Science.gov

Sample records for atomic carbon nanowires

  1. Strong ionisation in carbon nanowires

    NASA Astrophysics Data System (ADS)

    Kaymak, V.; Pukhov, A.; Shlyaptsev, V. N.; Rocca, J. J.

    2016-04-01

    Surfaces covered with nanostructures, such as nanowire arrays, are shown to facilitate a significantly higher absorption of laser energy as compared to flat surfaces. Due to the efficient coupling of the laser energy, highly energetic electrons are produced, which in turn can emit intense ultrafast X-ray pulses. Full three dimensional PIC simulations are used to analyse the behaviour of arrays of carbon nanowires 400 nm in diameter, irradiated by a 400-nm laser pulse of 60-fs duration at FWHM and a vector potential of α0 = 18. We analyse the ionisation dynamics of the nanowires. The difference of the ionisation strength and structure between linearly and circularly polarised laser beam is investigated. The nanowires are found to be fully ionised after about 30 laser cycles. Circularly polarised light reveals a slightly stronger ionisation effect.

  2. Contacting nanowires and nanotubes with atomic precision for electronic transport

    SciTech Connect

    Qin, Shengyong; Hellstrom, Sondra L; Bao, Zhenan; Boyanov, Boyan; Li, An-Ping

    2012-01-01

    Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes.

  3. Quantum galvanometer by interfacing a vibrating nanowire and cold atoms.

    PubMed

    Kálmán, O; Kiss, T; Fortágh, J; Domokos, P

    2012-01-11

    We evaluate the coupling of a Bose-Einstein condensate (BEC) of ultracold, paramagnetic atoms to the magnetic field of the current in a mechanically vibrating carbon nanotube within the frame of a full quantum theory. We find that the interaction is strong enough to sense quantum features of the nanowire current noise spectrum by means of hyperfine-state-selective atom counting. Such a nondestructive measurement of the electric current via its magnetic field corresponds to the classical galvanometer scheme, extended to the quantum regime of charge transport. The calculated high sensitivity of the interaction in the nanowire-BEC hybrid systems opens up the possibility of quantum control, which may be further extended to include other relevant degrees of freedom. PMID:22112048

  4. Preparation of Metal Nanowire Decorated Carbon Allotropes

    NASA Technical Reports Server (NTRS)

    Southward, Robin E. (Inventor); Delozier, Donavon Mark (Inventor); Watson, Kent A. (Inventor); Smith, Joseph G. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2014-01-01

    In the method of embodiments of the invention, the metal seeded carbon allotropes are reacted in solution forming zero valent metallic nanowires at the seeded sites. A polymeric passivating reagent, which selects for anisotropic growth is also used in the reaction to facilitate nanowire formation. The resulting structure resembles a porcupine, where carbon allotropes have metallic wires of nanometer dimensions that emanate from the seed sites on the carbon allotrope. These sites are populated by nanowires having approximately the same diameter as the starting nanoparticle diameter.

  5. Atomic Structure of Ultrathin Gold Nanowires.

    PubMed

    Yu, Yi; Cui, Fan; Sun, Jianwei; Yang, Peidong

    2016-05-11

    Understanding of the atomic structure and stability of nanowires (NWs) is critical for their applications in nanotechnology, especially when the diameter of NWs reduces to ultrathin scale (1-2 nm). Here, using aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM), we report a detailed atomic structure study of the ultrathin Au NWs, which are synthesized using a silane-mediated approach. The NWs contain large amounts of generalized stacking fault defects. These defects evolve upon sustained electron exposure, and simultaneously the NWs undergo necking and breaking. Quantitative strain analysis reveals the key role of strain in the breakdown process. Besides, ligand-like morphology is observed at the surface of the NWs, indicating the possibility of using AC-HRTEM for surface ligand imaging. Moreover, the coalescence dynamic of ultrathin Au NWs is demonstrated by in situ observations. This work provides a comprehensive understanding of the structure of ultrathin metal NWs at atomic-scale and could have important implications for their applications. PMID:27071038

  6. Atomic scale investigation of silicon nanowires and nanoclusters

    PubMed Central

    2011-01-01

    In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers. PMID:21711788

  7. Structure and electronic properties of a Mn nanowire encapsulated in carbon nanotubes

    SciTech Connect

    Paduani, C.

    2013-05-01

    First-principles calculations using density functional theory are performed studying the stability and the electronic structure of an one-dimensional chain of Mn atoms as a nanowire encapsulated in a single-walled (5,5) armchair carbon nanotube. The results show a ferromagnetic ground state for a dimerized nanowire where the interatomic Mn–Mn distance is 2.65 Å and the interdimer separation is 3.40 Å. The average Mn moment is 4.35μB. A charge transfer from the nanotube to the nanowire is observed. A polarized spin channel is identified for conduction electrons in the filled nanotube. - Graphical abstract: Spin density for a Mn nanowire encapsulated in a carbon nanotube. Highlights: • A Mn nanowire can be stabilized in a single-walled armchair carbon nanotube. • The ground state is ferromagnetic. • The average moment on the Mn atoms is 4.35μB. • A polarized spin channel is identified for conduction electrons in the filled nanotube.

  8. Carbon nanotubes and nanowires for biological sensing

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ng, Hou Tee; Chen, Hua

    2005-01-01

    This chapter reviews the recent development in biological sensing using nanotechnologies based on carbon nanotubes and various nanowires. These 1D materials have shown unique properties that are efficient in interacting with biomolecules of similar dimensions, i.e., on a nanometer scale. Various aspects including synthesis, materials properties, device fabrication, biofunctionalization, and biological sensing applications of such materials are reviewed. The potential of such integrated nanobiosensors in providing ultrahigh sensitivity, fast response, and high-degree multiplex detection, yet with minimum sample requirements is demonstrated. This chapter is intended to provide comprehensive updated information for people from a variety of backgrounds but with common interests in the fast-moving interdisciplinary field of nanobiotechnology.

  9. Mechanical resonances of helically coiled carbon nanowires.

    PubMed

    Saini, D; Behlow, H; Podila, R; Dickel, D; Pillai, B; Skove, M J; Serkiz, S M; Rao, A M

    2014-01-01

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f₂/f₁ was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers. PMID:24986377

  10. Mechanical Resonances of Helically Coiled Carbon Nanowires

    NASA Astrophysics Data System (ADS)

    Saini, D.; Behlow, H.; Podila, R.; Dickel, D.; Pillai, B.; Skove, M. J.; Serkiz, S. M.; Rao, A. M.

    2014-07-01

    Despite their wide spread applications, the mechanical behavior of helically coiled structures has evaded an accurate understanding at any length scale (nano to macro) mainly due to their geometrical complexity. The advent of helically coiled micro/nanoscale structures in nano-robotics, nano-inductors, and impact protection coatings has necessitated the development of new methodologies for determining their shear and tensile properties. Accordingly, we developed a synergistic protocol which (i) integrates analytical, numerical (i.e., finite element using COMSOL®) and experimental (harmonic detection of resonance; HDR) methods to obtain an empirically validated closed form expression for the shear modulus and resonance frequency of a singly clamped helically coiled carbon nanowire (HCNW), and (ii) circumvents the need for solving 12th order differential equations. From the experimental standpoint, a visual detection of resonances (using in situ scanning electron microscopy) combined with HDR revealed intriguing non-planar resonance modes at much lower driving forces relative to those needed for linear carbon nanotube cantilevers. Interestingly, despite the presence of mechanical and geometrical nonlinearities in the HCNW resonance behavior the ratio of the first two transverse modes f2/f1 was found to be similar to the ratio predicted by the Euler-Bernoulli theorem for linear cantilevers.

  11. Structural, electronic and magnetic properties of hcp Fe, Co and Ni nanowires encapsulated in zigzag carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Zhang, J. M.; Huo, Y. P.

    2011-06-01

    The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C( m, 0) ( m = 7, 8, 9, 10, 11 or 12), along with TM n ( n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.

  12. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations. PMID:20050692

  13. Methodology exploration of specimen preparation for atom probe tomography from nanowires.

    PubMed

    Qu, Jiangtao; Wong, Derek; Du, Sichao; Yang, Limei; Ringer, Simon; Zheng, Rongkun

    2015-12-01

    Semiconductor nanowires have been intensively explored for applications in electronics, photonics, energy conversion and storage. A fundamental and quantitative understanding of growth-structure-property relationships is central to applications where nanowires exhibit clear advantages. Atom Probe Tomography (APT) is able to provide 3 dimensional quantitative elemental distributions at atomic-resolution and is therefore unique in understanding the growth-structure-property relationships. However, the specimen preparation with nanowires is extremely challenging. In this paper, two ion beam free specimen preparation methods for APT are presented which are efficient for various nanowires. PMID:26119926

  14. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    SciTech Connect

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  15. Uniaxial tension-induced fracture in gold nanowires with the dependence on size and atomic vacancies.

    PubMed

    Wang, Fenying; Dai, Yanfeng; Zhao, Jianwei; Li, Qianjin

    2014-12-01

    Atomic vacancies play an important role in the deformation and fracture processes of a metallic nanowire subjected to uniaxial tension. However, it is a great challenge to explore such evolution by experimental methods. Here, molecular dynamics simulations were used to study the deformation, fracture mechanism and mechanical character of gold nanowires with different atomic vacancies and sizes. Several valuable results were observed. Firstly, the statistical breaking position distributions showed two fracture styles of the gold nanowires. The small-sized gold nanowire exhibited a cluster rupture with disordered crystalline structures, and the breaking position appeared in the middle region, while the gold nanowire of large size exhibited an ordered slippage rupture and was apt to break at both ends. Secondly, the breaking position distribution of the large-sized gold nanowire was more sensitive to atomic vacancies than that of the small-sized gold nanowire. Thirdly, the mechanical strength could be improved by decreasing the gold nanowire size. Finally, small-sized gold nanowires had uncertain characteristics owing to the surface atom effects. PMID:25315454

  16. Intermittent contact interaction between an atomic force microscope cantilever and a nanowire

    NASA Astrophysics Data System (ADS)

    Knittel, I.; Ungewitter, L.; Hartmann, U.

    2012-05-01

    We investigate in theory and experiment the intermittent contact interaction between an atomic force microscope (AFM) cantilever and a nanowire under ambient conditions. The nanowire is modeled as a spring reacting instantaneously to any change of the force between the wire and the cantilever. This implies that the cantilever is subject to an "effective" force-distance relation, containing not only the surface forces but also the deflection of the nanowire. Experimentally, CVD-grown tin oxide nanowires and lithographically structured silicon nanowire arrays were investigated by intermittent contact AFM. By comparison of experimental and simulated distance-dependent resonance curves it is found that the nanowires behave like "fast nanosprings" and that the adhesion force is one of the key factors determining distance-dependent resonance curves. The results are fully applicable to a scenario in which a cantilever equipped by a nanowire interacts with a surface.

  17. Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin

    SciTech Connect

    Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

    2013-12-06

    Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

  18. Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport

    NASA Astrophysics Data System (ADS)

    Cai, Huacheng; Wang, Wendong; Liu, Peiwen; Wang, Guangming; Liu, Ankang; He, Zhe; Cheng, Zhaofang; Zhang, Shengli; Xia, Minggang

    2015-06-01

    We demonstrate tin (Sn) nanowires growth enhanced by Selenium (Se) atoms via physical vapor transport (PVT) method. The Raman spectroscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy show that Sn nanowires are synthesized with a large quantity, good quality and high purity of Sn. The growth of Sn nanowires is attributed to Solid-Vapor-Liquid mechanism. The effects of gold nanoparticles catalyst, Si substrate, and Se atoms on Sn nanowires growth are discussed in detail. We find that Se atom plays a key role in the growth of Sn nanowires. The gaseous Sn atoms are absorbed by the eutectic alloy droplets of Se-Au at first. Then Sn atoms precipitate at the liquid-solid phase interface due to a supersaturated solution and form a one-dimensional nanostructure. In all, this PVT method could provide a simple and quick way to synthesize monocrystalline Sn nanowires with an advantage in both quality and quantity. The optical transmittance of Sn nanowires thin film with 2 μm2 density approaches 85-90% in visible wavelength. Therefore, the Sn nanowires thin film can be applied to transparent electrode along with their metallic property.

  19. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  20. Mechanical characterization of metallic nanowires by using a customized atomic microscope

    NASA Astrophysics Data System (ADS)

    Celik, Emrah

    A new experimental method to characterize the mechanical properties of metallic nanowires is introduced. An accurate and fast mechanical characterization of nanowires requires simultaneous imaging and testing of nanowires. However, there exists no practical experimental procedure in the literature that provides a quantitative mechanical analysis and imaging of the nanowire specimens during mechanical testing. In this study, a customized atomic force microscope (AFM) is placed inside a scanning electron microscope (SEM) in order to locate the position of the nanowires. The tip of the atomic force microscope cantilever is utilized to bend and break the nanowires. The nanowires are prepared by electroplating of nickel ions into the nanoscale pores of the alumina membranes. Force versus bending displacement responses of these nanowires are measured experimentally and then compared against those of the finite element analysis and peridynamic simulations to extract their mechanical properties through an inverse approach. The average elastic modulus of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, varies between 220 GPa and 225 GPa. The elastic modulus of bulk nickel published in the literature is comparable to that of nickel nanowires. This observation agrees well with the previous findings on nanowires stating that the elastic modulus of nanowires with diameters over 100nm is similar to that of bulk counterparts. The average yield stress of nickel nanowires, which are extracted using finite element analysis and peridynamic simulations, is found to be between 3.6 GPa to 4.1 GPa. The average value of yield stress of nickel nanowires with 250nm diameter is significantly higher than that of bulk nickel. Higher yield stress of nickel nanowires observed in this study can be explained by the lower defect density of nickel nanowires when compared to their bulk counterparts. Deviation in the extracted mechanical properties is

  1. Atomic size effects studied by transport in single silicide nanowires

    NASA Astrophysics Data System (ADS)

    Miccoli, I.; Edler, F.; Pfnür, H.; Appelfeller, S.; Dähne, M.; Holtgrewe, K.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2016-03-01

    Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown.

  2. Electrodeposition of Pd Nanowires and Nanorods on Carbon Nanoparticles

    SciTech Connect

    Bliznakov, S.; Vukmirovic, M.; Sutter, E.; Adzic, R.

    2011-06-01

    We report on the method for synthesizing palladium nanowires and nanorods involving the electrodeposition on oxidized amorphous carbon nanoparticles from chloride containing solutions. The effect of the deposition overpotential and the concentration of palladium ions on the morphology of the Pd electrodeposits have been established. Palladium grows predominately in the shape of nanowires if electrodeposited at potentials in the H underpotential deposition potential (UPD) range, where chloride ions are adsorbed only at the edges of nucleated monolayer-thick clusters on the carbon surface. The effect of the concentration of palladium ions on deposits morphology is also discussed. The mechanism of electrodeposition of Pd nanowires and nanorods in the H UPD potential range has been proposed.

  3. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition.

    PubMed

    Dai, Pengcheng; Xie, Jin; Mayer, Matthew T; Yang, Xiaogang; Zhan, Jinhua; Wang, Dunwei

    2013-10-11

    Covered with Pt: A uniform catalyst profile that ensures effective radial charge collection from high-aspect-ratio Si nanowires was achieved by atomic layer deposition of Pt nanoparticles. The resulting photoelectrode permits the measurement of high photovoltages and low overpotentials, and leads to very good stability against photooxidation of Si nanowires in solar water-reduction reactions. PMID:24038639

  4. Nanomanipulation and nanofabrication with multi-probe STM: From individual atoms to nanowires

    SciTech Connect

    Qin, Shengyong; Kim, Tae Hwan; Wang, Zhouhang; Li, An-Ping

    2012-01-01

    The wide variety of nanoscale structures and devices demands novel tools for handling, assembly, and fabrication at nanoscopic positioning precision. The manipulation tools should allow for in situ characterization and testing of fundamental building blocks, such as nanotubes and nanowires, as they are built into functional devices. In this paper, a bottom-up technique for nanomanipulation and nanofabrication is reported by using a 4-probe scanning tunneling microscope (STM) combined with a scanning electron microscope (SEM). The applications of this technique are demonstrated in a variety of nanosystems, from manipulating individual atoms to bending, cutting, breaking carbon nanofibers, and constructing nanodevices for electrical characterizations. The combination of the wide field of view of SEM, the atomic position resolution of STM, and the flexibility of multiple scanning probes is expected to be a valuable tool for rapid prototyping in the nanoscience and nanotechnology.

  5. Fabrication of carbon nanowires by pyrolysis of aqueous solution of sugar within asbestos nanofibers

    NASA Astrophysics Data System (ADS)

    Butko, V. Yu.; Fokin, A. V.; Nevedomskii, V. N.; Kumzerov, Yu. A.

    2015-05-01

    Carbon nanowires have been fabricated by pyrolysis of an aqueous solution of sugar in nanochannels of asbestos fibers. Electron microscopy demonstrates that the diameter of these nanochannels corresponds to the diameter of the thinnest of the carbon nanowires obtained. Some of these nanowires have a graphite crystal lattice and internal pores. After asbestos is etched out, the carbon nanowires can retain the original shape of the asbestos fibers. Heating in an inert atmosphere reduces the electrical resistivity of the carbon nanowires to ˜0.035 Ω cm.

  6. Electrical transport measurements of individual bismuth nanowires and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jang, Wan Young

    Nanostructures are defined by reducing dimensions. When the reduced size of materials is comparable to the Fermi wavelength, quantum size effect occurs. Dimensionality plays a critical role in determining the electronic properties of materials, because the density of states of materials is quite different. Nanowires have attracted much attention recently due to their fundamental interest and potential applications. A number of materials have been tried. Among them, bismuth has unique properties. Bismuth has the smallest effective mass as small as 0.001me. This small effective mass of Bi nanowires allows one to observe the quantum confinement effect easily. Also Bi nanowires are good candidates for a low-dimensional transport study due to long mean free path. Because of these remarkable properties of Bi nanowires, many efforts have been made to study Bi nanowires. However, because bismuth is extremely sensitive to the oxide, it is very difficult to make a reliable device. So far, array measurements of Bi nanowires have been reported. The study is focused on the synthesis and electric transport measurements of individual Bi nanowires. Bi nanowires are synthesized by electrodeposition using either anodic aluminum oxide (AAO) templates or commercially available track etched polycarbonate membranes (PCTE). The desired nanowire has a heterostructure of Au - Bi - Au. Au wires on both sides serve as contact electrodes with Bi. To extract nanowires from PCTE or AAO, several attempts have been made. Devices consisting of single Bi nanowires grown by hydrothermal method are fabricated and electrical measurements have been carried out after in-situ deposition of Pt electrodes. The temperature dependence of resistance of majority of nanowires increases with decreasing temperature, showing polycrystalline nature of nanowires. However, some nanowires show resistance peaks at low temperature, suggesting quantum size effect (QSE). Magnetoresistance (MR) has also been measured. We

  7. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Jing, G. Y.; Duan, H. L.; Sun, X. M.; Zhang, Z. S.; Xu, J.; Li, Y. D.; Wang, J. X.; Yu, D. P.

    2006-06-01

    Silver nanowires with different diameters were synthesized by a hydrothermal chemical method. The elastic properties of the nanowires with outer diameters ranging from 20 to 140nm were measured using contact atomic force microscopy. The apparent Young modulus of the nanowires is found to decrease with the increase of the diameter. When the diameter of the silver nanowires is larger than 100nm , the Young modulus approaches a constant value. The size dependence of the apparent Young modulus of the silver nanowires is attributed to the surface effect, which includes the effects of the surface stress, the oxidation layer, and the surface roughness. Thus, a theoretical analysis is presented to explain the size dependence. This analysis is different from the previous models in that both the surface stress and the surface moduli are included in it. We also show that the apparent surface modulus and the surface stress of the silver nanowires can be experimentally determined.

  8. Quantitative dopant distributions in GaAs nanowires using atom probe tomography.

    PubMed

    Du, Sichao; Burgess, Timothy; Gault, Baptiste; Gao, Qiang; Bao, Peite; Li, Li; Cui, Xiangyuan; Kong Yeoh, Wai; Liu, Hongwei; Yao, Lan; Ceguerra, Anna V; Hoe Tan, Hark; Jagadish, Chennupati; Ringer, Simon P; Zheng, Rongkun

    2013-09-01

    Controllable doping of semiconductor nanowires is critical to realize their proposed applications, however precise and reliable characterization of dopant distributions remains challenging. In this article, we demonstrate an atomic-resolution three-dimensional elemental mapping of pristine semiconductor nanowires on growth substrates by using atom probe tomography to tackle this major challenge. This highly transferrable method is able to analyze the full diameter of a nanowire, with a depth resolution better than 0.17 nm thanks to an advanced reconstruction method exploiting the specimen's crystallography, and an enhanced chemical sensitivity of better than 8-fold increase in the signal-to-noise ratio. PMID:23489910

  9. Submillimetre observations of atomic carbon

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Keene, J.

    1982-01-01

    Emission from the ground state fine structure transition of atomic carbon at 610 microns has been observed in Galactic sources. From comparison of the observations with CO emission, it can be deduced that the abundance of neutral carbon relative to CO is high (approximately 0.1-3). The spatial and velocity distribution of CI and CO are often very similar. If molecular clouds are older than 1 x 10 to the 6th power years, the observations necessitate a mechanism which can maintain a high abundance of neutral carbon in cloud material, either by hindering complete conversion of C into CO or by physically and chemically rejuvenating the material.

  10. Conductive-probe atomic force microscopy characterization of silicon nanowire

    PubMed Central

    2011-01-01

    The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623

  11. Helical [110] gold nanowires make longer linear atomic chains

    NASA Astrophysics Data System (ADS)

    Amorim, Edgard; da Silva, Edison

    2009-03-01

    Experiments performed on nanowires (NWs) synthesized by electron beam irradiation technique have shown that gold NWs formed along the [110] direction become helical when the NWs are sufficiently thin [1]. Moreover, helical and other non-crystalline structures have been theoretically predicted to other few metals [2]. Our study using tight-binding molecular dynamics show that gold NWs formed along the [110] direction reconstruct upon stress to form helical NWs. We discuss this formation and our results seem to indicate that an intrinsic mechanism is responsible for the formation of the helical structure. These helical NWs evolve on stretching to form linear atomic chains (LACs) and because they do not form symmetrical tips, these NWs produce longer LACs than other NWs. We use ab initio calculations to study the NW obtained from the tigth-binding simulations at stages close to rupture and compare LAC distances obtained with both methods. Furthermore, we investigate the electronic structure of the NW close to rupture [3]. [1] Y. Kondo, and K. Takayanagi, Science 289, 606 (2000). [2] O. Gulseren, F. Ercolessi and E. Tosatti, Phys. Rev. Lett. 80, 3775 (1998). [3] E.P.M. Amorim and E.Z. da Silva, Phys. Rev. Lett. 101, 125502 (2008).

  12. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lu, Congxiang; Liu, Wen-wen; Wang, Xingli; Li, Xiaocheng; Tan, Chong Wei; Tay, Beng Kang; Coquet, Philippe

    2014-09-01

    We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  13. Carbon-doped SiO(x) nanowires with a large yield of white emission.

    PubMed

    Fabbri, Filippo; Rossi, Francesca; Negri, Marco; Tatti, Roberta; Aversa, Lucrezia; Dhanabalan, Sathish Chander; Verucchi, Roberto; Attolini, Giovanni; Salviati, Giancarlo

    2014-05-01

    The growth of SiOx nanowires (NWs) with intense white emission is reported. Due to carbon monoxide gas being used as a dopant precursor, carbon-doped under-stoichiometric silicon dioxide NWs are obtained. The doping of the NWs is studied by means of x-ray photoelectron spectroscopy, which allows to assess the presence of carbon atoms in the silicon oxide amorphous structure. The light emission properties are studied by means of cathodoluminescence spectroscopy, which shows three main emission bands set at 2.7 eV (blue), 2.3 eV (green) and 1.9 eV (red), resulting in the white emission. PMID:24736107

  14. Tensile manipulation of ultrathin gold nanowires at different sizes and atomic vacancies

    NASA Astrophysics Data System (ADS)

    Wang, Fenying; Fu, Yingqiang; Chi, Baozhu; Dai, Yanfeng; Zhao, Jianwei

    2016-09-01

    The fractures of ultrathin metallic nanowires usually exhibit their uncertainties at small scales. Here, statistics was used to study the uniaxial tension-induced deformation of ultrathin gold nanowires. With the same cross section of gold nanowires (5a × 5a × Ha), different sizes show various deformation mechanisms due to the moving styles of slipped crystalline planes. However, the deformations at different sizes (5a × 5a × 5a) and (5a × 5a × 25a) both show the sensitivity to one atomic vacancy, attributed to the dominant role of the same cross section. The statistical broken position distributions further provide that the deformation fracture is size dependent and sensitive to atomic vacancies, which is explained with the relationship between broken bonds and tensile wave propagation. For the size dependence of mechanical property, the nanowire height (H) of 10a is observed to be a transitional point, when the height is less than 10a, the mechanical strength is unstable, while above this transitional point, mechanical strengths decrease with the nanowire size increasing. Our work provides mechanistic insights into enhancing the reliability of metallic nanostructures by engineering the internal atomic imperfection and structural dimensions.

  15. Nanosensing applications of In IIO 3 nanowires and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Chongwu; Li, Chao; Curreli, Marco; Lin, Henry; Ishikawa, Fumiaki N.; Datar, Ram; Cote, Richard J.; Thompson, Mark E.

    2005-11-01

    We report complementary detection of prostate-specific antigen (PSA) using n-type In IIO 3 nanowires and p-type carbon nanotubes. Our innovation involves developing an approach to covalently attach antibodies to In IIO 3 NW surfaces via the onsite surface synthesis of phosphoric acid-succinylimide ester. Electronic measurements under dry conditions revealed complementary response for In IIO 3 NW and SWNT devices after the binding of PSA. Real time detection in solution has also been demonstrated for PSA down to 5 ng/mL, a benchmark concentration significant for clinical diagnosis of prostate cancer, which is the most frequently diagnosed cancer.

  16. Tribological characteristics of ZnO nanowires investigated by atomic force microscope

    NASA Astrophysics Data System (ADS)

    Chung, Koo-Hyun; Kim, Hyun-Joon; Lin, Li-Yu; Kim, Dae-Eun

    2008-08-01

    Zinc oxide (ZnO) nanowires have attracted great interest in nanodevices. In this work, the tribological characteristics of vertically grown ZnO nanowires obtained by metalorganic chemical vapor deposition were investigated by using an atomic force microscope (AFM). The ZnO nanowires were slid against flattened silicon and diamond-coated AFM probes under 50 150 nN normal force while monitoring the frictional force. The wear of the ZnO nanowires was observed by a scanning electron microscope and quantified based on Archard’s wear law. Also, the wear debris accumulated on the silicon probe was analyzed by using a transmission electron microscope (TEM). The results showed that the wear of ZnO nanowires slid against the silicon probe was extremely small. However, when the ZnO nanowires were slid against the diamond-coated probe, the wear coefficients ranged from 0.006 to 0.162, which correspond to the range of severe wear at the macroscale. It was also shown that the friction coefficient decreased from 0.30 to 0.25 as the sliding cycles increased. From TEM observation, it was found that the ZnO wear debris was mainly amorphous in structure. Also, crystalline ZnO nanoparticles were observed among the wear debris.

  17. Synthesis, characterizations, and applications of carbon nanotubes and silicon nanowires

    NASA Astrophysics Data System (ADS)

    Xiong, Guangyong

    Carbon nanotubes (CNTs) have received great attention because of their unique structure and promising applications in microelectronic devices such as field electron emitters. Silicon nanowires (SiNWs) are also very popular because Si is a well established electronic material. This thesis will present my effort on synthesis, characterizations, and applications of CNTs and SiNWs by thermal chemical vapor deposition (CVD) method. For CNTs growth, block copolymer micelles were used as a template to create large area arrays of metal nanoclusters as catalysts for patterned arrays, and Fe/Al/Fe sandwich film on single crystal magnesium oxide (MgO) substrate was used as the catalyst for growth of long length aligned CNTs by CVD. The factors that affect the structure and length of CNTs have been investigated. CNTs were also grown on etched Si substrate by PECVD method. Continuous dropwise condensation was achieved on a biomimetic two-tier texture with short CNTs deposited on micromachined pillars. Superhydrophobic condensation model was studied. For SiNWs growth, hydrogen gold tetrachloride was uniformly mixed into the salt and decomposed into gold nanoparticles at the growth temperature and acted as the catalyst particles to start the growth of Si nanowires. The as-grown Si nanowires are about 70--90 nm in diameter and up to 200 micrometers long. The salt was completely removed by water rinse after growth. Field emission of aligned CNTs grown on Si substrates and SiNWs on Si substrates and carbon clothes has been studied. A post growth annealing procedure has been found to drastically improve the field emission performance of these CNTs and SiNWs.

  18. Electrical characterization of HgTe nanowires using conductive atomic force microscopy

    SciTech Connect

    Gundersen, P.; Kongshaug, K. O.; Selvig, E.; Haakenaasen, R.

    2010-12-01

    Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves at several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.

  19. Flexible three-dimensional SnO2 nanowire arrays: atomic layer deposition-assisted synthesis, excellent photodetectors, and field emitters.

    PubMed

    Deng, Kaimo; Lu, Hao; Shi, Zhiwei; Liu, Qiong; Li, Liang

    2013-08-28

    Flexible three-dimensional SnO2 nanowire arrays were synthesized on a carbon cloth template in combination with atomic layer deposition and vapor transport. The as-grown nanostructures were assembled by high density quasi-aligned nanowires with a large aspect ratio. Nanoscale photodetectors based on the flexible nanostructure demonstrate excellent ultraviolet light selectivity, a high speed response time less than 0.3 s, and dark current as low as 2.3 pA. Besides, field emission measurements of the hierarchical structure show a rather low turn-on field (3.3 Vμm(-1)) and threshold field (4.5 Vμm(-1)), as well as an excellent field enhancment factor (2375) with a long-term stability up to 20 h. These results indicate that the flexible three-dimensional SnO2 nanowire arrays can be used as functional building blocks for efficient photodetectors and field emitters. PMID:23879602

  20. Sodium ion insertion in hollow carbon nanowires for battery applications.

    PubMed

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V; Yang, Zhengguo; Liu, Jun

    2012-07-11

    Hollow carbon nanowires (HCNWs) were prepared through pyrolyzation of a hollow polyaniline nanowire precursor. The HCNWs used as anode material for Na-ion batteries deliver a high reversible capacity of 251 mAh g(-1) and 82.2% capacity retention over 400 charge-discharge cycles between 1.2 and 0.01 V (vs Na(+)/Na) at a constant current of 50 mA g(-1) (0.2 C). Excellent cycling stability is also observed at an even higher charge-discharge rate. A high reversible capacity of 149 mAh g(-1) also can be obtained at a current rate of 500 mA g(-1) (2C). The good Na-ion insertion property is attributed to the short diffusion distance in the HCNWs and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculations to enable Na-ion insertion in carbon materials. PMID:22686335

  1. Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications

    SciTech Connect

    Cao, Yuliang; Xiao, Lifen; Sushko, Maria L.; Wang, Wei; Schwenzer, Birgit; Xiao, Jie; Nie, Zimin; Saraf, Laxmikant V.; Yang, Zhenguo; Liu, Jun

    2012-07-11

    Hollow Carbon Nanowires (HCNWs) were prepared through pyrolyzation of hollow polyaniline nanowires precursor. The HCNWs used as anode material for Na-ion batteries delivers a high reversible capacity of 251 mAh g{sup -1} and 82.2% capacity retention over 400 charge/discharge cycles between 1.2 and 0.01 V (vs. Na{sup +}/Na) at a constant current of 50 mA g{sup -1} (0.2 C). Excellent cycling stability is also observed at even higher charge-discharge rate. A high reversible capacity of 149 mAh g{sup -1} also can be obtained at a current rate of 500 mA g{sup -1} (2C). The good Na ion insertion property is attributed to the short diffusion distance in the HCNWs, and the large interlayer distance (0.37 nm) between the graphitic sheets, which agrees with the interlayered distance predicted by theoretical calculation to enable Na ion insertion in carbon materials.

  2. Can diamond nanowires grow inside carbon nano-tubes?

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Tománek, David; Feng, Yanquan

    2013-03-01

    We investigate the possibility of templated growth of diamond nanowires from functionalized diamondoid molecules enclosed in a carbon nanotube (CNT). Our ab initio density functional theory studies identify suitable candidate molecules and conditions, under which such molecules may fuse to narrow diamond nanowires with C8H8 or C7H8 unit cells inside a CNT. We find that the unique environment inside a narrow carbon nanotube, which can be suitably represented by a cylindrical potential, subjects enclosed molecules to a high pressure, caused by ``capillary'' forces, and orients them in a suitable way favoring fusion and constraining the resulting structure. Based on total energy calculations, we find that fusion of C10H16 adamantane molecules requires additional energy, whereas fusion of C14H18(COOH)2 diamantane di-acid molecules in hydrogen atmosphere occurs as an exothermic reaction. Our canonical molecular dynamics calculations at elevated temperatures indicate likely intermediate products occurring during this reaction. Supported by the National Science Foundation Cooperative Agreement #EEC-0832785, titled ``NSEC: Center for High-rate Nanomanufacturing''.

  3. Nanowire photonic crystal waveguides for single-atom trapping and strong light-matter interactions

    SciTech Connect

    Yu, S.-P.; Hood, J. D.; Muniz, J. A.; Martin, M. J.; Hung, C.-L.; Kimble, H. J.; Norte, Richard; Meenehan, Seán M.; Cohen, Justin D.; Painter, Oskar

    2014-03-17

    We present a comprehensive study of dispersion-engineered nanowire photonic crystal waveguides suitable for experiments in quantum optics and atomic physics with optically trapped atoms. Detailed design methodology and specifications are provided, as are the processing steps used to create silicon nitride waveguides of low optical loss in the near-IR. Measurements of the waveguide optical properties and power-handling capability are also presented.

  4. Synthesis and chemical modification of single-walled carbon nanotubes and inorganic nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Bo

    atomic ratio of Si to O in the nanowires was 1:1.5. On the other hand, isolated tungsten oxide nanowires were directly grown on tungsten tips and plates by a simple oxidation procedure at elevated temperature. These nanowire preparation techniques are simple, fast and economical. The third project focused on the fabrication of carbon aerogel. Resorcinol and furfural were polymerized in isopropanol using HCl as a catalyst and an organic gel was formed. This gel was dried under the supercritical condition of isopropanol, followed by carbonization at 900°C. Morphology study, surface area and resistance measurements indicated that the obtained carbon aerogel had similar properties to the one prepared under the supercritical condition of carbon oxide, which is a much longer process and requires much more energy.

  5. Electrowetting properties of atomic layer deposited Al2O3 decorated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-01

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al2O3 as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al2O3 films of 10nm thickness were conformally deposited over silicon nanowires. Al2O3 dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  6. Atomic-level cotrol of the thermoelectric properties in polytypoid nanowires

    SciTech Connect

    Andrews, Sean C.; Fardy, Melissa A.; Moore, Michael C.; Aloni, Shaoul; Zhang, Minjuan; Radmilovic, Velimir; Yang, Peidong

    2010-10-23

    Thermoelectric materials have generated interest as a means of increasing the efficiency of power generation through the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features can exhibit enhanced thermoelectric performance due to the decoupling of certain electrical and thermal properties, but the extent to which these features can be controlled is often limited. Here we report a simple synthesis of M{sub 2}O{sub 3}(ZnO){sub n} (M = In, Ga, Fe) nanowires with controllable polytypoid structures, where the nanostructured features are tuned by adjusting the amount of metal precursor. After the introduction of nanometer-scale features (individual atomic layers and alloying), thermal and electrical measurements on single In{sub 2-x}Ga{sub x}O3(ZnO){sub n} nanowires reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, indicating successful modification of the nanowire transport properties.

  7. Electronic transport properties of ultra-thin Ni and Ni-C nanowires.

    PubMed

    Zhang, Leining; Wu, Weikang; Zhou, Yi; Ren, Hongru; Dong, Jichen; Li, Hui

    2016-02-21

    The structures and electronic transport properties of ultra-thin Ni and Ni-C nanowires obtained from carbon nanotube (CNT) templates are theoretically investigated. C atoms tend to locate at the central positions of nanowires and are surrounded by Ni atoms. Spin polarization at the Fermi level is not responsible for the spin filtration of these nanowires. Increasing C concentration can improve the resistance of nanowires by abating the number of electronic transmission channels and the coupling of electron orbitals between Ni atoms. Moreover, with the increase of diameter, the conductance of these nanowires increases as well. This study is helpful for guiding the synthesis of nanowires with desired applications. PMID:26818090

  8. Zinc oxide nanowires on carbon microfiber as flexible gas sensor

    NASA Astrophysics Data System (ADS)

    Tonezzer, M.; Lacerda, R. G.

    2012-03-01

    In the past years, zinc oxide nanowires (ZnO NWs) have been proven to be an excellent material for gas sensors. In this work, we used ZnO nanowires in a novel architecture integrated on a carbon microfiber (μC) textile. This innovative design permits us to obtain mechanical flexibility, while the absence of any lithographic technique allows a large-area and low-cost fabrication of gas sensors. The performances of the devices are investigated for both oxidizing and reducing gases. The nano-on-micro structure of the sensor provides a high surface-to-volume ratio, leading to a fast and intense response for both oxygen (O2) and hydrogen (H2) gases. The sensor response has an optimum temperature condition at 280 °C with a response value of 10 for oxygen and 11 for hydrogen. The limit of detection (LoD) has been found to be 2 and 4 ppm for oxygen and hydrogen, respectively. Additionally, the sensor response and recovery time is small being less than 10 s for both O2 and H2.

  9. Local Atomic Density of Microporous Carbons

    SciTech Connect

    Dmowski, Wojtek; Contescu, Cristian I.; Llobet, Anna; Gallego, Nidia C.; Egami, Takeskhi

    2012-07-12

    We investigated the structure of two disordered carbons: activated carbon fibers (ACF) and ultramicroporous carbon (UMC). These carbons have highly porous structure with large surface areas and consequently low macroscopic density that should enhance adsorption of hydrogen. We used the atomic pair distribution function to probe the local atomic arrangements. The results show that the carbons maintain an in-plane local atomic structure similar to regular graphite, but the stacking of graphitic layers is strongly disordered. Although the local atomic density of these carbons is lower than graphite, it is only {approx}20% lower and is much higher than the macroscopic density due to the porosity of the structure. For this reason, the density of graphene sheets that have optimum separation for hydrogen adsorption is lower than anticipated.

  10. Local atomic density of microporous carbons

    SciTech Connect

    Dmowski, Wojtek; Contescu, Cristian I; Llobet, Anna; Gallego, Nidia C; Egami, Takeshi

    2011-01-01

    We investigated the structure of two disordered carbons: activated carbon fibers (ACF) and ultramicroporous carbon (UMC). These carbons have highly porous structure with large surface areas and consequently low macroscopic density that should enhance adsorption of hydrogen. We used the atomic pair distribution function to probe the local atomic arrangements. The results show that the carbons maintain an in-plane local atomic structure similar to regular graphite, but the stacking of graphitic layers is strongly disordered. Although the local atomic density of these carbons is lower than graphite, it is only ~20% lower and is much higher than the macroscopic density due to the porosity of the structure. For this reason, the density of graphene sheets that have optimum separation for hydrogen adsorption is lower than anticipated.

  11. Carbonization-assisted integration of silica nanowires to photoresist-derived three-dimensional carbon microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Tang, Zirong; Zhang, Lei; Xi, Shuang; Li, Xiaoping; Lai, Wuxing

    2011-11-01

    We propose a novel technique of integrating silica nanowires to carbon microelectrode arrays on silicon substrates. The silica nanowires were grown on photoresist-derived three-dimensional carbon microelectrode arrays during carbonization of patterned photoresist in a tube furnace at 1000 °C under a gaseous environment of N2 and H2 in the presence of Cu catalyst, sputtered initially as a thin layer on the structure surface. Carbonization-assisted nucleation and growth are proposed to extend the Cu-catalyzed vapor-liquid-solid mechanism for the nanowire integration behaviour. The growth of silica nanowires exploits Si from the etched silicon substrate under the Cu particles. It is found that the thickness of the initial Cu coating layer plays an important role as catalyst on the morphology and on the amount of grown silica nanowires. These nanowires have lengths of up to 100 µm and diameters ranging from 50 to 200 nm, with 30 nm Cu film sputtered initially. The study also reveals that the nanowire-integrated microelectrodes significantly enhance the electrochemical performance compared to blank ones. A specific capacitance increase of over 13 times is demonstrated in the electrochemical experiment. The platform can be used to develop large-scale miniaturized devices and systems with increased efficiency for applications in electrochemical, biological and energy-related fields.

  12. Study of the Mechanical Behavior of Radially Grown Fivefold Twinned Nanowires on the Atomic Scale.

    PubMed

    Yue, Yonghai; Zhang, Qi; Yang, Zhenyu; Gong, Qihua; Guo, Lin

    2016-07-01

    In situ bending tests and dynamic modeling simulations are for the first time revealing the mechanical behavior of copper nanowires (NW) with radially grown fivefold twin structures on the atomic scale. Combining the simulations with the experimental results it is shown that both the twin boundaries (TBs) and the twin center act as dislocation sources. TB migration and L-locks are readily observed in these types of radially grown fivefold-twin structures. PMID:27231215

  13. Atomic carbon in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1982-01-01

    The densities of atomic carbon in the Venusian thermosphere are computed for a model which includes both chemistry and transport. The maximum density of C is 2.8 x 10 to the 7th per cu cm near 150 km for an assumed O2 mixing ratio of 0.0001. Photoionization of atomic carbon is found to be the major source of C(+) above 200 km, and resonance scattering of sunlight by atomic carbon may be the major source of the C I emissions at 1561 A, 1657 A, and 1931 A. The computed C(+) densities are found to be in substantial agreement with those measured by Pioneer Venus.

  14. Synthesis and photocatalytic property of porous metal oxides nanowires based on carbon nanofiber template

    NASA Astrophysics Data System (ADS)

    Fan, Weiqiang; Li, Meng; Xu, Jinfu; Bai, Hongye; Zhang, Rongxian; Chen, Chao

    2015-11-01

    A series of porous metal oxides nanowires (Fe2O3, Co3O4, NiO and CuO) have been successfully synthesized, where commercial carbon nanofibers were used as the template. The obtained samples were systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance (UV-Vis DR) spectra and transmission electron microscope (TEM). According to the photodegradation data, the porous metal oxides nanowires exhibit significantly photocatalytic activity for degrading tetracycline (TC). Furthermore, the porous Fe2O3 nanowires show the best photocatalytic performance among all the samples.

  15. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template.

    PubMed

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry. PMID:27188268

  16. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    NASA Astrophysics Data System (ADS)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  17. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  18. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    PubMed

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved. PMID:25319204

  19. Carbon Nanotube Sheet as Top Contact Electrode for Nanowires: Highly Versatile and Simple Process.

    PubMed

    Ternon, Céline; Dupas, Florence; Stein, Sergio; Aguirre, Carla; Dhalluin, Florian; Baron, Thierry

    2015-02-01

    In the past years, lots of research works were dedicated to nanowires and their integration into functional devices. However, despite the great potential of such materials, no device based on nanowires has been transferred in all-day-life. In fact, the vertical device integration is slowed down by the difficulty to contact easily the top electrode. With this work, we present a simple, elegant and versatile process for creating a top electrode contact on nanowires: a carbon nanotube sheet is suspended at the top of the nanowire field. The proof of concept is made through the realization of photovoltaic devices composed of an assembly of vertical PN-junctions based on silicon nanowires. For an illumination density of 100 mW . cm-2, our devices exhibit short circuit current density as high as 15 mA . cm-2. Due to the numerous advantages of the carbon nanotube sheets as top electrode, such as transparency, porosity, good mechanical performance and no need to embed nanowires, such simple and elegant technology should definitely find developments in every field of nanotechnology. PMID:26353710

  20. Monolithic carbon structures including suspended single nanowires and nanomeshes as a sensor platform

    PubMed Central

    2013-01-01

    With the development of nanomaterial-based nanodevices, it became inevitable to develop cost-effective and simple nanofabrication technologies enabling the formation of nanomaterial assembly in a controllable manner. Herein, we present suspended monolithic carbon single nanowires and nanomeshes bridging two bulk carbon posts, fabricated in a designed manner using two successive UV exposure steps and a single pyrolysis step. The pyrolysis step is accompanied with a significant volume reduction, resulting in the shrinkage of micro-sized photoresist structures into nanoscale carbon structures. Even with the significant elongation of the suspended carbon nanowire induced by the volume reduction of the bulk carbon posts, the resultant tensional stress along the nanowire is not significant but grows along the wire thickness; this tensional stress gradient and the bent supports of the bridge-like carbon nanowire enhance structural robustness and alleviate the stiction problem that suspended nanostructures frequently experience. The feasibility of the suspended carbon nanostructures as a sensor platform was demonstrated by testing its electrochemical behavior, conductivity-temperature relationship, and hydrogen gas sensing capability. PMID:24256942

  1. The Synergic Effect of Atomic Hydrogen Adsorption and Catalyst Spreading on Ge Nanowire Growth Orientation and Kinking.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Vystavěl, Tomáš; Šikola, Tomáš

    2016-08-10

    Hydride precursors are commonly used for semiconductor nanowire growth from the vapor phase and hydrogen is quite often used as a carrier gas. Here, we used in situ scanning electron microscopy and spatially resolved Auger spectroscopy to reveal the essential role of atomic hydrogen in determining the growth direction of Ge nanowires with an Au catalyst. With hydrogen passivating nanowire sidewalls the formation of inclined facets is suppressed, which stabilizes the growth in the ⟨111⟩ direction. By contrast, without hydrogen gold diffuses out of the catalyst and decorates the nanowire sidewalls, which strongly affects the surface free energy of the system and results in the ⟨110⟩ oriented growth. The experiments with intentional nanowire kinking reveal the existence of an energetic barrier, which originates from the kinetic force needed to drive the droplet out of its optimum configuration on top of a nanowire. Our results stress the role of the catalyst material and surface chemistry in determining the nanowire growth direction and provide additional insights into a kinking mechanism, thus allowing to inhibit or to intentionally initiate spontaneous kinking. PMID:27458789

  2. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties.

    PubMed

    Guo, Zheng; Li, Minqiang; Liu, Jinhuai

    2008-06-18

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NO(x). Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated. PMID:21825823

  3. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties

    NASA Astrophysics Data System (ADS)

    Guo, Zheng; Li, Minqiang; Liu, Jinhuai

    2008-06-01

    Highly porous cadmium oxide (CdO) nanowires have been prepared by calcining the hydroxy- and carbonate-containing cadmium compound precursor nanowires. The large-scale precursor nanowires were synthesized through a hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize and analyze the as-synthesized precursor nanowires as well as the calcined products. It was revealed that the wire-like morphology of the precursor was fundamentally retained during the process of calcination and the CdO nanowires obtained were polycrystalline with highly porous structures. In order to illustrate the formation mechanism of the porous structures, the morphology and composition evolutions of the precursor nanowires under different stages of the calcining process were further investigated via SEM, x-ray diffraction (XRD) and infrared (IR) absorbance spectroscopy. Gas sensing has been explored for the sensor device fabricated with highly porous CdO nanowires, which demonstrates that it has good response owing to its special structures and great selectivity to NOx. Furthermore, the UV-visible and photoluminescence spectra of highly porous CdO nanowires have also been investigated.

  4. Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition

    SciTech Connect

    Dan, Yaping Chen, Kaixiang; Crozier, Kenneth B.

    2015-01-01

    The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

  5. Atomic resolution studies of carbonic anhydrase II

    SciTech Connect

    Behnke, Craig A.; Le Trong, Isolde; Godden, Jeff W.; Merritt, Ethan A.; Teller, David C.; Bajorath, Jürgen; Stenkamp, Ronald E.

    2010-05-01

    The structure of human carbonic anhydrase II has been solved with a sulfonamide inhibitor at 0.9 Å resolution. Structural variation and flexibility is seen on the surface of the protein and is consistent with the anisotropic ADPs obtained from refinement. Comparison with 13 other atomic resolution carbonic anhydrase structures shows that surface variation exists even in these highly ordered isomorphous crystals. Carbonic anhydrase has been well studied structurally and functionally owing to its importance in respiration. A large number of X-ray crystallographic structures of carbonic anhydrase and its inhibitor complexes have been determined, some at atomic resolution. Structure determination of a sulfonamide-containing inhibitor complex has been carried out and the structure was refined at 0.9 Å resolution with anisotropic atomic displacement parameters to an R value of 0.141. The structure is similar to those of other carbonic anhydrase complexes, with the inhibitor providing a fourth nonprotein ligand to the active-site zinc. Comparison of this structure with 13 other atomic resolution (higher than 1.25 Å) isomorphous carbonic anhydrase structures provides a view of the structural similarity and variability in a series of crystal structures. At the center of the protein the structures superpose very well. The metal complexes superpose (with only two exceptions) with standard deviations of 0.01 Å in some zinc–protein and zinc–ligand bond lengths. In contrast, regions of structural variability are found on the protein surface, possibly owing to flexibility and disorder in the individual structures, differences in the chemical and crystalline environments or the different approaches used by different investigators to model weak or complicated electron-density maps. These findings suggest that care must be taken in interpreting structural details on protein surfaces on the basis of individual X-ray structures, even if atomic resolution data are available.

  6. Atomic and electronic properties of quasi-one-dimensional MOS2 nanowires

    PubMed Central

    Seivane, Lucas Fernandez; Barron, Hector; Botti, Silvana; Marques, Miguel Alexandre Lopes; Rubio, Ángel; López-Lozano, Xóchitl

    2013-01-01

    The structural, electronic and magnetic properties of quasi-one-dimensional MoS2 nanowires, passivated by extra sulfur, have been determined using ab initio density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo-edge, the nanowires do not experience a Peierls-like metal-insulator transition PMID:25429189

  7. Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires

    PubMed Central

    2011-01-01

    Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 μm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively. PMID:21787429

  8. Core-shell morphology and characterization of carbon nanotube nanowires click coupled with polypyrrole

    NASA Astrophysics Data System (ADS)

    Rana, Sravendra; Cho, Jae Whan

    2011-07-01

    Core-shell nanowires having multiwalled carbon nanotubes (MWNT) as a core and polypyrrole (PPy) as a shell were synthesized using Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry. According to transmission electron microscopy measurements, the uniform PPy layers of 10-20 nm in thickness were formed well on the MWNT's surface. In particular 'grafting from' click coupling was more effective in obtaining uniform and stable core-shell nanowires as well as in the reaction yield, compared to 'grafting to' click coupling. This is due to chemical bond formation between PPy and MWNT in equal intervals along the longitudinal direction of the MWNT, achieved by 'grafting from' click coupling. As a result, the core-shell nanowires were very stable even in the sonication of nanowires and showed an enhanced electrical conductivity of 80 S cm - 1, due to the synergetic interaction between MWNTs and PPy, which is higher than the conductivity of pure MWNTs and pure PPy. In addition, the core-shell nanowires could show better NO2 gas sensing properties compared to pure MWNTs and pure PPy as well as MWNT/PPy composites prepared by in situ polymerization. The synthesized core-shell nanowires would play an important role in preparing electrical and sensing devices.

  9. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide

    NASA Astrophysics Data System (ADS)

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Phan, Vu Ngoc; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-01

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20–40 Ω/□ to 7–15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%.

  10. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide.

    PubMed

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Ngoc Phan, Vu; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-19

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20-40 Ω/□ to 7-15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%. PMID:27378668

  11. Detection of gas atoms with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Arash, B.; Wang, Q.

    2013-05-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  12. Detection of gas atoms with carbon nanotubes

    PubMed Central

    Arash, B.; Wang, Q.

    2013-01-01

    Owning to their unparalleled sensitivity resolution, nanomechanical resonators have excellent capabilities in design of nano-sensors for gas detection. The current challenge is to develop new designs of the resonators for differentiating distinct gas atoms with a recognizably high sensitivity. In this work, the characteristics of impulse wave propagation in carbon nanotube-based sensors are investigated using molecular dynamics simulations to provide a new method for detection of noble gases. A sensitivity index based on wave velocity shifts in a single-walled carbon nanotube, induced by surrounding gas atoms, is defined to explore the efficiency of the nano-sensor. The simulation results indicate that the nano-sensor is able to differentiate distinct noble gases at the same environmental temperature and pressure. The inertia and the strengthening effects by the gases on wave characteristics of carbon nanotubes are particularly discussed, and a continuum mechanics shell model is developed to interpret the effects.

  13. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.

    PubMed

    Li, Ying; Mei, Yuan; Zhang, Lin-Qun; Wang, Jian-Hai; Liu, An-Ran; Zhang, Yuan-Jian; Liu, Song-Qin

    2015-10-01

    In this study, manganese oxide nanowires wrapped by nitrogen-doped carbon layers (MnO(x)@NCs) were prepared by carbonization of poly(o-phenylenediamine) layer coated onto MnO2 nanowires for high performance supercapacitors. The component and structure of the MnO(x)@NCs were controlled through carbonization procedure under different temperatures. Results demonstrated that this composite combined the high conductivity and high specific surface area of nitrogen-doped carbon layers with the high pseudo-capacitance of manganese oxide nanowires. The as-prepared MnO(x)@NCs exhibited superior capacitive properties in 1 M Na2SO4 aqueous solution, such as high conductivity (4.167×10(-3) S cm(-1)), high specific capacitance (269 F g(-1) at 10 mV s(-1)) and long cycle life (134 F g(-1) after 1200 cycles at a scan rate of 50 mV s(-1)). It is reckoned that the present novel hybrid nanowires can serve as a promising electrode material for supercapacitors and other electrochemical devices. PMID:26070189

  14. Oxygen atom loss coefficient of carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Vesel, Alenka; Stoica, Silviu Daniel; Vizireanu, Sorin; Dinescu, Gheorghe; Zaplotnik, Rok

    2015-04-01

    Extremely high values of atomic oxygen loss coefficient on carbon nanowall (CNW) surface are reported. CNW layers consisting of interconnected individual nanostructures with average length of 1.1 μm, average thickness of 66 nm and surface density of 3 CNW/μm2 were prepared by plasma jet enhanced chemical-vapor deposition using C2H2/H2/Ar gas mixtures. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectrometry (RS) as well as X-ray photoelectron spectroscopy (XPS). The surface loss coefficient was measured at room temperature in a flowing afterglow at different densities of oxygen atoms supplied from inductively coupled radiofrequency O2 plasma. The RF generator operated at 13.56 MHz and different nominal powers up to 900 W corresponding to different O-atom density in the afterglow up to 1.3 × 1021 m-3. CNW and several different samples of known coefficients for heterogeneous surface recombination of neutral oxygen atoms have been placed separately in the afterglow chamber and the O-atom density in their vicinity was measured with calibrated catalytic probes. Comparison of measured results allowed for determination of the loss coefficient for CNWs and the obtained value of 0.59 ± 0.03 makes this material an extremely effective sink for O-atoms.

  15. Comparison of effects on crustaceans: carbon nanoparticles and molybdenum compounds nanowires

    NASA Astrophysics Data System (ADS)

    Baumerte, A.; Sakale, G.; Zavickis, J.; Putna, I.; Balode, M.; Mrzel, A.; Knite, M.

    2013-04-01

    Carbon nanomaterials (CNM) and molybdenum compound nanostructures are materials with various applications yet little is known regarding the toxicity of these nanoparticles in pristine form in aquatic environment. Daphnia magna standard acute toxicity test (EN ISO 6341:1996; freshwater) and Artemia salina standard acute toxicity test (ArtoxKit standard method; 15 ppt saltwater) were applied to assess the toxicity of non-modified CNM and molybdenum compound nanowires in water. It has been observed that CNM are more toxic in freshwater suspensions and somewhat more toxic than the tested molybdenum compound nanowires.

  16. Thermal and quantum phase slips in niobium-nitride nanowires based on suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Masuda, Kohei; Moriyama, Satoshi; Morita, Yoshifumi; Komatsu, Katsuyoshi; Takagi, Tasuku; Hashimoto, Takayuki; Miki, Norihisa; Tanabe, Takasumi; Maki, Hideyuki

    2016-05-01

    Superconducting nanowires have attracted considerable attention due to their unique quantum-mechanical properties, as well as their potential as next-generation quantum nanodevices, such as single-photon detectors, phase-slip (PS) qubits, and other hybrid structures. In this study, we present the results of one-dimensional (1D) superconductivity in nanowires fabricated by coating suspended carbon nanotubes with a superconducting thin niobium nitride (NbN) film. In the resistance-temperature characteristic curves, hallmarks of 1D superconductivity with PS events are observed with unconventional negative magnetoresistance. We also confirm that a crossover occurs between thermal and quantum PSs as the temperature is lowered.

  17. Photoelectrochemical reduction of carbon dioxide using Ge doped GaN nanowire photoanodes

    NASA Astrophysics Data System (ADS)

    Wang, Yichen; AlOtaibi, Bandar; Chowdhury, Faqrul A.; Fan, Shizhao; Kibria, Md G.; Li, Lu; Li, Chao-Jun; Mi, Zetian

    2015-11-01

    We report on the direct conversion of carbon dioxide (CO2) in a photoelectrochemical cell consisting of germanium doped gallium nitride nanowire anode and copper (Cu) cathode. Various products including methane (CH4), carbon monoxide (CO), and formic acid (HCOOH) were observed under light illumination. A Faradaic efficiency of ˜10% was measured for HCOOH. Furthermore, this photoelectrochemical system showed enhanced stability for 6 h CO2 reduction reaction on low cost, large area Si substrates.

  18. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1986-11-15

    Research has been continued on hot silicon, germanium and carbon atoms. Progress in the period November 16, 1985 to November 15, 1986 is reviewed in the following areas: (1) Recoil atom reaction studies. (2) Reactions of thermally generated free atoms.

  19. Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires.

    PubMed

    Satishkumar, B C; Taubert, A; Luzzi, D E

    2003-01-01

    Nanowires of magnetic metals (Fe, Co, Ho, Gd) have been synthesized inside the hollow interiors of single-wall carbon nanotubes (SWNTs) by filling SWNTs with precursor metal chlorides and subsequent reduction. SWNTs have been filled by either the melt-phase sealed-tube reaction or a solution-phase method. Among the metal chlorides investigated in this study, HoCl3 and GdCl3 filled the SWNTs to a significantly higher extent. The nanowires have been imaged by transmission electron microscopy (TEM), high-resolution transmission electron microscopy, and scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy carried out in conjunction with TEM and STEM confirmed the presence of metal chloride and metal nanowires. PMID:12908245

  20. Global optimization approaches for finding the atomic structure of surfaces and nanowires

    NASA Astrophysics Data System (ADS)

    Ciobanu, Cristian

    2007-03-01

    In the cluster structure community, global optimization methods are common tools for seeking the structure of molecular and atomic clusters. The large number of local minima of the potential energy surface (PES) of these clusters, and the fact that these local minima proliferate exponentially with the number of atoms in the cluster simply demands the use of fast stochastic methods to find the optimum atomic configuration. Therefore, most of the development work has come from (and mostly stayed within) the cluster structure community. Partly due to wide availability and landmark successes of scanning tunneling microscopy (STM) and other high resolution microscopy techniques, finding the structure of periodically reconstructed semiconductor surfaces was not generally posed as a problem of stochastic optimization until recently [1], when we have shown that high-index semiconductor surfaces can have a rather large number of local minima with such low surface energies that the identification of the global minimum becomes problematic. We have therefore set out to develop global optimization methods for systems other than clusters, focusing on periodic systems in one- and two- dimensions as such systems currently occupy a central place in the field of nanoscience. In this talk, we review some of our recent work on global optimization methods (the parallel-tempering Monte Carlo method [1] and the genetic algorithm [2]) and show examples/results from two main problem categories: (a) the two-dimensional problem of determining the atomic configuration of clean semiconductor surfaces [1,2], and (b) finding the structure of freestanding nanowires [3]. While focused on mainly on atomic structure, our account will show examples of how these development efforts contributed to elucidating several physical problems and we will attempt to make a case for widespread use of these methods for structural problems in one and two dimenstions. [1]C.V. Ciobanu and C. Predescu, Reconstruction

  1. Electrowetting properties of atomic layer deposited Al{sub 2}O{sub 3} decorated silicon nanowires

    SciTech Connect

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-24

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al{sub 2}O{sub 3} as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al{sub 2}O{sub 3} films of 10nm thickness were conformally deposited over silicon nanowires. Al{sub 2}O{sub 3} dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  2. Carbon nanotube atomic force microscopy probes

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  3. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties.

    PubMed

    Zhou, Xiaosi; Yu, Le; Lou, Xiong Wen David

    2016-04-21

    In this work, we have designed and synthesized SnO2 nanotubes wrapped by a porous carbon layer via a multistep method. Single-crystalline MnO(x) nanowires are employed as the template. SnO2 is grown on MnO(x) nanowires by a simple hydrothermal method to generate MnO(x)/SnO2 core-shell nanocables, followed by further coating with a layer of polydopamine. After carbonization of polydopamine and selective removal of MnO(x) nanowires, carbon coated SnO2 nanotubes are obtained. This structure combines several advantages. First, the internal empty space of the tubular structure can buffer the huge volume variation during lithium insertion-extraction processes properly, leading to improved cycling performance. Second, the nanosized SnO2 subunits and porous carbon coating not only shorten the distance for lithium ion diffusion but also offer large electrode-electrolyte contact area for fast Li(+) crossing the interface, thus enabling improved rate capability. Third, the flexible carbon coating is closely covered onto the SnO2 nanocrystals, which could facilitate the electronic transport and also significantly mitigate the pulverization. As a result, the as-synthesized SnO2/C-NT nanocomposites exhibit a high reversible capacity of 596 mA h g(-1) after 200 cycles, as well as an outstanding rate capability. PMID:27045732

  4. Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding

    SciTech Connect

    Bielinski, Ashley R.; Kazyak, Eric; Schleputz, Christian M.; Jung, Hee Joon; Wood, Kevin N.; Dasgupta, Neil P.

    2015-07-14

    The ability to synthesize semiconductor nanowires with deterministic and tunable control of orientation and morphology on a wide range of substrates, while high precision and repeatability are maintained, is a challenge currently faced for the development of many nanoscale material systems. Here we show that atomic layer deposition (ALD) presents a reliable method of surface and interfacial modification to guide nanowire orientation on a variety of substrate materials and geometries, including high-aspect-ratio, three-dimensional templates. We demonstrate control of the orientation and geometric properties of hydrothermally grown single crystalline ZnO nanowires via the deposition of a ZnO seed layer by ALD. The crystallographic texture and roughness of the seed layer result in tunable preferred nanowire orientations and densities for identical hydrothermal growth conditions. The structural and chemical relationship between the ALD layers and nanowires was investigated with synchrotron X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy to elucidate the underlying mechanisms of orientation and morphology control. The resulting control parameters were utilized to produce hierarchical nanostructures with tunable properties on a wide range of substrates, including vertical micropillars, paper fibers, porous polymer membranes, and biological substrates. This illustrates the power of ALD for interfacial engineering of heterogeneous material systems at the nanoscale, to provide a highly controlled and scalable seeding method for bottom-up synthesis of integrated nanosystems.

  5. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  6. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon.

    PubMed

    Bhaskaran, Harish; Gotsmann, Bernd; Sebastian, Abu; Drechsler, Ute; Lantz, Mark A; Despont, Michel; Jaroenapibal, Papot; Carpick, Robert W; Chen, Yun; Sridharan, Kumar

    2010-03-01

    Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface, such as nanolithography, nanometrology and nanomanufacturing. Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher strengths than bulk samples. The contact area between the materials must also be described differently at the nanoscale. Diamond-like carbon is routinely used as a surface coating in applications that require low friction and wear because it is resistant to wear at the macroscale, but there has been considerable debate about the wear mechanisms of diamond-like carbon at the nanoscale because it is difficult to fabricate diamond-like carbon structures with nanoscale fidelity. Here, we demonstrate the batch fabrication of ultrasharp diamond-like carbon tips that contain significant amounts of silicon on silicon microcantilevers for use in atomic force microscopy. This material is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions. A wear rate of one atom per micrometre of sliding on SiO(2) is demonstrated. We find that the classical wear law of Archard does not hold at the nanoscale; instead, atom-by-atom attrition dominates the wear mechanisms at these length scales. We estimate that the effective energy barrier for the removal of a single atom is approximately 1 eV, with an effective activation volume of approximately 1 x 10(-28) m. PMID:20118919

  7. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts.

    PubMed

    Engstrom, Daniel S; Savu, Veronica; Zhu, Xueni; Bu, Ian Y Y; Milne, William I; Brugger, Juergen; Boggild, Peter

    2011-04-13

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer scale nanostencil lithography. Individual vertical SiNWs were grown epitaxially by a catalytic vapor-liquid-solid (VLS) process and MWNTs were grown by a plasma-enhanced chemical vapor (PECVD) process on the AFM probes. The AFM probes were tested for imaging micrometers-deep trenches, where they demonstrated a significantly better performance than commercial high aspect ratio tips. Our method demonstrates a reliable and cost-efficient route toward wafer scale manufacturing of SiNW and MWNT AFM probes. PMID:21446752

  8. Functionalization of Carbon Nanotubes using Atomic Hydrogen

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)

    2001-01-01

    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.

  9. Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity

    NASA Astrophysics Data System (ADS)

    Shi, Weina; Zhang, Xiaofan; Li, Shaohui; Zhang, Bingyan; Wang, Mingkui; Shen, Yan

    2015-12-01

    Herein, we report on Cu2O nanowire photocathode covered with amorphous carbon thin layer by a simple and effective anodization method for photoelectrochemical (PEC) water splitting hydrogen production. The coating of carbon thin layer increases the photo-electrochemical performance of Cu2O nanowires, achieving a photocurrent density of up to 2.7 mA cm-2 at 0 V (vs. RHE) with a maximum photon to current conversion efficiency of 0.28% at 0.21 V (vs. RHE) under standard testing conditions. The nanocomposite electrode retains 61.3% of its photo-activity after 1000 s irradiation, which is higher than that of bare Cu2O (18.5%). The detailed investigation results reveal that the augmented photocurrent as well as the enhanced stability could be contributed to the acceleration of electrochemical charge transfer at the electrode/electrolyte interface and the reduced rate of photo-corrosion.

  10. Charge transport in DNA nanowires connected to carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tan, Bikan; Hodak, Miroslav; Lu, Wenchang; Bernholc, J.

    2015-08-01

    DNA is perhaps the worlds most controllable nanowire, with potential applications in nanoelectronics and sensing. However, understanding of its charge transport (CT) properties remains elusive, with experiments reporting a wide range of behaviors from insulating to superconductive. We report extensive first-principle simulations that account for DNA's high flexibility and its native solvent environment. The results show that the CT along the DNA's long axis is strongly dependent on DNA's instantaneous conformation varying over many orders of magnitude. In high CT conformations, delocalized conductive states extending over up to 10 base pairs are found. Their low exponential decay constants further indicate that coherent CT, which is assumed to be active only over 2-3 base pairs in the commonly accepted DNA CT models, can act over much longer length scales. We also identify a simple geometrical rule that predicts CT properties of a given conformation with high accuracy. The effect of mismatched base pairs is also considered: while they decrease conductivities of specific DNA conformations, thermally induced conformational fluctuations wash out this effect. Overall, our results indicate that an immobilized partially dried poly(G)-poly(C) B-DNA is preferable for nanowire applications.

  11. Shape control of nickel nanostructures incorporated in amorphous carbon films: From globular nanoparticles toward aligned nanowires

    NASA Astrophysics Data System (ADS)

    El Mel, A. A.; Bouts, N.; Grigore, E.; Gautron, E.; Granier, A.; Angleraud, B.; Tessier, P. Y.

    2012-06-01

    The growth of nickel/carbon nanocomposite thin films by a hybrid plasma process, which combines magnetron sputtering and plasma enhanced chemical vapor deposition, has been investigated. This study has shown that the films consist of nickel-rich nanostructures embedded in an amorphous carbon matrix. The size, the distribution, the density, and the shape of these nanostructures are directly dependent to the total carbon content within the films. At low carbon content (˜28 at. %), dense nanowire array perpendicularly oriented to the surface of the substrate can be fabricated. For an intermediate carbon concentration (˜35 at. %), the nickel phase was organized into elongated nanoparticles. These nanoparticles became spherical when reaching a higher carbon content (˜54 at. %). The extensive structural study allowed the representation of a structure zone diagram, as well as, the development of a scenario describing the growth mechanisms that take place during the deposition of such nanocomposite material.

  12. Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires

    SciTech Connect

    Bao, Peite; Du, Sichao; Zheng, Rongkun; Wang, Yanbo; Liao, Xiaozhou; Cui, Xiangyuan; Yen, Hung-Wei; Kong Yeoh, Wai; Ringer, Simon P.; Gao, Qiang; Hoe Tan, H.; Jagadish, Chennupati; Liu, Hongwei; Zou, Jin

    2014-01-13

    We report the atomic-scale observation of parallel development of super elasticity and reversible dislocation-based plasticity from an early stage of bending deformation until fracture in GaAs nanowires. While this phenomenon is in sharp contrast to the textbook knowledge, it is expected to occur widely in nanostructures. This work indicates that the super recoverable deformation in nanomaterials is not simple elastic or reversible plastic deformation in nature, but the coupling of both.

  13. N-doped carbon-coated tungsten oxynitride nanowire arrays for highly efficient electrochemical hydrogen evolution.

    PubMed

    Li, Qun; Cui, Wei; Tian, Jingqi; Xing, Zhicai; Liu, Qian; Xing, Wei; Asiri, Abdullah M; Sun, Xuping

    2015-08-10

    It is highly desired but still challenging to develop active nonprecious metal hydrogen evolution reaction (HER) electrocatalysts operating under all pH conditions. Herein, the development of three-dimensional N-doped carbon-coated tungsten oxynitride nanowire arrays on carbon cloth as a highly efficient and durable HER cathode was explored. The material delivers current densities of 10 and 100 mA cm(-2) at overpotentials of 106 and 172 mV, respectively, in acidic medium, and it also performs well in neutral and basic electrolytes. PMID:26121606

  14. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOEpatents

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  15. Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Yu, Le; Lou, Xiong Wen (David)

    2016-04-01

    In this work, we have designed and synthesized SnO2 nanotubes wrapped by a porous carbon layer via a multistep method. Single-crystalline MnOx nanowires are employed as the template. SnO2 is grown on MnOx nanowires by a simple hydrothermal method to generate MnOx/SnO2 core-shell nanocables, followed by further coating with a layer of polydopamine. After carbonization of polydopamine and selective removal of MnOx nanowires, carbon coated SnO2 nanotubes are obtained. This structure combines several advantages. First, the internal empty space of the tubular structure can buffer the huge volume variation during lithium insertion-extraction processes properly, leading to improved cycling performance. Second, the nanosized SnO2 subunits and porous carbon coating not only shorten the distance for lithium ion diffusion but also offer large electrode-electrolyte contact area for fast Li+ crossing the interface, thus enabling improved rate capability. Third, the flexible carbon coating is closely covered onto the SnO2 nanocrystals, which could facilitate the electronic transport and also significantly mitigate the pulverization. As a result, the as-synthesized SnO2/C-NT nanocomposites exhibit a high reversible capacity of 596 mA h g-1 after 200 cycles, as well as an outstanding rate capability.In this work, we have designed and synthesized SnO2 nanotubes wrapped by a porous carbon layer via a multistep method. Single-crystalline MnOx nanowires are employed as the template. SnO2 is grown on MnOx nanowires by a simple hydrothermal method to generate MnOx/SnO2 core-shell nanocables, followed by further coating with a layer of polydopamine. After carbonization of polydopamine and selective removal of MnOx nanowires, carbon coated SnO2 nanotubes are obtained. This structure combines several advantages. First, the internal empty space of the tubular structure can buffer the huge volume variation during lithium insertion-extraction processes properly, leading to improved cycling

  16. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsoo; Shin, Weonho; Choi, Jang Wook; Park, Jeong Young

    2012-07-01

    The nanomechanical properties of fully lithiated and pristine Si nanowires (NWs) deposited on a Si substrate were studied with atomic force microscopy (AFM). Si NWs were synthesized using the vapour-liquid-solid process on stainless-steel substrates using an Au catalyst. Fully lithiated Si NWs were obtained using the electrochemical method, followed by drop-casting on a Si substrate. The roughness of the Si NWs, which was derived from AFM images, is greater for the lithiated Si NWs than for the pristine Si NWs. Force spectroscopy was used to study the influence of lithiation on the tip-surface adhesion force. The lithiated Si NWs revealed a smaller tip-surface adhesion force than the Si substrate by a factor of two, while the adhesion force of the Si NWs is similar to that of the Si substrate. Young's modulus, obtained from the force-distance curve, also shows that the pristine Si NWs have a relatively higher value than the lithiated Si NWs due to the elastically soft and amorphous structures of the lithiated region. These results suggest that force spectroscopy can be used to probe the degree of lithiation at nanometer scale during the charging and discharging processes.

  17. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1989-02-01

    Research has been continued on hot silicon, germanium and carbon atoms. The results of experiments directed toward attaining the goals of this research program are briefly presented for the period September 1, 1987 to January 31, 1989 in sections entitled: (1) The mechanism of hydrogen acquisition by high energy silicon atoms. (2) The mechanism of disilene formation in the reactions of recoiling silicon atoms with silane. (3) The contribution of ionic processes to the primary reactions of recoiling silicon atoms. (4) The role of phosphine in hydrogen acquisition by recoiling silicon atoms. (5) Mechanism of reaction of recoiling carbon atoms with aromatic molecules.

  18. Atomic Carbon in the Southern Milky Way

    NASA Astrophysics Data System (ADS)

    Oka, Tomoharu; Kamegai, Kazuhisa; Hayashida, Masaaki; Nagai, Makoto; Ikeda, Masafumi; Kuboi, Nobuyuki; Tanaka, Kunihiko; Bronfman, Leonardo; Yamamoto, Satoshi

    2005-04-01

    We present a coarsely sampled longitude-velocity (l-V) map of the region l=300deg-354°, b=0deg in the 492 GHz fine-structure transition of neutral atomic carbon (C0 3P1-3P0 [C I]), observed with the Portable 18 cm Submillimeter-wave Telescope (POST18). The l-V distribution of the [C I] emission resembles closely that of the CO J=1-0 emission, showing a widespread distribution of atomic carbon on the Galactic scale. The ratio of the antenna temperatures, RCI/CO, concentrates on the narrow range from 0.05 to 0.3. A large velocity gradient (LVG) analysis shows that the [C I] emission from the Galactic disk is dominated by a population of neutral gas with high C0/CO abundance ratios and moderate column densities, which can be categorized as diffuse translucent clouds. The ratio of bulk emissivity, JCI/JCO, shows a systematic trend, suggesting the bulk C0/CO abundance ratio increasing with the Galactic radius. A mechanism related to kiloparsec-scale structure of the Galaxy may control the bulk C0/CO abundance ratio in the Galactic disk. Two groups of high-ratio (RCI/CO>0.3) areas reside in the l-V loci several degrees inside of tangential points of the Galactic spiral arms. These could be gas condensations just accumulated in the potential well of spiral arms and be in the early stages of molecular cloud formation.

  19. Atomic Scale Surface Structure and Morphology of InAs Nanowire Crystal Superlattices: The Effect of Epitaxial Overgrowth

    PubMed Central

    2015-01-01

    While shell growth engineering to the atomic scale is important for tailoring semiconductor nanowires with superior properties, a precise knowledge of the surface structure and morphology at different stages of this type of overgrowth has been lacking. We present a systematic scanning tunneling microscopy (STM) study of homoepitaxial shell growth of twinned superlattices in zinc blende InAs nanowires that transforms {111}A/B-type facets to the nonpolar {110}-type. STM imaging along the nanowires provides information on different stages of the shell growth revealing distinct differences in growth dynamics of the crystal facets and surface structures not found in the bulk. While growth of a new surface layer is initiated simultaneously (at the twin plane interface) on the {111}A and {111}B nanofacets, the step flow growth proceeds much faster on {111}A compared to {111}B leading to significant differences in roughness. Further, we observe that the atomic scale structures on the {111}B facet is different from its bulk counterpart and that shell growth on this facet occurs via steps perpendicular to the ⟨112⟩B-type directions. PMID:25710727

  20. Structurally uniform and atomically precise carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Segawa, Yasutomo; Ito, Hideto; Itami, Kenichiro

    2016-01-01

    Nanometre-sized carbon materials consisting of benzene units oriented in unique geometric patterns, hereafter named nanocarbons, conduct electricity, absorb and emit light, and exhibit interesting magnetic properties. Spherical fullerene C60, cylindrical carbon nanotubes and sheet-like graphene are representative forms of nanocarbons, and theoretical simulations have predicted several exotic 3D nanocarbon structures. At present, synthetic routes to nanocarbons mainly lead to mixtures of molecules with a range of different structures and properties, which cannot be easily separated or refined into pure forms. Some researchers believe that it is impossible to synthesize these materials in a precise manner. Obtaining ‘pure’ nanocarbons is a great challenge in the field of nanocarbon science, and the construction of structurally uniform nanocarbons, ideally as single molecules, is crucial for the development of functional materials in nanotechnology, electronics, optics and biomedical applications. This Review highlights the organic chemistry approach — more specifically, bottom-up construction with atomic precision — that is currently the most promising strategy towards this end.

  1. Carbon based thirty six atom spheres

    DOEpatents

    Piskoti, Charles R.; Zettl, Alex K.; Cohen, Marvin L.; Cote, Michel; Grossman, Jeffrey C.; Louie, Steven G.

    2005-09-06

    A solid phase or form of carbon is based on fullerenes with thirty six carbon atoms (C.sub.36). The C.sub.36 structure with D.sub.6h symmetry is one of the two most energetically favorable, and is conducive to forming a periodic system. The lowest energy crystal is a highly bonded network of hexagonal planes of C.sub.36 subunits with AB stacking. The C.sub.36 solid is not a purely van der Waals solid, but has covalent-like bonding, leading to a solid with enhanced structural rigidity. The solid C.sub.36 material is made by synthesizing and selecting out C.sub.36 fullerenes in relatively large quantities. A C.sub.36 rich fullerene soot is produced in a helium environment arc discharge chamber by operating at an optimum helium pressure (400 torr). The C.sub.36 is separated from the soot by a two step process. The soot is first treated with a first solvent, e.g. toluene, to remove the higher order fullerenes but leave the C.sub.36. The soot is then treated with a second solvent, e.g. pyridine, which is more polarizable than the first solvent used for the larger fullerenes. The second solvent extracts the C.sub.36 from the soot. Thin films and powders can then be produced from the extracted C.sub.36. Other materials are based on C.sub.36 fullerenes, providing for different properties.

  2. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  3. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed

    Banhart, Florian

    2015-01-01

    Linear strings of sp(1)-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp(2)-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed. PMID:25821697

  4. Chains of carbon atoms: A vision or a new nanomaterial?

    PubMed Central

    2015-01-01

    Summary Linear strings of sp1-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp2-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed. PMID:25821697

  5. Enhanced electrochemical performance of polyaniline/carbon/titanium nitride nanowire array for flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Xie, Yibing; Xia, Chi; Du, Hongxiu; Wang, Wei

    2015-07-01

    The ternary nanocomposite of polyaniline/carbon/titanium nitride (PANI/C/TiN) nanowire array (NWA) is fabricated as electroactive electrode material for flexible supercapacitor application. Firstly, TiN NWA is formed through ammonia nitridation treatment of TiO2 NWA, which is synthesized via seed-assisted hydrothermal reaction. PANI/C/TiN NWA is then formed through sequentially coating carbon and PANI on the surface of TiN NWA. PANI/C/TiN NWA has unique shell/shell/core architecture, including a core layer of TiN NWA with a diameter of 40-160 nm and a length of 1.5 μm, a middle shell layer of carbon with a thickness of about 6.0 nm and an external surface layer of PANI with a thickness of 20-50 nm. PANI/C/TiN NWA provides ion diffusion channel at interspaces between the neighboring nanowires and electron transfer route along independent nanowires. The carbon shell layer is able to protect TiN NWA from electrochemical corrosion during charge/discharge process. PANI/C/TiN NWA displays high specific capacitance of 1093 F g-1 at 1.0 Ag-1, and good cycling stability with a capacity retention of 98% after 2000 cycles, presenting better supercapacitive performance than other integrated nanocomposites of C/PANI/TiN, PANI/TiN and PANI/C/TiO2 NWA. Such a ternary nanocomposite of PANI/C/TiN NWA can be used as an electrode material of flexible supercapacitors.

  6. Ab initio quantum mechanical studies in electronic and structural properties of carbon nanotubes and silicon nanowires

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuki

    This dissertation focuses on ab-initio quantum mechanical calculations of nanoelectronics in three research topics: contact resistance properties of carbon nanotubes and graphenes (Chapters 1 through 3), electrical properties of carbon nanotubes (Chapter 4) and silicon nanowires (Chapter 5). Through all the chapters, the aim of the research is to provide useful guidelines for experimentalists. Chapter 1 presents the contact resistance of metal electrode-carbon nanotube and metal electrode-graphene interfaces for various deposited metals, based on first-principles quantum mechanical density functional and matrix Green's function methods. Chapters 2 and 3 describe inventive ways to enhance contact resistance properties as well as mechanical stabilities using "molecular anchors" (Chapter 2) or using "end-contacted" (or end-on) electrodes (Chapter 3). Chapters 1 through 3 also provide useful guidelines for nanotube assembly process which is one of the main obstacles in nanoelectronics. Chapter 4 shows accurate and detailed band structure properties of single-walled carbon nanotubes using B3LYP hybrid functional, which are critical parameters in determining the electronic properties such as small band gaps (˜0.1 eV) and effective masses. Chapter 5 details both structural and electronic properties of silicon nanowires. These results lead to the findings controlling the diameter and surface coverage by adsorbates (e.g., hydrogen) of silicon nanowires can be effectively used to optimize their properties for various applications. All the theoretical results are compared with other theoretical studies and experimental data. Notably, electronic studies using B3LYP show excellent agreement with experimental studies quantitatively, which previous quantum mechanical calculations had failed. These studies show how quantum mechanical predictions of complex phenomena can be effectively investigated computationally in nanomaterials and nanodevices. Given the difficulty, expense

  7. Preparation and dielectric properties of SiC nanowires self-sacrificially templated by carbonated bacterial cellulose

    SciTech Connect

    Wen, Lixia; Ma, Yongjun; Dai, Bo; Zhou, Yong; Liu, Jinsong; Pei, Chonghua

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A new material – CBC is introduced as a template to prepare SiC nanowires. ► SiC nanowires are synthesized by the infiltration process of reactive vapor Si. ► The highest ε″ of β-SiC nanowires is obtained at 1400 °C. -- Abstract: SiC nanowires were synthesized by the infiltration process of reactive vapor Si in Ar atmosphere at 1350–1450 °C, using carbonated bacterial cellulose (CBC) as carbon template and a reactant. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and vector network analyzer were employed to characterize the samples. The diameter of the resulting β-SiC nanowires changes with calcination temperatures, specifically, 35–60 nm for 1350 °C, 40–80 nm for 1400 °C, and 30–60 nm for 1450 °C. The β-SiC nanowires obtained at 1400 °C possess the highest ε″ of complex permittivity.

  8. Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shao, Dan; Tang, Daoping; Yang, Jianwen; Li, Yanwei; Zhang, Lingzhi

    2015-11-01

    Novel nanostructured silicon composites, Si/Poly(3,4-ethylenedioxythiophene) nanowire network (Si/PNW) and Si/(S-doped-carbon nanowire network) (Si/S-CNW), are prepared by a soft-template polymerization of 3,4-ethylenedioxythiophene (EDOT) using sodium dodecyl sulfate (SDS) as surfactant with the presence of Si nanoparticles and a subsequent carbonization of Si/PNW, respectively. The presence of Si nanoparticles in the soft-template polymerization of EDOT plays a critical role in the formation of PEDOT nanowire network instead of 1D nanowire. After the carbonization of PEDOT, the S-doped-carbon nanowire network matrix shows higher electrical conductivity than PNW counterpart, which facilitates to construct robust conductive bridges between Si nanoparticles and provide large electrode/electrolyte interfaces for rapid charge transfer reactions. Thus, Si/S-CNW composite exhibits excellent cycling stability and rate capability as anode material, retaining a specific capacity of 820 mAh g-1 after 400 cycles with a very small capacity fade of 0.09% per cycle.

  9. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    SciTech Connect

    Khan, Azam Edberg, Jesper; Nur, Omer; Willander, Magnus

    2014-07-21

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  10. A novel investigation on carbon nanotube/ZnO, Ag/ZnO and Ag/carbon nanotube/ZnO nanowires junctions for harvesting piezoelectric potential on textile

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Edberg, Jesper; Nur, Omer; Willander, Magnus

    2014-07-01

    In the present work, three junctions were fabricated on textile fabric as an alternative substrate for harvesting piezoelectric potential. First junction was formed on ordinary textile as (textile/multi-walled carbon nanotube film/zinc oxide nanowires (S1: T/CNTs/ZnO NWs)) and the other two were formed on conductive textile with the following layer sequence: conductive textile/zinc oxide nanowires (S2: CT/ZnO NWs) and conductive textile/multi-walled carbon nanotubes film/zinc oxide nanowires (S3: CT/CNTs/ZnO NWs). Piezoelectric potential was harvested by using atomic force microscopy in contact mode for the comparative analysis of the generated piezoelectric potential. ZnO NWs were synthesized by using the aqueous chemical growth method. Surface analysis of the grown nanostructures was performed by using scanning electron microscopy and transmission electron microscopy. The growth orientation and crystalline size were studied by using X-ray diffraction technique. This study reveals that textile as an alternative substrate have many features like cost effective, highly flexible, nontoxic, light weight, soft, recyclable, reproducible, portable, wearable, and washable for nanogenerators fabrication with acceptable performance and with a wide choice of modification for obtaining large amount of piezoelectric potential.

  11. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Dhaka, Veer; Perros, Alexander; Naureen, Shagufta; Shahid, Naeem; Jiang, Hua; Kakko, Joona-Pekko; Haggren, Tuomas; Kauppinen, Esko; Srinivasan, Anand; Lipsanen, Harri

    2016-01-01

    Low temperature (˜200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (˜2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  12. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1990-11-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs.

  13. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  14. Nitrogenases-A Tale of Carbon Atom(s).

    PubMed

    Hu, Yilin; Ribbe, Markus W

    2016-07-11

    Named after its ability to catalyze the reduction of nitrogen to ammonia, nitrogenase has a surprising rapport with carbon-both through the interstitial carbide that resides in the central cavity of its cofactor and through its ability to catalyze the reductive carbon-carbon coupling of small carbon compounds into hydrocarbon products. Recently, a radical-SAM-dependent pathway was revealed for the insertion of carbide, which signifies a novel biosynthetic route to complex bridged metalloclusters. Moreover, a sulfur-displacement mechanism was proposed for the activation of carbon monoxide by nitrogenase, which suggests an essential role of the interstitial carbide in maintaining the stability while permitting a certain flexibility of the cofactor structure during substrate turnover. PMID:27206025

  15. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling.

    PubMed

    Sure, Sandeep; Torriero, Angel A J; Gaur, Aditya; Li, Lu Hua; Chen, Ying; Tripathi, Chandrakant; Adholeya, Alok; Ackland, M Leigh; Kochar, Mandira

    2015-11-01

    Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles. PMID:26319534

  16. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    SciTech Connect

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ({sup 3} P {sup 0} {sub J}-{sup 3} P{sub J} ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  17. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.

    PubMed

    Sun, Zhiyuan; Hazut, Ori; Huang, Bo-Chao; Chiu, Ya-Ping; Chang, Chia-Seng; Yerushalmi, Roie; Lauhon, Lincoln J; Seidman, David N

    2016-07-13

    Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process. PMID:27351447

  18. Magnetism and spin-polarized transport in carbon atomic wires

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.; Sheng, W.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.

    2009-09-01

    We report ab initio calculations of magnetic and spin-polarized quantum transport properties of pure and nitrogen-doped carbon atomic wires. For finite-sized wires with even number of carbon atoms, total magnetic moment of 2μB is found. On the other hand, wires with odd number atoms have no net magnetic moment. Doped with one or two nitrogen atom(s), the carbon atomic wires exhibit a spin-density-wave-like state. The magnetic properties can be rationalized through bonding patterns and unpaired states. When the wire is sandwiched between Au electrodes to form a transport junction, perfect spin filtering effect can be induced by slightly straining the wire.

  19. Growth Of Graphitic Polyhedra, SiC Platelets, And Carbon Nanotubes Filled With SiC Nanowires By Laser Ablation

    SciTech Connect

    Kokai, Fumio; Uchiyama, Kunihiro; Chigusa, Hajime; Nozaki, Iori; Noguchi, Eriko; Kameda, Yuto; Koshio, Akira

    2010-10-08

    Three characteristic silicon/carbon nanostructures, i.e., graphitic polyhedral (GP) particles, silicon carbide (SiC) platelets, and carbon nanotubes (CNTs) filled with SiC nanowires, were synthesized by the laser ablation of Si-C targets in the presence of high-pressure Ar gas up to 0.9 MPa. The growth of nanostructures was controlled merely by adjusting the Si content in graphite and the ambient Ar gas pressure. Deposits containing GP particles were purified by heat treatment at 550 deg. C in a pure oxygen atmosphere for 1 h. CNTs filled with SiC nanowires were grown without a catalyst. Unlike previous studies of CNTs filled with metals or compounds, all the CNTs checked by transmission electron microscopy contained SiC nanowires and no unfilled CNTs were produced. We discuss the growth mechanisms of the three nanostructures.

  20. Fabrication of silicon carbide nanowires/carbon nanotubes heterojunction arrays by high-flux Si ion implantation.

    PubMed

    Liu, Huaping; Cheng, Guo-An; Liang, Changlin; Zheng, Ruiting

    2008-06-18

    An array of silicon carbide nanowire (SiCNW)-carbon nanotube (CNT) heterojunctions was fabricated by high-flux Si ion implantation into a multi-walled carbon nanotube (MWCNT) array with a metal vapor vacuum arc (MEVVA) ion source. Under Si irradiation, the top part of a CNT array was gradually transformed into an amorphous nanowire array with increasing Si dose while the bottom part still remained a CNT structure. X-ray photoelectron spectroscopy (XPS) analysis shows that the SiC compound was produced in the nanowire part even at the lower Si dose of 5 × 10(16) ions cm(-2), and the SiC amount increased with increasing the Si dose. Therefore, the fabrication of a SiCNW-CNT heterojunction array with the MEVVA technique has been successfully demonstrated. The corresponding formation mechanism of SiCNWs was proposed. PMID:21825818

  1. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review

    NASA Astrophysics Data System (ADS)

    Cole, Milton W.; Crespi, Vincent H.; Dresselhaus, Mildred S.; Dresselhaus, Gene; Fischer, John E.; Gutierrez, Humberto R.; Kojima, K.; Mahan, Gerald D.; Rao, Apparao M.; Sofo, Jorge O.; Tachibana, M.; Wako, K.; Xiong, Qihua

    2010-08-01

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C60 and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  2. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.

    PubMed

    Cole, Milton W; Crespi, Vincent H; Dresselhaus, Mildred S; Dresselhaus, Gene; Fischer, John E; Gutierrez, Humberto R; Kojima, K; Mahan, Gerald D; Rao, Apparao M; Sofo, Jorge O; Tachibana, M; Wako, K; Xiong, Qihua

    2010-08-25

    This review addresses the field of nanoscience as viewed through the lens of the scientific career of Peter Eklund, thus with a special focus on nanocarbons and nanowires. Peter brought to his research an intense focus, imagination, tenacity, breadth and ingenuity rarely seen in modern science. His goal was to capture the essential physics of natural phenomena. This attitude also guides our writing: we focus on basic principles, without sacrificing accuracy, while hoping to convey an enthusiasm for the science commensurate with Peter's. The term 'colloquial review' is intended to capture this style of presentation. The diverse phenomena of condensed matter physics involve electrons, phonons and the structures within which excitations reside. The 'nano' regime presents particularly interesting and challenging science. Finite size effects play a key role, exemplified by the discrete electronic and phonon spectra of C(60) and other fullerenes. The beauty of such molecules (as well as nanotubes and graphene) is reflected by the theoretical principles that govern their behavior. As to the challenge, 'nano' requires special care in materials preparation and treatment, since the surface-to-volume ratio is so high; they also often present difficulties of acquiring an experimental signal, since the samples can be quite small. All of the atoms participate in the various phenomena, without any genuinely 'bulk' properties. Peter was a master of overcoming such challenges. The primary activity of Eklund's research was to measure and understand the vibrations of atoms in carbon materials. Raman spectroscopy was very dear to Peter. He published several papers on the theory of phonons (Eklund et al 1995a Carbon 33 959-72, Eklund et al 1995b Thin Solid Films 257 211-32, Eklund et al 1992 J. Phys. Chem. Solids 53 1391-413, Dresselhaus and Eklund 2000 Adv. Phys. 49 705-814) and many more papers on measuring phonons (Pimenta et al 1998b Phys. Rev. B 58 16016-9, Rao et al 1997a Nature

  3. [INFLUENCE OF NANODIAMONDS AND CARBON NANOWIRES ON SURVIVAL AND CELLS STRUCTURE IN CHICKEN EMBRYO].

    PubMed

    Lavrinenko, V; Zinabadinova, S; Chaikovsky, Yu; Sokurenko, L; Shobat, L

    2016-06-01

    Aim - to determine the effect of nanodiamonds and carbon nanowires on the survival and ultrastructure of chicken embryo cells. The experiment was carried out on chicken embryos, incubated from eggs of Hy-Line breed. Control and two experimental groups were formed (total number of embryos - 100). Diamond nanoparticles and carbon nanowires were administered on day 3 of incubation as a suspension of a biocompatible dextran. Ultrastructural analysis and general study of embryos state were carried out. The most expressed pathological effects were observed in the group with the introduction of the CNW, which caused visual impairment of embryogenesis that started from the early incubation periods. As for ND we can claim their prolonged impact on the development of embryos, manifested in the gradual deterioration of the embryos condition with the manifestations of the pathology in the provisory organs and the body of embryos. The results of our study demonstrate that both types of nanostructures can cause sublethal and irreversible morphologic changes. Detection of morphological evidence of the impact of nanomaterials at significant distances from the site of administration of nanoparticles shows highly penetrating ability of nanomaterials. The presence of damages specific for each type of nanoparticles shows affinity to various tissues and cellular structures. It is demonstrated that similar, at first glance, impact of nanomaterials, such as the induction of oxidative stress might be caused by specific structural transformations. So, ND cause vacuolization of mitochondria, and the CNW - deformation of their shape and appearance of dark inclusions in them. PMID:27441543

  4. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    PubMed Central

    M., Anish Kumar; Jung, Soyoun; Ji, Taeksoo

    2011-01-01

    The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D) structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a) fabrication of biomaterials into nanostructures, (b) alignment of the nanostructures and (c) immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications. PMID:22163892

  5. Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors

    NASA Astrophysics Data System (ADS)

    Liao, Qingliang; Mohr, Markus; Zhang, Xiaohui; Zhang, Zheng; Zhang, Yue; Fecht, Hans-Jörg

    2013-11-01

    We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain.We report the flexible piezotronic strain sensors fabricated using carbon fiber-ZnO nanowire hybrid structures by a novel and reliable method. The I-V characteristic of the sensor shows high sensitivity to external strain due to the change in Schottky barrier height (SBH), which has a linear relationship with strain. This fabricated strain sensor has a quick, real-time current response under both static and dynamic mechanical loads. The change in SBH resulted from the strain-induced piezoelectric potential is investigated by band gap theory. In this work we develop a new feasible method to fabricate a flexible strain sensor within the fabric adapted to textile structures, able to measure their strain. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03536k

  6. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    PubMed

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  7. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    PubMed Central

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa

    2014-01-01

    Summary Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays. PMID:24778944

  8. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  9. Thermally induced local failures in quasi-one-dimensional systems: collapse in carbon nanotubes, neckling in nanowires, bubbles in DNA

    SciTech Connect

    Nisoli, Cristiano; Lookman, Turab; Saxena, Avadh; Abraham, Douglas

    2009-01-01

    Quasi one dimensional systems can suffer local structural failures-broadly defined-along their length: for instance, carbon nanotubes can collapse, nanowires can show bottlenecks below which conductance drops, bubbles open in DNA. We present a formalism to explore the occurrence of those thermally activated failures in complete generality, to calculate the average length between them as a function of the thermodynamic observables.

  10. Carbon-atom wires: 1-D systems with tunable properties

    NASA Astrophysics Data System (ADS)

    Casari, C. S.; Tommasini, M.; Tykwinski, R. R.; Milani, A.

    2016-02-01

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp2-carbon architectures.

  11. Carbon-atom wires: 1-D systems with tunable properties.

    PubMed

    Casari, C S; Tommasini, M; Tykwinski, R R; Milani, A

    2016-02-28

    This review provides a discussion of the current state of research on linear carbon structures and related materials based on sp-hybridization of carbon atoms (polyynes and cumulenes). We show that such systems have widely tunable properties and thus represent an intriguing and mostly unexplored field for both fundamental and applied sciences. We discuss the rich interplay between the structural, vibrational, and electronic properties focusing on recent advances and the future perspectives of carbon-atom wires and novel hybrid sp-sp(2)-carbon architectures. PMID:26847474

  12. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition.

    PubMed

    Subannajui, Kittitat; Güder, Firat; Danhof, Julia; Menzel, Andreas; Yang, Yang; Kirste, Lutz; Wang, Chunyu; Cimalla, Volker; Schwarz, Ulrich; Zacharias, Margit

    2012-06-15

    In this work, the controlled fabrication of highly ordered ZnO nanowire (NW) arrays on silicon substrates is reported. Si NWs fabricated by a combination of phase shift lithography and etching are used as a template and are subsequently substituted by ZnO NWs with a dry-etching technique and atomic layer deposition. This fabrication technique allows the vertical ZnO NWs to be fabricated on 4 in Si wafers. Room temperature photoluminescence and micro-photoluminescence are used to observe the optical properties of the atomic layer deposition (ALD) based ZnO NWs. The sharp UV luminescence observed from the ALD ZnO NWs is unexpected for the polycrystalline nanostructure. Surprisingly, the defect related luminescence is much decreased compared to an ALD ZnO film deposited at the same time ona plane substrate. Electrical characterization was carried out by using nanomanipulators. With the p-type Si substrate and the n-type ZnO NWs the nanodevices represent p–n NW diodes.The nanowire diodes show a very high breakthrough potential which implies that the ALD ZnO NWs can be used for future electronic applications. PMID:22609898

  13. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %). PMID:27128407

  14. Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media.

    PubMed

    Lee, Hyojin; Cho, Jaephil

    2007-09-01

    Branched Sn78Ge22@carbon core-shell nanowires were prepared by thermal annealing of butyl-capped Sn78Ge22 clusters at 600 degrees C in a vacuum. The first discharge and charge capacities are 1250 and 1107 mA h/g, showing a Coulombic efficiency of 88%. Such a one-dimensional core-shell design exploits the benefits of the Sn78Ge22 nanowire to produce an exceptional high rate lithium reactivity (93% Coulombic efficiency at 8C (=6400 mA/g) rate) as well as excellent capacity retention after extended cycles (capacity retention of 94%). PMID:17661523

  15. Angular distribution of photoelectrons from atomic oxygen, nitrogen, and carbon

    NASA Technical Reports Server (NTRS)

    Manson, S. T.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distribution of photoelectrons from atomic oxygen is investigated using Hartree-Fock (HF) wave functions. The correct formulation is used to compare HS and HF results. Agreement between these results is good and the HS calculations have been extended to atomic nitrogen and carbon as well.

  16. The effect of spherical inclusions in metallic glass nanowires under tensile test and its relation to atomic structure

    NASA Astrophysics Data System (ADS)

    Sepulveda, Matias; Gutierrez, Gonzalo; Amigo, Nicolas

    The plastic behavior of crystalline metals is well understood. It is know that this regime is mainly mediated by nucleation and propagation of dislocations as well as by grain boundary sliding. In metallic glasses (MGs) the plastic behavior is quite different from their crystalline counterparts and a relationship between atomic-micro structure and properties remains one of the barriers that has hampered the progress to wide applications of MGs. In particular it would be desirable to have studies which directly relate the evolution of the shear bands (SBs) and glass matrix structure to each step of the applied strain, which would allow us to easily connect the evolution of the atomic structure to the stress-strain curve. Here we present a computational tensile test which shows the evolution of the atomic structure according to the strain is applied for a Cu50Zr50 metallic glass nanowire at 300 K with a Cu-Zr b2 inclusion in the center of the system with three different radius from 20 to 60 Å. The system consists of a million atoms and the local structure is analyzed by means of the Voronoi polyhedral technique and the nucleation and propagation of SBs by monitoring the local atomic shear strain. CONICyT PhD Fellowship No. 21140904.

  17. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination.

    PubMed

    Chen, Po-Chiang; Ishikawa, Fumiaki N; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-25

    A novel hybrid chemical sensor array composed of individual In(2)O(3) nanowires, SnO(2) nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents. PMID:19420469

  18. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chiang; Ishikawa, Fumiaki N.; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-01

    A novel hybrid chemical sensor array composed of individual In2O3 nanowires, SnO2 nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents.

  19. Nanowires of Fe/multi-walled carbon nanotubes and nanometric thin films of Fe/MgO

    SciTech Connect

    Newman, Alexander; Khatiwada, Suman; Neupane, Suman; Seifu, Dereje

    2015-04-14

    We observed that nanowires of Fe grown in the lumens of multi-walled carbon nanotubes required four times higher magnetic field strength to reach saturation compared to planar nanometric thin films of Fe on MgO(100). Nanowires of Fe and nanometric thin films of Fe both exhibited two fold magnetic symmetries. Structural and magnetic properties of 1-dimensional nanowires and 2-dimensional nanometric films were studied by several magnetometery techniques. The θ-2θ x-ray diffraction measurements showed that a (200) peak of Fe appeared on thin film samples deposited at higher substrate temperatures. In these samples prepared at higher temperatures, lower coercive field and highly pronounced two-fold magnetic symmetry were observed. Our results show that maximum magnetocrystalline anisotropy occurred for sample deposited at 100 °C and it decreased at higher deposition temperatures.

  20. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    PubMed Central

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615

  1. p-type doping of GaAs nanowires using carbon

    NASA Astrophysics Data System (ADS)

    Salehzadeh, O.; Zhang, X.; Gates, B. D.; Kavanagh, K. L.; Watkins, S. P.

    2012-11-01

    We report on the electrical properties of Au-catalyzed C-doped GaAs nanowires (NWs) grown by metal organic vapor phase epitaxy. Transport measurements were carried out using a tungsten nanoprobe inside a scanning electron microscope by contacting to the Au catalyst particle of individual nanowires. The doping level could be varied from approximately (4 ± 1) × 1016 cm-3 to (1.0 ± 0.3) × 1019 cm-3 by varying the molar flow of the gas phase carbon precursor, as well as the group V to group III precursor ratio. It was found that the current transport mechanism switches from generation-recombination to tunnelling field emission by increasing the doping level to 1 × 1019 cm-3. Based on a diameter-dependent analysis of the apparent resistivity of the C-doped NWs, we propose that C incorporates into GaAs NWs through the triple boundary at the Au/NW interface. The p-type conductivity of the C-doped NWs was inferred by observing a rectification at negative bias (applied to the Au electrode) and confirmed by back-gating measurements performed on field effect transistor devices.

  2. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-05-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g-1 at 100 mA g-1 and maintain a high reversible capacity of 772 mAh g-1 without showing obvious decay after 50 cycles.

  3. Automated manipulation of carbon nanotubes using atomic force microscopy.

    PubMed

    Zhang, Chao; Wu, Sen; Fu, Xing

    2013-01-01

    The manipulation of carbon nanotubes is an important and essential step for carbon-based nanodevice or nanocircuit assembly. However, the conventional push-and-image approach of manipulating carbon nanotubes using atomic force microscopy has low efficiency on account of the reduplicated scanning process during manipulation. In this article, an automated manipulation system is designed and tested. This automated manipulation system, which includes an atomic force microscope platform and a self-developed computer program for one-dimensional manipulation, is capable of automatically moving any assigned individual carbon nanotube to a defined target location without any intermediate scanning procedure. To demonstrate the high-efficiency of this automated manipulation system and its potential applications in nanoassembly, two experiments were conducted. The first experiment used this system to manipulate a carbon nanotube to a defined target location. In the second experiment, this system was used to automatically manipulate several carbon nanotubes for generating and translating a defined pattern of nanotubes. PMID:23646781

  4. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.

    PubMed

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  5. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    NASA Astrophysics Data System (ADS)

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-12-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  6. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    PubMed Central

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  7. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    NASA Astrophysics Data System (ADS)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  8. Numerical study of the noise power of a carbon nanowire network

    SciTech Connect

    Zhou, Chenggang; Zhang, Xiaoguang

    2008-01-01

    A thin film made of a carbon nanowire network can be mapped into a resistor network containing tunnel junctions that are randomly switched. In such a network the variance of individual resistance is infinity so the perturbative analysis must be applied on conductances. We study the relationship between the noise power and the network morphology through a Monte Carlo simulation of the conductance and the $1/f$ noise spectrum. We find that the noise power scales with the average current in a power law $S\\propto I^{-\\omega}$ where $\\omega$ is a function of the network morphology. The noise spectrum is studied in detail and we give a simple explanation for the observed relation between total noise power and the conductance.

  9. Enhanced electroactive properties of polyurethane films loaded with carbon-coated SiC nanowires

    NASA Astrophysics Data System (ADS)

    Guiffard, B.; Guyomar, D.; Seveyrat, L.; Chowanek, Y.; Bechelany, M.; Cornu, D.; Miele, P.

    2009-03-01

    Polyurethane-based nanocomposite films were prepared by incorporating carbon-coated SiC nanowires (SiC@C) into the polymer matrix. Electric field-induced strain measurements revealed that a loading of 0.5 wt% SiC@C increased the strain level by a factor of 1.7 at a moderate field strength (6.5 V µm-1). Current-electric field characteristics and the film thickness dependence of strain demonstrated that the improvement of the electromechanical response was linked to a more pronounced space charge effect in the nanocomposite than in the polymer host. DSC measurements revealed that the level of phase mixing in the PU matrix remained unchanged after SiC@C filling; hence, the nano-objects themselves acted as charge traps.

  10. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source

    PubMed Central

    Lo Faro, Maria Josè; D’Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-01-01

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications. PMID:26592198

  11. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source.

    PubMed

    Lo Faro, Maria Josè; D'Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-01-01

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications. PMID:26592198

  12. Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source

    NASA Astrophysics Data System (ADS)

    Lo Faro, Maria Josè; D'Andrea, Cristiano; Messina, Elena; Fazio, Barbara; Musumeci, Paolo; Reitano, Riccardo; Franzò, Giorgia; Gucciardi, Pietro Giuseppe; Vasi, Cirino; Priolo, Francesco; Iacona, Fabio; Irrera, Alessia

    2015-11-01

    The realization of an innovative hybrid light source operating at room temperature, obtained by embedding a carbon nanotube (CNT) dispersion inside a Si nanowire (NW) array is reported. The NW/CNT system exhibits a peculiar photoluminescence spectrum, consisting of a wide peak, mainly observed in the visible range, due to quantum confined Si NWs, and of several narrower IR peaks, due to the different CNT chiralities present in the dispersion. The detailed study of the optical properties of the hybrid system evidences that the ratio between the intensity of the visible and the IR emissions can be varied within a wide range by changing the excitation wavelength or the CNT concentration; the conditions leading to the prevalence of one signal with respect to the other are identified. The multiplicity of emission spectra obtainable from this composite material opens new perspectives for Si nanostructures as active medium in light sources for Si photonics applications.

  13. Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan

    2012-07-01

    Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications

  14. Surface-initiated atom transfer radical polymerization-induced transformation of selenium nanowires into copper selenide@polystyrene core-shell nanowires.

    PubMed

    Wang, Michael C P; Gates, Byron D

    2013-10-01

    This Article reports the first preparation of cuprous and cupric selenide nanowires coated with a ∼5 nm thick sheath of polystyrene (copper selenide@polystyrene). These hybrid nanostructures are prepared by the transformation of selenium nanowires in a one-pot reaction, which is performed under ambient conditions. The composition, purity, and crystallinity of the copper selenide@polystyrene products were assessed by scanning transmission electron microscopy, electron energy-loss spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy techniques. We determined that the single crystalline selenium nanowires are converted into polycrystalline copper selenide@polystyrene nanowires containing both cuprous selenide and cupric selenide. The product is purified through the selective removal of residual, non-transformed selenium nanowires by performing thermal evaporation below the decomposition temperature of these copper selenides. Powder X-ray diffraction of the purified copper selenide nanowires@polystyrene identified the presence of hexagonal, cubic, and orthorhombic phases of copper selenide. These purified cuprous and cupric selenide@polystyrene nanowires have an indirect bandgap of 1.44 eV, as determined by UV-vis absorption spectroscopy. This new synthesis of polymer-encapsulated nanoscale materials may provide a method for preparing other complex hybrid nanostructures. PMID:24041404

  15. One-dimensional metallic surface states of Pt-induced atomic nanowires on Ge(0 0 1)

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Kim, Sunghun; Mochizuki, Izumi; Takeichi, Yasuo; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina; Shin, Shik; Komori, Fumio

    2016-07-01

    Surface states of platinum-induced atomic nanowires on a germanium (0 0 1) surface, which shows a structural phase transition at 80 K, were studied by angle-resolved photoelectron spectroscopy (ARPES). We observed four one-dimensional metallic surface states, among which, two bands were reported in our previous study (Yaji et al 2013 Phys. Rev. B 87 241413). One of the newly-found two bands is a quasi-one-dimensional state and is split into two due to the Rashba effect. Photoelectron intensity from one of the spin-polarized branches is reduced at a boundary of the surface Brillouin zone below the phase transition temperature. The reduction of the photoelectron intensity in the low temperature phase is interpreted as the interference of photoelectrons, not as the Peierls instability. We also discuss the low energy properties of the metallic surface states and their spin splitting using high-resolution ARPES with a vacuum ultraviolet laser.

  16. Atomic-scale imaging of cation ordering in inverse spinel Zn2SnO4 nanowires.

    PubMed

    Bao, Lihong; Zang, Jianfeng; Wang, Guofeng; Li, Xiaodong

    2014-11-12

    By using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) coupled with density functional theory (DFT) calculations, we demonstrate the atomic-level imaging of cation ordering in inverse spinel Zn2SnO4 nanowires. This cation ordering was identified as 1:1 ordering of Zn(2+) and Sn(4+) at the octahedral sites of the inverse spinel crystal with microscopic symmetry transition from original cubic Fd3̅m to orthorhombic Imma group. This ordering generated a 67.8% increase in the elastic modulus and 1-2 order of magnitude lower in the electric conductivity and electron mobility compared to their bulk counterpart. PMID:25300009

  17. One-dimensional metallic surface states of Pt-induced atomic nanowires on Ge(0 0 1).

    PubMed

    Yaji, Koichiro; Kim, Sunghun; Mochizuki, Izumi; Takeichi, Yasuo; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Bertran, François; Taleb-Ibrahimi, Amina; Shin, Shik; Komori, Fumio

    2016-07-20

    Surface states of platinum-induced atomic nanowires on a germanium (0 0 1) surface, which shows a structural phase transition at 80 K, were studied by angle-resolved photoelectron spectroscopy (ARPES). We observed four one-dimensional metallic surface states, among which, two bands were reported in our previous study (Yaji et al 2013 Phys. Rev. B 87 241413). One of the newly-found two bands is a quasi-one-dimensional state and is split into two due to the Rashba effect. Photoelectron intensity from one of the spin-polarized branches is reduced at a boundary of the surface Brillouin zone below the phase transition temperature. The reduction of the photoelectron intensity in the low temperature phase is interpreted as the interference of photoelectrons, not as the Peierls instability. We also discuss the low energy properties of the metallic surface states and their spin splitting using high-resolution ARPES with a vacuum ultraviolet laser. PMID:27228337

  18. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    PubMed

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries. PMID:27028048

  19. Glucose-Derived Porous Carbon-Coated Silicon Nanowires as Efficient Electrodes for Aqueous Micro-Supercapacitors.

    PubMed

    Devarapalli, Rami Reddy; Szunerits, Sabine; Coffinier, Yannick; Shelke, Manjusha V; Boukherroub, Rabah

    2016-02-24

    In this study, we report on carbon coating of vertically aligned silicon nanowire (SiNWs) arrays via a simple hydrothermal process using glucose as carbon precursor. Using this process, a thin carbon layer is uniformly deposited on the SiNWs. Under optimized conditions, the coated SiNWs electrode showed better electrochemical energy storage capacity as well as exceptional stability in aqueous system as compared to uncoated SiNWs. The as-measured capacitance reached 25.64 mF/cm(2) with a good stability up to 25000 charging/discharging cycles in 1 M Na2SO4 aqueous solution. PMID:26866275

  20. XPS analysis by exclusion of a-carbon layer on silicon carbide nanowires by a gold catalyst-supported metal-organic chemical vapor deposition method.

    PubMed

    Nam, Sang-Hun; Kim, Myoung-Hwa; Hyun, Jae-Sung; Kim, Young Dok; Boo, Jin-Hyo

    2010-04-01

    Silicon carbide (SiC) nano-structures would be favorable for application in high temperature, high power, and high frequency nanoelectronic devices. In this study, we have deposited cubic-SiC nanowires on Au-deposited Si(001) substrates using 1,3-disilabutane as a single molecular precursor through a metal-organic chemical vapor deposition (MOCVD) method. The general deposition pressure and temperature were 3.0 x 10(-6) Torr and 1000 degrees C respectively, with the deposition carried out for 1 h. Au played an important role as a catalyst in growing the SiC nanowires. SiC nanowires were grown using a gold catalyst, with amorphous carbon surrounding the final SiC nanowire. Thus, the first step involved removal of the remaining SiO2, followed by slicing of the amorphous carbon into thin layers using a heating method. Finally, the thinly sliced amorphous carbon is perfectly removed using an Ar sputtering method. As a result, this method may provide more field emission properties for the SiC nanowires that are normally inhibited by the amorphous carbon layer. Therefore, exclusion of the amorphous carbon layer is expected to improve the overall emission properties of SiC nanowires. PMID:20355494

  1. Reactions of carbon atoms in pulsed molecular beams

    SciTech Connect

    Reisler, H.

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  2. Scanning tunneling microscopy of aligned coaxial nanowires of polyaniline passivated carbon nanotube

    NASA Astrophysics Data System (ADS)

    Hassanien, A.; Gao, M.; Tokumoto, M.; Dai, L.

    2001-11-01

    Various methods are used to grow carbon nanotubes aiming to optimize their structural properties. Among them CVD method proved to be very successful in growing well-aligned carbon nanotubes arrays, which offers great possibilities for applications. Here we present room temperature scanning tunneling microscopy (STM) investigations of well-aligned, polyaniline passivated, multiwall carbon nanotubes (MWCNT). STM topographic images show nanotubes are partially covered with the conducting polymer. On atomically resolved scale we observed array of caps with round shape that are separated by polyaniline. Differences in the electronic properties between nanotubes and the polymer suggest that this method could be used to synthesize large scale of nanodevices.

  3. A palladium-doped ceria@carbon core-sheath nanowire network: a promising catalyst support for alcohol electrooxidation reactions

    NASA Astrophysics Data System (ADS)

    Tan, Qiang; Du, Chunyu; Sun, Yongrong; Du, Lei; Yin, Geping; Gao, Yunzhi

    2015-08-01

    A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique interconnected one-dimensional core-sheath structure is revealed to facilitate immobilization of the metal catalysts, leading to the improved durability. This core-sheath nanowire network opens up a new strategy for catalyst performance optimization for next-generation fuel cells.A novel palladium-doped ceria and carbon core-sheath nanowire network (Pd-CeO2@C CSNWN) is synthesized by a template-free and surfactant-free solvothermal process, followed by high temperature carbonization. This hierarchical network serves as a new class of catalyst support to enhance the activity and durability of noble metal catalysts for alcohol oxidation reactions. Its supported Pd nanoparticles, Pd/(Pd-CeO2@C CSNWN), exhibit >9 fold increase in activity toward the ethanol oxidation over the state-of-the-art Pd/C catalyst, which is the highest among the reported Pd systems. Moreover, stability tests show a virtually unchanged activity after 1000 cycles. The high activity is mainly attributed to the superior oxygen-species releasing capability of Pd-doped CeO2 nanowires by accelerating the removal of the poisoning intermediate. The unique

  4. Trapping cold atoms using surface-grown carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Petrov, P. G.; Machluf, S.; Younis, S.; Macaluso, R.; David, T.; Hadad, B.; Japha, Y.; Keil, M.; Joselevich, E.; Folman, R.

    2009-04-01

    We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a different type of conductor to be used in atomchips, enabling atom trapping at submicron distances, with implications for both fundamental studies and for technological applications.

  5. Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Balogun, Muhammad-Sadeeq; Li, Cheng; Zeng, Yinxiang; Yu, Minghao; Wu, Qili; Wu, Mingmei; Lu, Xihong; Tong, Yexiang

    2014-12-01

    Flexible lithium-ion batteries have attracted tremendous attention as a promising power source in the growing field of flexible electronic devices. In this article, we report a simple and binder free for the synthesis of TiO2@TiN nanowires on carbon cloth by hydrothermal method and annealing. This method is highly effective in improving the rate capability of TiO2 with discharge capacity of 136 mAh g-1 at high current rate to 30C. The TiO2@TiN nanowires on carbon cloth also show remarkable cyclic performance retaining 84% of the initial capacity (240 mAh g-1) after 650 cycles at 10C. High performance full flexible battery device based on TiO2@TiN nanowires/carbon cloth composite anode and LiCoO2 cathode exhibiting superior capacity retention with high discharge capacities of 227 mAh g-1 and 222 mAh g-1 at the flat and 90° bending position respectively during 30 cycles at 1C.

  6. Neutral atomic carbon in dense molecular clouds

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.; Betz, A. L.; Boreiko, R. T.; Goldhaber, D. M.

    1988-01-01

    The 370 micron 3P2-3P1 fine-structure line of neutral carbon was detected in seven sources: OMC 1, NGC 2024, S140, W3, DR 21, M17, and W51. Simultaneous analysis of J = 2-1 data and available observations of the J = 1-0 line make it possible to deduce optical depths and excitation temperatures for these lines. These data indicate that both C I lines are likely to be optically thin, and that the ratio of C I to CO column densities in these clouds is typically about 0.1.

  7. Carbon related donor bound exciton transitions in ZnO nanowires

    SciTech Connect

    Mohammadbeigi, F.; Kumar, E. Senthil; Alagha, S.; Anderson, I.; Watkins, S. P.

    2014-08-07

    Several shallow donor bound exciton photoluminescence (PL) transitions are reported in ZnO nanowires doped with carbon. The emission energies are in the range of 3360.8–3361.9 meV, close to previously reported emission lines due to excitons bound to donor point defects, such as Ga, Al, In, and H. The addition of small amounts of hydrogen during growth results in a strong enhancement of the PL of these carbon related emission lines, yet PL and annealing measurements indicate no appreciable bulk hydrogen. The observation of two electron satellites for these emission lines enables the determination of the donor binding energies. The dependence of exciton localization energy on donor binding energy departs somewhat from the usual linear relationship observed for group III donors, indicating a qualitatively different central cell potential, as one would expect for a complex. Emission lines due to excitons bound to ionized donors associated with these defects are also observed. The dependence of the PL emission intensities on temperature and growth conditions demonstrates that the lines are due to distinct complexes and not merely excited states of each other.

  8. The atomic carbon distribution in the coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Feldman, P. D.; Dymond, K. F.

    1986-01-01

    The radial distribution of CO, OI, Ci, and CII emissions in the coma of comet Halley were measured by a long-slit far ultraviolet spectrograph aboard a sounding rocket on 26 Feb. and 13 Mar. 1986. While the CO profiles strongly suggest that CO is vaporized directly from the nucleus, the observed carbon distribution is not consistent with a radial outflow model of CO, suggesting an additional source of atomic carbon in the inner coma. Based on the in situ plasma measurements from the Vega and Giotto spacecraft, it is possible that this additional source of carbon could be the recombination of ionized CO in the inner coma.

  9. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  10. Atomistic modeling of bending properties of oxidized silicon nanowires

    SciTech Connect

    Ilinov, Andrey Kuronen, Antti

    2014-03-14

    In this work, we have modeled a three point bending test of monocrystalline Si nanowires using molecular dynamics simulations in order to investigate their elastic properties. Tested nanowires were about 30 nm in length and had diameters from 5 to 9 nm. To study the influence of a native oxide layer, nanowires were covered with a 1 nm thick silica layer. The bending force was applied by a carbon diamond half-sphere with a 5 nm diameter. The Si-O parametrization for the Tersoff potential was used to describe atomic interactions between Si and O atoms. In order to remove the indentation effect of the diamond half-sphere and to obtain a pure bending behavior, we have also performed a set of simulations with fixed bottoms of the nanowires. Our results show that the oxide layer reduces the nanowire stiffness when compared with a pure Si nanowire with the same number of silicon atoms—in spite of the fact that the oxidized nanowires had larger diameters.

  11. Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds.

    PubMed

    Han, Bingjun; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin

    2014-01-01

    It was found that carbon atomic emission can be excited in low temperature dielectric barrier discharge (DBD), and an atmospheric pressure, low power consumption, and compact microplasma carbon atomic emission spectrometer (AES) was constructed and used as a universal and sensitive gas chromatographic (GC) detector for detection of volatile carbon-containing compounds. A concentric DBD device was housed in a heating box to increase the plasma operation temperature to 300 °C to intensify carbon atomic emission at 193.0 nm. Carbon-containing compounds directly injected or eluted from GC can be decomposed, atomized, and excited in this heated DBD for carbon atomic emission. The performance of this new optical detector was first evaluated by determination of a series of volatile carbon-containing compounds including formaldehyde, ethyl acetate, methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol, and absolute limits of detection (LODs) were found at a range of 0.12-0.28 ng under the optimized conditions. Preliminary experimental results showed that it provided slightly higher LODs than those obtained by GC with a flame ionization detector (FID). Furthermore, it is a new universal GC detector for volatile carbon-containing compounds that even includes those compounds which are difficult to detect by FID, such as HCHO, CO, and CO2. Meanwhile, hydrogen gas used in conventional techniques was eliminated; and molecular optical emission detection can also be performed with this GC detector for multichannel analysis to improve resolution of overlapped chromatographic peaks of complex mixtures. PMID:24328147

  12. Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects

    SciTech Connect

    Diercks, David R. Gorman, Brian P.; Kirchhofer, Rita; Sanford, Norman; Bertness, Kris; Brubaker, Matt

    2013-11-14

    The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At the lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.

  13. Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhao, Renjie; Su, Yanjie; Yang, Zhi; Zhang, Yafei

    2016-04-01

    The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1.05 mA cm-2 at 0 V vs. NHE and an optimal photocathode efficiency of 0.148% under illumination of AM 1.5G (100 mW cm-2), which is 4 times higher than that of the pristine Cu2S NWAs. This can be attributed to the improved electron transfer and the energy-down-shift effect of CQDs. We believe that this inexpensive Cu2S/CQD photocathode with increased photocurrent density opens up new opportunities in PEC water splitting.The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1.05 mA cm-2 at 0 V vs. NHE and an optimal photocathode efficiency of 0.148% under illumination of AM 1.5G (100 mW cm-2), which is 4 times higher than that of the pristine Cu2S NWAs. This can be attributed to the improved electron transfer and the energy-down-shift effect of CQDs. We believe that this inexpensive Cu2S/CQD photocathode with increased photocurrent density opens up new opportunities in PEC water splitting. Electronic supplementary information (ESI) available

  14. Chemical control of electrical contact to sp2 carbon atoms

    PubMed Central

    Frederiksen, Thomas; Foti, Giuseppe; Scheurer, Fabrice; Speisser, Virginie; Schull, Guillaume

    2014-01-01

    Carbon-based nanostructures are attracting tremendous interest as components in ultrafast electronics and optoelectronics. The electrical interfaces to these structures play a crucial role for the electron transport, but the lack of control at the atomic scale can hamper device functionality and integration into operating circuitry. Here we study a prototype carbon-based molecular junction consisting of a single C60 molecule and probe how the electric current through the junction depends on the chemical nature of the foremost electrode atom in contact with the molecule. We find that the efficiency of charge injection to a C60 molecule varies substantially for the considered metallic species, and demonstrate that the relative strength of the metal-C bond can be extracted from our transport measurements. Our study further suggests that a single-C60 junction is a basic model to explore the properties of electrical contacts to meso- and macroscopic sp2 carbon structures. PMID:24736561

  15. Abundance of atomic carbon /C I/ in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.

    1981-01-01

    The abundance of interstellar neutral atomic carbon is investigated by means of its ground state fine-structure line emission at 492 GHz using the 91.5 cm telescope of NASAs Kuiper Airborne Observatory. Atomic carbon is found to be very abundant in dense interstellar molecular clouds with column densities of about 10 to the 19th per sq cm. Because the observations have considerably greater column densities than current theories of carbon chemistry, it is suggested that the physical conditions of these clouds are not as simple as assumed in the models. Various situations are discussed which would lead to large C I abundances, including the possibility that the chemical lifetimes of the clouds are relatively short.

  16. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries.

    PubMed

    Goriparti, Subrahmanyam; Miele, Ermanno; Prato, Mirko; Scarpellini, Alice; Marras, Sergio; Monaco, Simone; Toma, Andrea; Messina, Gabriele C; Alabastri, Alessandro; De Angelis, Francesco; Manna, Liberato; Capiglia, Claudio; Zaccaria, Remo Proietti

    2015-11-18

    Carbon-doped TiO2-bronze nanowires were synthesized via a facile doping mechanism and were exploited as active material for Li-ion batteries. We demonstrate that both the wire geometry and the presence of carbon doping contribute to the high electrochemical performance of these materials. Direct carbon doping for example reduces the Li-ion diffusion length and improves the electrical conductivity of the wires, as demonstrated by cycling experiments, which evidenced remarkably higher capacities and superior rate capability over the undoped nanowires. The as-prepared carbon-doped nanowires, evaluated in lithium half-cells, exhibited lithium storage capacity of ∼306 mA h g(-1) (91% of the theoretical capacity) at the current rate of 0.1C as well as excellent discharge capacity of ∼160 mAh g(-1) even at the current rate of 10 C after 1000 charge/discharge cycles. PMID:26492841

  17. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes.

    PubMed

    Ma, Tian Yi; Dai, Sheng; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-10-01

    Hybrid porous nanowire arrays composed of strongly interacting Co3O4 and carbon were prepared by a facile carbonization of the metal-organic framework grown on Cu foil. The resulting material, possessing a high surface area of 251 m(2) g(-1) and a large carbon content of 52.1 wt %, can be directly used as the working electrode for oxygen evolution reaction without employing extra substrates or binders. This novel oxygen evolution electrode can smoothly operate in alkaline solutions (e.g., 0.1 and 1.0 M KOH), affording a low onset potential of 1.47 V (vs reversible hydrogen electrode) and a stable current density of 10.0 mA cm(-2) at 1.52 V in 0.1 M KOH solution for at least 30 h, associated with a high Faradaic efficiency of 99.3%. The achieved ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the state-of-the-art noble-metal/transition-metal and nonmetal catalysts, originate from the unique nanowire array electrode configuration and in situ carbon incorporation, which lead to the large active surface area, enhanced mass/charge transport capability, easy release of oxygen gas bubbles, and strong structural stability. Furthermore, the hybrid Co3O4-carbon porous nanowire arrays can also efficiently catalyze oxygen reduction reaction, featuring a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. PMID:25216300

  18. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ∼190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  19. Integrated atom detector based on field ionization near carbon nanotubes

    SciTech Connect

    Gruener, B.; Jag, M.; Stibor, A.; Visanescu, G.; Haeffner, M.; Kern, D.; Guenther, A.; Fortagh, J.

    2009-12-15

    We demonstrate an atom detector based on field ionization and subsequent ion counting. We make use of field enhancement near tips of carbon nanotubes to reach extreme electrostatic field values of up to 9x10{sup 9} V/m, which ionize ground-state rubidium atoms. The detector is based on a carpet of multiwall carbon nanotubes grown on a substrate and used for field ionization, and a channel electron multiplier used for ion counting. We measure the field enhancement at the tips of carbon nanotubes by field emission of electrons. We demonstrate the operation of the field ionization detector by counting atoms from a thermal beam of a rubidium dispenser source. By measuring the ionization rate of rubidium as a function of the applied detector voltage we identify the field ionization distance, which is below a few tens of nanometers in front of nanotube tips. We deduce from the experimental data that field ionization of rubidium near nanotube tips takes place on a time scale faster than 10{sup -10} s. This property is particularly interesting for the development of fast atom detectors suitable for measuring correlations in ultracold quantum gases. We also describe an application of the detector as partial pressure gauge.

  20. Carbon Nanotube Networks Reinforced by Silver Nanowires with Improved Optical Transparency and Conductivity

    NASA Astrophysics Data System (ADS)

    Martine, Patricia; Fakhimi, Azin; Lin, Ling; Jurewicz, Izabela; Dalton, Alan; Zakhidov, Anvar A.; Baughman, Ray H.

    2015-03-01

    We have fabricated highly transparent and conductive free-standing nanocomposite thin film electrodes by adding silver nanowires (AgNWs) to dry-spun Multiwall Carbon Nanotube (MWNT) aerogels. This nanocomposite exhibits desirable properties such as high optical transmittance, excellent flexibility and enhanced electrical conductivity. The incorporation of the AgNWs to the MWNT aerogels was accomplished by using a spray coating method. The optical transparency and sheet resistance of the nanocomposite was tuned by adjusting the concentration of AgNWs, back pressure and nozzle distance of the spray gun to the MWNT aerogel during deposition. As the solvent evaporated, the aerogel MWNT bundles densified via surface tension which caused the MWNT bundles to collapse. This adjustable process was responsible in forming well defined apertures that increased the nanocomposite's transmittance up to 90 percent. Via AgNWs percolation and random interconnections between separate MWNT bundles in the aerogel matrix, the sheet resistance decreased from 1 K ohm/sq to less than 100 ohm/sq. Alan G. MacDiarmid NanoTech Institute

  1. Growth and characterization of GaAs nanowires on carbon nanotube composite films: toward flexible nanodevices.

    PubMed

    Mohseni, Parsian K; Lawson, Gregor; Couteau, Christophe; Weihs, Gregor; Adronov, Alex; LaPierre, Ray R

    2008-11-01

    Poly(ethylene imine) functionalized carbon nanotube thin films, prepared using the vacuum filtration method, were decorated with Au nanoparticles by in situ reduction of HAuCl4 under mild conditions. These Au nanoparticles were subsequently employed for the growth of GaAs nanowires (NWs) by the vapor-liquid-solid process in a gas source molecular beam epitaxy system. The process resulted in the dense growth of GaAs NWs across the entire surface of the single-walled nanotube (SWNT) films. The NWs, which were orientated in a variety of angles with respect to the SWNT films, ranged in diameter between 20 to 200 nm, with heights up to 2.5 microm. Transmission electron microscopy analysis of the NW-SWNT interface indicated that NW growth was initiated upon the surface of the nanotube composite films. Photoluminescence characterization of a single NW specimen showed high optical quality. Rectifying asymmetric current-voltage behavior was observed from contacted NW ensembles and attributed to the core-shell pn-junction within the NWs. Potential applications of such novel hybrid architectures include flexible solar cells, displays, and sensors. PMID:18954120

  2. Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance.

    PubMed

    Li, Ming; Zhao, Renjie; Su, Yanjie; Yang, Zhi; Zhang, Yafei

    2016-04-28

    The photoelectrochemical (PEC) performance of Cu2S nanowire arrays (NWAs) has been demonstrated to be greatly enhanced by dipping-assembly of carbon quantum dots (CQDs) on the surfaces of Cu2S NWAs. Experimental results show that the pristine Cu2S NWAs with higher aspect ratios exhibit better PEC performance due to the longer length scale for light absorption and the shorter length scale for minority carrier diffusion. Importantly, the CQDs decorated Cu2S NWAs exhibit remarkably enhanced photocurrent density, giving a photocurrent density of 1.05 mA cm(-2) at 0 V vs. NHE and an optimal photocathode efficiency of 0.148% under illumination of AM 1.5G (100 mW cm(-2)), which is 4 times higher than that of the pristine Cu2S NWAs. This can be attributed to the improved electron transfer and the energy-down-shift effect of CQDs. We believe that this inexpensive Cu2S/CQD photocathode with increased photocurrent density opens up new opportunities in PEC water splitting. PMID:26693806

  3. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition.

    PubMed

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-01-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates. PMID:25897309

  4. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-04-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates.

  5. Catalyst patterning for nanowire devices

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2004-01-01

    Nanowire devices may be provided that are based on carbon nanotubes or single-crystal semiconductor nanowires. The nanowire devices may be formed on a substrate. Catalyst sites may be formed on the substrate. The catalyst sites may be formed using lithography, thin metal layers that form individual catalyst sites when heated, collapsible porous catalyst-filled microscopic spheres, microscopic spheres that serve as masks for catalyst deposition, electrochemical deposition techniques, and catalyst inks. Nanowires may be grown from the catalyst sites.

  6. Electroanalytical performance of carbon films with near-atomic flatness.

    PubMed

    Ranganathan, S; McCreery, R L

    2001-03-01

    Physicochemical and electrochemical characterization of carbon films obtained by pyrolyzing a commercially available photoresist has been performed. Photoresist spin-coated on to a silicon wafer was pyrolyzed at 1,000 degrees C in a reducing atmosphere (95% nitrogen and 5% hydrogen) to produce conducting carbon films. The pyrolyzed photoresist films (PPF) show unusual surface properties compared to other carbon electrodes. The surfaces are nearly atomically smooth with a root-mean-square roughness of <0.5 nm. PPF have a very low background current and oxygen/carbon atomic ratio compared to conventional glassy carbon and show relatively weak adsorption of methylene blue and anthraquinone-2,6-disulfonate. The low oxygen/carbon ratio and the relative stability of PPF indicate that surfaces may be partially hydrogen terminated. The pyrolyzed films were compared to glassy carbon (GC) heat treated under the same conditions as pyrolysis to evaluate the electroanalytical utility of PPF. Heterogeneous electron-transfer kinetics of various redox systems were evaluated. For Ru(NH3)6(3+/2+), Fe(CN)6(3-/4-), and chlorpromazine, fresh PPF surfaces show electron-transfer rates similar to those on GC, but for redox systems such as Fe3+/2+, ascorbic acid, dopamine, and oxygen, the kinetics on PPF are slower. Very weak interactions between the PPF surface and these redox systems lead to their slow electron-transfer kinetics. Electrochemical anodization results in a simultaneous increase in background current, adsorption, and electron-transfer kinetics. The PPF surfaces can be chemically modified via diazonium ion reduction to yield a covalently attached monolayer. Such a modification could help in the preparation of low-cost, high-volume analyte-specific electrodes for diverse electroanalytical applications. Overall, pyrolysis of the photoresist yields an electrode surface with properties similar to a very smooth version of glassy carbon, with some important differences in surface

  7. Single-crystal γ-MnS nanowires conformally coated with carbon.

    PubMed

    Beltran-Huarac, Juan; Resto, Oscar; Carpena-Nuñez, Jennifer; Jadwisienczak, Wojciech M; Fonseca, Luis F; Weiner, Brad R; Morell, Gerardo

    2014-01-22

    We report for the first time the fabrication of single-crystal metastable manganese sulfide nanowires (γ-MnS NWs) conformally coated with graphitic carbon via chemical vapor deposition technique using a single-step route. Advanced spectroscopy and electron microscopy techniques were applied to elucidate the composition and structure of these NWs at the nanoscale, including Raman, XRD, SEM, HRTEM, EELS, EDS, and SAED. No evidence of α-MnS and β-MnS allotropes was found. The γ-MnS/C NWs have hexagonal cross-section and high aspect ratio (∼1000) on a large scale. The mechanical properties of individual γ-MnS/C NWs were examined via in situ uniaxial compression tests in a TEM-AFM. The results show that γ-MnS/C NWs are brittle with a Young's modulus of 65 GPa. The growth mechanism proposed suggests that the bottom-up fabrication of γ-MnS/C NWs is governed by vapor-liquid-solid mechanism catalyzed by bimetallic Au-Ni nanoparticles. The electrochemical performance of γ-MnS/C NWs as an anode material in lithium-ion batteries indicates that they outperform the cycling stability of stable micro-sized α-MnS, with an initial capacity of 1036 mAh g(-1) and a reversible capacity exceeding 503 mAh g(-1) after 25 cycles. This research advances the integration of carbon materials and metal sulfide nanostructures, bringing forth new avenues for potential miniaturization strategies to fabricate 1D core/shell heterostructures with intriguing bifunctional properties that can be used as building blocks in nanodevices. PMID:24392737

  8. EDITORIAL: Nanowires Nanowires

    NASA Astrophysics Data System (ADS)

    Jagadish, Chennupati

    2010-02-01

    Nanowires are considered as building blocks for the next generation of electronics, photonics, sensors and energy applications. One-dimensional nanostructures offer unique opportunities to control the density of states of semiconductors, and in turn their electronic and optical properties. Nanowires allow the growth of axial heterostructures without the constraints of lattice mismatch. This provides flexibility to create heterostructures of a broad range of materials and allows integration of compound semiconductor based optoelectronic devices with silicon based microelectronics. Nanowires are widely studied and the number of papers published in the field is growing exponentially with time. Already nanowire lasers, nanowire transistors, nanowire light emitting diodes, nanowire sensors and nanowire solar cells have been demonstrated. This special issue on semiconductor nanowires features 17 invited papers from leading experts in the field. In this special issue, the synthesis and growth of semiconductor nanowires of a broad range of materials have been addressed. Both axial and radial heterostructures and their structural properties have been discussed. Electrical transport properties of nanowires have been presented, as well as optical properties and carrier dynamics in a range of nanowires and nanowire heterostructures. Devices such as nanowire lasers and nanowire sensors have also been discussed. I would like to thank the Editorial Board of the journal for suggesting this special issue and inviting me to serve as the Guest Editor. Sincere thanks are due to all the authors for their contributions to this special issue. I am grateful to the reviewers and editorial staff at Semiconductor Science and Technology and the Institute of Physics Publishing for their excellent efforts. Special thanks are due to Dr Claire Bedrock for coordinating this special issue.

  9. Polycrystalline nanowires of gadolinium-doped ceria via random alignment mediated by supercritical carbon dioxide

    PubMed Central

    Kim, Sang Woo; Ahn, Jae-Pyoung

    2013-01-01

    This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061

  10. Encapsulating "armchair" carbon nanotubes with "zigzag" chains of Fe atoms

    NASA Astrophysics Data System (ADS)

    Boutko, V. G.; Gusev, A. A.; Shevtsova, T. N.; Pashkevich, Yu. G.

    2016-05-01

    Ab initio calculations of structural, electron, and magnetic properties of "armchair" carbon nanotubes (NT) encapsulated by a "zigzag" chain of Fe atoms Fe2@(n,n)m (m = 1, 2; n = 4, 5, 6, 7, 8, 9), are performed within the framework of the density functional theory. It is shown that optimizing the structure along the NT axis can significantly impact the binding energy of the NT and the Fe atom chain. It follows from the calculations that Fe2@(5,5) is the most stable of all the investigated encapsulated nanotubes. A two-fold decrease in the concentration of Fe in an encapsulated NT converts the system from exothermic to endothermic (Fe2@(5,5)m) and vice versa (Fe2@(6,6)m)). For large radii of an encapsulated NT (>4.13 Å) the binding energy of the NT and the Fe atom chain goes to zero, and the magnetic moments of the Fe atoms and the deviation of the Fe atoms from the NT axis go toward analogous values of the free "zigzag" Fe atom chain.

  11. Carbon nanotube forests growth using catalysts from atomic layer deposition

    SciTech Connect

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John; Bhardwaj, Sunil; Cepek, Cinzia

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  12. Interpretation of Hund's multiplicity rule for the carbon atom.

    PubMed

    Hongo, Kenta; Maezono, Ryo; Kawazoe, Yoshiyuki; Yasuhara, Hiroshi; Towler, M D; Needs, R J

    2004-10-15

    Hund's multiplicity rule is investigated for the carbon atom using quantum Monte Carlo methods. Our calculations give an accurate account of electronic correlation and obey the virial theorem to high accuracy. This allows us to obtain accurate values for each of the energy terms and therefore to give a convincing explanation of the mechanism by which Hund's rule operates in carbon. We find that the energy gain in the triplet with respect to the singlet state is due to the greater electron-nucleus attraction in the higher spin state, in accordance with Hartree-Fock calculations and studies including correlation. The method used here can easily be extended to heavier atoms. PMID:15473780

  13. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D.

    2016-05-01

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGOX) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGOX (1-3 monolayers-thick) and AgNWs exhibit sheet resistances of ˜100-1000 kΩ/□ and 100-900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGOX/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGOX networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGOX/AgNWs' networks, rGOX flakes are found to form conductive "bridges" between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGOX/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  14. Probing the improbable: imaging carbon atoms in alumina

    SciTech Connect

    Marquis, E A; Yahia, Noor; Larson, David J.; Miller, Michael K; Todd, Richard

    2010-01-01

    Atom-probe tomography has proven very powerful to analyze the detailed structure and chemistry of metallic alloys and semiconductor structures while ceramic materials have remained outside its standard purview. In the current work, we demonstrate that bulk alumina can be quantitatively analyzed and microstructural features observed. The analysis of grain boundary carbon segregation - barely achievable by electron microscopy - opens the possibility of understanding the mechanistic effects of dopants on mechanical properties, fracture and wear properties of bulk oxides.

  15. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    NASA Astrophysics Data System (ADS)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  16. From nanodiamond to nanowires.

    SciTech Connect

    Barnard, A.; Materials Science Division

    2005-01-01

    Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp{sup 3} bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp{sup 3} analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

  17. Stability of conductance oscillations in carbon atomic chains

    NASA Astrophysics Data System (ADS)

    Yu, Jing-Xin; Hou, Zhi-Wei; Liu, Xiu-Ying

    2015-06-01

    The conductance stabilities of carbon atomic chains (CACs) with different lengths are investigated by performing theoretical calculations using the nonequilibrium Green’s function method combined with density functional theory. Regular even-odd conductance oscillation is observed as a function of the wire length. This oscillation is influenced delicately by changes in the end carbon or sulfur atoms as well as variations in coupling strength between the chain and leads. The lowest unoccupied molecular orbital in odd-numbered chains is the main transmission channel, whereas the conductance remains relatively small for even-numbered chains and a significant drift in the highest occupied molecular orbital resonance toward higher energies is observed as the number of carbon atoms increases. The amplitude of the conductance oscillation is predicted to be relatively stable based on a thiol joint between the chain and leads. Results show that the current-voltage evolution of CACs can be affected by the chain length. The differential and second derivatives of the conductance are also provided. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11404094, and 51201059), the Priority Scientific and Technological Project of Henan Province, China (Grant No. 14A140027), the School Fund (Grant No. 2012BS055), and the Plan of Natural Science Fundamental Research of Henan University of Technology, China (Grant No. 2014JCYJ15).

  18. Effect of hydrogen plasma irradiation of catalyst films on growth of carbon nanotubes filled with iron nanowires

    SciTech Connect

    Sato, Hideki Kubonaka, Nobuo; Nagata, Atsushi; Fujiwara, Yuji

    2014-03-15

    Carbon nanotubes filled with iron (Fe-filled CNTs) show shape anisotropy on account of the high aspect ratio of magnetic nanowires, and are promising candidates for various applications, such as magnetic recording media, probes for scanning force microscopy, and medical treatment for cancer. The ability to appropriately control the magnetic properties of CNTs for those applications is desirable. In this study, the authors investigated magnetic properties of Fe-filled CNTs synthesized by thermal chemical vapor deposition for the purpose of tuning their coercivity. Here, the authors implemented hydrogen plasma irradiation of catalyst film that was previously deposited on a substrate as a catalyst layer. This treatment activates the catalyst film and thus enhances the growth of the Fe-filled CNTs. It was confirmed that the H{sub 2} plasma irradiation enhances the growth of the CNTs in terms of increasing their length and diameter compared to CNTs without irradiation. On the other hand, the coercivity of Fe-filled CNTs dropped to approximately half of those without H{sub 2} plasma irradiation. This is probably due to a decrease in the aspect ratio of the Fe nanowires, which results from the increase in their diameter. Furthermore, the crystal structure of the Fe nanowires may affect the coercivity.

  19. Rapid growth of SiO2 nanowires on carbon fiber

    NASA Astrophysics Data System (ADS)

    Ma, Junfeng; Cai, Shan; Lan, Xuena

    2016-03-01

    We report a novel preparing route to SiO2 nanowires, which can be regarded as a modified electrochemical process, where a single C fiber is used as a substrate on which SiO2 nanowires grow, and a heating source, and tetraethyl orthosilicate (TEOS) as an electrolyte and cooling medium. The preparing process can proceed well at ambient temperature and pressure. A good quality of SiO2 nanowires can be easily obtained at 160V for only 10s, and exhibit excellent photoluminescence (PL) property. Our study also shows that reaction time, current intensity, and TEOS concentration mainly govern the formation and growth of SiO2 nanowires. The morphology, structure and composition of the as-synthesized samples were characterized by SEM, XPS, Raman, FTIR, and PL, respectively.

  20. Surface effects on the mechanical elongation of AuCu nanowires: De-alloying and the formation of mixed suspended atomic chains

    SciTech Connect

    Lagos, M. J.; Autreto, P. A. S.; Galvao, D. S. Ugarte, D.; Bettini, J.; Sato, F.; Dantas, S. O.

    2015-03-07

    We report here an atomistic study of the mechanical deformation of Au{sub x}Cu{sub (1−x)} atomic-size wires (nanowires (NWs)) by means of high resolution transmission electron microscopy experiments. Molecular dynamics simulations were also carried out in order to obtain deeper insights on the dynamical properties of stretched NWs. The mechanical properties are significantly dependent on the chemical composition that evolves in time at the junction; some structures exhibit a remarkable de-alloying behavior. Also, our results represent the first experimental realization of mixed linear atomic chains (LACs) among transition and noble metals; in particular, surface energies induce chemical gradients on NW surfaces that can be exploited to control the relative LAC compositions (different number of gold and copper atoms). The implications of these results for nanocatalysis and spin transport of one-atom-thick metal wires are addressed.

  1. Length dependence of carbon-doped BN nanowires: A-D Rectification and a route to potential molecular devices

    NASA Astrophysics Data System (ADS)

    Qiu, M.; Liew, K. M.

    2013-02-01

    Based on the first-principles approach, electronic transport properties of different lengths of carbon-doped boron-nitrogen nanowires, capped with two thiols as end groups connected to Au electrodes surfaces, are investigated. The results show that rectifying performance and negative differential resistance (NDR) behaviors can be enhanced obviously by increasing the length. Analysis of Mülliken population, transmission spectra, evolutions of frontier orbitals and molecular projected self-consistent Hamiltonian of molecular orbital indicate that electronic transmission strength, charge transfer and distributions of molecular states change are the intrinsic origin of these rectifying performances and NDR behaviors.

  2. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.

    PubMed

    Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-21

    Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries. PMID:26400109

  3. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes.

    PubMed

    Hu, Junkai; Sun, Chuan-Fu; Gillette, Eleanor; Gui, Zhe; Wang, YuHuang; Lee, Sang Bok

    2016-07-14

    Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the advantages of both soft and hard single-template methods. The resulting OMCNW/Fe2O3 composite enables a high pore volume, high structural stability, enhanced electrical conductivity and Li(+) accessibility. These features collectively enable excellent electrochemical cyclability (1200 cycles) and a reversible Li(+) storage capacity as high as 819 mA h g(-1) at a current density of 0.5 A g(-1). Our findings highlight the synergistic benefits of the dual-template approach to heterogeneous composites for high performance electrochemical energy storage materials. PMID:27304986

  4. Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO{sub 2} nanowires

    SciTech Connect

    Sun, Yong; Liu, Jie; Koley, Goutam; Blom, Douglas; Duan, Zhiyao; Wang, Guofeng E-mail: xl3p@virginia.edu; Li, Xiaodong E-mail: xl3p@virginia.edu

    2014-12-15

    We demonstrate direct evidence that the strain variation induced by local lattice distortion exists in the surface layers of SnO{sub 2} nanowires by coupled scanning transmission electron microscopy and digital image correlation techniques. First-principles calculations suggest that surface reduction and subsurface oxygen vacancies account for such vigorous wavelike strain. Our study revealed that the localized change of surface atomistic configuration was responsible for the observed reduction of elastic modulus and hardness of SnO{sub 2} nanowires, as well as the superior sensing properties of SnO{sub 2} nanowire network.

  5. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Hu, Junkai; Sun, Chuan-Fu; Gillette, Eleanor; Gui, Zhe; Wang, Yuhuang; Lee, Sang Bok

    2016-06-01

    Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the advantages of both soft and hard single-template methods. The resulting OMCNW/Fe2O3 composite enables a high pore volume, high structural stability, enhanced electrical conductivity and Li+ accessibility. These features collectively enable excellent electrochemical cyclability (1200 cycles) and a reversible Li+ storage capacity as high as 819 mA h g-1 at a current density of 0.5 A g-1. Our findings highlight the synergistic benefits of the dual-template approach to heterogeneous composites for high performance electrochemical energy storage materials.Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the

  6. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

    SciTech Connect

    Sobolev, Andrey; Mirzoev, Alexander

    2015-08-17

    In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

  7. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties.

    PubMed

    Kiran, Vankayala; Sampath, Srinivasan

    2013-11-01

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications. PMID:24057050

  8. Photonic nanowires investigated by single molecule fluorescence and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hernando, Jordi; van Dijk, Erik M. H. P.; van Hulst, Niek F.; Garcia-Parajo, Maria F.; de Witte, Pieter A. J.; Nolte, Roeland J. M.; Rowan, Alan E.

    2004-03-01

    Natural multichromophoric systems such as light-harvesting antennas display valuable optical properties due to excitonic interactions. Artificial systems mimicking those properties may become the building blocks of future molecular photonic devices. We present here the synthesis and characterization at the single molecule level of a new type of chromophoric polymer intended to act as such synthetic antenna. Long well-ordered perylene arrays have been obtained using polyisocianide polymers as rigid scaffold. Atomic force microscopy (AFM) measurements have shown rigid chromophoric fibers up to micrometers long and containing up to ten thousand perylene dye units. Combined AFM and single molecule confocal fluorescence measurements on polymer samples have revealed the existence of two different emissive species: monomer-like behavior arising from short oligomers, while long polymer fibers show excimer emission. Such powerful technique provides unique insights into the complex optical behavior of the system.

  9. Morphology controllable growth of Pt nanoparticles/nanowires on carbon powders and its application as novel electro-catalyst for methanol oxidation.

    PubMed

    Meng, Hui; Xie, Fangyan; Chen, Jian; Sun, Shuihui; Shen, Pei Kang

    2011-12-01

    Pt nanowires (PtNWs) have been controllably synthesized on carbon powders by the reduction of H(2)PtCl(6) with HCOOH. By adjusting the pH value of the solution, PtCl(6)(2-) can be controllable reduced into particles or nanowires. The Pt nanowires are single crystals growing along the <111> direction with a diameter of 3 nm and a length of 10 nm. The dispersion of Pt nanowires on the surface of carbon powders can be controlled by changing the loading of Pt. The PtNWs/C is evaluated as the catalyst for methanol oxidation. The PtNWs/C with 20 wt% Pt has a larger electrochemical active surface area and much higher mass activity for methanol oxidation than that of commercial Pt/C catalyst. The PtNWs/C catalyst shows significant improvement in the kinetics for methanol oxidation and mass transfer property due to the single crystal structure of the Pt nanowires. The PtNWs/C catalyst holds promising potential applications in energy converting devices and environmental protection. PMID:22048635

  10. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes.

    PubMed

    Spina, M; Náfrádi, B; Tóháti, H M; Kamarás, K; Bonvin, E; Gaal, R; Forró, L; Horváth, E

    2016-02-25

    Field-effect phototransistors were fabricated based on individual carbon nanotubes (CNTs) sensitized by CH3NH3PbI3 nanowires (MAPbI3NWs). These devices represent light responsivities of R = 7.7 × 10(5) A W(-1) under low-lighting conditions in the nW mm(-2) range, unprecedented among CNT-based photodetectors. At high incident power (∼1 mW mm(-2)), light soaking results in a negative photocurrent, turning the device insulating. We interpret the phenomenon as a result of efficient free photoexcited charge generation and charge transfer of photoexcited holes from the perovskite to the carbon nanotube. The charge transfer improves conductance by increasing the number of carriers, but leaves electrons behind. At high illumination intensity their random electrostatic potential quenches mobility in the nanotube. PMID:26864708

  11. Growth and composition-dependent optoelectronic properties of Al x Ga1‑x N alloy nanowires arrays across the entire composition range on carbon cloth

    NASA Astrophysics Data System (ADS)

    Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan

    2016-07-01

    Composition-tunable ternary Al x Ga1‑x N (0 ≤ x ≤ 1) alloy nanowires have been grown on flexible carbon cloth in large scale through a one-step and catalyst-free chemical vapor deposition method. Field emission scanning electron microscopy, x-ray diffraction analysis, transmission electron microscopy and x-ray energy-dispersive spectroscopy were employed to characterize the morphology, crystal structure, composition properties. All Al x Ga1‑x N samples exhibit hexagonal wurtzite single-phase structure and a preferred orientation along [0001] direction. The progressively evolutions in structural, Raman and field emission properties of Al x Ga1‑x N nanowires demonstrate the continuous composition tunability across the entire composition range. The enhancement in the field emission characteristic of Al x Ga1‑x N nanowires on carbon cloth is ascribed to the combined effect of the nanostructures and the excellent electron transport path of the conductive carbon cloth. The successful synthesis of Al x Ga1‑x N nanowires on carbon cloth provides the new possibility for the further development of flexible nano- and opto-electronic devices.

  12. Ultrasensitive 1D field-effect phototransistors: CH3NH3PbI3 nanowire sensitized individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Spina, M.; Náfrádi, B.; Tóháti, H. M.; Kamarás, K.; Bonvin, E.; Gaal, R.; Forró, L.; Horváth, E.

    2016-02-01

    Field-effect phototransistors were fabricated based on individual carbon nanotubes (CNTs) sensitized by CH3NH3PbI3 nanowires (MAPbI3NWs). These devices represent light responsivities of R = 7.7 × 105 A W-1 under low-lighting conditions in the nW mm-2 range, unprecedented among CNT-based photodetectors. At high incident power (~1 mW mm-2), light soaking results in a negative photocurrent, turning the device insulating. We interpret the phenomenon as a result of efficient free photoexcited charge generation and charge transfer of photoexcited holes from the perovskite to the carbon nanotube. The charge transfer improves conductance by increasing the number of carriers, but leaves electrons behind. At high illumination intensity their random electrostatic potential quenches mobility in the nanotube.Field-effect phototransistors were fabricated based on individual carbon nanotubes (CNTs) sensitized by CH3NH3PbI3 nanowires (MAPbI3NWs). These devices represent light responsivities of R = 7.7 × 105 A W-1 under low-lighting conditions in the nW mm-2 range, unprecedented among CNT-based photodetectors. At high incident power (~1 mW mm-2), light soaking results in a negative photocurrent, turning the device insulating. We interpret the phenomenon as a result of efficient free photoexcited charge generation and charge transfer of photoexcited holes from the perovskite to the carbon nanotube. The charge transfer improves conductance by increasing the number of carriers, but leaves electrons behind. At high illumination intensity their random electrostatic potential quenches mobility in the nanotube. Electronic supplementary information (ESI) available: Infrared and Raman spectroscopy with additional electronic transfer characterization. See DOI: 10.1039/c5nr06727h

  13. Elastic property characterization of oxidized Si nanowires by contact-resonance atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Stan, Gheorghe; Cook, Robert

    2010-03-01

    The synthesis and processing of materials into nanostructures opens new avenues for advancement and diversification of current electronic, optoelectronic, and sensor applications. Among these structures, Si NWs are distinctly remarkable as they bring the previous decades knowledge of silicon technology into nanoscale applications. From this perspective, the characterization and understanding of the mechanical properties of nonplanar Si-SiO2 interfaces are of significant utility in developing Si nanostructures for Si-based integrated circuits. To investigate the elastic properties of as-grown and oxidized Si NWs we have extended and specifically tailored the applicability of contact-resonance atomic force microscopy (CR- AFM). From such CR-AFM measurements, the effect of the compressive stress at the Si-SiO2 interface was revealed in a diameter dependence of the elastic modulus of oxidized Si NWs. A modified core-shell model that includes the interface stress developed during oxidation captures the observed dependence. The values of strain and stress as well as the width of the stressed transition region at the Si-SiO2 interface agree with those reported from simulations and other experiments. This novel approach advances CR-AFM applicability in investigating structure-mechanical property relationships at the nanoscale.

  14. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique

    PubMed Central

    2014-01-01

    To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM), the optical transmittance and sheet resistance were tested by ultraviolet-visible spectroscopy (UV-vis) spectrophotometer and four-point probe technique, and the adhesion was also measured by 3M sticky tape. The results indicate that in this hybrid nanostructure, AgNWs form the main conductive networks and CNTs as assistant conductive networks are filled in the open spaces of AgNWs networks. The sheet resistance of the hybrid films can reach approximately 20.9 to 53.9 Ω/□ with the optical transmittance of approximately 84% to 91%. The second mechanical pressing step can greatly reduce the surface roughness of the hybrid film and enhance the adhesion force between CNTs, AgNWs, and PET substrate. This process is hopeful for large-scale production of high-end flexible transparent conductive films. PMID:25386105

  15. The effect of annealing on the photoconductivity of carbon nanofiber/TiO2 core-shell nanowires for use in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rochford, Caitlin; Li, Zhuang-Zhi; Baca, Javier; Liu, Jianwei; Li, Jun; Wu, Judy

    2010-07-01

    Electrical transport properties and photoresponse of individual TiO2-coated carbon nanofibers were studied in an attempt to elucidate the limiting factors of core-shell nanowire-based dye-sensitized solar cells (DSSC). The role of the semiconductor shell microstructure was investigated by comparing as grown and thermally annealed samples. Steady state I-V and transient photoconductivity measurements suggest that improving the microstructure leads to reduced resistivity and contact resistance, a decrease in charge traps, improved surface stoichiometry for dye adsorption, and reduced absorption of visible light by the semiconductor, all of which may improve nanowire-based DSSC performance.

  16. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    PubMed Central

    2009-01-01

    SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism. PMID:20596456

  17. SiC Nanowires Synthesized by Rapidly Heating a Mixture of SiO and Arc-Discharge Plasma Pretreated Carbon Black

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Lei; Zhang, Li-Ying; Zhang, Ya-Fei

    2009-02-01

    SiC nanowires have been synthesized at 1,600 °C by using a simple and low-cost method in a high-frequency induction furnace. The commercial SiO powder and the arc-discharge plasma pretreated carbon black were mixed and used as the source materials. The heating-up and reaction time is less than half an hour. It was found that most of the nanowires have core-shell SiC/SiO2 nanostructures. The nucleation, precipitation, and growth processes were discussed in terms of the oxide-assisted cluster-solid mechanism.

  18. The wavelength dependent photovoltaic effects caused by two different mechanisms in carbon nanotube film/CuO nanowire array heterodimensional contacts

    SciTech Connect

    Xu Jia; Xu Jinliang; Sun Jialin; Wei Jinquan

    2012-06-18

    Hetrodimensional contacts were fabricated by coating double-walled carbon nanotube (CNT) films on CuO nanowire arrays. Wavelength dependent photovoltaic effects by irradiating the devices with 405, 532, and 1064 nm lasers were observed. Two possible mechanisms responsible for the observed results were discussed. Photoexcitations within CuO nanowires and Schottky barriers in the heterojunctions dominate the photovoltaics in the 405 and 532 nm cases. For the 1064 nm case, the photovoltaic is the result of the excitation within the CNTs and of the heterodimensionality effect. Control experiments on CNT film/CuO granular film hetrodimensional contacts further show the relationship between these two mechanisms.

  19. Current-induced dynamics in carbon atomic contacts

    PubMed Central

    Gunst, Tue

    2011-01-01

    Summary Background: The effect of electric current on the motion of atoms still poses many questions, and several mechanisms are at play. Recently there has been focus on the importance of the current-induced nonconservative forces (NC) and Berry-phase derived forces (BP) with respect to the stability of molecular-scale contacts. Systems based on molecules bridging electrically gated graphene electrodes may offer an interesting test-bed for these effects. Results: We employ a semi-classical Langevin approach in combination with DFT calculations to study the current-induced vibrational dynamics of an atomic carbon chain connecting electrically gated graphene electrodes. This illustrates how the device stability can be predicted solely from the modes obtained from the Langevin equation, including the current-induced forces. We point out that the gate offers control of the current, independent of the bias voltage, which can be used to explore current-induced vibrational instabilities due the NC/BP forces. Furthermore, using tight-binding and the Brenner potential we illustrate how Langevin-type molecular-dynamics calculations including the Joule heating effect for the carbon-chain systems can be performed. Molecular dynamics including current-induced forces enables an energy redistribution mechanism among the modes, mediated by anharmonic interactions, which is found to be vital in the description of the electrical heating. Conclusion: We have developed a semiclassical Langevin equation approach that can be used to explore current-induced dynamics and instabilities. We find instabilities at experimentally relevant bias and gate voltages for the carbon-chain system. PMID:22259765

  20. High efficiency n-Si/ p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array

    NASA Astrophysics Data System (ADS)

    Kim, Hangil; Kim, Soo-Hyun; Ko, Kyung Yong; Kim, Hyungjun; Kim, Jaehoon; Oh, Jihun; Lee, Han-Bo-Ram

    2016-05-01

    A highly efficient n-Si/ p-Cu2O core-shell (C-S) nanowire (NW) photodiode was fabricated using Cu2O grown by atomic layer deposition (ALD) on a well-ordered Si NW array. Ordered Si nanowires arrays were fabricated by nano-sphere lithography to pattern metal catalysts for the metal-assisted etching of silicon, resulting in a Si NW arrays with a good arrangement, smooth surface and small diameter distribution. The ALD-Cu2O thin films were grown using a new non-fluorinated Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O) at 140°C. Transmission electron microscopy equipped with an energy dispersive spectrometer confirmed that p-Cu2O thin films had been coated over arrayed Si NWs with a diameter of 150 nm (aspect ratio of ˜7.6). The C-S NW photodiode exhibited more sensitive photodetection performance under ultraviolet illumination as well as an enhanced photocurrent density in the forward biasing region than the planar structure diode. The superior performance of C-S NWs photodiode was explained by the lower reflectance of light and the effective carrier separation and collection originating from the C-S NWs structure. [Figure not available: see fulltext.

  1. Theoretical two-atom thick semiconducting carbon sheet.

    PubMed

    Hu, Meng; Shu, Yu; Cui, Lin; Xu, Bo; Yu, Dongli; He, Julong

    2014-09-14

    A two-dimensional carbon allotrope, H-net, is proposed using first principle calculations. H-net incorporates C4 distorted squares, C6 hexagons, and C8 octagons. Unlike previously reported planar graphene and other theoretical carbon sheets, H-net is a two-atom thick polymorph with identical C6 + C4 + C6 components cross-facing and covalently buckled to feature a handshake-like model. The feasibility of H-net is evident from its dynamic stability as confirmed by phonon-mode analysis and its lower total energy. H-net is energetically more favorable than synthesized graphdiyne and theoretical graphyne, BPC, S-graphene, polycyclic net, α-squarographite, and lithographite. We explored a possible route for the synthesis of H-net from graphene nanoribbons. Electronic band structure calculations indicated that H-net is a semiconductor with an indirect band gap of 2.11 eV, whereas graphene and many other two-dimensional carbon sheets are metallic. We also explored the electronic structure of one-dimensional nanoribbons derived from H-net. The narrowest H-net nanoribbon showed metallic behavior, whereas the other nanoribbons are semiconductors with band gaps that increase as the nanoribbons widen. H-net and its tailored nanoribbons are expected to possess more electronic properties than graphene because of their exceptional crystal structure and different energy band gaps. PMID:25053451

  2. Ordered Polypyrrole Nanowire Arrays Grown on a Carbon Cloth Substrate for a High-Performance Pseudocapacitor Electrode.

    PubMed

    Huang, Zi-Hang; Song, Yu; Xu, Xin-Xin; Liu, Xiao-Xia

    2015-11-18

    Highly aligned nanoarchitecture arrays directly grown on conducting substrates open up a new direction to accelerate Faradaic reactions for charge storage as well as address "dead volume" limitations for high-performance pseudocapacitor electrodes. Here we reported the electrochemical fabrication of well-ordered polypyrrole (PPy) nanowire arrays (NWAs) on surfaces of carbon fibers in an untreated carbon cloth to construct hierarchical structures constituted by the three-dimensional conductive carbon fiber skeleton and the atop well-ordered electroactive polymer nanowires. The morphologies, wetting behaviors, and charge-storage performances of the polymer were investigated by scanning electron microscopy, transmission electron microscopy, contact-angle measurement, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. The well-ordered PPy NWA electrode exhibited a high specific capacitance of 699 F/g at 1 A/g with excellent rate capability, and 92.4% and 81.5% of its capacitance could be retained at 10 and 20 A/g, respectively. An extremely high energy density of 164.07 Wh/kg could be achieved by the PPy NWAs at a power density of 0.65 kW/kg. It also displayed a quite high energy density of 133.79 Wh/kg at a high power density of 13 kW/kg. The assembled symmetric supercapacitor of PPy NWAs//PPy NWAs also exhibited excellent rate capability, and only 19% of its energy density decreased when the power density increased 20 times from 0.65 to 13 kW/kg. PMID:26509281

  3. Effect of added silicon carbide nanowires and carbon nanotubes on mechanical properties of 0-3 natural rubber composites

    NASA Astrophysics Data System (ADS)

    Janyakunmongkol, Khantichai; Nhuapeng, Wim; Thamjaree, Wandee

    2016-01-01

    In this work, the mechanical properties of 0-3 nanocomposite materials containing silicon carbide nanowires (SiCNWs), carbon nanotubes (CNTs), and natural rubber were studied. The SiCNWs and CNTs were used as reinforcement fiber whereas natural rubber was used as the matrix phase. The chemical vapor depositions (CVD) was used for synthesizing the nanowire and nanotube phases. The volume fraction of reinforcement was varied from 0 to 10%. The nanophases were mixed in the natural rubber matrix and molded by the hand lay-up technique. The mechanical properties of the samples were examined and compared with those of neat natural rubber. From the results, it was found that the hardness and density of the samples increased with the quantities of nanophases. The nanocomposites with a volume fraction of 10% exhibited maximum hardness (50.5 SHORE A). The maximum tensile strength and extent of elongation at break of the samples were obtained from the 4% volume fraction sample, which were 16.13 MPa and 1,540%, respectively.

  4. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes

    PubMed Central

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films. PMID:24763208

  5. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor

    SciTech Connect

    Wang, Hao; Han, Weihua Li, Xiaoming; Zhang, Yanbo; Yang, Fuhua

    2014-09-28

    We demonstrate temperature-dependent quantum transport characteristics in silicon junctionless nanowire transistor fabricated on Silicon-on-Insulator substrate by the femtosecond laser lithography. Clear drain-current oscillations originated from dopant-induced quantum dots are observed in the initial stage of the conduction for the silicon nanowire channel at low temperatures. Arrhenius plot of the conductance indicates the transition temperature of 30 K from variable-range hopping to nearest-neighbor hopping, which can be well explained under Mott formalism. The transition of electron hopping behavior is the interplay result between the thermal activation and the Coulomb interaction.

  6. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect

    Hibst, N.; Strehle, S.; Knittel, P.; Kranz, C.; Mizaikoff, B.

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  7. Facile synthesis of carbon doped TiO2 nanowires without an external carbon source and their opto-electronic properties

    NASA Astrophysics Data System (ADS)

    Kiran, Vankayala; Sampath, Srinivasan

    2013-10-01

    The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the focused ion beam deposition technique. The opto-electronic properties of individual C-TiO2-NW demonstrate visible light activity and the parameters obtained from photoconductivity measurements reveal very good sensitivity. This methodology opens up the possibility of using C-TiO2-NW in electronic and opto-electronic device applications.The present study demonstrates a simple protocol for the preparation of one dimensional (1D) oxidized titanium carbide nanowires and their opto-electronic properties. The oxidized titanium carbide nanowires (Ox-TiC-NW) are prepared from TiC nanowires (TiC-NW) that are in turn synthesized from micron sized TiC particles using the solvothermal technique. The Ox-TiC-NW is characterized by X-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Raman spectroscopy. Thermal oxidation of TiC-NW yields carbon doped TiO2-NW (C-TiO2-NW), a simple methodology to obtain 1D C-TiO2-NW. Temperature dependent Raman spectra reveal characteristic bands for TiO2-NW. Electrical characterization of individual C-TiO2-NW is performed by fabricating a device structure using the

  8. Atomic-Scale Investigations of Multiwall Carbon Nanotube Growth

    NASA Astrophysics Data System (ADS)

    Behr, Michael John

    The combination of unique mechanical, thermal, optical, and electronic properties of carbon nanotubes (CNTs) make them a desirable material for use in a wide range of applications. Many of these unique properties are highly sensitive to how carbon atoms are arranged within the graphene nanotube wall. Precise structural control of this arrangement remains the key challenge of CNT growth to realizing their technological potential. Plasma-enhanced chemical vapor deposition (PECVD) from methane-hydrogen gas mixtures using catalytic nanoparticles enables large-scale growth of CNT films and controlled spatial placement of CNTs on a substrate, however, much is still unknown about what happens to the catalyst particle during growth, the atomistic mechanisms involved, and how these dictate the final nanotube structure. To investigate the fundamental processes of CNT growth by PECVD, a suite of characterization techniques were implemented, including attenuated total-reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical emission spectroscopy (OES), Raman spectroscopy, convergent-beam electron diffraction (CBED), high-resolution transmission and scanning-transmission electron microscopy (TEM, STEM), energy dispersive x-ray spectroscopy, and electron energy-loss spectroscopy (EELS). It is found that hydrogen plays a critical role in determining the final CNT structure through controlling catalyst crystal phase and morphology. At low hydrogen concentrations in the plasma iron catalysts are converted to Fe3C, from which high-quality CNTs grow; however, catalyst particles remain as pure iron when hydrogen is in abundance, and produce highly defective CNTs with large diameters. The initially faceted and equiaxed catalyst nanocrystals become deformed and are elongated into a teardrop morphology once a tubular CNT structure is formed around the catalyst particles. Although catalyst particles are single crystalline, they exhibit combinations of small-angle (˜1°-3

  9. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.

    PubMed

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena

    2016-07-21

    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy. PMID:27177252

  10. Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam.

    PubMed

    Masghouni, N; Burton, J; Philen, M K; Al-Haik, M

    2015-03-01

    Hybrid piezoelectric composite structures that are able to convert mechanical energy into electricity have gained growing attention in the past few years. In this work, an energy harvesting composite beam is developed by growing piezoelectric zinc oxide nanowires on the surface of carbon fiber prior to forming structural composites. The piezoelectric behavior of the composite beam was demonstrated under different vibration sources such as water bath sonicator and permanent magnet vibration shaker. The beam was excited at its fundamental natural frequency (43.2 Hz) and the open circuit voltage and the short circuit current were measured to be 3.1 mV and 23 nA, respectively. Upon connecting an optimal resistor (1.2 kΩ) in series with the beam a maximum power output 2.5 nW was achieved. PMID:25670370

  11. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance

    NASA Astrophysics Data System (ADS)

    Horng, Ying-Ying; Lu, Yi-Chen; Hsu, Yu-Kuei; Chen, Chia-Chun; Chen, Li-Chyong; Chen, Kuei-Hsien

    Flexible supercapacitor is successfully fabricated using polyaniline nanowires/carbon cloth (PANI-NWs/CC) nanocomposite. High gravimetric capacitance of 1079 F g -1 at a specific energy of 100.9 Wh kg -1 and a specific power of 12.1 kW kg -1 is obtained. Moreover, this approach also offers an exceptionally high area-normalized capacitance of 1.8 F cm -2. The diffusion length of protons within the PANI-NWs is estimated to be about 60 nm by electrochemical impedance analysis, which indicates that the electrochemical performance of the electrode is not limited by the thickness of PANI-NWs. The electrochemical performance of PANI-NWS/CC remains without any deterioration, even when the cell is bent under high curvature. These results clearly present a cost-effective and simple method of fabrication of the nanostructured polymers with enormous potential in flexible energy storage device applications.

  12. Amorphous Alumina Nanowire Array Efficiently Delivers Ac-DEVD-CHO to Inhibit Apoptosis of Dendritic Cells

    PubMed Central

    Lampert, Lester; Timonen, Brittany; Smith, Sean; Davidge, Brittney; Li, Haiyan; Conley, John F.; Singer, Jeffrey D.; Jiao, Jun

    2014-01-01

    To create an effective well-ordered delivery platform still remains a challenge. Herein we fabricate vertically aligned alumina nanowire arrays via atomic layer deposition templated by carbon nanotubes. Using these arrays, a caspase-3/7 inhibitor was delivered into DC 2.4 cells and blocked apoptosis, as confirmed by fluorescence microscopy. PMID:24336780

  13. Determination of Diclofenac on a Dysprosium Nanowire- Modified Carbon Paste Electrode Accomplished in a Flow Injection System by Advanced Filtering

    PubMed Central

    Daneshgar, Parandis; Norouzi, Parviz; Ganjali, Mohammad Reza; Dinarvand, Rasoul; Moosavi-Movahedi, Ali Akbar

    2009-01-01

    A new detection technique called Fast Fourier Transform Square-Wave Voltammetry (FFT SWV) is based on measurements of electrode admittance as a function of potential. The response of the detector (microelectrode), which is generated by a redox processes, is fast, which makes the method suitable for most applications involving flowing electrolytes. The carbon paste electrode was modified by nanostructures to improve sensitivity. Synthesized dysprosium nanowires provide a more effective nanotube-like surface [1-4] so they are good candidates for use as a modifier for electrochemical reactions. The redox properties of diclofenac were used for its determination in human serum and urine samples. The support electrolyte that provided a more defined and intense peak current for diclofenac determination was a 0.05 mol L−1 acetate buffer pH = 4.0. The drug presented an irreversible oxidation peak at 850 mV vs. Ag/AgCl on a modified nanowire carbon paste electrode which produced high current and reduced the oxidation potential by about 100 mV. Furthermore, the signal-to-noise ratio was significantly increased by application of a discrete Fast Fourier Transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. To obtain the much sensivity the effective parameters such as frequency, amplitude and pH was optimized. As a result, CDL of 2.0 × 10−9 M and an LOQ of 5.0 × 10−9 M were found for the determination for diclofenac. A good recovery was obtained for assay spiked urine samples and a good quantification of diclofenac was achieved in a commercial formulation. PMID:22408485

  14. The initial flow dynamics of light atoms through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cannon, James; Kim, Daejoong; Hess, Ortwin

    2011-04-01

    Carbon nanotubes are becoming increasingly viable as membranes for application in a wide variety of nano-fluidic applications, such as nano-scale nozzles. For potential applications that utilize switching on and off of flow through nanotube nozzles, it is important to understand the initial flow dynamics. Furthermore, when the nanotube interacts strongly with the fluid, the flow may be very different from conventional simulations, which consider atoms (such as argon, for example) that interact only weakly with the nanotube. Therefore, to better understand such flows and explore the potential manipulation of flow that can be achieved, we consider the initial flow dynamics of a light fluid through carbon nanotube nozzles, using non-equilibrium molecular dynamics simulations. Our studies show that if the conditions are controlled carefully, unusual phenomena can be generated, such as pulsed flow and very nonlinear increases in flow rate with nanotube diameter. We detail the physical reasons for such phenomena and describe how the pulsation can be controlled using temperature.

  15. Nanocrystal-constructed mesoporous CoFe₂O₄ nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties.

    PubMed

    Wang, Bo; Li, Songmei; Wu, Xiaoyu; Li, Bin; Liu, Jianhua; Yu, Mei

    2015-09-01

    A novel and facile two-step strategy is successfully developed for the large-scale fabrication of hierarchical mesoporous CoFe2O4 nanowire arrays (NWAs) on flexible carbon fabric as integrated anodes for highly efficient and reversible lithium storage. The synthesis involves the co-deposition of uniform bimetallic (Co, Fe) carbonate hydroxide hydrate precursor NWAs on carbon fabric and subsequent thermal transformation to spinel CoFe2O4 without damaging the morphology. The as-prepared CoFe2O4 nanowires have unique mesoporous structures, which are constructed by many interconnected nanocrystals with sizes of about 15-20 nm. The typical size of the nanowires is in the range of 70-100 nm in width and up to several micrometers in length. Such a hybrid nanostructure electrode presented here not only simplifies electrode processing, but also promises fast electron transport/collection and ion diffusion, and withstands volume variation upon prolonged charge/discharge cycling. As a result, the binder-free CoFe2O4/carbon fabric composite exhibits a high reversible capacity of 1185.75 mA h g(-1) at a current density of 200 mA g(-1), and a superior rate capability. More importantly, a reversible capacity as high as ∼950 mA h g(-1) can be retained and there is no obvious decay after 150 cycles. PMID:26219540

  16. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires.

    PubMed

    Gamalski, A D; Tersoff, J; Stach, E A

    2016-04-13

    We study the growth of GaN nanowires from liquid Au-Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either ⟨112̅0⟩ or ⟨11̅00⟩ directions, by the addition of {11̅00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. The results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III-V semiconductor nanowires. PMID:26990711

  17. Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires

    DOE PAGESBeta

    Gamalski, A. D.; Tersoff, J.; Stach, E. A.

    2016-04-13

    We study the growth of GaN nanowires from liquid Au–Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (11¯20) or (11¯00) directions, by the addition of {11¯00} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double-height step structure. Finally, the results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III–V semiconductor nanowires.

  18. Graphene-based nanowire supercapacitors.

    PubMed

    Chen, Zhi; Yu, Dingshan; Xiong, Wei; Liu, Peipei; Liu, Yong; Dai, Liming

    2014-04-01

    We present a new type of electrochemical supercapacitors based on graphene nanowires. Graphene oxide (GO)/polypyrrole (PPy) nanowires are prepared via electrodepostion of GO/PPy composite into a micoroporous Al2O3 template, followed by the removal of template. PPy is electrochemically doped by oxygen-containing functional groups of the GO to enhance the charging/discharging rates of the supercapacitor. A high capacitance 960 F g(-1) of the GO/PPy nanowires is obtained due to the large surface area of the vertically aligned nanowires and the intimate contact between the nanowires and the substrate electrode. The capacitive performance remains stable after charging and discharging for 300 cycles. To improve the thermal stability and long-term charge storage, GO is further electrochemically reduced into graphene and PPy is subsequently thermally carbonized, leading to a high capacitance of 200 F g(-1) for the resultant pure reduced graphene oxide/carbon based nanowire supercapacitor. This value of capacitance (200 F g(-1)) is higher than that of conventional porous carbon materials while the reduced graphene oxide/carbon nanowires show a lower Faraday resistance and higher thermal stability than the GO/PPy nanowires. PMID:24588395

  19. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Jung, Cho-Long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-Seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-03-01

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I-/I3- was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode.To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the

  20. Biofunctionalization of carbon nanotubes for atomic force microscopy imaging.

    PubMed

    Woolley, Adam T

    2004-01-01

    The study of biological processes relies increasingly on methods for probing structure and function of biochemical machinery (proteins, nucleic acids, and so on) with submolecular resolution. Atomic force microscopy (AFM) has recently emerged as a promising approach for imaging biological structures with resolution approaching the nanometer scale. Two important limitations of AFM in biological imaging are (1) resolution is constrained by probe tip dimensions, and (2) typical probe tips lack chemical specificity to differentiate between functional groups in biological structures. Single-walled carbon nanotubes (SWNTs) offer an intriguing possibility for providing both high resolution and chemical selectivity in AFM imaging, thus overcoming the enumerated limitations. Procedures for generating SWNT tips for AFM will be described. Carboxylic acid functional groups at the SWNT ends can be functionalized using covalent coupling chemistry to attach biological moieties via primary amine groups. Herein, the focus will be on describing methods for attaching biotin to SWNT tips and probing streptavidin on surfaces; importantly, this same coupling chemistry can also be applied to other biomolecules possessing primary amine groups. Underivatized SWNT tips can also provide high-resolution AFM images of DNA. Biofunctionalization of SWNT AFM tips offers great potential to enable high-resolution, chemically selective imaging of biological structures. PMID:15197321

  1. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    SciTech Connect

    Zope, Rajendra R. Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  2. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  3. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions.

    PubMed

    Zope, Rajendra R; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability. PMID:26328842

  4. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique

    PubMed Central

    2012-01-01

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT. PMID:22873841

  5. Atomic scale analysis of the enhanced electro- and photo-catalytic activity in high-index faceted porous NiO nanowires.

    PubMed

    Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A; Xiang, Bin

    2015-01-01

    Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale. PMID:25707903

  6. Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin

    2015-02-01

    Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale.

  7. Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires

    PubMed Central

    Shen, Meng; Han, Ali; Wang, Xijun; Ro, Yun Goo; Kargar, Alireza; Lin, Yue; Guo, Hua; Du, Pingwu; Jiang, Jun; Zhang, Jingyu; Dayeh, Shadi A.; Xiang, Bin

    2015-01-01

    Catalysts play a significant role in clean renewable hydrogen fuel generation through water splitting reaction as the surface of most semiconductors proper for water splitting has poor performance for hydrogen gas evolution. The catalytic performance strongly depends on the atomic arrangement at the surface, which necessitates the correlation of the surface structure to the catalytic activity in well-controlled catalyst surfaces. Herein, we report a novel catalytic performance of simple-synthesized porous NiO nanowires (NWs) as catalyst/co-catalyst for the hydrogen evolution reaction (HER). The correlation of catalytic activity and atomic/surface structure is investigated by detailed high resolution transmission electron microscopy (HRTEM) exhibiting a strong dependence of NiO NW photo- and electrocatalytic HER performance on the density of exposed high-index-facet (HIF) atoms, which corroborates with theoretical calculations. Significantly, the optimized porous NiO NWs offer long-term electrocatalytic stability of over one day and 45 times higher photocatalytic hydrogen production compared to commercial NiO nanoparticles. Our results open new perspectives in the search for the development of structurally stable and chemically active semiconductor-based catalysts for cost-effective and efficient hydrogen fuel production at large scale. PMID:25707903

  8. Understanding the carbon-monoxide oxidation mechanism on ultrathin palladium nanowires: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Yang, Po-Yu; Ju, Shin-Pon; Lai, Zhu-Min; Lin, Jenn-Sen; Hsieh, Jin-Yuan

    2016-01-01

    The CO oxidation mechanism catalyzed by ultrathin helical palladium nanowires (PdNW) was investigated by density functional theory (DFT) calculation. The helical PdNW structure was constructed on the basis of the simulated annealing basin-hopping (SABH) method with the tight-binding potential and the penalty method in our previous studies (J. Mater. Chem., 2012, 22, 20319). The low-lying adsorption configurations as well as the adsorption energies for O2 and CO molecules on different PdNW adsorption sites were obtained by DFT calculation. The most stable adsorption configurations for the Langmuir-Hinshelwood (LH) mechanism processes were considered for investigating the CO oxidation mechanism. The nudged elastic band (NEB) method was adopted to obtain the transition state configuration and the minimum energy pathways (MEPs).

  9. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    , by the purpose to integrate the carbon nanostructures in the carbon fibers by means of chemical vapor deposition (CVD) method, in order to develop the basic substrate of advanced carbon-based nanocomposite for atomic oxygen protection. The nanostructures grown onto the carbon fibers can be used to create multiscale hybrid carbon nanotube/carbon fiber composites where individual carbon fibers, which are several microns in diameter, are surrounded by nanotubes. The present objective is the setting-up of the CVD parameters for a reliable growth of carbon nanostructures on carbon fiber surface; after that, the results of a preliminary characterization related to atomic oxygen effects testing by means of a ground LEO simulation facility are reported and discussed.

  10. Carbon Nanotube Atomic Force Microscopy for Proteomics and Biological Forensics

    SciTech Connect

    Noy, A; De Yoreo, J J; Malkin, A J

    2002-01-01

    The Human Genome Project was focused on mapping the complete genome. Yet, understanding the structure and function of the proteins expressed by the genome is the real end game. But there are approximately 100,000 proteins in the human body and the atomic structure has been determined for less than 1% of them. Given the current rate at which structures are being solved, it will take more than one hundred years to complete this task. The rate-limiting step in protein structure determination is the growth of high-quality single crystals for X-ray diffraction. Synthesis of the protein stock solution as well as X-ray diffraction and analysis can now often be done in a matter of weeks, but developing a recipe for crystallization can take years and, especially in the case of membrane proteins, is often completely unsuccessful. Consequently, techniques that can either help to elucidate the factors controlling macromolecular crystallization, increase the amount of structural information obtained from crystallized macromolecules or eliminate the need for crystallization altogether are of enormous importance. In addition, potential applications for those techniques extend well beyond the challenges of proteomics. The global spread of modern technology has brought with it an increasing threat from biological agents such as viruses. As a result, developing techniques for identifying and understanding the operation of such agents is becoming a major area of forensic research for DOE. Previous to this project, we have shown that we can use in situ atomic force microscopy (AFM) to image the surfaces of growing macromolecular crystals with molecular resolution (1-5) In addition to providing unprecedented information about macromolecular nucleation, growth and defect structure, these results allowed us to obtain low-resolution phase information for a number of macromolecules, providing structural information that was not obtainable from X-ray diffraction(3). For some virus systems

  11. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes.

    PubMed

    Kim, Junhee; Jung, Cho-long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-04-14

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I(-)/I3(-) was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode. PMID:27001286

  12. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.

    PubMed

    Spencer, Joseph H; Nesbitt, John M; Trewhitt, Harrison; Kashtiban, Reza J; Bell, Gavin; Ivanov, Victor G; Faulques, Eric; Sloan, Jeremy; Smith, David C

    2014-09-23

    This paper presents a resonance Raman spectroscopy study of ∼1 nm diameter HgTe nanowires formed inside single walled carbon nanotubes by melt infiltration. Raman spectra have been measured for ensembles of bundled filled tubes, produced using tubes from two separate sources, for excitation photon energies in the ranges 3.39-2.61 and 1.82-1.26 eV for Raman shifts down to ∼25 cm(-1). We also present HRTEM characterization of the tubes and the results of DFT calculations of the phonon and electronic dispersion relations, and the optical absorption spectrum based upon the observed structure of the HgTe nanowires. All of the evidence supports the hypothesis that the observed Raman features are not attributable to single walled carbon nanotubes, i.e., peaks due to radial breathing mode phonons, but are due to the HgTe nanowires. The observed additional features are due to four distinct phonons, with energies 47, 51, 94, and 115 cm(-1), respectively, plus their overtones and combinations. All of these modes have strong photon energy resonances that maximize at around 1.76 eV energy with respect to incident laser. PMID:25163005

  13. Tensile and compressive mechanical behavior of twinned silicon carbide nanowires

    SciTech Connect

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-04-01

    Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strains. The critical strain of the twinned nanowires can be enhanced by twin-stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are just stretched before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for the thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of the twinned SiC nanowires exhibits two differently failure modes, depending on the length and diameter of the nanowires, i.e. shell buckling for short length nanowires and columnar buckling for longer length nanowires.

  14. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-01

    We investigated the dynamics of the reaction of 3P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol-1 in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a 3P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol-1, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of 3P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  15. Surface reactions of molecular and atomic oxygen with carbon phosphide films.

    PubMed

    Gorham, Justin; Torres, Jessica; Wolfe, Glenn; d'Agostino, Alfred; Fairbrother, D Howard

    2005-11-01

    The surface reactions of atomic and molecular oxygen with carbon phosphide films have been studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Carbon phosphide films were produced by ion implantation of trimethylphosphine into polyethylene. Atmospheric oxidation of carbon phosphide films was dominated by phosphorus oxidation and generated a carbon-containing phosphate surface film. This oxidized surface layer acted as an effective diffusion barrier, limiting the depth of phosphorus oxidation within the carbon phosphide film to < 3 nm. The effect of atomic oxygen (AO) exposure on this oxidized carbon phosphide layer was subsequently probed in situ using XPS. Initially AO exposure resulted in a loss of carbon atoms from the surface, but increased the surface concentration of phosphorus atoms as well as the degree of phosphorus oxidation. For more prolonged AO exposures, a highly oxidized phosphate surface layer formed that appeared to be inert toward further AO-mediated erosion. By utilizing phosphorus-containing hydrocarbon thin films, the phosphorus oxides produced during exposure to AO were found to desorb at temperatures >500 K under vacuum conditions. Results from this study suggest that carbon phosphide films can be used as AO-resistant surface coatings on polymers. PMID:16853637

  16. A simple and clean source of low-energy atomic carbon

    SciTech Connect

    Krasnokutski, S. A.; Huisken, F.

    2014-09-15

    A carbon source emitting low-energy carbon atoms from a thin-walled, sealed tantalum tube via thermal evaporation has been constructed. The tube is made from a 0.05 mm thick tantalum foil and filled with {sup 12}C or {sup 13}C carbon powder. After being sealed, it is heated by direct electric current. The solvated carbon atoms diffuse to the outer surface of the tube and, when the temperature rises over 2200 K, the evaporation of atomic carbon from the surface of the tantalum tube is observed. As the evaporated species have low energy they are well-suited for the incorporation into liquid helium droplets by the pick-up technique. Mass analysis of the incorporated species reveals the dominant presence of atomic carbon and very low abundances of C{sub 2} and C{sub 3} molecules (<1%). This is in striking contrast to the thermal evaporation of pure carbon, where C{sub 3} molecules are found to be the dominant species in the gas phase. Due to the thermal evaporation and the absence of high-energy application required for the dissociation of C{sub 2} and C{sub 3} molecules, the present source provides carbon atoms with rather low energy.

  17. Stacking faults in SiC nanowires.

    PubMed

    Wallis, K L; Wieligor, M; Zerda, T W; Stelmakh, S; Gierlotka, S; Palosz, B

    2008-07-01

    SiC nanowires were obtained by a reaction between vapor silicon and multiwall carbon nanotubes, CNT, in vacuum at 1200 degrees C. Raman and IR spectrometry, X-ray diffraction and high resolution transmission electron microscopy, HRTEM, were used to characterize properties of SiC nanowires. Morphology and chemical composition of the nanowires was similar for all samples, but concentration of structural defects varied and depended on the origin of CNT. Stacking faults were characterized by HRTEM and Raman spectroscopy, and both techniques provided complementary results. Raman microscopy allowed studying structural defects inside individual nanowires. A thin layer of amorphous silicon carbide was detected on the surface of nanowires. PMID:19051903

  18. Ab initio study of semiconductor atoms impurities in zigzag edge (10,0) carbon nanotubes

    SciTech Connect

    Muttaqien, Fahdzi Suprijadi

    2015-04-16

    The substitutional impurities in zigzag edge (10,0) carbon nanotubes have been studied by using first principles calculations. Silicon (Si), gallium (Ga), and arsenic (As) atom have been chosen as semiconductor based-atom for replacing carbon atoms in CNT’s surface. The silicon atom changes the energy gap of pristine zigzag (10,0) CNT, it is 0.19 eV more narrow than that of pristine CNT. Geometrically, the silicon atom creates sp{sup 3} bond with three adjacent carbon atoms, where the tetrahedral form of its sp{sup 3} bond is consisted of free unoccupied state. The silicon atom does not induce magnetism to zigzag CNT. Due to gallium (Ga) and arsenic (As) atom substitution, the zigzag CNT becomes metallic and has magnetic moment of 1 µ{sub B}. The valance and conduction band are crossed each other, then the energy gap is vanished. The electronic properties of GaAs-doped CNT are dominantly affected by gallium atom and its magnetic properties are dominantly affected by arsenic atom. These results prove that the CNT with desired properties can be obtained with substitutional impurities without any giving structural defect.

  19. SiC@Si core-shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Yewu; Gu, Lin; Lu, Ren; Qian, Haolei; Peng, Xinsheng; Sha, Jian

    2015-10-01

    Silicon has been considered as one of the most promising anode materials for the next generation lithium-ion battery due to its high theoretical capacity, but large volume changes during the electrochemical cycling limit its commercial application. In this study, we report the synthesis of silicon carbide @ silicon core-shell nanowires on carbon paper and their application in lithium-ion batteries. The hybrid nano-structures are fabricated via a two-step chemical vapor deposition method and directly used as the working electrode without any additional binder, exhibiting high specific capacity, high coulombic efficiency and good cycling stability. After 50 cycles, the discharge capacities still remain 2837 and 1809 mAh g-1 at the rates of 0.1C and 0.5C, respectively. Furthermore, we also study the influence of the growth time of SiC NWs and the thickness of Si film on the lithium-ion batteries' performance, and propose the possible method to further improve the battery performance.

  20. Carbon nanofiber/cobalt oxide nanopyramid core-shell nanowires for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    An, Geon-Hyoung; Ahn, Hyo-Jin

    2014-12-01

    Carbon nanofiber (CNF)/Co3O4 nanopyramid core-shell nanowires (NWs) are synthesized using an electrospinning method followed by reduction and hydrothermal treatment in order to improve the capacity, cycle stability, and high-rate capability of the electrodes in Li ion batteries (LIBs). The morphology, crystal structure, and chemical states of all samples are investigated by means of field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. For comparison, conventional CNFs, octahedral Co3O4, and Co3O4/CNF composite electrodes are prepared. LIB cells fabricate with the CNF/Co3O4 nanopyramid core-shell NWs exhibit superb discharge capacity (1173 mAh g-1 at the 1st cycle), cycle stability (795 mAh g-1 at 50 cycles), high initial Coulombic efficiency (84.8%), and high-rate capability (570 mAh g-1 at a current density of 700 mA g-1) as compared to the conventional CNF, octahedral Co3O4, and Co3O4/CNF composite electrodes. The performance improvement is owing to the introduction of one-dimensional CNFs relative to efficient electron transport in the core region, extensive utilization of Co3O4 nanopyramids with high capacity grown closely on the CNFs in the shell region, and the network structures of the electrode relative to the improvement of Li ion diffusion.

  1. Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-07-01

    Novel silver nanowire (AgNW) - carbon fiber cloth (CC) nanocomposites were synthesized by a rapid and facile method. Acting as filter in an electrical gravity filtration device, the AgNW-CC nanocomposites were applied to electrochemical point-of-use water disinfection. AgNW-CC nanocomposites were characterized by FESEM, XRD, and FTIR. Their disinfection performance toward Escherichia coli and bacteriophage MS2 was evaluated by inhibition zone tests, optical density growth curve tests, and flow tests. The results showed that complex 3D AgNW networks with controllable silver release (<100 ppb) were fabricated on CC by using UV curing adhesive. AgNW-CC nanocomposites exhibited excellent intrinsic antibacterial activities against E. coli. The concentration of AgNWs and UV adhesive controlled the released silver and hence led to the change in antibacterial activity. The external electric field significantly enhanced the disinfection efficiency of AgNW-CC nanocomposites. Over 99.999% removal of E. coli and MS2 could be achieved. More complex AgNW networks contributed to higher disinfection efficiency under 10 V and 10(6) CFU (PFU) mL(-1) of microorganism. UV adhesive could keep the disinfection performance from being affected by flow rate. The convenient synthesis and outstanding disinfection performance offer AgNW-CC nanocomposites opportunities in the application of electrochemical point-of-use drinking water disinfection. PMID:27085313

  2. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  3. Dye-sensitized solar cells with vertically aligned TiO2 nanowire arrays grown on carbon fibers.

    PubMed

    Cai, Xin; Wu, Hongwei; Hou, Shaocong; Peng, Ming; Yu, Xiao; Zou, Dechun

    2014-02-01

    One-dimensional semiconductor TiO2 nanowires (TNWs) have received widespread attention from solar cell and related optoelectronics scientists. The controllable synthesis of ordered TNW arrays on arbitrary substrates would benefit both fundamental research and practical applications. Herein, vertically aligned TNW arrays in situ grown on carbon fiber (CF) substrates through a facile, controllable, and seed-assisted thermal process is presented. Also, hierarchical TiO2 -nanoparticle/TNW arrays were prepared that favor both the dye loading and depressed charge recombination of the CF/TNW photoanode. An impressive conversion efficiency of 2.48 % (under air mass 1.5 global illumination) and an apparent efficiency of 4.18 % (with a diffuse board) due to the 3D light harvesting of the wire solar cell were achieved. Moreover, efficient and inexpensive wire solar cells made from all-CF electrodes and completely flexible CF-based wire solar cells were demonstrated, taking into account actual application requirements. This work may provide an intriguing avenue for the pursuit of lightweight, cost-effective, and high-performance flexible/wearable solar cells. PMID:24488679

  4. A general strategy to construct uniform carbon-coated spinel LiMn2O4 nanowires for ultrafast rechargeable lithium-ion batteries with a long cycle life

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Liu, Huiqin; Liu, Yumin; Bai, Gongxun; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2015-07-01

    Control over one-dimensional growth of spinel-type LiMn2O4 nanowires is challenging in the area of materials science due to their cubic crystal structure. The current strategy is to use a self-support template to fabricate LiMn2O4 nanowires, which is time-consuming and limits their large-scale commercial production. In this paper, we propose a general strategy to construct well-defined LiMn2O4 nanowires terminated with amorphous carbon at the edges by an ingenious method without using any template. Benefited from its unique carbon-coated nanowire structure, the electrode exhibits a capacitor-like rate performance and battery-like high capacity for long-time cycling. Even after 1500 cycles at an extremely high current density of 30 C, approximately 82% of its initial capacity can still be retained. Significantly, the strategy reported here will be beneficial and revelatory to manufacture other extensive one-dimensional robust carbon-decorated nanowires, paving new ways for future developments of ultrafast rechargeable lithium-ion batteries.Control over one-dimensional growth of spinel-type LiMn2O4 nanowires is challenging in the area of materials science due to their cubic crystal structure. The current strategy is to use a self-support template to fabricate LiMn2O4 nanowires, which is time-consuming and limits their large-scale commercial production. In this paper, we propose a general strategy to construct well-defined LiMn2O4 nanowires terminated with amorphous carbon at the edges by an ingenious method without using any template. Benefited from its unique carbon-coated nanowire structure, the electrode exhibits a capacitor-like rate performance and battery-like high capacity for long-time cycling. Even after 1500 cycles at an extremely high current density of 30 C, approximately 82% of its initial capacity can still be retained. Significantly, the strategy reported here will be beneficial and revelatory to manufacture other extensive one-dimensional robust

  5. Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT

  6. Structure and stability of a silicon cluster on sequential doping with carbon atoms

    NASA Astrophysics Data System (ADS)

    AzeezullaNazrulla, Mohammed; Joshi, Krati; Israel, S.; Krishnamurty, Sailaja

    2016-02-01

    SiC is a highly stable material in bulk. On the other hand, alloys of silicon and carbon at nanoscale length are interesting from both technological as well fundamental view point and are being currently synthesized by various experimental groups (Truong et. al., 2015 [26]). In the present work, we identify a well-known silicon cluster viz., Si10 and dope it sequentially with carbon atoms. The evolution of electronic structure (spin state and the structural properties) on doping, the charge redistribution and structural properties are analyzed. It is interesting to note that the ground state SiC clusters prefer to be in the lowest spin state. Further, it is seen that carbon atoms are the electron rich centres while silicon atoms are electron deficient in every SiC alloy cluster. The carbon-carbon bond lengths in alloy clusters are equivalent to those seen in fullerene molecules. Interestingly, the carbon atoms tend to aggregate together with silicon atoms surrounding them by donating the charge. As a consequence, very few Si-Si bonds are noted with increasing concentrations of C atoms in a SiC alloy. Physical and chemical stability of doped clusters is studied by carrying out finite temperature behaviour and adsorbing O2 molecule on Si9C and Si8C2 clusters, respectively.

  7. Carbon fiber CVD coating by carbon nanostructured for space materials protection against atomic oxygen

    NASA Astrophysics Data System (ADS)

    Pastore, Roberto; Bueno Morles, Ramon; Micheli, Davide

    2016-07-01

    In recent years, the emphasis in space research has been shifting from space exploration to commercialization of space. In order to utilize space for commercial purposes it is necessary to understand the low earth orbit (LEO) space environment where most of the activities will be carried out. The studies on the LEO environment are mainly focused towards understanding the effect of atomic oxygen (AO) on spacecraft materials. In the first few shuttle flights, materials looked frosty because they were actually being eroded and textured: AO reacts with organic materials on spacecraft exteriors, gradually damaging them. When a spacecraft travel in LEO (where crewed vehicles and the International Space Station fly), the AO formed from the residual atmosphere can react with the spacecraft surfaces, causing damage to the vehicle. Polymers are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control coatings, conformal coatings, adhesives, lubricants, etc. Exposure of polymers and composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. The major degradation effects in polymers are due to their exposure to atomic oxygen, vacuum ultraviolet and synergistic effects, which result in different damaging effects by modification of the polymer's chemical properties. In hydrocarbon containing polymers the main AO effect is the surface erosion via chemical reactions and the release of volatile reaction products associated with the mass loss. The application of a thin protective coating to the base materials is one of the most commonly used methods of preventing AO degradation. The purpose is to provide a barrier between base material and AO environment or, in some cases, to alter AO reactions to inhibit its diffusion. The effectiveness of a coating depends on its continuity, porosity, degree of

  8. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube.

    PubMed

    Bondarev, I V

    2015-02-23

    Quantum electrodynamics theory of the resonance Raman scattering is developed for an atom in a close proximity to a carbon nanotube. The theory predicts a dramatic enhancement of the Raman intensity in the strong atomic coupling regime to nanotube plasmon near-fields. This resonance scattering is a manifestation of the general electromagnetic surface enhanced Raman scattering effect, and can be used in designing efficient nanotube based optical sensing substrates for single atom detection, precision spontaneous emission control, and manipulation. PMID:25836436

  9. STEM Imaging of Single Pd Atoms in Activated Carbon Fibers Considered for Hydrogen Storage

    SciTech Connect

    Van Benthem, Klaus; Bonifacio, Cecile S; Contescu, Cristian I; Pennycook, Stephen J; Gallego, Nidia C

    2011-01-01

    Aberration corrected scanning transmission electron microscopy was used to demonstrate the feasibility of imaging individual Pd atoms that are highly dispersed throughout the volume of activated carbon fibers. Simultaneous acquisition of high-angle annular dark-field and bright-field images allows correlation of the location of single Pd atoms with microstructural features of the carbon host material. Sub-Angstrom imaging conditions revealed that 18 wt% of the total Pd content is dispersed as single Pd atoms in three re-occurring local structural arrangements. The identified structural configurations may represent effective storage sites for molecular hydrogen through Kubas complex formation as discussed in detail in the preceding article.

  10. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  11. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    PubMed

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information. PMID:26836448

  12. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    NASA Astrophysics Data System (ADS)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic

  13. Factors Influencing the Growth of Pt Nanowires via Chemical Self-Assembly and their Fuel Cell Performance.

    PubMed

    Meng, Hui; Zhan, Yunfeng; Zeng, Dongrong; Zhang, Xiaoxue; Zhang, Guoqing; Jaouen, Frédéric

    2015-07-15

    This work reports a detailed investigation of the template-free synthesis of Pt nanowires via the chemical reduction of Pt salt precursors with formic-acid. The results indicate that both the oxidation state of Pt in the salt and the pH value of the aqueous solution comprising the platinum salt and formic acid are critical factors for the formation of Pt nanowires. Nanowires are obtained from platinum atoms in a +IV oxidation state, with ligating chloride anions (H2 PtCl6 and K2 PtCl6 ) or nonligating chloride anions (PtCl4 ). Increasing the pH of the aqueous Pt salt and HCOOH solution leads to a drastic reduction of the nanowires' length between pH 3 and 4.5. A mechanism involving formate as a reducing agent and formic acid as a structure directing agent explains these results. The Pt nanowires are stable up to 200 °C; therefore, these nanowires are suitable for use as catalysts in proton-exchange-membrane fuel cell. The optimized synthesis conditions are then selected for investigating the kinetics of the oxygen reduction reaction (ORR) of such nanowires in a fuel cell. The ORR mass activity of the Pt nanowires is 130 A g(-1) Pt at 0.9 V iR-free potential; significantly higher than that of two commercial Pt/C catalysts tested in the same conditions. The higher mass activity is explained based on a higher surface specific activity. Accelerated degradation tests indicate that Pt nanowires supported on carbon are as stable as Pt nanoparticles supported on carbon. PMID:25682734

  14. Study on nitrogen doped carbon atom chains with negative differential resistance effect

    NASA Astrophysics Data System (ADS)

    Shen, Ji-Mei; Liu, Jing; Min, Yi; Zhou, Li-Ping

    2016-05-01

    Recent calculations (Mahmoud and Lugli, 2013, [21]) of gold leads sandwiching carbon chains which are separated by diphenyl-dimethyl demonstrated that the negative differential resistance (NDR) effect appears only for "odd" numbers of carbon atoms. In this paper, according to a first-principles study based on non-equilibrium Green's function combining density functional theory, we find that the NDR effect appears both for "odd" and for "even" numbers of carbon atoms when the chains are doped by nitrogen atom. Our calculations remove the restriction of "odd/even" chains for the NDR effect, which may promise the potential applications of carbon chains in the nano-scale or molecular devices in the future.

  15. A nine-atom rhodium–aluminum oxide cluster oxidizes five carbon monoxide molecules

    PubMed Central

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium–aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  16. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems

    SciTech Connect

    Gelin, M. F.; Bondarev, I. V.; Meliksetyan, A. V.

    2014-02-14

    We study theoretically a pair of spatially separated extrinsic atomic type species (extrinsic atoms, ions, molecules, or semiconductor quantum dots) near a metallic carbon nanotube, that are coupled both directly via the inter-atomic dipole-dipole interactions and indirectly by means of the virtual exchange by resonance plasmon excitations on the nanotube surface. We analyze how the optical preparation of the system by using strong laser pulses affects the formation and evolution of the bipartite atomic entanglement. Despite a large number of possible excitation regimes and evolution pathways, we find a few generic scenarios for the bipartite entanglement evolution and formulate practical recommendations on how to optimize and control the robust bipartite atomic entanglement in hybrid carbon nanotube systems.

  17. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules.

    PubMed

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    Noble metals can promote the direct participation of lattice oxygen of very stable oxide materials such as aluminum oxide, to oxidize reactant molecules, while the fundamental mechanism of noble metal catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster. This is a sharp improvement in the field of cluster science where the transfer of at most two oxygen atoms from a doped cluster is more commonly observed. Rhodium functions not only as the preferred trapping site to anchor and oxidize carbon monoxide by the oxygen atoms in direct connection with rhodium but also the primarily oxidative centre to accumulate the large amounts of electrons and the polarity of rhodium is ultimately transformed from positive to negative. PMID:27094921

  18. Direct chemical conversion of graphene to boron- and nitrogen- and carbon-containing atomic layers

    NASA Astrophysics Data System (ADS)

    Gong, Yongji; Shi, Gang; Zhang, Zhuhua; Zhou, Wu; Jung, Jeil; Gao, Weilu; Ma, Lulu; Yang, Yang; Yang, Shubin; You, Ge; Vajtai, Robert; Xu, Qianfan; MacDonald, Allan H.; Yakobson, Boris I.; Lou, Jun; Liu, Zheng; Ajayan, Pulickel M.

    2014-01-01

    Graphene and hexagonal boron nitride are typical conductor and insulator, respectively, while their hybrids hexagonal boron carbonitride are promising as a semiconductor. Here we demonstrate a direct chemical conversion reaction, which systematically converts the hexagonal carbon lattice of graphene to boron nitride, making it possible to produce uniform boron nitride and boron carbonitride structures without disrupting the structural integrity of the original graphene templates. We synthesize high-quality atomic layer films with boron-, nitrogen- and carbon-containing atomic layers with full range of compositions. Using this approach, the electrical resistance, carrier mobilities and bandgaps of these atomic layers can be tuned from conductor to semiconductor to insulator. Combining this technique with lithography, local conversion could be realized at the nanometre scale, enabling the fabrication of in-plane atomic layer structures consisting of graphene, boron nitride and boron carbonitride. This is a step towards scalable synthesis of atomically thin two-dimensional integrated circuits.

  19. Direct laser fabrication of nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    Periodic nanowires are observed from (001) orientation of Si and GaAs when the surfaces are irradiated interferentially by high power laser pulses. These nanowires are self-assembled and can be strain-free while their period is consistent with interference period. The nanowire morphologies are studied by atomic force microscopy. The observed period between nanowires depends on the wavelengths used and interference angle. The nanowire width increases with laser intensity. The narrowest nanowires observed have the width smaller than 20 nm, which is more than 10 times smaller than the interference period.

  20. Confined iron nanowires enhance the catalytic activity of carbon nanotubes in the aerobic oxidation of cyclohexane.

    PubMed

    Yang, Xixian; Yu, Hao; Peng, Feng; Wang, Hongjuan

    2012-07-01

    Inside job: New applications of carbon materials pave the way towards greener chemical syntheses. The encapsulation of metallic Fe within CNTs improves electron transfer between the metal and the CNTs. The resulting material offers a high catalytic activity and easy magnetic separation of catalyst in the heterogeneous selective oxidation of cyclohexane. PMID:22488987

  1. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  2. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al2O3 spacer layer

    NASA Astrophysics Data System (ADS)

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Chen, Hong-Yan; Zhang, Yuan; Li, De-Hui; Liu, Wen-Jun; Ding, Shi-Jin; Jiang, An-Quan; Zhang, David Wei

    2016-04-01

    Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (˜14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices.

  3. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film.

    PubMed

    Duan, Ya-Hui; Duan, Yu; Chen, Ping; Tao, Ye; Yang, Yong-Qiang; Zhao, Yi

    2015-01-01

    As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode. PMID:25852386

  4. High-performance flexible Ag nanowire electrode with low-temperature atomic-layer-deposition fabrication of conductive-bridging ZnO film

    NASA Astrophysics Data System (ADS)

    Duan, Ya-Hui; Duan, Yu; Chen, Ping; Tao, Ye; Yang, Yong-Qiang; Zhao, Yi

    2015-02-01

    As material for flexible transparent electrodes for organic photoelectric devices, the silver nanowires (AgNWs) have been widely studied. In this work, we propose a hybrid flexible anode with photopolymer substrate, which is composed of spin-coating-processed AgNW meshes and of zinc oxide (ZnO) prepared by low-temperature (60°C) atomic layer deposition. ZnO effectively fills in the voids of the AgNW mesh electrode, which is thus able to contact to the device all over the active area, to allow for efficient charge extraction/injection. Furthermore, ZnO grown by low temperature mainly relies on hole conduction to make the anode play a better role. Hole-only devices are fabricated to certify the functionality of the low-temperature ZnO film. Finally, we confirm that the ZnO film grown at a low temperature bring a significant contribution to the performance of the modified AgNW anode.

  5. Surface-plasmon mediated photoluminescence enhancement of Pt-coated ZnO nanowires by inserting an atomic-layer-deposited Al₂O₃ spacer layer.

    PubMed

    Ren, Qing-Hua; Zhang, Yan; Lu, Hong-Liang; Chen, Hong-Yan; Zhang, Yuan; Li, De-Hui; Liu, Wen-Jun; Ding, Shi-Jin; Jiang, An-Quan; Zhang, David Wei

    2016-04-22

    Surface-plasmon mediated photoluminescence emission enhancement has been investigated for ZnO nanowire (NW)/Pt nanoparticle (NP) nanostructures by inserting an Al2O3 spacer layer. The thickness of the Al2O3 spacer layer and of the Pt NPs capped on the ZnO NWs are well controlled by atomic layer deposition. It is found that the photoluminescence property of the ZnO NW/Al2O3/Pt hybrid structure is highly tunable with respect to the thickness of the inserted Al2O3 spacer layer. The highest enhancement (∼14 times) of the near band emission of ZnO NWs is obtained with an optimized Al2O3 spacer layer thickness of 10 nm leading to a ultraviolet-visible emission ratio of 271.2 compared to 18.8 for bare ZnO NWs. The enhancement of emission is influenced by a Förster-type non-radiative energy transfer process of the exciton energy from ZnO NWs to Pt NPs as well as the coupling effect between excitons of ZnO NWs and surface plasmons of Pt NPs. The highly versatile and tunable photoluminescence properties of Pt-coated ZnO NWs achieved by introducing an Al2O3 spacer layer demonstrate their potential application in highly efficient optoelectronic devices. PMID:26963868

  6. A general strategy to construct uniform carbon-coated spinel LiMn2O4 nanowires for ultrafast rechargeable lithium-ion batteries with a long cycle life.

    PubMed

    Sun, Weiwei; Liu, Huiqin; Liu, Yumin; Bai, Gongxun; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2015-08-21

    Control over one-dimensional growth of spinel-type LiMn2O4 nanowires is challenging in the area of materials science due to their cubic crystal structure. The current strategy is to use a self-support template to fabricate LiMn2O4 nanowires, which is time-consuming and limits their large-scale commercial production. In this paper, we propose a general strategy to construct well-defined LiMn2O4 nanowires terminated with amorphous carbon at the edges by an ingenious method without using any template. Benefited from its unique carbon-coated nanowire structure, the electrode exhibits a capacitor-like rate performance and battery-like high capacity for long-time cycling. Even after 1500 cycles at an extremely high current density of 30 C, approximately 82% of its initial capacity can still be retained. Significantly, the strategy reported here will be beneficial and revelatory to manufacture other extensive one-dimensional robust carbon-decorated nanowires, paving new ways for future developments of ultrafast rechargeable lithium-ion batteries. PMID:26178631

  7. Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor.

    PubMed

    Zhao, Yuxin; He, Zhaoyang; Yan, Zifeng

    2013-01-21

    In the pursuit of electrocatalysts with great economic and ecological values for non-enzymatic glucose sensors, one-dimensional copper@carbon (Cu@C) core-shell coaxial nanowires (NWs) have been successfully prepared via a simple continuous flow wet-chemistry approach from electroplating wastewater. The as-obtained products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy and Raman spectroscopy. The electrocatalytic activity of the modified electrodes by Cu@C NWs towards glucose oxidation was investigated by cyclic voltammetry and chronoamperometry. It was found that the as-obtained Cu@C NWs showed good electrochemical properties and could be used as an electrochemical sensor for the detection of glucose molecules. Compared to the other electrodes including the bare Nafion/glassy carbon electrode (GCE) and several hot hybrid nanostructures modified GCE, a substantial decrease in the overvoltage of the glucose oxidation was observed at the Cu@C NWs electrodes with oxidation starting at ca. 0.20 V vs. Ag/AgCl (3 M KCl). At an applied potential of 0.65 V, Cu@C NWs electrodes had a high and reproducible sensitivity of 437.8 µA cm(-2) mM(-1) to glucose. Linear responses were obtained with a detection limit of 50 nM. More importantly, the proposed electrode also had good stability, high resistance against poisoning by chloride ion and commonly interfering species. These good analytical performances make Cu@C NWs promising for the future development of enzyme-free glucose sensors. PMID:23171932

  8. Strain-induced metal–semiconductor transition observed in atomic carbon chains

    PubMed Central

    La Torre, A.; Botello-Mendez, A.; Baaziz, W.; Charlier, J. -C.; Banhart, F.

    2015-01-01

    Carbyne, the sp1-hybridized phase of carbon, is still a missing link in the family of carbon allotropes. While the bulk phases of carbyne remain elusive, the elementary constituents, that is, linear chains of carbon atoms, have already been observed using the electron microscope. Isolated atomic chains are highly interesting one-dimensional conductors that have stimulated considerable theoretical work. Experimental information, however, is still very limited. Here we show electrical measurements and first-principles transport calculations on monoatomic carbon chains. When the 1D system is under strain, the chains are semiconducting corresponding to the polyyne structure with alternating bond lengths. Conversely, when the chain is unstrained, the ohmic behaviour of metallic cumulene with uniform bond lengths is observed. This confirms the recent prediction of a metal–insulator transition that is induced by strain. The key role of the contacting leads explains the rectifying behaviour measured in monoatomic carbon chains in a nonsymmetric contact configuration. PMID:25818506

  9. Design-atom approach for the QM/MM covalent boundary: A design-carbon atom with five valence electrons

    PubMed Central

    Xiao, Chuanyun; Zhang, Yingkai

    2009-01-01

    A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudo-potential theory, here we introduce a novel design-atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design-atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudo-potentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results, and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds. PMID:17902888

  10. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600 K. After it cooled to 100 K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup ¯}, 1{sup ¯},2] crystal orientation.

  11. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bai, Liu; Lirui, Liu; Zhenyu, Zhao

    2014-08-01

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600 K. After it cooled to 100 K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q6 and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1)Ni was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1¯, 1¯,2] crystal orientation.

  12. Integrating Carbon Nanotubes For Atomic Force Microscopy Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi; Cassell, Alan M.; Liu, Hongbing; Han, Jie; Meyyappan, Meyya

    2004-01-01

    Carbon nanotube (CNT) related nanostructures possess remarkable electrical, mechanical, and thermal properties. To produce these nanostructures for real world applications, a large-scale controlled growth of carbon nanotubes is crucial for the integration and fabrication of nanodevices and nanosensors. We have taken the approach of integrating nanopatterning and nanomaterials synthesis with traditional silicon micro fabrication techniques. This integration requires a catalyst or nanomaterial protection scheme. In this paper, we report our recent work on fabricating wafer-scale carbon nanotube AFM cantilever probe tips. We will address the design and fabrication considerations in detail, and present the preliminary scanning probe test results. This work may serve as an example of rational design, fabrication, and integration of nanomaterials for advanced nanodevice and nanosensor applications.

  13. Atomic migration of carbon in hard turned layers of carburized bearing steel

    SciTech Connect

    Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei; Shivpuri, Rajiv; Scott Hyde, R.

    2016-01-01

    In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.

  14. Synthesis of novel amorphous calcium carbonate by sono atomization for reactive mixing.

    PubMed

    Kojima, Yoshiyuki; Kanai, Makoto; Nishimiya, Nobuyuki

    2012-03-01

    Droplets of several micrometers in size can be formed in aqueous solution by atomization under ultrasonic irradiation at 2 MHz. This phenomenon, known as atomization, is capable of forming fine droplets for use as a reaction field. This synthetic method is called SARM (sono atomization for reactive mixing). This paper reports on the synthesis of a novel amorphous calcium carbonate formed by SARM. The amorphous calcium carbonate, obtained at a solution concentration of 0.8 mol/dm(3), had a specific surface area of 65 m(2)/g and a composition of CaCO(3)•0.5H(2)O as determined using thermogravimetric/differential thermal analysis (TG-DTA). Because the ACC had a lower hydrate composition than conventional amorphous calcium carbonate (ACC), the ACC synthesized in this paper was very stable at room temperature. PMID:21788149

  15. Ultra-low-temperature Reactions of Carbon Atoms with Hydrogen Molecules

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Kuhn, M.; Renzler, M.; Jäger, C.; Henning, Th.; Scheier, P.

    2016-02-01

    The reactions of carbon atoms with dihydrogen have been investigated in liquid helium droplets at T = 0.37 K. A calorimetric technique was applied to monitor the energy released in the reaction. The barrierless reaction between a single carbon atom and a single dihydrogen molecule was detected. Reactions between dihydrogen clusters and carbon atoms have been studied by high-resolution mass spectrometry. The formation of hydrocarbon cations of the type {{{C}}}m{{{{H}}}n}+ with m = 1-4 and n = 1-15 was observed. With enhanced concentration of dihydrogen, the mass spectra demonstrated the main “magic” peak assigned to the {{{CH}}5}+ cation. A simple formation pathway and the high stability of this cation suggest its high abundance in the interstellar medium.

  16. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu

    2014-11-01

    Materials with reduced dimensionality have attracted much interest in various fields of fundamental and applied science. True one-dimensional (1D) crystals with single-atom thickness have been realized only for few elemental metals (Au, Ag) or carbon, all of which showed very short lifetimes under ambient conditions. We demonstrate here a successful synthesis of stable 1D ionic crystals in which two chemical elements, one being a cation and the other an anion, align alternately inside carbon nanotubes. Unusual dynamical behaviours for different atoms in the 1D lattice are experimentally corroborated and suggest substantial interactions of the atoms with the nanotube sheath. Our theoretical studies indicate that the 1D ionic crystals have optical properties distinct from those of their bulk counterparts and that the properties can be engineered by introducing atomic defects into the chains.

  17. Enhanced ionized impurity scattering in nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  18. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth.

    PubMed

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-13

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about 'high temperature methods' because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of 'medium or low temperature methods' is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. PMID:22433510

  19. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    NASA Astrophysics Data System (ADS)

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-01

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process.

  20. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries.

    PubMed

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-21

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g(-1) with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g(-1) capacity retention at an ultrahigh rate of 15 A g(-1). More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g(-1), a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g(-1) even at 20 A g(-1). Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices. PMID:27049639

  1. Three-Dimensional NiCo2O4@Polypyrrole Coaxial Nanowire Arrays on Carbon Textiles for High-Performance Flexible Asymmetric Solid-State Supercapacitor.

    PubMed

    Kong, Dezhi; Ren, Weina; Cheng, Chuanwei; Wang, Ye; Huang, Zhixiang; Yang, Hui Ying

    2015-09-30

    In this article, we report a novel electrode of NiCo2O4 nanowire arrays (NWAs) on carbon textiles with a polypyrrole (PPy) nanosphere shell layer to enhance the pseudocapacitive performance. The merits of highly conductive PPy and short ion transport channels in ordered NiCo2O4 mesoporous nanowire arrays together with the synergistic effect between NiCo2O4 and PPy result in a high specific capacitance of 2244 F g(-1), excellent rate capability, and cycling stability in NiCo2O4/PPy electrode. Moreover, a lightweight and flexible asymmetric supercapacitor (ASC) device is successfully assembled using the hybrid NiCo2O4@PPy NWAs and activated carbon (AC) as electrodes, achieving high energy density (58.8 W h kg(-1) at 365 W kg(-1)), outstanding power density (10.2 kW kg(-1) at 28.4 W h kg(-1)) and excellent cycling stability (∼89.2% retention after 5000 cycles), as well as high flexibility. The three-dimensional coaxial architecture design opens up new opportunities to fabricate a high-performance flexible supercapacitor for future portable and wearable electronic devices. PMID:26372533

  2. Determination of cadmium in the livers and kidneys of puffins by carbon furnace atomic absorption spectrometry.

    PubMed

    Ottaway, J M; Campbell, W C

    1976-01-01

    A carbon furnace atomic absorption procedure is described for the determination of cadmium in the livers and kidneys of puffins, fratercula arctica. Samples are dried and weighed and 2 to 100 mg are dissolved in sulphuric and nitric acids. These solutions are analysed directly in the carbon furnace against aqueous standards and provide accurate results in the range 0-1 to 100 micrograms/g dry weight. The method is simple and rapid and requires much less of the small total sample than would be required for flame atomic absorption. PMID:1030692

  3. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    DOEpatents

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  4. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis.

    PubMed

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm(-2) and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  5. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-02-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm-2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.

  6. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis

    PubMed Central

    Fan, Lili; Liu, Peng Fei; Yan, Xuecheng; Gu, Lin; Yang, Zhen Zhong; Yang, Hua Gui; Qiu, Shilun; Yao, Xiangdong

    2016-01-01

    Hydrogen production through electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells. Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains as a great challenge. Here we synthesize a nickel–carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution. This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance with high exchange current density of 1.2 mA cm−2 and impressive durability. This work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis. PMID:26861684

  7. Atom-scale insights into carbonate organic-mineral interfaces

    NASA Astrophysics Data System (ADS)

    Branson, O.; Perea, D. E.; Spero, H. J.; Winters, M. A.; Gagnon, A.

    2015-12-01

    Biominerals are formed by the complex interaction between guiding biological structures and the kinetics of inorganic mineral growth. Inorganic crystal growth experiments have advanced our understanding of mineral precipitation in the context of biological systems, but the structure and chemistry of the mineralizing interface between these two systems has remained elusive. We have used laser-pulsed Atom Probe Tomography to reveal the first atom-scale 3D view of an organic-mineral interface in calcite produced by the planktic foraminifera Orbulina universa. We observe elevated Na and Mg throughout the organic, and a 9-fold increase in Na in the surface 2 nm of the organic layer, relative to the adjacent calcite. The surface-specificity of this Na maximum suggests that Na may play an integral role in conditioning the organic layer for calcite nucleation. Na could accomplish this by modifying surface hydration or structure, to modify organic-fluid and/or organic-calcite interfacial energies. Our data constitute the first evidence of the role of 'spectator' ions in facilitating biomineralisation, which could be an overlooked but crucial aspect of the initial steps of skeleton formation in calcifying organisms.

  8. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    SciTech Connect

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than MWNTs

  9. Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage

    SciTech Connect

    Contescu, Cristian I; van Benthem, Klaus; Li, Sa; Bonifacio, Cecile S; Pennycook, Stephen J; Jena, Puru; Gallego, Nidia C

    2011-01-01

    Palladium-modified activated carbon fibers (Pd-ACF) were synthesized by meltspinning, carbonization and activation of an isotropic pitch carbon precursor premixed with an organometallic Pd compound. The hydrogen uptake at 25 oC and 20 bar on Pd- ACF exceeded the expected capacity based solely on Pd hydride formation and hydrogen physisorption on the microporous carbon support. Aberration-corrected scanning transmission electron microscopy (STEM) with sub- ngstrom spatial resolution provided unambiguous identification of isolated Pd atoms occurring in the carbon matrix that coexist with larger Pd particles. First principles calculations revealed that each single Pd atom can form Kubas-type complexes by binding up to three H2 molecules in the pressure range of adsorption measurements. Based on Pd atom concentration determined from STEM images, the contribution of various mechanisms to the excess hydrogen uptake measured experimentally was evaluated. With consideration of Kubas binding as a viable mechanism (along with hydride formation and physisorption to carbon support) the role of hydrogen spillover in this system may be smaller than previously thought.

  10. Hybrid core-shell nanowire electrodes utilizing vertically aligned carbon nanofiber arrays for high-performance energy storage

    NASA Astrophysics Data System (ADS)

    Klankowski, Steven Arnold

    Nanostructured electrode materials for electrochemical energy storage systems have been shown to improve both rate performance and capacity retention, while allowing considerably longer cycling lifetime. The nano-architectures provide enhanced kinetics by means of larger surface area, higher porosity, better material interconnectivity, shorter diffusion lengths, and overall mechanical stability. Meanwhile, active materials that once were excluded from use due to bulk property issues are now being examined in new nanoarchitecture. Silicon was such a material, desired for its large lithium-ion storage capacity of 4,200 mAh g-1 and low redox potential of 0.4 V vs. Li/Li+; however, a ˜300% volume expansion and increased resistivity upon lithiation limited its broader applications. In the first study, the silicon-coated vertically aligned carbon nanofiber (VACNF) array presents a unique core-shell nanowire (NW) architecture that demonstrates both good capacity and high rate performance. In follow-up, the Si-VACNFs NW electrode demonstrates enhanced power rate capabilities as it shows excellent storage capacity at high rates, attributed to the unique nanoneedle structure that high vacuum sputtering produces on the three-dimensional array. Following silicon's success, titanium dioxide has been explored as an alternative high-rate electrode material by utilizing the dual storage mechanisms of Li+ insertion and pseudocapacitance. The TiO 2-coated VACNFs shows improved electrochemical activity that delivers near theoretical capacity at larger currents due to shorter Li+ diffusion lengths and highly effective electron transport. A unique cell is formed with the Si-coated and TiO2-coated electrodes place counter to one another, creating the hybrid of lithium ion battery-pseudocapacitor that demonstrated both high power and high energy densities. The hybrid cell operates like a battery at lower current rates, achieving larger discharge capacity, while retaining one-third of

  11. Atomic data for opacity calculations. XI - The carbon isoelectronic sequence

    NASA Technical Reports Server (NTRS)

    Luo, D.; Pradhan, A. K.

    1989-01-01

    Close-coupling calculations are carried out for radiative processes in neutral carbon and a number of carbon-like ions; energy levels, oscillator strengths, and photoionization cross sections have been computed for all bound states of the type 2 s(j)2p(k)nl with n not above 10 and 1 not above 3. The R-matrix method is employed to solve the coupled equations with a ten-state eigenfunction expansion for the parent ion C II and an eight-state expansion for the other boron-like target ions. A number of selected results for oscillator strengths are presented and compared with earlier data, as well as for photoionization cross sections with autoionizing resonance structures. Isoelectronic trends are discussed. The present results for the oscillator strengths of C I and N II are found to differ significantly from some earlier theoretical works for a number of transitions. However, the present C I f values are in excellent agreement with recent calculations and experimental results.

  12. Photoluminescence enhancement of ZnO nanowire arrays by atomic layer deposition of ZrO2 layers and thermal annealing.

    PubMed

    Zhang, Yuan; Lu, Hong-Liang; Wang, Tao; Ren, Qing-Hua; Chen, Hong-Yan; Zhang, Hao; Ji, Xin-Ming; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2016-06-28

    The effects of shell thickness and rapid thermal annealing on photoluminescence properties of one-dimensional ZnO/ZrO2 core/shell nanowires (NWs) are studied in this work. The ZnO/ZrO2 core/shell structures were synthesized by coating thin ZrO2 layers on the surface of ZnO NWs using atomic layer deposition. The morphological and structural characterization studies reveal that the ZrO2 shells have a polycrystalline structure, which are uniformly and conformally coated on the high quality single-crystal ZnO NWs. As compared with bare ZnO NWs, the ZnO/ZrO2 core/shell structures show a remarkable and continuous enhancement of ultraviolet (UV) emission in intensity with increasing ZrO2 shell thickness up to 10 nm. The great improvement mechanism of the UV emission arises from the surface passivation and the efficient carrier confinement effect of the type-I core/shell system. Moreover, it is observed that the UV emission of ZnO/ZrO2 core/shell structures after thermal annealing increases with increasing annealing temperature. The dominant surface exciton (SX) emission in the bare ZnO NWs and the ZnO/ZrO2 core/shell nanostructures has been detected in the low temperature photoluminescence spectra. A blue shift of the NBE emission peak as well as the varied decay rate of the SX emission intensity are also found in the ZnO NWs after the growth of ZrO2 shells and further thermal treatment. Our results suggest that the ZnO/ZrO2 core/shell nanostructures could be widely implemented in the optical and electronic devices in the future. PMID:27263423

  13. Fabrication and characterisation of photonic nanowires

    NASA Astrophysics Data System (ADS)

    McCarthy, Joseph; Whelan, Áine M.; Davies, Gemma-Louise; Byrne, Fiona; Conroy, Jennifer; Volkov, Yuri; Gun'ko, Yurii K.

    2008-08-01

    In recent years the application of nano-porous templates, such as anodic alumina and PTFE, in the production of cylindrical nanostructures has been vast. In our work we used porous alumina membranes to produce luminescent nanowires from polystyrene and silica. The silica wires were fabricated by infiltration of a TEOS derived sol-gel into 200 nm diameter porous alumina membranes with vacuum assistance followed by annealing at 400 °C. Polystyrene luminescent, magnetic nanowires have been fabricated using a similar technique. The wires were studied by optical, confocal and transmission electron microscopy. Silica nanowires demonstrated a broad luminescence spectrum due to interstitial carbon defect emission. Polystyrene nanowires have demonstrated strong emission and interesting magnetic behaviour. Both polystyrene and silica maghemite loaded nanowires show alignment to an external magnetic field. We believe that these silica and polystyrene nanowires might find potential applications in photonics, bio-sensing and biological imaging.

  14. Atom Vacancies on a Carbon Nanotube: To What Extent Can We Simulate their Effects?

    PubMed

    Kroes, Jaap M H; Pietrucci, Fabio; van Duin, Adri C T; Andreoni, Wanda

    2015-07-14

    Atom vacancies are intrinsic defects of carbon nanotubes. Using a zigzag nanotube as reference, this paper focuses on the comparison of calculations performed within density functional theory and a number of classical force fields widely used for carbon systems. The results refer to single and double vacancies and, in particular, to the induced structural changes, the formation energies, and the energy barriers relative to elementary processes such as reconstruction, migration, and coalescence. Characterization of these processes is remarkably different in the different approaches. These findings are meant to contribute to the construction of DFT-based classical schemes for carbon nanostructures. PMID:26575773

  15. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2000-08-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process.

  16. Migration behaviour of carbon atoms on clean diamond (0 0 1) surface: A first principle study

    NASA Astrophysics Data System (ADS)

    Liu, Xuejie; Xia, Qing; Li, Wenjuan; Luo, Hao; Ren, Yuan; Tan, Xin; Sun, Shiyang

    2016-01-01

    The adsorption and migration energies of a single carbon atom and the configuration evolution energies of two carbon atoms on a clean diamond (0 0 1) surface were calculated using the first principle method based on density functional theory to investigate the formation of ultra-nanocrystalline diamond (UNCD) film. The activation energy of a single atom diffusing along a dimer row is 1.96 eV, which is almost the same as that of a CH2 migrating along a dimer row under hydrogen-rich conditions. However, the activation energy of a single atom diffusing along a dimer chain is 2.66 eV, which is approximately 1.55 times greater than that of a CH2 migrating along a dimer chain in a hydrogen-rich environment. The configuration evolution of the two carbon atoms is almost impossible at common diamond film deposition temperatures (700-900 °C) because the activation energies reach 4.46 or 5.90 eV. Therefore, the high-energy barrier could result in insufficient migration of adatoms, leading to the formation of amorphous in UNCD films in hydrogen-poor CVD environment.

  17. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  18. The Reception of J. H. van't Hoff's Theory of the Asymmetric Carbon Atom

    ERIC Educational Resources Information Center

    Snelders, H. A. M.

    1974-01-01

    Discusses Jacobus Henricus van't Hoff's revolutionary theory of the asymmetric carbon atom and its early reception among his contemporaries in the Netherlands. Indicates that the extension of the new idea to practical problems gives the impetus to the development of stereochemistry. (CC)

  19. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes.

    PubMed

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  20. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-07-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes.

  1. Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO(2) nanowires.

    PubMed

    Zhang, Li Qiang; Liu, Xiao Hua; Perng, Ya-Chuan; Cho, Jea; Chang, Jane P; Mao, Scott X; Ye, Zhi Zhen; Huang, Jian Yu

    2012-11-01

    Tin (Sn) crystal growth on Sn-based anodes in lithium ion batteries is hazardous for reasons such as possible short-circuit failure by Sn whiskers and Sn-catalyzed electrolyte decomposition, but the growth mechanism of Sn crystals during battery cycling is not clear. Here we report different growth mechanisms of Sn crystal during the lithiation and delithiation processes of SnO(2) nanowires revealed by in situ transmission electron microscopy (TEM). Large spherical Sn nanoparticles with sizes of 20-200nm grew instantaneously upon lithiation of a single-crystalline SnO(2) nanowire at large current density (j>20A/cm(2)), which suppressed formation of the Li(x)Sn alloy but promoted agglomeration of Sn atoms. Control experiments of Joule-heating (j≈2400A/cm(2)) the pristine SnO(2) nanowires resulted in melting of the SnO(2) nanowires but not Sn particle growth, indicating that the abnormal Sn particle growth was induced by both chemical reduction (i.e., breaking the SnO(2) lattice to produce Sn atoms) and agglomeration of the Sn atoms assisted by Joule heating. Intriguingly, Sn crystals grew out of the nanowire surface via a different "squeeze-out" mechanism during delithiation of the lithiated SnO(2) nanowires coated with an ultra-thin solid electrolyte LiAlSiO(x) layer. It is attributed to the negative stress gradient generated by the fast Li extraction in the surface region through the Li(+)-conducting LiAlSiO(x) layer. Our previous studies showed that Sn precipitation does not occur in the carbon-coated SnO(2) nanowires, highlighting the effect of nanoengineering on tailoring the electrochemical reaction kinetics to suppress the hazardous Sn whiskers or nanoparticles formation in a lithium ion battery. PMID:22770619

  2. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas W.; Meyer, Jannik C.; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A.; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N.

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

  3. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale.

    PubMed

    Chamberlain, Thomas W; Meyer, Jannik C; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion. PMID:21860464

  4. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity.

    PubMed

    Wu, Zhongbiao; Dong, Fan; Zhao, Weirong; Wang, Haiqiang; Liu, Yue; Guan, Baohong

    2009-06-10

    Novel carbon doped TiO(2) nanotubes, nanowires and nanorods were fabricated by utilizing the nanoconfinement of hollow titanate nanotubes (TNTs). The fabrication process included adsorption of ethanol molecules in the inner space of TNTs and thermal treatment of the complex in inert N(2) atmosphere. The structural morphology of carbon doped TiO(2) nanostructures can be tuned using the calcination temperature. X-ray diffraction, Raman and Brunauer-Emmett-Teller studies proved that the doped carbon promoted the crystallization and phase transition by acting as nucleation seeds. X-ray photoelectron spectroscopy (XPS) showed that O-Ti-C and Ti-O-C bonds were formed in the nanostructures. Additional electronic states from the XPS valence band due to carbon doping were observed. This evidence indicated the electronic origin of the band gap narrowing and visible light absorption. The differences in chemical and electronic states between the surface and bulk of as-prepared samples confirmed that carbon was doped into the lattice of TiO(2) nanostructure through an inner doping process. The as-prepared catalysts exhibited enhanced photocatalytic activity for degradation of toluene in gas phase under both visible and simulated solar light irradiation compared with that of commercial Degussa P25. This novel fabrication approach can valuably contribute to designing nanostructured photocatalytic materials and modifying various nanotube materials. PMID:19451679

  5. Atomic-scale imaging of albite feldspar, calcium carbonate, rectorite, and bentonite using atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Drake, Barney; Hellmann, Roland; Sikes, C. Steven; Occelli, Mario L.

    1992-05-01

    Atomic force microscopy (AFM) was used to investigate the (010) surface of Amelia albite, the basal and (001) planes of CaCO3 (calcite), and the basal planes of rectorite and bentonite. Atomic scale images of the albite surface show six sided, interconnected en-echelon rings. Fourier transforms of the surface scans reveal two primary nearest neighbor distances of 4.7 and 4.9 +/- 0.5 angstroms. Analysis of the images using a 6 angstroms thick projection of the bulk structure was performed. Close agreement between the projection and the images suggests the surface is very close to an ideal termination of the bulk structure. Images of the calcite basal plane show a hexagonal array of Ca atoms measured to within +/- 0.3 angstroms of the 4.99 angstroms predicted by x-ray diffraction data. Putative images of the (001) plane of carbonate ions, with hexagonal 5 angstroms spacing, are also presented and discussed. Basal plane images of rectorite show hexagonal symmetry with 9.1 +/- 2.5 angstroms spacing, while bentonite results reveal a 4.9 +/- 0.5 angstroms nearest neighbor spacing.

  6. Size dependence of melting of GaN nanowires with triangular cross sections

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao; Gao, Fei; Weber, William J.

    2007-02-15

    Molecular dynamics simulations have been used to study the melting of GaN nanowires with triangular cross-sections. The curve of the potential energy, along with the atomic configuration is used to monitor the phase transition. The thermal stability of GaN nanowires is dependent on the size of the nanowires. The melting temperature of the GaN nanowires increases with the increasing of area cross-section of the nanowires to a saturation value. An interesting result is that of the nanowires start to melt from the edges, then the surface, and extends to the inner regions of nanowires as temperature increases.

  7. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    NASA Technical Reports Server (NTRS)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  8. Nanowire Lasers

    NASA Astrophysics Data System (ADS)

    Couteau, C.; Larrue, A.; Wilhelm, C.; Soci, C.

    2015-05-01

    We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  9. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  10. Bias in bonding behavior among boron, carbon, and nitrogen atoms in ion implanted a-BN, a-BC, and diamond like carbon films

    SciTech Connect

    Genisel, Mustafa Fatih; Uddin, Md. Nizam; Say, Zafer; Bengu, Erman; Kulakci, Mustafa; Turan, Rasit; Gulseren, Oguz

    2011-10-01

    In this study, we implanted N{sup +} and N{sub 2}{sup +} ions into sputter deposited amorphous boron carbide (a-BC) and diamond like carbon (DLC) thin films in an effort to understand the chemical bonding involved and investigate possible phase separation routes in boron carbon nitride (BCN) films. In addition, we investigated the effect of implanted C{sup +} ions in sputter deposited amorphous boron nitride (a-BN) films. Implanted ion energies for all ion species were set at 40 KeV. Implanted films were then analyzed using x-ray photoelectron spectroscopy (XPS). The changes in the chemical composition and bonding chemistry due to ion-implantation were examined at different depths of the films using sequential ion-beam etching and high resolution XPS analysis cycles. A comparative analysis has been made with the results from sputter deposited BCN films suggesting that implanted nitrogen and carbon atoms behaved very similar to nitrogen and carbon atoms in sputter deposited BCN films. We found that implanted nitrogen atoms would prefer bonding to carbon atoms in the films only if there is no boron atom in the vicinity or after all available boron atoms have been saturated with nitrogen. Implanted carbon atoms also preferred to either bond with available boron atoms or, more likely bonded with other implanted carbon atoms. These results were also supported by ab-initio density functional theory calculations which indicated that carbon-carbon bonds were energetically preferable to carbon-boron and carbon-nitrogen bonds.

  11. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOEpatents

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  12. Reaction studies of hot silicon, germanium and carbon atoms: Progress report, February 1, 1985-July 31, 1987

    SciTech Connect

    Gaspar, P.P.

    1987-08-01

    The experimental approach toward attaining the goals of this research program is briefly outlined, and the progress made in the 1985 to 1987 period is reviewed in sections entitled: (1) reactions of recoiling silicon atoms; (2) reactions of recoiling carbon atoms; and (3) reactions of thermally evaporated germanium atoms.

  13. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

    NASA Astrophysics Data System (ADS)

    Peterson, Eric J.; Delariva, Andrew T.; Lin, Sen; Johnson, Ryan S.; Guo, Hua; Miller, Jeffrey T.; Hun Kwak, Ja; Peden, Charles H. F.; Kiefer, Boris; Allard, Lawrence F.; Ribeiro, Fabio H.; Datye, Abhaya K.

    2014-09-01

    Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

  14. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina.

    PubMed

    Peterson, Eric J; DeLaRiva, Andrew T; Lin, Sen; Johnson, Ryan S; Guo, Hua; Miller, Jeffrey T; Hun Kwak, Ja; Peden, Charles H F; Kiefer, Boris; Allard, Lawrence F; Ribeiro, Fabio H; Datye, Abhaya K

    2014-01-01

    Catalysis by single isolated atoms of precious metals has attracted much recent interest, as it promises the ultimate in atom efficiency. Most previous reports are on reducible oxide supports. Here we show that isolated palladium atoms can be catalytically active on industrially relevant γ-alumina supports. The addition of lanthanum oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated palladium atoms. Aberration-corrected scanning transmission electron microscopy and operando X-ray absorption spectroscopy confirm the presence of intermingled palladium and lanthanum on the γ-alumina surface. Carbon monoxide oxidation reactivity measurements show onset of catalytic activity at 40 °C. The catalyst activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability and regenerability of these ionic palladium species make this catalyst system of potential interest for low-temperature exhaust treatment catalysts. PMID:25222116

  15. Atoms in carbon cages as a source of interstellar diffuse lines

    NASA Technical Reports Server (NTRS)

    Ballester, J. L.; Antoniewicz, P. R.; Smoluchowski, R.

    1990-01-01

    A model to describe the resonance absorption lines of various atoms trapped in closed carbon cages is presented. These systems may be responsible for some of the as yet unexplained diffuse interstellar bands. Model potentials for possible atom-C60 systems are obtained and used to calculate the resonance lines. The trapped atoms considered are O, N, Si, Mg, Al, Na, and S, and in all cases the resonance lines are shifted toward the red as compared to the isolated atoms. The calculated wavelengths are compared to the range of wavelengths observed for the diffuse interstellar bands, and good agreement is found for Mg and Si resonance lines. Other lines may be caused by other than resonance transitions or by trapped molecules. The oscillator strengths and the abundances are evaluated and compared with observation. Mechanisms to explain the observed band width of the lines and the existence of certain correlated pairs of lines are discussed.

  16. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    PubMed

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation. PMID:22966566

  17. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Song, Chi; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2012-11-01

    We performed a series of first-principles calculations to investigate the foreign interstitial atom (FIA) interactions with intrinsic defects in tungsten. We found the following: (i) The introduction of the FIA reduces the vacancy formation energy, resulting in the increase of the equilibrium concentration of vacancies. (ii) The positive binding energy between two FIAs suggests that the FIA can attract other FIAs. (iii) The FIA is easily trapped by the vacancy, and a single vacancy can accommodate up to 4 and 6 atoms in a stable manner for carbon and nitrogen, respectively. (iv) There is an attraction interaction between the FIA and the self-interstitial atom (SIA), and the FIA can reduce the SIA jump frequency and enhance the formation of SIA clusters in tungsten. Moreover, the difference between carbon and nitrogen are also discussed with respect to the formation of FIA-FIA covalent bond and the accumulation around the saturated -, where d is the ith nearest-neighbor (inn) solute-tungsten distance before relaxation and ▵di=(di-d) is the change in distance due to relaxation. The calculated relaxations are presented in Table 3. The relaxations of 1nn of octahedral interstitial carbon and nitrogen atoms are 23.30% and 22.42%, respectively, which are greatly larger than the relaxations of other nearest-neighbor atoms (0.1-2%). These results indicate that the influence range of FIA is very local. The lattice distortions introduced by the octahedral interstitial carbon or nitrogen atom can be characterized by determining the dipolar tensor from Kanzaki forces. Here, to obtain the dipolar tensor, we adopt a similar calculation procedure as used in Ref. [14], where the dipolar tensor P is calculated from the Kanzaki forces on all the tungsten atoms. The detailed procedure could be found in Ref. [14]. Due to the symmetry of the configuration, the dipolar tensor has two independent values: P11 and P33, which are listed in Table 3. Similarly with Ref. [14], approximate

  18. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems

    PubMed Central

    Smith, David C.; Spencer, Joseph H.; Sloan, Jeremy; McDonnell, Liam P.; Trewhitt, Harrison; Kashtiban, Reza J.; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  19. Resonance Raman Spectroscopy of Extreme Nanowires and Other 1D Systems.

    PubMed

    Smith, David C; Spencer, Joseph H; Sloan, Jeremy; McDonnell, Liam P; Trewhitt, Harrison; Kashtiban, Reza J; Faulques, Eric

    2016-01-01

    This paper briefly describes how nanowires with diameters corresponding to 1 to 5 atoms can be produced by melting a range of inorganic solids in the presence of carbon nanotubes. These nanowires are extreme in the sense that they are the limit of miniaturization of nanowires and their behavior is not always a simple extrapolation of the behavior of larger nanowires as their diameter decreases. The paper then describes the methods required to obtain Raman spectra from extreme nanowires and the fact that due to the van Hove singularities that 1D systems exhibit in their optical density of states, that determining the correct choice of photon excitation energy is critical. It describes the techniques required to determine the photon energy dependence of the resonances observed in Raman spectroscopy of 1D systems and in particular how to obtain measurements of Raman cross-sections with better than 8% noise and measure the variation in the resonance as a function of sample temperature. The paper describes the importance of ensuring that the Raman scattering is linearly proportional to the intensity of the laser excitation intensity. It also describes how to use the polarization dependence of the Raman scattering to separate Raman scattering of the encapsulated 1D systems from those of other extraneous components in any sample. PMID:27168195

  20. Is atomic carbon a good tracer of molecular gas in metal-poor galaxies?

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Clark, Paul C.

    2016-03-01

    Carbon monoxide (CO) is widely used as a tracer of molecular hydrogen (H2) in metal-rich galaxies, but is known to become ineffective in low-metallicity dwarf galaxies. Atomic carbon has been suggested as a superior tracer of H2 in these metal-poor systems, but its suitability remains unproven. To help us to assess how well atomic carbon traces H2 at low metallicity, we have performed a series of numerical simulations of turbulent molecular clouds that cover a wide range of different metallicities. Our simulations demonstrate that in star-forming clouds, the conversion factor between [C I] emission and H2 mass, XCI, scales approximately as XCI ∝ Z-1. We recover a similar scaling for the CO-to-H2 conversion factor, XCO, but find that at this point in the evolution of the clouds, XCO is consistently smaller than XCI, by a factor of a few or more. We have also examined how XCI and XCO evolve with time. We find that XCI does not vary strongly with time, demonstrating that atomic carbon remains a good tracer of H2 in metal-poor systems even at times significantly before the onset of star formation. On the other hand, XCO varies very strongly with time in metal-poor clouds, showing that CO does not trace H2 well in starless clouds at low metallicity.

  1. Combined ab initio molecular dynamics and experimental studies of carbon atom addition to benzene.

    PubMed

    McKee, Michael L; Reisenauer, Hans Peter; Schreiner, Peter R

    2014-04-17

    Car-Parrinello molecular dynamics was used to explore the reactions between triplet and singlet carbon atoms with benzene. The computations reveal that, in the singlet C atom reaction, products are very exothermic where nearly every collision yields a product that is determined by the initial encounter geometry. The singlet C atom reaction does not follow the minimum energy path because the bimolecular reaction is controlled by dynamics (i.e., initial orientation of encounter). On the other hand, in a 10 K solid Ar matrix, ground state C((3)P) atoms do tend to follow RRKM kinetics. Thus, ab initio molecular dynamics (AIMD) results indicate that a significant fraction of C-H insertion occurs to form phenylcarbene whereas, in marked contrast to previous theoretical and experimental conclusions, the Ar matrix isolation studies indicate a large fraction of direct cycloheptatetraene formation, without the intermediacy of phenylcarbene. The AIMD calculations are more consistent with vaporized carbon atom experiments where labeling studies indicate the initial formation of phenylcarbene. This underlines that the availability of thermodynamic sinks can completely alter the observed reaction dynamics. PMID:24661002

  2. Reactions of atomic carbon with oxygenated compounds and the investigation of fullerene chemistry

    SciTech Connect

    Chang, Tsongming.

    1993-01-01

    The reaction of atomic carbon with oxygenated organics produces CO and an energetic fragment. Reactions involving deoxygenation of carbonyl compounds to carbenes, epoxides to alkenes, and ethers to a pair of radicals have been investigated. Carbon atom deoxygenation of cyclopentanone and cylcopentene oxide give the cleavage products, ethylene and allene, along with cyclopentene. The use of 2,2,5,5-d[sub 4]-cyclopentanone as the substrate reveals the direct cleavage of cyclopentanylidene carbene is occurring. A calculation of the energetics of this reaction at the MP4/6-31G[sup *]//6-31G[sup *] level suggests a nonconcerted cleavage via a biradical intermediate. Carbon atoms deoxygenate cyclohexene. Inert gas deactivated energetic cyclohexene. The deoxygenation of other oxygenated compounds by atomic carbon, such as 7-oxabicyclo[2.2.1]heptane to cyclohexane-1,4-diyl biradical, 1,2-epoxy-5-hexane to energetic 1,S-hexadiene, allyl ether to allyl radicals, and [gamma]-butyrolactone to trimethylene-1,3-diyl biradical have also been carried out. Methylketene was deoxygenated to vinylidene carbene which rearranges to propyne via a 1,2-H shift. Dimethylketene was deoxygenated to dimethylethylidene carbene which gives 2-butyne via a 1,2-methyl shift and 1,3-butadiene via a vicinal C-H bond insertion. The addition of hydrogen donors to systems in which C[sub 60] is generated results in the formation of polycyclic aromatic hydrocarbons whose carbon skeleton might represent intermediates in fullerene formation. Based on this result, the author proposed a mechanism of fullerene formation. The use of various amounts of propene as a trap showed that the yield of fullerenes decreases as the amount of the trapped product increases. Attempts to trap intermediates in fullerene formation using halides and metals have been studied. The author has attempted metal encapsulation reactions and investigated some possible chemical reactions of fullerenes.

  3. Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide.

    PubMed

    Hou, Jungang; Cheng, Huijie; Takeda, Osamu; Zhu, Hongmin

    2015-07-13

    The photochemical conversion of carbon dioxide provides a straightforward and effective strategy for the highly efficient production of solar fuels with high solar-light utilization efficiency. However, the high recombination rate of photoexcited electron-hole (e-h) pairs and the poor photostability have greatly limited their practical applications. Herein, a practical strategy is proposed to facilitate the separation of e-h pairs and enhance the photostability in a semiconductor by the use of a Schottky junction in a bimetal-graphene-semiconductor stack array. Importantly, Au-Cu nanoalloys (ca. 3 nm) supported on a 3D ultrathin graphene shell encapsulating a p-type Cu2O coaxial nanowire array promotes the stable photochemical reduction of CO2 to methanol by the synergetic catalytic effect of interfacial modulation and charge-transfer channel design. This work provides a promising lead for the development of practical catalysts for sustainable fuel synthesis. PMID:26068934

  4. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Wenwu; Gan, Lin; Guo, Kai; Ke, Linbo; Wei, Yaqing; Li, Huiqiao; Shen, Guozhen; Zhai, Tianyou

    2016-04-01

    We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as-synthesized integrated anode and the commercial LiFePO4 cathode, and shows striking lithium storage performances very close to the half cells: a large reversible capacity over 1000 mA h g-1, a long cycle life of over 200 cycles without obvious decay, and an ultrahigh rate performance of ca. 300 mA h g-1 even at 20 A g-1. Considering the excellent lithium storage performances of coin-type half cells as well as flexible full cells, the as-prepared carbon cloth grafted well-aligned Zn3P2 nanowire arrays would be a promising integrated anode for flexible LIB full cell devices.We, for the first time, successfully grafted well-aligned binary lithium-reactive zinc phosphide (Zn3P2) nanowire arrays on carbon fabric cloth by a facile CVD method. When applied as a novel self-supported binder-free anode for lithium ion batteries (LIBs), the hierarchical three-dimensional (3D) integrated anode shows excellent electrochemical performances: a highly reversible initial lithium storage capacity of ca. 1200 mA h g-1 with a coulombic efficiency of up to 88%, a long lifespan of over 200 cycles without obvious decay, and a high rate capability of ca. 400 mA h g-1 capacity retention at an ultrahigh rate of 15 A g-1. More interestingly, a flexible LIB full cell is assembled based on the as

  5. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries.

    PubMed

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g(-1) at 0.2 C), good repeatability/rate capability (even >900 mAh g(-1) at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030

  6. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.

    PubMed

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-12-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future. PMID:27299654

  7. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-04-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g-1 at 0.2 C), good repeatability/rate capability (even >900 mAh g-1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances.

  8. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting

    NASA Astrophysics Data System (ADS)

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-06-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  9. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    PubMed Central

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  10. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors.

    PubMed

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  11. Quantum Monte Carlo calculation of the properties of atomic carbon and diamond

    SciTech Connect

    Fahy, S.; Wang, X.W.; Louie, S.G.

    1988-06-01

    A new method of calculating total energies of solids using non-local pseudopotentials in conjunction with the variational quantum Monte Carlo approach is presented. By using pseudopotentials, the large fluctuations of the energies in the core region of the atoms which occur in quantum Monte Carlo all-electron schemes are avoided. The method is applied to calculate the cohesive energy and structural properties of diamond and the first ionization energy and electron affinity of the carbon atom. Results are in excellent agreement with experiment. 8 refs., 1 fig., 2 tabs.

  12. Angular distribution of photoelectrons from atomic oxygen, nitrogen and carbon. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Manson, S. J.; Kennedy, D. J.; Starace, A. F.; Dill, D.

    1974-01-01

    The angular distributions of photoelectrons from atomic oxygen, nitrogen, and carbon are calculated. Both Hartree-Fock and Hartree-Slater (Herman-Skillman) wave functions are used for oxygen, and the agreement is excellent; thus only Hartree-Slater functions are used for carbon and nitrogen. The pitch-angle distribution of photoelectrons is discussed, and it is shown that previous approximations of energy-independent isotropic or sin squared theta distributions are at odds with the authors' results, which vary with energy. This variation with energy is discussed, as is the reliability of these calculations.

  13. Fabrication and Characterization of Oriented Carbon Atom Wires Assembled on Gold

    SciTech Connect

    Xue,K.H.; Wu,L.; Chen, S.-P.; Wanga, L.X.; Wei, R.-B.; Xu, S.-M.; Cui, L.; Mao, B.-W.; Tian, Z.-Q.; Zen, C.-H.; Sun, S.-G.; Zhu, Y.-M.

    2009-02-17

    Carbon atom wires (CAWs) are of the sp-hybridized allotrope of carbon. To augment the extraordinary features based on sp-hybridization, we developed an approach to make CAWs be self-assembled and orderly organized on Au substrate. The self-assembling process was investigated in situ by using scanning tunneling microscopy (STM) and electrochemical quartz crystal microbalance (EQCM). The properties of the assembled film were characterized by voltammetry, Raman spectroscopy, electron energy loss spectroscopy (EELS), and the contact angle measurements. Experimental results indicated that the assembled CAW film was of the good structural integrity and well organized, with the sp-hybridized features enhanced.

  14. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications. PMID:23171130

  15. The interaction between Boron-carbon-nitride heteronanotubes and lithium atoms: Role of composition proportion

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Lin; Xu, Hong-Liang; Su, Zhong-Min

    2016-08-01

    A series of Li@BCN models were systematically investigated to explore the physical origin of the interaction between lithium atoms and BCNs. Theoretical results show that the crucial electron population in the BCNs of Li@B-BCN and Li@N-BCN series is dramatically different. As results, the first hyperpolarizability of Li@B-BCN series increases with the increase of carbon proportion whereas that of Li@N-BCN series significantly decreases with the increase of carbon proportion. The results indicate that the physical properties of Li@BCN models are significantly dependent on the different chemical environment of the tube termination.

  16. The abundance of atomic carbon near the ionization fronts in M17 and S140

    NASA Technical Reports Server (NTRS)

    Keene, J.; Blake, G. A.; Phillips, T. G.; Huggins, P. J.; Beichman, C. A.

    1985-01-01

    The 492 GHz ground-state line of atomic carbon in the edge-on ionization fronts in M17 and S140 were observed. It was found that, contrary to expectation, the C I emission peaks farther into the molecular cloud from the ionization front than does the CO. In fact the peak C I abundance in M17 occurs more than 60 mag of visual extinction into the cloud from the ionization front. Calculations of the ratio of C I to CO column densities yield values of 0.1-0.2. These observations do not support chemical models which predict that neutral atomic carbon should be found only near the edges of molelcular clouds. Other models are discussed which may explain the observations.

  17. Determination of gold in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry.

    PubMed

    Dobrowolski, Ryszard; Kuryło, Michał; Otto, Magdalena; Mróz, Agnieszka

    2012-09-15

    A simple and cost effective preconcentration method on modified activated carbons is described for the determination of traces of gold (Au) in geological samples by carbon slurry sampling graphite furnace atomic absorption spectrometry (GFAAS). The basic parameters affecting the adsorption capacity of Au(III) ions on modified activated carbons were studied in detail and the effect of activated carbons modification has been determined by studying the initial runs of adsorption isotherms. The influence of chlorides and nitrates on adsorption ability of Au(III) ions onto the modified activated carbons for diluted aqueous solution was also studied in detail in respect to the determination of gold in solid materials after digestion steps in the analytical procedure, which usually involves the application of aqua regia. SEM-EDX and XPS studies confirmed that the surface reduction of Au(III) ions to Au(0) is the main gold adsorption mechanism on the activated carbon. Determination of gold after its preconcentration on the modified activated carbon was validated by applying certified reference materials. The experimental results are in good agreement with the certified values. The proposed method has been successfully applied for the determination of Au in real samples using aqueous standards. PMID:22967620

  18. Quantum confinement, core level shifts, and dopant segregation in P-doped Si⟨110⟩ nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Chan, Tzu-Liang; Chelikowsky, James R.

    2010-10-01

    We examine P-doped Si⟨110⟩ nanowires by employing a real-space pseudopotential method. We find the defect wave function becomes more localized along the nanowire axis and the donor ionization energy increases, owing to quantum confinement. It is more difficult to dope a P atom into a Si⟨110⟩ nanowire than to dope Si bulk because the formation energy increases with decreasing size. By comparing the formation energy for different P positions within a nanowire, we find that if a P atom at the nanowire surface can overcome the energy barrier close to the surface, there is a tendency for the dopant to reside within the nanowire core. We calculate P core levels shift as P changes position within the nanowire and provide a means for x-ray photoelectron spectroscopy experiments to determine the location of P atoms within a Si nanowire.

  19. Synthesis of silicon and germanium nanowires.

    SciTech Connect

    Clement, Teresa J.; Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  20. Conductive Nanowires Templated by Molecular Brushes.

    PubMed

    Raguzin, Ivan; Stamm, Manfred; Ionov, Leonid

    2015-10-21

    In this paper, we report the fabrication of conductive nanowires using polymer bottle brushes as templates. In our approach, we synthesized poly(2-dimethylamino)ethyl methacrylate methyl iodide quaternary salt brushes by two-step atom transfer radical polymerization, loaded them with palladium salt, and reduced them in order to form metallic nanowires with average lengths and widths of 300 and 20 nm, respectively. The obtained nanowires were deposited between conductive gold pads and were connected to them by sputtering of additional pads to form an electric circuit. We connected the nanowires in an electric circuit and demonstrated that the conductivity of these nanowires is around 100 S·m(-1). PMID:26418290

  1. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2002-11-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (1) its structural and chemical simplicity, (2) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (3) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This final report covers the overall progress of this grant.

  2. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-10-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH){sub 2} was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH){sub 2} gas-solid carbonation as a potentially cost-effective CO{sub 2} mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO{sub 2} sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact.

  3. Detection of the 610 micron /492 GHz/ line of interstellar atomic carbon

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.; Huggins, P. J.; Kuiper, T. B. H.; Miller, R. E.

    1980-01-01

    The ground-state transition of neutral atomic carbon, 3P1-3P0, has been detected in the interstellar medium at the frequency of 492.162 GHz determined in the laboratory by Saykally and Evenson (1980). The observations were made from the NASA Kuiper Airborne Observatory using an InSb heterodyne bolometer receiver. The line was detected as strong emission from eight molecular clouds and apparently provides a widely useful probe of the interstellar medium.

  4. The atomic configuration of graphene/vanadium carbide interfaces in vanadium carbide-encapsulating carbon nanocapsules.

    PubMed

    Yazaki, Gaku; Matsuura, Daisuke; Kizuka, Tokushi

    2014-03-01

    Carbon nanocapsules (CNCs) encapsulating vanadium carbide (VC) nanocrystals with a NaCI structure were synthesized by a gas-evaporation method using arc-discharge heating. The CNCs were observed by high-resolution transmission electron microscopy. The VC nanocrystals within the nanospaces of CNCs were truncated by low-index facets and were coated with several graphene layers, forming graphene/VC interfaces. The atomic configuration and interlayer spacings at the interfaces were found. PMID:24745251

  5. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization.

    PubMed

    Farmer, Damon B; Gordon, Roy G

    2006-04-01

    Alternating exposures of nitrogen dioxide gas and trimethylaluminum vapor are shown to functionalize the surfaces of single-walled carbon nanotubes with a self-limited monolayer. Functionalized nanotube surfaces are susceptible to atomic layer deposition of continuous, radially isotropic material. This allows for the creation of coaxial nanotube structures of multiple materials with precisely controlled diameters. Functionalization involves only weak physical bonding, avoiding covalent modification, which should preserve the unique optical, electrical, and mechanical properties of the nanotubes. PMID:16608267

  6. Carbon atom, dimer and trimer chemistry on diamond surfaces from molecular dynamics simulations

    SciTech Connect

    Valone, S.M.

    1995-07-01

    Spectroscopic studies of various atmospheres appearing in diamond film synthesis suggest evidence for carbon atoms, dimers, or trimers. Molecular dynamics simulations with the Brenner hydrocarbon potential are being used to investigate the elementary reactions of these species on a hydrogen-terminated diamond (111) surface. In principle these types of simulations can be extended to simulations of growth morphologies, in the 1-2 monolayer regime presently.

  7. Electronic transport in large systems through a QUAMBO-NEGF approach: Application to atomic carbon chains

    NASA Astrophysics Data System (ADS)

    Fang, X. W.; Zhang, G. P.; Yao, Y. X.; Wang, C. Z.; Ding, Z. J.; Ho, K. M.

    2011-10-01

    The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green's function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC's parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR.

  8. A Molecular Dynamics of Cold Neutral Atoms Captured by Carbon Nanotube Under Electric Field and Thermal Effect as a Selective Atoms Sensor.

    PubMed

    Santos, Elson C; Neto, Abel F G; Maneschy, Carlos E; Chen, James; Ramalho, Teodorico C; Neto, A M J C

    2015-05-01

    Here we analyzed several physical behaviors through computational simulation of systems consisting of a zig-zag type carbon nanotube and relaxed cold atoms (Rb, Au, Si and Ar). These atoms were chosen due to their different chemical properties. The atoms individually were relaxed on the outside of the nanotube during the simulations. Each system was found under the influence of a uniform electric field parallel to the carbon nanotube and under the thermal effect of the initial temperature at the simulations. Because of the electric field, the cold atoms orbited the carbon nanotube while increasing the initial temperature allowed the variation of the radius of the orbiting atoms. We calculated the following quantities: kinetic energy, potential energy and total energy and in situ temperature, molar entropy variation and average radius of the orbit of the atoms. Our data suggest that only the action of electric field is enough to generate the attractive potential and this system could be used as a selected atoms sensor. PMID:26504991

  9. Development of carbon electrodes for electrochemistry, solid-state electronics and multimodal atomic force microscopy imaging

    NASA Astrophysics Data System (ADS)

    Morton, Kirstin Claire

    Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.

  10. Growth of Nanowires by High-Temperature Glancing Angle Deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Motofumi; Minamitake, Haruhiko; Kita, Ryo; Hamachi, Kenji; Hara, Hideki; Nakajima, Kaoru; Kimura, Kenji; Hsu, Chia-Wei; Chou, Li-Jen

    2013-11-01

    We have demonstrated that nanowires of various metals, Ge, and Ga2O3 can be grown by high-temperature glancing angle deposition (HT-GLAD). The nanowires of metals including Al, Cu, Ag, Au, Mn, Fe, Co, Ni, and Zn are self-catalyzed, while the nanowires of other materials such as Ge and Ga2O3 are catalyzed by Au nanoparticles. However, once the nanowires start to grow, the growth modes of the HT-GLAD nanowires are fundamentally the same, i.e., nanowires with uniform diameter grow only when the vapor is incident at a very high glancing angle and reach a length larger than 1-8 µm even though the number of deposited atoms corresponds to the average thickness of 20-30 nm. This suggests that there is a universal growth mechanism for the nanowires grown by HT-GLAD.

  11. Investigation of the Interactions and Bonding between Carbon and Group VIII Metals at the Atomic Scale.

    PubMed

    Zoberbier, Thilo; Chamberlain, Thomas W; Biskupek, Johannes; Suyetin, Mikhail; Majouga, Alexander G; Besley, Elena; Kaiser, Ute; Khlobystov, Andrei N

    2016-03-01

    The nature and dynamics of bonding between Fe, Ru, Os, and single-walled carbon nanotubes (SWNTs) is studied by aberration-corrected high-resolution transmission electron microscopy (AC-HRTEM). The metals catalyze a wide variety of different transformations ranging from ejection of carbon atoms from the nanotube sidewall to the formation of hollow carbon shells or metal carbide within the SWNT, depending on the nature of the metal. The electron beam of AC-HRTEM serves the dual purpose of providing energy to the specimen and simultaneously enabling imaging of chemical transformations. Careful control of the electron beam parameters, energy, flux, and dose allowed direct comparison between the metals, demonstrating that their chemical reactions with SWNTs are determined by a balance between the cohesive energy of the metal particles and the strength of the metal-carbon σ- or π-bonds. The pathways of transformations of a given metal can be drastically changed by applying different electron energies (80, 40, or 20 keV), thus demonstrating AC-HRTEM as a new tool to direct and study chemical reactions. The understanding of interactions and bonding between SWNT and metals revealed by AC-HRTEM at the atomic level has important implications for nanotube-based electronic devices and catalysis. PMID:26848826

  12. Atom Probe Tomography Examination of Carbon Redistribution in Quenched and Tempered 4340 Steel

    SciTech Connect

    Clarke, Amy J.; Miller, Michael K.; Alexander, David J.; Field, Robert D.; Clarke, Kester D.

    2012-08-07

    Quenching and tempering produces a wide range of mechanical properties in medium carbon, low alloyed steels - Study fragmentation behavior as a function of heat-treatment. Subtle microstructural changes accompany the mechanical property changes that result from quenching and tempering - Characterize the location and distribution of carbon and alloying elements in the microstructure using atom probe tomography (APT). Perform complementary transmission electron microscopy (TEM). Tempering influences the mechanical properties and fragmentation of quenched 4340 (hemi-shaped samples). APT revealed carbon-enriched features that contain a maximum of {approx}12-14 at.% carbon after quenching to RT (the level of carbon is perhaps associated with the extent of autotempering). TEM confirmed the presence of twinned martensite and indicates {var_epsilon} ({eta}) transition carbides after oil quenching to RT. Tempering at 325 C resulted in carbon-enriched plates (> 25 at.% C) with no significant element partitioning (transition carbides?). Tempering at 450 C and 575 C resulted in cementite ({approx} 25 at.% C) during late stage tempering; Cr, Mn, Mo partitioned to cementite and Si partitioned to ferrite. Tempering at 575 C resulted in P segregation at cementite interfaces and the formation of Cottrell atmospheres.

  13. Artificial neural network approach for atomic coordinate prediction of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Acı, Mehmet; Avcı, Mutlu

    2016-07-01

    In this paper, four artificial neural network (ANN) models [i.e., feed-forward neural network (FFNN), function fitting neural network (FITNET), cascade-forward neural network (CFNN) and generalized regression neural network] have been developed for atomic coordinate prediction of carbon nanotubes (CNTs). The research reported in this study has two primary objectives: (1) to develop ANN prediction models that calculate atomic coordinates of CNTs instead of using any simulation software and (2) to use results of the ANN models as an initial value of atomic coordinates for reducing number of iterations in calculation process. The dataset consisting of 10,721 data samples was created by combining the atomic coordinates of elements and chiral vectors using BIOVIA Materials Studio CASTEP (CASTEP) software. All prediction models yield very low mean squared normalized error and mean absolute error rates. Multiple correlation coefficient (R) results of FITNET, FFNN and CFNN models are close to 1. Compared with CASTEP, calculation times decrease from days to minutes. It would seem possible to predict CNTs' atomic coordinates using ANN models can be successfully used instead of mathematical calculations.

  14. The Kinetics of Oxygen Atom Recombination in the Presence of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Jamieson, C. S.; Garcia, R. M.; Pejakovic, D.; Kalogerakis, K.

    2009-12-01

    Understanding processes involving atomic oxygen is crucial for the study and modeling of composition, energy transfer, airglow, and transport dynamics in planetary atmospheres. Significant gaps and uncertainties exist in the understanding of these processes and often the relevant input from laboratory measurements is missing or outdated. We are conducting laboratory experiments to measure the rate coefficient for O + O + CO2 recombination and investigating the O2 excited states produced following the recombination. These measurements will provide key input for a quantitative understanding and reliable modeling of the atmospheres of the CO2 planets and their airglow. An excimer laser providing pulsed output at either 193 nm or 248 nm is employed to produce O atoms by dissociating carbon dioxide, nitrous oxide, or ozone. In an ambient-pressure background of CO2, O atoms recombine in a time scale of a few milliseconds. Detection of laser-induced fluorescence at 845 nm following two-photon excitation near 226 nm monitors the decay of the oxygen atom population. From the temporal evolution of the signal the recombination rate coefficient is extracted. Fluorescence spectroscopy is used to detect the products of O-atom recombination and subsequent relaxation in CO2. This work is supported by the US National Science Foundation’s (NSF) Planetary Astronomy Program. Rosanne Garcia’s participation was funded by the NSF Research Experiences for Undergraduates (REU) Program.

  15. Nanowire Bolometers

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey B.; Bolinger, A. T.; Berzyadin, A.; Bock, D.; Garcia, K.

    2003-02-01

    Cryogenic tests of a prototype superconducting nanowire bolometer are presented. The device has such low thermal conductance it should be sensitive when used as a direct detector. Because of the small size of the active area we anticipate that this bolometer may also be fast enough to be used as a wideband mixer.

  16. Silver nanowires

    NASA Astrophysics Data System (ADS)

    Graff, A.; Wagner, D.; Ditlbacher, H.; Kreibig, U.

    2005-07-01

    Free silver nanowires were produced in aqueous electrolyte by a novel chemical reaction. Their diameters are about 27 nm, the lengths range up to more than 70 μm, yielding extreme length to thickness-ratios up to 2500. Their structure was identified by TEM analysis (SAED) and HRTEM to consist of a lattice aligned bundle of five monocrystalline rods of triangular cross-section forming an almost regular pentagonal cross-section. It is demonstrated that, for application purposes, single free nanowires can be mounted between contact areas. This manipulation is enabled by observing the nanowires in real time at atmosphere by Zsigmondy-Siedentopf farfield darkfield microscopy. Experimental results are presented concerning electrical dc conductivity and optical plasmon polariton excitation, the latter obtained from a single free wire without substrate and a single wire deposited on quartz glass. We also report about a present research cooperation with the Graz group of Aussenegg and Krenn which is devoted to investigate plasmon propagation in our Ag nanowires and to prove application possibilities as information guide fibers in analogy to optical fibers which may be integrated into micro- and nanoelectronic circuits.

  17. Growth of HgTe nanowires

    NASA Astrophysics Data System (ADS)

    Selvig, E.; Hadzialic, S.; Skauli, T.; Steen, H.; Hansen, V.; Trosdahl-Iversen, L.; van Rheenen, A. D.; Lorentzen, T.; Haakenaasen, R.

    2006-09-01

    HgTe nanowires nucleated by Au particles have been grown on Si and GaAs substrates by molecular beam epitaxy. The wires are polycrystalline. They evolve from crooked to straight during growth and have rounded to rectangular cross-sections. The widths are in the range 20-500 nm, with lengths up to 4 μm. The height of the nanowires is typically less than the width. The nanowires have been characterized by scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy and atomic force microscopy. The effects of substrate material, substrate preparation and growth conditions have been investigated.

  18. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  19. First principles study of foreign interstitial atom (carbon, nitrogen) interactions with intrinsic defects in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; You, Yu-Wei; Song, Chi; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Liu, C. S.

    2012-11-01

    We performed a series of first-principles calculations to investigate the foreign interstitial atom (FIA) interactions with intrinsic defects in tungsten. We found the following: (i) The introduction of the FIA reduces the vacancy formation energy, resulting in the increase of the equilibrium concentration of vacancies. (ii) The positive binding energy between two FIAs suggests that the FIA can attract other FIAs. (iii) The FIA is easily trapped by the vacancy, and a single vacancy can accommodate up to 4 and 6 atoms in a stable manner for carbon and nitrogen, respectively. (iv) There is an attraction interaction between the FIA and the self-interstitial atom (SIA), and the FIA can reduce the SIA jump frequency and enhance the formation of SIA clusters in tungsten. Moreover, the difference between carbon and nitrogen are also discussed with respect to the formation of FIA-FIA covalent bond and the accumulation around the saturated -, where d is the ith nearest-neighbor (inn) solute-tungsten distance before relaxation and ▵di=(di-d) is the change in distance due to relaxation. The calculated relaxations are presented in Table 3. The relaxations of 1nn of octahedral interstitial carbon and nitrogen atoms are 23.30% and 22.42%, respectively, which are greatly larger than the relaxations of other nearest-neighbor atoms (0.1-2%). These results indicate that the influence range of FIA is very local. The lattice distortions introduced by the octahedral interstitial carbon or nitrogen atom can be characterized by determining the dipolar tensor from Kanzaki forces. Here, to obtain the dipolar tensor, we adopt a similar calculation procedure as used in Ref. [14], where the dipolar tensor P is calculated from the Kanzaki forces on all the tungsten atoms. The detailed procedure could be found in Ref. [14]. Due to the symmetry of the configuration, the dipolar tensor has two independent values: P11 and P33, which are listed in Table 3. Similarly with Ref. [14], approximate

  20. Silicon carbide nanowires synthesized with phenolic resin and silicon powders

    NASA Astrophysics Data System (ADS)

    Zhao, Hongsheng; Shi, Limin; Li, Ziqiang; Tang, Chunhe

    2009-02-01

    Large-scale silicon carbide nanowires with the lengths up to several millimeters were synthesized by a coat-mix, moulding, carbonization, and high-temperature sintering process, using silicon powder and phenolic resin as the starting materials. Ordinary SiC nanowires, bamboo-like SiC nanowires, and spindle SiC nanochains are found in the fabricated samples. The ordinary SiC nanowire is a single-crystal SiC phase with a fringe spacing of 0.252 nm along the [1 1 1] growth direction. Both of the bamboo-like SiC nanowires and spindle SiC nanochains exhibit uniform periodic structures. The bamboo-like SiC nanowires consist of amorphous stem and single-crystal knots, while the spindle SiC nanochains consist of uniform spindles which grow uniformly on the entire nanowires.

  1. Formation of chiral branched nanowires by the Eshelby Twist.

    PubMed

    Zhu, Jia; Peng, Hailin; Marshall, A F; Barnett, D M; Nix, W D; Cui, Yi

    2008-08-01

    Manipulating the morphology of inorganic nanostructures, such as their chirality and branching structure, has been actively pursued as a means of controlling their electrical, optical and mechanical properties. Notable examples of chiral inorganic nanostructures include carbon nanotubes, gold multishell nanowires, mesoporous nanowires and helical nanowires. Branched nanostructures have also been studied and been shown to have interesting properties for energy harvesting and nanoelectronics. Combining both chiral and branching motifs into nanostructures might provide new materials properties. Here we show a chiral branched PbSe nanowire structure, which is formed by a vapour-liquid-solid branching from a central nanowire with an axial screw dislocation. The chirality is caused by the elastic strain of the axial screw dislocation, which produces a corresponding Eshelby Twist in the nanowires. In addition to opening up new opportunities for tailoring the properties of nanomaterials, these chiral branched nanowires also provide a direct visualization of the Eshelby Twist. PMID:18685634

  2. Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Patel, Ajay M.; Joshi, Anand Y.

    2015-06-01

    The dynamic analysis of double walled carbon nanotubes (DWCNTs) with different boundary conditions has been performed using atomistic finite element method. The double walled carbon nanotube is modeled considering it as a space frame structure similar to a three dimensional beam. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. It has been reported that atomic vacancies are formed during the manufacturing process in DWCNT which tend to migrate leading to a change in the mechanical characteristics of the same. Simulations have been carried out to visualize the behavior of such defective DWCNTs subjected to different boundary conditions and when used as mass sensing devices. The variation of such atomic vacancies in outer wall of Zigzag and Armchair DWCNT is performed along the length and the change in response is noted. Moreover, as CNTs have been used as mass sensors extensively, the present approach is focused to explore the use of zigzag and armchair DWCNT as sensing device with a mono-atomic vacancy in it. The results clearly state that the dynamic characteristics are greatly influenced by defects like vacancies in it. A higher frequency shift is observed when the vacancy is located away from the fixed end for both Armchair as well as zigzag type of CNTs. A higher frequency shift is reported for armchair CNT for a mass of 10-22 g which remains constant for 10-21 g and then decreases gradually. Comparison with the other experimental and theoretical studies exhibits good association which suggests that defective DWCNTs can further be explored for mass sensing. This investigation is helpful

  3. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires

    SciTech Connect

    Casadei, Alberto; Heiss, Martin; Colombo, Carlo; Ruelle, Thibaud; Fontcuberta i Morral, Anna; Krogstrup, Peter; Roehr, Jason A.; Upadhyay, Shivendra; Sorensen, Claus B.; Nygard, Jesper

    2013-01-07

    The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy have been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also show that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.

  4. Atomic scale enhancement of the adhesion of beryllium films to carbon substrates

    SciTech Connect

    Musket, R.G.; Wirtenson, G.R.

    1995-12-01

    We have used 200 keV carbon ions to enhance the adhesion of 240-nm thick Be films to polished, vitreous carbon substrates. Adhesion of the as-deposited films was below that necessary to pass the scotch-tape test. Carbon ion fluences less than 1.6x10{sup 14} C/cm{sup 2} were sufficient to ensure the passage of the tape test without affecting the optical properties of the films. Adhesion failure of the as-deposited film was attributed to an inner oxide layer between the Be and the carbon. Because this oxide ({approximately}5 nm of BeO) was not measurably changed by the irradiation process, these results are consistent with adhesion enhancement occurring on the atomic scale at the interface between the inner oxide and the carbon substrate. This conclusion was supported by Rutherford backscattering (RBS) data, and potential adhesion mechanisms are discussed with consideration of relative contributions from electronic and nuclear stopping.

  5. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    SciTech Connect

    Erikat, I. A.; Hamad, B. A.

    2013-11-07

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir–C and Ir–Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  6. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.

    PubMed

    Erikat, I A; Hamad, B A

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule. PMID:24206318

  7. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface

    NASA Astrophysics Data System (ADS)

    Erikat, I. A.; Hamad, B. A.

    2013-11-01

    We employ density functional theory to examine the adsorption and absorption of carbon atom as well as the dissociation of carbon monoxide on Ir(100) surface. We find that carbon atoms bind strongly with Ir(100) surface and prefer the high coordination hollow site for all coverages. In the case of 0.75 ML coverage of carbon, we obtain a bridging metal structure due to the balance between Ir-C and Ir-Ir interactions. In the subsurface region, the carbon atom prefers the octahedral site of Ir(100) surface. We find large diffusion barrier for carbon atom into Ir(100) surface (2.70 eV) due to the strong bonding between carbon atom and Ir(100) surface, whereas we find a very small segregation barrier (0.22 eV) from subsurface to the surface. The minimum energy path and energy barrier for the dissociation of CO on Ir(100) surface are obtained by using climbing image nudge elastic band. The energy barrier of CO dissociation on Ir(100) surface is found to be 3.01 eV, which is appreciably larger than the association energy (1.61 eV) of this molecule.

  8. Model of step propagation and step bunching at the sidewalls of nanowires

    NASA Astrophysics Data System (ADS)

    Filimonov, Sergey N.; Hervieu, Yuri Yu.

    2015-10-01

    Radial growth of vertically aligned nanowires involves formation and propagation of monoatomic steps at atomically smooth nanowire sidewalls. Here we study the step dynamics with a step flow model taking into account the presence of a strong sink for adatoms at top of the nanowire and adatom exchange between the nanowire sidewall and surrounding substrate surface. Analytical expressions for velocities of steps propagating from the nanowire base to the nanowire top are obtained. It is shown that the step approaching the nanowire top will slow down if the top nanowire facet is a stronger sink for adatoms than the sidewall step. This might trigger bunching of the steps at the sidewall resulting in development of the pencil-like shape of nanowires such as observed in, e.g., the Au-assisted MBE growth of InAs.

  9. Tetragonality and the distribution of carbon atoms in the Fe-C martensite: Molecular-dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chirkov, P. V.; Mirzoev, A. A.; Mirzaev, D. A.

    2016-01-01

    In the statistical theory of the ordering of carbon atoms in the z sublattice of martensite, the most important role is played by the parameter of the strain interaction of carbon atoms λ0, which determines the critical temperature of the bcc-bct transition. The values of this parameter (6-11 eV/atom) obtained in recent years by the methods of computer simulation differ significantly from the value λ0 = 2.73 eV/atom obtained by A. G. Khachaturyan. In this article, we calculated the value of λ0 by two methods based on the molecular-dynamics simulation of the ordering of carbon atoms in the lattice of martensite at temperatures of 500, 750, 900, and 1000 K in a wide range of carbon concentrations, which includes c crit. No tails of ordering below c crit have been revealed. It has been shown analytically that there is an inaccuracy in the Khachaturyan theory of ordering for the crystal in an elastic environment. After eliminating this inaccuracy, no tails of the order parameter appear; the tetragonality changes jumpwise from η = 0 to ηcrit = 0.75 at c crit = 2.9 kT/λ0 instead of ηcrit = 0.5 and c crit= 2.77 kT/λ0 for an isolated crystal. Upon the simulation, clustering of carbon atoms was revealed in the form of platelike pileups along {102} planes separated by flat regions where no carbon atoms were present. The influence of short-range order in the arrangement of neighboring carbon atoms on the thermodynamics of ordering is discussed.

  10. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  11. The influence of atomic nitrogen flux on the composition of carbon nitride thin films

    SciTech Connect

    Merel, P.; Chaker, M.; Tabbal, M.; Moisan, M.

    1997-12-01

    Carbon nitride (CN{sub x}) thin films have been deposited using a hybrid system combining pulsed laser deposition of graphite with the surface-wave discharge atomic nitrogen source (3{percent} N{sub 2} in Ar). Using this system, an experiment is designed to study the influence of the atomic nitrogen flux on the composition of the CN{sub x} thin films at various laser intensities. The nitrogen percentage in the thin films is positively correlated with the N atom flux impinging on the substrate surface but it is counter-productive to use excessively high values of laser intensities on the graphite target. For a laser intensity of 6{times}10{sup 8}W/cm{sup 2}, the nitrogen percentage increases with the N atom flux and saturates at only about 16 at.{percent}. On the other hand, a maximum nitrogen percentage of 30 at.{percent} is obtained at the much lower laser intensity of 5{times}10{sup 7}W/cm{sup 2}. {copyright} {ital 1997 American Institute of Physics.}

  12. Computational nanomechanics and thermal transport in nanotubes and nanowires.

    PubMed

    Srivastava, Deepak; Makeev, Maxim A; Menon, Madhu; Osman, Mohamed

    2008-07-01

    Representative results of computer simulation and/or modeling studies of the nanomechanical and thermal transport properties of an individual carbon nanotube, silicon nanowire, and silicon carbide nanowire systems have been reviewed and compared with available experimental observations. The investigated nanomechanical properties include different elastic moduli of carbon nanotubes, silicon nanowires, and silicon carbide nanowires, all obtained within their elastic limits. Moreover, atomistic mechanisms of elastic to plastic transition under external stresses and yielding of carbon nanotubes under experimentally feasible temperature and strain rate conditions are discussed in detail. The simulation and/or modeling results on thermal properties, presented in this work, include vibrational modes, thermal conductivity and heat pulse transport through single carbon nanotubes, and thermal conductivity of silicon nanowires. PMID:19051922

  13. Atomic force microscopy studies of carbon nanotubes synthesized in porous alumina film

    NASA Astrophysics Data System (ADS)

    Sui, Yucheng; Sellmyer, David J.

    2002-03-01

    Mechanical properties of carbon nanotubes (CNTs) have been investigated with atomic force microscopy (AFM) [1]. Tubes used in the corresponding investigations are CNTs consisting of long and straight coaxial cylindrical units. But CNTs made by chemical vapor deposition (CVD) in porous anodic alumina film have a different tube wall structure, which consist of numerous stacked flakes or chips of carbon atomic layers [2]. It should be especially noted that these nanotubes also possess interesting electronic properties. For example, they exhibit intrinsically nonlinear transport and reproducible rectifying behavior at room temperature [3]. In this study, non contact-mode (NC), intermittent contact-mode (IC mode) and contact-mode (C mode) of atomic force microscopy were adopted to investigate the axial deformation and cutting of carbon nanotubes. It was found that IC mode and NC mode exert similar force on the tube under the same scanning height, while contact mode deformed the CNTs more completely than the former two testing modes. No irreversible deformation can be found after repeated scanning under contact mode. No deformation was found by NC and IC mode for CNTs with larger wall thickness. Tube cutting was observed by both contact and non contact mode. Research was supported by AFOSR, NSF, NRI and CMRA. References: 1. M.F. Yu, T. Kowalewski, R.S. Ruoff, Phys. Rev. Lett. 85, 1456 (2000). 2. Y. C. Sui, D. R. Acosta, J. A. Gonz¨¢lez-Le¨®n, A. Berm¨2dez, J. Feuchtwanger, B. Z. Cui, J. O. Flores, and J. M. Saniger, J. Phys. Chem. B. 105 1523 (2001) 3. C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu, Phys. Rev. Lett. 85, 3476 (2000).

  14. First-principles study of structural & electronic properties of pyramidal silicon nanowire

    NASA Astrophysics Data System (ADS)

    Jariwala, Pinank; Singh, Deobrat; Sonvane, Y. A.; Gupta, Sanjeev K.; Thakor, P. B.

    2016-05-01

    We have investigated the stable structural and electronic properties of Silicon (Si) nanowires having different cross-sections with 5-7 Si atoms per unit cell. These properties of the studied Si nanowires were significantly changed from those of diamond bulk Si structure. The binding energy increases as increasing atoms number per unit cell in different SiNWs structures. All the nanowires structures are behave like metallic rather than semiconductor in bulk systems. In general, the number of conduction channels increases when the nanowire becomes thicker. The density of charge revealed delocalized metallic bonding for all studied Si nanowires.

  15. Synthesis and characterization of carbon fibers functionalized with poly (glycidyl methacrylate) via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yongwei; Xiong, Lei; Qin, Xiaokang; Wang, Zhengyue; Ding, Bei; Ren, Huan; Pi, Xiaolong

    2015-07-01

    In this work, polyacrylonitrile (PAN)-based carbon fibers (CF) were chemically modified with poly (glycidyl methacrylate) (PGMA) via atom transfer radical polymerization (ATRP) to improve the interaction between the CF and polymer matrix. The FT-IR, TGA, and XPS were used to determine the chemical structure of the resulting products and the quantities of PGMA chains grafted from the CF surface. The experimental results confirm that the CF surface was functionalized and glycidyl methacrylate was graft-polymerized onto the CF, and the grafting content of polymer could reach 10.2%.

  16. Fabrication process of carbon nanotube field effect transistors using atomic layer deposition passivation for biosensors.

    PubMed

    Nakashima, Yasuhiro; Ohno, Yutaka; Kishimoto, Shigeru; Okochi, Mina; Honda, Hiroyuki; Mizutani, Takashi

    2010-06-01

    Fabrication process of the carbon nanotube (CNT) field effect transistors (FETs) for biosensors was studied. Atomic layer deposition (ALD) of HfO2 was applied to the deposition of the passivation/gate insulator film. The CNT-FETs did not show the drain current degradation after ALD passivation even though the passivation by Si3N4 deposited by plasma-enhanced chemical vapor deposition (PECVD) resulted in a significant drain current decrease. This indicates the advantage of the present ALD technique in terms of the damage suppression. The biosensing operation was confirmed using thus fabricated CNT-FETs. PMID:20355371

  17. Spatially resolved Raman spectroscopy on indium-catalyzed core-shell germanium nanowires: size effects.

    PubMed

    Xiang, Y; Zardo, I; Cao, L Y; Garma, T; Heiss, M; Morante, J R; Arbiol, J; Brongersma, M L; Fontcuberta I Morral, A

    2010-03-12

    The structure of indium-catalyzed germanium nanowires is investigated by atomic force microscopy, scanning confocal Raman spectroscopy and transmission electron microscopy. The nanowires are formed by a crystalline core and an amorphous shell. We find that the diameter of the crystalline core varies along the nanowire, down to few nanometers. Phonon confinement effects are observed in the regions where the crystalline region is the thinnest. The results are consistent with the thermally insulating behavior of the core-shell nanowires. PMID:20154375

  18. Sc3CH@C80: selective (13)C enrichment of the central carbon atom.

    PubMed

    Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A

    2016-05-01

    Sc3CH@C80 is synthesized and characterized by (1)H, (13)C, and (45)Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. (13)C satellites in the (1)H NMR spectrum enabled indirect determination of the (13)C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the (13)C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage (13)C distribution in mechanistic studies employing either (13)CH4 or (13)C powder to enrich Sc3CH@C80 with (13)C. PMID:27109443

  19. Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis

    NASA Astrophysics Data System (ADS)

    Yinying, Li; Xiaoming, Wu; Huaqiang, Wu; He, Qian

    2015-01-01

    The two-dimensional material graphene shows its extraordinary potential in many application fields. As the most effective method to synthesize large-area monolayer graphene, chemical vapor deposition has been well developed; however, it still faces the challenge of a high occurrence of multilayer graphene, which causes the small effective area of monolayer graphene. This phenomenon limits its applications in which only a big size of monolayer graphene is needed. In this paper, by introducing a redistribution stage after the decomposition of carbon source gas to redistribute the carbon atoms dissolved in Pt foils, the number of multilayer flakes on the monolayer graphene decreases. The mean area of monolayer graphene can be extended to about 16 000 μm2, which is eight times larger than that of the graphene grown without the redistribution stage. A Raman spectrograph is used to demonstrate the high quality of the monolayer graphene grown by the improved process.

  20. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples

    PubMed Central

    Kenig, Fabien; Simons, Dirk-Jan H.; Crich, David; Cowen, James P.; Ventura, Gregory T.; Rehbein-Khalily, Tatiana; Brown, Todd C.; Anderson, Ken B.

    2003-01-01

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-dimethylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65°C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers. PMID:14551322

  1. Elastic Properties of Silicon Carbide Nanowires and Nanosize Grains up to 75 GPa

    NASA Astrophysics Data System (ADS)

    Zerda, T. W.

    2010-03-01

    Silicon carbide nanowires of average diameter of 30 nm and narrow size distribution were sintered from carbon nanotubes and silicon at 1200^oC. X-ray diffraction measurements of those SiC nanowires were conducted in a diamond anvil cell at room temperature and pressures up to 55 GPa applied by an alcohol medium. We used the same technique to study SiC grains of various sizes. The pressure-dependent volumes of the respective unit cells were calculated from the diffraction data, and the bulk moduli extracted from these studies depended on the particle size: 260 GPa for the 20 nm grains, 198 GPa for the 50 nm grains, and 193 GPa for the 130 nm grains. The bulk modulus of the 30 nm SiC nanowire was found to be 240 GPa. The bulk modulus study was extended to 75 GPa of pressure by use of a diamond anvil cell cryogenically loaded with an argon pressure medium. The bulk modulus was unchanged in this extended pressure range. The elevated bulk modulus of 20 nm grains is explained by the core-shell model developed by Palosz, et al. The core atoms exhibit all the properties associated with the bulk material, but the interatomic distances of shell atoms may differ. With nano-sized materials, a much larger percentage of the constituent atoms belong to the shell.

  2. Nanowire Optoelectronics

    NASA Astrophysics Data System (ADS)

    Wang, Zhihuan; Nabet, Bahram

    2015-12-01

    Semiconductor nanowires have been used in a variety of passive and active optoelectronic devices including waveguides, photodetectors, solar cells, light-emitting diodes (LEDs), lasers, sensors, and optical antennas. We review the optical properties of these nanowires in terms of absorption, guiding, and radiation of light, which may be termed light management. Analysis of the interaction of light with long cylindrical/hexagonal structures with subwavelength diameters identifies radial resonant modes, such as Leaky Mode Resonances, or Whispering Gallery modes. The two-dimensional treatment should incorporate axial variations in "volumetric modes,"which have so far been presented in terms of Fabry-Perot (FP), and helical resonance modes. We report on finite-difference timedomain (FDTD) simulations with the aim of identifying the dependence of these modes on geometry (length, width), tapering, shape (cylindrical, hexagonal), core-shell versus core-only, and dielectric cores with semiconductor shells. This demonstrates how nanowires (NWs) form excellent optical cavities without the need for top and bottommirrors. However, optically equivalent structures such as hexagonal and cylindrical wires can have very different optoelectronic properties meaning that light management alone does not sufficiently describe the observed enhancement in upward (absorption) and downward transitions (emission) of light inNWs; rather, the electronic transition rates should be considered. We discuss this "rate management" scheme showing its strong dimensional dependence, making a case for photonic integrated circuits (PICs) that can take advantage of the confluence of the desirable optical and electronic properties of these nanostructures.

  3. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

    PubMed Central

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco

    2015-01-01

    Summary Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  4. Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires.

    PubMed

    Milani, Alberto; Tommasini, Matteo; Russo, Valeria; Li Bassi, Andrea; Lucotti, Andrea; Cataldo, Franco; Casari, Carlo S

    2015-01-01

    Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs) can be arranged in two possible structures: a sequence of double bonds (cumulenes), resulting in a 1D metal, or an alternating sequence of single-triple bonds (polyynes), expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms) and the type of termination (e.g., atom, molecular group or nanostructure). Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length). Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds. PMID:25821689

  5. Organic devices based on nickel nanowires transparent electrode

    PubMed Central

    Kim, Jeongmo; da Silva, Wilson Jose; bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed. PMID:26804335

  6. Organic devices based on nickel nanowires transparent electrode

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmo; da Silva, Wilson Jose; Bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed.

  7. Ultrafine Metal-Organic Right Square Prism Shaped Nanowires.

    PubMed

    Otake, Ken-Ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi

    2016-05-23

    We report the structural design and control of electronic states of a new series of ultrafine metal-organic right square prism-shaped nanowires. These nanowires have a very small inner diameter of about 2.0 Å, which is larger than hydrogen and similar to xenon atomic diameters. The electronic states of nanowires can be widely controlled by substitution of structural components. Moreover, the platinum homometallic nanowire shows a 100 times higher proton conductivity than a palladium/platinum heterometallic one depending on the electronic states. PMID:27080935

  8. Potassium Chloride Nanowire Formation Inside a Microchannel Glass Array

    SciTech Connect

    Zhang, Daqing; Moore, Sam; Wei, Jiang; Alkhateeb, Abudullah I.; Gangadean, Dev; Mahmood, Hasan; Lantrips, Justin; McIlroy, David N.; LaLonde, Aaron D.; Norton, M G.; Young, James S.; Wang, Chong M.

    2005-06-27

    The synthesis of KCl nanowires has been achieved by atomic layer deposition inside high aspect ratio channels of microchannel glass. The average diameter of the KCl nanowires is 250 nm, with a minimum observed diameter of 50 nm, and lengths up to 5 {micro}m. The Cl precursor was TaCl5, while the source of K was determined to be impurities in the microchannel glass substrate. The process for KCl nanowire formation is a three-step chemical process that simultaneously etches K from the substrate concomitant with the formation of chlorine gas. It is postulated that the curvature of the channels may influence the diameters of the KCl nanowires.

  9. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    NASA Astrophysics Data System (ADS)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  10. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Guo, Fen; Gao, Yinyi; Zhang, Dongming; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-12-01

    A novel three-dimensional carbon- and binder-free nickel nanowire arrays (Ni NAs) electrode is successfully fabricated by a facile galvanostatic electrodeposition method using polycarbonate membrane as the template. The Ni NAs electrode achieves a oxidation current density (divided by the electroactive surface areas of Ni) of 25.1 mA cm-2 in 4 mol L-1 KOH and 0.9 mol L-1 H2O2 at 0.2 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H2O2 electro-oxidation achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the high utilization of Ni surfaces and makes the electrode have higher electrochemical activity. The apparent activation energy of H2O2 electro-oxidation on the Ni NAs catalyst is 13.59 kJ mol-1. A direct peroxide-peroxide fuel cell using the Ni NAs as anode exhibits a peak power density of 48.7 mW cm-2 at 20 °C. The electrode displays a great promise as the anode of direct peroxide-peroxide fuel cell due to its low cost, high activity and stability.

  11. Coaxial three-dimensional CoMoO4 nanowire arrays with conductive coating on carbon cloth for high-performance lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Chen, Yaping; Liu, Borui; Jiang, Wei; Liu, Qi; Liu, Jingyuan; Wang, Jun; Zhang, Hongsen; Jing, Xiaoyan

    2015-12-01

    Nanostructured transition metal oxides have attracted considerable attentions for both high-capacity and high-rate, but great challenges remain to utilize them. In order to overcome these challenges, hierarchical three-dimensional CoMoO4/polypyrrole core-shell nanowire (NW) arrays on flexible and conductive carbon cloth (CC) have been successfully constructed through a facile two-step solution-based approach. The hybrid NWs electrode as a binder-free lithium ion batteries (LIBs) anode material exhibits a reversible capacity of around 1400-1450 mAh g-1 at a low current density of 100 mA g-1. The specific capacity retains at 753 mAh g-1 while featuring an excellent cycling properties with a capacity of 764 mAh g-1 after 1000 cycles under the current rate of 1200 mA g-1. Furthermore, full batteries have been fabricated and demonstrated characteristics of outstanding electrical stability and superior power output characteristics, which represents an efficient way for practical implementation.

  12. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability.

    PubMed

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm(2), a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783

  13. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    PubMed Central

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783

  14. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    SciTech Connect

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  15. How Copper Nanowires Grow and How To Control Their Properties.

    PubMed

    Ye, Shengrong; Stewart, Ian E; Chen, Zuofeng; Li, Bo; Rathmell, Aaron R; Wiley, Benjamin J

    2016-03-15

    Scalable, solution-phase nanostructure synthesis has the promise to produce a wide variety of nanomaterials with novel properties at a cost that is low enough for these materials to be used to solve problems. For example, solution-synthesized metal nanowires are now being used to make low cost, flexible transparent electrodes in touch screens, organic light-emitting diodes (OLEDs), and solar cells. There has been a tremendous increase in the number of solution-phase syntheses that enable control over the assembly of atoms into nanowires in the last 15 years, but proposed mechanisms for nanowire formation are usually qualitative, and for many syntheses there is little consensus as to how nanowires form. It is often not clear what species is adding to a nanowire growing in solution or what mechanistic step limits its rate of growth. A deeper understanding of nanowire growth is important for efficiently directing the development of nanowire synthesis toward producing a wide variety of nanostructure morphologies for structure-property studies or producing precisely defined nanostructures for a specific application. This Account reviews our progress over the last five years toward understanding how copper nanowires form in solution, how to direct their growth into nanowires with dimensions ideally suited for use in transparent conducting films, and how to use copper nanowires as a template to grow core-shell nanowires. The key advance enabling a better understanding of copper nanowire growth is the first real-time visualization of nanowire growth in solution, enabling the acquisition of nanowire growth kinetics. By measuring the growth rate of individual nanowires as a function of concentration of the reactants and temperature, we show that a growing copper nanowire can be thought of as a microelectrode that is charged with electrons by hydrazine and grows through the diffusion-limited addition of Cu(OH)2(-). This deeper mechanistic understanding, coupled to an

  16. Synthesis of Cu Nanowires with Polycarbonate Template

    SciTech Connect

    Naderi, N.; Hashim, M. R.

    2011-03-30

    Copper nanowires were fabricated into arrays of pores on ion-track etched polycarbonate membrane, using electrodeposition technique. We coated Au thin film layer on one side of membrane in order to have electrical contact. X-ray diffraction analysis shows that the Au layer has a strong (111) texture. The pores which have cylindrical shape with 6 micron length and 30 nm diameter were filled by copper atoms, fabricating Cu nanowires. Energy Disperse Spectrometry (EDS) indicated the picks of copper which filled the pores of substrate. The morphology and structure of Cu nanowires were characterized by SEM, TEM and XRD, respectively. The results show that although all the nanowires do not have uniform diameter, but all of them are continuous along the length.

  17. Lattice thermal conductivity crossovers in semiconductor nanowires.

    PubMed

    Mingo, N; Broido, D A

    2004-12-10

    For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites. PMID:15697834

  18. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  19. Electronic and magnetic properties of a carbon atom chemisorbed on model clusters simulating the (100) surface of nickel

    NASA Astrophysics Data System (ADS)

    Fournier, R.; Andzelm, J.; Goursot, A.; Russo, N.; Salahub, D. R.

    1990-08-01

    Both spin-polarized and unpolarized linear combinations of Gaussian-type orbitals-model core potential-local spin density (LCGTO-MCP-LSD) calculations have been performed for clusters representing the three possible high symmetry chemisorption sites for carbon on the (100) surface of nickel. We found that the most stable chemisorption site is the fourfold hollow, in agreement with the experimental evidence. For this site, the computed equilibrium NiC distances are 1.79 and 1.77 Å at the spin-polarized and unpolarized levels, very close to the most recent experimental measurements. The calculated spin-polarized vibrational frequency perpendicular to the surface is found to be 407 cm-1 (410 cm-1 expt). The values of the binding energy are 11.5 and 11.8 eV at polarized and unpolarized levels, respectively (˜7 eV, expt); the carbon atom is strongly bound, essentially by a triple bond formed by interaction of the px, py, and pz orbitals of carbon with, primarily, the d orbitals of the four nearby surface nickel atoms. The effect of carbon chemisorption on the nickel magnetism has also been studied. The addition of the carbon atom reduces the spin magnetic moment of pure nickel by 2 or 4 μB depending on which of the two nearly degenerate nickel cluster states is taken as reference. The reduction of atomic spin magnetic moments is clearly larger on the 4 nickel atoms nearest to the carbon. The global and local (atomic) reduction in spin magnetic moments originate from some up-spin d density of states being pushed above EF, through antibonding interactions with the carbon 2p orbitals, and hence emptied.

  20. Thermodynamics and Structure of One Monolayer of Simple Atoms Absorbed on Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Vilches, Oscar

    2007-05-01

    Following the discovery and production of carbon nanotube bundles more than fifteen years ago, ideas about the properties of one-dimensional (1d) lines of atoms which could be formed in or on interstitials or grooves in the bundles were either revisited or generated for the first time. It is well known that in an infinite ideal 1d system there is no long range order and no phase coexistence, an argument first put out by Peierls and discussed in Landau and Lifschitz text. Nevertheless, the possibility of forming finite length 1d chains of atoms with gaseous, fluid, or solid properties, and no phase transitions, was intriguing. The fact that the outside surface of the bundles is a curved basal plane of graphite (graphene) is also interesting, because if films could be grown starting on grooves on the outside of the bundles those lines will grow, eventually, onto the graphene to form long and narrow quasi 2d systems to be compared to those adsorbed on flat basal plane graphite. In this experimental talk I will introduce the subject and some of the techniques used, emphasizing results on two of the simplest physisorbed atoms, ^4He and Ne. The He atom has been studied with DC and AC calorimetry, adsorption isotherms, and neutron diffraction, while Ne is currently being studied with thermodynamic measurements. Ideas from current and future experiments will conclude the presentation. The current work is being done in collaboration with Subramanian Ramachandran, Zenghui Wang and David Cobden. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.A1.2

  1. Chemical Sensing with Nanowires

    NASA Astrophysics Data System (ADS)

    Penner, Reginald M.

    2012-07-01

    Transformational advances in the performance of nanowire-based chemical sensors and biosensors have been achieved over the past two to three years. These advances have arisen from a better understanding of the mechanisms of transduction operating in these devices, innovations in nanowire fabrication, and improved methods for incorporating receptors into or onto nanowires. Nanowire-based biosensors have detected DNA in undiluted physiological saline. For silicon nanowire nucleic acid sensors, higher sensitivities have been obtained by eliminating the passivating oxide layer on the nanowire surface and by substituting uncharged protein nucleic acids for DNA as the capture strands. Biosensors for peptide and protein cancer markers, based on both semiconductor nanowires and nanowires of conductive polymers, have detected these targets at physiologically relevant concentrations in both blood plasma and whole blood. Nanowire chemical sensors have also detected several gases at the parts-per-million level. This review discusses these and other recent advances, concentrating on work published in the past three years.

  2. Properties of one-dimensional molybdenum nanowires in a confined environment

    SciTech Connect

    Sumpter, Bobby G; Meunier, Vincent; Muramatsu, H; Hayashi, T; Kim, Y A; Shimamoto, Daisuke; Terrones Maldonado, Humberto; Dresselhaus, M; Terrones Maldonado, Mauricio; Endo, M

    2009-01-01

    The atomistic mechanism for the self-assembly of molybdenum into one-dimensional metallic nanowires in a confined environment such as a carbon nanotube is investigated using quantum mechanical calculations. We find that Mo does not organize into linear chains but rather prefers to form four atom per unit-cell nanowires that consist of a subunit of a Mo-BCC crystal. Our model explains the 0.3 nm separation between features measured by high-resolution transmission electron microscopy and why the nanotube diameter must be in the 0.70 - 1.0 nm range to accommodate the smallest stable one-dimensional wire. We also computed the electronic band-structure of the Mo wires inside a nanotube and found significant hybridization with the nanotube states, thereby explaining the experimentally observed quenching of fluorescence and the damping of the radial breathing modes as well as an increased resistance to oxidation.

  3. Mineral sequestration of carbon dioxide in San Carlos olivine: An atomic level reaction study

    NASA Astrophysics Data System (ADS)

    Nunez, Ryan

    Since the late 19th century, atmospheric carbon dioxide (CO2) levels have been steadily on the rise. Approximately one third of all human emissions come from fossil fuel power plants. As countries become more dependent on electrical energy and bring on line new power plants, these atmospheric CO2 levels will continue to rise, generating strong environmental concern. Potential avenues to address this problem convert the CO2 from the gaseous phase to a liquid, supercritical fluid, or solid state and store it. Oceans, subsurface reservoirs such as depleted oil fields, and terrestrial carbon pools have all been suggested. The essential problem with all of these possible solutions is the issue of permanency. Mineral sequestration of CO2 is a candidate technology for reducing the amount of anthropogenic CO2 that is being released into the atmosphere. Olivine (e.g. forsterite, Mg2SiO4) is a widely available mineral that reacts with CO2 to form magnesite (MgCO3) and silica (SiO2). Magnesite is capable of immobilizing CO2 over geological time periods. Thus the issue of permanency has been addressed. The most promising mineral sequestration process developed to date is aqueous solution mineral carbonation. The solid/aqueous solution reaction interface provides insight to the mechanisms that govern the carbonation reactivity of olivine. Study of these mechanisms at the atomic level is critically important to facilitate engineering new processes that will enhance the reactivity of olivine with CO2 bearing media and to lower process costs. The study of the olivine carbonation reaction herein can be divided into three separate areas of research. The first area is a comprehensive study of olivine under conditions of electron irradiation. Analyzing radiation damage is critical to the verification and reliability of data collected from the samples using electron beam techniques. The next area of research is the analysis of the reaction layer composition and structure using High

  4. Effects of ions and atomic hydrogen in plasma-assisted growth of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Denysenko, I.; Ostrikov, K.; Yu, M. Y.; Azarenkov, N. A.

    2007-10-01

    The growth of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a surface diffusion model. It is shown that at low substrate temperatures (⩽1000K), the atomic hydrogen and ion fluxes from the plasma can strongly affect nanotube growth. The ion-induced hydrocarbon dissociation can be the main process that supplies carbon atoms for SWCNT growth and is responsible for the frequently reported higher (compared to thermal chemical vapor deposition) nanotube growth rates in plasma-based processes. On the other hand, excessive deposition of plasma ions and atomic hydrogen can reduce the diffusion length of the carbon-bearing species and their residence time on the nanotube lateral surfaces. This reduction can adversely affect the nanotube growth rates. The results here are in good agreement with the available experimental data and can be used for optimizing SWCNT growth in PECVD.

  5. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Yang, Zhimin; Wang, Qiang; Shan, Xiaoye; Li, Wei-qi; Chen, Guang-hui; Zhu, Hongjun

    2015-02-01

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  6. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    SciTech Connect

    Yang, Zhimin; Wang, Qiang Shan, Xiaoye; Zhu, Hongjun; Li, Wei-qi; Chen, Guang-hui

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  7. Selective determination of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by atomic-absorption spectrometry with a carbon-tube atomizer.

    PubMed

    Kamada, T; Yamamoto, Y

    1977-05-01

    The extraction behaviour of antimony(III) and antimony(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of frameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of antimony(III) and differential determination of antimony(III) and antimony(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone, when the aqueous phase/solvent volume ratio is 50 ml/10 ml and the injection volume in the carbon tube is 20 mul, the sensitivity for antimony is 0.2 ng/ml for 1% absorption. The relative standard deviations are ca. 2%. Interferences by many metal ions can be prevented by masking with EDTA. The proposed methods have been applied satisfactorily to determination of antimony(III) and antimony(V) in various types of water. PMID:18962096

  8. Agglomeration defects on irradiated carbon nanotubes

    SciTech Connect

    Steini Moura, Cassio; Balzaretti, Naira Maria; Amaral, Livio; Gribel Lacerda, Rodrigo; Pimenta, Marcos A.

    2012-03-15

    Aligned carbon nanotubes (CNT) were irradiated in the longitudinal and perpendicular directions, with low energy carbon and helium ions in order to observe the formation of defects in the atomic structure. Analysis through Raman spectroscopy and scanning electron microscopy indicated bundle rupture and ion track formation on nanotube bundles. Aligned CNT presented a kind of defect comprising ravine formation and tube agglomeration on top of the substrate. The latter structure is possibly caused by static charge accumulation induced by the incoming ions. Fluence plays a role on the short range order. Higher fluence irradiation transforms CNT into amorphous carbon nanowires.

  9. Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R H; Thundat, Thomas George

    2010-01-01

    The emerging interest in understanding the interactions of nanomaterial with biological systems necessitates imaging tools that capture the spatial and temporal distributions and attributes of the resulting nano-bil amalgam. Studies targeting organ specific response and/ot nanoparticle-specific system toxicity would be profoundly benefited from tools that would allow imaging and tracking of in-vivo or in-vitro processes and particle-fate studies. Recently we demonstrated that mode systhesizing atomic force microscopy (MSAFM) can provide subsurface nanoscale informations on the mechanical properties of materials at the nanoscale. However, the underlying mechanism of this imaging methodology is currently subject to theoretical and experimental investigation. In this paper we present further analysis by investigating tip-sample excitation forces associated with nanomechanical image formation. Images and force curves acquired under various operational frequencies and amplitudes are presented. We examine samples of mouse cells, where buried distributions of single-walled carbon nanohorns and silica nanoparticles are visualized.

  10. 4D electron microscopy visualization of anisotropic atomic motions in carbon nanotubes.

    PubMed

    Park, Sang Tae; Flannigan, David J; Zewail, Ahmed H

    2012-06-01

    We report the anisotropic atomic expansion dynamics of multi-walled carbon nanotubes, using 4D electron microscopy. From time-resolved diffraction on the picosecond to millisecond scale, following ultrafast heating at the rate of 10(13) K/s, it is shown that nanotubes expand only in the radial (intertubule) direction, whereas no significant change is observed in the intratubular axial or equatorial dimensions. The non-equilibrium heating occurs on an ultrafast time scale, indicating that the anisotropy is the result of an efficient electron-lattice coupling and is maintained up to equilibration. The recovery time, which measures the heat dissipation rate for equilibration, was found to be on the order of ∼100 μs. This recovery is reproduced theoretically by considering the composite specimen-substrate heat exchange. PMID:22591381

  11. Carbon kinetic isotope effect in the reaction of CH4 with Cl atoms

    NASA Astrophysics Data System (ADS)

    Saueressig, G.; Bergamaschi, P.; Crowley, J. N.; Fischer, H.; Harris, G. W.

    1995-05-01

    The carbon kinetic isotope effect in the reaction between Cl and CH4 (KIE(sub Cl)) has been measured using tunable diode laser absorption spectroscopy to determine (13)CH4/(12)CH4 ratios. Cl atoms were generated by the irradition of Cl2 in static mixtures of Cl2/CH4/N2 or Cl2/CH4/N2/O2. Both methods resulted in a (KIE(sub Cl)) of 1.066 +/- 0.002 at 297 K. The KIE(sub Cl) displayed a slight temperature dependence, increasing to 1.075 +/- 0.005 at 223 K. This result suggests a significant influence of the title reaction on the stratospheric CH4 isotopic composition and may help to resolve discrepancies between measurements of stratospheric (13)CH4/(12)CH4 profiles and laboratory measurements of KIE(sub OH).

  12. Observation of Suspended Carbon Nanotube Configurations Using an Atomic Force Microscopy Tip

    NASA Astrophysics Data System (ADS)

    Ono, Yuki; Ogino, Toshio

    2009-08-01

    Mechanical behaviors of suspended carbon nanotubes (CNTs) or their bundles over a trench fabricated on a Si substrate were investigated by monitoring the oscillation amplitude of an atomic force microscopy (AFM) tip that interacts with the CNTs. The amplitude was considered as a function of the vertical distance between the center of the oscillating tip and the equilibrium position of the CNTs. The amplitude-distance curve (AD curve) obtained in air is interpreted as a simple model that includes the mechanical response of the suspended CNTs to the oscillating tip, the attachment/detachment of the CNTs onto the tip surface, and the oscillation of the CNTs attached to the tip. Dependences of AD curves on CNT length, bundle configuration, and the type of environment during the oscillation were investigated, and it has been found that this technique can be applied to the in situ monitoring of CNT arrangements during the manipulation of CNT networks.

  13. Atomistic modeling of metallic nanowires in silicon.

    PubMed

    Ryu, Hoon; Lee, Sunhee; Weber, Bent; Mahapatra, Suddhasatta; Hollenberg, Lloyd C L; Simmons, Michelle Y; Klimeck, Gerhard

    2013-09-21

    Scanning tunneling microscope (STM) lithography has recently demonstrated the ultimate in device scaling with buried, conducting nanowires just a few atoms wide and the realization of single atom transistors, where a single P atom has been placed inside a transistor architecture with atomic precision accuracy. Despite the dimensions of the critical parts of these devices being defined by a small number of P atoms, the device electronic properties are influenced by the surrounding 10(4) to 10(6) Si atoms. Such effects are hard to capture with most modeling approaches, and prior to this work no theory existed that could explore the realistic size of the complete device in which both dopant disorder and placement are important. This work presents a comprehensive study of the electronic and transport properties of ultra-thin (<10 nm wide) monolayer highly P δ-doped Si (Si:P) nanowires in a fully atomistic self-consistent tight-binding approach. This atomistic approach covering large device volumes allows for a systematic study of disorder on the physical properties of the nanowires. Excellent quantitative agreement is observed with recent resistance measurements of STM-patterned nanowires [Weber et al., Science, 2012, 335, 64], confirming the presence of metallic behavior at the scaling limit. At high doping densities the channel resistance is shown to be insensitive to the exact channel dopant placement highlighting their future use as metallic interconnects. This work presents the first theoretical study of Si:P nanowires that are realistically extended and disordered, providing a strong theoretical foundation for the design and understanding of atomic-scale electronics. PMID:23897026

  14. Growth and characterization of semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Philipose, Usha

    This thesis describes a catalytic growth approach to synthesize semiconductor nanowires with good control over their physical dimensions, chemical composition, and optical/electronic properties. Using the Vapour-Liquid-Solid growth mechanism, gold nanoclusters serve as the catalytic sites directing the growth of crystalline Zinc Selenide (ZnSe), Zinc Oxide (ZnO) and Zinc Sulphide (ZnS) nanowires with length of several microns and diameters varying from 15 nm to 100 nm. The morphology and properties of the nanowires were found to be strongly dependent on growth conditions. Optical characterization by photoluminescence spectroscopy show that the spectra is dominated by near band edge emission for low defect density nanowires in contrast to the high level of defect related emission from high defect density nanowires. The growth parameters were optimized leading to the synthesis of nanowires with minimum defect concentration. Electrical transport studies on an array of ZnSe nanowires confirm that there exists a non-uniform carrier distribution along the nanowires leading to 'super-linear' current-voltage behaviour with carrier mobilities comparable to that of bulk material. Photoconductivity measurements on ZnSe nanoribbons show that they are of good quality, enabling realization of a nanoscale photodetector with a peak efficiency of 43%. Spectral response of photoconductivity had a threshold character with edge corresponding to the ZnSe bandgap, which makes it an ideal candidate for blue and ultraviolet light detection. The effect of doping of these nanowires with transition elements such as manganese (Mn) has been studied. In this effort, the first successful attempt at synthesizing room temperature ferromagnetic nanowires has been realized. Above room temperature ferromagnetism has been observed for the first time in dilute Mn-doped crystalline ZnO nanowires. From the observed saturation magnetization, the magnetic moment per Mn atom is estimated to be in the range

  15. Discovery of a shell of neutral atomic hydrogen surrounding the carbon star IRC+10216

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Gérard, E.; Le Bertre, T.

    2015-05-01

    We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (H I) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightness H I shell of diameter ˜1300 arcsec (˜0.8 pc), centred on IRC+10216. The H I shell has an angular extent comparable to the far ultraviolet-emitting astrosphere of IRC+10216 previously detected with the GALEX satellite, and its kinematics are consistent with circumstellar matter that has been decelerated by the local interstellar medium. The shell appears to completely surround the star, but the highest H I column densities are measured along the leading edge of the shell, near the location of a previously identified bow shock. We estimate a total mass of atomic hydrogen associated with the IRC+10216 CSE of M_{H I} ˜ 3× 10^{-3} M_{⊙}. This is only a small fraction of the expected total mass of the CSE (<1 per cent) and is consistent with the bulk of the stellar wind originating in molecular rather than atomic form, as expected for a cool star with an effective temperature Teff ≲ 2200 K. H I mapping of a 2° × 2° region surrounding IRC+10216 has also allowed us to characterize the line-of-sight interstellar emission in the region and has uncovered a link between diffuse FUV emission south-west of IRC+10216 and the Local Leo Cold Cloud.

  16. Propulsion of nanowire diodes.

    PubMed

    Calvo-Marzal, Percy; Sattayasamitsathit, Sirilak; Balasubramanian, Shankar; Windmiller, Joshua R; Dao, Cuong; Wang, Joseph

    2010-03-14

    The propulsion of semiconductor diode nanowires under external AC electric field is described. Such fuel-free electric field-induced nanowire propulsion offers considerable promise for diverse technological applications. PMID:20177595

  17. Self-trapping of carbon atoms in α'-Fe during the martensitic transformation: A qualitative picture from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ruban, A. V.

    2014-10-01

    Strain-induced and chemical interactions of interstitial carbon atoms in bcc or α-Fe are obtained in first-principles calculations. Subsequent Monte Carlo simulations show that at low temperatures, carbon atoms prefer to occupy at least two different octahedral sublattices, which is due to quite strong attractive interactions of carbon atoms at the corresponding coordination shells. The direct total-energy calculations of one of the obtained ordered structures with composition Fe16C2, show that it is more stable than the predicted earlier structure with the same composition but carbon atoms occupying only one octahedral sublattice. This indicates that the long-existing thermodynamic mean-field theory of ordering of carbon in α-Fe assuming strong preference of carbon atoms to occupy only one octahedral sublattice is deficient. It is shown that the presence of carbon atoms only at one octahedral sublattice in the experimentally observed martensitic phase, α'-Fe, is a self-trapping effect. It occurs during a displacive martensitic transformation from γ- to α-Fe, which kinematically transfers the carbon atoms from a single fcc octahedral sublattice to one of three octahedral sublattices, where they appear to be locked by a consequent tetragonal distortion minimizing elastic energy of the phase. The latter creates a strong preference for carbon atoms to be only at one already occupied octahedral sublattice preventing them from further distribution over the other sublattices.

  18. In situ study of erosion and deposition of amorphous hydrogenated carbon films by exposure to a hydrogen atom beam

    SciTech Connect

    Markelj, Sabina; Pelicon, Primoz; Cadez, Iztok; Schwarz-Selinger, Thomas; Jacob, Wolfgang

    2012-07-15

    This paper reports on the first dual-beam experiment employing a hydrogen atom beam for sample exposure and an ion beam for analysis, enabling in situ and real-time studies of hydrogen atom interaction with materials. The erosion of an amorphous hydrogenated carbon (a-C:H) layer by deuterium atoms at 580 K sample temperature was studied and the uptake of deuterium during the erosion process was measured in real time. The deuterium areal density increased at the beginning to 7.3 Multiplication-Sign 10{sup 15} D cm{sup -2}, but then stabilized at a constant value of 5.5 Multiplication-Sign 10{sup 15} D cm{sup -2}. Formation of a polymer-like deposit on an a-C:H layer held at room temperature and subjected to the deuterium atom beam was observed and also studied in situ. For both erosion and deposition studies an a-{sup 13}C:H layer on top of an Si substrate was used as a sample, making the experiments isotopically fully specified and thereby differentiating the deposited from the original layer and the interacting D atoms from H atoms present in the layer and in the residual vacuum. From the deposition study it was shown that carbon in the deposited layer originates from carbon-carrying species in the background vacuum that interact with hydrogen atoms. The areal density of the carbon at the surface was determined from the energy shift of the Si edge in the Rutherford backscattering spectrum. The cross section for {sup 7}Li on D at 4.3 MeV Li ion energy and at a recoil angle of 30 Degree-Sign was also determined to be (236 {+-} 16) Multiplication-Sign 10{sup -27} cm{sup 2}/sr. This is a factor of 3 {+-} 0.2 times higher than the Rutherford elastic cross section.

  19. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

    PubMed Central

    Lorenzoni, Matteo; Matsui, Soichiro; Tanemura, Masaki; Perez-Murano, Francesc

    2015-01-01

    Summary Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO) is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM) has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT)-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF) as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency. PMID:25671165

  20. Aligned Carbon Nanotube Array Functionalization for Enhanced Atomic Layer Deposition of Platinum Electrocatalysts

    SciTech Connect

    Dameron, A. A.; Pylypenko, S.; Bult, J. B.; Neyerlin, K. C.; Engtrakul, C.; Bochert, C.; Leong, G. J.; Frisco, S. L.; Simpson, L.; Dinh, H. N.; Pivovar, B.

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  1. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    PubMed

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. PMID:25699703

  2. Vertically-aligned sandwich nanowires enhance the photoelectrochemical reduction of hydrogen peroxide: hierarchical formation on carbon nanotubes of cadmium sulfide quantum dots and Prussian blue nanocoatings.

    PubMed

    Gong, Kuanping

    2015-07-01

    We describe a vertically-aligned array of sandwiched nanowires comprising Prussian blue (PB) nanocoating-carbon nanotube (CNT) core-shell structures with CdS particles positioning at the core/shell interface, viz. PB/CdS/CNT. The PB/CdS/CNT electrode thus constructed are noticeable in synchronically harvesting photon-, ionic-, and chemical-energies, respectively, from visible light radiation, K(+) uptaking and releasing, and the reduction of H2O2. In 0.2 M K2SO4 aqueous solution, the photoelectrocatalytic reduction of 1.5 mM H2O2 at PB/CdS/CNT delivered the current density as high as 1.91 mA/cm(2) at reduced overpotential, that is, three times that at the Pt/C. This superb performance is causally linked to the judicious choice of materials and their assembly into defining sandwich nanostructures wherein the three components closely cooperate with each other in the photoelectrocatalytic reduction of H2O2, including photo-induced charge separation in CdS, spontaneous electron injection into PB due to its relatively low Fermi level, and the electrocatalytic reduction of H2O2 by PB via an electrochemical-chemical-electrochemical reaction mechanism. The structural alignment of PB/CdS/CNT ensures the simplest pathway for the mass diffusion and electron shuttle, and a high surface area accessible to the chemical and electrochemical reactions, so as to minimize the concentration- and electrochemical-polarization and thus ensure the fast overall kinetics of the electrode reaction. PMID:25458868

  3. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: Artificial neural network modeling and genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Shojaeipour, E.; Ghaedi, A. M.; Sahraei, Reza

    2015-05-01

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1 g), contact time (1-40 min) and initial MG concentration (5, 10, 20, 70 and 100 mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R2) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8 mg/g at 25 °C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20 min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model.

  4. Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films.

    SciTech Connect

    Arenal, R.; Bruno, P.; Miller, D. J.; Bleuel, M.; Lai, J.; Gruen, D. M.

    2007-05-01

    Further progress in the development of the remarkable electrochemical, electron field emission, high-temperature diode, and optical properties of n-type ultrananocrystalline diamond films requires a better understanding of electron transport in this material. Of particular interest is the origin of the transition to the metallic regime observed when about 10% by volume of nitrogen has been added to the synthesis gas. Here, we present data showing that the transition to the metallic state is due to the formation of partially oriented diamond nanowires surrounded by an sp{sup 2}-bonded carbon sheath. These have been characterized by scanning electron microscopy, transmission electron microscopy techniques (high-resolution mode, selected area electron diffraction, and electron-energy-loss spectroscopy), Raman spectroscopy, and small-angle neutron scattering. The nanowires are 80-100 nm in length and consist of {approx}5 nm wide and 6-10 nm long segments of diamond crystallites exhibiting atomically sharp interfaces. Each nanowire is enveloped in a sheath of sp{sup 2}-bonded carbon that provides the conductive path for electrons. Raman spectroscopy on the films coupled with a consideration of plasma chemical and physical processes reveals that the sheath is likely composed of a nanocarbon material resembling in some respects a polymer-like mixture of polyacetylene and polynitrile. The complex interactions governing the simultaneous growth of the diamond core and the sp{sup 2} sheath responsible for electrical conductivity are discussed as are attempts at a better theoretical understanding of the transport mechanism.

  5. Studies of single walled carbon nanotubes for biomedical, mechanical and electrical applications using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lahiji, Roya Roientan

    The promise of carbon nanotubes to provide high-strength composites implies that carbon nanotubes might find widespread use throughout the world, implying that humans everywhere will be exposed to carbon nanotube-containing materials. In order to study what effects if any carbon nanotubes might have on the function of living cells, we have studied the association of single stranded DNA (ssDNA) with single wall carbon nanotubes (SWCNTs) as a first step toward understanding the interaction of SWCNTs with living matter. Studies have been performed on both as-received and chemically oxidized SWCNTs to better understand the preferential association of ssDNA with SWCNTs. Samples of T30 ssDNA:SWCNT were examined under ambient conditions using non-contact Atomic Force Microscopy (AFM)) techniques. AFM images of well-dispersed, as-received SWCNTs revealed isolated features on the SWCNT that are 1.4 to 2.8 nm higher than the bare SWCNT itself. X-ray Photoemission Spectroscopy (XPS) confirmed these features to be T30 ssDNA in nature. Chemically oxidizing SWCNTs before dispersion by sonication is found to be an effective way to increase the number of T30 ssDNA features. A series of experiments showed that free radical scavengers such as ascorbic acid and trolox can effectively prevent the conjugation of ssDNA to SWCNTs, suggesting a significant role of free radicals in this association. Also hybridization of the complimentary ssDNA sequences showed the covalent nature of this association. These results are important to understanding the precise mechanism of ssDNA:SWCNT association and provide valuable information for future use in electronics, biosensors and as a possible drug carrier into individual cells. If SWCNTs are used in biosensor or circuit design applications then it is important to note how much energy can be stored in a SWCNT based on its shape and configuration before a permanent damage is introduced to it. Therefore a study has been done on bending SWCNTs into

  6. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of {sup 3}P atomic carbon with propene

    SciTech Connect

    Lee, Shih-Huang Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-07

    We investigated the dynamics of the reaction of {sup 3}P atomic carbon with propene (C{sub 3}H{sub 6}) at reactant collision energy 3.8 kcal mol{sup −1} in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C{sub 4}H{sub 5}, C{sub 4}H{sub 4}, C{sub 3}H{sub 3}, and CH{sub 3} were observed and attributed to exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3}; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a {sup 3}P carbon atom to the C=C bond of propene, cyclic complex c-H{sub 2}C(C)CHCH{sub 3} undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H{sub 2}CCCHCH{sub 3}. Both the isomers of H{sub 2}CCCHCH{sub 3} in turns decompose to C{sub 4}H{sub 5} + H and C{sub 3}H{sub 3} + CH{sub 3}. A portion of C{sub 4}H{sub 5} that has enough internal energy further decomposes to C{sub 4}H{sub 4} + H. The three exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3} have average translational energy releases 13.5, 3.2, and 15.2 kcal mol{sup −1}, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH{sub 3}-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of {sup 3}P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  7. Surface modification of nitrogen-doped carbon nanotubes by ozone via atomic layer deposition

    SciTech Connect

    Lushington, Andrew; Liu, Jian; Tang, Yongji; Li, Ruying; Sun, Xueliang

    2014-01-15

    The use of ozone as an oxidizing agent for atomic layer deposition (ALD) processes is rapidly growing due to its strong oxidizing capabilities. However, the effect of ozone on nanostructured substrates such as nitrogen-doped multiwalled carbon nanotubes (NCNTs) and pristine multiwalled carbon nanotubes (PCNTs) are not very well understood and may provide an avenue toward functionalizing the carbon nanotube surface prior to deposition. The effects of ALD ozone treatment on NCNTs and PCNTs using 10 wt. % ozone at temperatures of 150, 250, and 300 °C are studied. The effect of ozone pulse time and ALD cycle number on NCNTs and PCNTs was also investigated. Morphological changes to the substrate were observed by scanning electron microscopy and high resolution transmission electron microscopy. Brunauer-Emmett-Teller measurements were also conducted to determine surface area, pore size, and pore size distribution following ozone treatment. The graphitic nature of both NCNTs and PCNTs was determined using Raman analysis while x-ray photoelectron spectroscopy (XPS) was employed to probe the chemical nature of NCNTs. It was found that O{sub 3} attack occurs preferentially to the outermost geometric surface of NCNTs. Our research also revealed that the deleterious effects of ozone are found only on NCNTs while little or no damage occurs on PCNTs. Furthermore, XPS analysis indicated that ALD ozone treatment on NCNTs, at elevated temperatures, results in loss of nitrogen content. Our studies demonstrate that ALD ozone treatment is an effective avenue toward creating low nitrogen content, defect rich substrates for use in electrochemical applications and ALD of various metal/metal oxides.

  8. Synthesis and structural characterization of vertical ferromagnetic MnAs/semiconducting InAs heterojunction nanowires

    NASA Astrophysics Data System (ADS)

    Kodaira, Ryutaro; Hara, Shinjiro; Kabamoto, Kyohei; Fujimagari, Hiromu

    2016-07-01

    The purpose of this study is to synthesize vertical ferromagnetic/semiconducting heterojunction nanowires by combing the catalyst-free selective-area growth of InAs nanowires and the endotaxial nanoclustering of MnAs and to structurally and magnetically characterize them. MnAs penetrates the InAs nanowires to form nanoclusters. The surface migration length of manganese adatoms on the nanowires, which is estimated to be 600 nm at 580 °C, is a key to the successful fabrication of vertical MnAs/InAs heterojunction nanowires with atomically abrupt heterointerfaces.

  9. Ferromagnetism and semiconducting of boron nanowires

    PubMed Central

    2012-01-01

    More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk. PMID:23244063

  10. Nanotubes, Nanowires, and Nanocantilevers in Biosensor Development

    SciTech Connect

    Wang, Jun; Liu, Guodong; Lin, Yuehe

    2007-03-08

    In this chapter, the reviews on biosensor development based on 1-D nanomaterials, CNTs, semiconducting nanowires, and some cantilevers will be introduced. The emphasis of this review will be placed on CNTs and electrochemical/electronic biosensor developments. Section 2 of this chapter gives a detailed description of carbon nanotubes-based biosensor development, from fabrication of carbon nanotubes, the strategies for construction of carbon nanotube based biosensors to their bioapplications. In the section of the applications of CNTs based biosensors, various detection principles, e. g. electrochemical, electronic, and optical method, and their applications are reviewed in detail. Section 3 introduces the method for synthesis of semiconducting nanowires, e.g. silicon nanowires, conducting polymer nanowires and metal oxide nanowires and their applications in DNA and proteins sensing. Section 4 simply describes the development for nanocantilevers based biosensors and their application in DNA and protein diagnosis. Each section starts from a brief introduction and then goes into details. Finally in the Conclusion section, the development of 1-D nanomaterials based biosensor development is summarized.

  11. Experimental study of thermal stability of thin nanowires.

    PubMed

    Gordon, Eugene B; Karabulin, Alexander V; Matyushenko, Vladimir I; Khodos, Igor I

    2015-03-19

    Thin (D < 10 nm) nanowires are in principle promising for their application as catalysts and as elements of nanocomputers and quantum devices. To perform these tasks, their structure and properties must be stable at least at standard conditions. Using our technique based on the capture of small particles to the core of quantized vortices in superfluid helium, we synthesized nanowires made of various metals and alloys and investigated their thermal stability. The indium nanowires (D = 8 nm) were shown to be stable when heated to 100 °C, i.e., almost to the melting point, whereas the silver nanowires (D = 5 nm) disintegrated into traces of individual nanoclusters at 300 K. The gold and platinum nanowires also decomposed at temperatures more than twice as low as the melting point. A model is proposed to explain the premature decay of thin nanowires by unfreezing of the surface-atom mobility in combination with the anomalous dependence of the surface tension on the nanowire radius. Methods for improving the stability limits of thin nanowires by saturation of their surface with immobilized atoms as well as by surface oxidation have been proposed and experimentally tested. PMID:25375969

  12. Deformation mechanisms of Cu nanowires with planar defects

    SciTech Connect

    Tian, Xia Yang, Haixia; Wan, Rui; Cui, Junzhi; Yu, Xingang

    2015-01-21

    Molecular dynamics simulations are used to investigate the mechanical behavior of Cu nanowires (NWs) with planar defects such as grain boundaries (GBs), twin boundaries (TBs), stacking faults (SFs), etc. To investigate how the planar defects affect the deformation and fracture mechanisms of naowires, three types of nanowires are considered in this paper: (1) polycrystalline Cu nanowire; (2) single-crystalline Cu nanowire with twin boundaries; and (3) single-crystalline Cu nanowire with stacking faults. Because of the large fraction of atoms at grain boundaries, the energy of grain boundaries is higher than that of the grains. Thus, grain boundaries are proved to be the preferred sites for dislocations to nucleate. Moreover, necking and fracture prefer to occur at the grain boundary interface owing to the weakness of grain boundaries. For Cu nanowires in the presence of twin boundaries, it is found that twin boundaries can strength nanowires due to the restriction of the movement of dislocations. The pile up of dislocations on twin boundaries makes them rough, inducing high energy in twin boundaries. Hence, twin boundaries can emit dislocations, and necking initiates at twin boundaries. In the case of Cu nanowires with stacking faults, all pre-existing stacking faults in the nanowires are observed to disappear during deformation, giving rise to a fracture process resembling the samples without stacking fault.

  13. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  14. Nanowire-based detector

    DOEpatents

    Berggren, Karl K; Hu, Xiaolong; Masciarelli, Daniele

    2014-06-24

    Systems, articles, and methods are provided related to nanowire-based detectors, which can be used for light detection in, for example, single-photon detectors. In one aspect, a variety of detectors are provided, for example one including an electrically superconductive nanowire or nanowires constructed and arranged to interact with photons to produce a detectable signal. In another aspect, fabrication methods are provided, including techniques to precisely reproduce patterns in subsequently formed layers of material using a relatively small number of fabrication steps. By precisely reproducing patterns in multiple material layers, one can form electrically insulating materials and electrically conductive materials in shapes such that incoming photons are redirected toward a nearby electrically superconductive materials (e.g., electrically superconductive nanowire(s)). For example, one or more resonance structures (e.g., comprising an electrically insulating material), which can trap electromagnetic radiation within its boundaries, can be positioned proximate the nanowire(s). The resonance structure can include, at its boundaries, electrically conductive material positioned proximate the electrically superconductive nanowire such that light that would otherwise be transmitted through the sensor is redirected toward the nanowire(s) and detected. In addition, electrically conductive material can be positioned proximate the electrically superconductive nanowire (e.g. at the aperture of the resonant structure), such that light is directed by scattering from this structure into the nanowire.

  15. Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability.

    PubMed

    Sivaram, Saujan V; Shin, Naechul; Chou, Li-Wei; Filler, Michael A

    2015-08-12

    Surface adsorbates are well-established choreographers of material synthesis, but the presence and impact of these short-lived species on semiconductor nanowire growth are largely unknown. Here, we use infrared spectroscopy to directly observe surface adsorbates, hydrogen atoms and methyl groups, chemisorbed to the nanowire sidewall and show they are essential for the stable growth of Ge nanowires via the vapor-liquid-solid mechanism. We quantitatively determine the surface coverage of hydrogen atoms during nanowire growth by comparing ν(Ge-H) absorption bands from operando measurements (i.e., during growth) to those after saturating the nanowire sidewall with hydrogen atoms. This method provides sub-monolayer chemical information at relevant reaction conditions while accounting for the heterogeneity of sidewall surface sites and their evolution during elongation. Our findings demonstrate that changes to surface bonding are critical to understand Ge nanowire synthesis and provide new guidelines for rationally selecting catalysts, forming heterostructures, and controlling dopant profiles. PMID:26147949

  16. One-pot atom-efficient synthesis of bio-renewable polyesters and cyclic carbonates through tandem catalysis.

    PubMed

    Jia, Fan; Chen, Xiaoyu; Zheng, Yan; Qin, Yusheng; Tao, Youhua; Wang, Xianhong

    2015-05-18

    One-pot synthesis of well-defined bio-renewable polyesters and cyclic carbonates in high yields was successfully realized for the first time by way of a tandem reaction using metal salen complexes as catalysts. This tandem process offered unprecedented opportunities for the atom-efficient production of two relevant compounds. PMID:25892206

  17. Selective visualization of point defects in carbon nanotubes at the atomic scale by an electron-donating molecular tip.

    PubMed

    Nishino, Tomoaki; Kanata, Satoshi; Umezawa, Yoshio

    2011-07-14

    Electron-donating molecular tips were used for the observation of single-walled carbon nanotubes (SWNTs). Defects in SWNTs were selectively visualized at the atomic scale on the basis of charge-transfer interaction with the molecular tip. PMID:21629907

  18. Semiconductor Nanowires for Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Hwang, Yun Jeong

    Photolysis of water with semiconductor materials has been investigated intensely as a clean and renewable energy resource by storing solar energy in chemical bonds such as hydrogen. One-dimensional (1D) nanostructures such as nanowires can provide several advantages for photoelectrochemical (PEC) water splitting due to their high surface areas and excellent charge transport and collection efficiency. This dissertation discusses various nanowire photoelectrodes for single or dual semiconductor systems, and their linked PEC cells for self-driven water splitting. After an introduction of solar water splitting in the first chapter, the second chapter demonstrates water oxidative activities of hydrothermally grown TiO2 nanowire arrays depending on their length and surface properties. The photocurrents with TiO2 nanowire arrays approach saturation due to their poor charge collection efficiency with longer nanowires despite increased photon absorption efficiency. Epitaxial grains of rutile atomic layer deposition (ALD) shell on TiO2 nanowire increase the photocurrent density by 1.5 times due to improved charge collection efficiency especially in the short wavelength region. Chapter three compares the photocurrent density of the planar Si and Si nanowire arrays coated by anatase ALD TiO 2 thin film as a model system of a dual bandgap system. The electroless etched Si nanowire coated by ALD TiO2 (Si EENW/TiO2) shows 2.5 times higher photocurrent density due to lower reflectance and higher surface area. Also, this chapter illustrates that n-Si/n-TiO2 heterojunction is a promising structure for the photoanode application of a dual semiconductor system, since it can enhance the photocurrent density compared to p-Si/n-TiO 2 junction with the assistance of bend banding at the interface. Chapter four demonstrates the charge separation and transport of photogenerated electrons and holes within a single asymmetric Si/TiO2 nanowire. Kelvin probe force microscopy measurements show

  19. TOPICAL REVIEW: DNA nanowire fabrication

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Cheng, Chuanding; Gonela, Ravikanth; Suryanarayanan, Shivashankar; Anabathula, Sathish; Dai, Kun; Haynie, Donald T.

    2006-01-01

    Deoxyribonucleic acid (DNA) has been a key building block in nanotechnology since the earliest work on what is now called DNA-templated self-assembly (Alivisatos et al 1996 Nature 382 609; Mirkin et al 1996 Nature 382 607; Braun et al 1998 Nature 391 775). A range of different nanoparticles and nanoclusters have been assembled on single DNA molecules for a variety of purposes (Braun et al 1998 Nature 391 775; Richter et al 2001 Appl. Phys. Lett. 78 536; Park et al 2002 Science 295 1503; Mirkin 2000 Inorg. Chem. 39 2258; Keren et al 2003 Science 302 1380). Electrically conductive silver (Braun et al 1998 Nature 391 775) and palladium (Richter et al 2001 Appl. Phys. Lett. 78 536) nanowires, for example, have been fabricated by DNA templating for the development of interconnection of nanoelectric elements, and field effect transistors have been built by assembly of a single carbon nanotube and DNA-templated nanowires (Keren et al 2003 Science 302 1380). DNA is well suited for nanowire assembly because of its size, well organized structure, and exquisite molecular-recognition-ability-specific base pairing. This property has been used to detect nucleic acids (Park et al 2002 Science 295 1503) and anthrax (Mirkin 2000 Inorg. Chem. 39 2258) with high sensitivity and specificity. Molecular recognition can also be used to localize nanowires in electronics. Various methods, for example molecular combing, electrophoretic stretching, and hydrodynamic stretching, have been developed to orient DNA molecules on a solid support. This review focuses on methods used to manipulate and metallize DNA in nanowire fabrication. A novel approach based on a single-stranded DNA template and molecular recognition is also discussed.

  20. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  1. Synthesis of silicon and germanium nanowires and silicon/germanium nanowire heterostructures

    NASA Astrophysics Data System (ADS)

    Clement, Teresa J.

    2007-12-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique. Thermal annealing of the deposited gold seeds prior to nanowire growth is shown to lead to ripening of the gold seeds and the formation of pillars several nanometers in height under the seeds. These pillars are demonstrated to result from the catalytic collection of surface Si adatoms and provide a method to obtain 100% vertical growth of nanowires on Si (111) substrates. The growth of nanowire heterostructures has also been investigated with specific attention paid to the strain induced within these structures. Strain in axial and core-shell Si/Ge nanowire heterostructures provides a unique opportunity for modifying bandstructures of specific nanoscale heterostructures. Specific precursor selection adds an additional control by which we are able to grow specific heterostructures---axial or core-shell. Axial heterowires form more easily by catalyzing silane at the Au eutectic seed, while core-shell heterowires grow more easily by stabilizing lateral growth using disilane or digermane. Strain mapping of nanowires based on geometric phase analysis of high-resolution transmission electron microscopy lattice imaging reveals large strains present in core-shell Si

  2. Engineering the atomic structure of carbon nanotubes by a focused electron beam: new morphologies at the sub-nanometer scale.

    PubMed

    Rodríguez-Manzo, Julio A; Krasheninnikov, Arkady V; Banhart, Florian

    2012-07-16

    Carbon atoms are displaced in pre-selected locations of carbon nanotubes by using a focused electron beam in a scanning transmission electron microscope. Sub-nanometer-sized holes are created that change the morphology of double and triple-walled carbon nanotubes and connect the shells in a unique way. By combining in situ transmission electron microscopy experiments with atomistic simulations, we study the bonding between defective shells in the new structures which are reminiscent of the shape of a flute. We demonstrate that in double-walled nanotubes the shells locally merge by forming nanoarches while atoms with dangling bonds can be preserved in triple-walled carbon nanotubes. In the latter system, nanoarches are formed between the inner- and outermost shells, shielding small graphenic islands with open edges between the neighboring shells. Our results indicate that arrays of quantum dots may be produced in carbon nanotubes by spatially localized electron irradiation, generating atoms with dangling bonds that may give rise to localized magnetic moments. PMID:22407751

  3. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies.

    PubMed

    Hawelek, L; Brodka, A; Dore, J C; Honkimaki, V; Burian, A

    2013-11-13

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp(3) defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered. PMID:24140935

  4. The atomic scale structure of CXV carbon: wide-angle x-ray scattering and modeling studies

    NASA Astrophysics Data System (ADS)

    Hawelek, L.; Brodka, A.; Dore, J. C.; Honkimaki, V.; Burian, A.

    2013-11-01

    The disordered structure of commercially available CXV activated carbon produced from finely powdered wood-based carbon has been studied using the wide-angle x-ray scattering technique, molecular dynamics and density functional theory simulations. The x-ray scattering data has been converted to the real space representation in the form of the pair correlation function via the Fourier transform. Geometry optimizations using classical molecular dynamics based on the reactive empirical bond order potential and density functional theory at the B3LYP/6-31g* level have been performed to generate nanoscale models of CXV carbon consistent with the experimental data. The final model of the structure comprises four chain-like and buckled graphitic layers containing a small percentage of four-fold coordinated atoms (sp3 defects) in each layer. The presence of non-hexagonal rings in the atomic arrangement has been also considered.

  5. Fabrication of multilayer nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Jasveer; Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2016-05-01

    Multilayer nanowires were fabricated by potentiostate ectrodeposition template synthesis method into the pores of polycarbonate membrane. In present work layer by layer deposition of two different metals Ni and Cu in polycarbonate membrane having pore size of 600 nm were carried out. It is found that the growth of nanowires is not constant, it varies with deposition time. Scanning electron microscopy (SEM) is used to study the morphology of fabricated multilayer nanowires. An energy dispersive X-ray spectroscopy (EDS) results confirm the composition of multilayer nanowires. The result shows that multilayer nanowires formed is dense.

  6. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.

    PubMed

    Weng, Baicheng; Xu, Fenghua; Xu, Jianguang

    2014-11-14

    Core-shell nanowire (NW) arrays, which feature a vertically aligned n-type Si NW core and a p-type α-Bi₂O₃ shell, are developed as a highly efficient photoanode that is suitable for water splitting. The morphology and structure of the heterostructure were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). The deposition of Bi₂O₃ nanolayers on the surface of the smooth Si NWs causes the surface of the NWs to become rough. The as-prepared core-shell NW photoelectrode has a relatively low reflectance in the visible light region, suggesting good light absorption. The core-shell NW arrays show greatly improved photoelectrochemical water-splitting performance. Photoelectrochemical stability for over 16 h under constant light illumination and fixed bias potential was achieved, illustrating the good stability of this core-shell NW photoanode. These Si/Bi₂O₃ core-shell NW arrays effectively combine the light absorption ability of the Si NWs and the wide energy gap and chemical stability of Bi₂O₃ for water splitting. This study furthers the attempts to design photoanodes from low-cost, abundant materials for applications in water splitting and photovoltaics. PMID:25338216

  7. Carbon abundances of reference late-type stars from 1D analysis of atomic C I and molecular CH lines

    NASA Astrophysics Data System (ADS)

    Alexeeva, S. A.; Mashonkina, L. I.

    2015-10-01

    A comprehensive model atom was constructed for C I using the most up-to-date atomic data. We evaluated non-local thermodynamical equilibrium (NLTE) line formation for neutral carbon in classical one-dimensional (1D) models representing atmospheres of late-type stars, where carbon abundance varies from the solar value down to [C/H] = -3. NLTE leads to stronger C I lines compared with their local thermodynamical equilibrium (LTE) strength and negative NLTE abundance corrections, ΔNLTE. The deviations from LTE are large for the strong lines in the infrared (IR), with ΔNLTE = -0.10 to -0.45 dex, depending on stellar parameters, and minor for the weak lines in the visible spectral range, with |ΔNLTE| ≤ 0.03 dex. The NLTE abundance corrections were found to be dependent on the carbon abundance in the model. As the first application of the treated model atom, carbon NLTE abundances were determined for the Sun and eight late-type stars with well-determined stellar parameters that cover the -2.56 ≤ [Fe/H] ≤ -1.02 metallicity range. Consistent abundances from the visible and IR lines were found for the Sun and the most metal-rich star of our sample, when applying a scaling factor of SH = 0.3 to the Drawinian rates of C+H collisions. Carbon abundances were also derived from the molecular CH lines and agree with those from the atomic C I lines for each star. We present the NLTE abundance corrections for lines of C I in the grid of model atmospheres applicable to carbon-enhanced (CEMP) stars.

  8. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam

    NASA Astrophysics Data System (ADS)

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-02-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g-1 at 3 A g-1, high rate capability of 163 mAh g-1 at 50 A g-1 (~64.4% of that at 3 A g-1), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices.

  9. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam.

    PubMed

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-01-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g(-1) at 3 A g(-1), high rate capability of 163 mAh g(-1) at 50 A g(-1) (~64.4% of that at 3 A g(-1)), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices. PMID:26833359

  10. Electrochemical Energy Storage Application and Degradation Analysis of Carbon-Coated Hierarchical NiCo2S4 Core-Shell Nanowire Arrays Grown Directly on Graphene/Nickel Foam

    PubMed Central

    Zou, Rujia; Yuen, Muk Fung; Yu, Li; Hu, Junqing; Lee, Chun-Sing; Zhang, Wenjun

    2016-01-01

    We developed a new electrode comprising thin carbon layer coated hierarchical NiCo2S4 core-shell nanowire arrays (NiCo2S4@C CSNAs) on graphene/Ni foam (Ni@G) substrates. The electrode showed outstanding electrochemical characteristics including a high specific capacitance of 253 mAh g−1 at 3 A g−1, high rate capability of 163 mAh g−1 at 50 A g−1 (~64.4% of that at 3 A g−1), and long-term cycling stability with a capacity retention of 93.9% after 5000 cycles. Comparative studies on the degradation of hierarchical NiCo2S4 CSNA electrodes with and without carbon coatings revealed that the morphology pulverization, structural separation at core/shell interface, and irretrievably chemical composition change of NiCo2S4 CSNAs electrode are major factors that deteriorate the electrochemical performance of the electrodes without carbon coating. The favorable roles of carbon coatings on hierarchical NiCo2S4 CSNAs were further clarified: (1) serving as a physical buffering layer that suppresses the structural breakdown; (2) retarding the chemical composition conversion of the NiCo2S4 CSNAs; and (3) providing extra path for charge transition in addition to the NiCo2S4 core nanowires. Understanding of the degradation mechanisms and the significance of the surface carbon coatings would provide useful guidelines for the design of new electrode materials for high-performance electrochemical devices. PMID:26833359

  11. C-atom-induced bandgap modulation in two-dimensional (100) silicon carbon alloys

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomohisa; Nagamine, Yoshiki; Omata, Yuhsuke; Suzuki, Yuhya; Urayama, Wako; Aoki, Takashi; Sameshima, Toshiyuki

    2016-04-01

    We experimentally studied the effects of the C atom on bandgap E G modulation in two-dimensional (2D) silicon carbon alloys, Si1- Y C Y , fabricated by hot C+ ion implantation into the (100) SOI substrate in a wide range of Y (4 × 10-5 ≤ Y ≤ 0.13), in comparison with the characteristics of 3D silicon carbide (SiC). X-ray photoelectron spectroscopy (XPS) and UV-Raman analysis confirm the Si-C, C-C, and Si-Si bonds in the 2D-Si1- Y C Y layer. The photoluminescence (PL) method shows that the E G and PL intensity I PL of 2D-Si1- Y C Y drastically increase with increasing Y for high Y (≥0.005), and thus we demonstrated a high E G of 2.5 eV and a visible wavelength λPL less than 500 nm. Even for low Y (<10-3), I PL of 2D-Si1- Y C Y also increases with increasing Y, owing to the compressive strain of the 2D-Si1- Y C Y layer caused by the C atoms, but the Y dependence of E G is very small. E G of 2D-Si1- Y C Y can be controlled by changing Y. Thus, the 2D-Si1- Y C Y technique is very promising for new E G engineering of future high-performance CMOS and Si photonics.

  12. Excited-state intramolecular proton transfer to carbon atoms: nonadiabatic surface-hopping dynamics simulations.

    PubMed

    Xia, Shu-Hua; Xie, Bin-Bin; Fang, Qiu; Cui, Ganglong; Thiel, Walter

    2015-04-21

    Excited-state intramolecular proton transfer (ESIPT) between two highly electronegative atoms, for example, oxygen and nitrogen, has been intensely studied experimentally and computationally, whereas there has been much less theoretical work on ESIPT to other atoms such as carbon. We have employed CASSCF, MS-CASPT2, RI-ADC(2), OM2/MRCI, DFT, and TDDFT methods to study the mechanistic photochemistry of 2-phenylphenol, for which such an ESIPT has been observed experimentally. According to static electronic structure calculations, irradiation of 2-phenylphenol populates the bright S1 state, which has a rather flat potential in the Franck-Condon region (with a shallow enol minimum at the CASSCF level) and may undergo an essentially barrierless ESIPT to the more stable S1 keto species. There are two S1/S0 conical intersections that mediate relaxation to the ground state, one in the enol region and one in the keto region, with the latter one substantially lower in energy. After S1 → S0 internal conversion, the transient keto species can return back to the S0 enol structure via reverse ground-state hydrogen transfer in a facile tautomerization. This mechanistic scenario is verified by OM2/MRCI-based fewest-switches surface-hopping simulations that provide detailed dynamic information. In these trajectories, ESIPT is complete within 118 fs; the corresponding S1 excited-state lifetime is computed to be 373 fs in vacuum. Most of the trajectories decay to the ground state via the S1/S0 conical intersection in the keto region (67%), and the remaining ones via the enol region (33%). The combination of static electronic structure computations and nonadiabatic dynamics simulations is expected to be generally useful for understanding the mechanistic photophysics and photochemistry of molecules with intramolecular hydrogen bonds. PMID:25711992

  13. Density functional theory investigation of the VIIIB transition metal atoms deposited on (5,5) single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Wanno, Banchob

    2013-03-01

    The binding of VIIIB transition metals i.e. Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt single atoms to single-walled carbon nanotube (SWCNT) was investigated using the density functional theory method. The B3LYP/LanL2DZ calculation shows that all these transition metal atoms have strong binding abilities to SWCNT. The binding abilities of these transition metals onto SWCNT are in following order: Os>Ru>Ir>Fe>Rh>Pt>Ni>Co>Pd. The Os single atom binding on SWCNT is the strongest binding of which the binding energy is -240.66 kcal/mol. The partial charge transfers from transition metal to SWCNT, density of states and energy gaps of metal atoms deposited on SWCNTs were analyzed and reported.

  14. Evaporation of carbon atoms from the open surface of silicon carbide and through graphene cells: Semiempirical quantum-chemical modeling

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.; Luchinin, V. V.; Charykov, N. A.

    2013-11-01

    The evaporation of silicon atoms during the epitaxial growth of graphene on the singular carbon and silicon faces of silicon carbide SiC was modeled by the semiempirical AM1 and PM3 methods. The analysis was performed for evaporation of atoms both from the open surface of SiC and through the surface of the formed graphene monolayers. The total activation barrier of the evaporation of the silicon atoms, their passage from the graphene cell, and further evaporation from graphene was shown to be lower than the barrier to evaporation of the silicon atom on a free surface of SiC. Passage through graphene is thus not the limiting stage of the process, but contributes significantly to the effective evaporation time.

  15. Lithographically patterned nanowire electrodeposition.

    PubMed

    Menke, E J; Thompson, M A; Xiang, C; Yang, L C; Penner, R M

    2006-11-01

    Nanowire fabrication methods can be classified either as 'top down', involving photo- or electron-beam lithography, or 'bottom up', involving the synthesis of nanowires from molecular precursors. Lithographically patterned nanowire electrodeposition (LPNE) combines attributes of photolithography with the versatility of bottom-up electrochemical synthesis. Photolithography defines the position of a sacrificial nickel nanoband electrode, which is recessed into a horizontal trench. This trench acts as a 'nanoform' to define the thickness of an incipient nanowire during its electrodeposition. The electrodeposition duration determines the width of the nanowire. Removal of the photoresist and nickel exposes a polycrystalline nanowire--composed of gold, platinum or palladium--characterized by thickness and width that can be independently controlled down to 18 and 40 nm, respectively. Metal nanowires prepared by LPNE may have applications in chemical sensing and optical signal processing, and as interconnects in nanoelectronic devices. PMID:17057701

  16. Poisson’s ratio of individual metal nanowires

    PubMed Central

    McCarthy, Eoin K.; Bellew, Allen T.; Sader, John E.; Boland, John J.

    2014-01-01

    The measurement of Poisson’s ratio of nanomaterials is extremely challenging. Here we report a lateral atomic force microscope experimental method to electromechanically measure the Poisson’s ratio and gauge factor of individual nanowires. Under elastic loading conditions we monitor the four-point resistance of individual metallic nanowires as a function of strain and different levels of electrical stress. We determine the gauge factor of individual wires and directly measure the Poisson’s ratio using a model that is independently validated for macroscopic wires. For macroscopic wires and nickel nanowires we find Poisson’s ratios that closely correspond to bulk values, whereas for silver nanowires significant deviations from the bulk silver value are observed. Moreover, repeated measurements on individual silver nanowires at different levels of mechanical and electrical stress yield a small spread in Poisson ratio, with a range of mean values for different wires, all of which are distinct from the bulk value. PMID:25000139

  17. Quantum Conductance in Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Ugarte, Daniel

    2004-03-01

    Quantum Conductance in Metal Nanowires D. Ugarte Brazilian National Synchrotron Light Laboratory C.P. 6192, 13084-971 Campinas SP, Brazil. Electrical transport properties of metallic nanowires (NWs) have received great attention due to their quantum conductance behavior. Atomic scale wires can be generated by stretching metal contacts; during the elongation and just before rupture, the NW conductance shows flat plateaus and abrupt jumps of approximately a conductance quantum. In this experiments, both the NW atomic arrangement and conductance change simultaneously, making difficult to discriminate electronic and structural effects. In this work, the atomic structure of NWs was studied by time-resolved in situ experiments in a high resolution transmission electron microscope, while their electrical properties using an UHV mechanically controllable break junction (MCBJ). From the analysis of numerous HRTEM images and videos, we have deduced that metal (Au, Ag, Pt, etc.) junctions generated by tensile deformation are crystalline and free of defects. The neck structure is strongly dependent on the surface properties of the analyzed metal, this was verified by comparing different metal NWs (Au, Ag, Cu), which have similar atomic structure (FCC), but show very different faceting patterns. The correlation between the observed structural and transport properties of NW points out that the quantum conductance behavior is defined by preferred atomic arrangement at the narrowest constriction. In the case of magnetic (ex. Fe,Co,Ni) or quasi-magnetic (ex. Pd) wires, we have observed that one-atom-thick structures show a conductance of half the quantum as expected for a fully spin polarized current. This phenomenon seems to occur spontaneously for magnetic suspended atom-chains in zero magnetic field and at room temperature. These results open new opportunities for spin control in nanostructures. Funded by FAPESP, LNLS and CNPq.

  18. Silicon Nanowire Devices

    NASA Astrophysics Data System (ADS)

    Kamins, Theodore

    2006-03-01

    Metal-catalyzed, self-assembled, one-dimensional semiconductor nanowires are being considered as possible device elements to augment and supplant conventional electronics and to extend the use of CMOS beyond the physical and economic limits of conventional technology. Such nanowires can create nanostructures without the complexity and cost of extremely fine scale lithography. The well-known and controllable properties of silicon make silicon nanowires especially attractive. Easy integration with conventional electronics will aid their acceptance and incorporation. For example, connections can be formed to both ends of a nanowire by growing it laterally from a vertical surface formed by etching the top silicon layer of a silicon-on-insulator structure into isolated electrodes. Field-effect structures are one class of devices that can be readily built in silicon nanowires. Because the ratio of surface to volume in a thin nanowire is high, conduction through the nanowire is very sensitive to surface conditions, making it effective as the channel of a field-effect transistor or as the transducing element of a gas or chemical sensor. As the nanowire diameter decreases, a greater fraction of the mobile charge can be modulated by a given external charge, increasing the sensitivity. Having the gate of a nanowire transistor completely surround the nanowire also enhances the sensitivity. For a field-effect sensor to be effective, the charge must be physically close to the nanowire so that the majority of the compensating charge is induced in the nanowire and so that ions in solution do not screen the charge. Because only induced charge is being sensed, a coating that selectively binds the target species should be added to the nanowire surface to distinguish between different species in the analyte. The nanowire work at Hewlett-Packard Laboratories was supported in part by the Defense Advanced Research Projects Agency.

  19. Probing electronic transport of individual nanostructures with atomic precision

    SciTech Connect

    Qin, Shengyong; Li, An-Ping

    2012-01-01

    Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

  20. Synchrotron characterization of functional tin dioxide nanowires

    SciTech Connect

    Domashevskaya, E. P. Chuvenkova, O. A.; Turishchev, S. Yu.

    2015-12-31

    Wire-like crystals of tin dioxide were synthesized by a gas-transport technique. The wires, of mainly nanometric diameters, were characterized by spectroscopy and microscopy techniques with the use of highly brilliant and intense synchrotron radiation. We studied the influence of the surface chemical state and the oxygen vacancies on the atomic and electronic structure of the nanowires. The surface of the nanowires is covered by a few nanometers of tin suboxides. The lack of oxygen over the surface layers leads to specific sub-zone formation in a gap, as shown by synchrotron studies.

  1. Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System via Copolymerization with Silver Tricyanomethanide.

    PubMed

    Chen, Zupeng; Pronkin, Sergey; Fellinger, Tim-Patrick; Kailasam, Kamalakannan; Vilé, Gianvito; Albani, Davide; Krumeich, Frank; Leary, Rowan; Barnard, Jon; Thomas, John Meurig; Pérez-Ramírez, Javier; Antonietti, Markus; Dontsova, Dariya

    2016-03-22

    Herein, we present an approach to create a hybrid between single-atom-dispersed silver and a carbon nitride polymer. Silver tricyanomethanide (AgTCM) is used as a reactive comonomer during templated carbon nitride synthesis to introduce both negative charges and silver atoms/ions to the system. The successful introduction of the extra electron density under the formation of a delocalized joint electronic system is proven by photoluminescence measurements, X-ray photoelectron spectroscopy investigations, and measurements of surface ζ-potential. At the same time, the principal structure of the carbon nitride network is not disturbed, as shown by solid-state nuclear magnetic resonance spectroscopy and electrochemical impedance spectroscopy analysis. The synthesis also results in an improvement of the visible light absorption and the development of higher surface area in the final products. The atom-dispersed AgTCM-doped carbon nitride shows an enhanced performance in the selective hydrogenation of alkynes in comparison with the performance of other conventional Ag-based materials prepared by spray deposition and impregnation-reduction methods, here exemplified with 1-hexyne. PMID:26863408

  2. Direct determination and speciation of mercury compounds in environmental and biological samples by carbon bed atomic absorption spectroscopy

    SciTech Connect

    Skelly, E.M.

    1982-01-01

    A method was developed for the direct determination of mercury in water and biological samples using a unique carbon bed atomizer for atomic absorption spectroscopy. The method avoided sources of error such as loss of volatile mercury during sample digestion and contamination of samples through added reagents by eliminating sample pretreatment steps. The design of the atomizer allowed use of the 184.9 nm mercury resonance line in the vacuum ultraviolet region, which increased sensitivity over the commonly used spin-forbidden 253.7 nm line. The carbon bed atomizer method was applied to a study of mercury concentrations in water, hair, sweat, urine, blood, breath and saliva samples from a non-occupationally exposed population. Data were collected on the average concentration, the range and distribution of mercury in the samples. Data were also collected illustrating individual variations in mercury concentrations with time. Concentrations of mercury found were significantly higher than values reported in the literature for a ''normal'' population. This is attributed to the increased accuracy gained by eliminating pretreatment steps and increasing atomization efficiency. Absorption traces were obtained for various solutions of pure and complexed mercury compounds. Absorption traces of biological fluids were also obtained. Differences were observed in the absorption-temperatures traces of various compounds. The utility of this technique for studying complexation was demonstrated.

  3. Geometric Characterization of Carbon Nanotubes by Atomic Force Microscopy in Conjunction with a Tip Characterizer

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei; Itoh, Hiroshi; Homma, Yoshikazu; Sun, Jielin; Hu, Jun; Ichimura, Shingo

    2008-07-01

    An atomic force microscopy (AFM) probe tip characterizer with 14 line and space structures and two knife edges was fabricated by means of a superlattice technique. The shape of a probe tip both before and after AFM imaging was acquired by this tip characterizer with general variations <1.5 nm; depending on imaging conditions. The geometric structures of carbon nanotubes (CNTs) on a SiO2 substrate were studied by dynamic mode AFM in conjunction with this tip characterizer. Contact points between the tip and the CNTs were detected by observing changes in the AFM phase images. A modified CNT width correction model was established to calculate the estimated and upper-limit widths of two CNTs. The experimental results showed that imaging under a weak attractive force was suitable for obtaining accurate CNT height measurements, whereas a weak repulsive force provided the most accurate widths. Differing heights and widths between the two CNTs suggested that one CNT was double-walled, whereas the other had more than two walls; these results agree with transmission electron microscopy (TEM) measurements of the CNTs.

  4. Atomic Force Microscopy of DNA-wrapped Single-walled Carbon Nanotubes in Aqueous Solution.

    PubMed

    Hayashida, Takuya; Umemura, Kazuo

    2016-07-01

    We evaluated hybrids of DNA and single-walled carbon nanotubes (SWNTs) in aqueous solution and in air using atomic force microscopy (AFM). Although intensive AFM observations of these hybrids were previously carried out for samples in air, this is the first report on AFM observations of these hybrids in solution. As expected, diameters of DNA-SWNT hybrids dramatically increased in tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid (TE) buffer solution. The data suggest that DNA molecules maintain their structures even on the SWNT surfaces. Furthermore, we simultaneously observed single DNA-SWNT hybrids using three different AFM modes in air and in the TE buffer solution. Height value of the hybrids was largest in the solution, and lowest for the mode that repulsive force is expected in air. For the bare SWNT molecules, height differences among the three AFM modes were much lower than those of the DNA-SWNT hybrids. DNA molecules adsorbed on SWNT surfaces flexibly changed their morphology as well as DNA molecules on flat surfaces such as mica. This is hopeful results for biological applications of DNA-SWNT hybrids. In addition, our results revealed the importance of the single-molecule approach to evaluate DNA structures on SWNT surfaces. PMID:27045980

  5. Contribution of Chirality to the Adsorption of a Kr Atom on a Single Wall Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Young; Booth, Eric C.; Mbaye, Mamadou T.; Gatica, Silvina M.

    2014-05-01

    Recent theoretical and simulation studies (Lueking et al. Phys Rev B 75:195425, 2007; Kim et al. J Phys Chem 115:7249-7257, 2011) on the adsorption of Kr on suspended nanotubes yielded different commensurate phases at submonolayer coverage than those found in a pioneering experiment (Wang et al. Science 327:552-555, 2010). This controversy between calculations and experiments is yet to be resolved. One of the tentative explanations of the apparent discrepancy is the possibly different chirality as the chirality of the nanotubes used in the experiment is not known. To address the question on chirality, we calculated the adsorption potential of krypton atoms on two sets of single wall carbon nanotubes of same radii with distinct chiralities. We found novel symmetries of the adsorption sites on a nanotube, which systematically vary depending on its chirality with an unexpected, yet intuitive delicacy. The same approach is equally feasible for other gases (Ar, Xe, CH, etc.). The results of classical grand canonical Monte Carlo simulations confirm the predicted behavior of adsorption phases.

  6. A vortex line for K-shell ionization of a carbon atom by electron impact

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2014-10-01

    We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.

  7. Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

    PubMed

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leendert G J; de With, Gijsbertus

    2016-08-01

    Conductive atomic force microscopy (C-AFM) is a valuable technique for correlating the electrical properties of a material with its topographic features and for identifying and characterizing conductive pathways in polymer composites. However, aspects such as compatibility between tip material and sample, contact force and area between the tip and the sample, tip degradation and environmental conditions render quantifying the results quite challenging. This study aims at finding the suitable conditions for C-AFM to generate reliable, reproducible, and quantitative current maps that can be used to calculate the resistance in each point of a single-walled carbon nanotube (SWCNT) network, nonimpregnated as well as impregnated with a polymer. The results obtained emphasize the technique's limitation at the macroscale as the resistance of these highly conductive samples cannot be distinguished from the tip-sample contact resistance. Quantitative C-AFM measurements on thin composite sections of 150-350 nm enable the separation of sample and tip-sample contact resistance, but also indicate that these sections are not representative for the overall SWCNT network. Nevertheless, the technique was successfully used to characterize the local electrical properties of the composite material, such as sample homogeneity and resistance range of individual SWCNT clusters, at the nano- and microscale. PMID:27404764

  8. Torsional behaviors of polymer-infiltrated carbon nanotube yarn muscles studied with atomic force microscopy.

    PubMed

    Kwon, Cheong Hoon; Chun, Kyoung-Yong; Kim, Shi Hyeong; Lee, Jae-Hyeok; Kim, Jae-Ho; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong

    2015-02-14

    Torsional behaviors of polymer-infiltrated carbon nanotube (CNT) yarn muscles have been investigated in relation to molecular architecture by using atomic force microscopy (AFM). Two polymers with different stiffnesses, polystyrene (PS) and poly(styrene-b-isoprene-b-styrene) (SIS), were uniformly infiltrated into CNT yarns for electrothermal torsional actuation. The torsional behaviors of hybrid yarn muscles are completely explained by the volume change of each polymer, based on the height and full width at half maximum profiles from the AFM morphological images. The volume expansion of the PS yarn muscle (1.7 nm of vertical change and 22 nm of horizontal change) is much larger than that of the SIS yarn muscle (0.3 nm and 11 nm change in vertical and horizontal directions) at 80 °C, normalized by their values at 25 °C. We demonstrate that their maximum rotations are consequently 29.7 deg mm(-1) for the PS-infiltrated CNT yarn muscle (relatively larger rotation) and 14.4 deg mm(-1) for the SIS-infiltrated CNT yarn muscle (smaller rotation) at 0.75 V m(-1). These hybrid yarn muscles could be applied in resonant controllers or damping magnetoelectric sensors. PMID:25567113

  9. Study of adhesion of vertically aligned carbon nanotubes to a substrate by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Ageev, O. A.; Blinov, Yu. F.; Il'ina, M. V.; Il'in, O. I.; Smirnov, V. A.; Tsukanova, O. G.

    2016-02-01

    The adhesion to a substrate of vertically aligned carbon nanotubes (VA CNT) produced by plasmaenhanced chemical vapor deposition has been experimentally studied by atomic-force microscopy in the current spectroscopy mode. The longitudinal deformation of VA CNT by applying an external electric field has been simulated. Based on the results, a technique of determining VA CNT adhesion to a substrate has been developed that is used to measure the adhesion strength of connecting VA CNT to a substrate. The adhesion to a substrate of VA CNT 70-120 nm in diameter varies from 0.55 to 1.19 mJ/m2, and the adhesion force from 92.5 to 226.1 nN. When applying a mechanical load, the adhesion strength of the connecting VA CNT to a substrate is 714.1 ± 138.4 MPa, and the corresponding detachment force increases from 1.93 to 10.33 μN with an increase in the VA CNT diameter. As an external electric field is applied, the adhesion strength is almost doubled and is 1.43 ± 0.29 GPa, and the corresponding detachment force is changed from 3.83 to 20.02 μN. The results can be used in the design of technological processes of formation of emission structures, VA CNT-based elements for vacuum microelectronics and micro- and nanosystem engineering, and also the methods of probe nanodiagnostics of VA CNT.

  10. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode.

    PubMed

    Guan, Cao; Qian, Xu; Wang, Xinghui; Cao, Yanqiang; Zhang, Qing; Li, Aidong; Wang, John

    2015-03-01

    Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nanoparticles, and the unique hierarchical structure. The flexible electrode of CNTs@Co3O4/CC with high areal capacitance and excellent cycling ability promises great potential for developing high-performance flexible supercapacitors. PMID:25665549

  11. Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Guan, Cao; Qian, Xu; Wang, Xinghui; Cao, Yanqiang; Zhang, Qing; Li, Aidong; Wang, John

    2015-03-01

    Co3O4 nanolayers have been successfully deposited on a flexible carbon nanotubes/carbon cloth (CC) substrate by atomic layer deposition. Much improved capacitance and ultra-long cycling life are achieved when the CNTs@Co3O4/CC is tested as a supercapacitor electrode. The improvement can be from the mechanically robust CC/CNTs substrate, the uniform coated high capacitance materials of Co3O4 nanoparticles, and the unique hierarchical structure. The flexible electrode of CNTs@Co3O4/CC with high areal capacitance and excellent cycling ability promises great potential for developing high-performance flexible supercapacitors.

  12. Diamond-like carbon charge state conversion surfaces for low-energy neutral atom imaging instruments on future space missions

    NASA Astrophysics Data System (ADS)

    Neuland, M. B.; Scheer, J. A.; Riedo, A.; Wurz, P.

    2014-04-01

    The technique of surface ionisation for mapping lowenergy neutral atoms in space plasmas was successfully applied in several instruments onboard space missions in the past. We investigated diamond-like carbon surfaces regarding their eligibility as a charge state conversion surface material for future space missions, where improved characteristics of the conversion surfaces are required. Measurements on CVD (chemical vapour deposition) diamond surfaces, which are from stock available, show that the material has high potential to be used in neutral atom imaging detectors on future space missions.

  13. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, induced by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  14. Zirconia (ZrO2) Embedded in Carbon Nanowires via Electrospinning for Efficient Arsenic Removal from Water Combined with DFT Studies.

    PubMed

    Luo, Jinming; Luo, Xubiao; Hu, Chengzhi; Crittenden, John C; Qu, Jiuhui

    2016-07-27

    To use zirconia (ZrO2) as an efficient environmental adsorbent, it can be impregnated on a support to improve its physical properties and lower the overall cost. In this study, ZrO2 embedded in carbon nanowires (ZCNs) is fabricated via an electrospinning method to remove arsenic (As) from water. The maximum adsorption capacity values of As(III) and As(V) on the ZCNs are 28.61 and 106.57 mg/g, respectively, at 40 °C. These capacities are considerably higher than those of pure ZrO2 (2.56 and 3.65 mg/g for As(III) and As(V), respectively) created using the same procedure as for the ZCNs. Meanwhile, the adsorption behaviors of As(III) and As(V) on the ZCNs are endothermic and pH dependent and follow the Freundlich isotherm model and pseudo-first-order kinetic model. Both As(III) and As(V) are chemisorbed onto the ZCNs, which is confirmed by a partial density of state (PDOS) analysis and Dubinin-Radushkevich (D-R) model calculations. Furthermore, the ZCNs also possess the capability to enhance or catalyze the oxidation process of As(III) to As(V) using dissolved oxygen. This result is confirmed by a batch experiment, XPS analysis and Mulliken net charge analysis. Density functional theory (DFT) calculations indicate the different configurations of As(III) and As(V) complexes on the tetragonal ZrO2 (t-ZrO2)(111) and monoclinic ZrO2 (m-ZrO2)(111) planes, respectively. The adsorption energy (Ead) of As(V) is higher than that of As(III) on both the t-ZrO2(111) and m-ZrO2 (111) planes (3.38 and 1.90 eV, respectively, for As(V) and 0.37 and 0.12 eV, respectively, for As(III)). PMID:27381268

  15. Novel nanotubes and encapsulated nanowires

    NASA Astrophysics Data System (ADS)

    Terrones, M.; Hsu, W. K.; Schilder, A.; Terrones, H.; Grobert, N.; Hare, J. P.; Zhu, Y. Q.; Schwoerer, M.; Prassides, K.; Kroto, H. W.; Walton, D. R. M.

    Carbon nanotubes, with or without encapsulated material, generated by arc discharge and electrolytic techniques have been studied. Microcrystals of refractory carbides (i.e. NbC, TaC, MoC), contained in nanotubes and polyhedral particles, produced by arcing electrodes of graphite/metal mixtures, were analysed by high hesolution transmission electron microscopy (HRTEM) and X-ray powder diffraction. Encapsulation of MoC was found to give rise to an unusual stable form, namely face-centered-cubic MoC. SQUID measurements indicate that the encapsulated carbides exhibit superconducting transitions at about 10-12 K, thus they differ from carbon nanotubes/nanoparticles which do not superconduct. Four-probe and microwave (contactless) conductivity measurements indicate that most of the analysed samples behave as semiconductors. However, metallic transport was observed in specimens containing single conglomerated carbon nanotube bundles and boron-doped carbon nanotubes. Novel metallic βSn nanowires were produced by electrolysis of graphite electrodes immersed in molten LiCl/SnCl2 mixtures. Prolonged electron irradiation of these nanowires leads to axial growth and to dynamic transformations. These observations suggest ways in which materials may be modified by microencapsulation and irradiation.

  16. A journey from order to disorder — Atom by atom transformation from graphene to a 2D carbon glass

    NASA Astrophysics Data System (ADS)

    Eder, Franz R.; Kotakoski, Jani; Kaiser, Ute; Meyer, Jannik C.

    2014-02-01

    One of the most interesting questions in solid state theory is the structure of glass, which has eluded researchers since the early 1900's. Since then, two competing models, the random network theory and the crystallite theory, have both gathered experimental support. Here, we present a direct, atomic-level structural analysis during a crystal-to-glass transformation, including all intermediate stages. We introduce disorder on a 2D crystal, graphene, gradually, utilizing the electron beam of a transmission electron microscope, which allows us to capture the atomic structure at each step. The change from a crystal to a glass happens suddenly, and at a surprisingly early stage. Right after the transition, the disorder manifests as a vitreous network separating individual crystallites, similar to the modern version of the crystallite theory. However, upon increasing disorder, the vitreous areas grow on the expense of the crystallites and the structure turns into a random network. Thereby, our results show that, at least in the case of a 2D structure, both of the models can be correct, and can even describe the same material at different degrees of disorder.

  17. Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material

    SciTech Connect

    Chockla, Aaron M.; Harris, Justin T.; Akhavan, Vahid A.; Bogart, Timothy D.; Holmberg, Vincent C.; Steinhagen, Chet; Mullins, C. Buddie; Stevenson, Keith J.; Korgel, Brian A.

    2011-11-09

    A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid–liquid–solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g{sup –1} were achieved without the addition of conductive carbon or binder.

  18. Epitaxy of GaN Nanowires on Graphene.

    PubMed

    Kumaresan, Vishnuvarthan; Largeau, Ludovic; Madouri, Ali; Glas, Frank; Zhang, Hezhi; Oehler, Fabrice; Cavanna, Antonella; Babichev, Andrey; Travers, Laurent; Gogneau, Noelle; Tchernycheva, Maria; Harmand, Jean-Christophe

    2016-08-10

    Epitaxial growth of GaN nanowires on graphene is demonstrated using molecular beam epitaxy without any catalyst or intermediate layer. Growth is highly selective with respect to silica on which the graphene flakes, grown by chemical vapor deposition, are transferred. The nanowires grow vertically along their c-axis and we observe a unique epitaxial relationship with the ⟨21̅1̅0⟩ directions of the wurtzite GaN lattice parallel to the directions of the carbon zigzag chains. Remarkably, the nanowire density and height decrease with increasing number of graphene layers underneath. We attribute this effect to strain and we propose a model for the nanowire density variation. The GaN nanowires are defect-free and they present good optical properties. This demonstrates that graphene layers transferred on amorphous carrier substrates is a promising alternative to bulk crystalline substrates for the epitaxial growth of high quality GaN nanostructures. PMID:27414518

  19. Atomic Scale Interface Manipulation, Structural Engineering, and Their Impact on Ultrathin Carbon Films in Controlling Wear, Friction, and Corrosion.

    PubMed

    Dwivedi, Neeraj; Yeo, Reuben J; Yak, Leonard J K; Satyanarayana, Nalam; Dhand, Chetna; Bhat, Thirumaleshwara N; Zhang, Zheng; Tripathy, Sudhiranjan; Bhatia, Charanjit S

    2016-07-13

    Reducing friction, wear, and corrosion of diverse materials/devices using <2 nm thick protective carbon films remains challenging, which limits the developments of many technologies, such as magnetic data storage systems. Here, we present a novel approach based on atomic scale interface manipulation to engineer and control the friction, wear, corrosion, and structural characteristics of 0.7-1.7 nm carbon-based films on CoCrPt:oxide-based magnetic media. We demonstrate that when an atomically thin (∼0.5 nm) chromium nitride (CrNx) layer is sandwiched between the magnetic media and an ultrathin carbon overlayer (1.2 nm), it modifies the film-substrate interface, creates various types of interfacial bonding, increases the interfacial adhesion, and tunes the structure of carbon in terms of its sp(3) bonding. These contribute to its remarkable functional properties, such as stable and lowest coefficient of friction (∼0.15-0.2), highest wear resistance and better corrosion resistance despite being only ∼1.7 nm thick, surpassing those of ∼2.7 nm thick current commercial carbon overcoat (COC) and other overcoats in this work. While this approach has direct implications for advancing current magnetic storage technology with its ultralow thickness, it can also be applied to advance the protective and barrier capabilities of other ultrathin materials for associated technologies. PMID:27267790

  20. Synthesis of pyrite/carbon shells on cobalt nanowires forming core/branch arrays as high-performance cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Cao, F.; Pan, G. X.; Chen, J.; Zhang, Y. J.; Xia, X. H.

    2016-01-01

    Construction of self-supported porous metal sulfide arrays is critical for the development of high-performance electrochemical energy storage devices. Herein we report hierarchical porous Co/FeS2-C core/branch nanowires arrays by the combination of facile solution-based methods. FeS2-C nanoflakes branch is uniformly coated on the Co nanowire core forming composite core/branch arrays. The as-prepared Co/FeS2-C core/branch nanowire arrays possess combined properties of highly porous structure and strong mechanical stability. As cathode of lithium ion batteries, the Co/FeS2-C core/branch nanowire arrays exhibit good electrochemical performances with initial discharge capacity of 850 mAh g-1 at 0.25 °C and stable high-rate cycling life (539 mAh g-1 after 70 cycles at 0.25 °C). The hierarchical core/branch architecture provides positive roles in the enhancement of electrochemical properties, including fast transportation path of electron, short diffusion of ions and high contact area between the active material and electrolyte.