Science.gov

Sample records for atomic emission spectroscopy

  1. Atomic emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  2. [Determination of potassium in sodium by flame atomic emission spectroscopy].

    PubMed

    Xie, C; Wen, X; Jia, Y; Sun, S

    2001-06-01

    Sodium is used as a coolant in China experiment fast reactor (CEFR). Potassium in sodium has an influence on heat property of reactor. A analytical method has been developed to determinate potassium in sodium by flame atomic emission spectroscopy. Sodium sample is dissolved by ultrasonic humidifier. The working conditions of the instrument and inTerferences from matrix sodium, acid effect and concomitant elements have been studied. Standard addition experiments are carried out with potassium chloride. The percentage recoveries are 94.7%-109.8%. The relative standard deviation is 4.2%. The analytical range accords with sodium quality control standard of CFFR. The precision corresponds to the international analytical method in sodium coolant reactor. PMID:12947670

  3. Ion bombardment glow-discharge furnaces for atomic emission spectroscopy

    SciTech Connect

    Tanguay, S.L.

    1990-01-01

    Two glow discharge plasma devices for the atomic emission analysis of aqueous samples were investigated. The devices use thermal vaporization of samples from a graphite cathode coupled with glow-discharge excitation. Furnace heating of the cathode is accomplished by the positive ion bombardment of the cathode during plasma operation. The dc plasma operates in Ar at 0.5-5.0 torr, with currents up to 250 mA. A cw, axial magnetic field of up to 1.25 kG is applied to the cylindrical-post cathode system to reduce electron losses, thereby increasing plasma excitation and ionization efficiency. At higher currents, the cathodes heat to temperatures as high as 2,500{degree}C in the case of the cylindrical-post cathode. Hollow-cathode heating temperatures are lower under comparable conditions, due to the larger cathode surface area, greater cathode mass, and lower power dissipation. The peak furnace temperature using this configuration is approximately 2100{degree}C. The role of the emission of thermionic electrons from the hot cathodes in limiting the cathode heating and in regulating the cathode temperature are considered. Sample residues of up to 50 ng of the analyte are vaporized from the cylindrical-post cathode within a few seconds of the initiation of the discharge, resulting in a transient emission intensity profile. With the hollow-cathode furnace, vaporization may take several seconds. Although a lower rate of cathode heating and a lower sample vapor residence time results in limits of detection which are one to two orders of magnitude lower than those achieved using the cylindrical-post cathode system. For the hollow cathode, limits of detection are on the order of 10 pg to 1 ng.

  4. Atomic Oscillator Strengths by Emission Spectroscopy and Lifetime Measurements

    NASA Astrophysics Data System (ADS)

    Wiese, W. L.; Griesmann, U.; Kling, R.; Musielok, J.

    2002-11-01

    Over the last seven years, we have carried out numerous oscillator strength measurements for some light and medium heavy elements (Musielok et al. 1995, 1996, 1997, 1999, 2000; Veres & Wiese 1996; Griesmann et al. 1997; Bridges & Wiese 1998; Kling et al. 2001; Kling & Gries- mann 2000; Bridges & Wiese to be published). Most recently we have determined numerous transitions of Mu II (Kling et al. 2001; Kling & Griesmann 2000) and are now working on Cl I (Bridges & Wiese to be published). See the summary statement at the end of the text. For the emission measurements, we have applied either a high-current wall-stabilized arc (described for example, in Musielok et al. (1999)), or a high-current hollow cathode, or a Penning discharge. The latter two sources were used for branching ratio measurements from common upper 1ev- els, while the wall-stabilized arc was operated at atmospheric pressure under the condition of partial local thermodynamic equilibrium, which allows the measurement of relative transition probabilities. Absolute data were obtained by combining the emission results with lifetime data measured by other research groups, especially the University of Hannover, with which we have closely collaborated. This group uses the laser induced fluorescence (LIF) technique. Our emission spectra were recorded for the light elements with a 2 m grating spectrometer, or, for Mu II, with an FT 700 vacuum ultraviolet Fourier transform spectrometer. The radiometric calibration was carried out with a tungsten strip lamp for the visible part of the spectrum and with a deuterium lamp for the ultraviolet. All measurements were made under optically thin conditions, which was checked by doubling the path length with a focusing mirror setup. Typical uncertainties of the measured oscillator strengths are estimated to be in the range 15%-20% (one-standard deviation). However, discrepancies with advanced atomic structure theories are sometimes much larger. In Tables 1-3 and Fig. 1, we

  5. Ability to Control a Titanium-Alloy Structure by Atomic-Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Molchan, N. V.; Polkin, I. S.; Fertikov, V. I.

    2014-05-01

    The effect of material structure on the analytical signal was studied using atomic emission spectroscopy with spark excitation of solids. A method for assessing the structure of the titanium alloy was proposed. It consisted of repeated analysis of a series of samples before and after heat treatment with excitation and recording of the spectrum under identical conditions followed by statistical processing of the results. The effects on the alloy structure of two heattreatment regimes, quenching and annealing, were studied. Atomic-emission spectroscopy with inductively coupled plasma was used to control the homogeneity of the chemical composition in the test samples.

  6. Inductively coupled plasma-atomic emission spectroscopy: The determination of trace impurities in uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Floyd, M. A.; Morrow, R. W.; Farrar, R. B.

    An analytical method has been developed for the determination of trace impurities in high-purity uranium hexafluoride using liquid-liquid extraction of the uranium from the trace impurities followed by analysis with inductively coupled plasma-atomic emission spectroscopy. Detection limits, accuracy, and precision data are presented.

  7. INTERLABORATORY STUDY OF INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROSCOPY METHOD 6010 AND DIGESTION METHOD 3050

    EPA Science Inventory

    The design, execution, and results of an interlaboratory study of Method 6010, 'Inductively Coupled Plasma Atomic Emission Spectroscopy,' are described. The study examined the application of the method to the analysis of solid-waste materials for 23 elements. Part of the interlab...

  8. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    PubMed

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. PMID:25425247

  9. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    SciTech Connect

    Fara, M.; Novak, F.

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  10. Determination of titanium atom and ion densities in sputter deposition plasmas by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Vašina, P.; Fekete, M.; Hnilica, J.; Klein, P.; Dosoudilová, L.; Dvořák, P.; Navrátil, Z.

    2015-12-01

    The thorough characterizations of deposition plasma lead to important achievements in the fundamental understanding of the deposition process, with a clear impact on the development of technology. Measurement of the spatial and, in the case of pulse excited plasma, also temporal evolution, of the concentrations of sputtered atoms and ions is a primary task in the diagnostics of any sputter deposition plasma. However, it is difficult to estimate absolute number densities of the sputtered species (atoms and ions) in ground states directly from optical emission spectroscopy, because the species in the ground levels do not produce any optical signal. A method using effective branching fractions enables us to determine the density of non-radiating species from the intensities of self-absorbed spectral lines. The branching fractions method described in the first part of this paper was applied to determine the ground state densities of the sputtered titanium atoms and ions. The method is based on fitting the theoretically calculated branching fractions to experimentally measured ratios of the relative intensities of carefully selected resonant titanium atomic and ionic lines. The sputtered species density is determined in our experimental setup with a relative uncertainty of less than 5% for the dc driven magnetron and typically 15% for time-resolved measurements of high-power impulse magnetron sputtering (HiPIMS) discharge. In the second part of the paper, the method was applied to determine the evolution of titanium atom and ion densities in three typical cases ranging from the dc driven sputter process to HiPIMS.

  11. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    SciTech Connect

    Nilsson, A.; Wassdahl, N.; Weinelt, M.

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  12. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Iihara, Junji; Takebe, Toshihiko; Denlinger, Jonathan D.

    2008-03-29

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and molecular orbital calculations confirm that boron atoms in CVD-B-diamond substitute for carbon atoms in the diamond lattice to form covalent B-C bonds, while boron atoms in HPT-B-diamond react with the impurity nitrogen atoms to form hexagonal boron nitride. This suggests that the high purity diamond without nitrogen impurities is necessary to synthesize p-type B-diamond semiconductors.

  13. Determination of Sulfur in High-Level Waste Sludge by Inductively Coupled Plasma-Atomic Emission Spectroscopy and Ion Chromatography

    SciTech Connect

    COLEMAN, CJ

    2004-04-22

    Significant differences (approximately 30 percent) have been observed in the sulfur measurements in high-level waste sludge by the Analytical Development Section (ADS) using the inductively coupled plasma-atomic emission spectroscopy (ICP-AES) method compared with the ADS ion chromatography (IC) method. Since the measured concentrations of sulfur in the sludge approached the maximum concentration that can be processed in the DWPF, experiments were performed to determine the source of the differences and assess the true accuracy of sulfur measurements.

  14. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  15. Inductively coupled plasma -- Atomic emission spectroscopy glove box assembly system at the West Valley Demonstration Project

    SciTech Connect

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-12-17

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ``cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  16. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  17. Atom probe and field emission electron spectroscopy studies of semiconductor films on metals

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1995-03-01

    The surface morphology and the electronic states of Ge overlayers deposited on Ir-and Mo-tips were investigated by a combined instrument of an atom probe (AP) and a field emission electron spectroscope (FEES). The overlayers were deposited on the tips while observing field emission microscope (FEM) images of the surfaces. The FEM images of thin Ge overlayers on the Ir-tips show layer-like structures. In field emission electron distribution (FEED) of a Ge overlayer on the Ir-tip, about 5 ML thick, an energy gap near the Fermi level was clearly widened by low temperature annealing. After the thickness was reduced to 3 ML by field evaporation, the energy gap still remained wide. The FEEDs of the Ge overlayers on the Mo-tips exhibit several peaks distinct from those on the Ir-tip. This may be attributed to the local strong electric field surrounding the Ge clusters formed on the Mo-tips.

  18. Transition rates and transition rate diagrams in atomic emission spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2015-08-01

    In low pressure plasmas with low electron densities, such as glow discharges, radiative de-excitation is a major de-excitation process of most excited states. Their relative de-excitation rates can be determined by emission spectroscopy, making it possible to study excitation processes in these discharges. This is in contrast to denser plasmas, in which such considerations are usually based on relative populations of excited states and concepts related to thermodynamic equilibrium. In the approach using reaction rates rather than populations, a convenient tool is the recently introduced formalism of transition rate diagrams. This formalism is reviewed, its relevance to different plasmas is discussed and some recent results on glow discharge excitation of manganese, copper and iron ions are presented. The prospects for the use of this formalism for the comparison of rate constants and cross sections for charge transfer reactions with argon ions of elements of interest in analytical glow discharge spectroscopy are discussed.

  19. Methyl oleate as matrix simulacrum for the simultaneous determination of metals in biodiesel samples by flame atomic emission spectroscopy.

    PubMed

    Ferreira, Conny Cerai; Costa, Letícia Malta; Barbeira, Paulo Jorge Sanches

    2015-06-01

    A measurement procedure for direct and simultaneous quantification of Na, K and Ca in biodiesel by flame atomic emission spectroscopy (FAES) was developed. A lab-made device was constructed by coupling a nebulizer/combustion system from a commercial photometer to a continuous emission detector in a spectral range of 255 to 862 nm. Instrumental optimizations were carried out evaluating the most important variables, such as gas flow rates and sample introduction temperature, indicating that a temperature of 50°C enhances the analytical signals and assures good precision. The direct analysis method was properly validated and presented limits of quantification of 0.09, 0.07 and 0.43 μg kg(-1) for Na, K and Ca, respectively. Accuracy of the proposed procedure was checked by comparing the results with those obtained by the standard procedure described in ABNT NBR 15556 and the standard addition method. PMID:25863364

  20. Development of Desolvation System for Single-cell Analysis Using Droplet Injection Inductively Coupled Plasma Atomic Emission Spectroscopy.

    PubMed

    Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi

    2015-01-01

    With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES. PMID:26256601

  1. Research as a guide for curriculum development: An example from introductory spectroscopy. I. Identifying student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-01-01

    This is the first of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. This article (Paper I) describes how several serious conceptual and reasoning difficulties were identified among students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. Paper II illustrates how findings from this research informed the development of a tutorial that led to significant improvement in student understanding of atomic emission spectra.

  2. Research as a guide for curriculum development: An example from introductory spectroscopy. II. Addressing student difficulties with atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Ivanjek, L.; Shaffer, P. S.; McDermott, L. C.; Planinic, M.; Veza, D.

    2015-02-01

    This is the second of two closely related articles (Paper I and Paper II) that together illustrate how research in physics education has helped guide the design of instruction that has proved effective in improving student understanding of atomic spectroscopy. Most of the more than 1000 students who participated in this four-year investigation were science majors enrolled in the introductory calculus-based physics course at the University of Washington (UW) in Seattle, WA, USA. The others included graduate and undergraduate teaching assistants at UW and physics majors in introductory and advanced physics courses at the University of Zagreb, Zagreb, Croatia. About half of the latter group were preservice high school physics teachers. Paper I describes how several conceptual and reasoning difficulties were identified among university students as they tried to relate a discrete line spectrum to the energy levels of atoms in a light source. This second article (Paper II) illustrates how findings from this research informed the development of a tutorial that led to improvement in student understanding of atomic emission spectra.

  3. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    SciTech Connect

    Hasselstroem, J.; Karis, O.; Weinelt, M.

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  4. THE EVOLUTION OF ATOMIC SPECTROSCOPY IN MEASURING TOXIC CONTAMINANTS

    EPA Science Inventory

    Three decades of study of environmental conditions necessary for the protection of freshwater
    aquatic life have been limited by the development and application of analytical methodology utilizing atomic adsorption, atomic fluorescence, and atomic emission spectroscopy.
    The...

  5. Elemental analysis of biological samples by graphite furnace, inductively coupled plasma - atomic emission spectroscopy (GF-ICP-AES)

    SciTech Connect

    Winge, R.K.; Fassel, V.A.; Grabau, F.; Zu-cheng, J.

    1984-08-01

    The large number of analyses required for monitoring environmental pollution and its ecological impacts suggests that an analytical screening method would be very useful if it could rapidly distinguish those samples containing environmentally significant concentrations of pollutants from those that do not. In the trace elemental analysis of solids the most time consuming step is often the conversion of the sample into a suitable analytical form, usually a digestion and dissolution process. We have addressed these problems by combining a graphite furnace with inductively coupled plasma-atomic emission spectroscopy. With this system solid samples of plant and animal tissue, as well as solutions, can be vaporized and introduced directly into the inductively coupled plasma. A simple standard additions technique was developed for solid samples that yielded acceptable results for a number of elements in biological samples. Powers of detection were not satisfactory for the lowest concentrations of several elements in the NBS biological SRMs and analytical uncertainties were relatively high for quantitative analyses but were generally satisfactory for screening methods. The design of the interface between the graphite furnace and the inductively coupled plasma and the pulse effect caused by the vaporization of the sample are critical factors in the GF-ICP-AES method. 31 references, 21 figures, 4 tables.

  6. High-resolution Inductively Coupled Plasma--Atomic Emission Spectroscopy applied to problems in Nuclear Waste Management

    SciTech Connect

    Edelson, M.C.; Winge, R.K.; Eckels, D.E. ); Douglas, J.G. )

    1990-01-01

    High-resolution Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) is a variant of the more conventional ICP-AES that is widely used for environmental monitoring. The relevance of high-resolution capabilities of three such analytical problems are discussed herein. (1) Pu in very complex, radioactive matrices can be determined with good accuracy without the need for prior chemical separations. Isotopically resolved spectra from actinides in fuel dissolver solutions can be obtained after a simple ion-exchange step. (2) High-resolution methods permit the simultaneous determination of fission products and actinides in simulated high-level nuclear waste solutions. Such measurements can be useful for both safeguards and waste processing. (3) The ICP-AES technique, with a photodiode array detector, can be used to determine the composition of nuclear waste glasses. Such measurements can assist the glass producer as well as providing predictors of nuclear waste form performance in a repository. 16 refs., 5 figs., 4 tabs.

  7. Current Trends in Atomic Spectroscopy.

    ERIC Educational Resources Information Center

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  8. [Study of characteristics of excited O atom generated in multi-needle-to-plate corona discharge by emission spectroscopy].

    PubMed

    Ge, Hui; Yan, Ling; Mi, Dong; Zhu, Yi-min; Zhang, Lu

    2012-04-01

    The emission spectra of O(3p 5 P --> 3s 5 S2(0) 777.4 nm) produced by multi-needle-to-plate negative corona discharge and positive streamer discharge in air were successfully recorded at one atmosphere. The influences of discharge power, electrode gap, content of N2 and relative humidity on the excited O atom production were investigated in negative corona discharge. Meanwhile, the distribution of relative density of excited O atom in discharge space was also studied in positive streamer discharge. The results indicate that, for negative corona discharge, the amount of O active atom increases with the increase in power, decreases with increased discharge gap. And with the increase in relative humidity and N2 content, its amount firstly increases and then decreases; whereas for positive corona discharge, the relative density of O active atom from needlepoint to plate firstly increases and then decreases. PMID:22715745

  9. Conditional ramsey spectroscopy with synchronized atoms.

    PubMed

    Xu, Minghui; Holland, M J

    2015-03-13

    We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity. We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes indefinitely, even in the presence of spontaneous emission and other sources of individual-atom dephasing. This could have important consequences for atomic clocks and a wide range of precision metrology applications. PMID:25815931

  10. Ultraviolet atomic emission detector

    NASA Technical Reports Server (NTRS)

    Braun, W.; Peterson, N. C.; Bass, A. M.; Kurylo, M. J., III (Inventor)

    1972-01-01

    A device and method are provided for performing qualitative and quantitative elemental analysis through the utilization of a vacuum UV chromatographic detector. The method involves the use of a carrier gas at low pressure. The gas carries a sample to a gas chromatograph column; the column output is directed to a microwave cavity. In this cavity, a low pressure microwave discharge produces fragmentation of the compounds present and generates intense atomic emissions in the vacuum ultraviolet. These emissions are isolated by a monochromator and measured by photometer to establish absolute concentration for the elements.

  11. Solar Spectroscopy: Atomic Processes

    NASA Astrophysics Data System (ADS)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  12. Spectroscopy, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the electromagnetic…

  13. Identification of a Single Light Atom within a Multinuclear Metal Cluster using Valence-to-Core X-Ray Emission Spectroscopy

    PubMed Central

    Delgado-Jaime, Mario Ulises; Dible, Benjamin R.; Chiang, Karen P.; Brennessel, William W.; Bergmann, Uwe; Holland, Patrick L.

    2011-01-01

    Iron valence-to-core Fe Kβ x-ray emission spectroscopy (V2C XES) is established as a means to identify light atoms (C. N, O) within complex multimetallic frameworks. The ability to distinguish light atoms, particularly in the presence of heavier atoms, is a well-known limitation of both crystallography and EXAFS. Using the sensitivity of V2C XES to the ionization potential of the bound ligand energetic shifts of ~10 eV in the ligand 2s ionization energies of bound C, N and O may be observed. As V2C XES is a high-energy X-ray method, it is readily applicable to samples in any physical form. This method thus has great potential for application to multimetallic inorganic frameworks involved in both small molecule storage and activation. PMID:21954894

  14. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  15. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  16. Transient infrared emission spectroscopy

    SciTech Connect

    Jones, R.W.; McClelland, J.F.

    1989-04-01

    Transient infrared emission spectroscopy (TIRES) is a new method that produces analytically useful emission spectra from optically thick, solid samples by greatly reducing self-absorption of emitted radiation. The method reduces self-absorption by creating a thin, short-lived, heated layer at the sample surface and collecting the transient emission from this layer. The technique requires no sample preparation and may be applied to both moving and stationary samples. The single-ended, noncontact TIRES measurement geometry is ideal for on-line and other remote-sensing applications. TIRES spectra acquired via a Fourier transform infrared spectrometer on moving samples of coal, plastic, and paint are presented and compared to photoacoustic absorption spectra of these materials. The TIRES and photoacoustic results are in close agreement as predicted by Kirchhoff's law.

  17. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm-3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm-3.

  18. Direct detection of vacuum ultraviolet radiation through an optical sampling orifice: determination of nonmetals in gaseous samples by inductively coupled plasma atomic emission spectroscopy

    SciTech Connect

    LaFreniere, B.R.; Houk, R.S.; Wiederin, D.R.; Fassel, V.A.

    1988-01-01

    A copper cone with a sampling orifice is attached to the entrance slit chamber or a monochromator and inserted directly into an inductively couples plasma (ICP) to sample vacuum ultraviolet (vacuum UV) radiation emitted by the plasma. A unique interface with low dead volume (<40 ..mu..L) is used for introduction of gaseous samples directly into the axial channel of the ICP. Injection of a gaseous mixture of compounds containing the elements Br, C, Cl, and S results in detection limits of 50, 30, 80 and 20 pg, respectively. These detection limits are by far the best obtained for these elements by ICP atomic emission spectroscopy (AES) and are comparable to those obtained by AES with He plasmas. Precision of the analyte emission intensities is 2% relative standard deviation or better.

  19. Determination of metal concentrations in lichen samples by inductively coupled plasma atomic emission spectroscopy technique after applying different digestion procedures.

    PubMed

    Tuncel, S G; Yenisoy-Karakas, S; Dogangün, A

    2004-05-28

    Three digestion procedures have been tested on lichen samples for application in the determination of major, minor and trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V and Zn) in lichen samples collected in Aegean Region of Turkey by inductively coupled plasma atomic emission spectrometer (ICP-AES). The acid mixture of concentrated HNO(3), H(2)O(2) and HF were used. The instrument was optimized using lichen matrix considering RF power, nebulizer pressure, auxiliary flow rate and pump rate. The accuracy of the overall analyses was first estimated by analysis of two certified reference materials. Good agreement between measured and reference values were found for almost all elements. As the second way of determining the accuracy, results obtained from independent analytical techniques (ICP-AES and instrumental neutron activation analysis (INAA)) were compared for all elements by analyzing real samples. Correlation coefficients of two techniques for the elements ranged between 0.70 (Mg) and 0.96 (Fe). Among the three digestion systems, namely microwave, open vessel and acid bomb, microwave digestion system gave the best recovery results. The method detection limit (MDL) was computed using reagent blanks of microwave digestion system since it provides cleaner sample preparation. Detection limit is adequate for all elements to determine the elements in lichen samples. The precision was assessed from the replicate analyses of reagent blanks of microwave digestion system and was found to be less than 1.5% relative standard deviation (R.S.D.). PMID:18969428

  20. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    SciTech Connect

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, J.J.A.M. van der; Pupat, N.B.M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg{sup +}/Dy{sup +}, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  1. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NASA Astrophysics Data System (ADS)

    Nimalasuriya, T.; Flikweert, A. J.; Stoffels, W. W.; Haverlag, M.; van der Mullen, J. J. A. M.; Pupat, N. B. M.

    2006-03-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved atomic state distribution function (ASDF) of the atomic and ionic Dy and the atomic Hg. From these ASDFs several quantities are determined as functions of radial position, such as the (excitation) temperature, the ion ratio Hg+/Dy+, the electron density, the ground state, and the total density of Dy atoms and ions. Moreover, these ASDFs give us insight about the departure from equilibrium. The measurements show a hollow density profile for the atoms and the ionization of atoms in the center. In the outer parts of the lamp molecules dominate.

  2. Laser spectroscopy of sputtered atoms

    SciTech Connect

    Gruen, D.M.; Pellin, M.J.; Young, C.E.; Calaway, W.F.

    1985-01-01

    The use of laser radiation to study the sputtering process is of relatively recent origin. Much has been learned from this work about the basic physics of the sputtering process itself through measurements of velocity and excited state distributions of sputtered atoms and the effects of adsorbates on substrate sputtering yields. Furthermore, the identification, characterization, and sensitive detection of sputtered atoms by laser spectroscopy has led to the development of in situ diagnostics for impurity fluxes in the plasma edge regions of tokamaks and of ultrasensitive methods (ppB Fe in Si) for surface analysis with ultralow (picocoulomb) ion fluences. The techniques involved in this work, laser fluorescence and multiphoton resonance ionization spectroscopy, will be described and illustrations given of results achieved up to now. 55 refs., 5 figs., 1 tab.

  3. Atomic squeezing under collective emission

    SciTech Connect

    Yukalov, V.I.; Yukalova, E.P.

    2004-11-01

    Atomic squeezing is studied for the case of large systems of radiating atoms, when collective effects are well developed. All temporal stages are analyzed, starting with the quantum stage of spontaneous emission, passing through the coherent stage of superradiant emission, and going to the relaxation stage ending with stationary solutions. A method of governing the temporal behavior of the squeezing factor is suggested. The influence of a squeezed effective vacuum on the characteristics of collective emission is also investigated.

  4. Precision Spectroscopy of Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Beyer, A.; Parthey, Ch G.; Kolachevsky, N.; Alnis, J.; Khabarova, K.; Pohl, R.; Peters, E.; Yost, D. C.; Matveev, A.; Predehl, K.; Droste, S.; Wilken, T.; Holzwarth, R.; Hänsch, T. W.; Abgrall, M.; Rovera, D.; Salomon, Ch; Laurent, Ph; Udem, Th

    2013-12-01

    Precise determinations of transition frequencies of simple atomic systems are required for a number of fundamental applications such as tests of quantum electrodynamics (QED), the determination of fundamental constants and nuclear charge radii. The sharpest transition in atomic hydrogen occurs between the metastable 2S state and the 1S ground state. Its transition frequency has now been measured with almost 15 digits accuracy using an optical frequency comb and a cesium atomic clock as a reference [1]. A recent measurement of the 2S - 2P3/2 transition frequency in muonic hydrogen is in significant contradiction to the hydrogen data if QED calculations are assumed to be correct [2, 3]. We hope to contribute to this so-called "proton size puzzle" by providing additional experimental input from hydrogen spectroscopy.

  5. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  6. Measurement of Trace Metals in Tobacco and Cigarette Ash by Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, W.; Finlayson-Pitts, B. J.

    2003-01-01

    The ICP AES experiment reported here is suitable for use in a junior- or senior-level undergraduate instrumental analysis laboratory. The objective of this experiment is to analyze trace metals present in cigarette tobacco, the cigarette filter, and the ash obtained when the cigarette is burned. Two different brands of cigarettes, one with and one without a filter, were used. The filter was analyzed before and after smoke was drawn through it. The trace metals were extracted using concentrated nitric acid at room temperature and at 100 °C respectively, to test the extraction efficiency. Some tobacco samples were spiked with ZnCl2 and FeCl3 to assess the efficiency of the recovery. Zinc and iron are shown to be present in tobacco, filter, and ash, while chromium was above the detection limit only in the ash. These metals are concentrated in the ash compared to the tobacco by factors of ˜4 (Zn), 12 17 (Fe), and ≥ 2 (Cr). If sufficient laboratory time is available, this experiment could be paired with one using atomic absorption (AA) to demonstrate the advantages and disadvantages of ICP when compared to AA.

  7. Atom-probe and field emission electron spectroscopy studies of ordered structures and electronic properties of Ge overlayers on Ir-tips

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1994-03-01

    The combined instrument of an atom probe (AP) and a field emission electron spectroscope (FEES) was employed to investigate the crystallinity and the surface electronic state of Ge overlayers deposited on Ir tips. The crystallinity of Ge overlayers deposited at 300 and 420 K, and those annealed after the deposition, is better than that of the overlayers deposited at 50 K. The surface electronic state of the well-crystallized Ge overlayer is semiconductive at the thickness of ≈4 ML. When the degree of crystallinity is rather low or Ir atoms exist in the Ge overlayer, even a thick overlayer exhibits metallic surface electronic states. When an Ir atom exists on the overlayer surface, a small peak appears at ≈ 0.3 eV below the Fermi level in the field emission electron distribution (FEED), indicating a local state of the Ir atom.

  8. Solving a Mock Arsenic-Poisoning Case Using Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tarr, Matthew A.

    2001-01-01

    A new upper-level undergraduate atomic spectroscopy laboratory procedure has been developed that presents a realistic problem to students and asks them to assist in solving it. Students are given arsenic-laced soda samples from a mock crime scene. From these samples, they are to gather evidence to help prosecute a murder suspect. The samples are analyzed by inductively coupled plasma atomic emission spectroscopy or by atomic absorbance spectroscopy to determine the content of specific metal impurities. By statistical comparison of the samples' composition, the students determine if the soda samples can be linked to arsenic found in the suspect's home. As much as possible, the procedures and interpretations are developed by the students. Particular emphasis is placed on evaluating the limitations and capabilities of the analytical method with respect to the demands of the problem.

  9. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  10. Atomic vapor spectroscopy in integrated photonic structures

    NASA Astrophysics Data System (ADS)

    Pfau, Tilman; Löw, Robert; Ritter, Ralf; Kübler, Harald; Gruhler, Nico; Pernice, Wolfram

    2016-05-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. This includes integrated ring resonators, Mach Zehnder interferometers, slot waveguides and counterpropagating coupling schemes. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of strong atom light coupling. Cooperativities on the order of 1 are within reach.

  11. Atomic vapor spectroscopy in integrated photonic structures

    SciTech Connect

    Ritter, Ralf; Kübler, Harald; Pfau, Tilman; Löw, Robert; Gruhler, Nico; Pernice, Wolfram

    2015-07-27

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  12. Atomic vapor spectroscopy in integrated photonic structures

    NASA Astrophysics Data System (ADS)

    Ritter, Ralf; Gruhler, Nico; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-07-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  13. Signals for Lorentz violation in atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Vargas, Arnaldo J.; Kostelecký, V. Alan

    2015-05-01

    A breakdown of Lorentz and CPT symmetry has been proposed as a possible signal in several candidate theories of quantum gravity. This talk discusses the prospects for detecting Lorentz and CPT violation via atomic spectroscopy, using the effective field theory known as the Standard-Model Extension and including operators of both renormalizable and nonrenormalizable mass dimensions. The discussion targets commonly measured atomic transitions in experiments with conventional matter and with more exotic atoms such as antihydrogen, muonium, and muonic hydrogen. Potential signals are identified and constraints from existing data are obtained.

  14. Building and analyzing models from data by stirred tank experiments for investigation of matrix effects caused by inorganic matrices and selection of internal standards in Inductively Coupled Plasma-Atomic Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Paredes, Eduardo; Maestre, Salvador; Todolí, José Luis

    2008-05-01

    Interfering effects caused by inorganic matrices (inorganic acids as well as easily ionized elements) in inductively coupled plasma-atomic emission spectroscopy have been modeled by regression analysis of experimental data obtained using the "stirred tank method". The main components of the experimental set-up were a magnetically-stirred container and two peristaltic pumps. In this way the matrix composition was gradually and automatically varied, while the analyte concentration remained unchanged throughout the experiment. An inductively coupled plasma spectrometer with multichannel detection based on coupled charge device was used to simultaneously measure the emission signal at several wavelengths when the matrix concentration was modified. Up to 50 different concentrations were evaluated in a period of time of 10 min. Both single interfering species (nitric, hydrochloric and sulphuric acids, sodium and calcium) and different mixtures (aqua regia, sulfonitric mixture, sodium-calcium mixture and sodium-nitric acid mixture) were investigated. The dependence of the emission signal on acid concentration was well-fitted by logarithmic models. Conversely, for the easily ionized elements, 3-order polynomial models were more suitable to describe the trends. Then, the coefficients of these models were used as "signatures" of the matrix-related signal variations and analyzed by principal component analysis. Similarities and differences among the emission lines were highlighted and discussed, providing a new insight into the interference phenomena, mainly with regards to the combined effect of concomitants. The combination of the huge amount of data obtained by the stirred tank method in a short period of time and the speed of analysis of principal component analysis provided a judicious means for the selection of the optimal internal standard in inductively coupled plasma-atomic emission spectroscopy.

  15. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy.

    PubMed

    Colon, M; Todolí, J L; Hidalgo, M; Iglesias, M

    2008-02-25

    Two new, simple and accurate methods for the determination of sulfide (S(2-)) at low levels (microgL(-1)) in aqueous samples were developed. The generation of hydrogen sulfide (H(2)S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H(2)S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H(2)S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H(2)S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5microgL(-1) to 25mgL(-1) of sulfide. Detection limits of 5microgL(-1) and 6microgL(-1) were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters. PMID:18261510

  16. Mid infrared emission spectroscopy of carbon plasma.

    PubMed

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results. PMID:27428600

  17. Atomic and electronic structure peculiarities of silicon wires formed on substrates with varied resistivity according to ultrasoft X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Turishchev, S. Yu.; Terekhov, V. A.; Nesterov, D. N.; Koltygina, K. G.; Sivakov, V. A.; Domashevskaya, E. P.

    2015-04-01

    Silicon wires arrays have been produced by metal-assisted wet chemical etching with the use of crystalline silicon substrates. The arrays and individual nanowires have been studied by scanning and transmission electron microscopy. The electronic structure and phase composition of the surface and near-surface layers of the arrays have been studied by ultrasoft X-ray emission spectroscopy. It is shown that the morphologically more developed sample formed on a substrate with low resistivity is considerably more strongly subject to oxidation with noticeable formation of phases of intermediate silicon oxides. The array of nanowires formed on a substrate with high resistivity also undergoes natural oxidation, but does so to a substantially lesser extent and, with increasing depth of analysis, mostly contains the phase of crystalline silicon constituting the bulk of the nanowires being formed.

  18. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    ERIC Educational Resources Information Center

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  19. Scanning Josephson spectroscopy on the atomic scale

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2016-04-01

    The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.

  20. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  1. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  2. Quantitative atomic spectroscopy for primary thermometry

    SciTech Connect

    Truong, Gar-Wing; Luiten, Andre N.; May, Eric F.; Stace, Thomas M.

    2011-03-15

    Quantitative spectroscopy has been used to measure accurately the Doppler broadening of atomic transitions in {sup 85}Rb vapor. By using a conventional platinum resistance thermometer and the Doppler thermometry technique, we were able to determine k{sub B} with a relative uncertainty of 4.1x10{sup -4} and with a deviation of 2.7x10{sup -4} from the expected value. Our experiment, using an effusive vapor, departs significantly from other Doppler-broadened thermometry (DBT) techniques, which rely on weakly absorbing molecules in a diffusive regime. In these circumstances, very different systematic effects such as magnetic sensitivity and optical pumping are dominant. Using the model developed recently by Stace and Luiten, we estimate the perturbation due to optical pumping of the measured k{sub B} value was less than 4x10{sup -6}. The effects of optical pumping on atomic and molecular DBT experiments is mapped over a wide range of beam size and saturation intensity, indicating possible avenues for improvement. We also compare the line-broadening mechanisms, windows of operation and detection limits of some recent DBT experiments.

  3. Towards Atomic Column-by-Column Spectroscopy

    SciTech Connect

    Pennycook, S.J.; Rafferty, B.

    1998-09-06

    The optical arrangement of the scanning transmission electron microscope (STEM) is ideally suited for performing analysis of individual atomic columns in materials. Using the incoherent Z-contrast image as a reference, and arranging incoherent conditions also for the spectroscopy, a precise correspondence is ensured between features in the inelastic image and elastic signals. In this way the exact probe position needed to maximise the inelastic signal from a selected column can be located and monitored during the analysis using the much higher intensity elastic signal. Although object functions for EELS are typically less than 1 {Angstrom} full width at half maximum, this is still an order of magnitude larger than the corresponding object functions for elastic (or diffuse) scattering used to form the Z-contrast image. Therefore the analysis is performed with an effective probe that is significantly broader than that used for the reference Z-contrast image. For a 2.2 {Angstrom} probe the effective probe is of the order of 2.5 {Angstrom}, while for a 1.3 {Angstrom} probe the effective probe is 1.6 {Angstrom}. Such increases in effective probe size can significantly reduce or even eliminate contrast between atomic columns that are visible in the image. However, this is only true if we consider circular collector apertures. Calculations based upon the theory of Maslen and Rossouw (Maslen and Rossouw 1984; Rossouw and Maslen 1984) show that employing an annular aperture can reduce the FWHM of the inelastic object function down to values close 0.1 {Angstrom}. With practical aperture sizes it should be possible to achieve this increased spatial resolution without loosing too much signal.

  4. Fourier transform stimulated emission pumping spectroscopy

    NASA Astrophysics Data System (ADS)

    Felker, P. M.; Henson, B. F.; Corcoran, T. C.; Connell, L. L.; Hartland, G. V.

    1987-12-01

    Theoretical and experimental results that demonstrate a new technique of non-linear interferometry based on stimulated emission pumping spectroscopy (SEPS) are presented. It is shown that splittings between the initial and final states in SEP processes can be measured by the method. Advantages and disadvantages of the technique relative to spectral domain SEPS are discussed.

  5. Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric; Nicolas, Marine; Graveleau, Laetitia; Richoz, Janique; Andrey, Daniel; Monard, Florence

    2009-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-atomic emission spectroscopy in order to improve and update AOAC Official Method 984.27. The improvements involved optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed or open vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proved through a successful internal RT using experienced food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD and HorRat values) regarding SLV and RT. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an improved version of AOAC Official Method 984.27 for fortified food products, including infant formula. PMID:19916387

  6. Mid-infrared emission from laser-induced breakdown spectroscopy.

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe H; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2007-03-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported. The LIBS investigations reported in the literature largely involve spectral analysis in the ultraviolet-visible-near-infrared (UV-VIS-NIR) region (less than 1 microm) to probe elemental composition and profiles. Measurements were made to probe the MIR emission from a LIBS event between 3 and 5.75 microm. Oxidation of the sputtered carbon atoms and/or carbon-containing fragments from the sample and atmospheric oxygen produced CO(2) and CO vibrational emission features from 4.2 to 4.8 microm. The LIBS MIR emission has the potential to augment the conventional UV-VIS electronic emission information with that in the MIR region. PMID:17389073

  7. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  8. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  9. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  10. Laser Spectroscopy of Atoms and Molecules.

    ERIC Educational Resources Information Center

    Schawlow, Arthur L.

    1978-01-01

    Surveys new laser techniques and a variety of spectroscopic experiments that can be used to detect, measure and study very small numbers of atoms on molecules. The range of applicability of these techniques is also included. (HM)

  11. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1991-05-08

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.

  12. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, J.W.

    1993-03-30

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  13. Atomic line emission analyzer for hydrogen isotopes

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.

  14. Experimental estimation of oxidation-induced Si atoms emission on Si(001) surfaces

    SciTech Connect

    Ogawa, Shuichi Tang, Jiayi; Takakuwa, Yuji

    2015-08-15

    Kinetics of Si atoms emission during the oxidation of Si(001) surfaces have been investigated using reflection high energy electron diffraction combined with Auger electron spectroscopy. The area ratio of the 1 × 2 and the 2 × 1 domains on a clean Si(001) surface changed with the oxidation of the surface by Langmuir-type adsorption. This change in the domain ratio is attributed to the emission of Si atoms. We can describe the changes in the domain ratio using the Si emission kinetics model, which states that (1) the emission rate is proportional to the oxide coverage, and (2) the emitted Si atoms migrate on the surface and are trapped at S{sub B} steps. Based on our model, we find experimentally that up to 0.4 ML of Si atoms are emitted during the oxidation of a Si(001) surface at 576 °C.

  15. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    SciTech Connect

    Robinson, J.W.; Skelly, E.M.

    1982-01-01

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant form of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.

  16. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  17. Single-atom electron energy loss spectroscopy of light elements

    PubMed Central

    Senga, Ryosuke; Suenaga, Kazu

    2015-01-01

    Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of electron energy loss spectroscopy using inelastically scattered electrons. In this method, we demonstrate the single-atom detection of lithium, fluorine, sodium and chlorine with near-atomic precision, which is limited by the incident probe size, signal delocalization and atomic movement in nanospace. Moreover, chemical shifts of lithium K-edge have been successfully identified with various atomic configurations in one-dimensional lithium compounds. PMID:26228378

  18. Decoherence Spectroscopy Theory and Application with an Atom Interferometer

    NASA Astrophysics Data System (ADS)

    Trubko, Raisa; Cronin, Alexander

    2016-05-01

    We developed decoherence spectroscopy as a method to improve the accuracy of a tune-out wavelength (λzero) measurement made with atom interferometry. Specifically, we used atom interference fringe contrast loss as a function of laser frequency in order to monitor Doppler shifts. This was particularly helpful since we used a multi-pass cavity to recycle laser light in this experiment. The resulting decoherence spectra have non-intuitive features. Therefore we present a theoretical model for decoherence spectroscopy and compare this model to several empirical examples.

  19. Method for laser spectroscopy of metastable pionic helium atoms

    NASA Astrophysics Data System (ADS)

    Hori, M.; Sótér, A.; Aghai-Khozani, H.; Barna, D.; Dax, A.; Hayano, R. S.; Murakami, Y.; Yamada, H.

    2015-08-01

    The PiHe collaboration is currently attempting to carry out laser spectroscopy of metastable pionic helium atoms using the high-intensity π - beam of the ring cyclotron facility of the Paul Scherrer Institute. These atoms are heretofore hypothetical three-body Coulomb systems each composed of a helium nucleus, a π - occupying a Rydberg state, and an electron occupying the 1s ground state. We briefly review the proposed method by which we intend to detect the laser spectroscopic signal. This complements our experiments on metastable antiprotonic helium atoms at CERN.

  20. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  1. Optical Emission Spectroscopy in an Unmagnetized Plasma

    NASA Astrophysics Data System (ADS)

    Milhone, Jason; Cooper, Christopher; Desangles, Victor; Nornberg, Mark; Seidlitz, Blair; Forest, Cary; WiPAL Team

    2015-11-01

    An optical emission spectroscopic analysis has been developed to measure electron temperature, neutral burnout, and Zeff in Ar and He plasmas in the Wisconsin plasma astrophysics laboratory (WiPAL). The WiPAL vacuum chamber is a 3 meter diameter spherical vessel lined with 3000 SmCo permanent magnets (B > 3 kG) that create an axisymmetric multi-cusp ring for confining the plasma. WiPAL is designed to study unmagnetized plasmas that are hot (Te > 10 eV), dense (ne >1018), and with high ionization fraction. Electron temperature and density can be measured via Langmuir probes. However, probes can disturb the plasma, be difficult to interpret, and become damaged by large heat loads from the plasma. A low cost non-invasive spectroscopy system capable of scanning the plasma via a linear stage has been installed to study plasma properties. From the neutral particle emission, the neutral burnout and estimated neutral temperature can be inferred. A modified coronal model with metastable states is being implemented to determine Te for Ar plasmas.

  2. Single atom identification by energy dispersive x-ray spectroscopy

    SciTech Connect

    Lovejoy, T. C.; Dellby, N.; Krivanek, O. L.; Ramasse, Q. M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.

    2012-04-09

    Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

  3. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  4. SPECTRW: A software package for nuclear and atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kalfas, C. A.; Axiotis, M.; Tsabaris, C.

    2016-09-01

    A software package to be used in nuclear and atomic spectroscopy is presented. Apart from analyzing γ and X-ray spectra, it offers many additional features such as de-convolution of multiple photopeaks, sample analysis and activity determination, detection system evaluation and an embedded code for spectra simulation.

  5. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    ERIC Educational Resources Information Center

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  6. Current Status of Atomic Spectroscopy Databases at NIST

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander; Ralchenko, Yuri; Reader, Joseph

    2016-05-01

    NIST's Atomic Spectroscopy Data Center maintains several online databases on atomic spectroscopy. These databases can be accessed via the http://physics.nist.gov/PhysRefData web page. Our main database, Atomic Spectra Database (ASD), recently upgraded to v. 5.3, now contains critically evaluated data for about 250,000 spectral lines and 109,000 energy levels of almost all elements in the periodic table. This new version has added several thousand spectral lines and energy levels of Sn II, Mo V, W VIII, and Th I-III. Most of these additions contain critically evaluated transition probabilities important for astrophysics, technology, and fusion research. A new feature of ASD is providing line-ratio data for diagnostics of electron temperature and density in plasmas. Saha-Boltzmann plots have been modified by adding an experimental feature allowing the user to specify a multi-element mixture. We continue regularly updating our bibliography databases, ensuring comprehensive coverage of current literature on atomic spectra for energy levels, spectral lines, transition rates, hyperfine structure, isotope shifts, Zeeman and Stark effects. Our other popular databases, such as the Handbook of Basic Atomic Spectroscopy Data, searchable atlases of spectra of Pt-Ne and Th-Ne lamps, and non-LTE plasma-kinetics code comparisons, continue to be maintained.

  7. Spectroscopy and Dynamics of K Atoms on Argon Clusters.

    PubMed

    Douady, J; Awali, S; Poisson, L; Soep, B; Mestdagh, J M; Gervais, B

    2015-06-11

    We present a combined experimental and simulation study of the 4s → 4p photoexcitation of the K atom trapped at the surface of ArN clusters made of a few hundred Ar atoms. Our experimental method based on photoelectron spectroscopy allows us to firmly establish that one single K atom is trapped at the surface of the cluster. The absorption spectrum is characterized by the splitting of the atomic absorption line into two broad bands, a Π band associated with p orbitals parallel to the cluster surface and a Σ band associated with the perpendicular orientation. The spectrum is consistent with observations reported for K atoms trapped on lighter inert gas clusters, but the splitting between the Π and Σ bands is significantly larger. We show that a large amount of K atoms are transiently stuck and eventually lost by the Ar cluster, in contrast with previous observations reported for alkaline earth metal systems. The excitation in the Σ band leads systematically to the ejection of the K atom from the Ar cluster. On the contrary, excitation in the Π band leads to the formation of a bound state. In this case, the analysis of the experimental photoelectron spectrum by means of nonadiabatic molecular dynamics simulation shows that the relaxation drives the system toward a basin where the coordination of the K atom is 2.2 Ar atoms on the average, in a poorly structured surface. PMID:25854161

  8. Atom-wall interactions and their role in the spectroscopy of spatially constrained atomic vapors

    NASA Astrophysics Data System (ADS)

    Vartanyan, T. A.; Khromov, V. V.; Przhibelskii, S. G.; Pazgalev, A. S.

    2013-03-01

    Atom-wall interactions play an unexpectedly important role in the atomic spectroscopy. J.L. Cojan was the first who observed and then interpreted the effects of the atom-wall interactions on the reflection spectra in the vicinity of the atomic spectral line. His observation was made on the mercury vapors of such a low concentration that the Doppler width was much larger than the homogeneous width of the atomic transition. Surprisingly, the width of the spectral line he observed in reflection was much smaller than the Doppler width. He pointed out that the atoms those leave the window posses a transient rather than the stationary polarization. This is the reason why their contribution to the reflected field differs from what was expected. M. Ducloy employed the tiny distortions of these narrow resonances in reflection spectra to measure for the first time the van der Waals constants in the excited atomic states. In our work we considered reflection from a narrow slice of atomic vapors and found a manifold of spectral line shapes depending on the width of the vapor slice that have nothing in common with the Fabri-Perot resonances. It was not until the invention of an Extremely Thin Cell (ETC) by D. Sarkisyan that the observation of these effects becomes possible in the optical domain. In the subsequent years ETC proved to be a very powerful tool of modern spectroscopy.

  9. Photoionization of Endohedral Atoms: Collective, Reflective and Collateral Emissions

    SciTech Connect

    Chakraborty, Himadri S.; McCune, Matthew A.; Hopper, Dale E.; Madjet, Mohamed E.; Manson, Steven T.

    2009-12-03

    The photoionization properties of a fullerene-confined atom differ dramatically from that of an isolated atom. In the low energy region, where the fullerene plasmons are active, the electrons of the confined atom emerge through a collective channel carrying a significant chunk of plasmon with it. The photoelectron angular distribution of the confined atom however shows far lesser impact of the effect. At higher energies, the interference between two single-electron ionization channels, one directly from the atom and another reflected off the fullerene cage, producuces oscillatory cross sections. But for the outermost atomic level, which transfers some electrons to the cage, oscillations are further modulated by the collateral emission from the part of the atomic charge density transferred to the cage. These various modes of emissions are studied for the photoionization of Ar endohedrally confined in C{sub 60}.

  10. ENVIRONMENTAL APPLICATION OF GAS CHROMATOGRAPHY/ATOMIC EMISSION DETECTION

    EPA Science Inventory

    A gas chromatography/atomic emission detector (GC/AED) system has been evaluated for its applicability to environmental analysis. Detection limits, elemental response factors, and regression analysis data were determined for 58 semivolatile environmental contaminants. Detection l...

  11. Vacuum ultraviolet photoelectron spectroscopy of atoms and molecules

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    For a complete study of the photoionization of atoms and molecules it is essential to make use of the technique of Photoelectron Spectroscopy and the continuum characteristics of synchrotron radiation. A brief review is given of the application of the above techniques in measuring partial photoionization cross sections and the angular distribution assymetry parameter beta. Selected results are given, which are compared to theoretical values.

  12. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    SciTech Connect

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections.

  13. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus.

    PubMed

    Song, Minsoo; Yoon, Tai Hyun

    2013-02-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s(2)(1)S0↔ 6s7s (1)S0) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm(3) and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s(1)S0 state via the intercombination 6s6p(3)P1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle. PMID:23464193

  14. Spreadsheet-Based Program for Simulating Atomic Emission Spectra

    ERIC Educational Resources Information Center

    Flannigan, David J.

    2014-01-01

    A simple Excel spreadsheet-based program for simulating atomic emission spectra from the properties of neutral atoms (e.g., energies and statistical weights of the electronic states, electronic partition functions, transition probabilities, etc.) is described. The contents of the spreadsheet (i.e., input parameters, formulas for calculating…

  15. Spectroscopy of Rb atoms in hollow-core fibers

    SciTech Connect

    Slepkov, Aaron D.; Bhagwat, Amar R.; Venkataraman, Vivek; Londero, Pablo; Gaeta, Alexander L.

    2010-05-15

    Recent demonstrations of light-matter interactions with atoms and molecules confined to hollow waveguides offer great promise for ultralow-light-level applications. The use of waveguides allows for tight optical confinement over interaction lengths much greater than what could be achieved in bulk geometries. However, the combination of strong atom-photon interactions and nonuniformity of guided light modes gives rise to spectroscopic features that must be understood in order to take full advantage of the properties of such systems. We use light-induced atomic desorption to generate an optically dense Rb vapor at room temperature inside a hollow-core photonic band-gap fiber. Saturable-absorption spectroscopy and passive slow-light experiments reveal large ac Stark shifts, power broadening, and transit-time broadening, that are present in this system even at nanowatt powers.

  16. Spectroscopy of lithium atoms using an optical frequency comb

    NASA Astrophysics Data System (ADS)

    Stalnaker, Jason; Almaguer, Jose; Sherry, Leanne

    2011-05-01

    The atomic structure of lithium (Li) has aroused a significant amount theoretical and experimental interest as a system in which precision atomic calculations and spectroscopic measurements can be united to yield scientifically significant results. While there have been many experimental investigations of Li spectroscopy, particularly of the isotope shifts and hyperfine structure on the 22S1 / 2 --> 22P1 / 2 , 3 / 2 (D 1 , D 2) transitions, they suffer from significant disagreements and systematic effects. By utilizing the optical-to-microwave frequency conversion made possible by a stabilized optical frequency comb, we will be able to resolve the discrepancies and measure the optical frequencies of the D 1 and D 2 transitions to an accuracy of 5 kHz. We present preliminary data from an atomic beam source and discuss future plans to develop a laser-cooled and trapped source. Supported by NIST Precision Measurements Grant.

  17. Atomic jet with ionization detection for laser spectroscopy of Rydberg atoms under collisions and fields

    NASA Astrophysics Data System (ADS)

    Philip, G.

    2008-03-01

    An efficient atomic jet setup offering many unprecedented advantages over a conventional heat pipe setup used in multi-photon spectroscopy, mainly of alkaline-earth metals, has been constructed by a scheme in which the sample material is encapsulated in a disposable cartridge oven located inside a thermally stabilised heat-pipe and is made to effuse in to a row of atomic beams merging to form a jet target. This novel scheme combines the advantages of both high density atomic beam with convenient geometry for orthogonal excitation and high sensitive ionisation detection capabilities of thermionic diodes, besides eliminating several problems inherent in the usual heat-pipe operation. Out of various designs, typical results are presented for a linear heat-pipe with vertical atomic jet used in two-photon spectroscopy of highly excited states of Sr I. Controlled excitations of both Rydberg and non-Rydberg states, which cannot otherwise be accessed from the ground state due to parity and spectroscopic selection rules, have been achieved by employing a weak electric field complimented by collisions. The atomic jet setup is also found very useful for the study of collisional broadening and shift of excited states and time evolution of Rydberg atoms.

  18. Research Toward Laser Spectroscopy of Trapped Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Sandberg, Jon Carl

    An apparatus has been designed and constructed to perform laser spectroscopy on magnetically trapped atomic hydrogen. Earlier experiments demonstrated the feasibility of magnetic trapping and evaporative cooling of atomic hydrogen. The current apparatus has been designed to explore two areas of research: high resolution laser spectroscopy of hydrogen, and the possible production and detection of Bose condensation. The 1S{-}2S two-photon transition was chosen for study because of its extremely narrow natural linewidth. The techniques developed here should ultimately permit laser spectroscopy with a resolution approaching 1 part in 10^{15 } and should be well suited to the detection of Bose condensation. The apparatus consists of two subsystems: a cryogenic apparatus for magnetically trapping hydrogen, and a laser source for producing the ultraviolet light necessary to excite the 1S{-}2S transition. The two subsystems have independently demonstrated exceptional performance. The magnetic trap has produced gas densities approaching 10^{14} cm ^{-3} at temperatures as low as 100 muK, the closest approach to Bose condensation achieved to date with atomic hydrogen. The continuous wave laser source has produced 20 mW of 243 nm light with an estimated spectral linewidth of 2 kHz. The optimum experimental conditions for excitation and detection of the 1S{-}2S transition in trapped hydrogen have been identified. Initial trials with the apparatus revealed an unexpected operational problem, however several strategies have been proposed that should allow observation of the transition. The expected features of the 1S{-}2S transition lineshape with magnetically trapped hydrogen have been calculated. The possibilities for future research with laser spectroscopy of magnetically trapped hydrogen are described, and a promising strategy for the detection of Bose condensation is proposed. (Copies available exclusively from MIT Libraries, Rm. 14-0551 Cambridge, MA 02139-4307. Ph. 617

  19. A CAVITY RINGDOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2002-01-01

    The first quarter of this project to develop a Cavity Ringdown Spectroscopy mercury continuous emission monitor involved acquisition and verification of the laser system to be used, initial cavity design, and initial software development for signal processing and data acquisition.

  20. Atomic and molecular data for optical stellar spectroscopy

    NASA Astrophysics Data System (ADS)

    Heiter, U.; Lind, K.; Asplund, M.; Barklem, P. S.; Bergemann, M.; Magrini, L.; Masseron, T.; Mikolaitis, Š.; Pickering, J. C.; Ruffoni, M. P.

    2015-05-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way Galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2-10 m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available data is facilitated by databases and electronic infrastructures such as the NIST Atomic Spectra Database, the VALD database, or the Virtual Atomic and Molecular Data Centre. We illustrate the current status of atomic data for optical stellar spectra with the example of the Gaia-ESO Public Spectroscopic Survey. Data sources for 35 chemical elements were reviewed in an effort to construct a line list for a homogeneous abundance analysis of up to 105 stars.

  1. Laser cooling, trapping, and Rydberg spectroscopy of neutral holmium atoms

    NASA Astrophysics Data System (ADS)

    Hostetter, James Allen

    This thesis focuses on progress towards using ensembles of neutral holmium for use in quantum computing operations. We are particularly interested in using a switchable interaction between neutral atoms, the Rydberg blockade, to implement a universal set of quantum gates in a collective encoding scheme that presents many benefits over quantum computing schemes which rely on physically distinct qubits. We show that holmium is uniquely suited for operations in a collective encoding basis because it has 128 ground hyperfine states, the largest number of any stable, neutral atom. Holmium is a rare earth atom that is very poorly described for our purposes as it has never been cooled and trapped, its spectrum is largely unknown, and it presents several unique experimental challenges related to its complicated atomic structure and short wavelength transitions. We demonstrate important progress towards overcoming these challenges. We produce the first laser cooling and trapping of holmium into a MOT. Because we use a broad cooling transition, our cooling technique does not require the use of a Zeeman slower. Using MOT depletion spectroscopy, we provide precise measurements of holmium's Rydberg states and its ionization potential. Our work continues towards cooling holmium into a dipole trap by calculating holmium's AC polarizability and demonstrating the results of early attempts at an optical dipole trap. We provide details of future upgrades to the experimental apparatus and discuss interesting potential for using holmium in quantum computing using single atoms in a magnetically trapped lattice. This thesis shows several promising indicators for continued work in this field.

  2. Atomic Multiplets in X-ray Spectroscopies of Solids

    NASA Astrophysics Data System (ADS)

    Delley, Bernard; Uldry, Anne-Christine

    2013-03-01

    The electronic structures of compounds involving open d- and f- shell are studied frequently by X-ray and electron spectroscopies. For a better understanding of the multiplets arising in spectra involving one or more open shells, we have developed recently an easy to use program multiX,[2] which is available to download.[3] This first step allows the inclusion of the crystal environment as a crystal field entered simply as positions and charges of a cluster of atoms around the core hole site. This often gives valuable insights in the case of x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray spectroscopy (RIXS) measurements. However, in many cases it is desirable to allow for hybridization of the open shell electrons with the orbitals of neighbor atoms. This requires dealing with a significantly larger active Hilbert space. This is addressed with our recent Lanczos-based procedure to calculate spectra. First results will be discussed. Swiss SNF grant 200021-129970 is gratefully acknowledged.

  3. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy.

    PubMed

    Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry

    2015-07-01

    We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α. Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α. Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1  rad s-1. No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3×10(-18)  eV. Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks. PMID:26182090

  4. Search for Ultralight Scalar Dark Matter with Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Van Tilburg, Ken; Leefer, Nathan; Bougas, Lykourgos; Budker, Dmitry

    2015-07-01

    We report new limits on ultralight scalar dark matter (DM) with dilatonlike couplings to photons that can induce oscillations in the fine-structure constant α . Atomic dysprosium exhibits an electronic structure with two nearly degenerate levels whose energy splitting is sensitive to changes in α . Spectroscopy data for two isotopes of dysprosium over a two-year span are analyzed for coherent oscillations with angular frequencies below 1 rad s-1 . No signal consistent with a DM coupling is identified, leading to new constraints on dilatonlike photon couplings over a wide mass range. Under the assumption that the scalar field comprises all of the DM, our limits on the coupling exceed those from equivalence-principle tests by up to 4 orders of magnitude for masses below 3 ×10-18 eV . Excess oscillatory power, inconsistent with fine-structure variation, is detected in a control channel, and is likely due to a systematic effect. Our atomic spectroscopy limits on DM are the first of their kind, and leave substantial room for improvement with state-of-the-art atomic clocks.

  5. Atomic-Scale Imaging and Spectroscopy Using Scanning Tunneling Microscopy.

    NASA Astrophysics Data System (ADS)

    Youngquist, Michael George

    Advances in scanning tunneling microscopy (STM) instrumentation and applications are presented. An ultrahigh vacuum (UHV) scanning tunneling microscope incorporating computer-controlled two-dimensional sample translation and in vacuo tip and sample transfer was developed. Its performance is documented through large-area and atomic -resolution imaging of highly stepped Si(111) 7 x 7 reconstructed surfaces and physisorbed clusters on graphite. An STM with automated approach and intra-Dewar spring suspension was developed for operation in cryogenic liquids. A high performance digital signal processor (DSP) based control system was constructed, and software with advanced spectroscopic imaging and data processing capabilities was developed. The feasibility of individual-molecule vibrational spectroscopy via STM-detected inelastic electron tunneling is assessed. In preliminary experiments, a low-temperature STM was used for energy gap and phonon spectroscopy of superconducting Pb films. The first STM observation of phonon density of states effects in a superconductor is reported. A systematic UHV STM imaging and spectroscopy study of 2H-MoS_2 was conducted. Atom -resolved images from three distinct imaging modes are presented. Occasional appearance of negative differential resistance (NDR) in I vs. V measurements is traced to changing tip electronic structure rather than localized surface states. Other potential NDR mechanisms are discussed including electron trap charging and resonant tunneling through a double-barrier quantum well structure arising from layer separation in the MoS_2 crystal. DNA was imaged at atomic resolution with a UHV STM. Images show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles have atom-for-atom correlation with the A-DNA van der Waals surface. This work demonstrates the potential of the STM for characterization of large biomolecular structures. Impurity-pinned steps on silicon and gold surfaces

  6. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    SciTech Connect

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  7. Resonantly enhanced Bragg-scattering spectroscopy of an atomic transition

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Qiao, Cuifang; Li, Chuanliang; Chen, Fenghua

    2016-07-01

    A novel resonantly enhanced Bragg-scattering (REBS) spectroscopy from a population difference grating (PDG) is reported. The PDG is formed by a standing-wave (SW) pump field, which periodically modulates the space population distributions of two levels in the 87Rb D1 line. Then, a probe beam, having identical frequency and orthogonal polarization with the SW pump field, is Bragg-scattered by the PDG. The research achievement shows that the Bragg-scattered light is strongest at an atomic transition, and forms an REBS spectrum with a high signal-to-noise ratio and sub-natural linewidth. The observed REBS can be applied in precise frequency measurements.

  8. Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition

    SciTech Connect

    Proslier, Th.; Zasadzinski, J.; Ciovati, Gianluigi; Kneisel, Peter K.; Elam, J. W.; Norem, J.; Pellin, M. J.

    2009-11-01

    We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

  9. Two-atom spontaneous emission in a planar microcavity

    SciTech Connect

    Ujihara, Kikuo; Dung, Ho Trung

    2002-11-01

    Spontaneous emission in a planar microcavity by two identical and spatially separated two-level atoms, both of them initially excited, is considered under fourth-order perturbation approximation in atom-field coupling constants. A delay-differential equation with proper retardation times for the probability of both atoms in the upper state is derived and expressions for the emitted-light intensity and spectrum are given. It is numerically shown that, while two-atom cooperation is enhanced for small interatomic distances, the two-atom vacuum Rabi oscillation is somewhat suppressed compared to the single-atom oscillation level when the interatomic separation is close to the cavity transverse coherence length.

  10. Laser sources for precision spectroscopy on atomic strontium.

    PubMed

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium. PMID:16527534

  11. Atomic emission in the ultraviolet nightglow

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.; Siskind, D. E.

    1989-01-01

    An observation of the ultraviolet nightglow between 2670 A and 3040 A was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter UV spectrometer operating at 3.5 A resolution viewed the earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2852 A is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2972 A line from O(1S) was less than that predicted from the accepted O(1S) branching ratio and acceptable ratios of Herzberg I to 5577 A emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  12. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  13. Rotational spectra of N2 + : An advanced undergraduate laboratory in atomic and molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Bayram, S. B.; Arndt, P. T.; Freamat, M. V.

    2015-10-01

    We describe an inexpensive instructional experiment that demonstrates the rotational energy levels of diatomic nitrogen, using the emission band spectrum of molecular nitrogen ionized by various processes in a commercial ac capillary discharge tube. The simple setup and analytical procedure is introduced as part of a sequence of educational experiments employed by a course of advanced atomic and molecular spectroscopy, where the study of rotational spectra is combined with the analysis of vibrational characteristics for a multifaceted picture of the quantum states of diatomic molecules.

  14. Atomic emission in the ultraviolet nightglow

    SciTech Connect

    Sharp, W.E.; Siskind, D.E. )

    1989-12-01

    An observation of the ultraviolet nightglow between 2,670 {angstrom} and 3,040 {angstrom} was conducted over White Sands Missile Range on October 22, 1984, at 0020 hours LST during the Orionids meteor shower. A 1/4-meter uv spectrometer operating at 3.5 {angstrom} resolution viewed the Earth's limb at tangent heights between 90 km and 110 km for 120 seconds. By inverting the observed limb intensities, a total zenith intensity of 1.4 kR is inferred for the Herzberg I system. Excess emission above the Herzberg I (7,3) band at 2,852 {angstrom} is identified as the Mg I resonance line. The intensity ratio of the Herzberg I band system to the 2,972 {angstrom} line from O({sup 1}S) was less than that predicted from the accepted O({sup 1}S) branching ratio and acceptable ratios of Herzberg I to 5,577 {angstrom} emissions. Arguments supporting the identification of the Herzberg III band system are also advanced.

  15. Induced Emission of Cold Atoms Passing Through a Micromaser Cavity

    NASA Astrophysics Data System (ADS)

    Abdel-Aty, Mahmoud; Obada, Abdel-Shafy F.

    The emission probability of a cold atom in a microcavity when its center-of-mass motion is described quantum mechanically is presented, but is distinguished from other treatments by the inclusion of the spatial variation along the cavity axis. In particular, the mesa mode cavity profile is considered. The quantum theory of the one-photon mazer is constructed in the framework of the dressed-state coordinate formalism. Simple expressions for the atomic populations, the cavity photon statistics, and the reflection and transmission probabilities are given for any initial state of the atom-field system. The general conclusions reached are illustrated by numerical results.

  16. Laser-excitation atomic fluorescence spectroscopy in a helium microwave-induced plasma

    NASA Astrophysics Data System (ADS)

    Schroeder, Timothy S.

    The focus of this dissertation is to report the first documented coupling of helium microwave induced plasmas (MIPs) to laser excitation atomic fluorescence spectroscopy. The ability to effectively produce intense atomic emission from both metal and nonmetal analytes gives helium microwave induced plasmas a greater flexibility than the more commonly utilized argon inductively coupled plasma (ICP). Originally designed as an element selective detector for non-aqueous chromatography applications at low applied powers (<100W), the helium microwave plasma has been applied to aqueous sample determinations at higher applied powers (>500 W). The helium MIP has been shown to be a very powerful analytical atomic spectroscopy tool. The development of the pulsed dye laser offered an improved method of excitation in the field of atomic fluorescence. The use of laser excitation for atomic fluorescence was a logical successor to the conventional excitation methods involving hollow cathode lamps and continuum sources. The highly intense, directional, and monochromatic nature of laser radiation results in an increased population of atomic species in excited electronic states where atomic fluorescence can occur. The application of laser excitation atomic fluorescence to the analysis of metals in a helium microwave induced plasma with ultrasonic sample nebulization was the initial focus of this work. Experimental conditions and results are included for the aqueous characterization of manganese, lead, thallium, and iron in the helium MIP- LEAFS system. These results are compared to previous laser excitation atomic fluorescence experimentation. The effect of matrix interferences on the analytical fluorescence signal was also investigated for each element. The advantage of helium MIPs over argon ICPs in the determination of nonmetals in solution indicates that the helium MIP is an excellent candidate for laser excitation atomic fluorescence experiments involving nonmetals such as

  17. Plasma emission spectroscopy method of tumor therapy

    DOEpatents

    Fleming, K.J.

    1997-03-11

    Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics. 6 figs.

  18. Plasma emission spectroscopy method of tumor therapy

    DOEpatents

    Fleming, Kevin J.

    1997-01-01

    Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics.

  19. Mid-infrared Molecular Emission Studies from Energetic Materials using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, Ei; Hommerich, Uwe; Yang, Clayton; Trivedi, Sudhir; Samuels, Alan; Snyder, Peter

    2011-10-01

    Laser-induced breakdown spectroscopy (LIBS) is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. The laser-induced plasma was produced by focusing a 30 mJ pulsed Nd:YAG laser (1064 nm) to dissociate, atomize, and ionize target molecules. In this work, LIBS emissions in the mid-infrared (MIR) region were studied for potential applications in chemical, biological, and explosives (CBE) sensing. We report on the observation of MIR emissions from energetic materials (e.g. ammonium compounds) due to laser-induced breakdown processes. All samples showed LIBS-triggered oxygenated breakdown products as well as partially dissociated and recombination molecular species. More detailed results of the performed MIR LIBS studies on the energetic materials will be discussed at the conference.

  20. NIST Atomic Spectroscopy Databases in Support of Astronomy

    NASA Astrophysics Data System (ADS)

    Reader, Joseph; Kramida, A.; Ralchenko, Y.

    2012-01-01

    Joseph Reader1, Alexander Kramida1, Yuri Ralchenko1 1National Institute of Standards and Technology, Gaithersburg, Maryland. The NIST Atomic Spectroscopy Data Center maintains a number of online databases supporting astronomical observations of atomic spectra. The available numerical and bibliographic databases can be accessed from the NIST Physical Measurement Laboratory website www.nist.gov/pml/data/atomspec.cfm. The largest one, the Atomic Spectra Database (ASD), contains wavelength and energy level data for nearly 180,000 spectral lines including 73,400 oscillator strengths. ASD also includes 92,500 energy levels for various ions of 89 elements. In addition to tabular data, ASD can generate dynamic Grotrian diagrams and Saha/LTE spectra, which can be tailored to the user's needs. We continue to systematically expand this database according to needs of the astrophysics and fusion energy science communities. Our bibliographic databases for atomic spectra are updated about every two weeks; they serve as a valuable resource in searching for the latest data. We also provide online non-LTE codes for plasma modeling. Our compilations of spectral data are largely oriented to the needs of astronomers. Recently completed are extensive compilations for Ar, Cr, Ti, and Ni, and a new compilation for Ca is in progress. Recent updates of line lists and transition probabilities include data for H, He, Li, Be, B, C, N, F, Ne, Na, Mg Al, Cl, Sr, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Cs, and Ba. We welcome suggestions from astronomers regarding spectra to be compiled and added to the online databases. Spectral atlases of Pt/Ne and Th/Ar hollow cathode lamps for wavelength calibration of astronomical spectrometers can also be found at his website. Our Data Center is supported by NASA (agreement NNH09AL771) and by the Office of Fusion Energy Sciences of the U. S. Department of Energy.

  1. EQUIB: Atomic level populations and line emissivities calculator

    NASA Astrophysics Data System (ADS)

    Howarth, I. D.; Adams, S.; Clegg, R. E. S.; Ruffle, D. P.; Liu, X.-W.; Pritchet, C. J.; Ercolano, B.

    2016-03-01

    The Fortran program EQUIB solves the statistical equilibrium equation for each ion and yields atomic level populations and line emissivities for given physical conditions, namely electron temperature and electron density, appropriate to the zones in an ionized nebula where the ions are expected to exist.

  2. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    NASA Astrophysics Data System (ADS)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  3. Data processing for atomic resolution electron energy loss spectroscopy.

    PubMed

    Cueva, Paul; Hovden, Robert; Mundy, Julia A; Xin, Huolin L; Muller, David A

    2012-08-01

    The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches--linear combination of power laws and local background averaging--that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis. PMID:22697429

  4. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  5. Towards an improved measurement of the proton size from precision spectroscopy of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Maisenbacher, Lothar; Beyer, Axel; Khabarova, Ksenia; Matveev, Arthur; Pohl, Randolf; Udem, Thomas; Hänsch, Theodor W.; Kolachevsky, Nikolai

    2015-05-01

    Precision spectroscopy of atomic hydrogen has long been successfully used to provide stringent tests on fundamental theories and precisely determine physical constants. The current limit originates from the uncertainty in the value of the proton r.m.s.charge radius rp. Moreover, the value of rp extracted from laser spectroscopy of muonic hydrogen is ten times more accurate than any other determination, but disagrees by 7 σ with the recommended CODATA 2010 value. Here, we report on our progress towards an improved absolute frequency measurement of the 2S-4P (one-photon) transition in atomic hydrogen, which combined with the much more precisely known 1S-2S transition frequency allows a more precise extraction of rp from electronic hydrogen. To suppress the first order Doppler shift, we use a cryogenic beam of atoms optically excited to the 2S state and actively stabilized counter-propagating laser beams. Interference effects due to spontaneous emission were studied and we show how to experimentally suppress the corresponding line center shifts.

  6. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    SciTech Connect

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  7. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    SciTech Connect

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  8. Atomic Physics with Accelerators: Projectile Electron Spectroscopy (APAPES)

    NASA Astrophysics Data System (ADS)

    Madesis, I.; Dimitriou, A.; Laoutaris, A.; Lagoyannis, A.; Axiotis, M.; Mertzimekis, T.; Andrianis, M.; Harissopulos, S.; Benis, E. P.; Sulik, B.; Valastyán, I.; Zouros, T. J. M.

    2015-01-01

    The new research initiative APAPES (http://apapes.physics.uoc.gr/) has already established a new experimental station with a beam line dedicated for atomic collisions physics research, at the 5 MV TANDEM accelerator of the National Research Centre "Demokritos" in Athens, Greece. A complete zero-degree Auger projectile spectroscopy (ZAPS) apparatus has been put together to perform high resolution studies of electrons emitted in ion-atom collisions. A single stage hemispherical spectrometer with a 2-dimensional Position Sensitive Detector (PSD) combined with a doubly-differentially pumped gas target will be used to perform a systematic isoelectronic investigation of K-Auger spectra emitted from collisions of preexcited and ground state He-like ions with gas targets using novel techniques. Our intention is to provide a more thorough understanding of cascade feeding of the 1s2s2p 4P metastable states produced by electron capture in collisions of He-like ions with gas targets and further elucidate their role in the non-statistical production of excited three-electron 1s2s2p states by electron capture, recently a field of conflicting interpretations awaiting further resolution. At the moment, the apparatus is being completed and the spectrometer will soon be fully operational. Here we present the project progress and the recent high resolution spectrum obtained in collisions of 12 MeV C4+ on a Neon gas target.

  9. Magnetic-field-assisted atomic polarization spectroscopy of 4 He

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Wang, Haidong; Wu, Teng; Peng, Xiang; Guo, Hong; Cream Team

    2016-05-01

    Atomic polarization spectroscopy (PS) is a high resolution sub-Doppler atomic spectroscopic technique with free modulation. It is always desirable to obtain a PS signal with zero background as it can provide a more preferable laser frequency stabilization performance. There are many factors that can affect the PS signal background, i.e., the laser power, the laser polarization and the magnetic field. Here, we demonstrate a method for observing and analyzing the effects on the PS signal of 4 He under different magnetic fields. At the beginning, under nearly zero magnetic field, the large asymmetrical PS signal background has been observed and cannot be eliminated by only optically adjusting. Then, we find that the PS signal profile can be changed and controlled by varying the magnetic field with transverse or longitudinal direction and different intensity. The optimized PS signal with symmetrical dispersive profile and zero background is obtained when the magnetic field is chosen and controlled in the transverse direction and more than 20000nT intensity. Similar phenomenon cannot be observed under the longitudinal magnetic field. A theoretical model is also presented, which explains and agrees well with our experimental results.

  10. Experimental Atomic Spectroscopy At NIST In Support Of Astronomy

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Sansonetti, C. J.; Redman, S. L.

    2012-01-01

    The Atomic Spectroscopy Group at the National Institute of Standards and Technology (NIST) has equipment to measure atomic wavelengths and oscillator strengths of astrophysical interest over a wide spectral range. Our 2-m Fourier transform (FT) spectrometer covers wavelengths from 230 nm to 5500 nm at a resolving power of over a million. It has been used to measure calibration data for ground-based astronomical spectrographs, including infrared atlases of Th/Ar and U/Ne hollow cathode lamps and measurements of iodine absorption cells that calibrate many of the spectrographs used for exoplanet searches. Our ultraviolet FT spectrometer covers the range from 140 nm to 900 nm with a resolving power of over a million at 200 nm. Below 140 nm, our 10.7 m normal incidence vacuum spectrograph has been used to provide calibration data for three spectrographs on the Hubble Space Telescope (GHRS, STIS and COS). Although originally designed for use with photographic plates, we have begun using this instrument with phosphor image plates as detectors. These provide a linear intensity response throughout the vacuum ultraviolet, enabling us to measure branching ratios in Fe II and the change in spectral line intensities of Pt/Ne hollow cathode lamps as they age. Data from all three instruments are currently being analyzed to obtain comprehensive descriptions of the spectra of Fe II and Cr II covering wavelengths from 90 nm to 5500 nm. Much of this work has been partly funded by NASA, most recently under agreement NNH11AQ551 to analyze spectra of iron-group elements. Such support is crucial to the continuation of this work at NIST, much of which is of little interest in basic atomic physics but is vital for the interpretation of astrophysical spectra. We are seeking collaborations with astronomers who can assist us in determining future research directions.

  11. Thermal emission spectroscopy of the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Kunde, V. G.; Brasunas, J. C.; Conrath, B. J.; Herman, J. R.; Maguire, W. C.; Massie, S. T.; Abbas, Mian M.

    1990-01-01

    The general objective of this research is to obtain, via remote sensing, simultaneous measurements of the vertical distributions of stratospheric temperature, ozone, and trace constituents that participate in the catalytic destruction of ozone (NO(sub y): NO, NO2, NO3, HNO3, ClONO2, N2O5, HNO4; Cl(sub x): HOCl), and the source gases for the catalytic cycles (H2O, CH4, N2O, CF2Cl2, CFCl3, CCl4, CH3Cl, CHF2Cl, etc.). Data are collected during a complete diurnal cycle in order to test our present understanding of ozone chemistry and its associate catalytic cycles. The instrumentation employed is an emission-mode, balloon-borne, liquid-nitrogen-cooled Michelson interferometer-spectrometer (SIRIS), covering the mid-infrared range with a spectral resolution of 0.020 cm(exp -1). Cryogenic cooling combined with the use of extrinsic silicon photoconductor detectors allows the detection of weak emission features of stratospheric gaseous species. Vertical distributions of these species are inferred from scans of the thermal emission of the limb in a sequence of elevation angles. The fourth SIRIS balloon flight was carried out from Palestine, Texas on September 15-16, 1986 with 9 hours of nighttime data (40 km). High quality data with spectral resolution 0.022 cm(exp -1), were obtained for numerous limb sequences. Fifteen stratospheric species have been identified to date from this flight: five species from the NO(sub y) family (HNO3, NO2, NO, ClONO2, N2O5), plus CO2, O3, H2O, N2O, CH4, CCl3F, CCl2F2, CHF2Cl, CF4, and CCl4. The nighttime values of N2O5, ClONO2, and total odd nitrogen have been measured for the first time, and compared to model results. Analysis of the diurnal variation of N2O5 within the 1984 and 1986 data sets, and of the 1984 ClONO2 measurements, were presented in the literature. The demonstrated ability of SIRIS to measure all the major NO(sub y) species, and therefore to determine the partitioning of the nitrogen family over a continuous diurnal cycle, is

  12. Linear radiation model for phase of thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bennett, Ted D.; Yu, Fengling

    2005-11-01

    A linear radiation model is developed that overcomes the analytical complexity in phase of thermal emission spectroscopy. It is shown that the linear radiation model can result in a simple algebraic relation between the phase of thermal emission and four coating properties, enabling these properties to be determined by nonlinear regression analysis of experimental measurements. Suitability of the linear radiation model to various measurement conditions is explored, and the model is applied to the phase of thermal emission measurements performed on a thermal barrier coating.

  13. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    ERIC Educational Resources Information Center

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  14. Electron-Impact-Induced Emission Cross Sections of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; James, G. K.; Ajello, J. M.; Khakoo, M. A.

    1998-05-01

    One cannot overstate the importance of ultraviolet (UV) lines of neutral atomic oxygen. For example, the atomic oxygen resonance transition at 130.4 nm is a prominent emission feature in the vacuum ultraviolet (VUV) spectrum of the Earth's aurora and dayglow as well as the atmospheres of Venus and Mars. In this poster, we present our measurements of the electron-impact emission cross sections of the 130.4 nm atomic oxygen feature from threshold to 100 eV impact energy. A high-density atomic oxygen beam, created by a microwave discharge source, was intersected at a right angle by a magnetically focused electron beam. A 0.2m UV spectrometer system was used in the present measurements. It consists of an electron-impact collision chamber in tandem with an UV spectrometer equipped with a CsI coated channel electron multiplier detector. Emitted photons corresponding to radiative decay of collisionally excited state of the 130.4 nm atomic oxygen feature were detected.

  15. Theory of single molecule emission spectroscopy

    SciTech Connect

    Bel, Golan; Brown, Frank L. H.

    2015-05-07

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive “detection” based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  16. Theory of single molecule emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Bel, Golan; Brown, Frank L. H.

    2015-05-01

    A general theory and calculation framework for the prediction of frequency-resolved single molecule photon counting statistics is presented. Expressions for the generating function of photon counts are derived, both for the case of naive "detection" based solely on photon emission from the molecule and also for experimentally realizable detection of emitted photons, and are used to explicitly calculate low-order photon-counting moments. The two cases of naive detection versus physical detection are compared to one another and it is demonstrated that the physical detection scheme resolves certain inconsistencies predicted via the naive detection approach. Applications to two different models for molecular dynamics are considered: a simple two-level system and a two-level absorber subject to spectral diffusion.

  17. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  18. Mars exploration via thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.; Blasius, Karl R.; Christensen, Philip; Silverman, Steven; Ruff, Steven; Wyatt, Michael; Mehall, Greg; Peralta, Richard J.; Bates, Duane

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, the Arizona State University (ASU), and Raytheon Space and Airborne Systems (SAS) Santa Barbara Remote Sensing (SBRS) have executed a series of successful Mars exploration missions. These have recently been publicized on television and the internet with the early 2004 Mars Exploration Rover (MER) mission geological robots that have revolutionized our detailed knowledge of the planet's geology and atmosphere. This latest mission success has its foundation in missions dating back to 1969. Over the past thirty-five years NASA has demonstrated a long-term commitment to planetary science and solar system exploration that continues with a commitment recently expressed by President Bush and codified in a reorganization of the NASA space sciences mission directorate. This paper reports on a small but exciting aspect of this sweeping NASA program, and illustrates the benefits and efficiency with which planetary and solar system exploration can be accomplished. Key in the success is the vision not only of NASA in general, but of the mission Principal Investigator, in particular. The specific series of missions leading to MER contains an underlying vision of carefully planned geological investigations using remote sensing instrumentation, starting with broad survey, leading to more finely resolved global imaging, and finally to landing instrumentation capable of detailed rock and soil analyses. The mission started with broad and relatively coarse spatial resolution orbital surveys with fine spectral capability focused on identifying the overall geological and atmospheric character of the planet accomplished from 1996 to the present conducted by the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES). This led to the more detailed global imaging at finer spatial resolution offered by the Mars 2001 Odyssey Mission Thermal Emission Imaging System (THEMIS) which identified specific

  19. Atomic Auger Doppler effects upon emission of fast photoelectrons.

    PubMed

    Simon, Marc; Püttner, Ralph; Marchenko, Tatiana; Guillemin, Renaud; Kushawaha, Rajesh K; Journel, Loïc; Goldsztejn, Gildas; Piancastelli, Maria Novella; Ablett, James M; Rueff, Jean-Pascal; Céolin, Denis

    2014-01-01

    Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids. PMID:24906107

  20. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'Skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  1. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre.

    PubMed

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the (1)S0-(3)P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  2. Emission Spectroscopy Following the Multiphoton Photolysis of Halomethanes at Near-Ultraviolet Wavelengths

    NASA Astrophysics Data System (ADS)

    Liu, Chen-Nan; Liao, Hsiang-Fu; Hou, Guang-Yi; Yang, Shi-Xing; Chang, Bor-Chen

    2010-06-01

    Emission spectroscopy including nascent emission and laser-induced dispersed fluorescence was adopted to investigate the multiphoton photolysis mechanism of halomethanes at near-ultraviolet wavelengths in a slow flow system. In the 266 nm photolysis of the interested halomethanes (CHBr_3, CHBr_2Cl, CHBrCl_2, CH_2Br_2, CHI_3, CH_2I_2, and CH_3I), several excited species such as CH (A^2Δ, B^2Σ^-, and C^2Σ^+), atomic Br or I, and C_2 (d^3Π_g) were observed in the nascent emission spectra. Halomethylenes (CHX, X= Br, Cl, I), the reactive intermediates, were not observed in nascent emission spectra, but they can be found using laser-induced dispersed fluorescence spectroscopy following excitation of their ~A1A' '(0,v_2,0)←~X1A^'(0,0,0) transitions. Interestingly, CHBr was seen only in the photolysis of CHBr_3, whereas CHCl was only discovered when the precursor is CHBr_2Cl or CHBrCl_2. The photolysis laser power dependence and emission waveform measurements were also conducted. In addition, nascent emission spectra following the photolysis at longer near-ultraviolet wavelengths (280 nm and 355 nm) were acquired. The results show the distinctive differences between the photolysis of bromomethanes (CHBr_3, CHBr_2Cl, CHBrCl_2, and CH_2Br_2) and that of iodomethanes (CHI_3, CH_2I_2, and CH_3I). Our recent progress will be presented.

  3. Atomic Number Dependence of Ion-Induced Electron Emission

    NASA Astrophysics Data System (ADS)

    Arrale, Abdikarim Mohamed

    Knowledge of the atomic number (Z_1 ) dependence of ion-induced electron emission yields (gamma) can be the basis for a general understanding of ion-atom interaction phenomena and, in particular, for the design of Z_1 -sensitive detectors that could be useful, for example, in the separation of isobars in accelerator mass spectrometry. The Z_1 dependence of ion-induced electron emission yields has been investigated using heavy ions of identical velocity (v = 2 v_0, with v_0 as the Bohr velocity) incident in a normal direction on sputter-cleaned carbon foils. Yields measured in this work plotted as a function of the ion's atomic number reveal an oscillatory behavior with pronounced maxima and minima. This nonmonotonic dependence of the yield on Z_1 will be discussed in the light of existing theories. Ion-induced electron emission yields from contaminated surfaces are well known to be enhanced relative to the yields from atomically clean surfaces. Under the bombardment of energetic ions, the surfaces become sputter-cleaned with time, and the yields from the samples are reduced accordingly. The time dependent reduction of yields observed are shown to be due to various effects such as the desorption of contaminant atoms and molecules by incident ions and the adsorption of residual gas onto previously clean sites. Experimental results obtained in the present work show the lower, saturated yield (gamma_{rm s} ) to be a function of residual gas pressure (P) and the fluence (phi_{rm i}) of the ion. We present a dynamic equilibrium model which explains the increase in yields for surface gas contamination, the decrease in yields for contaminant desorption, and the pressure/fluence dependence of the time required to reach gamma_{ rm s}. The predictions of the model agree well with the observations of gamma _{rm s} as a function of the ratio of gas flux to ion flux, and the electron yields of clean and gas covered surfaces.

  4. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions.

    PubMed

    Parigger, Christian G; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10(17) cm(-3) for time delays of 2.1 to 0.4 micros after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the Delta nu = +2 progression of the C(2) Swan system are discernable in the H(beta) and H(gamma) plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH(4) flow pressures of 2.7x10(5) Pa (25 psig) and 6.5x10(5) Pa (80 psig). PMID:19122690

  5. Time-resolved spectroscopy measurements of hydrogen-alpha, -beta, and -gamma emissions

    SciTech Connect

    Parigger, Christian G.; Dackman, Matthew; Hornkohl, James O

    2008-11-01

    Hydrogen emission spectroscopy results are reported following laser-induced optical breakdown with infrared Nd:YAG laser radiation focused into a pulsed methane flow. Measurements of Stark-broadened atomic hydrogen-alpha, -beta, and -gamma lines show electron number densities of 0.3 to 4x10{sup 17} cm{sup -3} for time delays of 2.1 to 0.4 {mu}s after laser-induced optical breakdown. In methane flow, recombination molecular spectra of the {delta}{nu}=+2 progression of the C2 Swan system are discernable in the H{beta} and H{gamma} plasma emissions within the first few microseconds. The recorded atomic spectra indicate the occurrence of hydrogen self-absorption for pulsed CH4 flow pressures of 2.7x10{sup 5} Pa (25 psig) and 6.5x10{sup 5} Pa (80 psig)

  6. Infrared [Fe II] Emission Lines from Radiative Atomic Shocks

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Raymond, John C.; Kim, Hyun-Jeong

    2016-06-01

    [Fe II] emission lines are prominent in the infrared (IR) and important as diagnostic tools for radiative atomic shocks. We investigate the emission characteristics of [Fe II] lines using a shock code developed by te{raymond1979} with updated atomic parameters. We first review general characteristics of the IR [Fe II] emission lines from shocked gas, and derive their fluxes as a function of shock speed and ambient density. We have compiled available IR [Fe II] line observations of interstellar shocks and compare them to the ratios predicted from our model. The sample includes both young and old supernova remnants in the Galaxy and the Large Magellanic Cloud and several Herbig-Haro objects. We find that the observed ratios of the IR [Fe II] lines generally fall on our grid of shock models, but the ratios of some mid-IR lines, e.g., fethreefive/fetwofive, fefive/fetwofive, and fefive/feoneseven, are significantly offset from our model grid. We discuss possible explanations and conclude that while uncertainties in the shock modeling and the observations certainly exist, the uncertainty in atomic rates appears to be the major source of discrepancy.

  7. Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli

    SciTech Connect

    Vujosevic, D.; Mozetic, M.; Cvelbar, U.; Krstulovic, N.; Milosevic, S.

    2007-05-15

    Optical emission spectroscopy was applied for plasma characterization during sterilization of substrates contaminated with bacteria. The amount of 10{sup 10}/ml cells of Escherichia coli was carefully applied to glass substrates and exposed to oxygen plasma glow discharge at different pressures between 30 and 200 Pa. Plasma was created in a glass discharge tube by an inductively coupled rf generator at the frequency of 27.12 MHz and output power of about 250 W. The electron temperature and plasma density were estimated with a double Langmuir probe. They were between 3 and 5 eV and 2 and 35x10{sup 15} m{sup -3}. Density of neutral oxygen atoms was measured with a catalytic probe, and was between 2 and 6x10{sup 21} m{sup -3}. Optical emission spectroscopy was performed with a low resolution spectrometer. The emission from carbon monoxide and nitrogen molecules was used to monitor the evolution of bacteria degradation. Both signals expressed a well defined maximum corresponding to peak erosion of bacteria by plasma radicals. As the sterilization was accomplished, both CO and N{sub 2} lines fell below the detection limit of the spectrometer. The bacteria degradation was also monitored by scanning electron microscope (SEM) and culturing. The SEM images corresponded well with the evolution of CO and N{sub 2} lines so the optical emission spectroscopy found a reliable tool for monitoring the sterilization process.

  8. Optical emission spectroscopy characterization of oxygen plasma during degradation of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Vujošević, D.; Mozetič, M.; Cvelbar, U.; Krstulović, N.; Milošević, S.

    2007-05-01

    Optical emission spectroscopy was applied for plasma characterization during sterilization of substrates contaminated with bacteria. The amount of 1010/ml cells of Escherichia coli was carefully applied to glass substrates and exposed to oxygen plasma glow discharge at different pressures between 30 and 200Pa. Plasma was created in a glass discharge tube by an inductively coupled rf generator at the frequency of 27.12MHz and output power of about 250W. The electron temperature and plasma density were estimated with a double Langmuir probe. They were between 3 and 5eV and 2 and 35×1015m-3. Density of neutral oxygen atoms was measured with a catalytic probe, and was between 2 and 6×1021m-3. Optical emission spectroscopy was performed with a low resolution spectrometer. The emission from carbon monoxide and nitrogen molecules was used to monitor the evolution of bacteria degradation. Both signals expressed a well defined maximum corresponding to peak erosion of bacteria by plasma radicals. As the sterilization was accomplished, both CO and N2 lines fell below the detection limit of the spectrometer. The bacteria degradation was also monitored by scanning electron microscope (SEM) and culturing. The SEM images corresponded well with the evolution of CO and N2 lines so the optical emission spectroscopy found a reliable tool for monitoring the sterilization process.

  9. Emission spectroscopy study of CF{sub 4} decomposition in an Ar-H{sub 2} inductive plasma torch

    SciTech Connect

    Ricard, A.; Al Ayoubi, S.; Cavvadias, S.; Amouroux, J.

    1995-12-31

    Radiative species in Ar RF plasma torch with addition of H{sub 2}, CH{sub 4} and CF{sub 4} polluting gases have been analyzed by emission spectroscopy. An efficient etching by F atoms of reactor quartz tube is detected from Si atom emission when a few 10{sup {minus}3} CF{sub 4} is introduced into the Ar plasma. The Si emission disappeared with H{sub 2} introduction into the Ar-CF{sub 4} gas mixture which has been correlated with HF formation. From C atomic emission, it is deduced that CF{sub 4} as CH{sub 4} polluting gases are largely dissociated into the Ar plasma torch.

  10. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  11. Quantitative Cherenkov emission spectroscopy for tissue oxygenation assessment

    PubMed Central

    Axelsson, Johan; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2012-01-01

    Measurements of Cherenkov emission in tissue during radiation therapy are shown to enable estimation of hemoglobin oxygen saturation non-invasively, through spectral fitting of the spontaneous emissions from the treated tissue. Tissue oxygenation plays a critical role in the efficacy of radiation therapy to kill tumor tissue. Yet in-vivo measurement of this has remained elusive in routine use because of the complexity of oxygen measurement techniques. There is a spectrally broad emission of Cherenkov light that is induced during the time of irradiation, and as this travels through tissue from the point of the radiation deposition, the tissue absorption and scatter impart spectral changes. These changes can be quantified by diffuse spectral fitting of the signal. Thus Cherenkov emission spectroscopy is demonstrated for the first time quantitatively in vitro and qualitatively in vivo, and has potential for real-time online tracking of tissue oxygen during radiation therapy when fully characterized and developed. PMID:22418319

  12. Spontaneous emission from an excited atom in the presence of N atoms and M modes

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.

    1985-05-01

    The spontaneous emission of an excited two-level atom into a system of N nonexcited atoms of the same type (with N much greater than 1) in the presence of M electromagnetic-field modes is investigated analytically, applying the Hamiltonian formulation of Dicke (1954) studied by Jaynes and Cummings (1963), Tavis and Cummings (1968), and Buley and Cummings (1964). It is shown that the trapping of radiation in the system seen when one EM mode is present does not persist as M approaches N. The feasibility of an experimental verification of these phenomena is discussed.

  13. Observation of superfluorescent emissions from laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Paradis, E.; Barrett, B.; Kumarakrishnan, A.; Zhang, R.; Raithel, G.

    2008-04-01

    We study superfluorescence (SF) from spherical and cigar-shaped clouds of laser-cooled Rubidium atoms from the 5D5/2 level through the 6P3/2 level to the 5S1/2 ground level. The atomic system is initially excited to the 5D5/2 level from the ground state via two-photon excitation through the intermediate 5P3/2 level. The fluorescence on the 6P-5S transition at 420 nm is recorded using time-resolved measurements. The time delays of the observed SF emission peaks typically scale as ˜N-1 , where N is the atom number, and are much smaller than the time delay expected for uncorrelated cascade fluorescence. Since N is significantly smaller than the threshold number for SF on the 420 nm transition, and larger than the threshold number for the 5D-6P transition at 5.2μm , our observations suggest that the 420 nm SF emission is triggered by rapid deexcitation of the 5D to the 6P level via SF at 5.2μm . The observed SF time delays for 420 nm emission agree with SF time-delay estimates for the 5.2μm transition. For spherical clouds, the SF is isotropic. For cigar-shaped clouds, the SF is highly anisotropic. Along the long axis of cigar-shaped atom clouds, SF and incoherent cascade fluorescence produce temporally well-resolved peaks in the detected signal. In this case, the SF component of the signal is highly concentrated along a direction in between the directions of the two almost parallel excitation beams. The observed SF intensities scale as N , suggesting that the 5D level is regeneratively pumped during the SF decay.

  14. Infrared laser-induced breakdown spectroscopy emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Yang, Clayton S.; Brown, E.; Hommerich, Uwe; Trivedi, Sudhir B.; Samuels, Alan C.; Snyder, A. Peter

    2011-05-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives (CBE) sensing and has significant potential for real time standoff detection and analysis. We have studied LIBS emissions in the mid-infrared (MIR) spectral region for potential applications in CBE sensing. Detailed MIR-LIBS studies were performed for several energetic materials for the first time. In this study, the IR signature spectral region between 4 - 12 um was mined for the appearance of MIR-LIBS emissions that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species.

  15. Digital imaging technique for optical emission spectroscopy of a hydrogen arcjet plume

    NASA Astrophysics Data System (ADS)

    Litchford, Ron J.; Ruyten, Wim M.

    1995-07-01

    A digital imaging technique has been developed for optical emission spectroscopy measurements of a 1.6-kW hydrogen arcjet plume. Emissions from the Balmer alpha and beta transitions of excited atomic hydrogen were measured with a computer-controlled red-green-blue color CCD detector with and without line-centered bandpass interference filters. A method for extending the effective dynamic range of the detector was developed, whereby images obtained with a wide range of exposure times are combined to form a single composite nonsaturated map of the plume emission structure. The line-of-sight measurements were deconvoluted to obtain the true radial intensity distribution with an inverse Abel transformation. Analysis of the inverted measurements indicates that the upper levels of the Balmer alpha and beta transitions are not thermalized with the electrons in the plasma. The local thermodynamic equilibrium assumption fails for this plasma, and the electron temperature is not equivalent to the apparent excitation

  16. Laser spectroscopy of atoms in superfluid helium for the measurement of nuclear spins and electromagnetic moments of radioactive atoms

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Furukawa, T.; Imamura, K.; Yang, X. F.; Hatakeyama, A.; Kobayashi, T.; Ueno, H.; Asahi, K.; Shimoda, T.; Matsuo, Y.

    2015-11-01

    A new laser spectroscopic method named "OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)" has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with 84-87Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes.

  17. Supplemental Report: Application of Emission Spectroscopy to Monitoring Technetium

    SciTech Connect

    Spencer, W.A.

    2000-07-27

    This report provides supplemental information to an earlier report BNF-98-003-0199, ''Evaluation of Emission Spectroscopy for the On-Line Analysis of Technetium''. In this report data is included from real Hanford samples as well as for solutions spiked with technetium. This supplemental work confirms the ability of ICP-ES to monitor technetium as it breaks through an ion exchange process.

  18. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    PubMed

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  19. Magnetic-sublevel atomic kinetics modeling for line polarization spectroscopy

    SciTech Connect

    Hakel, P.; Mancini, R. C.

    2004-01-01

    We discuss the mechanism of polarized X-ray line emission in plasmas, its connection to plasma anisotropy, and introduce an atomic kinetics model and code (POLAR) based on the population kinetics of magnetic sublevels. POLAR represents a multi-level, multi-process approach to the problem of polarized spectra in plasmas, and hence it is well suited for plasma applications where cascade effects and alignment transfer can become important. Polarization degrees of X-ray spectral lines computed with POLAR were successfully benchmarked against calculations done with other formalisms, and experimental results obtained at the EBIT facility of Lawrence Livermore National Laboratory. We also investigated the polarization of He-like Si X-ray satellite lines as spectral signatures of anisotropy in the electron distribution function. A comprehensive modeling study was performed taking into account hydrodynamics and electron kinetics. We find that two satellite lines connecting singlet states develop a noticeable polarization while the triplet lines remain unpolarized. These results suggest a scenario where triplet lines could be used as a reference while the singlets could be used as polarized markers of plasma anisotropy.

  20. Dynamics of femto- and nanosecond laser ablation plumes investigated using optical emission spectroscopy

    SciTech Connect

    Verhoff, B.; Harilal, S. S.; Freeman, J. R.; Diwakar, P. K.; Hassanein, A.

    2012-11-01

    We investigated the spatial and temporal evolution of temperature and electron density associated with femto- and nanosecond laser-produced plasmas (LPP) from brass under similar laser fluence conditions. For producing plasmas, brass targets were ablated in vacuum employing pulses either from a Ti:Sapphire ultrafast laser (40 fs, 800 nm) or from a Nd:YAG laser (6 ns, 1064 nm). Optical emission spectroscopy is used to infer the density and temperature of the plasmas. The electron density (n{sub e}) was estimated using Stark broadened profiles of isolated lines while the excitation temperature (T{sub exc}) was estimated using the Boltzmann plot method. At similar fluence levels, continuum and ion emission are dominant in ns LPP at early times (<50 ns) followed by atomic emission, while the fs LPP provided an atomic plume throughout its visible emission lifetime. Though both ns and fs laser-plasmas showed similar temperatures ({approx}1 eV), the fs LPP is found to be significantly denser at shorter distances from the target surface as well as at early phases of its evolution compared to ns LPP. Moreover, the spatial extension of the plume emission in the visible region along the target normal is larger for fs LPP in comparison with ns LPP.

  1. Spectral shaping of cascade emissions from multiplexed cold atomic ensembles

    NASA Astrophysics Data System (ADS)

    Jen, H. H.; Chen, Y.-C.

    2016-01-01

    We investigate the spectral properties of the biphoton state from the cascade emissions of cold atomic ensembles, which are composed of a telecommunication photon (signal) followed by an infrared one (idler) via four-wave mixing. With adiabatic conditions for Gaussian driving pulses of width τ , the spectrum of the biphoton state has the form of a Gaussian that conserves signal and idler photon energies within ℏ /τ modulated by a Lorentzian with a superradiant linewidth. Multiplexing the atomic ensembles with frequency-shifted cascade emissions, we may manipulate and shape the spectrum of the biphoton state. The entropy of entanglement is derived from Schmidt decomposition, which can be larger if we multiplex the atomic ensembles in a way that conserves signal and idler photon central energies. The eigenvalues in Schmidt bases are degenerate in pairs for symmetric spectral shaping in which the mode probability densities show interference patterns. We also demonstrate the excess entropy of entanglement that comes from continuous frequency space, which scales up the total entropy. The scheme of the multiplexed cascade-emitted biphoton state provides multimode structures that are useful in long-distance quantum communication and multimode quantum information processing.

  2. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  3. Phase-resolved optical emission spectroscopy for an electron cyclotron resonance etcher

    SciTech Connect

    Milosavljevic, Vladimir; MacGearailt, Niall; Daniels, Stephen; Turner, Miles M.; Cullen, P. J.

    2013-04-28

    Phase-resolved optical emission spectroscopy (PROES) is used for the measurement of plasma products in a typical industrial electron cyclotron resonance (ECR) plasma etcher. In this paper, the PROES of oxygen and argon atoms spectral lines are investigated over a wide range of process parameters. The PROES shows a discrimination between the plasma species from gas phase and those which come from the solid phase due to surface etching. The relationship between the micro-wave and radio-frequency generators for plasma creation in the ECR can be better understood by the use of PROES.

  4. Spatial Resolution of Combined Wavelength Modulation Spectroscopy with Integrated Cavity Output Spectroscopy for Atomic Oxygen Detection

    NASA Astrophysics Data System (ADS)

    Matsui, Makoto; Nakajima, Daisuke

    2015-09-01

    For developments of thermal protection system, atomic oxygen plays important role. However, its measurement method has not been established because the pressure in front of TPS test materials is as high as a few kPa. Our group proposed combined wavelength modulation and integrated output spectroscopies based on the forbidden transition at OI 636 nm to measure the ground-state number densities. In this study, WM-ICOS system is developed and applied to a microwave oxygen plasma to evaluate measurable region. As a result, the estimated number density by ICOS could be measured as low as 1021 m21. For the condition, WM-ICOS was applied. The signal to noise ratio of the 2f signal was 40.4. Then, the sensitivity was improved about 26. This result corresponding to the measurement limit of the partial atomic oxygen pressure of 250 Pa. The sensitivity of WM-ICOS was found to enough to diagnose the shock layer in high enthalpy flows. However, the spatial resolution was as large as 8 mm. The size of the beam pattern depends on the cavity length, robust ness of the cavity and accuracy of the cavity alignment. In this presentation, the relationship among these parameters will be discussed.

  5. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    SciTech Connect

    Not Available

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  6. Optical Emission Spectroscopy of Microplasma Discharge in Sea Water

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Hatta, Akimitsu; Furuta, Hiroshi; Oh, Jun-Seok; Okamura, Yo; Kitamura, Kensuke; Hashimoto, Yusuke

    2015-09-01

    We have been investigating microplasma discharge in sea water for optical emission spectroscopy. Microplasma discharge in artificial sea water (10ASW) was carried using needle-to-plane platinum electrode system. The gap, between electrodes, was ranged from 10 to 60 microns. The electricity source was impulse generatorwith MOSFET switch and variable capacitance and inductance. The maximum voltage and current for this scheme were respectively 1 kV and 10 A, pulse width 10 μs. It has been confirmed that, using the micro-gap configuration, spark discharges were ignited at the conventional breakdown voltages below 1kV, even in the conductive sea water. Was noted formation of small bubbles before of the plasma ignition process. The mechanism of formation of these bubbles is mostly Joule heating because of high currents. It has been speculated that plasma discharge initiates in bubbles. Optical emission spectroscopy of microplasma in sea water was carried. In the spectra, emission peaks for H, O, Na, Mg, Ca, Cl and Pt were clearly detected. Besides the main components of 10ASW, contaminants from the electrodes appeared in the spectra. The characteristics of microplasma discharge in sea water and analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129. The ASW was provided from Prof. Kei Okamura of Kochi University.

  7. Comparison of Optical Emission Spectroscopy and Cavity Ring-Down Spectroscopy in Large-Scaled Negative-Ion Source

    SciTech Connect

    Ikeda, K.; Nakano, H.; Tsumori, K.; Kaneko, O.; Kisaki, M.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Fantz, U.

    2011-09-26

    Optical emission spectroscopy (OES) and cavity ring-down spectroscopy (CRDS) systems are installed in a 1/3-scaled negative hydrogen-ion source at the National Institute for Fusion Science testbed to investigate the dynamics of H{sup -} ions in the extraction region near the plasma grid. The signal form of the H{sup -} ion density rapidly drops after beam extraction on applying a low-bias voltage. A similar signal drop appears in the intensity of the hydrogen Balmer-line emission measured by OES and is caused by decreasing atomic hydrogen produced by mutual neutralization effects between H{sup -} and H{sup +}. Shot trend of the beam currents are similar to the H{sup -} density and H{sub {alpha}}/H{sub {beta}} in the extraction region, which increases twice as large immediately after Cs seeding. We observe a linear correlation between the H{sup -} density and the inclination of H{sub {alpha}}/H{sub {beta}} which allows for experimentally benchmarking the OES measurement with that of CRDS. Thus, this approach is used for estimating the H{sup -} density by OES in negative-ion sources for high-energy neutral beam injector.

  8. High-voltage spark atomic emission detector for gas chromatography

    NASA Technical Reports Server (NTRS)

    Calkin, C. L.; Koeplin, S. M.; Crouch, S. R.

    1982-01-01

    A dc-powered, double-gap, miniature nanosecond spark source for emission spectrochemical analysis of gas chromatographic effluents is described. The spark is formed between two thoriated tungsten electrodes by the discharge of a coaxial capacitor. The spark detector is coupled to the gas chromatograph by a heated transfer line. The gas chromatographic effluent is introduced into the heated spark chamber where atomization and excitation of the effluent occurs upon breakdown of the analytical gap. A microcomputer-controlled data acquisition system allows the implementation of time-resolution techniques to distinguish between the analyte emission and the background continuum produced by the spark discharge. Multiple sparks are computer averaged to improve the signal-to-noise ratio. The application of the spark detector for element-selective detection of metals and nonmetals is reported.

  9. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    PubMed Central

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  10. On emission from a hydrogen-like atom

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2016-02-01

    A solution of the Dirac equation for an electron in the field of a point nucleus ( Ze) has been obtained as an eigenfunction of the Schrödinger Hamiltonian and the spin projection operator Σ3. With the use of this solution, the probability W (ν) of the emission of a neutrino per unit time from a hydrogen-like atom, (Ze)* to (Ze) + ν bar ν, has been calculated for the first time in the first order of the parameter Ze ≪ 1. The probability W (ν) appears to be rather small, and the corresponding lifetime τ(ν) = [ W (ν)]-1 is much larger than the age of the Universe; correspondingly, this process cannot affect the balance of low-energy neutrinos. The smallness of W (ν) is due not only to the presence of the obvious "weak" factor ( Gm p 2 )2( m/ mp)4 in the expression for W (ν), but also primarily to the "electromagnetic" factor ( Zα)12, which can be revealed only in a particular calculation. It has been argued within quantum electrodynamics with the mentioned wavefunctions that photon emission, ( Ze)* → ( Ze) + γ, can be absent (analysis of photon emission requires the further development of the method), whereas axion emission, ( Ze)* → ( Ze) + a, can occur, although the last two effects have not been considered in detail.

  11. Ultrathin atomic vapor film transmission spectroscopy: analysis of Dicke narrowing structure

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Zhang, Yanpeng; Gan, Chenli

    2005-11-01

    Transmission sub-Doppler spectroscopy with confined atomic vapor film between two dielectric walls is theoretically studied. Because of atoms flying from wall to wall, where they get de-excited, the atom-field interaction time is anisotropic so that the contribution of slow atoms is enhanced, a sub-Doppler transmission spectroscopy (Dicke narrowing effect) can be obtained when the thickness of the film is much small or comparable with the wavelength even at small angle oblique incidence. It is feasible to get a sub-Doppler structure in a new region (L < ?/4) in experiments.

  12. Vibrational structure in atomic emission spectra: Hg atoms in molecular matrices

    NASA Astrophysics Data System (ADS)

    Crépin, C.; Tramer, A.

    1997-08-01

    Mercury atoms excited to the 3P1 state in rare gas and molecular (CH4, CD4, CF4, and SF6) matrices relax by a direct 3P1→1S0 fluorescence with a ca. 60 ns lifetime or by the 3P1⇝3P0 radiationless transition followed by the 3P0→1S0 long-lived (τ in the 10 to 500 ms range) emission. The main difference between atomic and molecular hosts is the appearance, in the latter case, of a well resolved vibrational structure in the spectrum of the 3P0→1S0 transition involving the frequencies of nontotally symmetric modes of the host molecules. This structure, related to a shortening of the lifetime of the 3P0→1S0 emission is explained by the intensity borrowing from the allowed 3P1→1S0 transition, i.e., by the 3P1↔3P0 mixing induced by nontotally symmetric vibrations of neighbor molecules (analog of the Herzberg-Teller effect). Relative intensities of bands corresponding to different vibrational modes may be deduced from estimation of electric fields induced in the Hg atom by displacements of electric charges of the vibrating molecule

  13. Eye-safe infrared laser-induced breakdown spectroscopy (LIBS) emissions from energetic materials

    NASA Astrophysics Data System (ADS)

    Brown, Ei E.; Hömmerich, Uwe; Yang, Clayton C.; Jin, Feng; Trivedi, Sudhir B.; Samuels, Alan C.

    2016-05-01

    Laser-induced breakdown spectroscopy is a powerful diagnostic tool for detection of trace elements by monitoring the atomic and ionic emission from laser-induced plasmas. Besides elemental emissions from conventional UV-Vis LIBS, molecular LIBS emission signatures of the target compounds were observed in the long-wave infrared (LWIR) region in recent studies. Most current LIBS studies employ the fundamental Nd:YAG laser output at 1.064 μm, which has extremely low eye-damage threshold. In this work, comparative LWIR-LIBS emissions studies using traditional 1.064 μm pumping and eye-safe laser wavelength at 1.574 μm were performed on several energetic materials for applications in chemical, biological, and explosive (CBE) sensing. A Q-switched Nd: YAG laser operating at 1.064 μm and the 1.574 μm output of a pulsed Nd:YAG pumped Optical Parametric Oscillator were employed as the excitation sources. The investigated energetic materials were studied for the appearance of LWIR-LIBS emissions (4-12 μm) that are directly indicative of oxygenated breakdown products as well as partially dissociated and recombination molecular species. The observed molecular IR LIBS emission bands showed strong correlation with FTIR absorption spectra of the studied materials for 1.064 μm and 1.574 μm pump wavelengths.

  14. Resonance ionization spectroscopy: counting noble-gas atoms

    SciTech Connect

    Hurst, G.S.; Payne, M.G.; Chen, C.H.; Willis, R.D.; Lehmann, B.E.; Kramer, S.D.

    1981-06-01

    New work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions) is reported. When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. It is shown that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective.

  15. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes

    PubMed Central

    Löhner, Alexander; Ashraf , Khuram; Cogdell, Richard J.; Köhler, Jürgen

    2016-01-01

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour. PMID:27545197

  16. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes.

    PubMed

    Löhner, Alexander; Ashraf, Khuram; Cogdell, Richard J; Köhler, Jürgen

    2016-01-01

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour. PMID:27545197

  17. Electron impact spectroscopy. [for atom and molecule quantum state investigation

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    The concepts of electron impact spectroscopy are discussed, comparing the electron spectroscopy techniques with those of the optical spectroscopy. The main advantage of the electron spectroscopy is to be found in the elimination of optical selection rules in excitation processes and the ability to scan the spectrum from the infrared to the X-ray region. The range of the method is indicated through a review of several examples, including electron impact excitation of Ba and rotational excitation of H2. The sensitivity of the method is demonstrated by vibrational excitation spectrum of N2. It is shown that the application of the method to the inner-shell excitation allows to obtain information about molecular species which are not commonly available, while spectroscopy of negative ions yields information about their energy and symmetry properties. However, the techniques are still under development and more data are expected to become available in the coming years.

  18. Diagnostics of a see-through hollow cathode discharge by emission, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas

    Atomic line filters have been suggested to be attractive in areas of Doppler velocimetry, resonance fluorescence detection, and resonance ionization detection. They are based on the resonant absorption of photons by an atomic vapor, and allow all other radiation to pass. This allows the detection of very low levels of light superimposed on a large optical background. Several elements have been studied for use as atomic line filters, such as the alkali metals, alkaline earths, and thallium. As previously recognized, thallium is especially attractive since the 535.046 nm metastable transition overlaps with the second harmonic output of an Nd:La2Be2O 5 (BEL) laser (1070 nm). This makes thallium ideal for certain applications as an atomic line filter. Recently a see-through hollow cathode lamp, or galvatron (Hamamatsu), was made commercially available. The galvatron geometry is unique compared to traditional hollow cathode lamps since the cathode and cell are oriented in a T-shape, with the cathode bored completely through to allow the propagation of a light source through the cathode. This allows multi-step excitation of the atomic vapor, not easily accomplished with a traditional hollow cathode lamp. The advantages that a galvatron offers over conventional atomic reservoirs make it an attractive candidate for the application as an atomic line filter; however, little spectroscopic data have been found in the literature. For this reason, Doppler temperatures, number densities, quantum efficiencies, and lifetimes have been determined in order to characterize this atomic reservoir as a potential atomic line filter. These parameters are determined by use of various spectroscopic techniques which include emission, absorption, time-resolved fluorescence, and time-resolved laser-induced saturated fluorescence spectroscopy. From these measurements, it has been demonstrated that a galvatron is an attractive atomic reservoir for applications as an atomic line filter. The

  19. Gas emission analysis based on Fourier transformed infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Xiaowen; Zhang, Xiaofu; Lian, Xu; Jin, Hui

    2014-12-01

    Solar occultation flux (SOF), a new optical technology to detect the gas based on the traditional Fourier transformed infrared spectroscopy (FTIR) developed quickly recently. In this paper, the system and the data analysis is investigated. First a multilayer transmission model of solar radiation is simulated. Then the retrieval process is illustrated. In the proceeding of the data analysis, the Levenberg-Marquardt non-linear square fitting is used to obtain the gas column concentration and the related emission ratio. After the theory certification, the built up system is conducted in a fertilizer plant in Hefei city .The results show SOF is available in the practice and the retrieved gas column concentration can give important information about the pollution emission and dispersion

  20. Applications of AFM for atomic manipulation and spectroscopy

    NASA Astrophysics Data System (ADS)

    Custance, Oscar

    2009-03-01

    Since the first demonstration of atom-by-atom assembly [1], atomic manipulation with scanning tunneling microscopy has yielded stunning realizations in nanoscience. A new exciting panorama has been recently opened with the possibility of manipulating atoms at surfaces using atomic force microscopy (AFM) [2-5]. In this talk, we will present two different approaches that enable patterning structures at semiconductor surfaces by manipulating individual atoms with AFM and at room temperature [2, 3]. We will discuss the physics behind each protocol through the analysis of the measured forces associated with these manipulations [3-5]. Another challenging issue in scanning probe microscopy is the ability to disclose the local chemical composition of a multi-element system at atomic level. Here, we will introduce a single-atom chemical identification method, which is based on detecting the forces between the outermost atom of the AFM tip and the atoms at a surface [6]. We demonstrate this identification procedure on a particularly challenging system, where any discrimination attempt based solely on topographic measurements would be impossible to achieve. [4pt] References: [0pt] [1] D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990); [0pt] [2] Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, O. Custance and S. Morita, Nature Materials 4, 156 (2005); [0pt] [3] Y. Sugimoto, P. Pou, O. Custance, P. Jelinek, M. Abe, R. Perez and S. Morita, Science 322, 413 (2008); [0pt] [4] Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Perez and O. Custance, Phys. Rev. Lett. 98, 106104 (2007); [0pt] [5] M. Ternes, C. P. Lutz, C. F. Hirjibehedin, F. J. Giessibl and A. J. Heinrich, Science 319, 1066 (2008); [0pt] [6] Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Perez, S. Morita, and O. Custance, Nature 446, 64 (2007)

  1. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  2. Faraday rotation spectroscopy in multi-pass atomic vapor cells

    NASA Astrophysics Data System (ADS)

    Li, Shuguang; Vachaspati, Pranjal; Dural, Nezih; Romalis, Michael

    2011-05-01

    Many important applications of atomic vapors, such as quantum measurements, light storage experiments, and atomic magnetometers benefit from large optical depth of the atomic ensemble. We explore multi-pass cells using cylindrical mirrors with a hole for the entrance and exit of the laser beam to achieve very high optical depth while sampling a large number of atoms. Such cells are much less sensitive to mirror quality and alignment compared to optical cavities and do not require laser frequency locking, mode matching or power coupling matching. Cells with more than 100 passes have been fabricated using internal high-reflectivity mirrors. We have performed paramagnetic Faraday rotation measurements on Rb vapor and have observed atomic rotation angles in excess of 60 radians. Quantum spin noise from unpolarized atomic vapor has also been observed with a high signal-to-noise ratio. This system also exhibits non-linear spin relaxation due to spin-exchange collisions, opening the possibility of using spin-squeezing techniques to improve long-term sensitivity of frequency measurements. We will report on the development of a scalar atomic magnetometer using such spin-squeezing techniques.

  3. INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY: PROMINENT LINES

    EPA Science Inventory

    Nearly every phase of environmental protection depends on a capability to identify and measure specific pollutants in the environment. As part of the research on the occurrence, movement, transformation, impact, and control of environmental contaminants, new techniques for identi...

  4. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  5. Continuous Liquid-Sample Introduction for Bunsen Burner Atomic Emission Spectrometry.

    ERIC Educational Resources Information Center

    Smith, Gregory D.; And Others

    1995-01-01

    Describes a laboratory-constructed atomic emission spectrometer with modular instrumentation components and a simple Bunsen burner atomizer with continuous sample introduction. A schematic diagram and sample data are provided. (DDR)

  6. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    PubMed Central

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  7. Digital imaging technique for optical emission spectroscopy of a hydrogen arcjet plume.

    PubMed

    Litchford, R J; Ruyten, W M

    1995-07-20

    A digital imaging technique has been developed for optical emission spectroscopy measurements of a 1.6-kW hydrogen arcjet plume. Emissions from the Balmer α and β transitions of excited atomic hydrogen were measured with a computer-controlled red-green-blue color CCD detector with and without line-centered bandpass interference filters. A method for extending the effective dynamic range of the detector was developed, whereby images obtained with a wide range of exposure times are combined to form a single composite nonsaturated map of the plume emission structure. The line-of-sight measurements were deconvoluted to obtain the true radial intensity distribution with an inverse Abel transformation. Analysis of the inverted measurements indicates that the upper levels of the Balmer α and β transitions are not thermalized with the electrons in the plasma. The local thermodynamic equilibrium assumption fails for this plasma, and the electron temperature is not equivalent to the apparent excitation temperature obtained when a Boltzmann energy distribution is assumed for the atomic hydrogen excited states. PMID:21052286

  8. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    NASA Technical Reports Server (NTRS)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  9. Spectroscopy of Molecular Hydrogen Emission from KH 15D

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Charbonneau, David; Harrington, Joseph

    2004-01-01

    We report infrared spectroscopy of the unusual eclipsing pre-main-sequence object KH 15D, obtained using NIRSPEC on Keck II. During eclipse, observations using low spectral resolution (λ/δλ~1000) reveal the presence of prominent molecular hydrogen emission in five lines near 2 μm. The relative line strengths are consistent with thermal excitation at T~2800+/-300 K. Observations out of eclipse, at both low and high spectral resolution (λ/δλ~2×104), show reduced contrast with the stellar continuum. The change in contrast for the strongest line, 1-0 S(1), is consistent with an approximately constant emission line superposed on a variable stellar continuum. Emission in the 1-0 S(1) line is observed to extend by >~4" both east and west of the stellar point-spread function (PSF; >~3000 AU). Observed at high spectral resolution, the velocity and the intensity structure of the 1-0 S(1) profile are both asymmetric. East of the stellar PSF (by 1.1"-2.3") the emission is blueshifted (-63 km s-1) and has significantly greater intensity than the marginally redshifted component (+2 km s-1, approximately consistent with zero) that dominates west of the stellar PSF. The spatial extent of the emission and the excitation temperature suggest shock excitation of ambient gas by a bipolar outflow from the star and/or the disk. However, it is difficult to account for the observed radial velocity unless the outflow axis is inclined significantly to the plane of the sky. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Studying Simple Molecular Ionization using Radiation Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Proctor, Christopher; Lemmer, Kristina; Western Michigan University Aerospace LaboratoryPlasma Experiments Team

    2015-11-01

    This study focuses on radiation emission from the formation of simple molecular plasma using a DC glow discharge. The purpose is to measure the emission from argon and molecular nitrogen gas as a function of time with an optical emission spectroscopy system operating in kinetic mode as the gases go from their neutral state to ionized state. The end goal of the research is to develop a diagnostic tool that will be used to study the formation of plasma discharges from complex molecules. The kinetic mode of the CCD camera allows for fast data acquisition so that the species present and their relative concentrations as a function of time can be measured as the plasma is forming. The primary difficulty in the development of this diagnostic tool is designing a device and data analysis technique to allow for kinetic mode operation of the CCD camera. Experimental devices have been designed and built to enable the CCD to operate in kinetic mode, including a fiber optic adapter, camera mount, and twin razor blade system. The twin blades allow for the reduction of exposed pixels on the CCD camera and thereby allow the camera to store data on rows of pixels, rather than imaging the entire camera, allowing for faster data transfer. PhD in Aerospace Engineering.

  11. Development of the charge exchange recombination spectroscopy and the beam emission spectroscopy on the EAST tokamak.

    PubMed

    Li, Y Y; Fu, J; Lyu, B; Du, X W; Li, C Y; Zhang, Y; Yin, X H; Yu, Y; Wang, Q P; von Hellermann, M; Shi, Y J; Ye, M Y; Wan, B N

    2014-11-01

    Charge eXchange Recombination Spectroscopy (CXRS) and Beam Emission Spectroscopy (BES) diagnostics based on a heating neutral beam have recently been installed on EAST to provide local measurements of ion temperature, velocity, and density. The system design features common light collection optics for CXRS and BES, background channels for the toroidal views, multi-chord viewing sightlines, and high throughput lens-based spectrometers with good signal to noise ratio for high time resolution measurements. Additionally, two spectrometers each has a tunable grating to observe any wavelength of interest are used for the CXRS and one utilizes a fixed-wavelength grating to achieve higher diffraction efficiency for the BES system. A real-time wavelength correction is implemented to achieve a high-accuracy wavelength calibration. Alignment and calibration are performed. Initial performance test results are presented. PMID:25430335

  12. Precision Spectroscopy of Atomic Hydrogen and the Proton Size Puzzle

    NASA Astrophysics Data System (ADS)

    Udem, Thomas

    2016-05-01

    Precise determination of transition frequencies of simple atomic systems are required for a number of fundamental applications such as tests of quantum electrodynamics (QED), the determination of fundamental constants and nuclear charge radii. The sharpest transition in atomic hydrogen occurs between the metastable 2S state and the 1S ground state. Its transition frequency has now been measured with almost 15 digits accuracy using an optical frequency comb and a cesium atomic clock as a reference. A recent measurement of the Lamb shift in muonic hydrogen is in significant contradiction to the hydrogen data if QED calculations are assumed to be correct. We hope to contribute to the resolution of this so called `proton size puzzle' by providing additional experimental input from the hydrogen side.

  13. Advances in fast-atom-bombardment mass spectroscopy

    SciTech Connect

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons.

  14. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  15. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions

    NASA Astrophysics Data System (ADS)

    Martinez, H.; Flores, O.; C. Poveda, J.; Campillo, B.

    2012-04-01

    Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05) × 1016 m-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N+2, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar; and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time.

  16. Diagnostics of nitrogen plasma by trace rare-gas-optical emission spectroscopy

    SciTech Connect

    Qayyum, A.; Zeb, Shaista; Naveed, M.A.; Ghauri, S.A.; Zakaullah, M.; Waheed, A.

    2005-11-15

    Trace rare-gas-optical emission spectroscopy is carried out to characterize the nitrogen plasma as a function of discharge parameters. The functional dependence of N{sub 2}(C {sup 3}{pi}{sub u}) and N{sub 2}{sup +}(B {sup 2}{sigma}{sub u}{sup +}) excited states is monitored by measuring the emission intensities of the bandheads of second positive and first negative systems. The excited-state population density of N atoms and N{sub 2} molecules, extracted from their optical emission, is related to the ground-state population density after normalizing the changes for excitation cross section and electron energy distribution function by optical actinometry. The electron temperature is determined from the plasma-induced optical emission of trace rare gas by the line-to-line method. The obtained data may help us to adjust the optimum discharge conditions for the production of active species, which are considered to be important for the desired treatment of the samples.

  17. GABI: a compact detector for GRB prompt emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Ubertini, P.; Bazzano, A.; Federici, M.; Fiocchi, M. T.; Lotti, S.; Grindlay, J. E.; Gehrels, N.; Uslenghi, M.; Fiorini, M.; Perotti, F.

    Triggering on sky transient events can be efficiently accomplished by coded mask instruments, which can also provide positions with arcmin or sub-arcmin accuracy, but at the expense of weight and power. On the other hand good broadband spectroscopy is possible using much lighter systems, that could also provide a coarse positioning capability (˜ degrees). We present the concept of a compact, light detector based on NaI(Tl) scintillator, that can be used to complement other soft X-ray or IR/optical telescopes in detecting transients and characterizing them. The Gamma-Ray Burst Imager (GABI) will operate in the energy range 8-1000 keV that is optimal for the detection of the prompt emission of Gamma-Ray Bursts (GRB). GABI is being proposed for accomodation on board Lobster, a candidate mission of the NASA Explorer Program.

  18. Density fluctuation measurements using beam emission spectroscopy on Heliotron J

    SciTech Connect

    Kobayashi, S.; Ohshima, S.; Yamamoto, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Konoshima, S.; Toushi, K.; Sano, F.; Kado, S.; Oishi, T.; Kagawa, T.; Nagae, Y.; Lee, H. Y.; Minami, T.; Harada, T.; Nakamura, Y.; Estrada, T.; Murakami, S.

    2012-10-15

    This paper describes the measurement of the density fluctuation using beam emission spectroscopy in Heliotron J, having the non-symmetrical helical-magnetic-axis configuration. In order to optimize the sightlines, the numerical calculations are carried out to estimate the spatial resolution and the observation location. When a tangential neutral beam is used as diagnostic one, suitable sightlines from the newly installed diagnostic port are selected whose spatial resolution {Delta}{rho} is less than {+-}0.07 over the entire plasma region. Modification of the interference filter and the detection systems enables us to measure the radial profile of the density fluctuation. Each of the three coherent modes due to the fast-ion-driven magnetohydrodynamic instabilities has different radial structure of the density fluctuation.

  19. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    NASA Astrophysics Data System (ADS)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  20. Optical emission spectroscopy of carbon arc for nanomaterial synthesis

    NASA Astrophysics Data System (ADS)

    Vekselman, Vladislav; Stratton, Brentley; Raitses, Yevgeny

    2015-11-01

    Arc plasma assisted synthesis of carbon nanostructures is one of the most efficient and simple production methods. In spite of a long time use of this method in materials science research and industrial applications, the role of the plasma in nucleation and growth of nanostructures is not well understood. This is due to complexity of physico-chemical processes governing the plasma nanosynthesis. The objective of this work is to characterize the atmospheric pressure arc plasma used for synthesis of various carbon nanostructures. Optical emission spectroscopy was carried out to determine the distribution of temperature and density of carbon plasma in the synthesis zone as a function of arc discharge parameters. Accurate and detailed mapping of plasma parameters elucidate the general trend governing the formation of carbon nanostructures. This work was supported by DOE contract DE-AC02-09CH11466.

  1. Hot exhaust gases with passive FTIR emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Heland, Joerg; Schaefer, Klaus; Haus, Rainer

    1998-12-01

    Passive FTIR emission spectroscopy using a commercial medium resolution instrument with a telescope has been applied to analyze the hot exhaust gases of various combustion sources, such as industrial and building smoke stacks, aircraft engines, flares, and forest fires. To interpret the remotely measured spectra a multi-layer, line-by-line spectra retrieval software using the molecular spectral databases HITRAN and HITEMP has been developed, validated and successfully used to determine the exhaust gas temperatures and the concentrations of CO2, H2O, CO, N2O, CH4, NO, NO2, SO2, and HCl for different combustion conditions of the sources. In this paper the feasibility and the setup of passive IR measurements, the basic theory of radiative transfer and special features of the commercially available spectra analysis code are described. In addition, the results of the different measurement applications are summarized.

  2. Project 8: Towards cyclotron radiation emission spectroscopy on tritium

    NASA Astrophysics Data System (ADS)

    Fertl, Martin; Project 8 Collaboration

    2016-03-01

    Project 8 aims to determine the neutrino mass by making a precise measurement of the β--decay of molecular tritium (Q = 18.6 keV) using the recently demonstrated the technique of cyclotron radiation emission spectroscopy (CRES). Here we discuss the production of a gas cell that fulfills the stringent requirements for cryogenic operation, safe tritium handling, a non-magnetic design, and a good microwave guide performance. The phased program that allows Project 8 to probe the neutrino mass range accessible using molecular tritium is described. Major financial support by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics to the University of Washington under Award Number DE-FG02-97ER41020 is acknowledged.

  3. X-ray spectroscopy of kaonic atoms at SIDDHARTA

    NASA Astrophysics Data System (ADS)

    Cargnelli, M.; Bazzi, M.; Beer, G.; Berucci, C.; Bragadireanu, A. M.; Curceanu, C.; d'Uffizi, A.; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Levi Sandri, P.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Quaglia, R.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Vazquez Doce, O.; Widmann, E.; Wünschek, B.; Zmeskal, J.

    2014-06-01

    The X-ray measurements of kaonic atoms play an important role for understanding the low-energy QCD in the strangeness sector. The SIDDHARTA experiment studied the X-ray transitions of 4 light kaonic atoms (H, D, 3He, and 4He) using the DAFNE electron-positron collider at LNF (Italy). Most precise values of the shift and width of the kaonic hydrogen 1s state were determined, which have been now used as fundamental information for the low-energy K-p interaction in theoretical studies. An upper limit of the X-ray yield of kaonic deuterium was derived, important for future K-d experiments. The shifts and widths of the kaonic 3He and 4He 2p states were obtained, confirming the end of the "kaonic helium puzzle". In this contribution also the plans for new experiments of kaonic deuterium are being presented.

  4. Spectroscopy of Mn atoms isolated in solid {sup 4}He

    SciTech Connect

    Moroshkin, P. Lebedev, V.; Weis, A.

    2014-06-07

    We present an experimental study of the laser-induced luminescence spectra of Mn atoms in solid helium matrices. We observe transitions of the valence electron and of inner-shell electrons. We find that the Mn-He interaction perturbs the inner-shell transitions to a lesser extent than the valence-electron transitions. The observed lineshapes of the inner-shell transitions of Mn are similar to those of an inner-shell transition in Ba studied earlier. At the same time, they are more strongly perturbed than the corresponding transitions in Au and Cu under the same conditions. We suggest a qualitative explanation of these observations based on the atomic bubble model. Our results also suggest that the inner-shell transitions of Mn in solid He are more strongly perturbed than the same lines of Mn isolated in solid Ar or Kr matrices.

  5. [Preliminary study of atomic emission spectrometry of Ti (H) plasma produced by vacuum arc ion source].

    PubMed

    Deng, Chun-Feng; Wu, Chun-Lei; Wang, Yi-Fu; Lu, Biao; Wen, Zhong-Wei

    2014-03-01

    In order to study the discharge process of vacuum arc ion source, make a detail description of the discharge plasma, and lay the foundation for further research on ion source, atomic emission spectrometry was used to diagnose the parameters of plasma produced by vaccum arc ion source. In the present paper, two kinds of analysis method for the emission spectra data collected by a spectrometer were developed. Those were based in the stark broadening of spectral lines and Saba-Boltzmann equation. Using those two methods, the electron temperature, electron number density and the ion temperature of the plasma can be determined. The emission spectroscopy data used in this paper was collected from the plasma produced by a vacuum are ion source whose cathode was made by Ti material (which adsorbed hydrogen during storage procedure). Both of the two methods were used to diagnose the plasma parameters and judge the thermal motion state of the plasma. Otherwise, the validity of the diagnostic results by the two methods were analyzed and compared. In addition, the affection from laboratory background radiation during the spectral acquisition process was discussed. PMID:25208416

  6. Characterization and Infrared Emission Spectroscopy of Ball Plasmoid Discharges

    NASA Astrophysics Data System (ADS)

    Dubowsky, Scott E.; McCall, Benjamin J.

    2015-06-01

    Plasmas at atmospheric pressure serve many purposes, from ionization sources for ambient mass spectrometry (AMS) to plasma-assisted wound healing. Of the many naturally occurring ambient plasmas, ball lightning is one of the least understood; there is currently no solid explanation in the literature for the formation and lifetime of natural ball lightning. With the first measurements of naturally occurring ball lightning being reported last year, we have worked to replicate the natural phenomenon in order to elucidate the physical and chemical processes by which the plasma is sustained at ambient conditions. We are able to generate ball-shaped plasmoids (self-sustaining plasmas) that are analogous to natural ball lightning using a high-voltage, high-current, pulsed DC system. Improvements to the discharge electronics used in our laboratory and characterization of the plasmoids that are generated from this system will be described. Infrared emission spectroscopy of these plasmoids reveals emission from water and hydroxyl radical -- fitting methods for these molecular species in the complex experimental spectra will be presented. Rotational temperatures for the stretching and bending modes of H2O along with that of OH will be presented, and the non-equilibrium nature of the plasmoid will be discussed in this context. Cen, J.; Yuan, P,; Xue, S. Phys. Rev. Lett. 2014, 112, 035001. Dubowsky, S.E.; Friday, D.M.; Peters, K.C.; Zhao, Z.; Perry, R.H.; McCall, B.J. Int. J. Mass Spectrom. 2015, 376, 39-45.

  7. NIR spectroscopy of Palomar emission-line galaxies

    NASA Astrophysics Data System (ADS)

    Mason, Rachel; Alonso-Herrero, Almudena; Bluck, Asa; Colina, Luis; Diaz, Ruben; Diaz-Santos, Tanio; Flohic, Helene; Gomez, Percy; Gonzalez-Martin, Omaira; Ho, Luis; Jorgensen, Inger; Lemoine-Busserolle, Marie; Levenson, Nancy; Lira, Paulina; McDermid, Richard; Perlman, Eric; Rodriguez-Ardila, Alberto; Riffel, Rogerio; Schiavon, Ricardo; Ramos Almeida, Cristina; Thanjavur, Karun; Winge, Claudia

    2012-02-01

    We propose GNIRS cross-dispersed spectroscopy of 60 Seyferts and LINERs from the Palomar galaxy sample. The spectra will advance our knowledge of AGN physics and lifecycles by demonstrating whether the accretion disk and nuclear dust properties change as a function of accretion rate, as predicted by theoretical models. They will be used to investigate the contribution of evolved stars to the line emission in LINERs, with implications for AGN demographics, and to make new stellar kinematic measurements for black hole mass estimates. The number and variety of spectral features that will appear in the data are expected to enable a wide range of science besides that highlighted in this proposal. For this reason, we plan a reduced proprietary period and to make the reduced spectra available to the community. We anticipate applying for time to observe the remaining emission-line galaxies in the (near-complete) Palomar sample over the next few semesters. The targets are distributed throughout the northern sky, making Gemini's queue mode ideal for this work. The fairly short observations are easily scheduled and can be carried out in suboptimal observing conditions.

  8. Optical Emission Spectroscopy in an Unmagnetized Flowing Plasma

    NASA Astrophysics Data System (ADS)

    Seidlitz, Blair; Collins, Cami; Nornberg, Mark; Boffard, John; Forest, Cary

    2013-10-01

    Recently, a new technique has been developed to create a large, weakly magnetized, fast flowing, and hot plasma in the laboratory. These unique conditions make it possible to study a wide variety of phenomena in plasma astrophysics which is the goal of the Plasma Couette Experiment. Accurate measurements of plasma properties such as density and temperature have been challenging with Langmuir probes due to contamination, their perturbative nature, and the flowing plasma. To achieve a non-invasive measurement of relevant parameters, Optical Emission Spectroscopy techniques have been implemented using a low resolution (~1.5 nm) fiber-coupled broad wavelength spectrograph. Argon line ratios were used to determine the metastable ArI densities through radiation trapping and electron temperature was deduced from the energy dependence of many optical emission cross sections. Time resolved measurements and radial profiles of temperature have been produced and have shown good agreement with triple probe results in the 2-6 eV range. We are expanding these techniques to measurements of the electron density (using quenching of certain transitions), multispecies ion densities and further exploration of higher temperature regions all utilizing spectra from the above mentioned spectrograph, fully exploiting its wide wavelength range. Supported by NSF and DoE.

  9. X-ray emission and photoluminescence spectroscopy of nanostructured silica with implanted copper ions

    NASA Astrophysics Data System (ADS)

    Zatsepin, D. A.; Kortov, V. S.; Kurmaev, É. Z.; Gavrilov, N. V.; Wilks, R. G.; Moewes, A.

    2008-12-01

    Quartz glass samples and compacted SiO2 nanopowders have been studied by x-ray emission (Cu L 2, 3 transition 3 d4 s → 2 p 1/2, 3/2) and photoluminescence spectroscopy following pulsed Cu+ ion implantation (energy, 30 keV; pulse current up to 0.5 A; pulse duration, 400 μs; irradiation doses, 1015, 1016, and 2 × 1017 cm-2). It has been established that ion irradiation gives rise to the formation of glassy and compacted SiO2 samples of nanosized metallic and oxide phases in the structure. An analysis of Cu L x-ray emission spectra has shown that copper nanoparticles are thermodynamically metastable and chemically active because ion beam bombardment transfers them readily to the oxide form. This results from the radiation-stimulated fracture of regular Si-O-Si bonds in amorphous SiO2 and the formation of defective Si-Si bonds, followed by capture of oxygen by copper atoms. The enhanced degree of oxidation of copper ions in SiO2 nanostructured pellets can be reduced by coimplantation and thermal annealing. Optical spectroscopy studies suggest that, in glasses and SiO2 nanostructured pellets, there exist metallic Cu{/n 0} nanoclusters, which at low temperatures exhibit quantum-confined photoluminescence with a characteristic stepped excitation spectrum.

  10. High-precision three-dimensional atom localization via spontaneous emission in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Yu, Benli

    2016-06-01

    We investigate the three-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detecting probability and precision of atom localization can be significantly improved due to the interference effects induced by the vacuum radiation field and the two laser fields. More importantly, the almost 100% probability of finding an atom within a certain range can be reached when corresponding conditions are satisfied. As a result, our scheme may be helpful in a spatially selective single-qubit phase gate, entangling gates, and quantum error correction for quantum information processing.

  11. A heated chamber burner for atomic absorption spectroscopy.

    PubMed

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  12. Exact solution for spontaneous emission in the presence of N atoms

    NASA Astrophysics Data System (ADS)

    Cummings, F. W.; Dorri, Ali

    1983-10-01

    N two-level "atoms" are considered in interaction with a single-mode resonant electromagnetic field. The exact solution is given nonrelativistically for all times for the case of spontaneous emission, when only one atom is initially excited. The solution is given for the general case of the N atoms in inequivalent mode positions.

  13. Diagnostic performance of the beam emission spectroscopy system on the National Spherical Torus Experiment

    SciTech Connect

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S.

    2012-10-15

    The beam emission spectroscopy system on the National Spherical Torus Experiment measures localized density fluctuations on the ion gyroscale. Optical sightlines provide core to edge radial coverage, and the sightlines are aligned to typical pitch angles to maximize cross-field spatial resolution. Sightline images are 2-3 cm, and point spread function calculations indicate image distortion from pitch angle misalignment and atomic state finite lifetimes is minor with a 15% increase in the image size. New generation photodetectors achieve photon noise limited measurements at frequencies up to 400 kHz with refrigerant cooling at -20 Degree-Sign C. Measurements near the pedestal show broadband turbulence up to 100 kHz, and poloidal correlation lengths are about 10 cm. Plasma turbulence signals can be 2-3 orders of magnitude above photon noise and amplifier thermal noise.

  14. Diagnostic performance of the beam emission spectroscopy system on the National Spherical Torus Experiment.

    PubMed

    Smith, D R; Fonck, R J; McKee, G R; Thompson, D S

    2012-10-01

    The beam emission spectroscopy system on the National Spherical Torus Experiment measures localized density fluctuations on the ion gyroscale. Optical sightlines provide core to edge radial coverage, and the sightlines are aligned to typical pitch angles to maximize cross-field spatial resolution. Sightline images are 2-3 cm, and point spread function calculations indicate image distortion from pitch angle misalignment and atomic state finite lifetimes is minor with a 15% increase in the image size. New generation photodetectors achieve photon noise limited measurements at frequencies up to 400 kHz with refrigerant cooling at -20 °C. Measurements near the pedestal show broadband turbulence up to 100 kHz, and poloidal correlation lengths are about 10 cm. Plasma turbulence signals can be 2-3 orders of magnitude above photon noise and amplifier thermal noise. PMID:23126846

  15. Comparative study of bandwidths in copper delafossites from x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Shin, D.; Foord, J. S.; Payne, D. J.; Arnold, T.; Aston, D. J.; Egdell, R. G.; Godinho, K. G.; Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Mugnier, E.; Yaicle, C.; Rougier, A.; Colakerol, L.; Glans, P. A.; Piper, L. F. J.; Smith, K. E.

    2009-12-01

    The widths of the valence bands in the copper (I) delafossites CuGaO2 , CuInO2 , and CuScO2 have been measured by OK -shell x-ray emission spectroscopy and are compared with previous experimental work on CuAlO2 and CuCrO2 . In agreement with recent density-functional theory calculations it is found that the bandwidth decreases in the series CuAlO2>CuGaO2>CuInO2>CuScO2 . It is shown that states at the top of the valence band are of dominant Cu3dz2 atomic character but with significant mixing with O2p states.

  16. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    SciTech Connect

    Guszejnov, D.; Pokol, G. I.; Pusztai, I.; Refy, D.; Zoletnik, S.; Lampert, M.; Nam, Y. U.

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  17. Single- and multiphoton infrared laser spectroscopy of atomic negative ions

    NASA Astrophysics Data System (ADS)

    Scheer, Michael

    A pulsed, tunable infrared laser source (0.6-5.2 μm) has been developed on the basis of a commercial dye laser and non-linear optical conversion techniques. This laser source was combined with a keV negative ion beam apparatus in a crossed-beam geometry, with the aim to systematically study several atomic negative ions through a variety of single- and multiphoton detachment experiments. Photodetachment threshold spectra of 21 ionic species (B- , C-, O-, Al- , Si-, Cr-, Co- , Ni-, Cu-, Ge- , Mo-, Rh-, Pd- , Ag-, Sn-, Sb- , Te-, Cs-, Ir- , Pt-, and Bi-) have been recorded, in most cases resulting in very accurate determinations of ionic binding energies, marking substantial improvements over previous experimental values. In fact, several ionic states investigated here had not been observed previously. Different schemes for resonant multiphoton detachment of atomic negative ions were demonstrated for the first time. These studies were conducted with several anions (Si-, Sri- , Sb-, Te-, Ir- , and Pt-) providing highly accurate ionic energy level splittings and clearly demonstrating that multiphoton probes are generally applicable to negative ion structure.

  18. Atomic data for stellar spectroscopy: recent successes and remaining needs

    NASA Astrophysics Data System (ADS)

    Sneden, Christopher; Lawler, James E.; Wood, Michael P.; Den Hartog, Elizabeth A.; Cowan, John J.

    2014-11-01

    Stellar chemical composition analyses provide vital insights into galactic nucleosynthesis. Atomic line data are critical inputs to stellar abundance computations. Recent lab studies have made significant progress in refining and extending knowledge of transition probabilities, isotopic wavelength shifts, and hyperfine substructure patterns for the absorption lines that are of most interest to stellar spectroscopists. The observable neutron-capture (n-capture) element species (Z \\gt 30) have been scrutinized in lab studies by several groups. For many species the uncertainties in experimental oscillator strengths are ≤slant 10%, which permits detailed assessment of rapid and slow n-capture nucleosynthesis contributions. In this review, extreme examples of r-process-enriched stars in the galactic halo will be shown, which suggest that the description of observable n-capture abundances in these stars is nearly complete. Unfortunately, there are serious remaining concerns about the reliability of observed abundances of lighter elements. In particular, it is not clear that line formation in real stellar atmospheres is being modeled correctly. But for many elements with Z \\lt 30 the atomic transition data are not yet settled. Highlights will be given of some recent large improvements, with suggestions for the most important needs for the near future.

  19. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation.

    PubMed

    Majumder, A; Dikshit, B; Bhatia, M S; Mago, V K

    2008-09-01

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data. PMID:19044405

  20. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    SciTech Connect

    Majumder, A.; Dikshit, B.; Bhatia, M. S.; Mago, V. K.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

  1. Resonant three-photon ionization spectroscopy of atomic Fe

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gottwald, T.; Havener, C. C.; Mattolat, C.; Vane, C. R.; Wendt, K.

    2013-12-01

    Laser spectroscopic investigations on high-lying states around the ionization potential (IP) in the atomic spectrum of Fe have been carried out for the development of a practical three-step resonance ionization scheme accessible by Ti: sapphire lasers. A hot cavity laser ion source, typically used at on-line radioactive ion beam production facilities, was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63 737.686 ± 0.068 cm-1 for the ionization potential of iron.

  2. Resonant three-Photon Ionization Spectroscopy of Atomic Fe

    SciTech Connect

    Liu, Yuan; Gottwald, T.; Havener, Charles C; Mattolat, C.; Vane, C Randy; Wendt, K.

    2013-01-01

    Laser spectroscopic investigations on high-lying states around the ionization potential in the atomic spectrum of Fe have been carried out for development of a practical three-step resonance ionization scheme accessible by Ti:Sapphire lasers. A hot cavity laser ion source typically used at on-line radioactive ion beam production facilities was employed in this work. Ionization schemes employing high-lying Rydberg and autoionizing states populated by three-photon excitations were established. Five new Rydberg and autoionizing Rydberg series converging to the ground and to the first four excited states of Fe II are reported. Analyses of the Rydberg series yield the value 63737.686 0.068 cm-1 for the ionization potential of iron.

  3. Spectroscopy of nonspherical atomic bubbles in solid helium.

    PubMed

    Lebedev, V; Moroshkin, P; Weis, A

    2011-06-30

    We analyze the effect of the host crystal symmetry on the optical spectra of the 6P(1/2)-6S(1/2) and 6P(3/2)-6S(1/2) transitions of atomic Cs in solid (4)He matrices. In particular, we address the deformation of the bubble structures formed by Cs in such quantum crystals. We show that the anisotropy of the stiffness tensor leads to static quadrupolar bubble shape deformations in hexagonally close-packed (hcp) crystals, while the corresponding deformations in the body-centered cubic (bcc) phase of the matrix have a hexadecupolar symmetry. A comparison of the measured excitation spectra with our model calculations allow us to infer quantitative values of the deformation parameters. PMID:21462948

  4. Kilohertz-Resolution Spectroscopy of Cold Atoms with an Optical Frequency Comb

    SciTech Connect

    Fortier, T. M.; Le Coq, Y.; Stalnaker, J. E.; Diddams, S. A.; Oates, C. W.; Hollberg, L.; Ortega, D.

    2006-10-20

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity.

  5. Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb.

    PubMed

    Fortier, T M; Coq, Y Le; Stalnaker, J E; Ortega, D; Diddams, S A; Oates, C W; Hollberg, L

    2006-10-20

    We have performed sub-Doppler spectroscopy on the narrow intercombination line of cold calcium atoms using the amplified output of a femtosecond laser frequency comb. Injection locking of a 657-nm diode laser with a femtosecond comb allows for two regimes of amplification, one in which many lines of the comb are amplified, and one where a single line is predominantly amplified. The output of the laser in both regimes was used to perform kilohertz-level spectroscopy. This experiment demonstrates the potential for high-resolution absolute-frequency spectroscopy over the entire spectrum of the frequency comb output using a single high-finesse optical reference cavity. PMID:17155398

  6. Frequency-modulation spectroscopy of rubidium atoms with an AlGaAs diode laser

    SciTech Connect

    Nakanishi, S.; Ariki, H.; Itoh, H.; Kondo, K.

    1987-11-01

    Frequency-modulation (FM) spectroscopy has been performed on the D/sub 2/ transitions of rubidium atoms with an AlGaAs diode laser at 780 nm. Doppler-broadened hyperfine-structure transitions of /sup 85/Rb and /sup 87/Rb were resolved with no residual amplitude-modulation-induced background signal by modulating the injection current of the laser diode at a low frequency (20--50 MHz) compared with the Doppler width. To obtain Doppler-free spectra, we combined FM spectroscopy with saturation spectroscopy. The results show that the FM spectroscopy technique is sensitive and should be useful for high-resolution spectroscopy, although the resolution was instrument limited and unusual double peaks were observed.

  7. The emission of atoms and molecules accompanying fracture of single-crystal MgO

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Jensen, L. C.; Mckay, M. R.; Freund, F.

    1986-01-01

    The emission of particles due to deformation and fracture of materials has been investigated. The emission of electrons (exoelectron emission), ions, neutral species, photons (triboluminescence), as well as long wavelength electromagnetic radiation was observed; collectively these emissions are referred to as fractoemission. This paper describes measurements of the neutral emission accompanying the fracture of single-crystal MgO. Masses detected are tentatively assigned to the emission of H2, CH4, H2O, CO, O2, CO2, and atomic Mg. Other hydrocarbons are also observed. The time dependencies of some of these emissions relative to fracture are presented for two different loading conditions.

  8. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    SciTech Connect

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with a theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.

  9. Low-loss electron energy loss spectroscopy: An atomic-resolution complement to optical spectroscopies and application to graphene

    DOE PAGESBeta

    Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; Lee, Jaekwang; Prange, Micah P.; Pennycook, Stephen J.; Idrobo Tapia, Juan Carlos; Pantelides, Sokrates T.

    2015-09-25

    Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less

  10. Spatially Resolved Atomic and Molecular Spectroscopy in Microelectronics Processing Plasmas

    SciTech Connect

    Hebner, G.A.

    1998-10-14

    Plasma processing of microelectronic materials is strongly dependent on the generation and control of neutral radial and ion species generated in a plasma. For example, process uniformity across a #er is drken by a combination of plasma charged particle and neutral uniformity. Due to extensive rexarch and engineering the current generation of commercial plasma reactors can generate very radially uniform ion distributions, usually better than ~ 2 perwnt as determined by ion saturation measurements. Due in part to the difficulty associated with determining the neutral radial distributions, control of the neutral radical uniformity is less well developed. This abstract will review our recent measurements of the spatial distribution of severaI important atomic and molecukw species in inductively coupled plasmas through C12 / BCIJ / Ar containing gas mixtures. Measured species include the ground state Cl and BC1 densities as well as the metastable argon density. The fbeus of this review will be on the experimental techniques and results. In addition to assisting in the development of a fbndarnental understanding of the important pkunna physics, these measurements have been used to benchmark multi dimensional plasma discharge codes.

  11. Detection of viruses: atomic force microscopy and surface enhanced raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper demonstrated the capability of atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS) to function effectively as ultra-sensitive readout tools for chip-scale platforms designed for pathogen detection in complex biological media. AFM allows direct (i.e. label-free) vi...

  12. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    EPA Science Inventory

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  13. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    ERIC Educational Resources Information Center

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  14. Some historic and current aspects of plasma diagnostics using atomic spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutton, Roger; Zou, Yaming; Andersson, Martin; Brage, Tomas; Martinson, Indrek

    2010-07-01

    In this paper we give a short introduction to the use of atomic spectroscopy in plasma diagnostics. Both older works and exciting new branches of atomic physics, which have relevance to diagnostics, are discussed. In particular we focus on forbidden lines in Be-like ions, lines sensitive to magnetic fields and levels which have a lifetime dependence on the nuclear spin of the ion, i.e. f-dependent lifetimes. Finally we mention a few examples of where tokamaks, instead of needing atomic data, actually provide new data and lead to developments in atomic structure studies. This paper is dedicated to the memory of Nicol J Peacock (1931-2008), a distinguished plasma scientist who contributed much to the field of spectroscopy applied to plasma, and in particular, fusion plasma diagnostics. During the final stages of the preparation of this paper Professor Indrek Martinson passed away peacefully in his sleep on 14 November 2009. Indrek will be greatly missed by many people, both for his contributions to atomic spectroscopy and for his great kindness and friendliness, which many of us experienced.

  15. Spectroscopy for cold atom gases in periodically modulated optical lattice potential

    NASA Astrophysics Data System (ADS)

    Tokuno, Akiyuki; Giamarchi, Thierry

    2011-03-01

    Cold atoms in optical lattices are vigorously studied experimentally and theoretically as one of the candidates for a quantum simulator. At the same time, further development of probes to microscopic structure of systems is needed. We propose a novel spectroscopy in cold atom experiments by use of periodic phase-modulation of optical lattice potentials. Corresponding to the statistics of atoms, we formulate the different observables: The energy absorption rate for bosonic atom gases, and the doublon production rate for fermionic atom gases. These observables are formulated within the linear response theory. Interestingly they are given by the imaginary part of the retarded current-current correlation function which is familiar as a quantity corresponding to an optical conductivity. As an example, we discuss one-dimensional Mott insulating state, and also compare our spectroscopy with another known spectroscopy by amplitude-modulation of an optical lattice. This work was supported in part by the Swiss SNF under MaNEP and division II.

  16. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    NASA Astrophysics Data System (ADS)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  17. Avalanche photodiode based detector for beam emission spectroscopy

    SciTech Connect

    Dunai, D.; Zoletnik, S.; Sarkoezi, J.; Field, A. R.

    2010-10-15

    An avalanche photodiode based (APD) detector for the visible wavelength range was developed for low light level, high frequency beam emission spectroscopy (BES) experiments in fusion plasmas. This solid state detector has higher quantum efficiency than photomultiplier tubes, and unlike normal photodiodes, it has internal gain. This paper describes the developed detector as well as the noise model of the electronic circuit. By understanding the noise sources and the amplification process, the optimal amplifier and APD reverse voltage setting can be determined, where the signal-to-noise ratio is the highest for a given photon flux. The calculations are compared to the absolute calibration results of the implemented circuit. It was found that for a certain photon flux range, relevant for BES measurements ({approx_equal}10{sup 8}-10{sup 10} photons/s), the new detector is superior to both photomultipliers and photodiodes, although it does not require cryogenic cooling of any component. The position of this photon flux window sensitively depends on the parameters of the actual experimental implementation (desired bandwidth, detector size, etc.) Several detector units based on these developments have been built and installed in various tokamaks. Some illustrative results are presented from the 8-channel trial BES system installed at Mega-Ampere Spherical Tokamak (MAST) and the 16-channel BES system installed at the Torus Experiment for Technology Oriented Research (TEXTOR).

  18. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Mantenieks, M. A.; Parsons, M. L.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputtering rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  19. Rapid evaluation of ion thruster lifetime using optical emission spectroscopy

    NASA Technical Reports Server (NTRS)

    Rock, B. A.; Parsons, M. L.; Mantenieks, M. A.

    1985-01-01

    A major life-limiting phenomenon of electric thrusters is the sputter erosion of discharge chamber components. Thrusters for space propulsion are required to operate for extended periods of time, usually in excess of 10,000 hr. Lengthy and very costly life-tests in high-vacuum facilities have been required in the past to determine the erosion rates of thruster components. Alternative methods for determining erosion rates which can be performed in relatively short periods of time at considerably lower costs are studied. An attempt to relate optical emission intensity from an ion bombarded surface (screen grid) to the sputtering rate of that surface is made. The model used a kinetic steady-state (KSS) approach, balancing the rates of population and depopulation of ten low-lying excited states of the sputtered molybdenum atom (MoI) with those of the ground state to relate the spectral intensities of the various transitions of the MoI to the population densities. Once this is accomplished, the population density can be related to the sputting rate of the target. Radiative and collisional modes of excitation and decay are considered. Since actual data has not been published for MoI excitation rate and decay constants, semiempirical equations are used. The calculated sputtering rate and intensity is compared to the measured intensity and sputtering rates of the 8 and 30 cm ion thrusters.

  20. Innovations in X-ray-induced electron emission spectroscopy (XIEES)

    SciTech Connect

    Pogrebitsky, K. Ju. Sharkov, M. D.

    2010-06-15

    Currently, a pressing need has arisen for controlling the local atomic and electron structure of materials irrespective of their aggregate state. Efficient approaches to the studies of short-range order are based on phenomena accompanied by interference of secondary electrons excited by primary X-ray radiation. The set of such approaches are commonly referred to as the X-ray absorption fine structure (XAFS) methods. In reality, the XAFS methods are based on the use of synchrotron radiation and applied to structural studies in two modes of measurements, transmission analysis and recording of secondary effects. Only two such effects-specifically, the X-ray fluorescence an d X-ray-induced electron emission effect-are commonly discussed. Access to synchrotron accelerators is problematic for most researchers, so a demand is created for designing laboratory systems that make direct access possible. Since the power of laboratory systems is much lower than that of synchrotrons, it is essential to use much more efficient detectors of secondary electrons. In addition, it is of interest to analyze energy characteristics with a high spatial resolution. Channel multipliers and multichannel boards are incapable of providing such a possibility. For this reason, an improved electron detector has been developed to analyze the photoemission effect in an accelerating field.

  1. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  2. Fluorescence spectroscopy in the nanosecond range for matrix-isolated Cu atoms and dimers

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.; Kolb, D. M.; Rotermund, H. H.; Schrittenlacher, W.; Schroeder, W.

    1985-11-01

    Synchrotron radiation in the single-bunch mode was employed to study time-resolved emission from Cu atoms and dimers isolated in a Ne matrix. The decay time of the matrix-related emission at 3.5 eV for Cu in Ne after excitation of the 4s → 4p resonance transition was determined as 6.9±0.3 ns, while excitation into higher-lying 3d → 4p transitions resulted in a much slower decay of the 3.5 eV emission. From analysis of rise and decay times, a detailed diagram for energy dissipation in matrix-isolated Cu atoms has been derived. The B → X (Σ u → Σ g) emission of Cu 2 in Ne has a first-order decay time of about 10 ns.

  3. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    SciTech Connect

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  4. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    SciTech Connect

    Du, Y. E-mail: scott.chambers@pnnl.gov; Liyu, A. V.; Droubay, T. C.; Chambers, S. A. E-mail: scott.chambers@pnnl.gov; Li, G.

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  5. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    SciTech Connect

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  6. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide.

    PubMed

    Boothroyd, C B; Moreno, M S; Duchamp, M; Kovács, A; Monge, N; Morales, G M; Barbero, C A; Dunin-Borkowski, R E

    2014-10-01

    We present an atomic resolution transmission electron microscopy (TEM) and scanning TEM (STEM) study of the local structure and composition of graphene oxide modified with Ba(2+). In our experiments, which are carried out at 80kV, the acquisition of contamination-free high-resolution STEM images is only possible while heating the sample above 400°C using a highly stable heating holder. Ba atoms are identified spectroscopically in electron energy-loss spectrum images taken at 800°C and are associated with bright contrast in high-angle annular dark-field STEM images. The spectrum images also show that Ca and O occur together and that Ba is not associated with a significant concentration of O. The electron dose used for spectrum imaging results in beam damage to the specimen, even at elevated temperature. It is also possible to identify Ba atoms in high-resolution TEM images acquired using shorter exposure times at room temperature, thereby allowing the structure of graphene oxide to be studied using complementary TEM and STEM techniques over a wide range of temperatures. PMID:24726278

  7. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Nikiforov, Anton Yu; González, Manuel Á.; Leys, Christophe; Pei Lu, Xin

    2013-02-01

    The characteristics of plasma temperatures (gas temperature and electron excitation temperature) and electron density in a pulsed-dc excited atmospheric helium plasma jet are studied by relative and absolute optical emission spectroscopy (OES). High-resolution OES is performed for the helium and hydrogen lines for the determination of electron density through the Stark broadening mechanism. A superposition fitting method composed of two component profiles corresponding to two different electron densities is developed to fit the investigated lines. Electron densities of the orders of magnitude of 1021 and 1020 m-3 are characterized for the center and edge regions in the jet discharge when the applied voltage is higher than 13.0 kV. The atomic state distribution function (ASDF) of helium demonstrates that the discharge deviates from the Boltzmann-Saha equilibrium state, especially for the helium lower levels, which are significantly overpopulated. Local electron excitation temperatures T13 and Tspec corresponding to the lower and upper parts of the helium ASDF are defined and found to range from 1.2 eV to 1.4 eV and 0.2 eV to 0.3 eV, respectively. A comparative analysis shows that the Saha balance is valid in the discharge for helium atoms at high excited states.

  8. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  9. Monte Carlo simulation of the atomic master equation for spontaneous emission

    NASA Astrophysics Data System (ADS)

    Dum, R.; Zoller, P.; Ritsch, H.

    1992-04-01

    A Monte Carlo simulation of the atomic master equation for spontaneous emission in terms of atomic wave functions is developed. Realizations of the time evolution of atomic wave functions are constructed that correspond to an ensemble of atoms driven by laser light undergoing a sequence of spontaneous emissions. The atomic decay times are drawn according to the photon count distribution of the driven atom. Each quantum jump of the atomic electron projects the atomic wave function to the ground state of the atom. Our theory is based on a stochastic interpretation and generalization of Mollow's pure-state analysis of resonant light scattering, and the Srinivas-Davies theory of continuous measurements in photodetection. An extension of the theory to include mechanical light effects and a generalization to atomic systems with Zeeman substructure are given. We illustrate the method by simulating the solutions of the optical Bloch equations for two-level systems, and laser cooling of a two-level atom in an ion trap where the center-of-mass motion of the atom is described quantum mechanically.

  10. Temperature measurement of wood flame based on the double line method of atomic emission spectra

    NASA Astrophysics Data System (ADS)

    Hao, Xiaojian; Liu, Zhenhua; Sang, Tao

    2016-01-01

    Aimed at the testing requirement of the transient high temperature in explosion field and the bore of barrel weapon, the temperature measurement system of double line of atomic emission spectrum was designed, the method of flame spectrum testing system were used for experimental analysis. The experimental study of wood burning spectra was done with flame spectrum testing system. The measured spectra contained atomic emission spectra of the elements K, Na, and the excitation ease of two kinds atomic emission spectra was analyzed. The temperature was calculated with two spectral lines of K I 766.5nm and 769.9nm. The results show that, compared with Na, the excitation temperature of K atomic emission spectra is lower. By double line method, the temperature of wood burning is 1040K, and error is 3.7%.