Science.gov

Sample records for atomic force microscopy-based

  1. Atomic Force Microscopy Based Cell Shape Index

    NASA Astrophysics Data System (ADS)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  2. Atomic force microscopy-based shape analysis of heart mitochondria.

    PubMed

    Lee, Gi-Ja; Park, Hun-Kuk

    2015-01-01

    Atomic force microscopy (AFM) has become an important medical and biological tool for the noninvasive imaging of cells and biomaterials in medical, biological, and biophysical research. The major advantages of AFM over conventional optical and electron microscopes for bio-imaging include the facts that no special coating is required and that imaging can be done in all environments-air, vacuum, or aqueous conditions. In addition, it can also precisely determine pico-nano Newton force interactions between the probe tip and the sample surface from force-distance curve measurements.It is widely known that mitochondrial swelling is one of the most important indicators of the opening of the mitochondrial permeability transition (MPT) pore. As mitochondrial swelling is an ultrastructural change, quantitative analysis of this change requires high-resolution microscopic methods such as AFM. Here, we describe the use of AFM-based shape analysis for the characterization of nanostructural changes in heart mitochondria resulting from myocardial ischemia-reperfusion injury. PMID:25634291

  3. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoning; Kim, Seong H.; Tittmann, Bernhard

    2015-01-01

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

  4. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    SciTech Connect

    Xi, Xiaoning; Tittmann, Bernhard; Kim, Seong H.

    2015-01-14

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

  5. Current status and perspectives in atomic force microscopy-based identification of cellular transformation

    PubMed Central

    Dong, Chenbo; Hu, Xiao; Dinu, Cerasela Zoica

    2016-01-01

    Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes. PMID:27274238

  6. Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy.

    PubMed

    Schön, Peter; Kutnyanszky, Edit; ten Donkelaar, Bas; Santonicola, M Gabriella; Tecim, Tugba; Aldred, Nick; Clare, Anthony S; Vancso, G Julius

    2013-02-01

    The protein repellency and biofouling resistance of zwitterionic poly(sulfobetaine methacrylate)(pSBMA) brushes grafted via surface initiated polymerization (SIP) from silicon and glass substrata was assessed using atomic force microscopy (AFM) adherence experiments. Laboratory settlement assays were conducted with cypris larvae of the barnacle Balanus amphitrite. AFM adherence includes the determination of contact rupture forces when AFM probe tips are withdrawn from the substratum. When the surface of the AFM tip is modified, adherence can be assessed with chemical specifity using a method known as chemical force microscopy (CFM). In this study, AFM tips were chemically functionalized with (a) fibronectin- here used as model for a nonspecifically adhering protein - and (b) arginine-glycine-aspartic acid (RGD) peptide motifs covalently attached to poly(methacrylic acid) (PMAA) brushes as biomimics of cellular adhesion receptors. Fibronectin functionalized tips showed significantly reduced nonspecific adhesion to pSBMA-modified substrata compared to bare gold (2.3±0.75 nN) and octadecanethiol (ODT) self-assembled monolayers (1.3±0.75 nN). PMAA and PMAA-RGD modified probes showed no significant adhesion to pSBMA modified silicon substrata. The results gathered through AFM protein adherence studies were complemented by laboratory fouling studies, which showed no adhesion of cypris larvae of Balanus amphitrite on pSBMA. With regard to its unusually high non-specific adsorption to a wide variety of materials the behavior of fibronectin is analogous to the barnacle cyprid temporary adhesive that also binds well to surfaces differing in polarity, charge and free energy. The antifouling efficacy of pSBMA may, therefore, be directly related to the ability of this surface to resist nonspecific protein adsorption. PMID:23138001

  7. Joint strength measurements of individual fiber-fiber bonds: An atomic force microscopy based method

    NASA Astrophysics Data System (ADS)

    Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Schennach, Robert

    2012-07-01

    We are introducing a method to measure tensile strength of individual fiber-fiber bonds within a breaking force range of 0.01 mN-1 mN as well as the energy consumed during breaking. Until now, such a method was not available. Using a conventional atomic force microscope and a specifically designed sample holder, the desired force and the breaking behavior can be analyzed by two different approaches. First, dynamic loading can be applied, where force-versus-distance curves are employed to determine the proportions of elastic energy and energy dissipated in the bond. Second, static loading is utilized to study viscoelastic behavior and calculate viscoelastic energy contributions. To demonstrate the capability of the proposed method, we are presenting results for breaking strength of kraft pulp fiber-fiber bonds in tensile opening mode. The procedure is by no means restricted to cellulose fibers, it has the potential to quantify joint strength of micrometer-sized fibers in general.

  8. Experimental validation of atomic force microscopy-based cell elasticity measurements

    NASA Astrophysics Data System (ADS)

    Harris, Andrew R.; Charras, G. T.

    2011-08-01

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than ~ 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  9. Crystallographic plane-orientation dependent atomic force microscopy-based local oxidation of silicon carbide.

    PubMed

    Ahn, Jung-Joon; Jo, Yeong-Deuk; Kim, Sang-Cheol; Lee, Ji-Hoon; Koo, Sang-Mo

    2011-01-01

    The effect of crystalline plane orientations of Silicon carbide (SiC) (a-, m-, and c-planes) on the local oxidation on 4H-SiC using atomic force microscopy (AFM) was investigated. It has been found that the AFM-based local oxidation (AFM-LO) rate on SiC is closely correlated to the atomic planar density values of different crystalline planes (a-plane, 7.45 cm-2; c-plane, 12.17 cm-2; and m-plane, 6.44 cm-2). Specifically, at room temperature and under about 40% humidity with a scan speed of 0.5 μm/s, the height of oxides on a- and m-planes 4H-SiC is 6.5 and 13 nm, respectively, whereas the height of oxides on the c-plane increased up to 30 nm. In addition, the results of AFM-LO with thermally grown oxides on the different plane orientations in SiC are compared. PMID:21711752

  10. Crystallographic plane-orientation dependent atomic force microscopy-based local oxidation of silicon carbide

    PubMed Central

    2011-01-01

    The effect of crystalline plane orientations of Silicon carbide (SiC) (a-, m-, and c-planes) on the local oxidation on 4H-SiC using atomic force microscopy (AFM) was investigated. It has been found that the AFM-based local oxidation (AFM-LO) rate on SiC is closely correlated to the atomic planar density values of different crystalline planes (a-plane, 7.45 cm-2; c-plane, 12.17 cm-2; and m-plane, 6.44 cm-2). Specifically, at room temperature and under about 40% humidity with a scan speed of 0.5 μm/s, the height of oxides on a- and m-planes 4H-SiC is 6.5 and 13 nm, respectively, whereas the height of oxides on the c-plane increased up to 30 nm. In addition, the results of AFM-LO with thermally grown oxides on the different plane orientations in SiC are compared. PMID:21711752

  11. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    PubMed

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs. PMID:26476923

  12. An atomic force microscopy-based method for line edge roughness measurement

    NASA Astrophysics Data System (ADS)

    Fouchier, M.; Pargon, E.; Bardet, B.

    2013-03-01

    With the constant decrease of semiconductor device dimensions, line edge roughness (LER) becomes one of the most important sources of device variability and needs to be controlled below 2 nm for the future technological nodes of the semiconductor roadmap. LER control at the nanometer scale requires accurate measurements. We introduce a technique for LER measurement based upon the atomic force microscope (AFM). In this technique, the sample is tilted at about 45° and feature sidewalls are scanned along their length with the AFM tip to obtain three-dimensional images. The small radius of curvature of the tip together with the low noise level of a laboratory AFM result in high resolution images. Half profiles and LER values on all the height of the sidewalls are extracted from the 3D images using a procedure that we developed. The influence of sample angle variations on the measurements is shown to be small. The technique is applied to the study of a full pattern transfer into a simplified gate stack. The images obtained are qualitatively consistent with cross-section scanning electron microscopy images and the average LER values agree with that obtained by critical dimension scanning electron microscopy. In addition to its high resolution, this technique presents several advantages such as the ability to image the foot of photoresist lines, complex multi-layer stacks regardless of the materials, and deep re-entrant profiles.

  13. The study on the atomic force microscopy base nanoscale electrical discharge machining.

    PubMed

    Huang, Jen-Ching; Chen, Chung-Ming

    2012-01-01

    This study proposes an innovative atomic force microscopy (AFM) based nanoscale electrical discharge machining (AFM-based nanoEDM) system which combines an AFM with a self-produced metallic probe and a high-voltage generator to create an atmospheric environment AFM-based nanoEDM system and a deionized water (DI water) environment AFM-based nanoEDM system. This study combines wire-cut processing and electrochemical tip sharpening techniques on a 40-µm thick stainless steel sheet to produce a high conductive AFM probes, the production can withstand high voltage and large current. The tip radius of these probes is approximately 40 nm. A probe test was executed on the AFM using probes to obtain nanoscales morphology of Si wafer surface. The silicon wafer was as a specimen to carry out AFM-base nanoEDM process in atmospheric and DI water environments by AFM-based nanoEDM system. After experiments, the results show that the atmospheric and DI water environment AFM-based nanoEDM systems operate smoothly. From experimental results, it can be found that the electric discharge depth of the silicon wafer at atmospheric environments is a mere 14.54 nm. In a DI water environment, the depth of electric discharge of the silicon wafer can reach 25.4 nm. This indicates that the EDM ability of DI water environment AFM-based nanoEDM system is higher than that of atmospheric environment AFM-based nanoEDM system. After multiple nanoEDM process, the tips become blunt. After applying electrochemical tip sharpening techniques, the tip radius can return to approximately 40 nm. Therefore, AFM probes produced in this study can be reused. PMID:21898457

  14. Carboxymethyl cellulose binding to mineral substrates: characterization by atomic force microscopy-based force spectroscopy and quartz-crystal microbalance with dissipation monitoring.

    PubMed

    Pensini, Erica; Yip, Christopher M; O'Carroll, Denis; Sleep, Brent E

    2013-07-15

    The attachment of the sodium salt of carboxymethyl cellulose (CMC) onto iron oxide and various silicate substrates in aqueous solution as a function of salt concentration and pH was studied by atomic force microscopy-based force spectroscopy (AFM) and quartz-crystal microbalance with dissipation monitoring (QCM-D). Both ionic strength and cation valency were found to influence substrate binding. Notably, QCM-D experiments strongly suggested that the solubility of CMC is directly impacted by the presence of CaCl2. Such data are critical for the design of new molecules for stabilizing mineral floc dispersions and for assessing the mobility of CMC-coated particles in the subsurface. Modeling of AFM data with an extended Ohshima theory showed that van der Waals and steric forces played a major role in the interactions between CMC and mineral substrates, and that hydration forces were also important. PMID:23643251

  15. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    SciTech Connect

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  16. Investigation of the nanoscale elastic recovery of a polymer using an atomic force microscopy-based method

    NASA Astrophysics Data System (ADS)

    Geng, Yanquan; Yan, Yongda; Hu, Zhenjiang; Zhao, Xuesen

    2016-01-01

    An atomic force microscopy (AFM)-based method to reveal the elastic recovery behavior of a polymer material after the nanoscratching process is presented. The machined depth during scratching is obtained by monitoring the position of the piezoceramic tube (PZT) of the AFM system. By comparison with the measured depth of the nanogroove, the elastic recovery of the machined depth can be achieved. Experiments are also undertaken to study the effects of the scratching velocity and the applied normal load on the elastic recovery of the machined depth when scratching on polycarbonate (PC). Results show that the elastic recovery rate has a logarithmically proportional relationship to the scratching velocity, while it has little change with the variation of the applied normal load. In addition, the constitutive model of the polymer material is also used to verify the obtained conclusions, indicating that this is a potential method for measuring the elastic recovery of the material under the mechanical process on the nanoscale.

  17. Label-free, atomic force microscopy-based mapping of DNA intrinsic curvature for the nanoscale comparative analysis of bent duplexes

    PubMed Central

    Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo

    2012-01-01

    We propose a method for the characterization of the local intrinsic curvature of adsorbed DNA molecules. It relies on a novel statistical chain descriptor, namely the ensemble averaged product of curvatures for two nanosized segments, symmetrically placed on the contour of atomic force microscopy imaged chains. We demonstrate by theoretical arguments and experimental investigation of representative samples that the fine mapping of the average product along the molecular backbone generates a characteristic pattern of variation that effectively highlights all pairs of DNA tracts with large intrinsic curvature. The centrosymmetric character of the chain descriptor enables targetting strands with unknown orientation. This overcomes a remarkable limitation of the current experimental strategies that estimate curvature maps solely from the trajectories of end-labeled molecules or palindromes. As a consequence our approach paves the way for a reliable, unbiased, label-free comparative analysis of bent duplexes, aimed to detect local conformational changes of physical or biological relevance in large sample numbers. Notably, such an assay is virtually inaccessible to the automated intrinsic curvature computation algorithms proposed so far. We foresee several challenging applications, including the validation of DNA adsorption and bending models by experiments and the discrimination of specimens for genetic screening purposes. PMID:22402493

  18. Label-free, atomic force microscopy-based mapping of DNA intrinsic curvature for the nanoscale comparative analysis of bent duplexes.

    PubMed

    Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo

    2012-06-01

    We propose a method for the characterization of the local intrinsic curvature of adsorbed DNA molecules. It relies on a novel statistical chain descriptor, namely the ensemble averaged product of curvatures for two nanosized segments, symmetrically placed on the contour of atomic force microscopy imaged chains. We demonstrate by theoretical arguments and experimental investigation of representative samples that the fine mapping of the average product along the molecular backbone generates a characteristic pattern of variation that effectively highlights all pairs of DNA tracts with large intrinsic curvature. The centrosymmetric character of the chain descriptor enables targetting strands with unknown orientation. This overcomes a remarkable limitation of the current experimental strategies that estimate curvature maps solely from the trajectories of end-labeled molecules or palindromes. As a consequence our approach paves the way for a reliable, unbiased, label-free comparative analysis of bent duplexes, aimed to detect local conformational changes of physical or biological relevance in large sample numbers. Notably, such an assay is virtually inaccessible to the automated intrinsic curvature computation algorithms proposed so far. We foresee several challenging applications, including the validation of DNA adsorption and bending models by experiments and the discrimination of specimens for genetic screening purposes. PMID:22402493

  19. Interaction force microscopy based on quartz tuning fork force sensor

    NASA Astrophysics Data System (ADS)

    Qin, Yexian

    The ability to sense small changes in the interaction force between a scanning probe microscope (SPM) tip and a substrate requires cantilevers with a sharp mechanical resonance. A typical commercially available cantilever in air is characterized by a resonance with a Q factor of 100 ˜ 300. The low Q factor can be attributed to imperfections in the cantilever itself as well as damping effects of the surrounding air. To substantially increase the Q factor, novel concepts are required. For this reason, we have performed a systematic study of quartz tuning fork resonators for possible use with SPMs. We find that tuning fork resonators operating in air are characterized by Q factors in the order of 104, thereby greatly improving the SPM's ability to measure small shifts in the interaction force. By carefully attaching commercially available SPM tips to the tuning fork, it is possible to obtain SPM images using non-contact imaging techniques and analyze the tip-sample interactions. The assembly of uniform molecular monolayers on atomically flat substrates for molecular electronics applications has received widespread attention during the past ten years. Scanning probe techniques are often used to assess substrate topography, molecular ordering and electronic properties, yet little is known about the fundamental tip-molecule interaction. To address this issue we have built an Interaction Force Microscope using a quartz tuning fork to probe tip-molecular monolayer interactions using scanning probe microscopy. The high quality factor and stable resonant frequency of a quartz tuning fork allows accurate measurement of small shifts in the resonant frequency as the tip interacts with the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezomechanical properties of a tuning fork have been calibrated using a fiber optical interferometer. In prior work [1], we have studied molecular layers formed from either 4-Trifluoro

  20. Force feedback microscopy based on an optical beam deflection scheme

    NASA Astrophysics Data System (ADS)

    Vitorino, Miguel V.; Carpentier, Simon; Costa, Luca; Rodrigues, Mario S.

    2014-07-01

    Force feedback microscopy circumvents the jump to contact in atomic force microscopy when using soft cantilevers and quantitatively measures the interaction properties at the nanoscale by simultaneously providing force, force gradient, and dissipation. The force feedback microscope developed so far used an optical cavity to measure the tip displacement. In this Letter, we show that the more conventional optical beam deflection scheme can be used to the same purpose. With this instrument, we have followed the evolution of the Brownian motion of the tip under the influence of a water bridge.

  1. Force feedback microscopy based on an optical beam deflection scheme

    SciTech Connect

    Vitorino, Miguel V.; Rodrigues, Mario S.; Carpentier, Simon; Costa, Luca

    2014-07-07

    Force feedback microscopy circumvents the jump to contact in atomic force microscopy when using soft cantilevers and quantitatively measures the interaction properties at the nanoscale by simultaneously providing force, force gradient, and dissipation. The force feedback microscope developed so far used an optical cavity to measure the tip displacement. In this Letter, we show that the more conventional optical beam deflection scheme can be used to the same purpose. With this instrument, we have followed the evolution of the Brownian motion of the tip under the influence of a water bridge.

  2. Ion microscopy based on laser-cooled cesium atoms.

    PubMed

    Viteau, M; Reveillard, M; Kime, L; Rasser, B; Sudraud, P; Bruneau, Y; Khalili, G; Pillet, P; Comparat, D; Guerri, I; Fioretti, A; Ciampini, D; Allegrini, M; Fuso, F

    2016-05-01

    We demonstrate a prototype of a Focused Ion Beam machine based on the ionization of a laser-cooled cesium beam and adapted for imaging and modifying different surfaces in the few-tens nanometer range. Efficient atomic ionization is obtained by laser promoting ground-state atoms into a target excited Rydberg state, then field-ionizing them in an electric field gradient. The method allows obtaining ion currents up to 130pA. Comparison with the standard direct photo-ionization of the atomic beam shows, in our conditions, a 40-times larger ion yield. Preliminary imaging results at ion energies in the 1-5keV range are obtained with a resolution around 40nm, in the present version of the prototype. Our ion beam is expected to be extremely monochromatic, with an energy spread of the order of the eV, offering great prospects for lithography, imaging and surface analysis. PMID:26876642

  3. Noncontact scanning force microscopy based on a modified tuning fork sensor

    NASA Astrophysics Data System (ADS)

    Göttlich, Hagen; Stark, Robert W.; Pedarnig, Johannes D.; Heckl, Wolfgang M.

    2000-08-01

    Distance control using a tuning fork setup for the detection of shear forces is a standard configuration in scanning near-field optical microscopy (SNOM). Based on this concept, a modified sensor was developed, where a standard silicon tip for atomic force microscopy (AFM) is attached to the front end of one prong of a 100 kHz quartz tuning fork oscillator. Comparison of force curves of a standard tapping-mode AFM cantilever, a conventional fiber tip SNOM sensor and the novel AFM tip shear force sensor demonstrate an enhanced stability and sensitivity of the new sensor. Due to the rigid sensor design the force curves of the AFM tip shear force sensor indicate a perfect noncontact behavior under normal conditions in air. Noncontact images show a comparable resolution to conventional force microscopy.

  4. Atomic Force Microscope

    SciTech Connect

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  5. High Resolution Traction Force Microscopy Based on Experimental and Computational Advances

    PubMed Central

    Sabass, Benedikt; Gardel, Margaret L.; Waterman, Clare M.; Schwarz, Ulrich S.

    2008-01-01

    Cell adhesion and migration crucially depend on the transmission of actomyosin-generated forces through sites of focal adhesion to the extracellular matrix. Here we report experimental and computational advances in improving the resolution and reliability of traction force microscopy. First, we introduce the use of two differently colored nanobeads as fiducial markers in polyacrylamide gels and explain how the displacement field can be computationally extracted from the fluorescence data. Second, we present different improvements regarding standard methods for force reconstruction from the displacement field, which are the boundary element method, Fourier-transform traction cytometry, and traction reconstruction with point forces. Using extensive data simulation, we show that the spatial resolution of the boundary element method can be improved considerably by splitting the elastic field into near, intermediate, and far field. Fourier-transform traction cytometry requires considerably less computer time, but can achieve a comparable resolution only when combined with Wiener filtering or appropriate regularization schemes. Both methods tend to underestimate forces, especially at small adhesion sites. Traction reconstruction with point forces does not suffer from this limitation, but is only applicable with stationary and well-developed adhesion sites. Third, we combine these advances and for the first time reconstruct fibroblast traction with a spatial resolution of ∼1 μm. PMID:17827246

  6. Deep atomic force microscopy

    SciTech Connect

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K.

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  7. Atomic Force Microscope Operation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file)

    This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams.

    The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles.

    The microscope then maps the shape of particles in three dimensions by scanning them with the tip.

    At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Coaxial atomic force microscope tweezers

    NASA Astrophysics Data System (ADS)

    Brown, K. A.; Aguilar, J. A.; Westervelt, R. M.

    2010-03-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force versus applied voltage. We show that the coaxial AFM tweezers can perform three-dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  9. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  10. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  11. Coffee Cup Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  12. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  13. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  14. Dynamic atomic force microscopy methods

    NASA Astrophysics Data System (ADS)

    García, Ricardo; Pérez, Rubén

    2002-09-01

    In this report we review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods. Our focus is on understanding why the changes observed in the dynamic properties of a vibrating tip that interacts with a surface make possible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale surface defects in ultra high vacuum (UHV). Our description of the two major dynamic AFM modes, amplitude modulation atomic force microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-AFM) emphasises their common points without ignoring the differences in experimental set-ups and operating conditions. Those differences are introduced by the different feedback parameters, oscillation amplitude in AM-AFM and frequency shift and excitation amplitude in FM-AFM, used to track the topography and composition of a surface. The theoretical analysis of AM-AFM (also known as tapping-mode) emphasises the coexistence, in many situations of interests, of two stable oscillation states, a low and high amplitude solution. The coexistence of those oscillation states is a consequence of the presence of attractive and repulsive components in the interaction force and their non-linear dependence on the tip-surface separation. We show that key relevant experimental properties such as the lateral resolution, image contrast and sample deformation are highly dependent on the oscillation state chosen to operate the instrument. AM-AFM allows to obtain simultaneous topographic and compositional contrast in heterogeneous samples by recording the phase angle difference between the external excitation and the tip motion (phase imaging). Significant applications of AM-AFM such as high-resolution imaging of biomolecules and polymers, large-scale patterning of silicon surfaces, manipulation of single nanoparticles or the fabrication of single electron devices are also reviewed. FM-AFM (also called non

  15. Measuring the elasticity of plant cells with atomic force microscopy.

    PubMed

    Braybrook, Siobhan A

    2015-01-01

    The physical properties of biological materials impact their functions. This is most evident in plants where the cell wall contains each cell's contents and connects each cell to its neighbors irreversibly. Examining the physical properties of the plant cell wall is key to understanding how plant cells, tissues, and organs grow and gain the shapes important for their respective functions. Here, we present an atomic force microscopy-based nanoindentation method for examining the elasticity of plant cells at the subcellular, cellular, and tissue level. We describe the important areas of experimental design to be considered when planning and executing these types of experiments and provide example data as illustration. PMID:25640432

  16. Nanorheology by atomic force microscopy

    SciTech Connect

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-15

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  17. Nanorheology by atomic force microscopy.

    PubMed

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite. PMID:25554301

  18. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  19. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  20. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  1. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  2. Casimir-Polder forces on moving atoms

    SciTech Connect

    Scheel, Stefan; Buhmann, Stefan Yoshi

    2009-10-15

    Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.

  3. Improving an all-atom force field.

    PubMed

    Mohanty, Sandipan; Hansmann, U H E

    2007-07-01

    Experimentally well-characterized proteins that are small enough to be computationally tractable provide useful information for refining existing all-atom force fields. This is used by us for reparametrizing a recently developed all-atom force field. Relying on high statistics parallel tempering simulations of a designed 20 residue beta-sheet peptide, we propose incremental changes that improve the force field's range of applicability. PMID:17677516

  4. Bitumen morphologies by phase-detection atomic force microscopy.

    PubMed

    Masson, J-F; Leblond, V; Margeson, J

    2006-01-01

    Summary Bitumen is a complex mixture of hydrocarbons for which microstructural knowledge is incomplete. In an effort to detail this microstructure, 13 bitumens were analysed by phase-detection atomic force microscopy. Based on morphology, the bitumens could be classified into three distinct groups. One group showed fine domains down to 0.1 microm, another showed domains of about 1 microm, and a third group showed up to four different domains or phases of different sizes and shapes. No correlation was found between the atomic force microscopy morphology and the composition based on asphaltenes, polar aromatics, naphthene aromatics and saturates. A high correlation was found between the area of the 'bee-like' structures and the vanadium and nickel content in bitumen, and between the atomic force microscopy groups and the average size of molecular planes made of fused aromatics. The morphology and the molecular arrangements in bitumen thus appear to be partly governed by the molecular planes and the polarity defined by metallic cations. PMID:16438686

  5. Chemical identification of individual surface atoms by atomic force microscopy.

    PubMed

    Sugimoto, Yoshiaki; Pou, Pablo; Abe, Masayuki; Jelinek, Pavel; Pérez, Rubén; Morita, Seizo; Custance, Oscar

    2007-03-01

    Scanning probe microscopy is a versatile and powerful method that uses sharp tips to image, measure and manipulate matter at surfaces with atomic resolution. At cryogenic temperatures, scanning probe microscopy can even provide electron tunnelling spectra that serve as fingerprints of the vibrational properties of adsorbed molecules and of the electronic properties of magnetic impurity atoms, thereby allowing chemical identification. But in many instances, and particularly for insulating systems, determining the exact chemical composition of surfaces or nanostructures remains a considerable challenge. In principle, dynamic force microscopy should make it possible to overcome this problem: it can image insulator, semiconductor and metal surfaces with true atomic resolution, by detecting and precisely measuring the short-range forces that arise with the onset of chemical bonding between the tip and surface atoms and that depend sensitively on the chemical identity of the atoms involved. Here we report precise measurements of such short-range chemical forces, and show that their dependence on the force microscope tip used can be overcome through a normalization procedure. This allows us to use the chemical force measurements as the basis for atomic recognition, even at room temperature. We illustrate the performance of this approach by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible. PMID:17330040

  6. Atom inlays performed at room temperature using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Yoshiaki; Abe, Masayuki; Hirayama, Shinji; Oyabu, Noriaki; Custance, Óscar; Morita, Seizo

    2005-02-01

    The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces is driving us closer to the ultimate limit of two-dimensional nanoengineering. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.

  7. Imaging cells with the atomic force microscope.

    PubMed

    Butt, H J; Wolff, E K; Gould, S A; Dixon Northern, B; Peterson, C M; Hansma, P K

    1990-01-01

    Different types of cells have been imaged with the atomic force microscope. The morphology of the archaebacterium Halobacterium halobium in its dry state was revealed. On a leaf of the small Indian tree Lagerstroemia subcostata a stoma was imaged. The lower side of a water lily leaf was imaged in water showing features down to 12 nm. Finally, fixed red and white blood cells were imaged in buffer showing features down to 8 nm. The images demonstrate that atomic force microscopy can provide high-resolution images of cell surfaces under physiological conditions. PMID:2100150

  8. Fidelity imaging for atomic force microscopy

    SciTech Connect

    Ghosal, Sayan Salapaka, Murti

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  9. Automated force controller for amplitude modulation atomic force microscopy.

    PubMed

    Miyagi, Atsushi; Scheuring, Simon

    2016-05-01

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed. PMID:27250433

  10. Calibration of frictional forces in atomic force microscopy

    SciTech Connect

    Ogletree, D.F.; Carpick, R.W.; Salmeron, M.

    1996-09-01

    The atomic force microscope can provide information on the atomic-level frictional properties of surfaces, but reproducible quantitative measurements are difficult to obtain. Parameters that are either unknown or difficult to precisely measure include the normal and lateral cantilever force constants (particularly with microfabricated cantilevers), the tip height, the deflection sensor response, and the tip structure and composition at the tip-surface contact. We present an {ital in} {ital situ} experimental procedure to determine the response of a cantilever to lateral forces in terms of its normal force response. This procedure is quite general. It will work with any type of deflection sensor and does not require the knowledge or direct measurement of the lever dimensions or the tip height. In addition, the shape of the tip apex can be determined. We also discuss a number of specific issues related to force and friction measurements using optical lever deflection sensing. We present experimental results on the lateral force response of commercially available V-shaped cantilevers. Our results are consistent with estimates of lever mechanical properties using continuum elasticity theory. {copyright} {ital 1996 American Institute of Physics.}

  11. Trapping atoms using nanoscale quantum vacuum forces

    PubMed Central

    Chang, D. E.; Sinha, K.; Taylor, J. M.; Kimble, H. J.

    2014-01-01

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement. PMID:25008119

  12. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    van der Heijden, Nadine J.; Smith, Daniël; Calogero, Gaetano; Koster, Rik S.; Vanmaekelbergh, Daniel; van Huis, Marijn A.; Swart, Ingmar

    2016-06-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Δ f (z ) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene on Cu(111) and Ir(111). The results are corroborated by density functional theory calculations employing a van der Waals functional.

  13. Neuron Biomechanics Probed by Atomic Force Microscopy

    PubMed Central

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications. PMID:23921683

  14. Neuron biomechanics probed by atomic force microscopy.

    PubMed

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications. PMID:23921683

  15. Measuring energies with an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Langer, J.; Díez-Pérez, I.; Sanz, F.; Fraxedas, J.

    2006-04-01

    The elastic and plastic response of ordered inorganic, organic and biological materials involving nanometer-scale volumes in the nano- and low micronewton force range can be characterized by means of an Atomic Force Microscope (AFM) using ultrasharp cantilever tips with radius R typically below 10 nm. Because the plastic onset can be easily identified, the maximal accumulated elastic energy can be directly determined from the force curves (force F vs. penetration δ curves), thus giving a realistic estimate of the characteristic energies of the materials. We illustrate the ability of AFMs to determine such energies with the case example of the molecular organic metal TTF-TCNQ (TTF = tetrathiafulvalene, TCNQ = tetracyanoquinodimethane), where the enthalpy of sublimation is obtained.

  16. Atomic Force Microscopy of Biological Membranes

    PubMed Central

    Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas

    2009-01-01

    Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286

  17. Frequency Modulation Atomic Force Microscopy in Liquids

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kei; Yamada, Hirofumi

    Atomic force microscopy (AFM) using frequency modulation (FM) detection has been widely used for the atomic-scale investigations of various materials. However, high-resolution imaging in liquids by FM-AFM is severely deteriorated by the extreme reduction of the Q-factor due to the hydrodynamic interaction between the cantilever and the liquid. Recently, the use of the small amplitude mode and the large noise reduction in the cantilever deflection sensor brought great progress in FM-AFM imaging in liquids. In this chapter viscous damping of the cantilever and the electric double layer force are discussed in detail. Following the detailed analysis of the frequency noise in FM-AFM, instrumentation of the optical beam deflection sensor for FM-AFM in liquid environments is described. Finally high-resolution FM-AFM images of muscovite mica, purple membranes, and isolated protein molecules in liquids are presented.

  18. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  19. Energy dissipation in multifrequency atomic force microscopy.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2014-01-01

    The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip-sample interaction. PMID:24778976

  20. An atomic force microscopy study of Eurofer-97 steel

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Aristomenopoulou, E.; Sandim, M. J. R.; Sandim, H. R. Z.; Pissas, M.

    2014-07-01

    In recent years the microstructure, mechanical and magnetic properties of Eurofer-97 steel are studied intensively due to its application in nuclear fusion power plants. Its microstructure is usually accessed by means of electron microscopy. Here we present an alternative approach utilizing Atomic Force Microscopy (AFM) to study as-received Eurofer-97 steel. We recorded both the Height Signal (HS) and Phase Signal (PS) that provided information on the morphologic and inelastic topography, respectively. With the HS we detected spherical particles (SPs) of size 50-2000 nm. Interestingly, micrometer SPs (0.1-2.0 μm) are randomly distributed, while nanometer SPs (50-100 nm) are sometimes arranged in correlation to grain boundaries. The PS clearly revealed that the micrometer SPs exhibit inelastic properties. Though we cannot identify the elemental composition of the SPs with AFM, based on relevant electron microscopy data we ascribe the nanometer ones to the TaC, TiN and VN and the coarse micrometer ones to M23C6 (M=Cr, Fe). The latter class of SPs can probably be active sites that influence the mechanical properties of Eurofer-97 steel upon annealing as observed in relevant electron microscopy based studies.

  1. First Atomic Force Microscope Image from Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles.

    The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep.

    This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing.

    Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  2. Ultrastable Atomic Force Microscopy for Biophysics

    NASA Astrophysics Data System (ADS)

    Churnside, Allison B.

    Atomic force microscopy (AFM) is a multifunctional workhorse of nanoscience and molecular biophysics, but instrumental drift remains a critical issue that limits the precision and duration of experiments. We have significantly reduced the two most important types of drift: in position and in force. The first, position drift, is defined as uncontrolled motion between the tip and the sample, which occurs in all three dimensions. By scattering a laser off the apex of a commercial AFM tip, we locally measured and thereby actively controlled its three-dimensional position above a sample surface to <0.4 A (Deltaf = 0.01--10 Hz) in air at room temperature. With this enhanced stability, we demonstrated atomic-scale (˜1 A) tip-sample stability and registration over tens of minutes with a series of AFM images. The second type of drift is force drift. We found that the primary source of force drift for a popular class of soft cantilevers is their gold coating, even though they are coated on both sides to minimize drift. When the gold coating was removed through a simple chemical etch, this drift in deflection was reduced by more than an order of magnitude over the first 2 hours after wetting the tip. Removing the gold also led to ˜ 10-fold reduction in reflected light, yet short-term (0.1--10 s) force precision improved. With both position and force drift greatly reduced, the utility of the AFM is enhanced. These improvements led to several new AFM abilities, including a five-fold increase in the image signal-to-noise ratio; tip-registered, label-free optical imaging; registered tip return to a particular point on the sample; and dual-detection force spectroscopy, which enables a new extension clamp mode. We have applied these abilities to folding of both membrane and soluble proteins. In principle, the techniques we describe can be fully incorporated into many types of scanning probe microscopy, making this work a general improvement to scanning probe techniques.

  3. Periodicity in bimodal atomic force microscopy

    SciTech Connect

    Lai, Chia-Yun; Santos, Sergio Chiesa, Matteo; Barcons, Victor

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  4. Atomic force microscopy of hydrated phosphatidylethanolamine bilayers.

    PubMed Central

    Zasadzinski, J A; Helm, C A; Longo, M L; Weisenhorn, A L; Gould, S A; Hansma, P K

    1991-01-01

    We present images of the polar or headgroup regions of bilayers of dimyristoyl-phosphatidylethanolamine (DMPE), deposited by Langmuir-Blodgett deposition onto mica substrates at high surface pressures and imaged under water at room temperature with the optical lever atomic force microscope. The lattice structure of DMPE is visualized with sufficient resolution that the location of individual headgroups can be determined. The forces are sufficiently small that the same area can be repeatedly imaged with a minimum of damage. The DMPE molecules in the bilayer appear to have relatively good long-range orientational order, but rather short-range and poor positional order. These results are in good agreement with x-ray measurements of unsupported lipid monolayers on the water surface, and with electron diffraction of adsorbed monolayers. Images FIGURE 1 FIGURE 2 PMID:2049529

  5. Friction forces on atoms after acceleration

    DOE PAGESBeta

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.« less

  6. Friction forces on atoms after acceleration

    SciTech Connect

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.

  7. Combined scanning electrochemical-atomic force microscopy.

    PubMed

    Macpherson, J V; Unwin, P R

    2000-01-15

    A combined scanning electrochemical microscope (SECM)-atomic force microscope (AFM) is described. The instrument permits the first simultaneous topographical and electrochemical measurements at surfaces, under fluid, with high spatial resolution. Simple probe tips suitable for SECM-AFM, have been fabricated by coating flattened and etched Pt microwires with insulating, electrophoretically deposited paint. The flattened portion of the probe provides a flexible cantilever (force sensor), while the coating insulates the probe such that only the tip end (electrode) is exposed to the solution. The SECM-AFM technique is illustrated with simultaneous electrochemical-probe deflection approach curves, simultaneous topographical and electrochemical imaging studies of track-etched polycarbonate ultrafiltration membranes, and etching studies of crystal surfaces. PMID:10658320

  8. Ab Initio Based 2D Continuum Mechanics - Sensitivity Prediction for Contact Resonance Atomic Force Microscopy Based Structure Fingerprints

    NASA Astrophysics Data System (ADS)

    Tu, Qing; Lange, Björn; Lopes, J. Marcelo J.; Zauscher, Stefan; Blum, Volker

    Contact resonance AFM is demonstrated as a powerful tool for mapping differences in the mechanical properties of 2D materials and heterostructures, permitting to resolve surface and subsurface structural differences of different domains. Measured contact resonance frequencies are related to the contact stiffness of the combined tip-sample system. Based on first principles predicted elastic properties and a continuum approach to model the mechanical impedance, we find contact stiffness ratios between different domains of few-layer graphene on 3C-SiC(111) in excellent agreement with experiment. We next demonstrate that the approach is able to quantitatively resolve differences between other 2D materials domains, e.g., for h-BN, MoS2 and MoO3 on graphene on SiC. We show that the combined effect of several materials parameters, especially the in-plane elastic properties and the layer thickness, determines the contact stiffness, therefore boosting the sensitivity even if the out-of-plane elastic properties are similar.

  9. Microfluidics, Chromatography, and Atomic-Force Microscopy

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  10. Atomic force microscopy of biological samples

    SciTech Connect

    Doktycz, Mitchel John

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  11. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  12. Investigating cell mechanics with atomic force microscopy.

    PubMed

    Haase, Kristina; Pelling, Andrew E

    2015-03-01

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. PMID:25589563

  13. Investigating cell mechanics with atomic force microscopy

    PubMed Central

    Haase, Kristina; Pelling, Andrew E.

    2015-01-01

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells ‘feel’, we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. PMID:25589563

  14. Atomic force microscopy of biological samples.

    PubMed

    Allison, David P; Mortensen, Ninell P; Sullivan, Claretta J; Doktycz, Mitchel J

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH). PMID:20672388

  15. Imaging and force probing RNA by atomic force microscopy.

    PubMed

    Schön, Peter

    2016-07-01

    In the past 30years, the atomic force microscope (AFM) has become a true enabling platform in the life sciences opening entire novel avenues for structural and dynamic studies of biological systems. It enables visualization, probing and manipulation across the length scales, from single molecules to living cells in buffer solution under physiological conditions without the need for labeling or staining of the specimen. In particular, for structural studies of nucleic acids and assemblies thereof, the AFM has matured into a routinely used tool providing nanometer spatial resolution. This includes ssRNA, dsRNA and nucleoprotein complexes thereof, as well as RNA aggregates and 2D RNA assemblies. By AFM unique information can be obtained on RNA based assemblies which are becoming increasingly important as novel unique building blocks in the emerging field of RNA nanotechnology. In addition, the AFM is of fundamental relevance to study biological relevant RNA interactions and dynamics. In this short review first the basic functioning principles of commonly used AFM modes including AFM based force spectroscopy will be briefly described. Next a brief overview will be given on structural studies that have been done related to AFM topographic imaging of RNA, RNA assemblies and aggregates. Finally, an overview on AFM beyond imaging will be provided. This includes force spectroscopy of RNA under physiological conditions in aqueous buffer to probe RNA interaction with proteins and ligands as well as other AFM tip based RNA probing. The main intention of this short review to give the reader a flavor of what AFM contributes to RNA research and engineering. PMID:27222101

  16. Tip characterizer for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroshi; Fujimoto, Toshiyuki; Ichimura, Shingo

    2006-10-01

    A tip characterizer for atomic force microscopy (AFM) was developed based on the fabrication of multilayer thin films. Comb-shaped line and space (LS) and wedge-shaped knife-edge structures were fabricated on a GaAs substrate. GaAs /InGaP superlattices were used to control the width of the structures precisely, and selective chemical etching was used to form sharp edges on the nanostructures. The minimum size of the LS structure was designed to be 10nm, and the radius of the knife edge was less than 5nm. These nanostructures were used as a well-defined tip characterizer to measure the shape of a tip on a cantilever from line profiles of AFM images.

  17. Atomic Force Microscopy for DNA SNP Identification

    NASA Astrophysics Data System (ADS)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  18. High-Speed Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  19. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  20. Robust atomic force microscopy using multiple sensors.

    PubMed

    Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M

    2016-08-01

    Atomic force microscopy typically relies on high-resolution high-bandwidth cantilever deflection measurements based control for imaging and estimating sample topography and properties. More precisely, in amplitude-modulation atomic force microscopy (AM-AFM), the control effort that regulates deflection amplitude is used as an estimate of sample topography; similarly, contact-mode AFM uses regulation of deflection signal to generate sample topography. In this article, a control design scheme based on an additional feedback mechanism that uses vertical z-piezo motion sensor, which augments the deflection based control scheme, is proposed and evaluated. The proposed scheme exploits the fact that the piezo motion sensor, though inferior to the cantilever deflection signal in terms of resolution and bandwidth, provides information on piezo actuator dynamics that is not easily retrievable from the deflection signal. The augmented design results in significant improvements in imaging bandwidth and robustness, especially in AM-AFM, where the complicated underlying nonlinear dynamics inhibits estimating piezo motions from deflection signals. In AM-AFM experiments, the two-sensor based design demonstrates a substantial improvement in robustness to modeling uncertainties by practically eliminating the peak in the sensitivity plot without affecting the closed-loop bandwidth when compared to a design that does not use the piezo-position sensor based feedback. The contact-mode imaging results, which use proportional-integral controllers for cantilever-deflection regulation, demonstrate improvements in bandwidth and robustness to modeling uncertainties, respectively, by over 30% and 20%. The piezo-sensor based feedback is developed using H∞ control framework. PMID:27587128

  1. Stochastic noise in atomic force microscopy.

    PubMed

    Labuda, Aleksander; Lysy, Martin; Paul, William; Miyahara, Yoichi; Grütter, Peter; Bennewitz, Roland; Sutton, Mark

    2012-09-01

    Having reached the quantum and thermodynamic limits of detection, atomic force microscopy (AFM) experiments are routinely being performed at the fundamental limit of signal to noise. A critical understanding of the statistical properties of noise leads to more accurate interpretation of data, optimization of experimental protocols, advancements in instrumentation, and new measurement techniques. Furthermore, accurate simulation of cantilever dynamics requires knowledge of stochastic behavior of the system, as stochastic noise may exceed the deterministic signals of interest, and even dominate the outcome of an experiment. In this article, the power spectral density (PSD), used to quantify stationary stochastic processes, is introduced in the context of a thorough noise analysis of the light source used to detect cantilever deflections. The statistical properties of PSDs are then outlined for various stationary, nonstationary, and deterministic noise sources in the context of AFM experiments. Following these developments, a method for integrating PSDs to provide an accurate standard deviation of linear measurements is described. Lastly, a method for simulating stochastic Gaussian noise from any arbitrary power spectral density is presented. The result demonstrates that mechanical vibrations of the AFM can cause a logarithmic velocity dependence of friction and induce multiple slip events in the atomic stick-slip process, as well as predicts an artifactual temperature dependence of friction measured by AFM. PMID:23030863

  2. Atomic force microscopy characterization of cellulose nanocrystals.

    PubMed

    Lahiji, Roya R; Xu, Xin; Reifenberger, Ronald; Raman, Arvind; Rudie, Alan; Moon, Robert J

    2010-03-16

    Cellulose nanocrystals (CNCs) are gaining interest as a "green" nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs is performed using atomic force microscopy (AFM). AFM experiments involving high-resolution dynamic mode imaging and jump-mode measurements were performed on individual CNCs under ambient conditions with 30% relative humidity (RH) and under a N(2) atmosphere with 0.1% RH. A procedure was also developed to calculate the CNC transverse elastic modulus (E(T)) by comparing the experimental force-distance curves measured on the CNCs with 3D finite element calculations of tip indentation on the CNC. The E(T) of an isolated CNC was estimated to be between 18 and 50 GPa at 0.1% RH; however, the associated crystallographic orientation of the CNC could not be determined. CNC properties were reasonably uniform along the entire CNC length, despite variations along the axis of 3-8 nm in CNC height. The range of RH used in this study was found to have a minimal effect on the CNC geometry, confirming the resistance of the cellulose crystals to water penetration. CNC flexibility was also investigated by using the AFM tip as a nanomanipulator. PMID:20055370

  3. Carbon nanotube atomic force microscopy probes

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  4. Investigating bioconjugation by atomic force microscopy

    PubMed Central

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  5. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Atomic Force Microscopy of Living Cells

    NASA Astrophysics Data System (ADS)

    Ushiki, Tatsuo; Yamamoto, Susumu; Hitomi, Jiro; Ogura, Shigeaki; Umemoto, Takeshi; Shigeno, Masatsugu

    2000-06-01

    This paper is a review of our results of the application of atomic force microscopy (AFM) to the three-dimensional observation of living cells. First, we showed AFM images of living cultured cells in fluid. Contact mode AFM of living cells provided precise information on the shape of cellular processes (such as spike-like processes or lamellipodia) at the cellular margin. The contour of cytoskeletal elements just beneath the cell membrane was also clearly observable on the upper surface of the cells. Secondly, we showed the data on the discrepancy between the AFM images of living cells and fixed cells. These findings were useful for evaluating AFM images of living cells. Finally, we described the time-lapse AFM of living cells. A fluid chamber system enabled us to obtain AFM images of living cells for over 1 h at time intervals of 2-4 min. A series of these AFM images were useful for examining the movements of cellular processes in relation to subcellular cytoskeletal elements. Time-lapse movies produced by sequential AFM images also gave a realistic view of the cellular dynamics.

  7. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    SciTech Connect

    Xie Hui; Vitard, Julien; Haliyo, Sinan; Regnier, Stephane

    2008-03-15

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to {+-}12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

  8. Atomic Force Microscopy on Its Way to Adolescence

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.

    2003-12-01

    When the atomic force microscope (AFM) was introduced in 1986, its potential to resolve surfaces with true atomic resolution was already proposed. However, substantial problems had to be overcome before atomic resolution became possible by AFM. Today, true atomic resolution by AFM is standard practice. This article discusses the influence of the cantilever stiffness and — amplitude on noise and short-range force sensitivity and introduces a sensor operating at near optimal conditions (qPlus sensor). The data achieved with this optimized sensing technology show substructures within single atom images, attributed to atomic orbitals.

  9. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. PMID:26010162

  10. Fast and gentle side approach for atomic force microscopy

    SciTech Connect

    Wessels, W. A.; Broekmaat, J. J.; Koster, G.; Rijnders, G.; Beerends, R. J. L.

    2013-12-15

    Atomic force microscopy is one of the most popular imaging tools with atomic resolution in different research fields. Here, a fast and gentle side approach for atomic force microscopy is proposed to image the same surface location and to reduce the time delay between modification and imaging without significant tip degradation. This reproducible approach to image the same surface location using atomic force microscopy shortly after, for example, any biological, chemical, or physical modification on a geometrically separated position has the potential to become widely used.

  11. Electrochemical current-sensing atomic force microscopy in conductive solutions

    NASA Astrophysics Data System (ADS)

    Pobelov, Ilya V.; Mohos, Miklós; Yoshida, Koji; Kolivoska, Viliam; Avdic, Amra; Lugstein, Alois; Bertagnolli, Emmerich; Leonhardt, Kelly; Denuault, Guy; Gollas, Bernhard; Wandlowski, Thomas

    2013-03-01

    Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current-distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

  12. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  13. Surface Biology of DNA by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hansma, Helen G.

    2001-10-01

    The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.

  14. Phase contrast and operation regimes in multifrequency atomic force microscopy

    SciTech Connect

    Santos, Sergio

    2014-04-07

    In amplitude modulation atomic force microscopy the attractive and the repulsive force regimes induce phase shifts above and below 90°, respectively. In the more recent multifrequency approach, however, multiple operation regimes have been reported and the theory should be revisited. Here, a theory of phase contrast in multifrequency atomic force microscopy is developed and discussed in terms of energy transfer between modes, energy dissipation and the kinetic energy and energy transfer associated with externally driven harmonics. The single frequency virial that controls the phase shift might undergo transitions in sign while the average force (modal virial) remains positive (negative)

  15. Tracing Poly(ethylene-oxide) Crystallization using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Capaldi, Xavier; Amanuel, Samuel

    The early stages of nucleation and crystallization of Poly(ethylene-oxide) have been studied using Atomic Force Microscopy equipped with a heating and cooling stage. Effects of molecular weight and sample preparation techniques were studied using amplitude and frequency modulation. Mapping the viscoelastic behavior at different temperatures and has enabled the development of a relatively new technique for following the evolution of crystallization and melting of a semi-crystalline polymer. Tracing Poly(ethylene-oxide) Crystallization using Atomic Force Microscopy.

  16. Study of adhesive forces on a silicon nanotip by atomic force microscope in contact mode

    NASA Astrophysics Data System (ADS)

    Agache, Vincent; Legrand, Bernard; Collard, Dominique; Buchaillot, Lionel

    2002-04-01

    Atomic Force Microscope operating in contact mode is used in this paper for probing the spatial distribution of adhesive forces versus the topography of a silicon nanotip. This nanotip consists in an ultra sha4rp silicon tip with radius less than 15 nm fabricated using a combination of high- resolution electron beam lithography and plasma dry etching. The amplitude of the forces is determined from force versus distance curve measurements. Hence, by determining the contact point and the pull-off force from the force curves, the surface topography and the adhesive forces are simultaneously obtained at various locations on the surface. This paper reports both measurements and the modeling of adhesive forces versus the contact point on the nanotip. As the nanotip is sharper and has got a smaller aperture angle than the employed Atomic Force Microscope tip, the measurements are focused on the nanotip apex.

  17. Adhesive forces investigation on a silicon tip by contact-mode atomic force microscope

    NASA Astrophysics Data System (ADS)

    Agache, Vincent; Legrand, Bernard; Collard, Dominique; Buchaillot, Lionel

    2002-09-01

    An atomic force microscope operating in contact mode is used in this letter for probing the adhesive forces at the apex of a silicon nanotip with typical radius smaller than 15 nm, fabricated using a combination of high-resolution electron beam lithography and plasma dry etching. The amplitude of the forces is deduced from force versus distance curve measurements. By determining the contact point and the pull-off force from the force curves, the surface topography and the adhesive forces are simultaneously obtained at various locations on the surface. This letter reports both measurements and modeling of adhesive forces versus the contact point on the nanotip. As the nanotip is sharper and has a smaller aperture angle than the employed atomic force microscope tip, the measurements are focused on the nanotip apex.

  18. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force

    NASA Astrophysics Data System (ADS)

    van der Lit, Joost; Di Cicco, Francesca; Hapala, Prokop; Jelinek, Pavel; Swart, Ingmar

    2016-03-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules. Specifically, we image strongly polarized molecules with negatively and positively charged tips. A contrast inversion is observed above the polar groups. By taking into account the electrostatic forces between tip and molecule, the observed contrast differences can be reproduced using a molecular mechanics model. In addition, we analyze the height dependence of the various force components contributing to the high-resolution AFM contrast.

  19. Atomic force microscopy combined with optical tweezers (AFM/OT)

    NASA Astrophysics Data System (ADS)

    Pierini, F.; Zembrzycki, K.; Nakielski, P.; Pawłowska, S.; Kowalewski, T. A.

    2016-02-01

    The role of mechanical properties is essential to understand molecular, biological materials, and nanostructures dynamics and interaction processes. Atomic force microscopy (AFM) is the most commonly used method of direct force evaluation, but due to its technical limitations this single probe technique is unable to detect forces with femtonewton resolution. In this paper we present the development of a combined atomic force microscopy and optical tweezers (AFM/OT) instrument. The focused laser beam, on which optical tweezers are based, provides us with the ability to manipulate small dielectric objects and to use it as a high spatial and temporal resolution displacement and force sensor in the same AFM scanning zone. We demonstrate the possibility to develop a combined instrument with high potential in nanomechanics, molecules manipulation and biological studies. AFM/OT equipment is described and characterized by studying the ability to trap dielectric objects and quantifying the detectable and applicable forces. Finally, optical tweezers calibration methods and instrument applications are given.

  20. Lead zirconate titanate cantilever for noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Miyahara, Y.; Fujii, T.; Watanabe, S.; Tonoli, A.; Carabelli, S.; Yamada, H.; Bleuler, H.

    1999-02-01

    Noncontact atomic force microscopy with frequency modulation detection is a promising technique for surface observation with true atomic resolution. The piezoelectric material itself can be an actuator and sensor of the oscillating probe simultaneously, without the need for additional electro-mechanical transducers or other measurement systems. A vertical resolution of 0.01 nm rms has been achieved using a microfabricated cantilever with lead zirconate titanate thin film in noncontact mode frequency modulation detection. The cantilever also has a sharpened pyramidal stylus with a radius of about 10 nm for noncontact atomic force microscopy.

  1. Combined scanning electrochemical atomic force microscopy for tapping mode imaging

    NASA Astrophysics Data System (ADS)

    Kueng, A.; Kranz, C.; Mizaikoff, B.; Lugstein, A.; Bertagnolli, E.

    2003-03-01

    With the integration of submicro- and nanoelectrodes into atomic force microscopy (AFM) tips using microfabrication techniques, an elegant approach combining scanning electrochemical microscopy (SECM) with atomic force microscopy has recently been demonstrated. Simultaneous imaging of topography and electrochemistry at a sample surface in AFM tapping mode with integrated SECM-AFM cantilevers oscillated at or near their resonance frequency is shown. In contrast to contact mode AFM imaging frictional forces at the sample surface are minimized. Hence, topographical and electrochemical information of soft surfaces (e.g., biological species) can be obtained.

  2. Dressed-atom description of the bichromatic force

    SciTech Connect

    Yatsenko, Leonid; Metcalf, Harold

    2004-12-01

    We develop a dressed-atom picture of the bichromatic force in two standing waves using a Floquet approach. It is based on previous work, but the approach allows for an interpretation of the velocity range of the force. It is limited to two-level atoms and one dimension, and the Floquet frequency is the beat between the two bichromatic optical fields. The force is mediated by Landau-Zener transitions between the dressed states of the Floquet Hamiltonian. Related topics have been addressed before in the literature, but not applied to this particular case.

  3. Atomic micromotion and geometric forces in a triaxial magnetic trap

    PubMed

    Muller; Morsch; Ciampini; Anderlini; Mannella; Arimondo

    2000-11-20

    Nonadiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms. PMID:11082569

  4. Microrheology of cells with magnetic force modulation atomic force microscopy.

    PubMed

    Rebêlo, L M; de Sousa, J S; Mendes Filho, J; Schäpe, J; Doschke, H; Radmacher, M

    2014-04-01

    We propose a magnetic force modulation method to measure the stiffness and viscosity of living cells using a modified AFM apparatus. An oscillating magnetic field makes a magnetic cantilever oscillate in contact with the sample, producing a small AC indentation. By comparing the amplitude of the free cantilever motion (A0) with the motion of the cantilever in contact with the sample (A1), we determine the sample stiffness and viscosity. To test the method, the frequency-dependent stiffness of 3T3 fibroblasts was determined as a power law k(s)(f) = α + β(f/f¯)(γ) (α = 7.6 × 10(-4) N m(-1), β = 1.0 × 10(-4) N m(-1), f¯ = 1 Hz, γ = 0.6), where the coefficient γ = 0.6 is in good agreement with rheological data of actin solutions with concentrations similar to those in cells. The method also allows estimation of the internal friction of the cells. In particular we found an average damping coefficient of 75.1 μN s m(-1) for indentation depths ranging between 1.0 μm and 2.0 μm. PMID:24651941

  5. Study of surface forces dependence on pH by atomic force microscopy.

    PubMed

    Gavoille, J; Takadoum, J

    2002-06-01

    We used an atomic force microscope to investigate silicon nitride tip interactions with various materials (copper, nickel, silicon carbide) as a function of pH. The electrolyte used was 10(-3) M NaCl and the interactions observed through force versus distance curves (attraction or repulsion) depended on the pH value. Interaction forces calculation was derived from force versus distance curve data and the results are discussed in terms of electrostatic interactions using Zeta potential theory. PMID:16290640

  6. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  7. Note: Artificial neural networks for the automated analysis of force map data in atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.

    2014-05-15

    Force curves recorded with the atomic force microscope on structured samples often show an irregular force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the Sneddon model) would generate inaccurate Young's moduli. A critical inspection of the force curve shape is therefore necessary for estimating the reliability of the generated Young's modulus. We used a trained artificial neural network to automatically recognize curves of “good” and of “bad” quality. This is especially useful for improving the analysis of force maps that consist of a large number of force curves.

  8. High-speed force mapping on living cells with a small cantilever atomic force microscope.

    PubMed

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E

    2014-07-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed. PMID:25085142

  9. High-speed force mapping on living cells with a small cantilever atomic force microscope

    NASA Astrophysics Data System (ADS)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-07-01

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  10. High-speed force mapping on living cells with a small cantilever atomic force microscope

    SciTech Connect

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  11. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    NASA Astrophysics Data System (ADS)

    Atabak, Mehrdad; Ünverdi, Özhan; Özer, H. Özgür; Oral, Ahmet

    2009-12-01

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 × 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  12. Universal aspects of adhesion and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Smith, John R.; Ferrante, John

    1990-01-01

    Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.

  13. Probe-rotating atomic force microscopy for determining material properties

    SciTech Connect

    Lee, Sang Heon

    2014-03-15

    In this paper, we propose a probe-rotating atomic force microscope that enables scan in an arbitrary direction in the contact imaging mode, which is difficult to achieve using a conventional atomic force microscope owing to the orientation-dependent probe and the inability to rotate the probe head. To enable rotation of the probe about its vertical axis, we employed a compact and light probe head, the sensor of which is made of an optical disk drive pickup unit. Our proposed mechanical configuration, operating principle, and control system enables axial and lateral scan in various directions.

  14. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    ERIC Educational Resources Information Center

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  15. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  16. A Dressed Atom Description of the Bichromatic Force

    NASA Astrophysics Data System (ADS)

    Yatsenko, Leonid; Metcalf, Harold

    2004-05-01

    We have elaborated on the dressed atom description of the bichromatic force initially proposed by Grimm et al(R. Grimm et al., Opt. Lett. 19), 658 (1994).^,(R. Grimm et al., Proceeding of the International School of Physics, ``Enrico Fermi", Course CXXXI, IOS Press, Amsterdam 1996.). We present two completely equivalent Floquet Hamiltonians that mimic the ``atom plus field" system of the dressed atom spectrum. One is best for high velocities and the other for small velocities (kv relative to 2δ, the bichromatic frequency difference). Then we argue that the force arises from the exchange of kinetic energy with the ``atom plus field" system. But transitions between the dressed states must occur by Landau-Zener (LZ) transitions as the atoms pass through exact or small crossings, and calculate these rates from the eigenstates of the Floquet Hamiltonian. We find that some ``anti-crossings" are passed adiabatically and some non-adiabatically, and the criterion is the atomic velocity. We find two LZ velocities that bound the range of the force, thus enabling a description of its velocity range. This is the first time that the observed capture range ± δ/2k has been calculated.

  17. Dispersion forces at arbitrary distances. [between closed-shell atoms

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Csanak, G.

    1975-01-01

    The formalism of Boehm and Yaris is used to evaluate explicitly the leading term of the London dispersion force between closed-shell atoms. Instead of using the usual multipole expansion, which breaks down at intermediate internuclear distances, an analytic representation of the Born amplitude together with a general angular momentum analysis is used. As a result, expressions are obtained which reduce to the usual dispersion forces at large distances and are finite at all distances.

  18. Using Atom Interferometry to Search for New Forces

    SciTech Connect

    Wacker, Jay G.; /SLAC

    2009-12-11

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

  19. Conducting atomic force microscopy of alkane layers on graphite

    SciTech Connect

    Klein, D.L.; McEuen, P.L.

    1995-05-08

    We have used an atomic force microscope with a conducting tip to investigate the layering of hexadecane on graphite. Discrete jumps were observed in both the tip--sample conductance and separation as individual liquid layers are penetrated. These conductance measurements extend solvation studies to higher force scales than have been previously achieved, and can be used to determine when the tip makes contact with the substrate. The layering also enables the formation of stable tunneling junctions.

  20. Properties of Atoms in Molecules:  Caged Atoms and the Ehrenfest Force.

    PubMed

    Bader, Richard F W; Fang, De-Cai

    2005-05-01

    This paper uses the properties of atom X enclosed within an adamantane cage, denoted by X@C10H16, as a vehicle to introduce the Ehrenfest force into the discussion of bonding, the properties being determined by the physics of an open system. This is the force acting on an atom in a molecule and determining the potential energy appearing in Slater's molecular virial theorem. The Ehrenfest force acting across the interatomic surface of a bonded pair atoms [Formula: see text] atoms linked by a bond path [Formula: see text] is attractive, each atom being drawn toward the other, and the associated surface virial that measures the contribution to the energy arising from the formation of the surface is stabilizing. It is the Ehrenfest force that determines the adhesive properties of surfaces. The endothermicity of formation for X = He or Ne is not a result of instabilities incurred in the interaction of X with the four methine carbons to which it is bonded, interactions that are stabilizing both in terms of the changes in the atomic energies and in the surface virials. The exothermicity for X = Be(2+), B(3+), and Al(3+) is a consequence of the transfer of electron density from the hydrogen atoms to the carbon and X atoms, the exothermicity increasing with charge transfer despite an increase in the contained volume of X. PMID:26641507

  1. Large momentum transfer atom interferometry with Coriolis force compensation

    NASA Astrophysics Data System (ADS)

    Kuan, Pei-Chen; Lan, Shau-Yu; Estey, Brian; Haslinger, Philipp; Mueller, Holger

    2012-06-01

    Light-pulse atom interferometers use atom-photon interactions to coherently split, guide, and recombine freely falling matter-waves. Because of Earth's rotation, however, the matter-waves do not recombine precisely, which causes severe loss of contrast in large space-time atom interferometers. I will present our recent progress in using a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation. Therefore, we improve the contrast and suppress systematic effects, also reach what is to our knowledge the largest spacetime area.

  2. Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy.

    PubMed

    Chung, Koo-Hyun; Pratt, Jon R; Reitsma, Mark G

    2010-01-19

    The colloidal probe technique for atomic force microscopy (AFM) has allowed the investigation of an extensive range of surface force phenomena, including the measurement of frictional (lateral) forces between numerous materials. The quantitative accuracy of such friction measurements is often debated, in part due to a lack of confidence in existing calibration strategies. Here we compare three in situ AFM lateral force calibration techniques using a single colloidal probe, seeking to establish a foundation for quantitative measurement by linking these techniques to accurate force references available at the National Institute of Standards and Technology. We introduce a procedure for calibrating the AFM lateral force response to known electrostatic forces applied directly to the conductive colloidal probe. In a second procedure, we apply known force directly to the colloidal probe using a precalibrated piezo-resistive reference cantilever. We found agreement between these direct methods on the order of 2% (within random uncertainty for both measurements). In a third procedure, we performed a displacement-based calibration using the piezo-resistive reference cantilever as a stiffness reference artifact. The method demonstrated agreement on the order of 7% with the direct force methods, with the difference attributed to an expected systematic uncertainty, caused by in-plane deflection in the cantilever during loading. The comparison establishes the existing limits of instrument accuracy and sets down a basis for selection criteria for materials and methods in colloidal probe friction (lateral) force measurements via atomic force microscopy. PMID:19827782

  3. Elasticity measurement of breast cancer cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  4. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cantrell, John H.; Cantrell, Sean A.

    2016-03-01

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force "stiffness," the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model with frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.

  5. Microbially influenced corrosion visualized by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Telegdi, J.; Keresztes, Z.; Pálinkás, G.; Kálmán, E.; Sand, W.

    Corrosion, biofilm formation and the adsorption of different, corrosion-enhancing microbes (such as Desulfovibrio desulfuricans, Thiobacillus ferrooxidans, Thiobacillus intermedius, Leptospirillum ferrooxidans, and mixed cultures) to different surfaces (iron, copper, pyrite) have been studied in aqueous environment by atomic force microscopy (AFM). It is one of the most effective on-line techniques for imaging surfaces (bacterial, metallic, etc.) with high resolution.

  6. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus; Freund, Hans-Joachim

    2016-05-01

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  7. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  8. Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy.

    PubMed

    de Beer, Sissi; van den Ende, Dirk; Mugele, Frieder

    2010-08-13

    We determine conservative and dissipative tip-sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into account the base motion and the frequency-dependent added mass and hydrodynamic damping on the AFM cantilever, we develop a reliable force inversion procedure that allows for extracting tip-sample interaction forces for a wide range of drive frequencies. We systematically eliminate the effect of finite drive amplitudes. Dissipative tip-sample forces are consistent with the bulk viscosity down to a thickness of 2-3 nm. Dissipation measurements far below resonance, which we argue to be the most reliable, indicate the presence of peaks in the damping, corresponding to an enhanced 'effective' viscosity, upon expelling the last and second-last molecular layer. PMID:20639584

  9. Improved atomic force microscopy cantilever performance by partial reflective coating.

    PubMed

    Schumacher, Zeno; Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds. PMID:26199849

  10. The Bichromatic Optical Force on the Atomic Life- time Scale

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2013-05-01

    Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.

  11. Influence of the Coriolis force in atom interferometry.

    PubMed

    Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Haslinger, Philipp; Müller, Holger

    2012-03-01

    In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation and to characterize configuration space wave packets. For interferometers with a large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest space-time area enclosed in any atom interferometer to date. We discuss implications for future high-performance instruments. PMID:22463619

  12. Influence of the Coriolis Force in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Haslinger, Philipp; Müller, Holger

    2012-03-01

    In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth’s rotation and to characterize configuration space wave packets. For interferometers with a large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest space-time area enclosed in any atom interferometer to date. We discuss implications for future high-performance instruments.

  13. Radiation force on a single atom in a cavity

    NASA Technical Reports Server (NTRS)

    Kim, M. S.

    1992-01-01

    We consider the radiation pressure microscopically. Two perfectly conducting plates are parallelly placed in a vacuum. As the vacuum field hits the plates they get pressure from the vacuum. The excessive outside modes of the vacuum field push the plates together, which is known as the Casimer force. We investigate the quantization of the standing wave between the plates to study the interaction between this wave and the atoms on the plates or between the plates. We show that even the vacuum field pushes the atom to place it at nodes of the standing wave.

  14. Stochastic friction force mechanism of energy dissipation in noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kantorovich, L. N.

    2001-12-01

    The tip-surface interaction in noncontact atomic force microscopy (NC-AFM) leads to energy dissipation, which has been used as another imaging mechanism of surface topography with atomic resolution. In this paper, using a rigorous approach based on the coarse graining method of (classical) nonequilibrium statistical mechanics, we derive the Fokker-Planck equation for the tip distribution function and then the Langevin equation (equation of motion) for the tip. We show that the latter equation contains a friction force leading to the energy dissipation. The friction force is related to the correlation function of the fluctuating tip-surface force in agreement with earlier treatments by other methods. Using a simple model of a plane surface in which only one surface atom interacts directly with the tip (it, however, interacts with other surface atoms), we calculate the friction coefficient and the corresponding dissipation energy as a function of the tip position. In our model all surface atoms are allowed to relax. Nevertheless, our calculations qualitatively agree with a previous much simpler treatment by Gauthier and Tsukada [Phys. Rev. B 60, 11 716 (1999)] that, at least for the plain terraces, the calculated dissipation energies appear to be much smaller than observed in experiments. We also demonstrate the validity of the Markovian approximation in studying the NC-AFM system.

  15. Effect of contact stiffness on wedge calibration of lateral force in atomic force microscopy

    SciTech Connect

    Wang Fei; Zhao Xuezeng

    2007-04-15

    Quantitative friction measurement of nanomaterials in atomic force microscope requires accurate calibration method for lateral force. The effect of contact stiffness on lateral force calibration of atomic force microscope is discussed in detail and an improved calibration method is presented. The calibration factor derived from the original method increased with the applied normal load, which indicates that separate calibration should be required for every given applied normal load to keep the accuracy of friction measurement. We improve the original method by introducing the contact factor, which is derived from the contact stiffness between the tip and the sample, to the calculation of calibration factors. The improved method makes the calculation of calibration factors under different applied normal loads possible without repeating the calibration procedure. Comparative experiments on a silicon wafer have been done by both the two methods to validate the method in this article.

  16. High Resolution Imaging by Atomic Force Microscopy: Contribution of short-range force to the imaging

    NASA Astrophysics Data System (ADS)

    Eguchi, Toyoaki; Kotone, Akiyama; Masanori, Ono; Toshio, Sakurai; Yukio, Hasegawa

    2003-03-01

    Recent developments in force detection technique have made us possible to obtain atomically resolved images of the Si(111)-(7x7) surface by AFM. Compared with STM, however, its spatial resolution remains limited. In this presentation, we demonstrate that with careful pretreatment and appropriate experimental parameters, the structure of the rest-atom layer can be imaged using AFM by detecting the short-range force due to the single chemical bonding. The detection of the short-range force is verified by analysis of the frequency-shift versus distance curve (force curve). This unprecedented high resolution is achieved by reducing background forces due to the long-range interactions with small oscillation amplitude of the cantilever and an atomically sharp tip. The high temperature annealing of the cantilever assists in obtaining a bare silicon tip on the cantilever without unwanted tip-blunting, and improving the Q-factor of the cantilever. This study implies that characterization of the AFM tip in nanometer scale, not only on the apex atoms but also its shape near the apex, is important and critical for AFM high resolution imaging.

  17. Surface modifications with Lissajous trajectories using atomic force microscopy

    SciTech Connect

    Cai, Wei; Yao, Nan

    2015-09-14

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  18. Self-oscillating tapping mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Manning, L.; Rogers, B.; Jones, M.; Adams, J. D.; Fuste, J. L.; Minne, S. C.

    2003-09-01

    A piezoelectric microcantilever probe is demonstrated as a self-oscillator used for tapping mode atomic force microscopy. The integrated piezoelectric film on the cantilever serves as the frequency-determining component of an oscillator circuit; oscillation near the cantilever's resonant frequency is maintained by applying positive feedback to the film via this circuit. This new mode, which is a step towards more compact and parallel tapping mode AFM imaging, is demonstrated by imaging an evaporated gold film on a silicon substrate. A self-oscillating frequency spectrum and a force-distance curve are also presented.

  19. Non-contact atomic-level interfacial force microscopy

    SciTech Connect

    Houston, J.E.; Fleming, J.G.

    1997-02-01

    The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

  20. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. PMID:12203646

  1. A variable temperature ultrahigh vacuum atomic force microscope

    SciTech Connect

    Dai, Q.; Vollmer, R.; Carpick, R.W.; Ogletree, D.F.; Salmeron, M.

    1995-11-01

    A new atomic force microscope (AFM) that operates in ultrahigh vacuum (UHV) is described. The sample is held fixed with spring clamps while the AMF cantilever and deflection sensor are scanned above it. Thus, the sample is easily coupled to a liquid nitrogen cooled thermal reservoir which allows AFM operation from {approx}100 K to room temperature. AFM operation above room temperature is also possible. The microscope head is capable of coarse {ital x}-{ital y} positioning over millimeter distances so that AFM images can be taken virtually anywhere upon a macroscopic sample. The optical beam deflection scheme is used for detection, allowing simultaneous normal and lateral force measurements. The sample can be transferred from the AFM stage to a low energy electron diffraction/Auger electron spectrometer stage for surface analysis. Atomic lattice resolution AFM images taken in UHV are presented at 110, 296, and 430 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  2. Quantitative metallography of structural materials with the atomic force microscope

    SciTech Connect

    Goeken, M.; Vehoff, H.

    1996-10-15

    The atomic force microscopy (AFM) is now a well-established technique for imaging surface topography with high resolution and can be used to study the microstructure of structural materials in a nanometer range. On multiphase materials a contrast in the topographic AFM images is obtained from small height differences between the different phases. Accordingly investigations of microstructures that are prepared to have small height differences between the phases can be done. The AFM needs no vacuum, large specimen areas compared to the small areas in thinned TEM foils can be analyzed. This reduces the costs of the measurements significantly. In addition it is advantageous that all measurements are stored as data files in the computer and therefore quantitative evaluations of the topographic data can be performed directly. The microstructures of different crystalline alloys were investigated with the atomic force microscope. The examples include superalloys (Waspaloy, CMSX-6), martensitic transformed surfaces (NiAlCo), and steels (microalloyed steel, perlitic carbon steel).

  3. Nanoindentation of gold nanorods with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Reischl, B.; Kuronen, A.; Nordlund, K.

    2014-12-01

    The atomic force microscope (AFM) can be used to measure mechanical properties of nanoscale objects, which are too small to be studied using a conventional nanoindenter. The contact mechanics at such small scales, in proximity of free surfaces, deviate substantially from simple continuum models. We present results from atomistic computer simulations of the indentation of gold nanorods using a diamond AFM tip and give insight in the atomic scale processes, involving creation and migration of dislocations, leading to the plastic deformation of the sample under load, and explain the force-distance curves observed for different tip apex radii of curvature, as well as different crystallographic structure and orientation of the gold nanorod samples.

  4. Atomic force microscopy images of lyotropic lamellar phases

    NASA Astrophysics Data System (ADS)

    Garza, C.; Thieghi, L. T.; Castillo, R.

    2007-02-01

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction.

  5. Automated manipulation of carbon nanotubes using atomic force microscopy.

    PubMed

    Zhang, Chao; Wu, Sen; Fu, Xing

    2013-01-01

    The manipulation of carbon nanotubes is an important and essential step for carbon-based nanodevice or nanocircuit assembly. However, the conventional push-and-image approach of manipulating carbon nanotubes using atomic force microscopy has low efficiency on account of the reduplicated scanning process during manipulation. In this article, an automated manipulation system is designed and tested. This automated manipulation system, which includes an atomic force microscope platform and a self-developed computer program for one-dimensional manipulation, is capable of automatically moving any assigned individual carbon nanotube to a defined target location without any intermediate scanning procedure. To demonstrate the high-efficiency of this automated manipulation system and its potential applications in nanoassembly, two experiments were conducted. The first experiment used this system to manipulate a carbon nanotube to a defined target location. In the second experiment, this system was used to automatically manipulate several carbon nanotubes for generating and translating a defined pattern of nanotubes. PMID:23646781

  6. Atomic force microscopy images of lyotropic lamellar phases.

    PubMed

    Garza, C; Thieghi, L T; Castillo, R

    2007-02-01

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction. PMID:17302467

  7. Atomic force microscope observations of otoconia in the newt

    NASA Technical Reports Server (NTRS)

    Hallworth, R.; Wiederhold, M. L.; Campbell, J. B.; Steyger, P. S.

    1995-01-01

    Calcitic and aragonitic otoconia from the Japanese red-bellied newt, Cynops pyrrhogaster, were examined using an atomic force microscope. The surface structure of both otoconial polymorphs consisted of arrays of elements approximately 50 nm in diameter. Elements were generally round and were separated by shallow depressions of no more than 20 nm. The elements are suggested to be single crystals of calcium carbonate. The relationship of these observations to theories of otoconial genesis is discussed.

  8. Probing starch-iodine interaction by atomic force microscopy.

    PubMed

    Du, Xiongwei; An, Hongjie; Liu, Zhongdong; Yang, Hongshun; Wei, Lijuan

    2014-01-01

    We explored the interaction of iodine with three crystalline type starches, corn, potato, and sweet potato starches using atomic force microscopy. Results revealed that starch molecules aggregated through interaction with iodine solution as well as iodine vapor. Detailed fine structures such as networks, chains, and super-helical structures were found in iodide solution tests. The nanostructures formed due to iodine adsorption could help to understand the formation and properties of the starch-iodine complex. PMID:24338992

  9. Quantification of dissipation and deformation in ambient atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Santos, Sergio; Gadelrab, Karim R.; Barcons, Victor; Stefancich, Marco; Chiesa, Matteo

    2012-07-01

    A formalism to extract and quantify unknown quantities such as sample deformation, the viscosity of the sample and surface energy hysteresis in amplitude modulation atomic force microscopy is presented. Recovering the unknowns only requires the cantilever to be accurately calibrated and the dissipative processes occurring during sample deformation to be well modeled. The theory is validated by comparison with numerical simulations and shown to be able to provide, in principle, values of sample deformation with picometer resolution.

  10. Model based control of dynamic atomic force microscope

    SciTech Connect

    Lee, Chibum; Salapaka, Srinivasa M.

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  11. Probing stem cell differentiation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  12. Model based control of dynamic atomic force microscope.

    PubMed

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments. PMID:25933864

  13. Demonstration of atomic scale stick-slip events stimulated by the force versus distance mode using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-08-01

    It has been shown that longitudinal deformation of the force-sensing/imposing lever can be stimulated by the conventional force versus distance (F-d), analytical mode of a scanning force microscope. Accordingly it is possible to measure simultaneously both in-plane and out-of-plane force components acting between a tip and a surface. Discrete atomic scale stick-slip events have been observed by F-d generated friction loop analysis of cleaved WTe2, Mica and HOPG single crystals, and of a Langmuir-Blodgett film. Due to the lever geometry, the lateral resolution arising from z-stage movement is better by an order of magnitude than that obtained from translation of the x-y-stage.

  14. Atomic Force Microscopy Application in Biological Research: A Review Study

    PubMed Central

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-01-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010. PMID:23825885

  15. Imaging stability in force-feedback high-speed atomic force microscopy.

    PubMed

    Kim, Byung I; Boehm, Ryan D

    2013-02-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force-distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. PMID:23274682

  16. From the Cover: Revealing the hidden atom in graphite by low-temperature atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hembacher, Stefan; Giessibl, Franz J.; Mannhart, Jochen; Quate, Calvin F.

    2003-10-01

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for "seeing atoms." Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom.

  17. Revealing the hidden atom in graphite by low-temperature atomic force microscopy.

    PubMed

    Hembacher, Stefan; Giessibl, Franz J; Mannhart, Jochen; Quate, Calvin F

    2003-10-28

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for "seeing atoms." Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom. PMID:14504395

  18. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    SciTech Connect

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-15

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  19. Friction force measurements relevant to de-inking by means of atomic force microscope.

    PubMed

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2005-11-15

    In the pulping step of the de-inking process, the ink detaches from the fibers due to shear and physical chemical interaction. In order to get a better understanding of the forces involved between cellulose and ink, the atomic force microscope and the colloidal probe technique have been used in the presence of a model chemical dispersant (hexa-ethyleneglycol mono n-dodecyl ether, C12E6). A cellulose bead was used as the colloidal probe and three different lower surfaces have been used, an alkyd resin, mica and a cellulose sphere. The normal and lateral forces have been measured at a range of nonionic concentrations. It was found that the lateral sliding friction forces deceased with increasing surfactant concentration for both the alkyd resin and mica while no differences were observed for the cellulose surface. In addition, only a very small change in normal force could be detected for the alkyd surface as the concentration changed. PMID:15961095

  20. Advances in Atomic Force Microscopy and Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, Thomas Robert

    The scanning tunneling microscope (STM) and the more recently developed atomic force microscope (AFM) are high resolution scanning probe microscopes capable of three dimensional atomic-scale surface profiling. In the AFM, minute forces acting between the tip of a flexible cantilever stylus and the surface of the sample cause deflections of the cantilever which are detected by a tunneling or optical sensor with subangstrom sensitivity. The AFM work presented here involves surface profiling via repulsive contact forces between 10^{-6} and 10^{-9} N in magnitude. In this contact profiling (repulsive) mode the AFM is capable of atomic resolution on both electrically conducting and insulating surfaces (unlike the STM). AFM instrumentation for room temperature and low temperature operation is discussed. The critical component of the AFM is the cantilever stylus assembly, which should have a small mass. Several microfabrication processes have been developed to produce thin film SiO_2 and Si_3N_4 microcantilevers with integrated sharp tips. Atomic resolution has been achieved with the AFM in air on a number of samples, including graphite, MoS _2, TaSe_2, WTe_2, TaS_2, and BN (the first insulator imaged with atomic resolution by any means). Various organic and molecular samples have been imaged with nanometer resolution. The difference between STM and AFM response is shown in images of TaS _2 (a charge density wave material), and in simultaneous STM/AFM images of lattice defects and adsorbates on graphite and MoS_2. A number of artifacts make STM and AFM image interpretation subtle, such as tip shape effects, frictional effects, and tracking in atomic grooves. STM images of moire patterns near grain boundaries confirm the importance of tip shape effects. Various surface modification and lithography techniques have been demonstrated with the STM and AFM, including an STM voltage pulse technique which reproducibly creates 40 A diameter holes on the surface of graphite, and a

  1. Hierarchical atom type definitions and extensible all-atom force fields.

    PubMed

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. PMID:26537332

  2. Improvements in fundamental performance of liquid-environment atomic force microscopy with true atomic resolution

    NASA Astrophysics Data System (ADS)

    Miyata, Kazuki; Miyazawa, Keisuke; Akrami, Seyed Mohammad Reza; Fukuma, Takeshi

    2015-08-01

    Recently, there have been significant advancements in liquid-environment atomic force microscopy (AFM) with true atomic resolution. The technical advancements are followed by a rapid expansion of its application area. Examples include subnanometer-scale imaging of biological systems and three-dimensional measurements of water distributions (i.e., hydration structures) and fluctuating surface structures. However, to continue this progress, we should improve the fundamental performance of liquid-environment dynamic-mode AFM. The present AFM technique does not allow real-time imaging of atomic-scale dynamic phenomena at a solid-liquid interface. This has hindered atomic-level understanding of crystal growth and dissolution, catalytic reactions and metal corrosion processes. Improvement in force sensitivity is required not only for such a high-speed imaging but also for various surface property measurements using a high-resolution AFM technique. In this review, we summarize recent works on the improvements in the force sensitivity and operation speed of atomic-resolution dynamic-mode AFM for liquid-environment applications.

  3. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    PubMed

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena. PMID:25697199

  4. Characterization of new drug delivery nanosystems using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  5. Observation of Individual Fluorine Atom from Highly Oriented Poly (tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.,; Paley, Mark S.

    1999-01-01

    Direct observation of the film thickness, molecular structure and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.70 A and 0.54 A respectively.

  6. Observation of Individual Fluorine Atoms from Highly Oriented Poly(Tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    2000-01-01

    Direct observation of the film thickness, molecular structure, and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction-transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.7 and 0.54 A respectively.

  7. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    PubMed Central

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  8. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. PMID:26628660

  9. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.

    PubMed

    Unsay, Joseph D; Cosentino, Katia; García-Sáez, Ana J

    2015-01-01

    Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes. PMID:26273958

  10. Lateral force microscope calibration using a modified atomic force microscope cantilever

    SciTech Connect

    Reitsma, M. G.

    2007-10-15

    A proof-of-concept study is presented for a prototype atomic force microscope (AFM) cantilever and associated calibration procedure that provide a path for quantitative friction measurement using a lateral force microscope (LFM). The calibration procedure is based on the method proposed by Feiler et al. [Rev. Sci. Instrum. 71, 2746 (2000)] but allows for calibration and friction measurements to be carried out in situ and with greater precision. The modified AFM cantilever is equipped with lateral lever arms that facilitate the application of normal and lateral forces, comparable to those acting in a typical LFM friction experiment. The technique allows the user to select acceptable precision via a potentially unlimited number of calibration measurements across the full working range of the LFM photodetector. A microfabricated version of the cantilever would be compatible with typical commercial AFM instrumentation and allow for common AFM techniques such as topography imaging and other surface force measurements to be performed.

  11. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  12. Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nie, H.-Y.; McIntyre, N. S.

    2007-02-01

    Liquid 1-decanethiol was confined on an atomic force microscope (AFM) tip apex and the effect was investigated by measuring amplitude-distance curves in dynamic force mode. Within the working distance in the dynamic force mode AFM, the thiol showed strong interactions bridging between a gold-coated probe tip and a gold-coated Si substrate, resulting in unstable amplitude and noisy AFM images. We show that under such a situation, the amplitude change is dominated by the extra forces induced by the active material loaded on the tip apex, overwhelming the amplitude change caused by the geometry of the sample surface, thus resulting in noise in the image the tip collects. We also show that such a contaminant may be removed from the apex by pushing the tip into a material soft enough to avoid damage to the tip.

  13. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  14. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    PubMed Central

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Results Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. Conclusions This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding

  15. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy.

    PubMed

    Schuler, Bruno; Meyer, Gerhard; Peña, Diego; Mullins, Oliver C; Gross, Leo

    2015-08-12

    Petroleum is one of the most precious and complex molecular mixtures existing. Because of its chemical complexity, the solid component of crude oil, the asphaltenes, poses an exceptional challenge for structure analysis, with tremendous economic relevance. Here, we combine atomic-resolution imaging using atomic force microscopy and molecular orbital imaging using scanning tunnelling microscopy to study more than 100 asphaltene molecules. The complexity and range of asphaltene polycyclic aromatic hydrocarbons are established in detail. Identifying molecular structures provides a foundation to understand all aspects of petroleum science from colloidal structure and interfacial interactions to petroleum thermodynamics, enabling a first-principles approach to optimize resource utilization. Particularly, the findings contribute to a long-standing debate about asphaltene molecular architecture. Our technique constitutes a paradigm shift for the analysis of complex molecular mixtures, with possible applications in molecular electronics, organic light emitting diodes, and photovoltaic devices. PMID:26170086

  16. Diagonal control design for atomic force microscope piezoelectric tube nanopositioners.

    PubMed

    Bhikkaji, B; Yong, Y K; Mahmood, I A; Moheimani, S O R

    2013-02-01

    Atomic Force Microscopes (AFM) are used for generating surface topography of samples at micro to atomic resolutions. Many commercial AFMs use piezoelectric tube nanopositioners for scanning. Scanning rates of these microscopes are hampered by the presence of low frequency resonant modes. When inadvertently excited, these modes lead to high amplitude mechanical vibrations causing the loss of accuracy, while scanning, and eventually to break down of the tube. Feedback control has been used to damp these resonant modes. Thereby, enabling higher scanning rates. Here, a multivariable controller is designed to damp the first resonant mode along both the x and y axis. Exploiting the inherent symmetry in the piezoelectric tube, the multivariable control design problem is recast as independent single-input single-output (SISO) designs. This in conjunction with integral resonant control is used for damping the first resonant mode. PMID:23464216

  17. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    NASA Astrophysics Data System (ADS)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  18. {beta}-connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy

    SciTech Connect

    Marchetti, S.; Carla, M.; Gambi, C. M. C.; Sbrana, F.; Vassalli, M.; Toscano, A.; Pacini, A.; Fratini, E.; Tiribilli, B.

    2011-05-15

    The three-dimensional structure and the mechanical properties of a {beta}-connectin fragment from human cardiac muscle, belonging to the I band, from I{sub 27} to I{sub 34}, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I{sub 27}-I{sub 34} fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

  19. β-connectin studies by small-angle x-ray scattering and single-molecule force spectroscopy by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Marchetti, S.; Sbrana, F.; Toscano, A.; Fratini, E.; Carlà, M.; Vassalli, M.; Tiribilli, B.; Pacini, A.; Gambi, C. M. C.

    2011-05-01

    The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I27 to I34, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I27-I34 fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.

  20. CO tip functionalization in subatomic resolution atomic force microscopy

    SciTech Connect

    Kim, Minjung; Chelikowsky, James R.

    2015-10-19

    Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule.

  1. Visualisation of xanthan conformation by atomic force microscopy.

    PubMed

    Moffat, Jonathan; Morris, Victor J; Al-Assaf, Saphwan; Gunning, A Patrick

    2016-09-01

    Direct visual evidence obtained by atomic force microscopy demonstrates that when xanthan is adsorbed from aqueous solution onto the heterogeneously charged substrate mica, its helical conformation is distorted. Following adsorption it requires annealing for several hours to restore its ordered helical state. Once the helix state reforms, the AFM images obtained showed clear resolution of the periodicity with a value of 4.7nm consistent with the previously predicted models. In addition, the images also reveal evidence that the helix is formed by a double strand, a clarification of an ambiguity of the xanthan ultrastructure that has been outstanding for many years. PMID:27185152

  2. Microcantilevers with embedded accelerometers for dynamic atomic force microscopy

    SciTech Connect

    Shaik, Nurul Huda; Raman, Arvind; Reifenberger, Ronald G.

    2014-02-24

    The measurement of the intermittent interaction between an oscillating nanotip and the sample surface is a key challenge in dynamic Atomic Force Microscopy (AFM). Accelerometers integrated onto AFM cantilevers can directly measure this interaction with minimal cantilever modification but have been difficult to realize. Here, we design and fabricate high frequency bandwidth accelerometers on AFM cantilevers to directly measure the tip acceleration in commercial AFM systems. We demonstrate a simple way of calibrating such accelerometers and present experiments using amplitude modulated AFM on freshly cleaved mica samples in water to study the response of the accelerometer.

  3. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  4. Nanoscale resolution microchannel flow velocimetry by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Piorek, Brian; Mechler, Ádám; Lal, Ratnesh; Freudenthal, Patrick; Meinhart, Carl; Banerjee, Sanjoy

    2006-10-01

    The velocity of a microchannel flow was determined by atomic force microscopy (AFM) using a 50nm wide "whisker," which was partially submerged and scanned transverse to the flow while drag was recorded. A peaked, near parabolic, flow velocity profile was found. Particle image velocity (PIV) measurements using 70nm diameter quantum-dot-coated polystyrene spheres confirmed the shape of the AFM-measured velocity profile. AFM-based nanometer resolution velocimetry confirms that the drag-velocity relationship for the whisker remains consistent over a wide range of shear values and appears to successfully resolve submicron scale flows, which are beyond the limits of conventional PIV measurements.

  5. Image contrast reversals in contact resonance atomic force microscopy

    SciTech Connect

    Ma, Chengfu; Chen, Yuhang Wang, Tian

    2015-02-15

    Multiple image contrast inversions are observed along with the increase of modulation frequency for contact resonance atomic force microscopy (CR-AFM) imaging of a highly oriented pyrolytic graphite (HOPG) specimen. Analysis of the contact vibrational spectra indicates that the inversions can be attributed to structure-induced variations of tip-sample contact mechanics. Contact stiffness and damping at HOPG step edges exhibit significant increases relative to those in the flat regions. For quantitative evaluation of mechanical properties in CR-AFM, coupling effects of the surface geometry must be considered.

  6. Atomic force microscopy to detect internal live processes in insects

    NASA Astrophysics Data System (ADS)

    Dokukin, M. E.; Guz, N. V.; Vasilyev, S.; Sokolov, I.

    2010-01-01

    Here we report on the use of atomic force microscopy (AFM) to study surface oscillations coming from internal live processes of insects. With a specially designed AFM stage to keep an insect motion partially restricted, the AFM can record internal oscillations on different parts of the insect. We demonstrate the method for a fly, mosquito, and lady beetle. We show that AFM can provide information about the spectral behavior that has not been studied so far, 10-600 Hz range, detecting amplitudes down to subnanometer level.

  7. Microstructural Characterization of Hierarchical Structured Surfaces by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomareva, A. A.; Moshnikov, V. A.; Suchaneck, G.

    2013-12-01

    In this work, we evaluate the hierarchical surface topography of reactively sputtered nanocrystalline Pb(Zr,Ti)O3 and TiO2 thin films as well as plasma-treated antireflective PET films by means of determining the fractal dimension and power spectral density (PSD) of surface topography recorded by atomic force microscopy (AFM). Local fractal dimension was obtained using the triangulation method. The PSDs of all samples were fitted to the k-correlation model (also called ABC model) valid for a self-affine surface topography. Fractal analysis of AFM images was shown to be an appropriate and easy to use tool for the characterization of hierarchical nanostructures.

  8. Thermal writing using a heated atomic force microscope tip

    NASA Astrophysics Data System (ADS)

    Mamin, H. J.

    1996-07-01

    Resistive heating of an atomic force microscope tip was used to perform thermally induced surface modifications. Heating was achieved by dissipating power in the legs of an electrically conducting silicon cantilever. Temperatures of up to 170 °C were obtained using 40 mW of input power. Electrical measurements used to monitor the temperature showed thermal time constants of 0.35-0.45 ms, depending on whether the tip was in contact with a substrate. The heated tip was used to demonstrate thermomechanical writing on a polycarbonate substrate, as well as thermal writing of an optical phase change material.

  9. High-speed atomic force microscopy coming of age

    NASA Astrophysics Data System (ADS)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  10. High-speed atomic force microscopy coming of age.

    PubMed

    Ando, Toshio

    2012-02-17

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. PMID:22248867

  11. Potential Role of Atomic Force Microscopy in Systems Biology

    PubMed Central

    Ramachandran, Srinivasan; Arce, Fernando Teran; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information datasets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on PCR for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  12. Microtensile Tests Using In Situ Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Lang, Udo; Dual, Jurg

    In recent years a new field in the micromechanical characterization of materials has emerged. Researchers started to integrate atomic force microscopes (AFM) into microtensile tests. This allowed to investigate surface deformation of layers with thicknesses in the range of micrometers. In the first part of this article experiments on organic samples are presented followed by developments on anorganic specimens. In the second part of the paper latest developments at the Center of Mechanics of ETH Zurich are presented. The setup allows to monitor crack growth with micrometer resolution. At the same time forces can be measured in the millinewton range. Specimens are made from photodefinable polyimide. The stress-crack- length diagrams of two experiments are presented which enables to identify different stages of crack growth and therefore of fracture behaviour. Finally, possible extensions of the setup employing digital image correlation (DIC) are envisioned by analyzing the displacement field around the crack tip.

  13. Potential role of atomic force microscopy in systems biology.

    PubMed

    Ramachandran, Srinivasan; Teran Arce, Fernando; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information data sets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on polymerase chain reaction (PCR) for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors, and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  14. Relative surface charge density mapping with the atomic force microscope.

    PubMed Central

    Heinz, W F; Hoh, J H

    1999-01-01

    An experimental approach for producing relative charge density maps of biological surfaces using the atomic force microscope is presented. This approach, called D minus D (D-D) mapping, uses isoforce surfaces collected at different salt concentrations to remove topography and isolate electrostatic contributions to the tip-sample interaction force. This approach is quantitative for surface potentials below 25 mV, and does not require prior knowledge of the cantilever spring constant, tip radius, or tip charge. In addition, D-D mapping does not require tip-sample contact. The performance of D-D mapping is demonstrated on surfaces of constant charge and varying topography (mechanically roughened mica and stacked bilayers of dipalmitolphosphatidylserine), a surface of varying charge and varying topography (patches of dipalmitolphosphatidylcholine on mica), and bacteriorhopsin membranes adsorbed to mica. PMID:9876166

  15. Enhanced functionality of nanotube modified atomic force microscopy tips.

    NASA Astrophysics Data System (ADS)

    Patil, Amol; Rinzler, Andrew G.

    2003-03-01

    Nanotube modified atomic force microscopy tips have demonstrated advantages in reduced tip wear, imaging with high resolution, and imaging of deep topographic features. We have further enhanced the utility and functionality of nanotube modified AFM tips by the application of a variety of coatings to these probes. Such coatings stabilize the nanotubes against Euler buckling and make the binding of the nanotubes to the AFM cantilevers extremely robust (even contact mode imaging becomes possible). In terms of new functionality, magnetic metal coating permits their use as improved resolution, magnetic force microscopy probes, while insulating coatings (with the coating removed from the very tip) should permit their use in scanning electrochemical microscopy (with anticipated applications in bio-electrochemistry). We will discuss the coating methods used and the tip exposure processes developed for the latter applications.

  16. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.

    PubMed

    Vahdat, Vahid; Grierson, David S; Turner, Kevin T; Carpick, Robert W

    2013-04-23

    Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-sample interaction regime during AM-AFM scanning, determining the tip-sample contact geometry, calculating the peak repulsive force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging. The peak repulsive tip-sample interaction force is estimated from a closed-form equation accompanied by an effective tip radius measurement procedure, which combines transmission electron microscopy and blind tip reconstruction. The contact stress is estimated by applying Derjaguin-Müller-Toporov contact mechanics model and also numerically solving a general contact mechanics model recently developed for the adhesive contact of arbitrary axisymmetric punch shapes. We discuss the important role that the assumed tip shape geometry plays in calculating both the interaction forces and the contact stresses. Contact stresses are significantly affected by the tip geometry while the peak repulsive force is mainly determined by experimentally controlled parameters, specifically, the free oscillation amplitude and amplitude ratio. The applicability of this protocol is demonstrated experimentally by assessing the performance of diamond-like carbon-coated and silicon-nitride-coated silicon probes scanned over ultrananocrystalline diamond substrates in repulsive mode AM-AFM. There is no sign of fracture or plastic deformation in the case of diamond-like carbon; wear could be characterized as a gradual atom-by-atom process. In contrast, silicon nitride wears through removal of the cluster of atoms and plastic

  17. Complex force dynamics in atomic force microscopy resolved by wavelet transforms.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2013-12-20

    The amplitude and phase evolution of the oscillations of a cantilever after a single tip-sample impact are investigated using a cross-correlation wavelet analysis. The excitation of multiple flexural modes is evidenced and the instantaneous amplitude and phase evolution is extracted from the experimental data at all frequencies simultaneously. The instantaneous total force acting on the tip during a single impact is reconstructed. This method has general relevance for the development of an atomic force spectroscopy of single tip-sample interactions, that develop in a few oscillation cycles of the interacting cantilever eigenmodes and their harmonics. PMID:24285087

  18. Enhanced atomic corrugation in dynamic force microscopy—The role of repulsive forces

    NASA Astrophysics Data System (ADS)

    Lichtenstein, L.; Büchner, C.; Stuckenholz, S.; Heyde, M.; Freund, H.-J.

    2012-03-01

    Full range two dimensional (2D) force mapping was performed by means of low temperature dynamic force microscopy (DFM) on a highly complex surface structure. For this purpose, we used a thin film of vitreous silica on a Ru(0001)-support, which is a 2D structural equivalent to silica glass. The 2D spectroscopy shows that the contrast generating shift in vertical distance between two sites on the surface is twice as large on the repulsive branch of the frequency shift-distance curve as compared to the attractive branch. The results give insight into the origin of the formation of atomic resolution in DFM.

  19. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  20. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  1. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement. PMID:26754332

  2. Local Force Interactions and Image Contrast Reversal on Graphite Observed with Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur; Goetzen, Jan; Altman, Eric; Schwarz, Udo

    Surface interactions of graphene-based nanostructures remain a topic of considerable interest in nanotechnology. Similarly, tip-dependent imaging contrasts have attracted attention as they allow conclusions to be made about the surface's chemical structure and local reactivity. In this talk, we present noncontact atomic force microscopy data recorded in the attractive regime on highly oriented pyrolytic graphite that reveals image contrast reversal for the first time. While larger tip-sample separations feature bright spots on atomic sites, the maximum of the tip-sample interaction flips to the hollow site positions upon further approach, which represents the contrast predominantly observed in previous studies during attractive-mode imaging. This cross over of the local chemical interaction is confirmed in force spectroscopy experiments. The results will be discussed in light of recent theoretical simulations that have predicted the occurrence of such contrast reversal for specific tip terminations.

  3. Mechanical characterization of porous nano-thin films by use of atomic force acoustic microscopy.

    PubMed

    Kopycinska-Müller, M; Clausner, A; Yeap, K-B; Köhler, B; Kuzeyeva, N; Mahajan, S; Savage, T; Zschech, E; Wolter, K-J

    2016-03-01

    The indentation modulus of thin films of porous organosilicate glass with a nominal porosity content of 30% and thicknesses of 350nm, 200nm, and 46nm is determined with help of atomic force acoustic microscopy (AFAM). This scanning probe microscopy based technique provides the highest possible depth resolution. The values of the indentation modulus obtained for the 350nm and 200nm thin films were respectively 6.3GPa±0.2GPa and 7.2GPa±0.2GPa and free of the substrate influence. The sample with the thickness of 46nm was tested in four independent measurement sets. Cantilevers with two different tip radii of about 150nm and less than 50nm were applied in different force ranges to obtain a result for the indentation modulus that was free of the substrate influence. A detailed data analysis yielded value of 8.3GPa±0.4GPa for the thinnest film. The values of the indentation modulus obtained for the thin films of porous organosilicate glasses increased with the decreasing film thickness. The stiffening observed for the porous films could be explained by evolution of the pore topology as a function of the film thickness. To ensure that our results were free of the substrate influence, we analyzed the ratio of the sample deformation as well as the tip radius to the film thickness. The results obtained for the substrate parameter were compared for all the measurement series and showed, which ones could be declared as free of the substrate influence. PMID:26799327

  4. High resolution atomic force microscopy of double-stranded RNA

    NASA Astrophysics Data System (ADS)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  5. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    SciTech Connect

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  6. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    SciTech Connect

    Ooe, Hiroaki; Sakuishi, Tatsuya; Arai, Toyoko; Nogami, Makoto; Tomitori, Masahiko

    2014-07-28

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  7. Comparative study of clinical pulmonary surfactants using atomic force microscopy

    PubMed Central

    Zhang, Hong; Fan, Qihui; Wang, Yi E.; Neal, Charles R.; Zuo, Yi Y.

    2016-01-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations. PMID:21439262

  8. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    NASA Astrophysics Data System (ADS)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  9. Force interactions between magnetite, silica, and bentonite studied with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Dobryden, I.; Potapova, E.; Holmgren, A.; Weber, H.; Hedlund, J.; Almqvist, N.

    2015-04-01

    Iron ore pellets consist of variety of mineral particles and are an important refined product used in steel manufacturing. Production of high-quality pellets requires good understanding of interactions between different constituents, such as magnetite, gangue residues, bentonite, and additives. Much research has been reported on magnetite, silica, and bentonite surface properties and their effect on pellet strength but more scant with a focus on a fundamental particle-particle interaction. To probe such particle interaction, atomic force microscopy (AFM) using colloidal probe technique has proven to be a suitable tool. In this work, the measurements were performed between magnetite-magnetite, bentonite-magnetite, silica-bentonite, and silica-magnetite particles in 1 mM CaCl2 solution at various pH values. The interaction character, i.e., repulsion or attraction, was determined by measuring and analyzing AFM force curves. The observed quantitative changes in interaction forces were in good agreement with the measured zeta-potentials for the particles at the same experimental conditions. Particle aggregation was studied by measuring the adhesion force. Absolute values of adhesion forces for different systems could not be compared due to the difference in particle size and contact geometry. Therefore, the relative change of adhesion force between pH 6 and 10 was used for comparison. The adhesion force decreased for the magnetite-magnetite and bentonite-silica systems and slightly increased for the magnetite-bentonite system at pH 10 as compared to pH 6, whereas a pronounced decrease in adhesion force was observed in the magnetite-silica system. Thus, the presence of silica particles on the magnetite surface could have a negative impact on the interaction between magnetite and bentonite in balling due to the reduction of the adhesion force.

  10. On averaging force curves over heterogeneous surfaces in atomic force microscopy.

    PubMed

    Sokolov, I; Kalaparthi, V; Kreshchuk, M; Dokukin, M E

    2012-10-01

    Atomic force microscopy (AFM) can be used to study mechanics at the nanoscale. Biological surfaces and nanocomposites have typically heterogeneous surfaces, both mechanically and chemically. When studying such surfaces with AFM, one needs to collect a large amount of data to make statistically sound conclusions. It is time- and resource-consuming to process each force curve separately. The analysis of an averaged raw force data is a simple and time saving option, which also averages out the noise and measurement artifacts of the force curves being analyzed. Moreover, some biomedical applications require just an average number per biological cell. Here we investigate such averaging, study the possible artifacts due to the averaging, and demonstrate how to minimize or even to avoid them. We analyze two ways of doing the averaging: over the force data for each particular distance (method 1, the most commonly used way), and over the distances for each particular force (method 2). We derive the errors of the methods in finding to the true average rigidity modulus. We show that both methods are accurate (the error is <2%) when the heterogeneity of the surface rigidity is small (<50%). When the heterogeneity is large (>100×), method 2 underestimates the average rigidity modulus by a factor of 2, whereas the error of method 1 is only 15%. However, when analyzing the different surface chemistry, which reveals itself in the changing long-range forces, the accuracy of the methods behave oppositely: method 1 can produce a noticeable averaging artifact in the deriving of the long-range forces; whereas method 2 can be successfully used to derive the averaged long-range force parameters without artifacts. We exemplify our conclusions by the study of human cervical cancer and normal epithelial cells, which demonstrate different degrees of heterogeneity. PMID:22917859

  11. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  12. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  13. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Tseng, Ampere A.; Kuo, Chung-Feng Jeffrey; Jou, Shyankay; Nishimura, Shinya; Shirakashi, Jun-ichi

    2011-09-01

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  14. Brown algal morphogenesis: atomic force microscopy as a tool to study the role of mechanical forces

    PubMed Central

    Tesson, Benoit; Charrier, Bénédicte

    2014-01-01

    Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae) form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves, and tide), in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization), deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation. PMID:25278949

  15. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  16. Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

    PubMed Central

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-01-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model. PMID:25134535

  17. A new ion sensing deep atomic force microscope

    NASA Astrophysics Data System (ADS)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-08-01

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  18. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  19. A new ion sensing deep atomic force microscope

    SciTech Connect

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  20. Local Mechanical Properties by Atomic Force Microscopy Nanoindentations

    NASA Astrophysics Data System (ADS)

    Tranchida, Davide; Piccarolo, Stefano

    The analysis of mechanical properties on a nanometer scale is a useful tool for combining information concerning texture organization obtained by microscopy with the properties of individual components. Moreover, this technique promotes the understanding of the hierarchical arrangement in complex natural materials as well in the case of simpler morphologies arising from industrial processes. Atomic Force Microscopy (AFM) can bridge morphological information, obtained with outstanding resolution, to local mechanical properties. When performing an AFM nanoindentation, the rough force curve, i.e., the plot of the voltage output from the photodiode vs. the voltage applied to the piezo-scanner, can be translated into a curve of the applied load vs. the penetration depth after a series of preliminary determinations and calibrations. However, the analysis of the unloading portion of the force curves collected for polymers does not lead to a correct evaluation of Young's modulus. The high slope of the unloading curves is not linked to an elastic behavior, as would be expected, but rather to a viscoelastic effect. This can be argued on the basis that the unloading curves are superimposed on the loading curves in the case of an ideal elastic behavior, as for rubbers, or generally in the case of materials with very short relaxation times. In contrast, when the relaxation time of the sample is close to or even much larger than the indentation time scale, very high slopes are recorded.

  1. Multifunctional hydrogel nano-probes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  2. High resolution atomic force microscopy of double-stranded RNA.

    PubMed

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex. PMID:26876486

  3. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  4. Multifunctional hydrogel nano-probes for atomic force microscopy.

    PubMed

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe-the key actuating element-has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  5. A new ion sensing deep atomic force microscope

    PubMed Central

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-01-01

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves. PMID:25173275

  6. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  7. Atomically-resolved surface imaging by low temperature atomic force microscopy using a quartz resonator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio; An, Toshu; Nishio, Takahiro; Eguchi, Toyoaki; Ono, M.; Akiyama, Kotone

    2007-03-01

    We have developed a frequency-modulation atomic force microscope (FM-AFM) using a length-extension quartz resonator as a force sensor. Atomically-resolved images of the Si(111) 7x7 surface were obtained with the AFM in UHV both at room temperature [1] and 5 K. The high resonance frequency (˜1 MHz) of the resonator improves the sensitivity to its deflection. Its self-sensing property eliminates the cumbersome optical alignment, which is usually required in conventional AFMs, and thus it can be easily installed into a low temperature system. The high stiffness of the resonator enables us to operate with a very small oscillation amplitude; less than 0.1nm, and thus to detect a short-range force effectively, such as a covalent bonding force, which is crucial for the highly resolved imaging. For the probe tip, a tungsten wire was attached at the end of the resonator and sharpened by focused ion beam. The native oxide layer covering the tip was removed by in-situ field ion microscopy. [1] T. An, T. Eguchi, K. Akiyama and Y. Hasegawa, APL 87, 133114 (2005).

  8. Localization and force analysis at the single virus particle level using atomic force microscopy

    SciTech Connect

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  9. Interaction forces between silica surfaces in cationic surfactant solutions: an atomic force microscopy study.

    PubMed

    Lüderitz, Liset A C; v Klitzing, Regine

    2013-07-15

    The interaction forces between silicon oxide surfaces in the presence of surfactant solutions were studied. Based on the qualitative and quantitative analysis of these interaction forces the correlation with the structure of the aggregates on the surfaces is analyzed. A colloidal probe atomic force microscope (AFM) was used to measure the forces between two colloidal silica particles and between a colloidal particle and a silicon wafer in the presence of hexadecyltrimethylammonium bromide (CTAB) at concentrations between 0.005 mM and 1.2 mM. Different interaction forces were obtained for the silica particle-silica particle system when compared to those for the silica particle-silicon wafer system for the same studied concentration. This indicates that the silica particles and the silicon wafer have different aggregate morphologies on their surfaces. The point of zero charge (pzc) was obtained at 0.05 mM CTAB concentration for the silica particles and at 0.3mM for the silica particle-silicon wafer system. This indicates a higher charge at the silicon wafer than at the silica particles. The observed long range attractions are explained by nanobubbles present at the silicon oxide surfaces and/or by attractive electrostatic interactions between the surfaces, induced by oppositely charged patches at the opposing Si oxide surfaces. PMID:23647691

  10. Accurate force spectroscopy in tapping mode atomic force microscopy in liquids

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Melcher, John; Raman, Arvind

    2010-01-01

    Existing force spectroscopy methods in tapping mode atomic force microscopy (AFM) such as higher harmonic inversion [M. Stark, R. W. Stark, W. M. Heckl, and R. Guckenberger, Proc. Natl. Acad. Sci. U.S.A. 99, 8473 (2002)] or scanning probe acceleration microscopy [J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, Proc. Natl. Acad. Sci. U.S.A. 103, 4813 (2006)] or integral relations [M. Lee and W. Jhe, Phys. Rev. Lett. 97, 036104 (2006); S. Hu and A. Raman, Nanotechnology 19, 375704 (2008); H. Hölscher, Appl. Phys. Lett. 89, 123109 (2006); A. J. Katan, Nanotechnology 20, 165703 (2009)] require and assume as an observable the tip dynamics in a single eigenmode of the oscillating microcantilever. We demonstrate that this assumption can distort significantly the extracted tip-sample interaction forces when applied to tapping mode AFM with soft cantilevers in liquid environments. This exception is due to the fact that under these conditions the second eigenmode is momentarily excited and the observed tip dynamics clearly contains contributions from the fundamental and second eigenmodes. To alleviate this problem, a simple experimental method is proposed to screen the second eigenmode contributions in the observed tip deflection signal to allow accurate tip-sample force reconstruction in liquids. The method is implemented experimentally to reconstruct interaction forces on polymer, bacteriorhodopsin membrane, and mica samples in buffer solutions.

  11. Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy.

    PubMed

    Pelto, Jani M; Haimi, Suvi P; Siljander, Aliisa S; Miettinen, Susanna S; Tappura, Kirsi M; Higgins, Michael J; Wallace, Gordon G

    2013-05-21

    Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The surface potential of the charged and dried PPy-HA films was assessed with Kelvin probe force microscopy (KPFM), and the KPFM data were correlated to the fluid AFM data. The surface charge distribution and elasticity were both found to correlate well with the nodular morphology of PPy-HA and to be sensitive to the electrochemical charging conditions. Furthermore, a significant change in the adhesion was detected when the surface was electrochemically charged positive. The results highlight the potential of positively charged PPy-HA as a coating material to enhance the stem cell response in tissue-engineering scaffolds. PMID:23621360

  12. Quantitative assessment of sample stiffness and sliding friction from force curves in atomic force microscopy

    SciTech Connect

    Pratt, Jon R.; Shaw, Gordon A.; Kumanchik, Lee; Burnham, Nancy A.

    2010-02-15

    It has long been recognized that the angular deflection of an atomic force microscope (AFM) cantilever under ''normal'' loading conditions can be profoundly influenced by the friction between the tip and the surface. It is shown here that a remarkably quantifiable hysteresis occurs in the slope of loading curves whenever the normal flexural stiffness of the AFM cantilever is greater than that of the sample. This situation arises naturally in cantilever-on-cantilever calibration, but also when trying to measure the stiffness of nanomechanical devices or test structures, or when probing any type of surface or structure that is much more compliant along the surface normal than in transverse directions. Expressions and techniques for evaluating the coefficient of sliding friction between the cantilever tip and sample from normal force curves, as well as relations for determining the stiffness of a mechanically compliant specimen are presented. The model is experimentally supported by the results of cantilever-on-cantilever spring constant calibrations. The cantilever spring constants determined here agree with the values determined using the NIST electrostatic force balance within the limits of the largest uncertainty component, which had a relative value of less than 2.5%. This points the way for quantitative testing of micromechanical and nanomechanical components, more accurate calibration of AFM force, and provides nanotribologists access to information about contact friction from normal force curves.

  13. Numerical study of the hydrodynamic drag force in atomic force microscopy measurements undertaken in fluids.

    PubMed

    Méndez-Méndez, J V; Alonso-Rasgado, M T; Faria, E Correia; Flores-Johnson, E A; Snook, R D

    2014-11-01

    When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids. The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements. PMID:25080275

  14. Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy

    PubMed Central

    Illek, Esther; Giessibl, Franz J

    2012-01-01

    Summary In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are necessary. Two prominent methods proposed by Sader and Jarvis (Sader–Jarvis method) and Giessibl (matrix method) are investigated with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscillation amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the spikelike features can be circumvented. The Sader–Jarvis method has a continuous amplitude dependence showing two minima and one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the amplitude and the characteristic decay length of the force for the Sader–Jarvis method. However, the matrix method generally provides the higher deconvolution quality. PMID:22496997

  15. A Novel Atomic Force Microscope with Multi-Mode Scanner

    NASA Astrophysics Data System (ADS)

    Qin, Chun; Zhang, Haijun; Xu, Rui; Han, Xu; Wang, Shuying

    2016-01-01

    A new type of atomic force microscope (AFM) with multi-mode scanner is proposed. The AFM system provides more than four scanning modes using a specially designed scanner with three tube piezoelectric ceramics and three stack piezoelectric ceramics. Sample scanning of small range with high resolution can be realized by using tube piezos, meanwhile, large range scanning can be achieved by stack piezos. Furthermore, the combination with tube piezos and stack piezos not only realizes high-resolution scanning of small samples with large- scale fluctuation structure, but also achieves small range area-selecting scanning. Corresponding experiments are carried out in terms of four different scanning modes showing that the AFM is of reliable stability, high resolution and can be widely applied in the fields of micro/nano-technology.

  16. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were

  17. Atomic force microscopy analysis of rat pulmonary surfactant films.

    PubMed

    Jiao, Xiujun; Keating, Eleonora; Tadayyon, Seyed; Possmayer, Fred; Zuo, Yi Y; Veldhuizen, Ruud A W

    2011-10-01

    Pulmonary surfactant facilitates breathing by forming a surface tension reducing film at the air-liquid interface of the alveoli. The objective was to characterize the structure of surfactant films using endogenous rat surfactant. Solid-support surfactant films, at different surface pressures, were obtained using a Langmuir balance and were analyzed using atomic force microscopy. The results showed a lipid film structure with three distinct phases: liquid expanded, liquid ordered and liquid condensed. The area covered by the liquid condensed domains increased as surface pressure increased. The presence of liquid ordered phase within these structures correlated with the cholesterol content. At a surface pressure of 50 mN/m, stacks of bilayers appeared. Several structural details of these films differ from previous observations made with goat and exogenous surfactants. Overall, the data indicate that surfactant films demonstrate phase separation at low surface pressures and multilayer formation at higher pressure, features likely important for normal surfactant function. PMID:21704443

  18. Gating mechanosensitive channels in bacteria with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Third Institute of Physics Team; School of Medical Sciences Collaboration

    The regulation of growth and integrity of bacteria is critically linked to mechanical stress. Bacteria typically maintain a high difference of osmotic pressure (turgor pressure) with respect to the environment. This pressure difference (on the order of 1 atm) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. Turgor pressure is controlled by the ratio of osmolytes inside and outside bacteria and thus, can abruptly increase upon osmotic downshock. For structural integrity bacteria rely on the mechanical stability of the cell wall and on the action of mechanosensitive (MS) channels: membrane proteins that release solutes in response to stress in the cell envelope. We here present experimental data on MS channels gating. We activate channels by indenting living bacteria with the cantilever of an atomic force microscope (AFM). We compare responses of wild-type and mutant bacteria in which some or all MS channels have been eliminated.

  19. Nanolithography on thin layers of PMMA using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Martín, Cristina; Rius, Gemma; Borrisé, Xavier; Pérez-Murano, Francesc

    2005-08-01

    A new technique for producing nanometre scale patterns on thin layers (<30 nm thick) of PMMA on silicon is described. The method consists of inducing the local modification of the PMMA by applying a positive voltage between the silicon and an atomic force microscope (AFM) tip. At voltages larger than 28 V, it is observed that a hole is directly produced on the PMMA. The silicon surface is simultaneously oxidized even in the case where a hole has not been created. Monitoring of the electrical current through the AFM tip during the application of the voltage allows elucidating the mechanism of the PMMA removal. The process is used to define nanometre scale electrodes by combining the AFM lithography with electron beam lithography, metal deposition and lift-off processes.

  20. The long range voice coil atomic force microscope

    SciTech Connect

    Barnard, H.; Randall, C.; Bridges, D.; Hansma, P. K.

    2012-02-15

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coils in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.

  1. Measuring viscoelasticity of soft samples using atomic force microscopy.

    PubMed

    Tripathy, S; Berger, E J

    2009-09-01

    Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter. PMID:19725704

  2. A subsurface add-on for standard atomic force microscopes

    SciTech Connect

    Verbiest, G. J.; Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J.

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  3. Atomic force microscopy spring constant determination in viscous liquids

    SciTech Connect

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-15

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this 'thermal noise method' is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  4. Atomic force microscopy spring constant determination in viscous liquids.

    PubMed

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities. PMID:19334955

  5. Atomic-force microscopy of submicron films of electroactive polymer

    NASA Astrophysics Data System (ADS)

    Karamov, D. D.; Kornilov, V. M.; Lachinov, A. N.; Kraikin, V. A.; Ionova, I. A.

    2016-07-01

    Atomic-force microscopy is used to study the supramolecular structure of submicron films of electroactive thermally stable polymer (polydiphenylenephthalide (PDP)). It has been demonstrated that PDP films produced using centrifuging are solid homogeneous films with thicknesses down to several nanometers, which correspond to two or three monomolecular layers. The film volume is structurized at thicknesses greater than 100 nm. The study of the rheological properties of solutions used for film production yields a crossover point that separates the domains of strongly diluted and semidiluted solutions. A transition from the globular structure to the associate structure is observed in films that are produced using solutions with a boundary concentration. A model of the formation of polymer film that involves the presence of associates in the original solution is discussed.

  6. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz. PMID:26520960

  7. Cross-talk correction in atomic force microscopy.

    PubMed

    Hoffmann, A; Jungk, T; Soergel, E

    2007-01-01

    Commercial atomic force microscopes usually use a position-sensitive photodiode to detect the motion of the cantilever via laser beam deflection. This readout technique makes it possible to measure bending and torsion of the cantilever separately. A slight angle between the orientation of the photodiode and the plane of the readout laser beam, however, causes false signals in both readout channels. This cross-talk may lead to misinterpretation of the acquired data. We demonstrate this fault with images recorded in contact mode on periodically poled ferroelectric crystals and present a simple electronic circuit to compensate for it. This circuit can correct for cross-talk with a bandwidth of approximately 1 MHz suppressing the the false signal to <1%. PMID:17503950

  8. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  9. Exploiting cantilever curvature for noise reduction in atomic force microscopy.

    PubMed

    Labuda, Aleksander; Grütter, Peter H

    2011-01-01

    Optical beam deflection is a widely used method for detecting the deflection of atomic force microscope (AFM) cantilevers. This paper presents a first order derivation for the angular detection noise density which determines the lower limit for deflection sensing. Surprisingly, the cantilever radius of curvature, commonly not considered, plays a crucial role and can be exploited to decrease angular detection noise. We demonstrate a reduction in angular detection shot noise of more than an order of magnitude on a home-built AFM with a commercial 450 μm long cantilever by exploiting the optical properties of the cantilever curvature caused by the reflective gold coating. Lastly, we demonstrate how cantilever curvature can be responsible for up to 45% of the variability in the measured sensitivity of cantilevers on commercially available AFMs. PMID:21280834

  10. The Applications of Atomic Force Microscopy to Vision Science

    PubMed Central

    Last, Julie A.; Russell, Paul; Nealey, Paul F.

    2010-01-01

    The atomic force microscope (AFM) is widely used in materials science and has found many applications in biological sciences but has been limited in use in vision science. The AFM can be used to image the topography of soft biological materials in their native environments. It can also be used to probe the mechanical properties of cells and extracellular matrices, including their intrinsic elastic modulus and receptor-ligand interactions. In this review, the operation of the AFM is described along with a review of how it has been thus far used in vision science. It is hoped that this review will serve to stimulate vision scientists to consider incorporating AFM as part of their research toolkit. PMID:21123767

  11. Nanometrology of delignified Populus using mode synthesizing atomic force microscopy

    SciTech Connect

    Tetard, Laurene; Passian, Ali; Farahi, R H; Davison, Brian H; Jung, S; Ragauskas, A J; Lereu, Aude; Thundat, Thomas George

    2011-01-01

    The study of the spatially resolved physical and compositional properties of materials at the nanoscale is increasingly challenging due to the level of complexity of biological specimens such as those of interest in bioenergy production. Mode synthesizing atomic force microscopy (MSAFM) has emerged as a promising metrology tool for such studies. It is shown that, by tuning the mechanical excitation of the probe-sample system, MSAFM can be used to dynamically investigate the multifaceted complexity of plant cells. The results are argued to be of importance both for the characteristics of the invoked synthesized modes and for accessing new features of the samples. As a specific system to investigate, we present images of Populus, before and after a holopulping treatment, a crucial step in the biomass delignification process.

  12. Unlocking higher harmonics in atomic force microscopy with gentle interactions.

    PubMed

    Santos, Sergio; Barcons, Victor; Font, Josep; Verdaguer, Albert

    2014-01-01

    In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity. PMID:24778948

  13. Automated parallel high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Minne, S. C.; Yaralioglu, G.; Manalis, S. R.; Adams, J. D.; Zesch, J.; Atalar, A.; Quate, C. F.

    1998-05-01

    An expandable system has been developed to operate multiple probes for the atomic force microscope in parallel at high speeds. The combined improvements from parallelism and enhanced tip speed in this system represent an increase in throughput by over two orders of magnitude. A modular cantilever design has been replicated to produce an array of 50 cantilevers with a 200 μm pitch. This design contains a dedicated integrated sensor and integrated actuator where the cells can be repeated indefinitely. Electrical shielding within the array virtually eliminates coupling between the actuators and sensors. The reduced coupling simplifies the control electronics, facilitating the design of a computer system to automate the parallel high-speed arrays. This automated system has been applied to four cantilevers within the array of 50 cantilevers, with a 20 kHz bandwidth and a noise level of less than 50 Å. For typical samples, this bandwidth allows us to scan the probes at 4 mm/s.

  14. Unlocking higher harmonics in atomic force microscopy with gentle interactions

    PubMed Central

    Font, Josep; Verdaguer, Albert

    2014-01-01

    Summary In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity. PMID:24778948

  15. Mechanical manifestations of rare atomic jumps in dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Baratoff, A.; Hug, H. J.; Hidber, H. R.; Löhneysen, H. v.; Güntherodt, H.-J.

    2007-10-01

    The resonance frequency and the excitation amplitude of a silicon cantilever have been measured as a function of distance to a cleaved KBr(001) surface with a low-temperature scanning force microscope (SFM) in ultrahigh vacuum. We identify two regimes of tip-sample distances. Above a site-dependent critical tip-sample distance reproducible data with low noise and no interaction-induced energy dissipation are measured. In this regime reproducible SFM images can be recorded. At closer tip-sample distances, above two distinct atomic sites, the frequency values jump between two limiting curves on a timescale of tens of milliseconds. Furthermore, additional energy dissipation occurs wherever jumps are observed. We attribute both phenomena to rarely occurring changes in the tip apex configuration which are affected by short-range interactions with the sample. Their respective magnitudes are related to each other. A specific candidate two-level system is also proposed.

  16. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  17. Photothermal excitation setup for a modified commercial atomic force microscope

    SciTech Connect

    Adam, Holger; Rode, Sebastian; Schreiber, Martin; Kühnle, Angelika; Kobayashi, Kei; Yamada, Hirofumi

    2014-02-15

    High-resolution imaging in liquids using frequency modulation atomic force microscopy is known to suffer from additional peaks in the resonance spectrum that are unrelated to the cantilever resonance. These unwanted peaks are caused by acoustic modes of the liquid and the setup arising from the indirect oscillation excitation by a piezoelectric transducer. Photothermal excitation has been identified as a suitable method for exciting the cantilever in a direct manner. Here, we present a simple design for implementing photothermal excitation in a modified Multimode scan head from Bruker. Our approach is based on adding a few components only to keep the modifications as simple as possible and to maintain the low noise level of the original setup with a typical deflection noise density of about 15 fm/√(Hz) measured in aqueous solution. The success of the modification is illustrated by a comparison of the resonance spectra obtained with piezoelectric and photothermal excitation. The performance of the systems is demonstrated by presenting high-resolution images on bare calcite in liquid as well as organic adsorbates (Alizarin Red S) on calcite with simultaneous atomic resolution of the underlying calcite substrate.

  18. Photothermal excitation setup for a modified commercial atomic force microscope

    NASA Astrophysics Data System (ADS)

    Adam, Holger; Rode, Sebastian; Schreiber, Martin; Kobayashi, Kei; Yamada, Hirofumi; Kühnle, Angelika

    2014-02-01

    High-resolution imaging in liquids using frequency modulation atomic force microscopy is known to suffer from additional peaks in the resonance spectrum that are unrelated to the cantilever resonance. These unwanted peaks are caused by acoustic modes of the liquid and the setup arising from the indirect oscillation excitation by a piezoelectric transducer. Photothermal excitation has been identified as a suitable method for exciting the cantilever in a direct manner. Here, we present a simple design for implementing photothermal excitation in a modified Multimode scan head from Bruker. Our approach is based on adding a few components only to keep the modifications as simple as possible and to maintain the low noise level of the original setup with a typical deflection noise density of about 15 fm/sqrt{Hz} measured in aqueous solution. The success of the modification is illustrated by a comparison of the resonance spectra obtained with piezoelectric and photothermal excitation. The performance of the systems is demonstrated by presenting high-resolution images on bare calcite in liquid as well as organic adsorbates (Alizarin Red S) on calcite with simultaneous atomic resolution of the underlying calcite substrate.

  19. Pressure solution observed with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Colombani, J.; Pachon-Rodriguez, E. A.; Piednoir, A.

    2012-04-01

    Dissolution of minerals is involved in many geological and environmental processes, often with large human consequences. One can cite the durability of mineral materials, the management of nuclear wastes, the sequestration of atmospheric CO2 or the pollution of drinking water. Progresses have been made during the last decade in our understanding of the basic mechanisms of dissolution, particularly concerning the nature of the reactive surface, the role of etch pits, the influence of the mineral history, the mineral replacement processes, ... One of the remaining problems is the influence of an elastic stress on the nature and rate of dissolution. For instance a large discrepancy still exists between experimental results and modelling of pressure solution creep, a plastic strain mechanism of minerals based on the dissolution enhancement by an external stress. We present here an experimental evidence of the influence of a local stress on a molecular elementary mechanism of dissolution. This was performed by atomic force microscopy observation of the migration of a molecular step on the surface of a single crystal of gypsum during dissolution, where the AFM tip is used alternatively to apply a stress and probe the surface. The kinetics of this atomic mechanism is seen to obey the same law of pressure solution as the corresponding macroscopic phenomenon.

  20. Introduction to Atomic Force Microscopy (AFM) in Biology.

    PubMed

    Kreplak, Laurent

    2016-01-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc. PMID:27479503

  1. Jumping mode atomic force microscopy on grana membranes from spinach.

    PubMed

    Sznee, Kinga; Dekker, Jan P; Dame, Remus T; van Roon, Henny; Wuite, Gijs J L; Frese, Raoul N

    2011-11-11

    The thylakoid membrane system is a complex membrane system that organizes and reorganizes itself to provide plants optimal chemical energy from sunlight under different and varying environmental conditions. Grana membranes are part of this system and contain the light-driven water-splitting enzyme Photosystem II (PSII) and light-harvesting antenna complexes. Here, we present a direct visualization of PSII complexes within grana membranes from spinach. By means of jumping mode atomic force microscopy in liquid, minimal forces were applied between the scanning tip and membrane or protein, allowing complexes to be imaged with high detail. We observed four different packing arrangements of PSII complexes, which occur primarily as dimers: co-linear crystalline rows, nanometric domains of straight or skewed rows, and disordered domains. Upon storing surface-adhered membranes at low temperature prior to imaging, large-scale reorganizations of supercomplexes between PSII and light-harvesting complex II could be induced. The highest resolution images show the existence of membrane domains without obvious topography extending beyond supercomplexes. These observations illustrate the possibility for diffusion of proteins and smaller molecules within these densely packed membranes. PMID:21911498

  2. Cross-talk compensation in atomic force microscopy

    SciTech Connect

    Onal, Cagdas D.; Suemer, Bilsay; Sitti, Metin

    2008-10-15

    In this work, calibration and correction of cross-talk in atomic force microscopy (AFM) is demonstrated. Several reasons and effects of this inherent problem on experimental results are discussed. We propose a general procedure that can be used on most AFM systems to compensate for cross-talk on the cantilever bending and twisting signals. The method utilizes two initial experiments on a flat surface to achieve an affine transformation between the measured signals and the actual signals. Using this transformation directly on the voltage signals allows us to remove the detrimental effects of cross-talk on AFM-based force measurement experiments. The achieved transformation matrix can be turned into a simple circuit and applied online, by users who have access to the raw signals in the AFM head. As a case study, a lateral deflection based mechanical characterization test for a poly(methyl methacrylate) microfiber that is suspended on a trench is investigated in terms of the effectiveness of the cross-talk compensation.

  3. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  4. Small cantilevers for atomic force microscopy and force spectroscopy of biological molecules

    NASA Astrophysics Data System (ADS)

    Viani, M. B.; Schaffer, T. E.; Chand, A.; Smith, B. L.; Hansma, P. K.; Wendman, M.

    1998-03-01

    Small cantilevers offer new possibilities for high speed/low noise atomic force microscopy of soft, biological samples. We have used a novel process to fabricate metallic cantilevers that should maximize reflectivity and minimize thermal bending. We have fabricated and measured the properties of aluminum, nickel, silver, and 14-karat gold cantilevers that are 3-12 um long, 1-4 um wide, and 60-300 nm thick and have resonant frequencies of 0.5-2 MHz and spring constants of 0.1-3 N/m. We also have fabricated small cantilevers with ultra-low spring constants (1-10 mN/m) out of silicon nitride and used them for force spectroscopy of DNA. This work was supported by grant numbers NSF-DMR9622169 and NSF-DMR9632716 from the Materials Research Division of the National Science Foundation and by grant number DAAH04-96-1-004 from the Army Research Office.

  5. Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Meng; Chen, Xiaoming; Park, Cheol; Fay, Catharine C.; Pugno, Nicola M.; Ke, Changhong

    2013-12-01

    The length of nanotubes is a critical structural parameter for the design and manufacture of nanotube-based material systems and devices. High-precision length control of nanotubes by means of mechanical cutting using a scriber has not materialized due to the lack of the knowledge of the appropriate cutting conditions and the tube failure mechanism. In this paper, we present a quantitative nanomechanical study of the cutting of individual boron nitride nanotubes (BNNTs) using atomic force microscopy (AFM) probes. In our nanotube cutting measurements, a nanotube standing still on a flat substrate was laterally scribed by an AFM tip. The tip-tube collision force deformed the tube, and eventually fractured the tube at the collision site by increasing the cutting load. The mechanical response of nanotubes during the tip-tube collision process and the roles of the scribing velocity and the frictional interaction on the tip-tube collision contact in cutting nanotubes were quantitatively investigated by cutting double-walled BNNTs of 2.26-4.28 nm in outer diameter. The fracture strength of BNNTs was also quantified based on the measured collision forces and their structural configurations using contact mechanics theories. Our analysis reports fracture strengths of 9.1-15.5 GPa for the tested BNNTs. The nanomechanical study presented in this paper demonstrates that the AFM-based nanomechanical cutting technique not only enables effective control of the length of nanotubes with high precision, but is also promising as a new nanomechanical testing technique for characterizing the mechanical properties of tubular nanostructures.

  6. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope

    SciTech Connect

    Barkley, Sarice S.; Cannara, Rachel J.; Deng Zhao; Gates, Richard S.; Reitsma, Mark G.

    2012-02-15

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5% or less, but with precision limited to about 15%, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an {approx_equal} 4 % systematic error per {mu}N of applied load for loads {<=} 1 {mu}N. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  7. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  8. Surface science experiments involving the atomic force microscope

    NASA Astrophysics Data System (ADS)

    McBride, Sean P.

    Three diverse first author surfaces science experiments conducted by Sean P. McBride1-3 will be discussed in detail and supplemented by secondary co-author projects by Sean P. McBride,4-7 all of which rely heavily on the use of an atomic force microscope (AFM). First, the slip length parameter, b of liquids is investigated using colloidal probe AFM. The slip length describes how easily a fluid flows over an interface. The slip length, with its exact origin unknown and dependencies not overwhelming decided upon by the scientific community, remains a controversial topic. Colloidal probe AFM uses a spherical probe attached to a standard AFM imaging tip driven through a liquid. With the force on this colloidal AFM probe known, and using the simplest homologous series of test liquids, many of the suspected causes and dependencies of the slip length demonstrated in the literature can be suppressed or eliminated. This leaves the measurable trends in the slip length attributed only to the systematically varying physical properties of the different liquids. When conducting these experiments, it was realized that the spring constant, k, of the system depends upon the cantilever geometry of the experiment and therefore should be measured in-situ. This means that the k calibration needs to be performed in the same viscous liquid in which the slip experiments are performed. Current in-situ calibrations in viscous fluids are very limited, thus a new in-situ k calibration method was developed for use in viscous fluids. This new method is based upon the residuals, namely, the difference between experimental force-distance data and Vinogradova slip theory. Next, the AFM's ability to acquire accurate sub nanometer height profiles of structures on interfaces was used to develop a novel experimental technique to measure the line tension parameter, tau, of isolated nanoparticles at the three phase interface in a solid-liquid-vapor system. The tau parameter is a result of excess energy

  9. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip–sample contact are used; control of the tip’s vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential’s nonlinear nature, however, achieving reliable control of the tip–sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator’s response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip–sample interaction force measurement.

  10. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Moon, Robert; Pratt, Jon; Shaw, Gordon; Raman, Arvind

    2011-11-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale resolution of both inorganic and biological surfaces and nanomaterials. We present a framework to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. We demonstrate the framework by quantifying uncertainty in AFM-based measurements of the transverse elastic modulus of cellulose nanocrystals (CNCs), an abundant, plant-derived nanomaterial whose mechanical properties are comparable to Kevlar fibers. For a single, isolated CNC the transverse elastic modulus was found to have a mean of 8.1 GPa and a 95% confidence interval of 2.7-20 GPa. A key result is that multiple replicates of force-distance curves do not sample the important sources of uncertainty, which are systematic in nature. The dominant source of uncertainty is the nondimensional photodiode sensitivity calibration rather than the cantilever stiffness or Z-piezo calibrations. The results underscore the great need for, and open a path towards, quantifying and minimizing uncertainty in AFM-based material property measurements of nanoparticles, nanostructured surfaces, thin films, polymers and biomaterials. This work is a partial contribution of the USDA Forest Service and NIST, agencies of the US government, and is not subject to copyright.

  11. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.

    PubMed

    Knittel, Peter; Mizaikoff, Boris; Kranz, Christine

    2016-06-21

    Soft electronic devices play a crucial role in, e.g., neural implants as stimulating electrodes, transducers for biosensors, or selective drug-delivery. Because of their elasticity, they can easily adapt to their environment and prevent immunoreactions leading to an overall improved long-term performance. In addition, flexible electronic devices such as stretchable displays will be increasingly used in everyday life, e.g., for so-called electronic wearables. Atomic force microscopy (AFM) is a versatile tool to characterize these micro- and nanostructured devices in terms of their topography. Using advanced imaging techniques such as peak force tapping (PFT), nanomechanical properties including adhesion, deformation, and Young's modulus can be simultaneously mapped along with surface features. However, conventional AFM provides limited laterally resolved information on electrical or electrochemical properties such as the activity of an electrode array. In this study, we present the first combination of AFM with scanning electrochemical microscopy (SECM) in PFT mode, thereby offering spatially correlated electrochemical and nanomechanical information paired with high-resolution topographical data under force control (QNM-AFM-SECM). The versatility of this combined scanning probe approach is demonstrated by mapping topographical, electrochemical, and nanomechanical properties of gold microelectrodes and of gold electrodes patterned onto polydimethylsiloxane. PMID:27203837

  12. High viscosity environments: an unexpected route to obtain true atomic resolution with atomic force microscopy.

    PubMed

    Weber, Stefan A L; Kilpatrick, Jason I; Brosnan, Timothy M; Jarvis, Suzanne P; Rodriguez, Brian J

    2014-05-01

    Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments. PMID:24717916

  13. High viscosity environments: an unexpected route to obtain true atomic resolution with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Weber, Stefan A. L.; Kilpatrick, Jason I.; Brosnan, Timothy M.; Jarvis, Suzanne P.; Rodriguez, Brian J.

    2014-05-01

    Atomic force microscopy (AFM) is widely used in liquid environments, where true atomic resolution at the solid-liquid interface can now be routinely achieved. It is generally expected that AFM operation in more viscous environments results in an increased noise contribution from the thermal motion of the cantilever, thereby reducing the signal-to-noise ratio (SNR). Thus, viscous fluids such as ionic and organic liquids have been generally avoided for high-resolution AFM studies despite their relevance to, e.g. energy applications. Here, we investigate the thermal noise limitations of dynamic AFM operation in both low and high viscosity environments theoretically, deriving expressions for the amplitude, phase and frequency noise resulting from the thermal motion of the cantilever, thereby defining the performance limits of amplitude modulation, phase modulation and frequency modulation AFM. We show that the assumption of a reduced SNR in viscous environments is not inherent to the technique and demonstrate that SNR values comparable to ultra-high vacuum systems can be obtained in high viscosity environments under certain conditions. Finally, we have obtained true atomic resolution images of highly ordered pyrolytic graphite and mica surfaces, thus revealing the potential of high-resolution imaging in high viscosity environments.

  14. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    PubMed

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  15. Characterizing atomic force microscopy tip shape in use.

    PubMed

    Wang, Chunmei; Itoh, Hiroshi; Sun, Jielin; Hu, Jun; Shen, Dianhong; Ichimura, Shingo

    2009-02-01

    A new tip characterizer based on the fabrication of multilayer thin films for atomic force microscopy (AFM) was developed to analyze the effective tip shape while in use. The precise structure of this tip characterizer was measured by transmission electron microscopy. Four different types of commercial tips with various radii were characterized by the tip characterizer and by conventional scanning electron microscopy (SEM). The results were compared to obtain a relationship between the actual and effective tip shapes. A quantitative analysis was performed of apex radii measured from line profiles of comb-shaped patterns and nanometer-scale knife-edges without the problem of edge uncertainty in the SEM image. Degradation of the AFM tip induced by electron-beam irradiation was studied by using SEM and the tip characterizer. A potential technique for fabricating symmetric AFM tips based on irradiation by an electron beam and a quantitative analysis of changing the tip apex in SEM were examined with AFM using the tip characterizer. PMID:19441396

  16. Conductive-probe atomic force microscopy characterization of silicon nanowire

    PubMed Central

    2011-01-01

    The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623

  17. Atomic Force Microscopy Study of Atherosclerosis Progression in Arterial Walls.

    PubMed

    Timashev, Peter S; Kotova, Svetlana L; Belkova, Galina V; Gubar'kova, Ekaterina V; Timofeeva, Lidia B; Gladkova, Natalia D; Solovieva, Anna B

    2016-04-01

    Cardiovascular disease remains the leading cause of mortality worldwide. Here we suggest a novel approach for tracking atherosclerosis progression based on the use of atomic force microscopy (AFM). Using AFM, we studied cross-sections of coronary arteries with the following types of lesions: Type II-thickened intima; Type III-thickened intima with a lipid streak; Type IV-fibrotic layer over a lipid core; Type Va-unstable fibrotic layer over a lipid core; Type Vc-very thick fibrotic layer. AFM imaging revealed that the fibrotic layer of an atherosclerotic plaque is represented by a basket-weave network of collagen fibers and a subscale network of fibrils that become looser with atherosclerosis progression. In an unstable plaque (Type Va), packing of the collagen fibers and fibrils becomes even less uniform than that at the previous stages, while a stable fibrotic plaque (Vc) has significantly tighter packing. Such alterations of the collagen network morphology apparently, led to deterioration of the Type Va plaque mechanical properties, that, in turn, resulted in its instability and propensity to rupture. Thus, AFM may serve as a useful tool for tracking atherosclerosis progression in the arterial wall tissue. PMID:26843417

  18. Atomic force microscopy investigation of the giant mimivirus

    SciTech Connect

    Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang; Raoult, Didier; Rossmann, Michael; McPherson, Alexander

    2010-08-15

    Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. The virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.

  19. Imaging biological structures with the cryo atomic force microscope.

    PubMed Central

    Zhang, Y; Sheng, S; Shao, Z

    1996-01-01

    It has long been recognized that one of the major limitations in biological atomic force microscopy (AFM) is the softness of most biological samples, which are easily deformed or damaged by the AFM tip, because of the high pressure in the contact area, especially from the very sharp tips required for high resolution. Another is the molecular motion present at room temperature due to thermal fluctuation. Using an AFM operated in liquid nitrogen vapor (cryo-AFM), we demonstrate that cryo-AFM can be applied to a large variety of biological samples, from immunoglobulins to DNA to cell surfaces. The resolution achieved with cryo-AFM is much improved when compared with AFM at room temperature with similar specimens, and is comparable to that of cryo-electron microscopy on randomly oriented macromolecules. We will also discuss the technical problems that remain to be solved for achieving even higher resolution with cryo-AFM and other possible applications of this novel technique. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:8889193

  20. Atomic force microscopy study of the secretory granule lumen.

    PubMed Central

    Parpura, V; Fernandez, J M

    1996-01-01

    We have used an atomic force microscope to study the mechanical properties of the matrix found in the lumen of secretory granules isolated from mast cells. The matrices were insoluble and had an average height of 474 +/- 197 nm. The volume of these matrices increased reversibly about tenfold by decreasing the valency of the bathing external cation (La3+ < Ca2+ < Na+). The elastic (Young's) modulus was found to decrease by about 100-fold (4.3 MPa in La3+ to 37 kPa in Na+) upon a tenfold increase in the matrix volume. A swollen granule matrix had an elastic modulus similar to that of gelatin in water. The elastic modulus was inversely related to the change in the volume of the matrix, following a relationship similar to that predicted for the elasticity of weakly cross-linked polymers. Our results show that the matrix of these secretory granules have the mechanical properties of weak ion exchange resins, lending strong support to an ion exchange mechanism for the storage and release of cationic secretory products. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 FIGURE 9 PMID:8913576

  1. Lipid domains in supported lipid bilayer for atomic force microscopy.

    PubMed

    Lin, Wan-Chen; Blanchette, Craig D; Ratto, Timothy V; Longo, Marjorie L

    2007-01-01

    Phase-separated supported lipid bilayers have been widely used to study the phase behavior of multicomponent lipid mixtures. One of the primary advantages of using supported lipid bilayers is that the two-dimensional platform of this model membrane system readily allows lipid-phase separation to be characterized by high-resolution imaging techniques such as atomic force microscopy (AFM). In addition, when supported lipid bilayers have been functionalized with a specific ligand, protein-membrane interactions can also be imaged and characterized through AFM. It has been recently demonstrated that when the technique of vesicle fusion is used to prepare supported lipid bilayers, the thermal history of the vesicles before deposition and the supported lipid bilayers after formation will have significant effects on the final phase-separated domain structures. In this chapter, three methods of vesicle preparations as well as three deposition conditions will be presented. Also, the techniques and strategies of using AFM to image multicomponent phase-separated supported lipid bilayers and protein binding will be discussed. PMID:17951756

  2. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    SciTech Connect

    Torello, D.; Degertekin, F. Levent

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  3. Long range metrological atomic force microscope with versatile measuring head

    NASA Astrophysics Data System (ADS)

    Lu, Mingzhen; Gao, Sitian; Li, Qi; Li, Wei; Shi, Yushu; Tao, Xingfu

    2013-01-01

    A long range metrological atomic force microscope (AFM) has been developed at NIM. It aims to realize a maximum measurement volume of 50mm×50mm×2mm with an uncertainty of a few tens of nanometers in the whole range. In compliance with Abbe Principle, the instrument is designed as a sample-scanning type. The sample is moved by a 6-DOF piezostage in combination with a hybrid slide-air bearing stage for long scanning range. Homodyne interferometers with four passes attached to a metrological frame measure relative displacement between the probe and sample thus the instrument is directly traceable to the SI. An AFM head is developed as the measuring head for the instrument. Considering accuracy and dynamic performance of the instrument, it is designed to be capable of scanning perpendicularly in a range of 5μm×5μm×5μm with a 3-DOF piezostage. Optical beam deflection method is used and a minimum of components are mounted on the moving part. A novel design is devised so that the photodetector is only sensitive to the deflection of cantilever, but not the displacement of the head. Moving manner of the head varies with scanning range and mode of the instrument. Results of different measurements are demonstrated, showing the excellent performance of the instrument.

  4. Peering at Brain Polysomes with Atomic Force Microscopy.

    PubMed

    Lunelli, Lorenzo; Bernabò, Paola; Bolner, Alice; Vaghi, Valentina; Marchioretto, Marta; Viero, Gabriella

    2016-01-01

    The translational machinery, i.e., the polysome or polyribosome, is one of the biggest and most complex cytoplasmic machineries in cells. Polysomes, formed by ribosomes, mRNAs, several proteins and non-coding RNAs, represent integrated platforms where translational controls take place. However, while the ribosome has been widely studied, the organization of polysomes is still lacking comprehensive understanding. Thus much effort is required in order to elucidate polysome organization and any novel mechanism of translational control that may be embedded. Atomic force microscopy (AFM) is a type of scanning probe microscopy that allows the acquisition of 3D images at nanoscale resolution. Compared to electron microscopy (EM) techniques, one of the main advantages of AFM is that it can acquire thousands of images both in air and in solution, enabling the sample to be maintained under near physiological conditions without any need for staining and fixing procedures. Here, a detailed protocol for the accurate purification of polysomes from mouse brain and their deposition on mica substrates is described. This protocol enables polysome imaging in air and liquid with AFM and their reconstruction as three-dimensional objects. Complementary to cryo-electron microscopy (cryo-EM), the proposed method can be conveniently used for systematically analyzing polysomes and studying their organization. PMID:27023752

  5. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities.

    PubMed

    Torello, D; Degertekin, F Levent

    2013-11-01

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (~300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup. PMID:24289402

  6. Atomic Force Microscopy Investigation of Vaccinia Virus Structure▿

    PubMed Central

    Kuznetsov, Y.; Gershon, P. D.; McPherson, A.

    2008-01-01

    Vaccinia virus was treated in a controlled manner with various combinations of nonionic detergents, reducing agents, and proteolytic enzymes, and successive products of the reactions were visualized using atomic force microscopy (AFM). Following removal of the outer lipid/protein membrane, a layer 20 to 40 nm in thickness was encountered that was composed of fibrous elements which, under reducing conditions, rapidly decomposed into individual monomers on the substrate. Beneath this layer was the virus core and its prominent lateral bodies, which could be dissociated or degraded with proteases. The core, in addition to the lateral bodies, was composed of a thick, multilayered shell of proteins of diverse sizes and shapes. The shell, which was readily etched with proteases, was thoroughly permeated with pores, or channels. Prolonged exposure to proteases and reductants produced disgorgement of the viral DNA from the remainders of the cores and also left residual, flattened, protease-resistant sacs on the imaging substrate. The DNA was readily visualized by AFM, which revealed some regions to be “soldered” by proteins, others to be heavily complexed with protein, and yet other parts to apparently exist as bundled, naked DNA. Prolonged exposure to proteases deproteinized the DNA, leaving masses of extended, free DNA. Estimates of the interior core volume suggest moderate but not extreme compaction of the genome. PMID:18508898

  7. Nanoscale thermal processing using a heated atomic force microscope tip

    NASA Astrophysics Data System (ADS)

    Nelson, Brent A.

    This dissertation aims to advance the current state of use of silicon atomic force microscope (AFM) cantilevers with integrated heaters. To this end, the research consists of two primary thrusts---demonstrating new applications for the cantilevers, and advancing the current state of understanding of their thermal and mechanical behavior to enable further applications. Among new applications, two are described. In the first application, the cantilevers are used for nanoscale material deposition, using heat to modulate the delivery of material from the nanoscale tip. In the second application, the cantilever performs thermal analysis with nanoscale spatial resolution, enabling thermal characterization of near surface and composite interphase regions that cannot be measured with bulk analysis techniques. The second thrust of the research seeks to address fundamental questions concerning the precision use of heated cantilevers. Efforts to this end include characterizing the mechanical, electrical, and thermal behavior of the cantilevers, and optimizing calibration methodology. A technique is developed for calibrating the cantilever spring constant while operating at elevated temperature. Finally, an analytical model is developed for the heat flow in the cantilever tip and relevant dimensionless numbers that govern the relative importance of the various components of the thermal environment are identified. The dimensionless numbers permit exploration of the sensitivity of the tip-substrate interface temperature to the environmental conditions.

  8. Biofunctionalization of carbon nanotubes for atomic force microscopy imaging.

    PubMed

    Woolley, Adam T

    2004-01-01

    The study of biological processes relies increasingly on methods for probing structure and function of biochemical machinery (proteins, nucleic acids, and so on) with submolecular resolution. Atomic force microscopy (AFM) has recently emerged as a promising approach for imaging biological structures with resolution approaching the nanometer scale. Two important limitations of AFM in biological imaging are (1) resolution is constrained by probe tip dimensions, and (2) typical probe tips lack chemical specificity to differentiate between functional groups in biological structures. Single-walled carbon nanotubes (SWNTs) offer an intriguing possibility for providing both high resolution and chemical selectivity in AFM imaging, thus overcoming the enumerated limitations. Procedures for generating SWNT tips for AFM will be described. Carboxylic acid functional groups at the SWNT ends can be functionalized using covalent coupling chemistry to attach biological moieties via primary amine groups. Herein, the focus will be on describing methods for attaching biotin to SWNT tips and probing streptavidin on surfaces; importantly, this same coupling chemistry can also be applied to other biomolecules possessing primary amine groups. Underivatized SWNT tips can also provide high-resolution AFM images of DNA. Biofunctionalization of SWNT AFM tips offers great potential to enable high-resolution, chemically selective imaging of biological structures. PMID:15197321

  9. Atomic Force Microscopy of Arrays of Asymmetrical DNA Motifs

    SciTech Connect

    Sherman, W.B.; Mudalige, T.K.

    2012-03-21

    DNA can easily be assembled into wide and relatively flat nanostructures that lend themselves to study via Atomic Force Microscopy (AFM). It is often important to know which side of an assembly the AFM is imaging. This is particularly crucial for characterizing nanomachines, where the movement must be measured relative to fiducial features visible to the AFM. We have developed a cheap and simple technique for building DNA arrays with distinguishable sides, a technique requiring 10 or fewer strands - dozens or hundreds of strands fewer than used for these purposes previously. Our approach involves constructing arrays out of DNA tiles that have low apparent symmetry when imaged via AFM. We have surveyed the effects of varying degrees of motif asymmetry in AFM micrographs. Even at resolutions where the individual tiles cannot be resolved (either because of sub-optimal tip quality, or very gentle tapping by the AFM tip) the larger scale features of the arrays have predictable structures that allow the determination of which side of the array is facing up. We have used this information to verify that DNA hairpins attached to either the up- or down-facing side of an array on mica can be detected in AFM height scans. We have also characterized differences in appearance between hairpins attached to different sides of the arrays.

  10. Visualization of Cytoskeletal Elements by the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Berdyyeva, Tamara; Woodworth, Craig; Sokolov, Igor

    2004-03-01

    We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquids visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total volume of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true 3 dimensional technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to electron microscopy.

  11. Atomic force microscopy of differential weathering in real time

    SciTech Connect

    Heaton, J.S.; Engstrom, R.C. . Dept. of Chemistry)

    1994-04-01

    Differential weathering of a rock sample was observed in-situ using atomic force microscopy (AFM). The sample contained fayalite intergrown with veins of magnetite and serpentine. Analyses consisted of polishing the sample with alumina and recording AFM scans periodically during subsequent exposure to nitric acid. Immediately after polishing, serpentine areas were recessed compared to fayalite and magnetite, which were similar in height. As weathering proceeded, both serpentine and magnetite areas protruded from the fayalite surface, and no significant change in the relative heights of magnetite and serpentine features was observed. This suggests that serpentine is less resistant to mechanical weathering than fayalite or magnetite but that serpentine and magnetite are both more resistant to chemical weathering than fayalite. Differential weathering rates between fayalite and magnetite, on the order of a few unit cells per minute, were determined in various nitric acid concentrations by measuring the difference in height between the two minerals as a function of time. A dissolution rate law for fayalite was determined by comparing the rates for different concentrations of nitric acid and assuming the dissolution of magnetite was negligible compared to that of fayalite. The rate law from this study is Rate = 7.7* [HNO[sub 3

  12. Simulating photoconductive atomic-force microscopy on disordered photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Blakesley, James C.; Castro, Fernando A.

    2015-04-01

    We present a tool for simulating photoconductive atomic-force microscopy (Pc-AFM) on bulk heterojunction (BHJ) materials with a minimal set of empirical parameters. The simulation is a master-equation solution of a three-dimensional hopping charge transport model which includes donor-acceptor domain morphology, energetic and spatial disorder, exciton transport and splitting, charge-pair generation and recombination, and tip-substrate electrostatics. A simplifying aspect of the model is that electron transport, hole transport, and electron-hole recombination are treated as the same electron-transfer process. The model recreates realistic bulk recombination rates, without requiring short-range Coulombic effects to be calculated. We demonstrate the tool by simulating line scans of a Pc-AFM tip passing over the surface of a buried or exposed acceptor cluster in a BHJ film. The simulations confirm experimental observations that such defects can be detected by open-circuit mode Pc-AFM imaging, even when the clusters are buried below the surface.

  13. Large dynamic range Atomic Force Microscope for overlay improvements

    NASA Astrophysics Data System (ADS)

    Kuiper, Stefan; Fritz, Erik; Crowcombe, Will; Liebig, Thomas; Kramer, Geerten; Witvoet, Gert; Duivenvoorde, Tom; Overtoom, Ton; Rijnbeek, Ramon; van Zwet, Erwin; van Dijsseldonk, Anton; den Boef, Arie; Beems, Marcel; Levasier, Leon

    2016-03-01

    Nowadays most overlay metrology tools assess the overlay performance based on marker features which are deposited next to the functional device features within each layer of the semiconductor device. However, correct overlay of the relatively coarse marker features does not directly guarantee correct overlay of the much smaller device features. This paper presents the development of a tool that allows to measure the relative distance between the marker and device features within each layer of the semiconductor device, which can be used to improve the overlay at device feature level. In order to be effective, the marker to device feature distance should be measured with sub-nanometer measurement uncertainty over several millimeters range. Furthermore, the tool should be capable of profiling the marker features to allows prediction of the location interpretation of the optical diffraction based alignment sensors, which are sensitive for potential asymmetry of the marker features. To enable this, a highly stable Atomic Force Microscope system is being developed. The probe is positioned relative to the wafer with a 6DOF controlled hexapod stage, which has a relatively large positioning range of 8x8mm. The position and orientation of this stage is measured relative to the wafer using 6 interferometers via a highly stable metrology frame. A tilted probe concept is utilized to allow profiling of the high aspect ratio marker and device features. Current activities are aimed at demonstrating the measurement capabilities of the developed AFM system.

  14. Distributed force probe bending model of critical dimension atomic force microscopy bias

    NASA Astrophysics Data System (ADS)

    Ukraintsev, Vladimir A.; Orji, Ndubuisi G.; Vorburger, Theodore V.; Dixson, Ronald G.; Fu, Joseph; Silver, Rick M.

    2013-04-01

    Critical dimension atomic force microscopy (CD-AFM) is a widely used reference metrology technique. To characterize modern semiconductor devices, small and flexible probes, often 15 to 20 nm in diameter, are used. Recent studies have reported uncontrolled and significant probe-to-probe bias variation during linewidth and sidewall angle measurements. To understand the source of these variations, tip-sample interactions between high aspect ratio features and small flexible probes, and their influence on measurement bias, should be carefully studied. Using theoretical and experimental procedures, one-dimensional (1-D) and two-dimensional (2-D) models of cylindrical probe bending relevant to carbon nanotube (CNT) AFM probes were developed and tested. An earlier 1-D bending model was refined, and a new 2-D distributed force (DF) model was developed. Contributions from several factors were considered, including: probe misalignment, CNT tip apex diameter variation, probe bending before snapping, and distributed van der Waals-London force. A method for extracting Hamaker probe-surface interaction energy from experimental probe-bending data was developed. Comparison of the new 2-D model with 1-D single point force (SPF) model revealed a difference of about 28% in probe bending. A simple linear relation between biases predicted by the 1-D SPF and 2-D DF models was found. The results suggest that probe bending can be on the order of several nanometers and can partially explain the observed CD-AFM probe-to-probe variation. New 2-D and three-dimensional CD-AFM data analysis software is needed to take full advantage of the new bias correction modeling capabilities.

  15. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  16. Characterization and Detection of Biological Weapons with Atomic Force Microscopy

    SciTech Connect

    Malkin, A J; Plomp, M; Leighton, T J; McPherson, A

    2006-09-25

    Critical gaps exist in our capabilities to rapidly characterize threat agents which could be used in attacks on facilities and military forces. DNA-based PCR and immunoassay-based techniques provide unique identification of species, strains and protein signatures of pathogens. However, differentiation between naturally occurring and weaponized bioagents and the identification of formulation signatures are beyond current technologies. One of the most effective and often the only definitive means to identify a threat agent is by its direct visualization. Atomic force microscopy (AFM) is a rapid imaging technique that covers the size range of most biothreat agents (several nanometers to tens of microns), is capable of resolving pathogen morphology and structure, and could be developed into a portable device for biological weapons (BW) field characterization. AFM can detect pathogens in aerosol, liquid, surface and soil samples while concomitantly acquiring their weaponization and threat agent digital signatures. BW morphological and structural signatures, including modifications to pathogen microstructural architecture and topology that occur during formulation and weaponization, provide the means for their differentiation from crude or purified unformulated agent, processing signatures, as well as assessment of their potential for dispersion, inhalation and environmental persistence. AFM visualization of pathogen morphology and architecture often provides valuable digital signatures and allows direct detection and identification of threat agents. We have demonstrated that pathogens, spanning the size range from several nanometers for small agricultural satellite viruses to almost half micron for pox viruses, and to several microns for bacteria and bacterial spores, can be visualized by AFM under physiological conditions to a resolution of {approx}20-30 {angstrom}. We have also demonstrated that viruses from closely related families could be differentiated by AFM on

  17. Nanocharacterization of bio-silica using atomic force and ultrasonic force microscopy

    NASA Astrophysics Data System (ADS)

    Gill, Vinaypreet S.; Hallinan, Kevin P.; Brar, N. S.

    2005-04-01

    Nanotechnology has become central to our research efforts to fabricate relatively smaller size devices, which are more versatile than their older and larger predecessors. Silica is a very important material in this regard. Recently, a new biomimetically inspired path to silica production has been demonstrated. This processing technique was inspired from biological organisms, such as marine diatoms, which produce silica at ambient conditions and almost neutral ph with beautiful control over location and structure. Recently, several researchers have demonstrated that positional control of silica formed could be achieved by application of an electric field to locate charged enzymes responsible for the bio catalytic condensation of silica from solution. Secondly, chemical and physical controls of silica structural morphology were achievable. Atomic Force Microscopy (AFM) and Ultrasonic Force Microscopy (UFM) techniques are employed for the first time to provide both substantially improved resolution of the morphology and relative measurement of the modulus of elasticity of the structures. In particular, these measurements reveal the positive impact of a shear flow field present during the silica formation on both the "ordering" of the structure and the mechanical properties.

  18. Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy.

    PubMed

    Sababi, Majid; Kettle, John; Rautkoski, Hille; Claesson, Per M; Thormann, Esben

    2012-10-24

    Paper coating formulations containing starch, latex, and clay were applied to paperboard and have been investigated by scanning electron microscopy and Peak Force tapping atomic force microscopy. A special focus has been on the measurement of the variation of the surface topography and surface material properties with a nanometer scaled spatial resolution. The effects of coating composition and drying conditions were investigated. It is concluded that the air-coating interface of the coating is dominated by close-packed latex particles embedded in a starch matrix and that the spatial distribution of the different components in the coating can be identified due to their variation in material properties. Drying the coating at an elevated temperature compared to room temperature changes the surface morphology and the surface material properties due to partial film formation of latex. However, it is evident that the chosen elevated drying temperature and exposure time is insufficient to ensure complete film formation of the latex which in an end application will be needed. PMID:22974234

  19. Interaction forces between talc and pitch probed by atomic force microscopy.

    PubMed

    Wallqvist, Viveca; Claesson, Per M; Swerin, Agne; Schoelkopf, Joachim; Gane, Patrick A C

    2007-04-10

    Colloidal wood resin components present in pulp are collectively called "pitch". The presence of pitch may cause severe problems due to deposits in and on the paper machine. There is thus a need for controlling pitch aggregation and adsorption. To be able to develop more efficient pitch control systems, one needs to develop the understanding of pitch-pitch interactions and of the interactions between pitch and other materials. With this general goal in mind, we present methods for preparing geometrically well-defined pitch particles attached to atomic force microscopy tips. This has enabled us to investigate the interactions between pitch and talc, an additive commonly used for pitch control. We have used model pitch particles consisting of one component only (abietic acid), a mixture of components (collophonium), and particles prepared from real pitch deposits. We show that the forces acting between pitch and talc are attractive and, once the initial approach is made, exert this attraction out to large distances of separation. We present evidence that the formation of bridging air bubbles or cavities is responsible for this interaction. PMID:17352501

  20. A metrological large range atomic force microscope with improved performance

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Wolff, Helmut; Pohlenz, Frank; Danzebrink, Hans-Ulrich

    2009-04-01

    A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument, the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z-piezostage. Its topography is detected by a position-stationary AFM head. The sample displacement is measured by three embedded miniature homodyne interferometers in the x, y, and z directions. The AFM head is aligned in such a way that its cantilever tip is positioned on the sample surface at the intersection point of the three interferometer measurement beams for satisfying the Abbe measurement principle. In this paper, further improvements of the Met. LR-AFM are reported. A new AFM head using the beam deflection principle has been developed to reduce the influence of parasitic optical interference phenomena. Furthermore, an off-line Heydemann correction method has been applied to reduce the inherent interferometer nonlinearities to less than 0.3 nm (p-v). Versatile scanning functions, for example, radial scanning or local AFM measurement functions, have been implemented to optimize the measurement process. The measurement software is also improved and allows comfortable operations of the instrument via graphical user interface or script-based command sets. The improved Met. LR-AFM is capable of measuring, for instance, the step height, lateral pitch, line width, nanoroughness, and other geometrical parameters of nanostructures. Calibration results of a one-dimensional grating and a set of film thickness standards are demonstrated, showing the excellent metrological performance of the instrument.

  1. Immobilization of different biomolecules by atomic force microscopy

    PubMed Central

    2010-01-01

    Background Micrometer resolution placement and immobilization of probe molecules is an important step in the preparation of biochips and a wide range of lab-on-chip systems. Most known methods for such a deposition of several different substances are costly and only suitable for a limited number of probes. In this article we present a flexible procedure for simultaneous spatially controlled immobilization of functional biomolecules by molecular ink lithography. Results For the bottom-up fabrication of surface bound nanostructures a universal method is presented that allows the immobilization of different types of biomolecules with micrometer resolution. A supporting surface is biotinylated and streptavidin molecules are deposited with an AFM (atomic force microscope) tip at distinct positions. Subsequent incubation with a biotinylated molecule species leads to binding only at these positions. After washing streptavidin is deposited a second time with the same AFM tip and then a second biotinylated molecule species is coupled by incubation. This procedure can be repeated several times. Here we show how to immobilize different types of biomolecules in an arbitrary arrangement whereas most common methods can deposit only one type of molecules. The presented method works on transparent as well as on opaque substrates. The spatial resolution is better than 400 nm and is limited only by the AFM's positional accuracy after repeated z-cycles since all steps are performed in situ without moving the supporting surface. The principle is demonstrated by hybridization to different immobilized DNA oligomers and was validated by fluorescence microscopy. Conclusions The immobilization of different types of biomolecules in high-density microarrays is a challenging task for biotechnology. The method presented here not only allows for the deposition of DNA at submicrometer resolution but also for proteins and other molecules of biological relevance that can be coupled to biotin. PMID

  2. Autopilot for frequency-modulation atomic force microscopy

    SciTech Connect

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  3. A metrological large range atomic force microscope with improved performance

    SciTech Connect

    Dai, Gaoliang; Wolff, Helmut; Pohlenz, Frank; Danzebrink, Hans-Ulrich

    2009-04-15

    A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument, the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z-piezostage. Its topography is detected by a position-stationary AFM head. The sample displacement is measured by three embedded miniature homodyne interferometers in the x, y, and z directions. The AFM head is aligned in such a way that its cantilever tip is positioned on the sample surface at the intersection point of the three interferometer measurement beams for satisfying the Abbe measurement principle. In this paper, further improvements of the Met. LR-AFM are reported. A new AFM head using the beam deflection principle has been developed to reduce the influence of parasitic optical interference phenomena. Furthermore, an off-line Heydemann correction method has been applied to reduce the inherent interferometer nonlinearities to less than 0.3 nm (p-v). Versatile scanning functions, for example, radial scanning or local AFM measurement functions, have been implemented to optimize the measurement process. The measurement software is also improved and allows comfortable operations of the instrument via graphical user interface or script-based command sets. The improved Met. LR-AFM is capable of measuring, for instance, the step height, lateral pitch, line width, nanoroughness, and other geometrical parameters of nanostructures. Calibration results of a one-dimensional grating and a set of film thickness standards are demonstrated, showing the excellent metrological performance of the instrument.

  4. A metrological large range atomic force microscope with improved performance.

    PubMed

    Dai, Gaoliang; Wolff, Helmut; Pohlenz, Frank; Danzebrink, Hans-Ulrich

    2009-04-01

    A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument, the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z-piezostage. Its topography is detected by a position-stationary AFM head. The sample displacement is measured by three embedded miniature homodyne interferometers in the x, y, and z directions. The AFM head is aligned in such a way that its cantilever tip is positioned on the sample surface at the intersection point of the three interferometer measurement beams for satisfying the Abbe measurement principle. In this paper, further improvements of the Met. LR-AFM are reported. A new AFM head using the beam deflection principle has been developed to reduce the influence of parasitic optical interference phenomena. Furthermore, an off-line Heydemann correction method has been applied to reduce the inherent interferometer nonlinearities to less than 0.3 nm (p-v). Versatile scanning functions, for example, radial scanning or local AFM measurement functions, have been implemented to optimize the measurement process. The measurement software is also improved and allows comfortable operations of the instrument via graphical user interface or script-based command sets. The improved Met. LR-AFM is capable of measuring, for instance, the step height, lateral pitch, line width, nanoroughness, and other geometrical parameters of nanostructures. Calibration results of a one-dimensional grating and a set of film thickness standards are demonstrated, showing the excellent metrological performance of the instrument. PMID:19405661

  5. Contact resonances of U-shaped atomic force microscope probes

    NASA Astrophysics Data System (ADS)

    Rezaei, E.; Turner, J. A.

    2016-01-01

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  6. Free vibrations of U-shaped atomic force microscope probes

    NASA Astrophysics Data System (ADS)

    Rezaei, E.; Turner, J. A.

    2014-05-01

    Contact resonance atomic force microscope (AFM) methods have been used to quantify the elastic and viscoelastic properties of a variety of materials such as polymers, ceramics, biological materials, and metals with spatial resolution on the order of tens of nanometers. This approach involves measurement of the resonant frequencies of the AFM probe both for the free case and the case for which the tip is in contact with a sample. Vibration models of the probe and tip-sample contact models are then used to determine the sample properties from the frequency behavior and to create images of the sample properties. This work has been primarily focused on rectangular, single-beam probes for which the vibration models are relatively simple. Recently, U-shaped AFM probes have been developed to allow local heating of samples and the resonances of these probes are much more complex. In this article, a simplified analytical model of these U-shaped probes is described. This three beam model includes two beams clamped at one end and connected with a perpendicular cross beam at the other end. The beams are assumed only to bend in flexure and twist but their coupling allows a wide range of possible dynamic behavior. Results are presented for the first ten modes and the mode shapes are shown to have complex coupling between the flexure and twisting of the beams, particularly for the higher modes. All resonant frequency results are in good agreement with finite element results for the three probe designs and two values of thickness considered (all wavenumbers are within 3.0%). This work is anticipated to allow U-shaped probes to be used eventually for quantitative measurements of sample material properties during heating using a contact resonance approach.

  7. Autopilot for frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  8. Molecular Dynamics Simulation of Atomic Force Microscopy at the Water-Muscovite Interface: Hydration Layer Structure and Force Analysis.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Amano, Ken-Ichi; Murata, Sumihiko; Matsuoka, Toshifumi; Takahashi, Satoru; Nishi, Naoya; Sakka, Tetsuo

    2016-04-19

    With the development of atomic force microscopy (AFM), it is now possible to detect the buried liquid-solid interfacial structure in three dimensions at the atomic scale. One of the model surfaces used for AFM is the muscovite surface because it is atomically flat after cleavage along the basal plane. Although it is considered that force profiles obtained by AFM reflect the interfacial structures (e.g., muscovite surface and water structure), the force profiles are not straightforward because of the lack of a quantitative relationship between the force and the interfacial structure. In the present study, molecular dynamics simulations were performed to investigate the relationship between the muscovite-water interfacial structure and the measured AFM force using a capped carbon nanotube (CNT) AFM tip. We provide divided force profiles, where the force contributions from each water layer at the interface are shown. They reveal that the first hydration layer is dominant in the total force from water even after destruction of the layer. Moreover, the lateral structure of the first hydration layer transcribes the muscovite surface structure. It resembles the experimentally resolved surface structure of muscovite in previous AFM studies. The local density profile of water between the tip and the surface provides further insight into the relationship between the water structure and the detected force structure. The detected force structure reflects the basic features of the atomic structure for the local hydration layers. However, details including the peak-peak distance in the force profile (force-distance curve) differ from those in the density profile (density-distance curve) because of disturbance by the tip. PMID:27018633

  9. Structure and stability of semiconductor tip apexes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pou, P.; Ghasemi, S. A.; Jelinek, P.; Lenosky, T.; Goedecker, S.; Perez, R.

    2009-07-01

    The short range force between the tip and the surface atoms, that is responsible for atomic-scale contrast in atomic force microscopy (AFM), is mainly controlled by the tip apex. Thus, the ability to image, manipulate and chemically identify single atoms in semiconductor surfaces is ultimately determined by the apex structure and its composition. Here we present a detailed and systematic study of the most common structures that can be expected at the apex of the Si tips used in experiments. We tackle the determination of the structure and stability of Si tips with three different approaches: (i) first principles simulations of small tip apexes; (ii) simulated annealing of a Si cluster; and (iii) a minima hopping study of large Si tips. We have probed the tip apexes by making atomic contacts between the tips and then compared force-distance curves with the experimental short range forces obtained with dynamic force spectroscopy. The main conclusion is that although there are multiple stable solutions for the atomically sharp tip apexes, they can be grouped into a few types with characteristic atomic structures and properties. We also show that the structure of the last atomic layers in a tip apex can be both crystalline and amorphous. We corroborate that the atomically sharp tips are thermodynamically stable and that the tip-surface interaction helps to produce the atomic protrusion needed to get atomic resolution.

  10. AtomicJ: An open source software for analysis of force curves

    NASA Astrophysics Data System (ADS)

    Hermanowicz, Paweł; Sarna, Michał; Burda, Kvetoslava; Gabryś, Halina

    2014-06-01

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.

  11. AtomicJ: An open source software for analysis of force curves

    SciTech Connect

    Hermanowicz, Paweł Gabryś, Halina; Sarna, Michał; Burda, Kvetoslava

    2014-06-15

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh.

  12. Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

    PubMed Central

    Telychko, Mykola; Berger, Jan; Majzik, Zsolt; Jelínek, Pavel

    2015-01-01

    Summary We investigated single-layer graphene on SiC(0001) by atomic force and tunneling current microscopy, to separate the topographic and electronic contributions from the overall landscape. The analysis revealed that the roughness evaluated from the atomic force maps is very low, in accord with theoretical simulations. We also observed that characteristic electron scattering effects on graphene edges and defects are not accompanied by any out-of-plane relaxations of carbon atoms. PMID:25977861

  13. Simulation of the observability of atomic defects by atomic force microscopy in contact and non-contact modes

    NASA Astrophysics Data System (ADS)

    Sokolov, I. Yu.; Henderson, G. S.

    2002-03-01

    Atomic force microscopy (AFM) scans of a crystal surface containing an atomic defect were simulated in both contact and non-contact regimes. When scanning in contact mode near a defect, the tip-sample force interaction experiences bifurcation of the lines of constant force. When the load force is small, the bifurcation causes the tip to be "pushed" out of the defect. However, if scan force is higher than some critical value (dependent upon the composition of the tip and sample) the AFM tip becomes "trapped" in the vicinity of defect. The trapped tip remains at the level of the vacancy and consequently crashes into the sample, as the scan continues. This results in either the tip apex being destroyed, or disruption of the crystal lattice around the defect. Both effects result in the "disappearance" of the defect from the scan images. The trap is intrinsic and cannot be avoided. For the case of non-contact mode, the tip position is driven by the scan force gradient rather than the force. Simulations show that for this case the trap does not exist and atomic defects will not be destroyed. This explains why atomic defects are generally not observed when using contact mode AFM, but are observed in non-contact AFM.

  14. Carbon Nanotube Atomic Force Microscopy for Proteomics and Biological Forensics

    SciTech Connect

    Noy, A; De Yoreo, J J; Malkin, A J

    2002-01-01

    The Human Genome Project was focused on mapping the complete genome. Yet, understanding the structure and function of the proteins expressed by the genome is the real end game. But there are approximately 100,000 proteins in the human body and the atomic structure has been determined for less than 1% of them. Given the current rate at which structures are being solved, it will take more than one hundred years to complete this task. The rate-limiting step in protein structure determination is the growth of high-quality single crystals for X-ray diffraction. Synthesis of the protein stock solution as well as X-ray diffraction and analysis can now often be done in a matter of weeks, but developing a recipe for crystallization can take years and, especially in the case of membrane proteins, is often completely unsuccessful. Consequently, techniques that can either help to elucidate the factors controlling macromolecular crystallization, increase the amount of structural information obtained from crystallized macromolecules or eliminate the need for crystallization altogether are of enormous importance. In addition, potential applications for those techniques extend well beyond the challenges of proteomics. The global spread of modern technology has brought with it an increasing threat from biological agents such as viruses. As a result, developing techniques for identifying and understanding the operation of such agents is becoming a major area of forensic research for DOE. Previous to this project, we have shown that we can use in situ atomic force microscopy (AFM) to image the surfaces of growing macromolecular crystals with molecular resolution (1-5) In addition to providing unprecedented information about macromolecular nucleation, growth and defect structure, these results allowed us to obtain low-resolution phase information for a number of macromolecules, providing structural information that was not obtainable from X-ray diffraction(3). For some virus systems

  15. Atomic force microscopy of the erythrocyte membrane skeleton.

    PubMed

    Swihart, A H; Mikrut, J M; Ketterson, J B; Macdonald, R C

    2001-12-01

    The atomic force microscope was used to examine the cytoplasmic surface of untreated as well as fixed human erythrocyte membranes that had been continuously maintained under aqueous solutions. To assess the effects of drying, some membranes were examined in air. Erythrocytes attached to mica or glass were sheared open with a stream of isotonic buffer, which allowed access to the cytoplasmic membrane face without exposing cells to non-physiological ionic strength solutions. Under these conditions of examination, the unfixed cytoplasmic membrane face revealed an irregular meshwork that appeared to be a mixture largely of triangular and rectilinear openings with mesh sizes that varied from 35 to 100 nm, although few were at the upper limit. Fixed ghosts were similar, but slightly more contracted. These features represent the membrane skeleton, as when the ghosts were treated to extract spectrin and actin, these meshworks were largely removed. Direct measurements of the thickness of the membrane skeleton and of the lateral dimensions of features in the images suggested that, especially when air dried, spectrin can cluster into large, quite regularly distributed aggregates. Aggregation of cytoskeletal components was also favoured when the cells were attached to a polylysine-treated substrate. In contrast, the membrane skeletons of cells attached to substrates rendered positively charged by chemical derivatization with a cationic silane were much more resistant to aggregation. As steps were taken to reduce the possibility of change of the skeleton after opening the cells, the aggregates and voids were eliminated, and the observed structures became shorter and thinner. Ghosts treated with Triton X-100 solutions to remove the bilayer revealed a meshwork having aggregated components resembling those seen in air. These findings support the proposition that the end-to-end distance of spectrin tetramers in the cell in the equilibrium state is much shorter than the contour

  16. Surface microstructure of bitumen characterized by atomic force microscopy.

    PubMed

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  17. Local rheology of human neutrophils investigated using atomic force microscopy.

    PubMed

    Lee, Yong J; Patel, Dipika; Park, Soyeun

    2011-01-01

    During the immune response, neutrophils display localized mechanical events by interacting with their environment through the micro-vascular transit, trans-endothelial, and trans-epithelial migration. Nano-mechanical studies of human neutrophils on localized nano-domains could provide the essential information for understanding their immune responsive functions. Using the Atomic Force Microscopy (AFM)-based micro-rheology, we have investigated rheological properties of the adherent human neutrophils on local nano-domains. We have applied the modified Hertz model to obtain the viscoelastic moduli from the relatively thick body regions of the neutrophils. In addition, by using more advanced models to account for the substrate effects, we have successfully characterized the rheological properties of the thin leading and tail regions as well. We found a regional difference in the mechanical compliances of the adherent neutrophils. The central regions of neutrophils were significantly stiffer (1,548 ± 871 Pa) than the regions closer to the leading edge (686 ± 801 Pa), while the leading edge and the tail (494 ± 537 Pa) regions were mechanically indistinguishable. The frequency-dependent elastic and viscous moduli also display a similar regional difference. Over the studied frequency range (100 to 300 Hz), the complex viscoelastic moduli display the partial rubber plateau behavior where the elastic moduli are greater than the viscous moduli for a given frequency. The non-disparaging viscous modulus indicates that the neutrophils display a viscoelastic dynamic behavior rather than a perfect elastic behavior like polymer gels. In addition, we found no regional difference in the structural damping coefficient between the leading edge and the cell body. Thus, we conclude that despite the lower loss and storage moduli, the leading edges of the human neutrophils display partially elastic properties similar to the cell body. These results suggest that the lower elastic moduli

  18. Force modulation atomic force microscopy: background, development and application to electrodeposited cerium oxide films

    NASA Astrophysics Data System (ADS)

    Li, Feng-Bin; Thompson, G. E.; Newman, R. C.

    1998-04-01

    In force modulation atomic force microscopy (FMAFM), vertical oscillation of the scanning tip of the AFM is added purposely and the deflection of the tip, which is influenced by surface features of the sample, is used as the z dimension to construct images. FMAFM represents a powerful technique for scientific research, but its merit has not been realized adequately to date. In this paper, the basic principles and particular features, as well as potential drawbacks of the technique, are presented and demonstrated systematically, through its application to electrochemically deposited cerium oxide films. Comparisons are also made with the more familiar contact mode AFM (CMAFM) and tapping mode AFM (TMAFM). It is shown that FMAFM reveals the major topographic features of CMAFM, but affords (i) greater resolution for sample features that are difficult in CMAFM, and (ii) continuous two-dimensional mapping of local mechanical properties on a scale of nanometres that the CMAFM, TMAFM and any other techniques, are not capable of sensing. This information can be used to elucidate other properties of the investigated surface, such as crystallinity variation, phase separation and distribution, and mechanisms of formation of deposited films. Major artifacts associated with the technique include `wedge cavity effect' and `tip slip effect', for which a geometric model is proposed to elucidate their origins. The cerium oxide films are shown to be composed of relatively hard crystalline grains, of well-defined individual geometry and comparatively regular packing, alongside relatively soft amorphous patches, devoid of distinct geometry and assembled disorderly. These features are consistent with a nucleation and growth mechanism of the deposition, in which crystalline nuclei arise and grow from an intermediate cerium gel mass, produced in the interfacial region during deposition.

  19. Directional spontaneous emission and lateral Casimir-Polder force on an atom close to a nanofiber

    NASA Astrophysics Data System (ADS)

    Scheel, Stefan; Buhmann, Stefan Yoshi; Clausen, Christoph; Schneeweiss, Philipp

    2015-10-01

    We study the spontaneous emission of an excited atom close to an optical nanofiber and the resulting scattering forces. For a suitably chosen orientation of the atomic dipole, the spontaneous emission pattern becomes asymmetric and a resonant Casimir-Polder force parallel to the fiber axis arises. For a simple model case, we show that such a lateral force is due to the interaction of the circularly oscillating atomic dipole moment with its image inside the material. With the Casimir-Polder energy being constant in the lateral direction, the predicted lateral force does not derive from a potential in the usual way. Our results have implications for optical force measurements on a substrate as well as for laser cooling of atoms in nanophotonic traps.

  20. High-sensitivity noncontact atomic force microscope/scanning tunneling microscope (nc AFM/STM) operating at subangstrom oscillation amplitudes for atomic resolution imaging and force spectroscopy

    NASA Astrophysics Data System (ADS)

    Oral, A.; Grimble, R. A.; Özer, H. Ö.; Pethica, J. B.

    2003-08-01

    We describe a new, highly sensitive noncontact atomic force microscope/scanning tunneling microscope (STM) operating in ultrahigh vacuum (UHV) with subangstrom oscillation amplitudes for atomic resolution imaging and force-distance spectroscopy. A novel fiber interferometer with ˜4×10-4 Å/√Hz noise level is employed to detect cantilever displacements. Subangstrom oscillation amplitude is applied to the lever at a frequency well below the resonance and changes in the oscillation amplitude due to tip-sample force interactions are measured with a lock-in amplifier. Quantitative force gradient images can be obtained simultaneously with the STM topography. Employment of subangstrom oscillation amplitudes lets us perform force-distance measurements, which reveal very short-range force interactions, consistent with the theory. Performance of the microscope is demonstrated with quantitative atomic resolution images of Si(111)(7×7) and force-distance curves showing short interaction range, all obtained with <0.25 Å lever oscillation amplitude. Our technique is not limited to UHV only and operation under liquids and air is feasible.

  1. Surface force measurements at kaolinite edge surfaces using atomic force microscopy.

    PubMed

    Liu, Jing; Sandaklie-Nikolova, Linda; Wang, Xuming; Miller, Jan D

    2014-04-15

    Fundamental results obtained from research on the properties of the edge surfaces of kaolinite particles (~500 nm) are reported. Of particular significance was the development of the experimental protocol. Well-ordered kaolinite edge surfaces were prepared as an epoxy resin sandwich structure having layered kaolinite particles in the center of the epoxy resin sandwich. Images of the sectioned kaolinite edge surfaces were examined by atomic force microscopy (AFM), and the average thickness of kaolinite particles in this study was determined to be 38.3 nm±11.7 nm. Furthermore, the surface charge of the kaolinite edge surfaces was evaluated with a super sharp Si tip. The point of zero charge (PZC) of the kaolinite edge surface was determined to be below pH 4, in contrast to the traditional view that the edge surfaces of kaolinite particles may carry a positive charge at pH 4. This lower PZC of the kaolinite edge surface was attributed to the lack of isomorphous substitution in the silica tetrahedral layer when compared to the PZC for the muscovite edge surface. Our results are consistent with the particle aggregation and flotation behavior of kaolinite, and should provide the basis for improved flotation strategies leading to the efficient recovery and utilization of mineral and energy resources. PMID:24559697

  2. Surface roughtness and its influence on particle adhesion using atomic force microscope techniques

    SciTech Connect

    Gady, B.; Schaefer, D.; Reifenberger, R.; Rimai, D.; DeMejo, L.P.

    1996-12-31

    The surface force interactions between individual 8 {mu}m diameter spheres and atomically flat substrates have been systematically investigated using atomic force techniques. The lift-off force of glass, polystyrene and tin particles from atomically smooth mica and highly oriented pyrolytic graphite substrates was determined as a function of the applied loading force in an inert nitrogen environment. While the relative magnitudes of the measured lift-off force was found to scale as expected between the various systems studied, the absolute values were a factor of {approximately}50 smaller than expected from the Johnson, Kendall, and Roberts theory. The surface topography of representative spheres was characterized with atomic force microscopy, allowing a quantitative assessment of the role that surface roughness plays in the adhesion of micrometer-size particles to substrates. Taking into account the radius of curvature of the asperities measured from the atomic force scans, agreement between the measured and theoretical estimates for the lift-off forces was improved, with the corrected experimental forces about a factor of 3 smaller than theoretical expectations.

  3. A homemade atomic force microscope based on a quartz tuning fork for undergraduate instruction

    NASA Astrophysics Data System (ADS)

    Li, Yingzi; Zhang, Liwen; Shan, Guanqiao; Song, Zihang; Yang, Rui; Li, Hua; Qian, Jianqiang

    2016-06-01

    Atomic force microscopes are a key tool in nanotechnology that overcome the limitations of optical microscopes and provide imaging capabilities with nanoscale resolution. We have developed an atomic force microscope that uses an inexpensive quartz tuning fork as a micro cantilever. Because of its ease of operation and its open structure, it can be easily customized by students. Due to its low costs, it is possible that every student in the course has access to one setup, allowing all students to obtain deep insights into nanotechnology and to understand the principles of atomic force microscopy.

  4. Approach and Coalescence of Gold Nanoparticles Driven by Surface Thermodynamic Fluctuations and Atomic Interaction Forces.

    PubMed

    Wang, Jiadao; Chen, Shuai; Cui, Kai; Li, Dangguo; Chen, Darong

    2016-02-23

    The approach and coalescence behavior of gold nanoparticles on a silicon surface were investigated by experiments and molecular dynamics simulations. By analyzing the behavior of the atoms in the nanoparticles in the simulations, it was found that the atoms in a single isolated nanoparticle randomly fluctuated and that the surface atoms showed greater fluctuation. The fluctuation increased as the temperature increased. When there were two or more neighboring nanoparticles, the fluctuating surface atoms of the nanoparticles "flowed" toward the neighboring nanoparticle because of atomic interaction forces between the nanoparticles. With the surface atoms "flowing", the gold nanoparticles approached and finally coalesced. The simulation results were in good agreement with the experimental results. It can be concluded that surface thermodynamic fluctuations and atomic interaction forces are the causes of the approach and coalescence behavior of the gold nanoparticles. PMID:26756675

  5. Seeing the atomic orbital: first-principles study of the effect of tip termination on atomic force microscopy.

    PubMed

    Huang, Minghuang; Cuma, Martin; Liu, Feng

    2003-06-27

    We perform extensive first-principles calculations to simulate the topographical atomic-force-microscope image of an adatom on the Si(111)-(7 x 7) surface, demonstrating the feasibility of imaging not only the atoms but also the atomic orbitals. Our comparative study of tip terminations shows that two subatomic features can appear for a single adatom when it is imaged by a Si(001)-type tip having two dangling bonds on its apex, while only one feature would appear if it were imaged by a Si(111)-type tip having one dangling bond on the apex. The key condition for seeing the atomic orbitals is to bring the tip so close to the surface that the angular-dependent force dominates the tip-surface interaction. PMID:12857147

  6. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    SciTech Connect

    Takahashi, Ryosuke; Okajima, Takaharu

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  7. Atomic force microscopy imaging of viscoelastic properties in toughened polypropylene resins

    NASA Astrophysics Data System (ADS)

    Nysten, Bernard; Legras, Roger; Costa, Jean-Louis

    1995-11-01

    The bulk morphology of two toughened polypropylene/(ethylene propylene)copolymer resins (PP/EP) presenting different impact resistances has been studied by means of different atomic force microscopy techniques: contact atomic force microscopy, lateral force microscopy (LFM), and force modulation microscopy (FMM). The three techniques reveal two different morphologies as observed in transmission electronic microscopy. In LFM, a higher friction force is observed on the rubbery phase which has the lower Young's modulus confirming the relationship between friction force and elastic properties. In force modulation, the elastic moduli is found to be much lower on the EP nodules in both resins. FMM also reveals that the difference of viscous response between the PP matrix and the EP nodules is much lower in the resin which is less impact resistant.

  8. Combined X-ray Microfluorescence and Atomic Force Microscopy Studies of Mg Distribution in Whole Cells

    SciTech Connect

    Lagomarsino, S.; Farruggia, G.; Trapani, V.; Mastrototaro, L.; Wolf, F.; Cedola, A.; Fratini, M.; Notargiacomo, A.; Bukreeva, I.; McNulty, I.; Vogt, S.; Kim, S.; Legnini, D.; Maier, J. A. M.

    2011-09-09

    We present in this paper a novel methodology that combines scanning x-ray fluorescencee microscopy and atomic force microscopy. The combination of these two techniques allows the determination of a concentration map of Mg in whole (not sectioned) cells.

  9. The Effects of Orthophosphate in Drinking Water on the Initial Copper Corrosion Using Atomic Force Microscopy

    EPA Science Inventory

    Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...

  10. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.

    PubMed

    Nalam, Prathima C; Gosvami, Nitya N; Caporizzo, Matthew A; Composto, Russell J; Carpick, Robert W

    2015-11-01

    We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan δ) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force-displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near ∼100 Hz. The softer gels' storage modulus increased from 7.9 ± 0.4 to 14.5 ± 2.1 kPa (∼85%), and the stiffer gels' storage modulus increased from 16.3 ± 1.1 to 31.7 ± 5.0 kPa (∼95%). This increase at high frequencies may be attributed to a contribution from solvent

  11. Graphene-coated atomic force microscope tips for reliable nanoscale electrical characterization.

    PubMed

    Lanza, M; Bayerl, A; Gao, T; Porti, M; Nafria, M; Jing, G Y; Zhang, Y F; Liu, Z F; Duan, H L

    2013-03-13

    Graphene single-layer films are grown by chemical vapor deposition and transferred onto commercially available conductive tips for atomic force microscopy. Graphene-coated tips are much more resistant to both high currents and frictions than commercially available, metal-varnished, conductive atomic force microscopy tips, leading to much larger lifetimes and more reliable imaging due to a lower tip-sample interaction. PMID:23280635

  12. Versatile atomic force microscopy setup combined with micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Slobodskyy, T.; Zozulya, A. V.; Tholapi, R.; Liefeith, L.; Fester, M.; Sprung, M.; Hansen, W.

    2015-06-01

    Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure, and performance of the setup are presented.

  13. Versatile atomic force microscopy setup combined with micro-focused X-ray beam

    SciTech Connect

    Slobodskyy, T. Tholapi, R.; Liefeith, L.; Hansen, W.; Zozulya, A. V. Fester, M.; Sprung, M.

    2015-06-15

    Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure, and performance of the setup are presented.

  14. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing

    PubMed Central

    Vanommeslaeghe, K.; MacKerell, A. D.

    2012-01-01

    Molecular mechanics force fields are widely used in computer-aided drug design for the study of drug-like molecules alone or interacting with biological systems. In simulations involving biological macromolecules, the biological part is typically represented by a specialized biomolecular force field, while the drug is represented by a matching general (organic) force field. In order to apply these general force fields to an arbitrary drug-like molecule, functionality for assignment of atom types, parameters and charges is required. In the present article, which is part I of a series of two, we present the algorithms for bond perception and atom typing for the CHARMM General Force Field (CGenFF). The CGenFF atom typer first associates attributes to the atoms and bonds in a molecule, such as valence, bond order, and ring membership among others. Of note are a number of features that are specifically required for CGenFF. This information is then used by the atom typing routine to assign CGenFF atom types based on a programmable decision tree. This allows for straightforward implementation of CGenFF’s complicated atom typing rules and for equally straightforward updating of the atom typing scheme as the force field grows. The presented atom typer was validated by assigning correct atom types on 477 model compounds including in the training set as well as 126 test-set molecules that were constructed to specifically verify its different components. The program may be utilized via an online implementation at https://www.paramchem.org/. PMID:23146088

  15. Measurements of elastic modulus for human anterior lens capsule with atomic force microscopy: the effect of loading force.

    PubMed

    Tsaousis, Konstantinos T; Karagiannidis, Panagiotis G; Kopsachilis, Nikolaos; Symeonidis, Chrysanthos; Tsinopoulos, Ioannis T; Karagkiozaki, Varvara; Lamprogiannis, Lampros P; Logothetidis, Stergios

    2014-06-01

    The purpose of the study was to appraise the effect of loading force magnitude on the determination of the elastic modulus of the anterior lens capsule through atomic force microscopy. Four human anterior lens capsules taken during phacoemulsification cataract surgery were studied, free of epithelial cells, with atomic force microscopy. For the experiment, five different indentation loading forces were applied to near areas of the specimen. Experimental data was exported and analyzed according to the Hertz model to obtain the Young's modulus with regards to the elastic behavior of the material. Force-distance curves were acquired by applying a load of 2, 5, 10, 20 and 30 nN. When examining the results it was evident that determination of Young's modulus of the anterior lens capsule is dependent on the loading force concerning the examined range. Loading forces of 10 and 20 nN led to results without significant difference (p > 0.05) and more reproducible (coefficients of variation 12.4 and 11.7 %, respectively). PMID:24037592

  16. The Analog Atomic Force Microscope: Measuring, Modeling, and Graphing for Middle School

    ERIC Educational Resources Information Center

    Goss, Valerie; Brandt, Sharon; Lieberman, Marya

    2013-01-01

    using an analog atomic force microscope (A-AFM) made from a cardboard box and mailing tubes. Varying numbers of ping pong balls inside the tubes mimic atoms on a surface. Students use a dowel to make macroscale measurements similar to those of a nanoscale AFM tip as it…

  17. Noncontact atomic force and Kelvin probe force microscopy on MgO(100) and MgO(100)-supported Ba

    NASA Astrophysics Data System (ADS)

    Pang, Chi Lun; Sasahara, Akira; Onishi, Hiroshi

    2016-08-01

    Atomically-flat MgO(100) surfaces were prepared by sputtering and annealing. Noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM) were used to characterize the MgO(100) surfaces. The NC-AFM images revealed the presence of point defects on an atomically-resolved surface. The surface potential at these point defects, as well as features such as step edges and deposited Ba nanoparticles were mapped using KPFM. The Kelvin images show that the surface potential increases at the point defects and at the step edges. On the other hand, a decrease in the potential was found over Ba nanoparticles which can be explained by electron charge transfer from the Ba to the MgO.

  18. Torque and atomic forces for Cartesian tensor atomic multipoles with an application to crystal unit cell optimization.

    PubMed

    Elking, Dennis M

    2016-08-15

    New equations for torque and atomic force are derived for use in flexible molecule force fields with atomic multipoles. The expressions are based on Cartesian tensors with arbitrary multipole rank. The standard method for rotating Cartesian tensor multipoles and calculating torque is to first represent the tensor with n indexes and 3(n) redundant components. In this work, new expressions for directly rotating the unique (n + 1)(n + 2)/2 Cartesian tensor multipole components Θpqr are given by introducing Cartesian tensor rotation matrix elements X(R). A polynomial expression and a recursion relation for X(R) are derived. For comparison, the analogous rotation matrix for spherical tensor multipoles are the Wigner functions D(R). The expressions for X(R) are used to derive simple equations for torque and atomic force. The torque and atomic force equations are applied to the geometry optimization of small molecule crystal unit cells. In addition, a discussion of computational efficiency as a function of increasing multipole rank is given for Cartesian tensors. © 2016 Wiley Periodicals, Inc. PMID:27349179

  19. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy.

    PubMed

    Black, Jennifer M; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R; Guo, Daqiang; Okatan, M Baris; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  20. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy

    PubMed Central

    Black, Jennifer M.; Zhu, Mengyang; Zhang, Pengfei; Unocic, Raymond R.; Guo, Daqiang; Okatan, M. Baris; Dai, Sheng; Cummings, Peter T.; Kalinin, Sergei V.; Feng, Guang; Balke, Nina

    2016-01-01

    Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. PMID:27587276

  1. Dynamical Casimir–Polder force on a partially dressed atom in a cavity comprising a dielectric

    SciTech Connect

    Yang, H.; Zheng, T.Y. Zhang, X.; Shao, X.Q.; Pan, S.M.

    2014-05-15

    We put a two-level atom into a cavity comprising a dielectric with output coupling. An analytical expression of the dynamical Casimir–Polder force in such a system is obtained when the system starts from a partially dressed state. And the effects of several relevant parameters of the system on the time-dependent force are also discussed. -- Highlights: •We get the dynamical CP force on a partially dressed atom in a dielectric cavity. •The force in this cavity is larger than that in infinite dielectric space. •The force is not symmetric with respect to the center of the cavity. •The oscillating time of the force increases with the cavity size.

  2. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy†

    PubMed Central

    Nalam, Prathima C.; Gosvami, Nitya N.; Caporizzo, Matthew A.; Composto, Russell J.

    2016-01-01

    We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan δ) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force–displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near ∼100 Hz. The softer gels' storage modulus increased from 7.9 ± 0.4 to 14.5 ± 2.1 kPa (∼85%), and the stiffer gels' storage modulus increased from 16.3 ± 1.1 to 31.7 ± 5.0 kPa (∼95%). This increase at high frequencies may be attributed to a contribution from solvent

  3. New Asymptotic Behavior of the Surface-Atom Force out of Thermal Equilibrium

    SciTech Connect

    Antezza, Mauro; Pitaevskii, Lev P.; Stringari, Sandro

    2005-09-09

    The Casimir-Polder-Lifshitz force felt by an atom near the surface of a substrate is calculated out of thermal equilibrium in terms of the dielectric function of the material and of the atomic polarizability. The new force decays like 1/z{sup 3} at large distances (i.e., slower than at equilibrium), exhibits a sizable temperature dependence, and is attractive or repulsive depending on whether the temperature of the substrate is higher or smaller than the one of the environment. Our predictions can be relevant for experiments with ultracold atomic gases. Both dielectric and metal substrates are considered.

  4. Terabit-per-square-inch data storage with the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Cooper, E. B.; Manalis, S. R.; Fang, H.; Dai, H.; Matsumoto, K.; Minne, S. C.; Hunt, T.; Quate, C. F.

    1999-11-01

    An areal density of 1.6 Tbits/in.2 has been achieved by anodically oxidizing titanium with the atomic force microscope (AFM). This density was made possible by (1) single-wall carbon nanotubes selectively grown on an AFM cantilever, (2) atomically flat titanium surfaces on α-Al2O3 (1012), and (3) atomic scale force and position control with the tapping-mode AFM. By combining these elements, 8 nm bits on 20 nm pitch are written at a rate of 5 kbit/s at room temperature in air.

  5. Simultaneous current-, force-, and work-function measurement with atomic resolution

    NASA Astrophysics Data System (ADS)

    Herz, M.; Schiller, Ch.; Giessibl, F. J.; Mannhart, J.

    2005-04-01

    The local work function of a surface determines the spatial decay of the charge density at the Fermi level normal to the surface. Here, we present a method that enables simultaneous measurements of local work-function and tip-sample forces. A combined dynamic scanning tunneling microscope and atomic force microscope is used to measure the tunneling current between an oscillating tip and the sample in real time as a function of the cantilever's deflection. Atomically resolved work-function measurements on a silicon (111)-(7×7) surface are presented and related to concurrently recorded tunneling current and force measurements.

  6. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    PubMed

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model. PMID:27420398

  7. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever

    NASA Astrophysics Data System (ADS)

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M.

    2016-09-01

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.

  8. Atomic force microscopy, lateral force microscopy, and transmission electron microscopy investigations and adhesion force measurements for elucidation of tungsten removal mechanisms

    SciTech Connect

    Stein, D.J.; Cecchi, J.L.; Hetherington, D.L.

    1999-09-01

    We investigated various interactions between alumina and tungsten films that occur during chemical mechanical polishing (CMP). Atomic force microscopy surface topography measurements of post-CMP tungsten indicate that the roughness of the tungsten is independent of polish pressure and rotation rate. Pure mechanical abrasion is therefore an unlikely mechanism of material removal during CMP. Transmission electron microscopy images corroborate these results. The adhesion force between alumina and tungsten was measured in solution. The adhesive force increased with KIO{sub 3} concentration. Friction forces were measured in solution using lateral force microscopy. The friction force in buffered solutions was independent of KIO{sub 3} concentration. These results indicate that interactions other than purely mechanical interactions exist during CMP. {copyright} {ital 1999 Materials Research Society.}

  9. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  10. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  11. Comparative Surface Studies at Atomic Resolution with Ultrahigh Vacuum Variable-Temperature Atomic Force and Scanning Tunneling Microscopes.

    PubMed

    Iwatsuki; Suzuki; Kitamura; Kersker

    1999-05-01

    : With the ultrahigh vacuum variable-temperature scanning tunneling microscope (UHV-VT-STM), atomic-level observation has been achieved. An ultrahigh vacuum atomic force microscope (UHV-AFM) has also been developed, with success in obtaining atom images where observation in noncontact (NC) mode with a frequency modulation (FM) detection method was attempted. Using the FM detection method in the constant oscillation amplitude of the cantilever excitation mode, we have obtained atomic-resolution images of Si(111) 7 x 7 structures and Si(100) 2 x 1 structures and other structures together with STM images in an ultrahigh vacuum environment. Also shown here are contact potential difference (CPD) images using the NC-AFM method. PMID:10383993

  12. Comparative Surface Studies at Atomic Resolution with Ultrahigh Vacuum Variable-Temperature Atomic Force and Scanning Tunneling Microscopes

    NASA Astrophysics Data System (ADS)

    Iwatsuki, Masashi; Suzuki, Kazuyuki; Kitamura, Shin-Ich; Kersker, Mike

    1999-05-01

    With the ultrahigh vacuum variable-temperature scanning tunneling microscope (UHV-VT-STM), atomic-level observation has been achieved. An ultrahigh vacuum atomic force microscope (UHV-AFM) has also been developed, with success in obtaining atom images where observation in noncontact (NC) mode with a frequency modulation (FM) detection method was attempted. Using the FM detection method in the constant oscillation amplitude of the cantilever excitation mode, we have obtained atomic-resolution images of Si(111) 7 × 7 structures and Si(100) 2 × 1 structures and other structures together with STM images in an ultrahigh vacuum environment. Also shown here are contact potential difference (CPD) images using the NC-AFM method.

  13. Stochastic adhesion of hydroxylated atomic force microscopy tips to supported lipid bilayers.

    PubMed

    Apetrei, Aurelia; Sirghi, Lucel

    2013-12-31

    This work reports results of an atomic force microscopy (AFM) study of adhesion force between hydroxylated AFM tips and supported lipid bilayers (SLBs) of phosphatidylcholine in phosphate buffer saline solution at neutral pH. Silicon nitride AFM probes were hydroxylated by treatment in water vapor plasma and used in force spectroscopy measurements of adhesion force on SLBs with control of contact loading force and residence time. The measurements showed a stochastic behavior of adhesion force that was attributed to stochastic formation of hydrogen bonds between the hydroxyl groups on the AFM tip and oxygen atoms from the phosphate groups of the phosphatidylcholine molecules. Analysis of a large number of force curves revealed a very low probability of hydrogen bond formation, a probability that increased with the increase of contact loading force and residence time. The variance and mean values of adhesion force showed a linear dependence on each other, which indicated that hydrogen bond formation obeyed the Poisson distribution of probability. This allowed for the quantitative determination of the rupture force per hydrogen bond of about 40 pN and showed the absence of other nonspecific interaction forces. PMID:24320829

  14. Probing effective slippage on superhydrophobic stripes by atomic force microscopy.

    PubMed

    Nizkaya, Tatiana V; Dubov, Alexander L; Mourran, Ahmed; Vinogradova, Olga I

    2016-08-17

    While the effective slippage of water past superhydrophobic surfaces has been studied over a decade, theoretical predictions have never been properly confirmed by experiments. Here we measure a drag force on a sphere approaching a plane decorated by superhydrophobic grooves and compare the results with the predictions of semi-analytical theory developed here, which employs the gas cushion model to calculate the local slip length at the gas sectors. We demonstrate that at intermediate and large (compared to a texture period) separations the half-sum of longitudinal and transverse effective slip lengths can be deduced from the force-distance curve by using the known analytical theory of hydrodynamic interaction of a sphere with a homogeneous slipping plane. This half-sum is shown to depend on the fraction of gas sectors and its value is in excellent agreement with theoretical predictions. At small distances the half-sum of effective longitudinal and transverse slip lengths becomes separation-dependent, and is in quantitative agreement with the predictions of our semi-analytical theory. PMID:27476481

  15. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2016-04-01

    Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces.Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all

  16. Cold-Atom Physics Using Ultrathin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    SciTech Connect

    Sague, G.; Vetsch, E.; Alt, W.; Meschede, D.; Rauschenbeutel, A.

    2007-10-19

    The strong evanescent field around ultrathin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold-atom cloud, we investigate the interaction of a small number of cold cesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.

  17. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

    PubMed Central

    Wagner, Tino

    2016-01-01

    Summary Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions. PMID:27335735

  18. Scanning-tunneling and atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    (STM and AFM) are allowing for in situ (in air and under water) imaging of mineral surfaces at previously unattainable nanometer to atomic scales. The four images, which represent a range of STM/AFM applications, were all taken on [001] surfaces of hematite. Counterclockwise from bottom left, these micrographs are described as follows: (1) An STM image of oxygen sites on terraces separated by steps—imaged under oil at -300-mV sample bias. The difference in tunneling current between terrace (blue) and step-edge (pink) sites can be related to differences in local electronic structure that may affect the reactivity of the different sites Terraces step downward toward the lower left. A kink site is apparent along one step. (2) An AFM image in air showing the molecular-scale structure of the hematite surface.

  19. Simultaneous non-contact atomic force microscopy (nc-AFM)/STM imaging and force spectroscopy of Si(1 0 0)(2×1) with small oscillation amplitudes

    NASA Astrophysics Data System (ADS)

    Özer, H. Özgür; Atabak, Mehrdad; Ellialtıoğlu, Recai M.; Oral, Ahmet

    2002-03-01

    Si(1 0 0)(2×1) surface is imaged using a new non-contact atomic force microscopy (nc-AFM)/STM with sub-Ångström oscillation amplitudes using stiff tungsten levers. Simultaneous force gradient and STM images of individual dimers and atomic scale defects are obtained. We measured force-distance ( f- d) curves with different tips. Some of the tips show long force interactions, whereas some others resolve short-range interatomic force interactions. We observed that the tips showing short-range force interaction give atomic resolution in force gradient scans. This result suggests that short-range force interactions are responsible for atomic resolution in nc-AFM.

  20. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Hong, Xia; Liu, Yanmei; Li, Jun; Guo, Wei; Bai, Yubai

    2009-09-01

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  1. Analysis of Atomic Force Curve Data for Mapping of Surface Properties in Water

    NASA Astrophysics Data System (ADS)

    Sirghi, Lucel; Nakagiri, Nobuyuki; Sugimura, Hiroyuki; Takai, Osamu

    2001-03-01

    This paper presents an analysis of atomic force versus distance curves for a silicon nitride probe and a silicon sample immersed in water. A custom-built atomic force microscope (AFM) was adapted for working in water by building a water cell from a liquid drop caught between a glass lamella fixed on the top of the cantilever base and the sample surface. An algorithm for processing of force curve data for long- and short-range forces is described. The force curve data taken for a sample consisting of a silicon wafer Si(111) patterned with V-shaped grooves and a silicon nitride cantilever in water were digitally acquired and automatically processed for mapping of surface properties. A weak repulsive double layer force with no relevant dependence on sample topography was observed on the force curves taken during approach movement of the cantilever. On the other hand, the attractive hydration force showed a strong dependence on the sample topography. Large hydration force values were noticed on the inclined faces of the V-shaped grooves while small hydration force values were noticed outside the grooves. The result was explained by the dependence of the tip curvature radius at the contact region on the tilt of the sample surface.

  2. Elastic properties of epithelial cells probed by atomic force microscopy.

    PubMed

    Brückner, Bastian R; Janshoff, Andreas

    2015-11-01

    Cellular mechanics plays a crucial role in many biological processes such as cell migration, cell growth, embryogenesis, and oncogenesis. Epithelia respond to environmental cues comprising biochemical and physical stimuli through defined changes in cell elasticity. For instance, cells can differentiate between certain properties such as viscoelasticity or topography of substrates by adapting their own elasticity and shape. A living cell is a complex viscoelastic body that not only exhibits a shell architecture composed of a membrane attached to a cytoskeleton cortex but also generates contractile forces through its actomyosin network. Here we review cellular mechanics of single cells in the context of epithelial cell layers responding to chemical and physical stimuli. This article is part of a Special Issue entitled: Mechanobiology. PMID:26193077

  3. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    PubMed

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  4. Exploring the tip-sample interaction regimes in the presence of hysteretic forces in the tapping mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Eghbal, M. M.; Ebrahimi, N.

    2011-07-01

    In this article, the tip-sample interaction regimes in the presence of hysteretic forces are investigated using atomic force microscopy in the tapping mode. For this purpose, two samples that cause the formation of hysteretic forces, namely, silicon (stiff sample) with an adsorbed water film and polyethylene (compliant sample), are used. Also, for deriving the equation of motion of the microcantilever, the continuous beam model is used, and for determining the contact forces, depending on the sample under investigation, the Derjaguin-Muller-Toporov and Johnson-Kendall-Roberts contact mechanics models are used. The results indicate that the hysteretic interaction forces generate high-periodic and irregular responses at certain tip-sample separation distances. In fact, at these distances, a family of steady-state attractors is found that can be observed in one branch on the minimum tip-sample separation curves and in two separate branches on the average force curves. The reason for this occurrence might be the alternate formation of a liquid column between the probe tip and the sample (in the presence of ambient moisture), and for the compliant sample, the reason might be the alternate formation of an adhesion neck. In this article, the role of hysteretic forces in producing the hysteresis of the amplitude-separation curves is also explored.

  5. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy

    SciTech Connect

    Chung, Koo-Hyun; Shaw, Gordon A.; Pratt, Jon R.

    2009-06-15

    The absolute force sensitivities of colloidal probes comprised of atomic force microscope, or AFM, cantilevers with microspheres attached to their distal ends are measured. The force sensitivities are calibrated through reference to accurate electrostatic forces, the realizations of which are described in detail. Furthermore, the absolute accuracy of a common AFM force calibration scheme, known as the thermal noise method, is evaluated. It is demonstrated that the thermal noise method can be applied with great success to colloidal probe calibration in air and in liquid to yield force measurements with relative standard uncertainties below 5%. Techniques to combine the electrostatics-based determination of the AFM force sensitivity with measurements of the colloidal probe's thermal noise spectrum to compute noncontact estimates of the displacement sensitivity and spring constant are also developed.

  6. Minitips in Frequency-Modulation Atomic Force Microscopy at Liquid–Solid Interfaces

    NASA Astrophysics Data System (ADS)

    Hiasa, Takumi; Kimura, Kenjiro; Onishi, Hiroshi

    2012-02-01

    A frequency-modulation atomic force microscope was operated in liquid using sharpened and cone-shaped tips. The topography of mica and alkanethiol monolayers was obtained with subnanometer resolution, regardless of nominal tip radius, which was either 10 or 250 nm. Force–distance curves determined over a hexadecane–thiol interface showed force modulations caused by liquid layers structured at the interface. The amplitude of force modulation and the layer-to-layer distance were completely insensitive to the nominal tip radius. These results are evidence that minitips smaller than the nominal radius are present on the tip body and function as a force probe.

  7. Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, F.; Repp, J.; Fleischmann, M.; Scheer, M.; Ondráček, M.; Jelínek, P.

    2015-08-01

    Kelvin probe force spectroscopy was used to characterize the charge distribution of individual molecules with polar bonds. Whereas this technique represents the charge distribution with moderate resolution for large tip-molecule separations, it fails for short distances. Here, we introduce a novel local force spectroscopy technique which allows one to better disentangle electrostatic from other contributions in the force signal. It enables one to obtain charge-related maps at even closer tip-sample distances, where the lateral resolution is further enhanced. This enhanced resolution allows one to resolve contrast variations along individual polar bonds.

  8. Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy.

    PubMed

    Albrecht, F; Repp, J; Fleischmann, M; Scheer, M; Ondráček, M; Jelínek, P

    2015-08-14

    Kelvin probe force spectroscopy was used to characterize the charge distribution of individual molecules with polar bonds. Whereas this technique represents the charge distribution with moderate resolution for large tip-molecule separations, it fails for short distances. Here, we introduce a novel local force spectroscopy technique which allows one to better disentangle electrostatic from other contributions in the force signal. It enables one to obtain charge-related maps at even closer tip-sample distances, where the lateral resolution is further enhanced. This enhanced resolution allows one to resolve contrast variations along individual polar bonds. PMID:26317733

  9. From Atoms to Animals: The Vital Force in Biology

    SciTech Connect

    Kornberg, Roger

    2008-02-26

    Perhaps the most significant event in intellectual history has occurred over the past several decades, a convergence of the sciences, a blurring of the distinctions between disciplines, from physics to chemistry to biology. Fundamental questions about human existence have been answered in chemical terms. What brings matter to life? What are our origins? What is the basis of cognitive activity? These and related questions have been a fertile area for philosophy and nonscientific analysis. The long history of such alternative approaches persists to this day. Life chemistry is explained by protein catalysts, in their simplest form known as enzymes, and in their full complexity, referred to as molecular machines. An example of great significance is the so-called transcription machinery, which reads out the genetic code, to direct the formation and function of all living things. The atomic structure of the transcription machinery was determined at Stanford, with the use of intense X-ray beams and facilities at the Stanford Synchrotron Radiation Laboratory at SLAC. The result is an image of this complex machinery in action, bringing genetic information to life.

  10. Atomic force microscopy on phase-control pulsed force mode in water: Imaging and force analysis on a rhodium-octaethylporphyrin layer on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Maeda, Yasushi; Yamazaki, Shin-ichi; Kohyama, Masanori

    2014-06-01

    We developed phase-control pulsed force mode (p-PFM) as the operation mode for atomic force microscopy (AFM). The p-PFM allowed us to observe soft or weakly adsorbed materials in a liquid environment using a conventional AFM apparatus, and allowed for force curve mapping (FCM) after offline data processing. We applied the p-PFM to a rhodium-octaethylporphyrin (RhOEP) layer on highly oriented pyrolytic graphite (HOPG), which is applicable to anode catalysts of fuel cells. The RhOEP/HOPG system was stably observed in water by this mode. In the p-PFM image, we found both large and small protrusions, which were not observed in the dynamic force mode, in air. The detailed force analysis suggested that these protrusions are nanobubbles located on the HOPG substrate exposed in holes or pits of the RhOEP layer.

  11. From Casimir-Polder Force to Dicke Physics: Interaction between Atoms and a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Fuchs, Sebastian; Buhmann, Stefan

    We apply the theory of macroscopic quantum electrodynamics in dispersing and absorbing media to study the Casimir-Polder force between an atom and a topological insulator. The electromagnetic response of a topological insulator surface leads to a mixing of electric and magnetic fields, breaking the time-reversal symmetry. The coupling of these fields to an atom causes shifts of the atom's eigenenergies and modified decay rates near the surface of the topological insulator. Energy shifts and modified decay rates cannot only be triggered by the presence of a material, but can be caused by other atoms in close proximity as well. The collective dynamics of atoms (Dicke Physics) leads to a superradiant burst. Combining macroscopic QED and Dicke physics opens the door to the investigation of cooperative atom-surface interactions.

  12. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    SciTech Connect

    Allison, David P; Sullivan, Claretta; Mortensen, Ninell P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved mica surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.

  13. Atomic structure and surface defects at mineral-water interfaces probed by in situ atomic force microscopy.

    PubMed

    Siretanu, Igor; van den Ende, Dirk; Mugele, Frieder

    2016-04-21

    Atomic scale details of surface structure play a crucial role for solid-liquid interfaces. While macroscopic characterization techniques provide averaged information about bulk and interfaces, high resolution real space imaging reveals unique insights into the role of defects that are believed to dominate many aspects of surface chemistry and physics. Here, we use high resolution dynamic Atomic Force Microscopy (AFM) to visualize and characterize in ambient water the morphology and atomic scale structure of a variety of nanoparticles of common clay minerals adsorbed to flat solid surfaces. Atomically resolved images of the (001) basal planes are obtained on all materials investigated, namely gibbsite, kaolinite, illite, and Na-montmorillonite of both natural and synthetic origin. Next to regions of perfect crystallinity, we routinely observe extended regions of various types of defects on the surfaces, including vacancies of one or few atoms, vacancy islands, atomic steps, apparently disordered regions, as well as strongly adsorbed seemingly organic and inorganic species. While their exact nature is frequently difficult to identify, our observations clearly highlight the ubiquity of such defects and their relevance for the overall physical and chemical properties of clay nanoparticle-water interfaces. PMID:27030282

  14. CHARMM General Force Field (CGenFF): A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields

    PubMed Central

    Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; MacKerell, A. D.

    2010-01-01

    The widely used CHARMM additive all-atom force field includes parameters for proteins, nucleic acids, lipids and carbohydrates. In the present paper an extension of the CHARMM force field to drug-like molecules is presented. The resulting CHARMM General Force Field (CGenFF) covers a wide range of chemical groups present in biomolecules and drug-like molecules, including a large number of heterocyclic scaffolds. The parametrization philosophy behind the force field focuses on quality at the expense of transferability, with the implementation concentrating on an extensible force field. Statistics related to the quality of the parametrization with a focus on experimental validation are presented. Additionally, the parametrization procedure, described fully in the present paper in the context of the model systems, pyrrolidine, and 3-phenoxymethylpyrrolidine will allow users to readily extend the force field to chemical groups that are not explicitly covered in the force field as well as add functional groups to and link together molecules already available in the force field. CGenFF thus makes it possible to perform “all-CHARMM” simulations on drug-target interactions thereby extending the utility of CHARMM force fields to medicinally relevant systems. PMID:19575467

  15. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  16. Measurement of the force on microparticles in a beam of energetic ions and neutral atoms

    SciTech Connect

    Trottenberg, Thomas; Schneider, Viktor; Kersten, Holger

    2010-10-15

    The force on microparticles in an energetic ion beam is investigated experimentally. Hollow glass microspheres are injected into the vertically upward directed beam and their trajectories are recorded with a charge-coupled device camera. The net force on the particles is determined by means of the measured vertical acceleration. The resulting beam pressures are compared with Faraday cup measurements of the ion current density and calorimetric measurements of the beam power density. Due to the neutral gas background, the beam consists, besides the ions, of energetic neutral atoms produced by charge-exchange collisions. It is found that the measured composition of the drag force by an ion and a neutral atom component agrees with a beam model that takes charge-exchange collisions into account. Special attention is paid to the momentum contribution from sputtered atoms, which is shown to be negligible in this experiment, but should become measurable in case of materials with high sputtering yields.

  17. A simple model of molecular imaging with noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Moll, Nikolaj; Gross, Leo; Mohn, Fabian; Curioni, Alessandro; Meyer, Gerhard

    2012-08-01

    Using functionalized tips, the atomic resolution of a single organic molecule can be achieved by noncontact atomic force microscopy (nc-AFM) operating in the regime of short-ranged repulsive Pauli forces. To theoretically describe the atomic contrast in such AFM images, we propose a simple model in which the Pauli repulsion is assumed to follow a power law as a function of the probed charge density. As the exponent in this power law is found to be largely independent of the sample molecule, our model provides a general method for simulating atomically resolved AFM images of organic molecules. For a single perylene-tetracarboxylic-dianhydride (PTCDA) molecule imaged with a CO-terminated tip, we find excellent agreement with the experimental data. Our model eliminates the need to take into account the full tip and sample system and therefore reduces computational cost by three orders of magnitude.

  18. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    PubMed Central

    van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Summary Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  19. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Hoof, Sebastian; Nand Gosvami, Nitya; Hoogenboom, Bart W.

    2012-12-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here, we show that a high-quality resonance (Q >20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity—as expressed via the minimum detectable force gradient—is hardly affected, because of the enhanced quality factor. Through the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up that includes magnetic actuation of the cantilevers and that can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  20. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    SciTech Connect

    Lomboy, Gilson; Sundararajan, Sriram; Wang Kejin; Subramaniam, Shankar

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materials obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.

  1. Measuring anisotropic friction on WTe2 using atomic force microscopy in the force-distance and friction modes.

    PubMed

    Watson, Gregory S; Myhra, Sverre; Watson, Jolanta A

    2010-04-01

    Layered materials which can be easily cleaved have proved to be excellent samples for the study of atomic scale friction. The layered transition metal dichalcogenides have been particularly popular. These materials exhibit a number of interesting properties ranging from superconductivity to low frictional coefficients. In this paper we have investigated the tribology of the dichalcogenide-WTe2. The coefficient of friction is less than 0.040 along the Te rows and increases to over 0.045 across the rows. The frictional forces almost doubled at normal loads of 5000 nN when scanning in the [010] direction in comparison to the [100] direction. The frictional responses of the AFM probe have been monitored in the frictional force and force-versus-distance (f-d) mode. A comparison between the outcomes using the two different modes demonstrates the factors which need to be considered for accurate measurements. PMID:20355449

  2. Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film

    NASA Astrophysics Data System (ADS)

    Graak, Pinki; Devi, Ranjna; Kumar, Dinesh; Singh, Vishal; Kumar, Sacheen

    2016-05-01

    Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.

  3. Frequency Modulation Atomic Force Microscopy in Ionic Liquid Using Quartz Tuning Fork Sensors

    NASA Astrophysics Data System (ADS)

    Ichii, Takashi; Fujimura, Motohiko; Negami, Masahiro; Murase, Kuniaki; Sugimura, Hiroyuki

    2012-08-01

    Frequency modulation atomic force microscopy (FM-AFM) imaging in ionic liquids (ILs) were carried out. A quartz tuning fork sensor with a sharpened tungsten tip was used as a force sensor instead of a Si cantilever. Only the tip apex was immersed in ILs and the quality factor of the sensors was kept more than 100 in spite of the high viscosity of ILs. Atomic-resolution topographic imaging was successfully achieved in an IL as well as in an aqueous solution. In addition, frequency shift versus tip-to-sample distance curves were obtained and the structures of local solvation layers were studied.

  4. High precision deflection measurement of microcantilever in an optical pickup head based atomic force microscopy

    SciTech Connect

    Lee, Sang Heon

    2012-11-15

    This paper presents the methodology to measure the precise deflection of microcantilever in an optical pickup head based atomic force microscopy. In this paper, three types of calibration methods have been proposed: full linearization, sectioned linearization, and the method based on astigmatism. In addition, the probe heads for easy calibration of optical pickup head and fast replacement of optical pickup head have been developed. The performances of each method have been compared through a set of experiments and constant height mode operation which was not possible in the optical pickup head based atomic force microscopy has been carried out successfully.

  5. Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography

    NASA Astrophysics Data System (ADS)

    Puddy, R. K.; Chua, C. J.; Buitelaar, M. R.

    2013-10-01

    We report low-temperature transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. The excellent spatial resolution of the atomic force microscope allows us to reliably fabricate quantum dots with short constrictions of less than 15 nm in length. Transport measurements demonstrate that the device is dominated by a single quantum dot over a wide gate range. The electron spin system of the quantum dot is investigated by applying an in-plane magnetic field. The results are consistent with a Landé g-factor ˜2 but no regular spin filling sequence is observed, most likely due to disorder.

  6. Atomic force microscopy as a tool to evaluate the risk of cardiovascular diseases in patients

    NASA Astrophysics Data System (ADS)

    Guedes, Ana Filipa; Carvalho, Filomena A.; Malho, Inês; Lousada, Nuno; Sargento, Luís; Santos, Nuno C.

    2016-08-01

    The availability of biomarkers to evaluate the risk of cardiovascular diseases is limited. High fibrinogen levels have been identified as a relevant cardiovascular risk factor, but the biological mechanisms remain unclear. Increased aggregation of erythrocytes (red blood cells) has been linked to high plasma fibrinogen concentration. Here, we show, using atomic force microscopy, that the interaction between fibrinogen and erythrocytes is modified in chronic heart failure patients. Ischaemic patients showed increased fibrinogen–erythrocyte binding forces compared with non-ischaemic patients. Cell stiffness in both patient groups was also altered. A 12-month follow-up shows that patients with higher fibrinogen–erythrocyte binding forces initially were subsequently hospitalized more frequently. Our results show that atomic force microscopy can be a promising tool to identify patients with increased risk for cardiovascular diseases.

  7. Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111)

    NASA Astrophysics Data System (ADS)

    Pérez, Rubén; Štich, Ivan; Payne, Michael C.; Terakura, Kiyoyuki

    1998-10-01

    Total-energy pseudopotential calculations are used to study the imaging process in noncontact atomic-force microscopy on Si(111) surfaces. At the distance of closest approach between the tip and the surface, there is an onset of covalent chemical bonding between the dangling bonds of the tip and the surface. Displacement curves and lateral scans on the surface show that this interaction energy and force are comparable to the macroscopic Van der Waals interaction. However, the covalent interaction completely dominates the force gradients probed in the experiments. Hence, this covalent interaction is responsible for the atomic resolution obtained on reactive surfaces and it should play a role in improving the resolution in other systems. Our results provide a clear understanding of a number of issues such as (i) the experimental difficulty in achieving stable operation, (ii) the quality of the images obtained in different experiments and the role of tip preparations and (iii) recently observed discontinuities in the force gradient curves.

  8. Understanding 2D atomic resolution imaging of the calcite surface in water by frequency modulation atomic force microscopy.

    PubMed

    Tracey, John; Miyazawa, Keisuke; Spijker, Peter; Miyata, Kazuki; Reischl, Bernhard; Canova, Filippo Federici; Rohl, Andrew L; Fukuma, Takeshi; Foster, Adam S

    2016-10-14

    Frequency modulation atomic force microscopy (FM-AFM) experiments were performed on the calcite (10[Formula: see text]4) surface in pure water, and a detailed analysis was made of the 2D images at a variety of frequency setpoints. We observed eight different contrast patterns that reproducibly appeared in different experiments and with different measurement parameters. We then performed systematic free energy calculations of the same system using atomistic molecular dynamics to obtain an effective force field for the tip-surface interaction. By using this force field in a virtual AFM simulation we found that each experimental contrast could be reproduced in our simulations by changing the setpoint, regardless of the experimental parameters. This approach offers a generic method for understanding the wide variety of contrast patterns seen on the calcite surface in water, and is generally applicable to AFM imaging in liquids. PMID:27609045

  9. Theoretical and experimental investigation of force imaging at the atomic scale on alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Shluger, A. L.; Wilson, R. Mark; Williams, R. T.

    1994-02-01

    Assuming a model tip (Si4O10H10) as a reasonable representation of the surface of a Si3N4 cantilever stylus having a hydrogen-terminated asperity and a broader load-bearing base, we investigate the interaction of an atomic force microscope (AFM) with an alkali halide crystal by quantum chemical methods. Structural relaxation of the sample during engagement is allowed, and defect formation is investigated. Force curves above cation and anion positions are calculated, determining maximum sustainable loads and indicating a basis for atomic contrast. Experiments using a Si3N4 cantilever for AFM imaging of 12 alkali halide and alkaline earth fluoride crystals in air and desiccated helium are reported, in the widest AFM survey of such materials to date. Adsorbed water is shown to significantly enhance the observation of atomic periodicity on ionic halide samples, and rapid surface diffusion on alkali halide crystals is illustrated as it affects prospects for defect investigations. Observations of step edges and point-defect candidates at atomic scale are reported. The theoretical and experimental results are discussed together in the effort to provide a quantum-mechanical model for observations of alkali halide samples at atomic resolution, and to examine a possible basis for atomic resolution in the presence of long-range attractive forces.

  10. Experimental Demonstration of Synthetic Lorentz Force on Cold Atoms by Using Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Ban, Ticijana; Santic, Neven; Dubcek, Tena; Aumiler, Damir; Buljan, Hrvoje

    2015-05-01

    The quest for synthetic magnetism in quantum degenerate atomic gases is motivated by producing controllable quantum emulators, which could mimic complex quantum systems such as interacting electrons in magnetic fields. Experiments on synthetic magnetic fields for neutral atoms have enabled realization of the Hall effect, Harper and Haldane Hamiltonians, and other intriguing topological effects. Here we present the first demonstration of a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, in cold atomic gases captured in a Magneto-Optical Trap (MOT). Synthetic Lorentz force on cold atomic cloud is measured by recording the cloud trajectory. The observed force is perpendicular to the cloud velocity, and it is zero for the atomic cloud at rest. The proposed concept is straightforward to implement in a large volume and different geometries, it is applicable for a broad range of velocities, and it can be realized for different atomic species. The experiment is based on the theoretical proposal introduced in. This work was supported by the UKF Grant No. 5/13 and Croatian MZOS.

  11. Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hölscher, H.

    2006-09-01

    The author introduces an algorithm for the reconstruction of the tip-sample interactions in amplitude modulation atomic force microscopy ("tapping mode"). The method is based on the recording of amplitude and phase versus distance curves and allows the reconstruction of tip-sample force and energy dissipation as a function of the actual tip-sample distance. The proposed algorithm is verified by a numerical simulation and applied to a silicon sample in ambient conditions.

  12. Biophysical measurements of cells, microtubules, and DNA with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Devenica, Luka M.; Contee, Clay; Cabrejo, Raysa; Kurek, Matthew; Deveney, Edward F.; Carter, Ashley R.

    2016-04-01

    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here, we review several AFM platforms and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials (cells, microtubules, and DNA) and quantify biophysical parameters including membrane tension, persistence length, contour length, and the drag force.

  13. Synthesis of a Naphthodiazaborinine and Its Verification by Planarization with Atomic Force Microscopy.

    PubMed

    Majzik, Zsolt; Cuenca, Ana B; Pavliček, Niko; Miralles, Núria; Meyer, Gerhard; Gross, Leo; Fernández, Elena

    2016-05-24

    Aiming to study new motifs, potentially active as functional materials, we performed the synthesis of a naphthodiazaborinine (the BN isostere of the phenalenyl anion) that is bonded to a hindered di-ortho-substituted aryl system (9-anthracene). We used atomic force microscopy (AFM) and succeeded in both the verification of the original nonplanar structure of the molecule and the planarization of the skeleton by removing H atoms that cause steric hindrance. This study demonstrated that planarization by atomic manipulation is a possible route for extending molecular identification by AFM to nonplanar molecular systems that are difficult to probe with AFM directly. PMID:27111055

  14. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

    PubMed

    de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M

    2016-06-17

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale. PMID:27367394

  15. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de la Torre, B.; Ellner, M.; Pou, P.; Nicoara, N.; Pérez, Rubén; Gómez-Rodríguez, J. M.

    2016-06-01

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.

  16. High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force

    SciTech Connect

    Ren, Juan; Zou, Qingze

    2014-07-15

    In this paper, an adaptive contact-mode imaging approach is proposed to replace the traditional contact-mode imaging by addressing the major concerns in both the speed and the force exerted to the sample. The speed of the traditional contact-mode imaging is largely limited by the need to maintain precision tracking of the sample topography over the entire imaged sample surface, while large image distortion and excessive probe-sample interaction force occur during high-speed imaging. In this work, first, the image distortion caused by the topography tracking error is accounted for in the topography quantification. Second, the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next-line topography is integrated to the topography feeedback loop to enhance the sample topography tracking. The proposed approach is demonstrated and evaluated through imaging a calibration sample of square pitches at both high speeds (e.g., scan rate of 75 Hz and 130 Hz) and large sizes (e.g., scan size of 30 μm and 80 μm). The experimental results show that compared to the traditional constant-force contact-mode imaging, the imaging speed can be increased by over 30 folds (with the scanning speed at 13 mm/s), and the probe-sample interaction force can be reduced by more than 15% while maintaining the same image quality.

  17. Exploring the electronic and mechanical properties of protein using conducting atomic force microscopy.

    PubMed

    Zhao, Jianwei; Davis, Jason J; Sansom, Mark S P; Hung, Andrew

    2004-05-01

    In interfacing man-made electronic components with specifically folded biomacromolecules, the perturbative effects of junction structure on any signal generated should be considered. We report herein on the electron-transfer characteristics of the blue copper metalloprotein, azurin, as characterized at a refined level by conducting atomic force microscopy (C-AFM). Specifically, the modulation of current-voltage (I-V) behavior with compressional force has been examined. In the absence of assignable resonant electron tunneling within the confined bias region, from -1 to 1 V, the I-V behavior was analyzed with a modified Simmons formula. To interpret the variation of tunneling barrier height and barrier length obtained by fitting with the modified Simmons formula, an atom packing density model associated with protein mechanical deformation was proposed and simulated by molecular dynamics. The barrier heights determined at the minimum forces necessary for stable electrical contact correlate reasonably well with those estimated from bulk biophysical (electroanalytical and photochemical) experiments previously reported. At higher forces, the tunnel barrier decreases to fall within the range observed with saturated organic systems. Molecular dynamics simulations revealed changes in secondary structure and atomic density of the protein with respect to compression. At low compression, where transport measurements are made, secondary structure is retained, and atomic packing density is observed to increase linearly with force. These predictions, and those made at higher compression, are consistent with both experimentally observed modulations of tunneling barrier height with applied force and the applicability of the atom packing density model of electron tunneling in proteins to molecular-level analyses. PMID:15113232

  18. Direct measurement of single-molecule visco-elasticity in atomic force microscope force-extension experiments.

    PubMed

    Bippes, Christian A; Humphris, Andrew D L; Stark, Martin; Müller, Daniel J; Janovjak, Harald

    2006-02-01

    Measuring the visco-elastic properties of biological macromolecules constitutes an important step towards the understanding of dynamic biological processes, such as cell adhesion, muscle function, or plant cell wall stability. Force spectroscopy techniques based on the atomic force microscope (AFM) are increasingly used to study the complex visco-elastic response of (bio-)molecules on a single-molecule level. These experiments either require that the AFM cantilever is actively oscillated or that the molecule is clamped at constant force to monitor thermal cantilever motion. Here we demonstrate that the visco-elasticity of single bio-molecules can readily be extracted from the Brownian cantilever motion during conventional force-extension measurements. It is shown that the characteristics of the cantilever determine the signal-to-noise (S/N) ratio and time resolution. Using a small cantilever, the visco-elastic properties of single dextran molecules were resolved with a time resolution of 8.3 ms. The presented approach can be directly applied to probe the dynamic response of complex bio-molecular systems or proteins in force-extension experiments. PMID:16237549

  19. The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.

    PubMed

    Martín Pendás, A; Hernández-Trujillo, J

    2012-10-01

    The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density. PMID:23039579

  20. Optimization and calibration of atomic force microscopy sensitivity in terms of tip-sample interactions in high-order dynamic atomic force microscopy

    SciTech Connect

    Liu Yu; Guo Qiuquan; Nie Hengyong; Lau, W. M.; Yang Jun

    2009-12-15

    The mechanism of dynamic force modes has been successfully applied to many atomic force microscopy (AFM) applications, such as tapping mode and phase imaging. The high-order flexural vibration modes are recent advancement of AFM dynamic force modes. AFM optical lever detection sensitivity plays a major role in dynamic force modes because it determines the accuracy in mapping surface morphology, distinguishing various tip-surface interactions, and measuring the strength of the tip-surface interactions. In this work, we have analyzed optimization and calibration of the optical lever detection sensitivity for an AFM cantilever-tip ensemble vibrating in high-order flexural modes and simultaneously experiencing a wide range and variety of tip-sample interactions. It is found that the optimal detection sensitivity depends on the vibration mode, the ratio of the force constant of tip-sample interactions to the cantilever stiffness, as well as the incident laser spot size and its location on the cantilever. It is also found that the optimal detection sensitivity is less dependent on the strength of tip-sample interactions for high-order flexural modes relative to the fundamental mode, i.e., tapping mode. When the force constant of tip-sample interactions significantly exceeds the cantilever stiffness, the optimal detection sensitivity occurs only when the laser spot locates at a certain distance from the cantilever-tip end. Thus, in addition to the 'globally optimized detection sensitivity', the 'tip optimized detection sensitivity' is also determined. Finally, we have proposed a calibration method to determine the actual AFM detection sensitivity in high-order flexural vibration modes against the static end-load sensitivity that is obtained traditionally by measuring a force-distance curve on a hard substrate in the contact mode.

  1. A hybrid high-speed atomic force-optical microscope for visualizing single membrane proteins on eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Colom, Adai; Casuso, Ignacio; Rico, Felix; Scheuring, Simon

    2013-07-01

    High-speed atomic force microscopy is a powerful tool for studying structure and dynamics of proteins. So far, however, high-speed atomic force microscopy was restricted to well-controlled molecular systems of purified proteins. Here we integrate an optical microscopy path into high-speed atomic force microscopy, allowing bright field and fluorescence microscopy, without loss of high-speed atomic force microscopy performance. This hybrid high-speed atomic force microscopy/optical microscopy setup allows positioning of the high-speed atomic force microscopy tip with high spatial precision on an optically identified zone of interest on cells. We present movies at 960 ms per frame displaying aquaporin-0 array and single molecule dynamics in the plasma membrane of intact eye lens cells. This hybrid setup allows high-speed atomic force microscopy imaging on cells about 1,000 times faster than conventional atomic force microscopy/optical microscopy setups, and allows first time visualization of unlabelled membrane proteins on a eukaryotic cell under physiological conditions. This development advances high-speed atomic force microscopy from molecular to cell biology to analyse cellular processes at the membrane such as signalling, infection, transport and diffusion.

  2. Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces

    SciTech Connect

    Wagner, Ryan; Raman, Arvind; Proksch, Roger

    2013-12-23

    Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

  3. An all-atom force field developed for Zn₄O(RCO₂)₆ metal organic frameworks.

    PubMed

    Sun, Yingxin; Sun, Huai

    2014-03-01

    An all-atom force field is developed for metal organic frameworks Zn₄O(RCO₂)₆ by fitting to quantum mechanics data. Molecular simulations are conducted to validate the force field by calculating thermal expansion coefficients, crystal bulk and Young's moduli, power spectra, self-diffusion coefficients, and activation energies of self-diffusions for benzene and n-hexane. The calculated results are in good agreement with available experimental data. The proposed force field is suitable for simulations of adsorption or diffusion of organic molecules with flexible frameworks. PMID:24562858

  4. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.

    PubMed

    Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D

    2015-09-15

    Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual

  5. Characterization of novel sufraces by FTIR spectroscopy and atomic force microscopy for food pathogen detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single molecular detection of pathogens and toxins of interest to food safety is within grasp using technology such as Atomic Force Microscopy. Using antibodies or specific aptamers connected to the AFM tip make it possible to detect a pathogen molecule on a surface. However, it also becomes necess...

  6. Detection of viruses: atomic force microscopy and surface enhanced raman spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper demonstrated the capability of atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS) to function effectively as ultra-sensitive readout tools for chip-scale platforms designed for pathogen detection in complex biological media. AFM allows direct (i.e. label-free) vi...

  7. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    ERIC Educational Resources Information Center

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-01-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…

  8. A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories

    ERIC Educational Resources Information Center

    Jones, C. N.; Goncalves, J.

    2010-01-01

    This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…

  9. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  10. Nano Goes to School: A Teaching Model of the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Kovac, Janez

    2008-01-01

    The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…

  11. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  12. Probing three-dimensional surface force fields with atomic resolution: Measurement strategies, limitations, and artifact reduction

    PubMed Central

    Dagdeviren, Omur E; Schwendemann, Todd C; Mönig, Harry; Altman, Eric I

    2012-01-01

    Summary Noncontact atomic force microscopy (NC-AFM) is being increasingly used to measure the interaction force between an atomically sharp probe tip and surfaces of interest, as a function of the three spatial dimensions, with picometer and piconewton accuracy. Since the results of such measurements may be affected by piezo nonlinearities, thermal and electronic drift, tip asymmetries, and elastic deformation of the tip apex, these effects need to be considered during image interpretation. In this paper, we analyze their impact on the acquired data, compare different methods to record atomic-resolution surface force fields, and determine the approaches that suffer the least from the associated artifacts. The related discussion underscores the idea that since force fields recorded by using NC-AFM always reflect the properties of both the sample and the probe tip, efforts to reduce unwanted effects of the tip on recorded data are indispensable for the extraction of detailed information about the atomic-scale properties of the surface. PMID:23019560

  13. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    DOEpatents

    Fink, Samuel D.; Fondeur, Fernando F.

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  14. Localized electroporation and molecular delivery into single living cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nawarathna, D.; Unal, K.; Wickramasinghe, H. Kumar

    2008-10-01

    We present an efficient and fast method for selective and localized electroporation of a single living cell from a population of millions to tens of cells using the modified tip of an atomic force microscope. Electroporation was observed in real time using an inverted microscope. This technique is proposed as a tool for efficient and controlled delivery of biomolecules, proteins, drugs, and genes.

  15. Atomic force microscopic investigation of respiratory syncytial virus infection in HEp-2 cells

    PubMed Central

    TIWARI, P. M.; EROGLU, E.; BOYOGLU-BARNUM, S.; HE, Q.; WILLING, G. A.; VIG, K.; DENNIS, V. A.; SINGH, S. R.

    2014-01-01

    Summary Respiratory syncytial virus (RSV) primarily causes bronchiolitis and pneumonia in infants. In spite of intense research, no safe and effective vaccine has been developed yet. For understanding its pathogenesis and development of anti-RSV drugs/therapeutics, it is indispensable to study the RSV–host interaction. Although, there are limited studies using electron microscopy to elucidate the infection process of RSV, to our knowledge, no study has reported the morphological impact of RSV infection using atomic force microscopy. We report the cytoplasmic and nuclear changes in human epidermoid cell line type 2 using atomic force microscopy. Human epidermoid cell line type 2 cells, grown on cover slips, were infected with RSV and fixed after various time periods, processed and observed for morphological changes using atomic force microscopy. RSV infected cells showed loss of membrane integrity, with degeneration in the cellular content and cytoskeleton. Nuclear membrane was disintegrated and nuclear volume was decreased. The chromatin of the RSV infected cells was condensed, progressing towards degeneration via pyknosis and apoptosis. Membrane protrusions of ~150–200 nm diameter were observed on RSV infected cells after 6 h, suggestive of prospective RSV budding sites. To our knowledge, this is the first study of RSV infection process using atomic force microscopy. Such morphological studies could help explore viral infection process aiding the development of anti-RSV therapies. PMID:24251370

  16. Microcontroller-driven fluid-injection system for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Alonso, L.; Jacquet, P.; Adamcik, J.; Haeberli, C.; Dietler, G.

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  17. Intermittent contact interaction between an atomic force microscope cantilever and a nanowire

    NASA Astrophysics Data System (ADS)

    Knittel, I.; Ungewitter, L.; Hartmann, U.

    2012-05-01

    We investigate in theory and experiment the intermittent contact interaction between an atomic force microscope (AFM) cantilever and a nanowire under ambient conditions. The nanowire is modeled as a spring reacting instantaneously to any change of the force between the wire and the cantilever. This implies that the cantilever is subject to an "effective" force-distance relation, containing not only the surface forces but also the deflection of the nanowire. Experimentally, CVD-grown tin oxide nanowires and lithographically structured silicon nanowire arrays were investigated by intermittent contact AFM. By comparison of experimental and simulated distance-dependent resonance curves it is found that the nanowires behave like "fast nanosprings" and that the adhesion force is one of the key factors determining distance-dependent resonance curves. The results are fully applicable to a scenario in which a cantilever equipped by a nanowire interacts with a surface.

  18. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  19. Real-Time Nanoparticle–Cell Interactions in Physiological Media by Atomic Force Microscopy

    PubMed Central

    2015-01-01

    Particle–cell interactions in physiological media are important in determining the fate and transport of nanoparticles and biological responses to them. In this work, these interactions are assessed in real time using a novel atomic force microscopy (AFM) based platform. Industry-relevant CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two primary particle sizes were synthesized by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES) and used in this study. The ENPs were attached on AFM tips, and the atomic force between the tip and lung epithelia cells (A549), adhered on a substrate, was measured in biological media, with and without the presence of serum proteins. Two metrics were used to assess the nanoparticle cell: the detachment force required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate that these atomic level ENP–cell interaction forces strongly depend on the physiological media. The presence of serum proteins reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material dependent. PMID:25068097

  20. Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy.

    PubMed

    Pyrgiotakis, Georgios; Blattmann, Christoph O; Demokritou, Philip

    2014-07-01

    Particle-cell interactions in physiological media are important in determining the fate and transport of nanoparticles and biological responses to them. In this work, these interactions are assessed in real time using a novel atomic force microscopy (AFM) based platform. Industry-relevant CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two primary particle sizes were synthesized by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES) and used in this study. The ENPs were attached on AFM tips, and the atomic force between the tip and lung epithelia cells (A549), adhered on a substrate, was measured in biological media, with and without the presence of serum proteins. Two metrics were used to assess the nanoparticle cell: the detachment force required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate that these atomic level ENP-cell interaction forces strongly depend on the physiological media. The presence of serum proteins reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material dependent. PMID:25068097

  1. Subnanometer-Resolution Frequency Modulation Atomic Force Microscopy in Liquid for Biological Applications

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi

    2009-08-01

    The spatial resolution and force sensitivity of frequency modulation atomic force microscopy (FM-AFM) in liquid have been dramatically improved in the last a few years. It is now possible to image individual atoms and molecules at a solid/liquid interface with a subnanometer-scale resolution and a piconewton-order loading force. This capability enabled the direct visualization of hydration layers and mobile ions on a lipid bilayer and β-strands constituting an amyloid fibril. These striking results highlighted the significant potential of FM-AFM in biological research. Here, I summarize the technological innovation that brought about this progress and review biological applications of FM-AFM in liquid.

  2. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Melcher, John; Hu, Shuiqing; Raman, Arvind

    2008-06-01

    We describe here the theory and applications of virtual environment dynamic atomic force microscopy (VEDA), a suite of state-of-the-art simulation tools deployed on nanoHUB (www.nanohub.org) for the accurate simulation of tip motion in dynamic atomic force microscopy (dAFM) over organic and inorganic samples. VEDA takes advantage of nanoHUB's cyberinfrastructure to run high-fidelity dAFM tip dynamics computations on local clusters and the teragrid. Consequently, these tools are freely accessible and the dAFM simulations are run using standard web-based browsers without requiring additional software. A wide range of issues in dAFM ranging from optimal probe choice, probe stability, and tip-sample interaction forces, power dissipation, to material property extraction and scanning dynamics over hetereogeneous samples can be addressed.

  3. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F.

    2013-12-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues.

  4. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria.

    PubMed

    Alsteens, David; Trabelsi, Heykel; Soumillion, Patrice; Dufrêne, Yves F

    2013-01-01

    Force-distance (FD) curve-based atomic force microscopy is a valuable tool to simultaneously image the structure and map the biophysical properties of biological samples at the nanoscale. Traditionally, FD-based atomic force microscopy has been severely limited by its poor temporal and lateral resolutions. Here we report the use of advanced FD-based technology combined with biochemically sensitive tips to image filamentous bacteriophages extruding from living bacteria at unprecedented speed and resolution. Directly correlated multiparametric images of the structure, adhesion and elasticity of infected bacteria demonstrate that the sites of assembly and extrusion localize at the bacterial septum in the form of soft nanodomains surrounded by stiff cell wall material. The quantitative nano-bio-imaging method presented here offers a wealth of opportunities for mapping the physical properties and molecular interactions of complex biosystems, from viruses to tissues. PMID:24336094

  5. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    PubMed

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-25

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 μm for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable. PMID:26335613

  6. Amplitude modulation atomic force microscopy, is acoustic driving in liquid quantitatively reliable?

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Zhao, Cunlu; Mugele, Frieder; van den Ende, Dirk

    2015-09-01

    Measuring quantitative tip-sample interaction forces in dynamic atomic force microscopy in fluids is challenging because of the strong damping of the ambient viscous medium and the fluid-mediated driving forces. This holds in particular for the commonly used acoustic excitation of the cantilever oscillation. Here we present measurements of tip-sample interactions due to conservative DLVO and hydration forces and viscous dissipation forces in aqueous electrolytes using tips with radii varying from typical 20 nm for the DLVO and hydration forces, to 1 μm for the viscous dissipation. The measurements are analyzed using a simple harmonic oscillator model, continuous beam theory with fluid-mediated excitation and thermal noise spectroscopy (TNS). In all cases consistent conservative forces, deviating less than 40% from each other, are obtained for all three approaches. The DLVO forces are even within 5% of the theoretical expectations for all approaches. Accurate measurements of dissipative forces within 15% of the predictions of macroscopic fluid dynamics require the use of TNS or continuous beam theory including fluid-mediated driving. Taking this into account, acoustic driving in liquid is quantitatively reliable.

  7. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

    PubMed

    Shan, Yuping; Wang, Hongda

    2015-06-01

    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes. PMID:25893228

  8. Force field analysis suggests a lowering of diffusion barriers in atomic manipulation due to presence of STM tip.

    PubMed

    Emmrich, Matthias; Schneiderbauer, Maximilian; Huber, Ferdinand; Weymouth, Alfred J; Okabayashi, Norio; Giessibl, Franz J

    2015-04-10

    We study the physics of atomic manipulation of CO on a Cu(111) surface by combined scanning tunneling microscopy and atomic force microscopy at liquid helium temperatures. In atomic manipulation, an adsorbed atom or molecule is arranged on the surface using the interaction of the adsorbate with substrate and tip. While previous experiments are consistent with a linear superposition model of tip and substrate forces, we find that the force threshold depends on the force field of the tip. Here, we use carbon monoxide front atom identification (COFI) to characterize the tip's force field. Tips that show COFI profiles with an attractive center can manipulate CO in any direction while tips with a repulsive center can only manipulate in certain directions. The force thresholds are independent of bias voltage in a range from 1 to 10 mV and independent of temperature in a range of 4.5 to 7.5 K. PMID:25910137

  9. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  10. Thermal Response of Langmuir-Blodgett Films of Dipalmitoylphosphatidylcholine Studied by Atomic Force Microscopy and Force Spectroscopy

    PubMed Central

    Oncins, Gerard; Picas, Laura; Hernández-Borrell, Jordi; Garcia-Manyes, Sergi; Sanz, Fausto

    2007-01-01

    The topographic evolution of supported dipalmitoylphosphatidylcholine (DPPC) monolayers with temperature has been followed by atomic force microscopy in liquid environment, revealing the presence of only one phase transition event at ∼46°C. This finding is a direct experimental proof that the two phase transitions observed in the corresponding bilayers correspond to the individual phase transition of the two leaflets composing the bilayer. The transition temperature and its dependency on the measuring medium (liquid saline solution or air) is discussed in terms of changes in van der Waals, hydration, and hydrophobic/hydrophilic interactions, and it is directly compared with the transition temperatures observed in the related bilayers under the same experimental conditions. Force spectroscopy allows us to probe the nanomechanical properties of such monolayers as a function of temperature. These measurements show that the force needed to puncture the monolayers is highly dependent on the temperature and on the phospholipid phase, ranging from 120 ± 4 pN at room temperature (liquid condensed phase) to 49 ± 2 pN at 65°C (liquid expanded phase), which represents a two orders-of-magnitude decrease respective to the forces needed to puncture DPPC bilayers. The topographic study of the monolayers in air around the transition temperature revealed the presence of boundary domains in the monolayer surface forming 120° angles between them, thus suggesting that the cooling process from the liquid-expanded to the liquid-condensed phase follows a nucleation and growth mechanism. PMID:17586574

  11. Towards 3D charge localization by a method derived from atomic force microscopy: the electrostatic force distance curve

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.

    2014-11-01

    Charges injection and accumulation in the dielectric remains a critical issue, mainly because these phenomena are involved in a great number of failure mechanisms in cables or electronic components. Achieving a better understanding of the mechanisms leading to charge injection, transport and trapping under electrical stress and of the relevant interface phenomena is a high priority. The classical methods used for space charge density profile measurements have a limited spatial resolution, which prevents them being used for investigating thin dielectric layers or interface processes. Thus, techniques derived from atomic force microscopy (AFM) have been investigated more and more for this kind of application, but so far they have been limited by their lack of in-depth sensitivity. In this paper a new method for space charge probing is described, the electrostatic force distance curve (EFDC), which is based on electrostatic force measurements using AFM. A comparison with the results obtained using kelvin force microscopy (KFM) allowed us to highlight the fact that EFDC is sensitive to charges localized in the third-dimension.

  12. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  13. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  14. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable

  15. Novel amplitude and frequency demodulation algorithm for a virtual dynamic atomic force microscope

    NASA Astrophysics Data System (ADS)

    Kokavecz, J.; Tóth, Z.; Horváth, Z. L.; Heszler, P.; Mechler, Á.

    2006-04-01

    Frequency-modulated atomic force microscopy (FM-AFM; also called non-contact atomic force microscopy) is the prevailing operation mode in (sub-)atomic resolution vacuum applications. A major obstacle that prohibits a wider application range is the low frame capture rate. The speed of FM-AFM is limited by the low bandwidth of the automatic gain control (AGC) and frequency demodulation loops. In this work we describe a novel algorithm that can be used to overcome these weaknesses. We analysed the settling times of the proposed loops and that of the complete system, and we found that an approximately 70-fold improvement can be achieved over the existing real and virtual atomic force microscopes. We show that proportional-integral-differential controllers perform better in the frequency demodulation loop than conventional proportional-integral controllers. We demonstrate that the signal to noise ratio of the proposed system is 5.7 × 10-5, which agrees with that of the conventional systems; thus, the new algorithm would improve the performance of FM-AFMs without compromising the resolution.

  16. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    SciTech Connect

    Muhunthan, N.; Singh, Om Pal; Toutam, Vijaykumar; Singh, V.N.

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  17. Accurate spring constant calibration for very stiff atomic force microscopy cantilevers

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Gates, Richard S.; Gerbig, Yvonne B.; Smith, Douglas T.; Cook, Robert F.

    2013-11-15

    There are many atomic force microscopy (AFM) applications that rely on quantifying the force between the AFM cantilever tip and the sample. The AFM does not explicitly measure force, however, so in such cases knowledge of the cantilever stiffness is required. In most cases, the forces of interest are very small, thus compliant cantilevers are used. A number of methods have been developed that are well suited to measuring low stiffness values. However, in some cases a cantilever with much greater stiffness is required. Thus, a direct, traceable method for calibrating very stiff (approximately 200 N/m) cantilevers is presented here. The method uses an instrumented and calibrated nanoindenter to determine the stiffness of a reference cantilever. This reference cantilever is then used to measure the stiffness of a number of AFM test cantilevers. This method is shown to have much smaller uncertainty than previously proposed methods. An example application to fracture testing of nanoscale silicon beam specimens is included.

  18. Interactions between collagen IX and biglycan measured by atomic force microscopy

    SciTech Connect

    Chen, C.-H.; Yeh, M.-L.; Geyer, Mark; Wang, Gwo-Jaw; Huang, M.-H.; Heggeness, Michael H.; Hoeoek, Magnus; Luo, Z.-P. . E-mail: luo@bcm.tmc.edu

    2006-01-06

    The stability of the lattice-like type II collagen architecture of articular cartilage is paramount to its optimal function. Such stability not only depends on the rigidity of collagen fibrils themselves, but more importantly, on their interconnections. One known interconnection is through type IX and biglycan molecules. However, the mechanical properties of this interaction and its role in the overall stability remain unrevealed. Using atomic force microscopy, this study directly measured the mechanical strength (or the rupture force) of a single bond between collagen IX and biglycan. The results demonstrated that the rupture force of this single bond was 15 pN, which was significantly smaller than those of other known molecule interactions to date. This result suggested that type IX collagen and biglycan interaction may be the weak link in the cartilage collagen architecture, vulnerable to abnormal joint force and associated with disorders such as osteoarthritis.

  19. Elastic Properties of Clay Minerals Determined by Atomic Force Acoustic Microscopy Technique

    NASA Astrophysics Data System (ADS)

    Kopycinska-Müller, M.; Prasad, M.; Rabe, U.; Arnold, W.

    Seismic wave propagation in geological formations is altered by the presence of clay minerals. Knowledge about the elastic properties of clay is therefore essential for the interpretation and modeling of the seismic response of clay-bearing formations. However, due to the layered structure of clay, it is very difficult to investigate its elastic properties. We measured elastic properties of clay using atomic force acoustic microscopy (AFAM). The forces applied during the experiments were not higher than 50 nN. The adhesion forces were measured from the pull-off forces and included into our calculations by means of the Derjaguin-Mueller-Toporov model for contact mechanics. The obtained values of the elastic modulus for clay varied from 10 to 17 GPa depending on various parameters that describe the dynamics of a vibrating beam

  20. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.

    PubMed

    Das, Chinmay; Sheikh, Khizar H; Olmsted, Peter D; Connell, Simon D

    2010-10-01

    We present theory and experiments for the force-distance curve F(z(0)) of an atomic force microscope (AFM) tip (radius R) indenting a supported fluid bilayer (thickness 2d). For realistic conditions the force is dominated by the area compressibility modulus κ(A) of the bilayer and, to an excellent approximation, given by F=πκ(A)Rz(0)(2)/(2d-z(0))(2). The experimental AFM force curves from coexisting liquid ordered and liquid disordered domains in three-component lipid bilayers are well described by our model, which provides κ(A) in agreement with literature values. The liquid ordered phase has a yieldlike response that we model as due to the breaking of hydrogen bonds. PMID:21230326

  1. Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development.

    PubMed

    Verstraelen, Toon; Vandenbrande, Steven; Heidar-Zadeh, Farnaz; Vanduyfhuys, Louis; Van Speybroeck, Veronique; Waroquier, Michel; Ayers, Paul W

    2016-08-01

    Atomic partial charges appear in the Coulomb term of many force-field models and can be derived from electronic structure calculations with a myriad of atoms-in-molecules (AIM) methods. More advanced models have also been proposed, using the distributed nature of the electron cloud and atomic multipoles. In this work, an electrostatic force field is defined through a concise approximation of the electron density, for which the Coulomb interaction is trivially evaluated. This approximate "pro-density" is expanded in a minimal basis of atom-centered s-type Slater density functions, whose parameters are optimized by minimizing the Kullback-Leibler divergence of the pro-density from a reference electron density, e.g., obtained from an electronic structure calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS), is a variant of the Hirshfeld AIM method, but it can also be used as a density-fitting technique. An iterative algorithm to refine the pro-density is easily implemented with a linear-scaling computational cost, enabling applications to supramolecular systems. The benefits of the MBIS method are demonstrated with systematic applications to molecular databases and extended models of condensed phases. A comparison to 14 other AIM methods shows its effectiveness when modeling electrostatic interactions. MBIS is also suitable for rescaling atomic polarizabilities in the Tkatchenko-Scheffler scheme for dispersion interactions. PMID:27385073

  2. Modeling and boundary force control of microcantilevers utilized in atomic force microscopy for cellular imaging and characterization

    NASA Astrophysics Data System (ADS)

    Eslami, Sohrab

    This dissertation undertakes the theoretical and experimental developments microcantilevers utilized in Atomic Force Microscopy (AFM) with applications to cellular imaging and characterization. The capability of revealing the inhomogeneties or interior of ultra-small materials has been of most interest to many researchers. However, the fundamental concept of signal and image formation remains unexplored and not fully understood. For his, a semi-empirical nonlinear force model is proposed to show that virtual frequency generation, regarded as the simplest synthesized subsurface probe, occurs optimally when the force is tuned to the van der Waals form. This is the first-time observation of a novel theoretical dynamic multi-frequency force microscopy that has not been already reported. Owing to the broad applications of microcantilevers in the nanoscale imaging and microscopic techniques, there is an essential feeling to study and propose a comprehensive model of such systems. Therefore, in the theoretical part of this dissertation, a distributed-parameters representation modeling of the microcantilever along with a general interaction force comprising of two attractive and repulsive components with general amplitude and power terms is studied. This model is investigated in a general 2D Cartesian coordinate to consider the motions of the probe with a tip mass. There is an excitation at the microcantilever's base such that the end of the beam is subject to the proposed general force. These forces are very sensitive to the amplitude and power terms of these parts; on the other hand, atomic intermolecular force is a function of the distance such that this distance itself is also a function of the interaction force that will result in a nonlinear implicit equation. From a parametric study in the probe-sample excitation, it is shown that the predicted behavior of the generated difference-frequency oscillation amplitude agrees well with experimental measurements. Following

  3. Ab initio prediction of protein structure with both all-atom and simplified force fields

    NASA Astrophysics Data System (ADS)

    Scheraga, Harold

    2004-03-01

    Using only a physics-based ab initio method, and both all-atom (ECEPP/3) and simplified united-residue (UNRES) force fields, global optimization of both potential functions with Monte Carlo-plus-Minimization (MCM) and Conformational Space Annealing (CSA), respectively, provides predicted structures of proteins without use of knowledge-based information. The all-atom approach has been applied to the 46-residue protein A, and the UNRES approach has been applied to larger CASP targets. The predicted structures will be described.

  4. First-principles calculation of atomic forces and structural distortions in strongly correlated materials.

    PubMed

    Leonov, I; Anisimov, V I; Vollhardt, D

    2014-04-11

    We introduce a novel computational approach for the investigation of complex correlated electron materials which makes it possible to evaluate interatomic forces and, thereby, determine atomic displacements and structural transformations induced by electronic correlations. It combines ab initio band structure and dynamical mean-field theory and is implemented with the linear-response formalism regarding atomic displacements. We apply this new technique to explore structural transitions of prototypical correlated systems such as elemental hydrogen, SrVO3, and KCuF3. PMID:24765993

  5. Optical beam deflection noncontact atomic force microscope optimized with three-dimensional beam adjustment mechanism

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kousuke; Ochi, Taketoshi; Uchihashi, Takayuki; Ashino, Makoto; Sugawara, Yasuhiro; Suehira, Nobuhito; Morita, Seizo

    2000-01-01

    We present a design and performance of an optical beam deflection noncontact atomic force microscope (nc-AFM). The optical deflection detection system can be optimized by the three-dimensional beam position adjustment mechanism (the slider which mounts laser diode module, the spherical rotors with mirror and the cylinder which mounts quadrant photodiode) using inertial stepping motors in an ultrahigh vacuum (UHV). The samples and cantilevers are easily exchanged in UHV. The performance of the instrument is demonstrated with the atomically resolved nc-AFM images for various surfaces such as Si(111)7×7, Cu(111), TiO2(110), and thymine/highly oriented pyrolytic graphite.

  6. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    SciTech Connect

    Sakuma, Takashi Makhsun,; Sakai, Ryutaro; Xianglian; Takahashi, Haruyuki; Basar, Khairul; Igawa, Naoki; Danilkin, Sergey A.

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  7. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].

    PubMed

    Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng

    2014-10-01

    In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve. PMID:25764725

  8. RAPID COMMUNICATION: Frequency and force modulation atomic force microscopy: low-impact tapping-mode imaging without bistability

    NASA Astrophysics Data System (ADS)

    Solares, Santiago D.

    2007-07-01

    Since the 1980s, atomic force microscopy (AFM) has rapidly developed into a versatile, high-resolution characterization technique, available in a variety of imaging modes. Within intermittent-contact tapping-mode, imaging bistability and sample mechanical damage continue to be two of the most important challenges faced daily by AFM users. Recently, a new double-control-loop tapping-mode imaging algorithm (frequency and amplitude modulation AFM, FAM-AFM) was proposed and evaluated within numerical simulations, demonstrating a reduction in the repulsive tip sample forces and the absence of bistability. This article presents a much simpler algorithm, frequency and force modulation AFM (FFM-AFM), which requires only a single control loop and offers the same benefits as FAM-AFM. The concept is applied to calculate the cross-sectional scan of a carbon nanotube sample resting on a silicon surface, which is then compared to a previously reported image obtained in conventional amplitude-modulation tapping-mode, shown to be in agreement with the experimental result.

  9. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  10. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory

    SciTech Connect

    Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal; Popescu, Mihail N.

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  11. Submolecular Imaging by Noncontact Atomic Force Microscopy with an Oxygen Atom Rigidly Connected to a Metallic Probe.

    PubMed

    Mönig, Harry; Hermoso, Diego R; Díaz Arado, Oscar; Todorović, Milica; Timmer, Alexander; Schüer, Simon; Langewisch, Gernot; Pérez, Rubén; Fuchs, Harald

    2016-01-26

    In scanning probe microscopy, the imaging characteristics in the various interaction channels crucially depend on the chemical termination of the probe tip. Here we analyze the contrast signatures of an oxygen-terminated copper tip with a tetrahedral configuration of the covalently bound terminal O atom. Supported by first-principles calculations we show how this tip termination can be identified by contrast analysis in noncontact atomic force and scanning tunneling microscopy (NC-AFM, STM) on a partially oxidized Cu(110) surface. After controlled tip functionalization by soft indentations of only a few angstroms in an oxide nanodomain, we demonstrate that this tip allows imaging an organic molecule adsorbed on Cu(110) by constant-height NC-AFM in the repulsive force regime, revealing its internal bond structure. In established tip functionalization approaches where, for example, CO or Xe is deliberately picked up from a surface, these probe particles are only weakly bound to the metallic tip, leading to lateral deflections during scanning. Therefore, the contrast mechanism is subject to image distortions, artifacts, and related controversies. In contrast, our simulations for the O-terminated Cu tip show that lateral deflections of the terminating O atom are negligible. This allows a detailed discussion of the fundamental imaging mechanisms in high-resolution NC-AFM experiments. With its structural rigidity, its chemically passivated state, and a high electron density at the apex, we identify the main characteristics of the O-terminated Cu tip, making it a highly attractive complementary probe for the characterization of organic nanostructures on surfaces. PMID:26605698

  12. Atomic Structures of Silicene Layers Grown on Ag(111): Scanning Tunneling Microscopy and Noncontact Atomic Force Microscopy Observations

    PubMed Central

    Resta, Andrea; Leoni, Thomas; Barth, Clemens; Ranguis, Alain; Becker, Conrad; Bruhn, Thomas; Vogt, Patrick; Le Lay, Guy

    2013-01-01

    Silicene, the considered equivalent of graphene for silicon, has been recently synthesized on Ag(111) surfaces. Following the tremendous success of graphene, silicene might further widen the horizon of two-dimensional materials with new allotropes artificially created. Due to stronger spin-orbit coupling, lower group symmetry and different chemistry compared to graphene, silicene presents many new interesting features. Here, we focus on very important aspects of silicene layers on Ag(111): First, we present scanning tunneling microscopy (STM) and non-contact Atomic Force Microscopy (nc-AFM) observations of the major structures of single layer and bi-layer silicene in epitaxy with Ag(111). For the (3 × 3) reconstructed first silicene layer nc-AFM represents the same lateral arrangement of silicene atoms as STM and therefore provides a timely experimental confirmation of the current picture of the atomic silicene structure. Furthermore, both nc-AFM and STM give a unifying interpretation of the second layer (√3 × √3)R ± 30° structure. Finally, we give support to the conjectured possible existence of less stable, ~2% stressed, (√7 × √7)R ± 19.1° rotated silicene domains in the first layer. PMID:23928998

  13. Atomic-scale imaging of albite feldspar, calcium carbonate, rectorite, and bentonite using atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Drake, Barney; Hellmann, Roland; Sikes, C. Steven; Occelli, Mario L.

    1992-05-01

    Atomic force microscopy (AFM) was used to investigate the (010) surface of Amelia albite, the basal and (001) planes of CaCO3 (calcite), and the basal planes of rectorite and bentonite. Atomic scale images of the albite surface show six sided, interconnected en-echelon rings. Fourier transforms of the surface scans reveal two primary nearest neighbor distances of 4.7 and 4.9 +/- 0.5 angstroms. Analysis of the images using a 6 angstroms thick projection of the bulk structure was performed. Close agreement between the projection and the images suggests the surface is very close to an ideal termination of the bulk structure. Images of the calcite basal plane show a hexagonal array of Ca atoms measured to within +/- 0.3 angstroms of the 4.99 angstroms predicted by x-ray diffraction data. Putative images of the (001) plane of carbonate ions, with hexagonal 5 angstroms spacing, are also presented and discussed. Basal plane images of rectorite show hexagonal symmetry with 9.1 +/- 2.5 angstroms spacing, while bentonite results reveal a 4.9 +/- 0.5 angstroms nearest neighbor spacing.

  14. Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.; Libchaber, A.

    1997-12-01

    In this letter, we report on spatially selecting and grafting a DNA-tethered bead to an atomic force microscope (AFM) cantilever, using an optical tweezer. To quantify this technique, we measure force versus extension of a single DNA molecule using AFM. For such studies, we have developed a micromanipulation approach by combining an AFM, an optical tweezer, and visualization setup. The ability to select a single DNA polymer and specifically graft it to a localized position on a substrate opens up new possibilities in biosensors and bioelectronic devices.

  15. Precise atomic force microscope cantilever spring constant calibration using a reference cantilever array

    SciTech Connect

    Gates, Richard S.; Reitsma, Mark G.

    2007-08-15

    A method for calibrating the stiffness of atomic force microscope (AFM) cantilevers is demonstrated using an array of uniform microfabricated reference cantilevers. A series of force-displacement curves was obtained using a commercial AFM test cantilever on the reference cantilever array, and the data were analyzed using an implied Euler-Bernoulli model to extract the test cantilever spring constant from linear regression fitting. The method offers a factor of 5 improvement over the precision of the usual reference cantilever calibration method and, when combined with the Systeme International traceability potential of the cantilever array, can provide very accurate spring constant calibrations.

  16. Native Escherichia coli OmpF Porin Surfaces Probed by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Schabert, Frank A.; Henn, Christian; Engel, Andreas

    1995-04-01

    Topographs of two dimensional porin OmpF crystals reconstituted in the presence of lipids were recorded in solution by atomic force microscopy (AFM) to a lateral resolution of 10 angstroms and a vertical resolution of 1 angstrom. Protein-protein interactions were demonstrated on the basis of the AFM results and earlier crystallographic findings. To assess protein-lipid interactions, the bilayer was modeled with kinked lipids by fitting the head groups to contours determined with AFM. Finally, two conformations of the extracellular porin surface were detected at forces of 0.1 nanonewton, demonstrating the potential of AFM to monitor conformational changes with high resolution.

  17. An intercepted feedback mode for light sensitive spectroscopic measurements in atomic force microscopy.

    PubMed

    Smoliner, J; Brezna, W

    2007-10-01

    In most atomic force microscopes (AFMs), the motion of the tip is detected by the deflection of a laser beam shining onto the cantilever. AFM applications such as scanning capacitance spectroscopy or photocurrent spectroscopy, however, are severely disturbed by the intense stray light of the AFM laser. For this reason, an intercepted feedback method was developed, which allows to switch off the laser temporarily while the feedback loop keeps running. The versatility of this feedback method is demonstrated by measuring tip-force dependent Schottky barrier heights on GaAs samples. PMID:17979460

  18. Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers

    SciTech Connect

    Ergincan, O. Palasantzas, G.; Kooi, B. J.

    2014-02-15

    The determination of the dynamic spring constant (k{sub d}) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed, the non-destructive, fast, and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum. 83, 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k{sub eff}, the dynamic one k{sub d}), and the calculated (k{sub d,1}) are in good agreement within less than 10% error.

  19. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  20. Imaging soft matters in water with torsional mode atomic force microscopy.

    PubMed

    Hwang, Ing-Shouh; Yang, Chih-Wen; Su, Ping-Hsiang; Hwu, En-Te; Liao, Hsien-Shun

    2013-12-01

    We have developed a high-sensitivity atomic force microscopy (AFM) mode operated in aqueous environment based on the torsional resonance of the cantilever. It is found that the torsional mode can achieve a good spatial resolution even with a relatively large tip. We have used this mode to image different soft materials in water, including DNA molecules and purple membrane. High-resolution images of purple membrane can be obtained at a relatively low ion concentration under a long-range electrostatic force. Thus the torsional mode allows investigators to probe surface structures and their properties under a wide range of solution conditions. PMID:22939703

  1. Atomic Force Microscopy to Study Mechanics of Living Mitotic Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Toyoda, Yusuke; Stewart, Martin P.; Hyman, Anthony A.; Müller, Daniel J.

    2011-08-01

    While biochemical pathways within mitotic cells have been intensively studied, the mechanics of dividing cells is only poorly understood. In our recent report, an experimental system combining fluorescence and atomic force microscopy was set up to study dynamics of mitotic rounding of mammalian cells. We show that cells have a rounding pressure that increases upon mitotic entry. Using specific inhibitors or perturbations, we revealed biological processes required for force generation that underpin the cell rounding shape change during mitosis. The significance of the finding and an outlook are discussed.

  2. Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy.

    PubMed

    Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi

    2016-06-21

    Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem. Here, we propose a robust and practical transform theory, which can generate the number density distribution of solvent molecules on a substrate from the force curve. As an example, we analyzed a force curve measured by using our high-resolution AFM with a newly fabricated ultrashort cantilever. It is demonstrated that the hydration structure on muscovite mica (001) surface can be reproduced from the force curve by using the transform theory. The transform theory will enhance AFM's ability and support structural analyses of solid/liquid interfaces. By using the transform theory, the effective diameter of a real probe apex is also obtained. This result will be important for designing a model probe of molecular scale simulations. PMID:27080590

  3. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-01

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems. PMID:25675101

  4. Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope

    PubMed Central

    Zhang, Tian-biao; Zhang, Chang-lin; Dong, Zai-li; Guan, Yi-fu

    2015-01-01

    As one of the most crucial properties of DNA, the structural stability and the mechanical strength are attracting a great attention. Here, we take advantage of high force resolution and high special resolution of Atom Force Microscope and investigate the mechanical force of DNA duplexes. To evaluate the base pair hydrogen bond strength and base stacking force in DNA strands, we designed two modes (unzipping and stretching) for the measurement rupture forces. Employing k-means clustering algorithm, the ruptured force are clustered and the mean values are estimated. We assessed the influence of experimental parameters and performed the force evaluation for DNA duplexes of pure dG/dC and dA/dT base pairs. The base binding strength of single dG/dC and single dA/dT were estimated to be 20.0 ± 0.2 pN and 14.0 ± 0.3 pN, respectively, and the base stacking interaction was estimated to be 2.0 ± 0.1 pN. Our results provide valuable information about the quantitative evaluation of the mechanical properties of the DNA duplexes. PMID:25772017

  5. Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy

    PubMed Central

    Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.

    2014-01-01

    Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418

  6. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes

    NASA Astrophysics Data System (ADS)

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-05-01

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.

  7. Nanomechanical properties of lithiated Si nanowires probed with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsoo; Shin, Weonho; Choi, Jang Wook; Park, Jeong Young

    2012-07-01

    The nanomechanical properties of fully lithiated and pristine Si nanowires (NWs) deposited on a Si substrate were studied with atomic force microscopy (AFM). Si NWs were synthesized using the vapour-liquid-solid process on stainless-steel substrates using an Au catalyst. Fully lithiated Si NWs were obtained using the electrochemical method, followed by drop-casting on a Si substrate. The roughness of the Si NWs, which was derived from AFM images, is greater for the lithiated Si NWs than for the pristine Si NWs. Force spectroscopy was used to study the influence of lithiation on the tip-surface adhesion force. The lithiated Si NWs revealed a smaller tip-surface adhesion force than the Si substrate by a factor of two, while the adhesion force of the Si NWs is similar to that of the Si substrate. Young's modulus, obtained from the force-distance curve, also shows that the pristine Si NWs have a relatively higher value than the lithiated Si NWs due to the elastically soft and amorphous structures of the lithiated region. These results suggest that force spectroscopy can be used to probe the degree of lithiation at nanometer scale during the charging and discharging processes.

  8. Atomic Force Microscopy as a Tool for Applied Virology and Microbiology

    NASA Astrophysics Data System (ADS)

    Zaitsev, Boris

    2003-12-01

    Atomic force microscope (AFM) can be successfully used for simple and fast solution of many applied biological problems. In this paper the survey of the results of the application of atomic force microscope SolverP47BIO (NT-MDT, Russia) in State Research Center of Virology and Biotechnology "Vector" is presented. The AFM has been used: - in applied virology for the counting of viral particles and examination of virus-cell interaction; - in microbiology for measurements and indication of bacterial spores and cells; - in biotechnology for control of biotechnological processes and evaluation of the distribution of particle dimension for viral and bacterial diagnostic assays. The main advantages of AFM in applied researches are simplicity of the processing of sample preparation and short time of the examination.

  9. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images

    NASA Astrophysics Data System (ADS)

    Adamcik, Jozef; Jung, Jin-Mi; Flakowski, Jérôme; de Los Rios, Paolo; Dietler, Giovanni; Mezzenga, Raffaele

    2010-06-01

    The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections. However, the physical mechanisms responsible for amyloidosis-the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt-Jakob and Huntington's diseases-have not yet been fully elucidated. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.

  10. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy.

    PubMed

    Karvinen, K S; Moheimani, S O R

    2014-02-01

    While often overlooked, one of the prerequisites for high-speed amplitude modulation atomic force microscopy is a high-bandwidth amplitude estimation technique. Conventional techniques, such as RMS to DC conversion and the lock-in amplifier, have proven useful, but offer limited measurement bandwidth and are not suitable for high-speed imaging. Several groups have developed techniques, but many of these are either difficult to implement or lack robustness. In this contribution, we briefly outline existing amplitude estimation methods and propose a new high-bandwidth estimation technique, inspired by techniques employed in microwave and RF circuit design, which utilizes phase cancellation to significantly improve the performance of the lock-in amplifier. We conclude with the design and implementation of a custom circuit to experimentally demonstrate the improvements and discuss its application in high-speed and multifrequency atomic force microscopy. PMID:24593371

  11. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy

    SciTech Connect

    Karvinen, K. S. Moheimani, S. O. R.

    2014-02-15

    While often overlooked, one of the prerequisites for high-speed amplitude modulation atomic force microscopy is a high-bandwidth amplitude estimation technique. Conventional techniques, such as RMS to DC conversion and the lock-in amplifier, have proven useful, but offer limited measurement bandwidth and are not suitable for high-speed imaging. Several groups have developed techniques, but many of these are either difficult to implement or lack robustness. In this contribution, we briefly outline existing amplitude estimation methods and propose a new high-bandwidth estimation technique, inspired by techniques employed in microwave and RF circuit design, which utilizes phase cancellation to significantly improve the performance of the lock-in amplifier. We conclude with the design and implementation of a custom circuit to experimentally demonstrate the improvements and discuss its application in high-speed and multifrequency atomic force microscopy.

  12. A novel self-sensing technique for tapping-mode atomic force microscopy

    SciTech Connect

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  13. A novel self-sensing technique for tapping-mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ruppert, Michael G.; Moheimani, S. O. Reza

    2013-12-01

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  14. A novel self-sensing technique for tapping-mode atomic force microscopy.

    PubMed

    Ruppert, Michael G; Moheimani, S O Reza

    2013-12-01

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging. PMID:24387461

  15. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    SciTech Connect

    Ramos, Jorge R.

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  16. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy.

    PubMed

    Zhang, H L; Wang, H C; Yu, J Y

    2011-04-01

    The morphology of unmodified and organo-montmorillonite modified bitumens was investigated by atomic force microscopy. The influence of thin film oven test and ultraviolet aging on the morphology of the binders was also analysed. The atomic force microscopy results showed that bitumen displayed a 'bee-like' structure and the dimension of the 'bee-like' structures was decreased to some extent with the introduction of organo-montmorillonite. Organo-montmorillonite showed a better interaction with the dispersed domains in comparison with the matrix in bitumen, which led to an obvious increase in the contrast between the dispersed domains and the matrix in bitumen. Compared with the unmodified bitumen, the single-phase trend in the organo-montmorillonite modified bitumen could be effectively prevented during thin film oven test and ultraviolet aging, indicating its good aging resistance which was in accordance with changes in physical properties of the organo-montmorillonite modified bitumen before and after aging. PMID:21118229

  17. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect

    Pierce, Eric M

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  18. Gloss Phenomena and Image Analysis of Atomic Force Microscopy in Molecular and Cell Biology

    PubMed Central

    Zhu, Jie; Sabharwal, Tanya; Guo, Lianhong; Kalyanasundaram, Aruna; Wang, Guodong

    2010-01-01

    Summary Proper sample preparation, scan setup, data collection and image analysis are key factors in successful atomic force microscopy which can avoid gloss phenomena effectively from unreasonable manipulations or instrumental defaults. Fresh cleaved mica and newly treated glass cover were checked firstly as the substrates for all of the sample preparation for atomic force microscopy. Then, crystals contamination from buffer were studied separately or combined with several biologic samples, and the influence of scanner, scan mode and cantilever to data collection were also discussed intensively using molecular and cellular samples. At last, images treatment and analysis with off-line software had been focused on standard and biologic samples, and artificial glosses were highly considered for their high probability in occurring. PMID:19191267

  19. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    PubMed

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. PMID:25092263

  20. Nano-scale observations of tattoo pigments in skin by atomic force microscopy.

    PubMed

    Grant, Colin A; Twigg, Peter C; Tobin, Desmond J

    2015-01-01

    In this study, we have shown how particles in carbon black tattoo ink accumulate in the human skin dermis using fine-resolution atomic force microscopy, with which a single ink particle in the collagenous network can be imaged. This information further demonstrates that tattoo inks are nano-particles. Further, we have deposited a commercially available tattoo ink on a glass slide and calculated a range of volumes for single ink particles. PMID:25833630

  1. Analytical evaluation of describing functions arising from harmonic balance analysis of tapping mode atomic force microscope.

    PubMed

    Mamedov, B A

    2008-05-01

    A new algorithm of harmonic balance analysis of tapping mode atomic force microscopes has been developed. The new algorithm is applicable to analytical evaluation of a large class of common tip-sample interaction potentials. The extensive test calculations show that the proposed algorithm in this work is the efficient one in practical computations. The comparative values presented in tables are acceptable and have the excellent agreement with the numerical results. PMID:18513097

  2. Mapping of laser diode radiation intensity by atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Dunaevskii, M. S.; Slipchenko, S. O.; Podoskin, A. A.; Tarasov, I. S.

    2015-09-01

    The distribution of the intensity of laser diode radiation has been studied using an original method based on atomic-force microscopy (AFM). It is shown that the laser radiation intensity in both the near field and transition zone of a high-power semiconductor laser under room-temperature conditions can be mapped by AFM at a subwavelength resolution. The obtained patterns of radiation intensity distribution agree with the data of modeling and the results of near-field optical microscopy measurements.

  3. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Prasanth, R.; Nair, Greshma; Girish, C. M.

    2011-10-01

    Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.

  4. Tailored probes for atomic force microscopy fabricated by two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias; Sharma, Swati; Korvink, Jan G.; Schimmel, Thomas; Koos, Christian; Hölscher, Hendrik

    2016-08-01

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  5. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    PubMed

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. PMID:25754843

  6. Topography and friction properties of macromolecular thin films using atomic-force-microscopy technology

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Gan, D. J.; Kreiling, S.; Song, C. S.; Lu, S. Q.; Wang, Z. J.

    The research work in this letter is on the microtribological properties of poly(ether ketone ketone) (PEKK) and sulfonated PEKK (S-PEKK) thin films. Polystyrene (PS) was used as a reference for the investigation. Atomic-force-microscopy (AFM) techniques were used for observing the topography and friction properties of the macromolecular thin films at the nanometer scale. The polymeric thin films were fabricated by spin coating at a speed of 4000 rotations per minute (rpm).

  7. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    PubMed Central

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  8. Direct visualization and identification of biofunctionalized nanoparticles using a magnetic atomic force microscope.

    PubMed

    Block, Stephan; Glöckl, Gunnar; Weitschies, Werner; Helm, Christiane A

    2011-09-14

    Because of its outstanding ability to image and manipulate single molecules, atomic force microscopy (AFM) established itself as a fundamental technique in nanobiotechnology. (1) We present a new modality that distinguishes single nanoparticles by the surrounding magnetic field gradient. Diamagnetic gold and superparamagnetic iron oxide nanoparticles become discernible under ambient conditions. Images of proteins, magnetolabeled with nanoparticles, demonstrate the first steps toward a magnetic analogue to fluorescence microscopy, which combines nanoscale lateral resolution of AFM with unambiguous detection of magnetic markers. PMID:21819124

  9. Thermal Lifshitz Force between an Atom and a Conductor with a Small Density of Carriers

    SciTech Connect

    Pitaevskii, L. P.

    2008-10-17

    A new theory describing the interaction between atoms and a conductor with small densities of current carriers is presented. The theory takes into account the penetration of the static component of the thermally fluctuating field in the conductor and generalizes the Lifshitz theory in the presence of a spatial dispersion. The equation obtained for the force describes the continuous crossover between the Lifshitz results for dielectrics and metals.

  10. Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy.

    PubMed Central

    Schabert, F A; Engel, A

    1994-01-01

    Crystalline membranes reconstituted from Escherichia coli OmpF porin and phospholipids were adsorbed to freshly cleaved mica and imaged in solution by the atomic force microscope. The extracellular as well as the periplasmic side of the porin trimers could be identified and the conditions to record topographs at 1-nm lateral and 0.1-nm vertical resolution were established. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:7696479

  11. Nanoplough-constrictions on thin YBCO films made with atomic force microscopy.

    PubMed

    Elkaseh, A A O; Büttner, U; Meincken, M; Hardie, G L; Srinivasu, V V; Perold, W J

    2007-09-01

    Utilizing atomic force microscope (AFM) with a diamond tip, we were able to successfully plough nano-constrictions on epitaxially grown YBa2Cu3O(7-x) thin films deposited on MgO substrates. The thickness, width, and length of the obtained constrictions were in the range of a few 100 nm. Furthermore, we managed to produce a new S-type constriction, of which the dimensions are easier to control than for conventional constrictions. PMID:18019174

  12. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.; Gaimari, Stephen D.

    2003-01-01

    The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.

  13. On atomic force microscopy and the constitutive behavior of living cells

    PubMed Central

    Na, S.; Sun, Z.; Meininger, G. A.

    2004-01-01

    Atomic force microscopy (AFM) is one of many new technologies available to study the mechanical properties and mechanobiological responses of living cells. Despite the widespread usage of this technology, there has been little attempt to develop new theoretical frameworks to interpret the associated data. Rather, most analyses rely on the classical Hertz solution for the indentation of an elastic half-space within the context of linearized elasticity. In contrast, we propose a fully nonlinear, constrained mixture model for adherent cells that allows one to account separately for the contributions of the three primary structural constituents of the cytoskeleton. Moreover, we extend a prior solution for a small indentation superimposed on a finite equibiaxial extension by incorporating in this mixture model for the special case of an initially random distribution of constituents (actin, intermediate filaments, and microtubules). We submit that this theoretical framework will allow an improved interpretation of indentation force–depth data from a sub-class of atomic force microscopy tests and will serve as an important analytical check for future finite element models. The latter will be necessary to exploit further the capabilities of both atomic force microscopy and nonlinear mixture theories for cell behavior. PMID:15322929

  14. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells.

    PubMed

    Meller, Karl; Theiss, Carsten

    2006-03-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 degrees C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton. PMID:16360280

  15. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes.

    PubMed

    Anderson, Mark S; Gaimari, Stephen D

    2003-06-01

    The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry. PMID:12781663

  16. Use of atomic force microscopy (AFM) for microfabric study of cohesive soils.

    PubMed

    Sachan, A

    2008-12-01

    Microfabric reflects the imprints of the geologic and stress history of the soil deposit, the depositional environment and weathering history. Many investigators have been concerned with the fundamental problem of how the engineering properties of clay depend on the microfabric, which can be defined as geometric arrangement of particles within the soil mass. It is believed that scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are the only techniques that can reveal particle arrangements of clayey soils directly; however, current research introduces a novel and more advanced technique, atomic force microscopy, to evaluate the microfabric of cohesive materials. The atomic force microscopy has several advantages over SEM/TEM for characterizing cohesive particles at the sub-micrometre range by providing 3D images and 2D images with Z-information used in quantitative measurements of soil microfabric using SPIP software, and having the capability of obtaining images in all environments (ambient air, liquids and vacuums). This paper focuses on the use of atomic force microscopy technique to quantify the microfabric of clayey soils by developing the criteria for average and maximum values of angle of particle orientation within the soil mass using proposed empirical equations for intermediate and extreme microfabrics (dispersed, flocculated). PMID:19094019

  17. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    PubMed

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens. PMID:25041405

  18. Atomic Force Microscope Controlled Topographical Imaging and Proximal Probe Thermal Desorption/Ionization Mass Spectrometry Imaging

    SciTech Connect

    Ovchinnikova, Olga S; Kjoller, Kevin; Hurst, Gregory {Greg} B; Pelletier, Dale A; Van Berkel, Gary J

    2014-01-01

    This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nano-thermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 m x 0.8 m) was better than the resolution of the mass spectral images (2.5 m x 2.0 m), which were limited by current mass spectral data acquisition rate and system detection levels.

  19. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.

    PubMed

    Moreno, César; Stetsovych, Oleksandr; Shimizu, Tomoko K; Custance, Oscar

    2015-04-01

    Submolecular imaging by atomic force microscopy (AFM) has recently been established as a stunning technique to reveal the chemical structure of unknown molecules, to characterize intramolecular charge distributions and bond ordering, as well as to study chemical transformations and intermolecular interactions. So far, most of these feats were achieved on planar molecular systems because high-resolution imaging of three-dimensional (3D) surface structures with AFM remains challenging. Here we present a method for high-resolution imaging of nonplanar molecules and 3D surface systems using AFM with silicon cantilevers as force sensors. We demonstrate this method by resolving the step-edges of the (101) anatase surface at the atomic scale by simultaneously visualizing the structure of a pentacene molecule together with the atomic positions of the substrate and by resolving the contour and probe-surface force field on a C60 molecule with intramolecular resolution. The method reported here holds substantial promise for the study of 3D surface systems such as nanotubes, clusters, nanoparticles, polymers, and biomolecules using AFM with high resolution. PMID:25756297

  20. Harnessing the damping properties of materials for high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Adams, Jonathan D.; Erickson, Blake W.; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E.

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.