeled with the Rubinstein-Duke rules for hopping reptons in one- and two-dimensional lattices. The chain is driven through the pore by a bias potential promoting the transition of stored length in one direction. Coupling states give a semi-periodicity of the process that enables us to relate the properties to the stationary state of the master equation. The exact solution for short chains and Monte Carlo simulations for longer chains are used to calculate displacements, velocities and the translocation time.

  20. Viewing minerals, atom by atom

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    With state-of-the-art technology supported by scissors and bungy cords, Earth scientists are beginning to look at mineral surfaces and mineral-fluid interactions on an atomic scale.The instrument that can provide such a detailed view is the scanning tunneling microscope (STM), which made a great theoretical and practical splash when it was introduced in 1981 by Gerd Binnig and Heinrich Rohrer, physicists at IBM's laboratory in Zurich. They won a Nobel Prize in Physics for their work 5 years later.

  1. EIT in resonator chains: similarities and differences with atomic media

    NASA Technical Reports Server (NTRS)

    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S.

    2004-01-01

    We theoretically study a parallel configuration of two interacting whispering gallery mode optical resonators and show a narrow-band modal structure as a basis for a widely tunable delay line. For the optimum coupling configuration the system can possess an unusually narrow spectral feature with a much narrower bandwidth than the loaded bandwidth of each individual resonator.

  2. Tailoring the Electronic Structure of Gold Chains on Vicinal Silicon

    NASA Astrophysics Data System (ADS)

    Crain, Jason; Altmann, Kyle; Bromberger, Christian; Erwin, Steven; Kirakosian, Armen; McChesney, Jessica; Lin, Jia-Ling; Himpsel, Franz

    2003-03-01

    Surface states on silicon provide a unique opportunity to study one-dimensional electron systems. By growing chains of gold atoms on vicinal silicon surfaces we demonstrate the capability of engineering one-dimensional metallic states with varying inter-chain spacing and electron count. Using high-resolution angle-resolved photoemission we map the band structures and Fermi surfaces for these atomic chains. The resulting metallic bands exhibit novel properties including the formation of two half-filled metallic bands in place of a single semiconducting band and the formation of a fractionally filled band. From the Fermi surfaces we calculate the one-dimensional versus two-dimensional coupling strengths and demonstrate that their ratio can be tuned from 12:1 to >70:1 by increasing the chain spacing via the miscut angle. [1] [1] J. N. Crain et al., submitted.

  3. Atomic magnetometer

    DOEpatents

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  4. Respiratory chain supercomplexes.

    PubMed

    Schägger, H

    2001-01-01

    Respiratory chain supercomplexes have been isolated from mammalian and yeast mitochondria, and bacterial membranes. Functional roles of respiratory chain supercomplexes are catalytic enhancement, substrate channelling, and stabilization of complex I by complex III in mammalian cells. Bacterial supercomplexes are characterized by their relatively high detergent-stability compared to yeast or mammalian supercomplexes that are stable to sonication. The mobility of substrate cytochrome c increases in the order bacterial, yeast, and mammalian respiratory chain. In bacterial supercomplexes, the electron transfer between complexes III and IV involves movement of the mobile head of a tightly bound cytochrome c, whereas the yeast S. cerevisiae seems to use substrate channelling of a mobile cytochrome c, and mammalian respiratory chains have been described to use a cytochrome c pool. Dimeric ATP synthase seems to be specific for mitochondrial OXPHOS systems. Monomeric complex V was found in Acetobacterium woodii and Paracoccus denitrificans. PMID:11798023

  5. Factorialsum Number Chains.

    ERIC Educational Resources Information Center

    Lamb, John, Jr.

    1989-01-01

    Describes several phenomena in which interesting properties of numbers are demonstrated. Includes discussions of amicable, perfect, and sociable numbers. Presents computer programs for conducting a number chain search. (RT)

  6. Light chain nephropathy.

    PubMed

    Darouich, Sihem; Bettaieb, Ilhem; Aouadia, Raja; Hedri, Hafedh; Abderrahim, Ezzeddine; Goucha, Rym; Khedher, Adel

    2015-01-01

    Light chain deposition disease (LCDD) is characterized by the tissue deposition of monotypic immunoglobulin light chains of either kappa or lambda isotype. It is the archetypal systemic disease that is most frequently diagnosed on a kidney biopsy, although the deposits may involve several other organs. This brief review focuses on the clinicopathological features of LCDD-associated nephropathy with an emphasis on the diagnostic and therapeutic difficulties related to this elusive condition. PMID:26022011

  7. A method to configure protein side-chains from the main-chain trace in homology modelling.

    PubMed

    Eisenmenger, F; Argos, P; Abagyan, R

    1993-06-01

    Protein homology modelling typically involves the prediction of side-chain conformations in the modelled protein while assuming a main-chain trace taken from a known tertiary structure of a protein with homologous sequence. It is generally believed that the need to examine all possible combinations of side-chain conformations poses the major obstacle to accurate homology modelling. Methods proposed heretofore use only discrete or limited searches of the side-chain torsion angle space to mitigate the combinatorial problem and also rely on simplified energy functions for calculational speed. The configurational constraints are typically based upon use of frequently observed torsion angles, fixed steps in torsion angles, or oligopeptide segments taken from tertiary structural databanks that are similar in sequence and conformation with the target structure. In the present work, a more fundamental approach is explored for several protein structures and it is demonstrated that the combinatorial barrier in side-chain placement hardly exists. Each side-group can be configured individually in the environment of only the backbone atoms using a systematic search procedure combined with extensive local energy minimization. Tests, using the main-chain or both the main-chain and remaining side-chain atoms to calculate low energy geometries for each residue, established the dominance of the main-chain contribution. The final structure is achieved by combining the individually placed side-chains followed by a full energy refinement of the structure. The prediction accuracy of the present homology modelling technique was assessed relative to other automated procedures and was found to yield improved predictions relative to the known side-chain conformations determined by X-ray crystallography. PMID:8515455

  8. Observation of Individual Fluorine Atom from Highly Oriented Poly (tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.,; Paley, Mark S.

    1999-01-01

    Direct observation of the film thickness, molecular structure and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.70 A and 0.54 A respectively.

  9. Observation of Individual Fluorine Atoms from Highly Oriented Poly(Tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    2000-01-01

    Direct observation of the film thickness, molecular structure, and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction-transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.7 and 0.54 A respectively.

  10. Topological Superconductivity with Magnetic Atoms

    NASA Astrophysics Data System (ADS)

    Glazman, Leonid

    2015-03-01

    Chains of magnetic impurities embedded in a conventional s-wave superconductor may induce the formation of a topologically non-trivial superconducting phase. If such a phase is formed along a chain, then its ends carry Majorana fermions. We investigate this possibility theoretically by developing a tight-binding Bogoliubov-de Gennes description, starting from the Shiba bound states induced by the individual magnetic impurities. While the resulting Hamiltonian has similarities with the Kitaev model for one-dimensional spinless p-wave superconductors, there are also important differences, most notably the long-range (power-law) nature of hopping and pairing as well as the complex hopping amplitudes. We develop an analytical theory, complemented by numerical approaches, which accounts for the electron long-range pairing and hopping along the chain, inhomogeneous magnetic order in the chain of embedded impurities or spin-orbit coupling in the host superconductor, and the possibility of direct electron hopping between the impurity atoms. This allows us to elucidate the domain of parameters favoring the formation of a topological phase and to find the spatial structure of Majorana states appearing in that phase. This talk is based on joint work with F. von Oppen, Falko Pientka, and Yang Peng.

  11. Selected spectroscopic results on element 115 decay chains

    SciTech Connect

    Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L. -L.; Di Nitto, A.; Düllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, C. J.; Herzberg, R. -D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Schädel, M.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2014-08-24

    We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.

  12. Selected spectroscopic results on element 115 decay chains

    DOE PAGESBeta

    Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L. -L.; Di Nitto, A.; Düllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; et al

    2014-08-24

    We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.

  13. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  14. Chain formation and chain dynamics in a dilute magnetorheological fluid.

    PubMed

    Hagenbüchle, M; Liu, J

    1997-10-20

    Magnetorheological fluids are suspensions of magnetizable particles that reversibly change from liquid to solid when subjected to a magnetic field. A field-induced structure of dipolar chains is responsible for these changes. Our work aimed at understanding chain dynamics and the kinetics of chain formation by using dynamic light scattering. Chain length is determined by measurement of the diffusion coefficient. Chain-length growth shows a Smoluchowski behavior. PMID:18264283

  15. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  16. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  17. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  18. Solitons in Granular Chains

    SciTech Connect

    Manciu, M.; Sen, S.; Hurd, A.J.

    1999-04-12

    The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.

  19. Hybrid ion chains inside an optical cavity

    NASA Astrophysics Data System (ADS)

    Zhou, Zichao; Siverns, James; Quraishi, Qudsia

    2016-05-01

    Trapped ions remain a leading candidate for the implementation of large-scale quantum networks. These networks require nodes that can store and process quantum information as well as communicate with each other though photonic flying qubits. We propose to use hybrid ion chains of barium, for communication, and ytterbium, for quantum information processing. We report on progress in setting up a hybrid ion chain in a versatile four-blade trap using high numerical aperture collection optics. Although the visible photons produced from barium ions are more favorable as they are not suitable for long distance fiber communication. With this in mind, we intend to implement frequency conversion to overcome this issue. Also, with the view toward increasing the flying-qubit production rate, we propose a cavity-based system to enhance interactions between the ions and photons. The cavity axis is to be placed along the axial direction of the trap allowing a chain of multiple ions to interact with the cavity at the same time. With this configuration the atom-photon coupling strength can be improved by sqrt(N), where N is the number of ions. Experiments will focus on exploring the dynamics of hybrid ion chain, dual species quantum information processing, two-colour entanglement and phase gates assisted by the ion-cavity coupling are to be explored.

  20. Solitary waves in nonlinear coupled incommensurate chains

    NASA Astrophysics Data System (ADS)

    Dikandé, A. M.; Kofané, T. C.

    1994-01-01

    We present dynamical theory of soliton excitations in nonlinear coupled incommensurate chains which consists of two deformable chains of different atomic species, each with its own chemical potential, on the same substrate. In the continuum approximation, the motion equations are a set of coupled Sine-Gordon equations. The soliton solutions of these coupled equations are studied in detail. It has been shown that the frequency of the internal oscillations depends on the coupling parameter. The interaction energy between the two weakly coupled Sine-Gordon systems has been found. Results of the dynamical theory have been related to the transport properties in organic conductors such as TTF-TCNQ, KCP and others. Indeed, we have calculated some meaningful physical parameters of these compounds within the soliton limit, and discussed different types of behaviors shown at the transition with respect to variations of the physical parameters.

  1. Anomalous Energy Transport in FPU- Chain

    NASA Astrophysics Data System (ADS)

    Mellet, Antoine; Merino-Aceituno, Sara

    2015-08-01

    This paper is devoted to the derivation of a macroscopic fractional diffusion equation describing heat transport in an anharmonic chain. More precisely, we study here the so-called FPU- chain, which is a very simple model for a one-dimensional crystal in which atoms are coupled to their nearest neighbors by a harmonic potential, weakly perturbed by a quartic potential. The starting point of our mathematical analysis is a kinetic equation: Lattice vibrations, responsible for heat transport, are modeled by an interacting gas of phonons whose evolution is described by the Boltzmann phonon equation. Our main result is the rigorous derivation of an anomalous diffusion equation starting from the linearized Boltzmann phonon equation.

  2. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  3. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  4. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  5. INTERACTING QUANTUM SPIN CHAINS

    SciTech Connect

    ZHELUDEV,A.

    2001-09-09

    A brief review of recent advances in neutron scattering studies of low-dimensional quantum magnets is followed by a particular example. The separation of single-particle and continuum states in the weakly-coupled S = l/2 chains system BaCu{sub 2}Si{sub 2}O{sub 7} is described in some detail.

  6. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  7. Breaking the Chains

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2007-01-01

    In 1792 more than 350,000 people in Britain signed a petition calling for an end to the slave trade. It was, writes historian Adam Hochschild in his book "Bury the Chains," "the first time in history that a large number of people became outraged, and stayed outraged for many years, over someone else's rights". In 1807--after 15 years of…

  8. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  9. Freezing distributed entanglement in spin chains

    SciTech Connect

    D'Amico, Irene; Lovett, Brendon W.; Spiller, Timothy P.

    2007-09-15

    We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems--including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules, or atoms.

  10. Enumeration of Ring–Chain Tautomers Based on SMIRKS Rules

    PubMed Central

    2015-01-01

    A compound exhibits (prototropic) tautomerism if it can be represented by two or more structures that are related by a formal intramolecular movement of a hydrogen atom from one heavy atom position to another. When the movement of the proton is accompanied by the opening or closing of a ring it is called ring–chain tautomerism. This type of tautomerism is well observed in carbohydrates, but it also occurs in other molecules such as warfarin. In this work, we present an approach that allows for the generation of all ring–chain tautomers of a given chemical structure. Based on Baldwin’s Rules estimating the likelihood of ring closure reactions to occur, we have defined a set of transform rules covering the majority of ring–chain tautomerism cases. The rules automatically detect substructures in a given compound that can undergo a ring–chain tautomeric transformation. Each transformation is encoded in SMIRKS line notation. All work was implemented in the chemoinformatics toolkit CACTVS. We report on the application of our ring–chain tautomerism rules to a large database of commercially available screening samples in order to identify ring–chain tautomers. PMID:25158156

  11. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, Udo (Inventor)

    1988-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on a normal probability chart, enables prediction of the yield of good integrated circuits from the wafer.

  12. Cross-contact chain

    NASA Technical Reports Server (NTRS)

    Lieneweg, U. (Inventor)

    1986-01-01

    A system is provided for use with wafers that include multiple integrated circuits that include two conductive layers in contact at multiple interfaces. Contact chains are formed beside the integrated circuits, each contact chain formed of the same two layers as the circuits, in the form of conductive segments alternating between the upper and lower layers and with the ends of the segments connected in series through interfaces. A current source passes a current through the series-connected segments, by way of a pair of current tabs connected to opposite ends of the series of segments. While the current flows, voltage measurements are taken between each of a plurality of pairs of voltage tabs, the two tabs of each pair connected to opposite ends of an interface that lies along the series-connected segments. A plot of interface conductances on normal probability chart enables prediction of the yield of good integrated circuits from the wafer.

  13. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management. PMID:12866156

  14. Callisto Crater Chain Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic of three images shows an area within the Valhalla region on Jupiter's moon, Callisto. North is to the top of the mosaic and the Sun illuminates the surface from the left. The smallest details that can be discerned in this picture are knobs and small impact craters about 160 meters (175 yards) across. The mosaic covers an area approximately 45 kilometers (28 miles) across. It shows part of a prominent crater chain located on the northern part of the Valhalla ring structure.

    Crater chains can form from the impact of material ejected from large impacts (forming secondary chains) or by the impact of a fragmented projectile, perhaps similar to the Shoemaker-Levy 9 cometary impacts into Jupiter in July 1994. It is believed this crater chain was formed by the impact of a fragmented projectile. The images which form this mosaic were obtained by the solid state imaging system aboard NASA's Galileo spacecraft on Nov. 4, 1996 (Universal Time).

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  15. The innovation value chain.

    PubMed

    Hansen, Morten T; Birkinshaw, Julian

    2007-06-01

    The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain. PMID:17580654

  16. Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution.

    PubMed

    Wu, Yimin A; Li, Liang; Li, Zheng; Kinaci, Alper; Chan, Maria K Y; Sun, Yugang; Guest, Jeffrey R; McNulty, Ian; Rajh, Tijana; Liu, Yuzi

    2016-03-22

    Operando characterization of gas-solid reactions at the atomic scale is of great importance for determining the mechanism of catalysis. This is especially true in the study of heterostructures because of structural correlation between the different parts. However, such experiments are challenging and have rarely been accomplished. In this work, atomic scale redox dynamics of Ag/AgCl heterostructures have been studied using in situ environmental transmission electron microscopy (ETEM) in combination with density function theory (DFT) calculations. The reduction of Ag/AgCl to Ag is likely a result of the formation of Cl vacancies while Ag(+) ions accept electrons. The oxidation process of Ag/AgCl has been observed: rather than direct replacement of Cl by O, the Ag/AgCl nanocatalyst was first reduced to Ag, and then Ag was oxidized to different phases of silver oxide under different O2 partial pressures. Ag2O formed at low O2 partial pressure, whereas AgO formed at atmospheric pressure. By combining in situ ETEM observation and DFT calculations, this structural evolution is characterized in a distinct nanoscale environment. PMID:26937679

  17. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  18. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  19. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented. PMID:23611335

  20. Confined linear carbon chains as a route to bulk carbyne

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Rohringer, Philip; Suenaga, Kazu; Niimi, Yoshiko; Kotakoski, Jani; Meyer, Jannik C.; Peterlik, Herwig; Wanko, Marius; Cahangirov, Seymur; Rubio, Angel; Lapin, Zachary J.; Novotny, Lukas; Ayala, Paola; Pichler, Thomas

    2016-06-01

    Strong chemical activity and extreme instability in ambient conditions characterize carbyne, an infinite sp1 hybridized carbon chain. As a result, much less has been explored about carbyne as compared to other carbon allotropes such as fullerenes, nanotubes and graphene. Although end-capping groups can be used to stabilize carbon chains, length limitations are still a barrier for production, and even more so for application. We report a method for the bulk production of long acetylenic linear carbon chains protected by thin double-walled carbon nanotubes. The synthesis of very long arrangements is confirmed by a combination of transmission electron microscopy, X-ray diffraction and (near-field) resonance Raman spectroscopy. Our results establish a route for the bulk production of exceptionally long and stable chains composed of more than 6,000 carbon atoms, representing an elegant forerunner towards the final goal of carbyne’s bulk production.

  1. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  2. Syntheses of protoporphyrin-IX derivatives bearing extended propionate side-chains.

    PubMed

    Holmes, Robert T; Lu, Jianming; Mwakwari, Celinah; Smith, Kevin M

    2009-05-29

    In order to investigate the relationship between depth within membranes of singlet oxygen generation and effectiveness of photodynamic therapy of tumors, analogs of protoporphyrin-IX 1 bearing five 4 and seven 5 carbon atoms (in place of the 3-carbon atom chain in 1) were synthesized from monopyrrole precursors. PMID:20161404

  3. Theory of Topological Superconductivity in Ferromagnetic Metal Chains on Superconducting Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Hua

    2015-03-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity based on transition metal atom chains formed on a superconducting substrate can be realized experimentally when the chain behaves like a ferromagnetic macrospin. In this talk I will address the structural and bonding considerations which determine whether or not a particular atom chain will have magnetic and electronic properties favorable for topological superconductivity. By using a Slater-Koster tight-binding model to account for important features of transition metal electronic structure, I conclude that topological states are common for ferromagnetic chains on superconductors and that they are nearly universal when ferromagnetic transition metal chains form straight lines on superconducting substrates. The proximity induced superconducting gap on the chain is ~ ΔEso / J where Δ is the s-wave pair-potential on the chain, Eso is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange-splitting of the ferromagnetic chain d-bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. I will specifically discuss the spatial decay length of the Majorana end modes which can be much shorter than the coherence length from the induced p-wave gap on the chain due to its strong coupling to the three-dimensional superconducting substrate, in agreement with experimental results. Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s - wave pairing and strong Rashba spin-orbit coupling, but there seems to be considerable scope to optimize the 1D topological superconductivity by varying the atomic composition and structure of the chain. The authors acknowledge support from the Office of Naval Research under Grant ONR-N00014-14-1-0330.

  4. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  5. Monte Carlo without chains

    SciTech Connect

    Chorin, Alexandre J.

    2007-12-12

    A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.

  6. Musical Markov Chains

    NASA Astrophysics Data System (ADS)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  7. Nanoscience of single polymer chains revealed by nanofishing.

    PubMed

    Nakajima, Ken; Nishi, Toshio

    2006-01-01

    The invention of atomic force microscopy (AFM) enabled us to study the statistical properties of single polymer chains by a method called "nanofishing," which stretches a single polymer chain adsorbed on a substrate with its one end by picking it at the other end. A force-extension curve obtained for a single polystyrene chain in a Theta solvent (cyclohexane) shows good agreement with a worm-like chain model and, therefore, gives microscopic information about entropic elasticity. Furthermore, the nanofishing technique can be used for dynamic viscoelastic measurement of single polymer chains. An AFM cantilever is mechanically oscillated at its resonant frequency during the stretching process. This technique enables the estimation of quantitative and simultaneous elongation-dependent changes of stiffness and viscosity of a single chain with the use of a phenomenological model. In this study, the effect of solvent on viscosity in low extension regions reveals that the viscosity is attributed to monomer-solvent friction. Thus, static and dynamic nanofishing techniques are shown to give powerful experimental proofs for several basic questions in polymer physics. The techniques are expected to reveal hidden properties of polymer chains or polymer solutions by any types of macroscopic measurements in the future. PMID:17099889

  8. Extremely long-lived magnetic excitations in supported Fe chains

    NASA Astrophysics Data System (ADS)

    Gauyacq, J. P.; Lorente, N.

    2016-07-01

    We report on a theoretical study of the lifetime of the first excited state of spin chains made of an odd number of Fe atoms on C u2N /Cu (100 ) . Yan, Choi, Burgess, Rolf-Pissarczyk, and Loth [Nat. Nanotech. 10, 40 (2015), 10.1038/nnano.2014.281] recently observed very long lifetimes in the case of F e3 chains. We consider the decay of the first excited state induced by electron-hole pair creation in the substrate. For a finite magnetic field, the two lowest-lying states in the chain have a quasi-Néel state structure. Decay from one state to the other strongly depends on the degree of entanglement of the local spins in the chain. The weak entanglement in the chain accounts for the long lifetimes that increase exponentially with chain length. Despite their apparently very different properties, the behavior of odd and even chains is governed by the same kind of phenomena, in particular entanglement effects. The present results account quite well for the lifetimes recently measured by Yan et al. on F e3 .

  9. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor Fuel…

  10. Atomic Fisher information versus atomic number

    NASA Astrophysics Data System (ADS)

    Nagy, Á.; Sen, K. D.

    2006-12-01

    It is shown that the Thomas Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gáspár provides a qualitatively correct expression for the Fisher information: Gáspár's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number.

  11. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  12. [Trophic chains in soil].

    PubMed

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25508107

  13. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems. PMID:25438576

  14. Imaging of spin waves in atomically designed nanomagnets

    NASA Astrophysics Data System (ADS)

    Spinelli, Anna; Bryant, Benjamin; Delgado, Fernando; Fernández-Rossier, Joaquín; Otte, Alexander F.

    2015-03-01

    Exploring the transition from individual quantum spins to classical magnetism is crucial for the development of nanoscale magnetic memory storage solutions. Our aim is to search for signs of collective spin behavior in magnetic lattices built on a surface. Using the tip of a low temperature scanning tunneling microscope (STM), we position Fe atoms on a Cu2N/Cu(100) network with atomic precision, to build ferromagnetically coupled spin chains up to 6 atoms that exhibit bistable behavior. Using a combination of inelastic electron tunnelling spectroscopy and spin polarized STM, we are able to probe the spin dynamics during the magnetization reversal of the whole chain, after a local excitation. Our experiments allow us to observe the nodal structure of the standing spin waves confined inside the chain, and, through combination with theoretical calculations, we can understand their role in making the system switch from one metastable magnetic state to the other.

  15. Titanium-capped carbon chains as promising new hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Sheng; An, Hui; Zeng, Zhi

    The capacity of Ti-capped sp carbon atomic chains for use as hydrogen storage media is studied using first-principles density functional theory. The Ti atom is strongly attached at one end of the carbon chains via d-p hybridization, forming stable TiCn complexes. We demonstrate that the number of adsorbed H2 on Ti through Kubas interaction depends upon the chain types. For polyyne (n even) or cumulene (n odd) structures, each Ti atom can hold up to five or six H2 molecules, respectively. Furthermore, the TiC5 chain effectively terminated on a C20 fullerene can store hydrogen with optimal binding of 0.52 eV/H2. Our results reveal a possible way to explore high-capacity hydrogen storage materials in truly one-dimensional carbon structures.

  16. Titanium-capped carbon chains as promising new hydrogen storage media.

    PubMed

    Liu, Chun-Sheng; An, Hui; Zeng, Zhi

    2011-02-14

    The capacity of Ti-capped sp carbon atomic chains for use as hydrogen storage media is studied using first-principles density functional theory. The Ti atom is strongly attached at one end of the carbon chains via d-p hybridization, forming stable TiC(n) complexes. We demonstrate that the number of adsorbed H(2) molecules on Ti through Kubas interactions depends upon the chain types. For polyyne (n even) or cumulene (n odd) structures, each Ti atom can hold up to five or six H(2) molecules, respectively. Furthermore, the TiC(5) chain effectively terminated on a C(20) fullerene can store hydrogen with an optimal binding energy of 0.52 eV per H(2) molecule. Our results reveal a possible way to explore high-capacity hydrogen storage materials in truly one-dimensional carbon structures. PMID:21135955

  17. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Deng, Xiaoqing; Cai, Shaohong

    2016-07-01

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  18. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  19. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  20. Robustness of discrete semifluxons in closed Bose–Hubbard chains

    NASA Astrophysics Data System (ADS)

    Gallemí, A.; Guilleumas, M.; Martorell, J.; Mayol, R.; Polls, A.; Juliá-Díaz, B.

    2016-07-01

    We present the properties of the ground state and low-energy excitations of Bose–Hubbard chains with a geometry that varies from open to closed and with a tunable twisted link. In the vicinity of the symmetric π-flux case the system behaves as an interacting gas of discrete semifluxons for finite chains and interactions in the Josephson regime. The energy spectrum of the system is studied by direct diagonalization and by solving the corresponding Bogoliubov–de Gennes equations. The atom–atom interactions are found to enhance the presence of strongly correlated macroscopic superpositions of semifluxons.

  1. Myosin light-chain phosphatase.

    PubMed Central

    Morgan, M; Perry, S V; Ottaway, J

    1976-01-01

    1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain. Images PLATE 1 PMID:186030

  2. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  3. The atomic strain tensor

    SciTech Connect

    Mott, P.H.; Argon, A.S. ); Suter, U.W. Massachusetts Institute of Technology, Cambridge, MA )

    1992-07-01

    A definition of the local atomic strain increments in three dimensions and an algorithm for computing them is presented. An arbitrary arrangement of atoms is tessellated in to Delaunay tetrahedra, identifying interstices, and Voronoi polyhedra, identifying atomic domains. The deformation gradient increment tensor for interstitial space is obtained from the displacement increments of the corner atoms of Delaunay tetrahedra. The atomic site strain increment tensor is then obtained by finding the intersection of the Delaunay tetrahedra with the Voronoi polyhedra, accumulating the individual deformation gradient contributions of the intersected Delaunay tetrahedra into the Voronoi polyhedra. An example application is discussed, showing how the atomic strain clarifies the relative local atomic movement for a polymeric glass treated at the atomic level. 6 refs. 10 figs.

  4. Potential enhancement of antibacterial activity of graphene oxide-silver nanocomposite by introducing C2 carbon chain linkage

    NASA Astrophysics Data System (ADS)

    Yun, Hyosuk; Ahmed, Mohammad Shamsuddin; Lee, Kyungmi; Jeon, Seungwon; Lee, Chul Won

    2016-01-01

    Various carbon chain linkages were introduced during the process of synthesizing silver-nanoparticles (AgNPs)-decorated graphene nanocomposites [referred to as GO-Cx-Ag where, HS-(CH2)x-SH = Cx and x = 0, 2, or 4] to evaluate antibacterial properties. The nano-structures of GO-Cx-Ag were characterized using TEM and XPS, revealing that GO-C2-Ag comprises well-dispersed and smaller AgNPs anchored onto the surface of graphene sheets than the GO-C0-Ag and GO-C4-Ag. The antibacterial activities of those nanocomposites were assessed using paper-disk diffusion and minimal inhibitory concentration (MIC) methods against Gram-negative and Gram-positive bacteria. The results showed that carbon chain linkers enhanced the antibacterial activity against Gram-negative Salmonella typhimurium and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. In particular, GO-C2-Ag showed higher antibacterial activity than GO-C0-Ag and GO-C4-Ag due to nearly eight times higher reactive oxygen species (ROS) formation which determined by fluorescence-based ROS detection experiment. Also, LC-inductively coupled plasma mass spectrometer (LC-ICP-MS) demonstrated that the Ag release from GO-Cx-Ag was insignificant (0.03%). However, the higher ROS formation from GO-C2-Ag was facilitated by higher dispersion, smaller size, and well attachment of AgNPs with AgO species onto graphene sheets. These results suggest that the medium length carbon chain linkers in between Ag and GO can be utilized to improve antibacterial activity.

  5. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  6. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  7. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  8. The glassy wormlike chain

    NASA Astrophysics Data System (ADS)

    Kroy, Klaus; Glaser, Jens

    2007-11-01

    We introduce a new model for the dynamics of a wormlike chain (WLC) in an environment that gives rise to a rough free energy landscape, which we name the glassy WLC. It is obtained from the common WLC by an exponential stretching of the relaxation spectrum of its long-wavelength eigenmodes, controlled by a single parameter \\boldsymbol{\\cal E} . Predictions for pertinent observables such as the dynamic structure factor and the microrheological susceptibility exhibit the characteristics of soft glassy rheology and compare favourably with experimental data for reconstituted cytoskeletal networks and live cells. We speculate about the possible microscopic origin of the stretching, implications for the nonlinear rheology, and the potential physiological significance of our results.

  9. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  10. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics. PMID:23384180

  11. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  12. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  13. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  14. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  15. Protein-ligand docking with multiple flexible side chains.

    PubMed

    Zhao, Yong; Sanner, Michel F

    2008-09-01

    In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 A) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful. PMID:18034309

  16. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    SciTech Connect

    Nigam, Sandeep Majumder, Chiranjib; Sahoo, Suman K.; Sarkar, Pranab

    2014-04-24

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  17. Platinum atomic wire encapsulated in gold nanotubes: A first principle study

    NASA Astrophysics Data System (ADS)

    Nigam, Sandeep; Sahoo, Suman K.; Sarkar, Pranab; Majumder, Chiranjib

    2014-04-01

    The nanotubes of gold incorporated with platinum atomic wire have been investigated by means of firstprinciples density functional theory with plane wave pseudopotential approximation. The structure with zig-zag chain of Pt atoms in side gold is found to be 0.73 eV lower in energy in comparison to straight chain of platinum atoms. The Fermi level of the composite tube was consisting of d-orbitals of Pt atoms. Further interaction of oxygen with these tubes reveals that while tube with zig-zag Pt prefers dissociative adsorption of oxygen molecule, the gold tube with linear Pt wire favors molecular adsorption.

  18. Performance of Loran-C chains relative to UTC

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight Loran-C chains in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO) and the use of the Loran-C navigation system to maintain the user's clock to a UTC scale, are examined. The atomic time (AT) scale and the UTC of several national laboratories and observatories relative to the international atomic time (TAI) are presented. In addition, typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented. Recent revision of the Coordinated Universal Time (UTC) by the International Radio Consultative Committee (CCIR) is given in an appendix.

  19. Chains, bombs, potrzebies and slugs

    NASA Astrophysics Data System (ADS)

    Jewess, Mike; McDowell, Alex; Maxfield, Stephen; Hunt, A. G.; Hicks, Bruce

    2010-03-01

    I read with pleasure Robert Crease's article on unusual units (February pp17-19). However, the article stated that an acre is 10×10 chains, when it is in fact 10×1 chains. Incidentally, a distance of 10 chains (220 yards) is known as a furlong, a word that suggests the length of a ploughed furrow and that is still used in horse-racing.

  20. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  1. Supply Chain Coordination in Hospitals

    NASA Astrophysics Data System (ADS)

    Rego, Nazaré; de Sousa, Jorge Pinho

    This paper presents an innovative approach to support the definition of strategies for the design of alternative configurations of hospital supply chains. This approach was developed around a hybrid Tabu Search / Variable Neighbourhood Search metaheuristic, that uses several neighbourhood structures. The flexibility of the procedure allows its application to supply chains with different topologies and atypical cost characteristics. A preliminary computational experience shows the approach potential in solving large scale supply chain configuration problems. The future incorporation of this approach in a broader Decision Support System (DSS) will provide a tool that can significantly contribute to an increase of healthcare supply chains efficiency and encourage the establishment of collaborative partnerships between their members.

  2. Dynamical Aspects of Inextensible Chains

    NASA Astrophysics Data System (ADS)

    Ferrari, Franco; Pyrka, Maciej

    In the present work, a method to impose the inextensibility constraints on the dynamics of a chain fluctuating in a thermal bath at fixed temperature is investigated. The final goal is to construct the probability function of the chain and the generating functional of the correlation functions of the relevant degrees of freedom of the system. First, we study the dynamics of a freely hinged chain composed by massive beads connected together by massless segments of fixed length. It is shown that a system of this kind may be described by a set of Langevin equations in which the noise is characterized by a non-gaussian probability distribution. Starting from these Langevin equations, the generating functional of the freely hinged chain is derived in path integral form. A connection with a stochastic process governed by a Fokker-Planck equation is established. Next, a chain composed by one-dimensional bars with constant mass distribution is considered. A path integral expression of the generating functional for a chain of this type is derived. Finally, it is verified that in the limit in which the chain becomes continuous, both generating functionals of the freely hinged chain and of the freely jointed bar chain converge to the same result as expected.

  3. Human laminin B2 chain

    SciTech Connect

    Pikkarainen, T.; Kallunki, T.; Tryggvason, K.

    1988-05-15

    The complete amino acid sequence of the human laminin B2 chains has been determined by sequencing of cDNA clones. The six overlapping clones studied cover approximately 7.5 kilobases of which 5312 nucleotides were sequenced from the 5' end. The open reading frame codes for a 33-residue signal peptide and a 1576-residue B2 chain proper, which is 189 residues less than in the highly homologous B1 chain. Computer analysis revealed that the B2 chain consists of distinct domains that contain helical structures, cysteine-rich repeats, and globular regions, as does the B1 chain. However, domain ..cap alpha.. and domain ..beta.. of the B1 chain have no counterpart in B2, and the number of cysteine-rich repeats is 12, or 1 less than in the B1 chain. The degree of homology between the two chains is highest in the cysteine repeat-containing domains III and V where 40% of the residues match. However, in helical domains I/II only 16% of residues match. The results demonstrate that the B1 and B2 chains of laminin are highly homologous proteins that are probably the products of related genes.

  4. Chiral solitons in a coupled double Peierls chain.

    PubMed

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z₂× Z₂to Z₄ and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton's chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy. PMID:26450206

  5. Chiral solitons in a coupled double Peierls chain

    NASA Astrophysics Data System (ADS)

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z2×Z2 to Z4 and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton’s chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy.

  6. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  7. Carbon chain abundance in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Hudgins, D. M.; Bauschlicher, C. W. Jr; Langhoff, S. R.

    1999-01-01

    Thanks to the mid-IR sensitivities of the ISO and IRTS orbiting spectrometers it is now possible to search the diffuse interstellar medium for heretofore inaccessible molecular emission. In view of the recent strong case for the presence of C(7-) (Kirkwood et al. 1998, Tulej et al. 1998),and the fact that carbon chains possess prominent infrared active modes in a very clean portion of the interstellar spectrum, we have analyzed the IRTS spectrum of the diffuse interstellar medium for the infrared signatures of these species. Theoretical and experimental infrared band frequencies and absolute intensities of many different carbon chain species are presented. These include cyanopolyynes, neutral and anionic linear carbon molecules, and neutral and ionized, even-numbered, hydrogenated carbon chains. We show that--as a family--these species have abundances in the diffuse ISM on the order of 10(-10) with respect to hydrogen, values consistent with their abundances in dense molecular clouds. Assuming an average length of 10 C atoms per C-chain implies that roughly a millionth of the cosmically available carbon is in the form of carbon chains and that carbon chains can account for a few percent of the visible to near-IR diffuse interstellar band (DIB) total equivalent width (not DIB number).

  8. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  9. Exploring membrane respiratory chains.

    PubMed

    Marreiros, Bruno C; Calisto, Filipa; Castro, Paulo J; Duarte, Afonso M; Sena, Filipa V; Silva, Andreia F; Sousa, Filipe M; Teixeira, Miguel; Refojo, Patrícia N; Pereira, Manuela M

    2016-08-01

    Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27044012

  10. Verifying the Hanging Chain Model

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…