Science.gov

Sample records for atomic physics experiments

  1. 3He: cosmological and atomic physics experiments.

    PubMed

    Bunkov, Yuriy M

    2008-08-28

    Because the superfluid 3He order parameter exhibits many similarities with that of our Universe, the superfluid condensate may be considered as a quantum vacuum that carries various types of quasiparticles and topological defects. The condensate thus provides a test system for the experimental investigation of many general physics problems in cosmology, atomic or nuclear physics that are otherwise difficult or even impossible to investigate experimentally. PMID:18539575

  2. Atomic physics experiments at the high energy storage ring

    NASA Astrophysics Data System (ADS)

    Stöhlker, Thomas; Litvinov, Yuri A.; the SPARC Collaboration

    2015-11-01

    Facility for Antiproton and Ion Research (FAIR), will offer unprecedented experimental opportunities. The Stored Particles Atomic Research Collaboration (SPARC) at FAIR aims at creating a worldwide unique research program with highly charged ions by utilizing storage ring and trapping facilities. The foreseen experiments will address physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as the experiments at the border between nuclear and atomic physics. In view of the staged construction of the FAIR facility, SPARC worked out an early realization scheme for experiments with highly-charged heavy-ions at relativistic energies to be conducted in the High-Energy Storage Ring.

  3. Atomic physics experiments with stored cooled heavy ion beams

    SciTech Connect

    Datz, S.

    1986-01-01

    The wide ranging interest in the development of heavy ion synchrotrons with electron beam cooling is evident from the number of projects presently under way. Although much of the initial motivation for these rings stemmed from nuclear and particle physics, a considerable amount of atomic physics experimentation is planned. This paper surveys some of the new opportunities in atomic physics which may be made available with storage ring systems. 25 refs., 3 tabs.

  4. Enhancing the Undergraduate Experience: Atomic and Nuclear Physics Experiments at AN Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Mehta, Rahul; Addison, Stephen R.; Duggan, Jerome L.

    2009-03-01

    In this paper we will discuss experiments performed using an accelerated ion beam incident on selected targets. Some of these were: 1) Measuring Rutherford scattering and/or non-Rutherford nature of scattering as a function of scattering angle, energy of the ion beam and atomic number 2) Verifying theoretical prediction of the kinematical scattering factor by measuring the scattered ion energy 3) Particle Induced X-ray emission (PIXE) and/or Rutherford scattering to determine the elemental thickness and test the theoretical prediction for the x-ray production cross sections. 4) Determination of the mass absorption coefficient of lead using gamma ray spectroscopy 5) Nuclear reaction studies (proton on lithium fluoride) using sodium iodide detector 6) Applying X-ray fluorescence to determine elemental composition.

  5. An open source digital servo for atomic, molecular, and optical physics experiments.

    PubMed

    Leibrandt, D R; Heidecker, J

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser. PMID:26724014

  6. An open source digital servo for atomic, molecular, and optical physics experiments

    NASA Astrophysics Data System (ADS)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  7. An open source digital servo for atomic, molecular, and optical physics experiments

    SciTech Connect

    Leibrandt, D. R. Heidecker, J.

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  8. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    PubMed

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths. PMID:23387693

  9. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  10. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform

  11. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  12. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  13. Atomic and quantum physics

    SciTech Connect

    Haken, H.; Wolf, H.C.

    1987-01-01

    Atomic physics and the underlying quantum theory are the point of departure for many modern areas of physics, astrophysics, chemistry, biology, and even electrical engineering. This textbook provides a careful introduction to the results of methods of empirical atomic physics. A chapter on the quantum theory of the chemical bond provides an introduction to molecular physics. The authors also discuss laser physics and nonlinear spectroscopy, incorporating latest experimental results, and showing their relevance to basic research. Additional items included in the second edition are solutions to the exercises, derivations of the relativistic Klein-Gordon and Dirac equations, a detailed theoretical derivation of the Lamb shift, a discussion of new developments in the spectroscopy of inner shells, and new applications of NMR spectroscopy.

  14. Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics

    NASA Astrophysics Data System (ADS)

    Brandau, Carsten; Kozhuharov, Christophor; Lestinsky, Michael; Müller, Alfred; Schippers, Stefan; Stöhlker, Thomas

    2015-11-01

    A brief review about topical developments in the exploitation of the resonant electron-ion collision process of dielectronic recombination (DR) as a sensitive spectroscopic tool is given. The focus will be on DR storage-ring experiments of few-electron highly charged ions. Among others, the questions addressed in these studies cover diverse topics from the areas of strong-field quantum electrodynamics, of lifetime studies using DR resonances, and of nuclear physics. Examples from the storage rings CRYRING in Stockholm, TSR in Heidelberg, and ESR in Darmstadt are given. In addition, an overview is provided about the ongoing developments and future perspectives of DR collision spectroscopy at the upcoming Facility for Antiproton and Ion Research in Darmstadt, Germany.

  15. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  16. First atomic physics experiments with cooled stored ion beams at the Heidelberg heavy-ion ring TSR

    SciTech Connect

    Wolf, A.; Balykin, V.; Baumann, W.; Berger, J.; Bisoffi, G.; Blatt, P.; Blum, M.; Faulstich, A.; Friedrich, A.; Gerhard, M.; Geyer, C.; Grieser, M.; Grieser, R.; Habs, D.; Heyng, H.W.; Hochadel, B.; Holzer, B.; Huber, G.; Jaeschke, E.; Jung, M.; Karafillidis, A.; Kilgus, G.; Klein, R.; Kraemer, D.; Krause, P.; Krieg, M.; Kuehl, T.; Matl, K.; Mueller, A.; Music, M.; Neumann, R.; Neureither, G.; Ott, W.; Petrich, W.; Povh, B.; Repnow, R.; Schroeder, S.; Schuch, R.; Schwalm, D.; Sigray, P.; Steck, M.; Stokstad, R.; Szmola, E.; Wagner, M.; Wanner, B.; Welti, K.; Zwickler, S. Max-Planck-Institut fuer Kernphysik, Heidelberg Manne Siegbahn Institute , Stockholm Institut fuer Kernphysik, Universitaet Giessen, Institut fuer Physik, Universitaet Mainz Gesellschaft fuer Schwerionenforschung , Darmstadt (Fed

    1990-06-01

    An overview of atomic physics experiments at the heavy ion Test Storage Ring (TSR) is given. Highly charged ions up to fully stripped silicon have been stored at energies between 4 and 12 MeV/u. The enhancement of the beam intensity by stacking, the beam lifetime, and electron cooling of these ion beams are discussed. Radiative and state-selective dielectronic recombination rates of hydrogen-like oxygen ions with free electrons from the electron cooler were measured. Beam noise spectra are being investigated with regard to collective effects caused by the Coulomb interaction in the cold ion beams. Resonance fluorescence from stored single-charged ions was observed using tunable narrow-band lasers. First indications of laser cooling in a storage ring were seen.

  17. Contemporary Aspects of Atomic Physics

    ERIC Educational Resources Information Center

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  18. Four Weeks of Atomic Physics.

    ERIC Educational Resources Information Center

    Lo Presto, Michael C.

    1995-01-01

    Describes a strategy for presenting ideas of atomic physics in the laboratory portion of the course before it is introduced during a lecture in order to give students an appreciation for the concepts involved, a historical look at how the field developed, and a comprehensive review of physics concepts. Presents a worksheet for the Bohr atom

  19. Atomic Physics at Ultrahigh Resolution

    NASA Astrophysics Data System (ADS)

    Schlachter, Fred

    1997-04-01

    A new " third" generation of synchrotron light sources is providing ultraviolet and x-ray beams of unprecedented brightness for research in atomic and molecular physics. The very high brightness of these light sources has lead to experimental breakthroughs in AMO physics by allowing high spectral resolution with high flux, or ultrahigh spectral resolution with reduced flux. An example of the former is studies of the production and decay channels of hollow lithium atoms by Francois Wuilleumier and coworkers (S. Diehl et al, Phys. Rev. Lett. 76, 3915 (1996); D. Cubaynes et al, Phys. Rev. Lett. 77, 2194 (1996).). All three electrons in lithium atoms are simultaneously excited by a single photon-a direct manifestation of electron correlation-and the decay channels through various states of Li^+ and Li^++ are studied by electron spectroscopy. (A triply excited lithium atom is called "hollow" because the inner K shell is empty.) These studies have been conducted for lithium atoms in both the ground state and the 1s^22p excited states. An improvement of a factor of fifty in photon- and electron-energy resolution and count rate has been obtained for the experiment at the ALS relative to SuperACO. Photoabsorption studies of doubly excited autoionizing states of helium atoms by Gunter Kaindl and coworkers (K. Schulz et al, Phys. Rev. Lett. 77, 3086 (1996).) have achieved ultrahigh spectral resolution at reduced flux: a resolution of 1 meV at 64 eV was obtained for a record resolving power of 64,000, a factor of four higher than the best previously obtained at BESSY. New Rydberg series and resonances below the N=3 threshold of doubly excited helium were observed, and the resolution was measured for the ?-eV-wide 2,-13 resonance. (These states of helium could be called "hollow" by analogy to the lithium case.) Other recent experiments at third-generation light sources include measurement of fluorescence from doubly excited states of argon (D. Jaecks et al, private communication.), photoabsorption measurements of doubly excited states of neon and argon (L. Avaldi et al, J. Phys. B 29, L737 (1996).), and electron spectroscopy of decay of doubly excited autoionizing states of helium (A. Menzel et al, Phys. Rev. Lett. 75, 1479 (1995).). These represent only a sample of the results being obtained by ultrahigh-resolution spectroscopy at the new third-generation synchrotron light sources.

  20. Atomic-Nuclear Coupling Experiments

    SciTech Connect

    Becker, J. A.

    2006-03-13

    Atomic-nuclear coupling experiments are described, with an emphasis on recent experiments aimed at demonstrating the NEET mechanism in atomic nuclei. Upper limits for x-ray induced decay of the Hf-178 31-y isomer reported by Ahmad and his colleagues are presented, and these upper limits are contrasted with the positive reports of Collins and coworkers.

  1. Atomic-Nuclear Coupling Experiments

    SciTech Connect

    Becker, J A

    2005-10-25

    Atomic-nuclear coupling experiments are described, with an emphasis on recent experiments aimed at demonstrating the NEET mechanism in atomic nuclei. Upper limits for x-ray induced decay of the Hf-178 31-y isomer reported by Ahmad and his colleagues are presented, and these upper limits are contrasted with the positive reports of Collins and coworkers.

  2. Atomic-Nuclear Coupling Experiments

    NASA Astrophysics Data System (ADS)

    Becker, J. A.

    2006-03-01

    Atomic-nuclear coupling experiments are described, with an emphasis on recent experiments aimed at demonstrating the NEET mechanism in atomic nuclei. Upper limits for x-ray induced decay of the Hf-178 31-y isomer reported by Ahmad and his colleagues are presented, and these upper limits are contrasted with the positive reports of Collins and coworkers.

  3. A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings

    NASA Astrophysics Data System (ADS)

    Trageser, C.; Brandau, C.; Kozhuharov, C.; Litvinov, Yu A.; Müller, A.; Nolden, F.; Sanjari, S.; Stöhlker, T.

    2015-11-01

    A new continuous and broadband data acquisition system for measurements of Schottky-signals of ions revolving in a storage ring has been implemented. This set-up is capable of recording the radio frequency (RF) signal of the ions that circulate in the storage ring with a sustained acquisition rate of more than 3.5× {10}7 IQ-samples per second. This allows several harmonics of the full momentum acceptance of a storage ring to be measured at the same time. The RF signal analyzer modules are complemented by further electronic modules such as counters, precision clocks and synchronization modules that facilitate a seamless integration with main experimental data acquisitions for atomic and nuclear physics. In this contribution, the setup and first results from a test run at the experimental storage ring at GSI, Darmstadt, Germany, are presented.

  4. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    Atom optics has been a highly active field of research with many scientific breakthroughs over the past two decades, largely due to successful advances in laser technology, microfabrication techniques, and the development of laser cooling and trapping of neutral atoms. This dissertation details several atom optics experiments with the motivation to develop tools and techniques for precision atom wave interferometry. It provides background information about atom optics and the fundamentals behind laser cooling and trapping, including basic techniques for cold gas thermometry and absorptive detection of atoms. A brief overview of magnetic trapping and guiding in tight wire-based traps is also provided before the experimental details are presented. We developed a novel laser source of 780 nm light using frequency-doubled 1560 nm fiber amplifier. This laser system provided up to a Watt of tunable frequency stabilized light for two Rb laser cooling and trapping experiments. One system generates Bose-Einstein condensates in an optical trap while the second is based on atom chip magnetic traps. The atom chip system, detailed in this thesis, was designed and built to develop the tools necessary for transport and loading large numbers of cold atoms and explore the potential for guided atom interferometry. Techniques and results from this experiment are presented, including an efficient magnetic transport and loading method to deliver cold atom to atom chip traps. We also developed a modeling tool for the magnetic fields formed by coiled wire geometries, as well as planar wire patterns. These models helped us design traps and determine adiabatic transportation of cold atoms between macro-scale traps and micro-traps formed on atom chips. Having achieved near unity transfer efficiency, we demonstrated that this approach promises to be a consistent method for loading large numbers of atoms into micro-traps. Furthermore, we discuss an in situ imaging technique to investigate magnetic field contours of the traps and the dynamics of atoms within those confining potentials. We also controlled the propagation along the atom chip guides by accelerating atoms with longitudinal magnetic gradients, and investigated an atom focusing scheme. While the atom chip wire guides perform a role analogous to optical fibers guiding light waves, "free space" cold atoms offer great opportunity for precision interferometry. We describe a second on-going atom optics experiment that measures gravity gradients using a pair of atom fountain interferometers separated by one meter. We have demonstrated Gravity Gradiometer resolution down to 4x10-9 g/m using a 40 kg test mass. The atomic physics subsystem is described in detail, including the vacuum, cold atom source, optics, magnetic coils and shields, and vibration isolation and compensation. The system is designed to be a compact, robust, transportable instrument, taking strides towards future gravity gradient measurements in the field. In the realm of space applications, there has been interest for micro-gravity science experiments aboard the International Space Station, along with instrument development for gravity mapping of Earth and planetary bodies with satellite-based instruments. Furthermore, there are ground-based applications for gravity imaging of local density distributions, precision measurement of gravity, as well as proposals for redefining the kilogram, detecting gravitational waves and determining the Gravitational constant.

  5. Physical Limits on Atomic Resolution

    NASA Astrophysics Data System (ADS)

    van Dyck, D.; van Aert, S.; den Dekker, A. J.

    2004-02-01

    It is shown that the ultimate resolution is not limited by the bandwidth of the microscope but by the bandwidth (i.e., the scattering power) of the object. In the case of a crystal oriented along a zone axis, the scattering is enhanced by the channeling of the electrons. However, if the object is aperiodic along the beam direction, the bandwidth is much more reduced. A particular challenge are the amorphous objects. For amorphous materials, the natural bandwidth is that of the single atom and of the order of 1 [Angstrom capital A, ring][minus sign]1, which can be reached with the present generation of medium voltage microscopes without aberration correctors. A clear distinction is made between resolving a structure and refining, that is, between resolution and precision. In the case of an amorphous structure, the natural bandwidth also puts a limit on the number of atom coordinates that can be refined quantitatively. As a consequence, amorphous structures cannot be determined from one projection, but only by using atomic resolution tomography. Finally a theory of experiment design is presented that can be used to predict the optimal experimental setting or the best instrumental improvement. Using this approach it is suggested that the study of amorphous objects should be done at low accelerating voltage with correction of both spherical and chromatic aberration.

  6. Physics Teaching Experience

    NASA Astrophysics Data System (ADS)

    2011-03-01

    As we saw in the January 2011 column, less than half of the teachers who teach high school physics have a degree in physics or physics education. However, this does not necessarily imply that the teachers are not qualified to teach physics. It is likely that some of the non-degreed physics teachers began teaching physics at the request of a principal or science department leader and liked it enough to seek additional training that did not lead to a formal degree. For example, some teachers have told us about NSF-funded summer programs that they attended that dramatically affected the way they teach physics. Furthermore, the teachers learn from experience. About two-thirds of physics teachers have taught physics for as many or more years than they have taught any other subject. The figure shows the relationship between a teacher's physics teaching experience and the type of physics degree they hold. In the April issue of The Physics Teacher, we will highlight demographics of high school physics teachers. If you have any questions or comments, please contact Susan White at swhite@aip.org. Susan is Research Manager in the Statistical Research Center at the American Institute of Physics and directs the high school survey.

  7. Some Experiments in Atomic Structure

    ERIC Educational Resources Information Center

    Logan, Kent R.

    1974-01-01

    The role of spectral color slides in laboratory situations is discussed, then experiments for secondary school students concerning color and wave length, evidence of quantization, and the ionization energy of the hydrogen atom are outlined. Teaching guidelines for creating a set of spectrograms and photographic specifications are provided. (DT)

  8. Atomic physics in strong fields

    SciTech Connect

    Chu, Shih-I.

    1992-04-01

    This report discusses: Microwave Driven Multiphoton Excitation Dynamics in Rydberg Atoms; Nonadiabatic Geometric Phases of Multiphoton Transitions in Dissipative Systems and Spin-j Systems; and Nonperturbative Treatments of Atomic and Molecular Processes in Intense Laser Fields.

  9. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    2005-11-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  10. Relativistic atomic physics at the SSC

    SciTech Connect

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  11. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  12. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  13. Atomic physics of relativistic high contrast laser-produced plasmas in experiments on Leopard laser facility at UNR

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Faenov, A. Y.; Safronova, U. I.; Wiewior, P.; Renard-Le Galloudec, N.; Esaulov, A. A.; Weller, M. E.; Stafford, A.; Wilcox, P.; Shrestha, I.; Ouart, N. D.; Shlyaptseva, V.; Osborne, G. C.; Chalyy, O.; Paudel, Y.

    2012-06-01

    The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10-7) to moderate (10-5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ˜ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (˜1019 W/cm2) indicate electron beams, while at lower intensities (˜1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.

  14. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  15. Atomic physics using large electrostatic accelerators

    SciTech Connect

    Datz, S.

    1989-01-01

    This article surveys some areas of atomic physics using large electro-static accelerators. Brief overviews of ion-atom collisions and ion-solid collisions are followed by a classified listing of recent paper. A single line, correlated electron ion recombination, is chosen to show the recent development of techniques to study various aspects of this phenomenon. 21 refs., 11 figs., 1 tab.

  16. Atomic physics in strong fields

    SciTech Connect

    Chu, Shih-I.

    1991-06-01

    This report discusses the following topics: nonadiabatic geometric phases of multiphoton transitions; nonperturbative treatments of level shifts of excited states in strong fields; multiple high-order harmonic generation in intense laser fields; quantum fractal character of quasi-energy states in multi-color fields; complex- scaling Fourier-grid Hamiltonian method for intense-field multiphoton resonances; and microwave driven multiphoton excitation dynamics in Rydberg atoms: Fast Fourier transformation propagation method.

  17. Atomic Physics, Science (Experimental): 5318.42.

    ERIC Educational Resources Information Center

    Petit, Ralph E.

    Presented is the study of modern and classical concepts of the atom; the structure of the atom as a mass-energy relationship; practical uses of radioactivity; isotopes; and the strange particles. Performance objectives (16) are included as well as a detailed course outline. Experiments, demonstrations, projects and reports to enhance student…

  18. Crucial Experiments in Quantum Physics.

    ERIC Educational Resources Information Center

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  19. The atomic physics facility at the LBL ECR Source

    SciTech Connect

    Clark, D.J.; Lyneis, C.M.; Prior, M.H.; Stokstad, R.G.; Chantrenne, S.; Egan, P.O.

    1989-04-01

    A low energy beam line facility for atomic and surface physics research has been added to the injection line of the ECR source at the LBL 88-Inch Cyclotron. Beams throughout the periodic table can be delivered to 3 beam line stations at energies up to 15 Q keV. Experiments using this facility include forbidden line emission from the ion beam, ion-atom collisions, merged electron-ion beams and sputtering by highly charged ions. 9 refs., 4 figs.

  20. Atomic physics at high brilliance synchrotron sources: Proceedings

    NASA Astrophysics Data System (ADS)

    Berry, G.; Cowan, P.; Gemmell, D.

    1994-08-01

    This report contains papers on the following topics: present status of Spring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba(+) ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant Raman scattering by synchrotron radiation; Auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements - the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of Compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere.

  1. High School Physics Teaching Experience

    ERIC Educational Resources Information Center

    Physics Teacher, 2012

    2012-01-01

    We divided our high school physics teaching experience into three groups: first year teaching physics, second or third year teaching physics, and four or more years of experience teaching physics. We did this because everything is new for teachers teaching a course for the first time. The second and third time through the course, teachers learn…

  2. Sustained spheromak physics experiment

    SciTech Connect

    Hooper, E B

    1998-09-29

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring Te> 100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spberomak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ("gun") are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the. magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined 0- and X-modes and by a transient internal probe (TIP).

  3. Guide to Laboratory Practicum in Atomic Physics

    NASA Astrophysics Data System (ADS)

    Burbulea, N. F.; Golban, G. N.; Scurtul, V. V.; Oleynik, V. A.

    1980-12-01

    The broshure represents a collection of 11 Laboratory works in Quantum Optics, Semiconductor, Atomic and Nuclear Physics for students of 2-nd years from Technical High Schools. A minimum of theoretical knowledges is given as well as a description of experimental installation (setup),a number of control questions and a task to be carried out is presented for every of the Laboratory work.

  4. Atomic and molecular physics at LURE

    SciTech Connect

    Morin, P.

    1994-08-01

    A short overview of the present research activity at LURE is given, in the field of atomic and molecular physics. Three selected examples are discussed in more detail and the {open_quotes}SOLEIL{close_quotes} project of a new French synchrotron facility is presented.

  5. Essay: Fifty Years of Atomic, Molecular and Optical Physics in Physical Review Letters

    NASA Astrophysics Data System (ADS)

    Haroche, Serge

    2008-10-01

    The fiftieth anniversary of Physical Review Letters is a good opportunity to review the extraordinary progress of atomic, molecular, and optical physics reported in this journal during the past half-century. As both a witness and an actor of this story, I recall personal experiences and reflect about the past, present, and possible future of my field of research.

  6. "Atomic, Molecular and Optical Physics Inside"

    NASA Astrophysics Data System (ADS)

    Garscadden, Alan

    2002-05-01

    I was fortunate to enjoy the advice of K. G. Emeleus during my graduate studies and for many years afterwards. He introduced me to the papers of Will Allis and later I was privileged to correspond with him. At this time I had moved from the Queens university environment to work at a large Air Force base. A personal overview is presented on the many roles that atomic, molecular and optical physics, including gaseous electronics, play in programs of the AFRL and subsequently on AF systems and operations. AFRL is not only a laboratory; it is also a defense contracting and evaluation agency. The AF sponsors basic research for several reasons:- to have an educated populace and a highly qualified work force for the nation; to enhance the technology options available to the commerce of the nation; to advance national prestige and to provide the Air Force with the best technical capabilities. The organization of AF science and technology starts with the AFOSR as the single manager of AF basic research, (6.1) funded at approximately 221M per year of which more than 70there are the Exploratory Development programs (6.2 at 695M annually) managed by AFRL where concepts are evaluated and components are developed. These programs involve industry and many universities, especially in cooperation with companies. Some of these programs that succeed transition into advanced development (6.3 at $465M annually) where integration occurs to provide a subsystem or system. While there have been misses, overall there have been many successes with impacts that provide more effective systems as recent experiences have demonstrated. The R process and planning are quite involved with Darwinian competitions for resources which then impact the research initiatives, to which principal investigators are requested to respond. Some example studies, involving primarily electron collisions, lasers, flows and combustion physics, successful and unsuccessful, are discussed.

  7. Optically pumped semiconductor lasers for atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  8. Physical experience enhances science learning.

    PubMed

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. PMID:25911125

  9. Experiments with optically trapped sodium atoms

    NASA Astrophysics Data System (ADS)

    Lee, Heun Jin

    A series of experiments have been performed with optically trapped sodium atoms. The goal of these experiments was to find innovative roles for far-detuned optical dipole traps in the areas of atom interferometry and laser cooling. A particular focus related to the latter goal was the attainment of Bose-Einstein Condensation (BEC) by performing laser cooling on optically trapped atoms. Up to 106 optically trapped atoms have been cooled to phase space densities as high as ˜1/70 in 150 milliseconds. These results represented one of the closest approaches to BEC by primarily optical means; moreover, the cooling times are one to two orders of magnitude less than that needed by rf evaporation. Additional experiments demonstrating the benefits of an optically based approach are discussed, namely, demonstrations of long coherence times and evaporative cooling.

  10. CAI Physics Experiments

    ERIC Educational Resources Information Center

    Lindsay, Robert E.

    1970-01-01

    Describes a novel instructional method for physics involving the use of a computer assisted instruction system equipped with cathode-ray-tube terminals, light pen, and keyboard input. Discusses exercises with regard to content, mediation, scoring and control. Several examples of exercises are given along with results from student evaluation. (LC)

  11. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  12. Precision atomic physics techniques for nuclear physics with radioactive beams

    NASA Astrophysics Data System (ADS)

    Blaum, Klaus; Dilling, Jens; Nrtershuser, Wilfried

    2013-01-01

    Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results are discussed.

  13. Planning a School Physics Experiment.

    ERIC Educational Resources Information Center

    Blasiak, Wladyslaw

    1986-01-01

    Presents a model for planning the measurement of physical quantities. Provides two examples of optimizing the conditions of indirect measurement for laboratory experiments which involve measurements of acceleration due to gravity and of viscosity by means of Stokes' formula. (ML)

  14. Progress of Atomic and Molecular Physics for Chinese Scientific Data Community

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ming; Han, Xiao-Ying

    2009-05-01

    We will report some progress of Atomic and Molecular Physics in China, especially for national needs such as astrophysics, energy, environment and medical physics research programs etc.. Various theoretical activities and experimental activities have been initiated by Chinese Research Association of Atomic and Molecular Data. For example, in order to manage huge sets of energy levels for atoms (atomic ions) required in our national energy and astrophysical research programs, we focus a manageable set of physical parameters in multichannel quantum defect theory (MQDT) based on which the huge atomic energy levels can be reproduced without missing any one. We also elucidate the physical meanings of such MQDT physical parameters which are related to scattering matrices of electron-ion collisions. Huge sets of collision data can also be managed. The scenario can also be extended to molecular data required in our national environmental research programs. In order to provide benchmark examinations of atomic and molecular data, we also report some progresses of atomic and molecular experimental measurements such as electron scattering experiments, storage ring experiments, laser spectroscopy and molecular beam experiments etc.. In order to pursue precise measurements in physics, there are also some attempts to set up atomic experiments by laser cooling techniques. Some atomic interference experiments are also reported.

  15. More Homespun Experiments in Physics.

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1979-01-01

    Describes how some experiments in physics can be presented in class using cheap materials. How to produce an electrostatic charge using a polythene bottle and how to make a tissue paper electroscope using a tin can are among the experiments described. (HM)

  16. Atomic Hong-Ou-Mandel experiment

    NASA Astrophysics Data System (ADS)

    Lopes, R.; Imanaliev, A.; Aspect, A.; Cheneau, M.; Boiron, D.; Westbrook, C. I.

    2015-04-01

    Two-particle interference is a fundamental feature of quantum mechanics, and is even less intuitive than wave-particle duality for a single particle. In this duality, classical concepts--wave or particle--are still referred to, and interference happens in ordinary space-time. On the other hand, two-particle interference takes place in a mathematical space that has no classical counterpart. Entanglement lies at the heart of this interference, as it does in the fundamental tests of quantum mechanics involving the violation of Bell's inequalities. The Hong, Ou and Mandel experiment is a conceptually simpler situation, in which the interference between two-photon amplitudes also leads to behaviour impossible to describe using a simple classical model. Here we report the realization of the Hong, Ou and Mandel experiment using atoms instead of photons. We create a source that emits pairs of atoms, and cause one atom of each pair to enter one of the two input channels of a beam-splitter, and the other atom to enter the other input channel. When the atoms are spatially overlapped so that the two inputs are indistinguishable, the atoms always emerge together in one of the output channels. This result opens the way to testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, and to testing theories of the quantum-to-classical transition. Our work also demonstrates a new way to benchmark non-classical atom sources that may be of interest for quantum information processing and quantum simulation.

  17. I.I. Rabi Prize in Atomic, Molecular and Optical Physics Talk: Novel Quantum Physics in Few- and Many-body Atomic Systems

    NASA Astrophysics Data System (ADS)

    Chin, Cheng

    2011-05-01

    Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.

  18. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  19. Atomic frequency standard relativistic Doppler shift experiment

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  20. Atomic physics and non-equilibrium plasmas

    SciTech Connect

    Weisheit, J.C.

    1986-04-25

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

  1. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  2. [The physics of coal liquid slurry atomization]. Annual report 1992

    SciTech Connect

    Chigier, N.; Brown, W.J.

    1994-06-01

    In order to understand the physics of atomization and to predict and improve the performance of atomizers, a survey on the effects of turbulence on atomization has been made. The influence of gas turbulence intensity on the disintegration of a liquid jet, while a constant mean velocity in both gas and liquid streams has been maintained, has been studied. A study has been made of the influence of changing dynamic surface tension on liquid surface wave characteristics and atomization. The dynamic surface tension of water was changed by adding Triton X-100 non-ionic surfactant into the liquid supplied to a two dimensional slot atomizer. Wave frequencies were measured using laser beam attenuation. Dynamic surface tension changes were found to influence liquid sheet disintegration with little effect on wave frequencies. A series of experiments have been conducted to determine the fundamental processes of injection and atomization of liquid propellants for rocket combustion chambers because of their direct influence on combustion instability. For coaxial injectors, liquid and gas flow rates have been progressively changed. Microphotography was used to obtain details of wave disturbances on liquid surfaces. Direct measurements were made of wavelength and frequency of wave propagation on liquid surfaces. Frequency was found to remain constant along the length of the liquid surface. Pulsations in the liquid jet caused drops to form clusters with the same frequency as that of jet surface waves. Measured frequencies were in the range of those measured in combustion instability experiments. Detailed measurements have been made in the sprays using the phase Doppler particle analyzer. Measurements of drop size, velocity and number density are related to the disintegration process. Increasing turbulence intensity in the gas stream is a very effective means of reducing drop size, increasing spray width, and therefore, improving combustion.

  3. Atomic physics in strong fields. Progress report

    SciTech Connect

    Chu, Shih-I

    1992-04-01

    This report discusses: Microwave Driven Multiphoton Excitation Dynamics in Rydberg Atoms; Nonadiabatic Geometric Phases of Multiphoton Transitions in Dissipative Systems and Spin-j Systems; and Nonperturbative Treatments of Atomic and Molecular Processes in Intense Laser Fields.

  4. Optical physics: Ultrashort light pulses shake atoms

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Taec

    2016-02-01

    The response of electrons in atoms to ultrashort optical light pulses has been probed by measuring the ultraviolet light emitted by the atoms. This reveals that a finite time delay occurs before the response. See Letter p.66

  5. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. Supported by Grants-in-Aid for Scientic Research (Nos. 21104005 and 26220705).

  6. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  7. Sustained Spheromak Physics Experiment, SSPX

    SciTech Connect

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  8. Project Physics Text 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  9. On the utility and ubiquity of atomic collision physics

    SciTech Connect

    Datz, S.

    1989-01-01

    This paper is divided into three parts. In the introduction, we discuss the history and makeup of ICPEAC. In the second part, we discuss the extent of applicability of atomic collision physics. In the third part, we chose one subject (dielectronic excitation) to show the interrelationship of various sub-branches of atomic collision physics. 28 refs., 14 figs.

  10. GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS THE WHITE DOME STRUCTURE. THE SHED-LIKE STRUCTURE TO THE LEFT IS THE SEARCH-LIGHT BUILDING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Atomic Physics Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  11. Solid Hydrogen Experiments for Atomic Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2001-01-01

    This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  12. Quantum feedback experiments with atoms and cavities

    NASA Astrophysics Data System (ADS)

    Raimond, Jean-Michel

    2012-06-01

    Quantum feedback transposes the usual feedback loop concept into the quantum world. A measurement performed on the system by the sensor is used by a controller to infer the system's state and to steer it towards the target by the action of the actuator. This scheme has to face a fundamental difficulty, since the measurement changes the system's state. This back-action makes quantum feedback algorithms more complex than their classical counterparts. We report the first successful operation of a repeated quantum feedback loop [1]. It prepares photon number states (from 0 to 4 photons) on-demand in a superconducting microwave cavity and subsequently reverses the effect of decoherence-induced quantum jumps. The quantum sensors are circular Rydberg atoms, performing a Quantum Non Demolition (QND) measurement of the cavity field. Information they provide is used by the controller (real-time computer) to estimate the field state. The controller determines the amplitude of a coherent displacement leading the cavity closer to the target This displacement is performed by a microwave source acting as the actuator. Iterations of this loop rapidly drive the cavity towards the prescribed target. When it is reached, the actuator idles. It resumes operation when atomic detections indicate that a photon has been lost, or that a thermal photon has appeared. The feedback compensates for these quantum jumps and rapidly restores the field in the target state. In a variant of the experiment, we use quantum actuators, resonant atoms that feed photons back in the cavity when they get lost. This more efficient scheme allows us to stabilize higher photon numbers. These experiments are a first step towards the use of quantum feedback to protect fragile quantum resources. We also consider an alternative route towards state protection based on reservoir engineering [2]. [4pt] [1] C. Sayrin et al. Nature (London) 477, 73 (2011)[0pt] [2] A. Sarlette et al. Phys. Rev. Lett. 107, 010402 (2011)

  13. Divertor bias experiments. General Atomics Project 3466

    SciTech Connect

    Staebler, G.M.

    1994-06-01

    Electrical biasing of the divertor target plates has recently been implemented on several tokamaks. The results of these experiments to date will be reviewed in this paper. The bias electrode configuration is unique in each experiment. The effects of biasing on the scrape-off layer (SOL) plasma also differ. By comparing results between machines, and using theoretical models, an understanding of the basic physics of biasing begins to emerge. Divertor biasing has been demonstrated to have a strong influence on the particle and energy transport within the SOL. The ability to externally control the SOL plasma with biasing has promising applications to future tokamak reactors.

  14. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  15. Physics with the ALICE experiment

    SciTech Connect

    Kharlov, Yu. V.

    2013-12-15

    ALICE experiment at LHC collects data in pp collisions at 1497-1 = 0.9, 2.76, and 7 TeV and in PbPb collisions at 2.76 TeV. Highlights of the detector performance and an overview of experimental results measured with ALICE in pp and AA collisions are presented in this paper. Physics with protonproton collisions is focused on hadron spectroscopy at low and moderate p{sub t}. Measurements with lead-lead collisions are shown in comparison with those in pp collisions, and the properties of hot quark matter are discussed.

  16. MISSE Scattered Atomic Oxygen Characterization Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2006-01-01

    An experiment designed to measure the atomic oxygen (AO) erosion profile of scattered AO was exposed to Low Earth Orbital (LEO) AO for almost four years as part of the Materials International Space Station Experiment 1 and 2 (MISSE 1 and 2). The experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), Tray 1, attached to the exterior of the International Space Station (ISS) Quest Airlock. The experiment consisted of an aperture disk lid of Kapton H (DuPont) polyimide coated on the space exposed surface with a thin AO durable silicon dioxide film. The aperture lid had a small hole in its center to allow AO to enter into a chamber and impact a base disk of aluminum. The AO that scattered from the aluminum base could react with the under side of the aperture lid which was coated sporadically with microscopic sodium chloride particles. Scattered AO erosion can occur to materials within a spacecraft that are protected from direct AO attack but because of apertures in the spacecraft the AO can attack the interior materials after scattering. The erosion of the underside of the Kapton lid was sufficient to be able to use profilometry to measure the height of the buttes that remained after washing off the salt particles. The erosion pattern indicated that peak flux of scattered AO occurred at and angle of approximately 45 from the incoming normal incidence on the aluminum base unlike the erosion pattern predicted for scattering based on Monte Carlo computational predictions for AO scattering from Kapton H polyimide. The effective erosion yield for the scattered AO was found to be a factor of 0.214 of that for direct impingement on Kapton H polyimide.

  17. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  18. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…

  19. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  20. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,

  1. Essen and the National Physical Laboratory's atomic clock

    NASA Astrophysics Data System (ADS)

    Henderson, Dale

    2005-06-01

    To commemorate the fiftieth anniversary of the development of the first atomic frequency standard, we present some notes about the work of Louis Essen at the National Physical Laboratory. In addition, we publish below some personal recollections of Essen on his work, which have previously been available only on the Internet (http://www.btinternet.com/~time.lord/TheAtomicClock.htm).

  2. Superconducting microwave resonators for physics experiments

    NASA Astrophysics Data System (ADS)

    Klein, N.; Mueller, G.; Piel, H.; Schurr, J.

    1989-03-01

    Superconducting resonators at K-band frequencies have been developed for different applications in general physics. Niobium pillbox cavities have been built for the one-atom maser experiment by which the interaction of Rydberg atoms with single microwave photons has been investigated. At 21.5 GHz and 1.3 K, quality factors of up to 10 to the 11th were obtained. Coating of the cavity with Nb3Sn resulted in quality factors of 6 x 108 at 4.2 K and 6 x 10 9th at 2 K. A superconducting Fabry-Perot resonator consisting of two spherically curved niobium mirrors was also investigated. The quality factor of 1.8 x 10 to the 7th measured at 25 GHz and 4.2 K was found to be two orders of magnitude higher than for a corresponding copper resonator. Fabry-Perot resonators can be used for detecting small position changes for one mirror with respect to another caused by gravitational forces. First experiments with copper Fabry-Perot mirrors suspended in a vacuum chamber provided a maximum sensitivity for a gravitational acceleration of one mirror of 4 x 10 to the -11th m/sec sq. These results are promising for a possible fifth force detector based on a superconducting Fabry-Perot resonator.

  3. NASA GSFC Science Symposium on Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  4. Quantum Hall physics with cold atoms in cylindrical optical lattices

    NASA Astrophysics Data System (ADS)

    ?cki, Mateusz; Pichler, Hannes; Sterdyniak, Antoine; Lyras, Andreas; Lembessis, Vassilis E.; Al-Dossary, Omar; Budich, Jan Carl; Zoller, Peter

    2016-01-01

    We propose and study various realizations of a Hofstadter-Hubbard model on a cylinder geometry with fermionic cold atoms in optical lattices. The cylindrical optical lattice is created by copropagating Laguerre-Gauss beams, i.e., light beams carrying orbital angular momentum. By strong focusing of the light beams we create a real-space optical lattice in the form of rings, which are offset in energy. A second set of Laguerre-Gauss beams then induces a Raman-hopping between these rings, imprinting phases corresponding to a synthetic magnetic field (artificial gauge field). In addition, by rotating the lattice potential, we achieve a slowly varying flux through the hole of the cylinder, which allows us to probe the Hall response of the system as a realization of Laughlin's thought experiment. We study how in the presence of interactions fractional quantum Hall physics could be observed in this setup.

  5. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  6. Origin of the Universal Three-body Parameter in Atomic Efimov Physic

    NASA Astrophysics Data System (ADS)

    Naidon, Pascal; Endo, Shimpei; Ueda, Masahito

    2013-05-01

    Several experiments with different kinds of ultra-cold atoms have revealed that the three-body parameter that fixes the Efimov spectrum of few-atom systems near broad Feshbach resonances is universally determined by the atoms' van der Waals length. Using model potential calculations we find that the three-body parameter originates from a deformation of the three-atom system due to universal two-body correlations at separations on the order of the van der Waals length scale. This simple physical picture is consistent with the universality of the three-body parameter observed in the experiments, as well as previous numerical calculations. It explains why the low-energy physics of three bosonic atoms near a broad resonance is solely determined by their two-body parameters.

  7. Physics of Polarized Scattering at Multi-level Atomic Systems

    NASA Astrophysics Data System (ADS)

    Stenflo, J. O.

    2015-03-01

    The symmetric peak observed in linear polarization in the core of the solar sodium D1 line at 5896 Å has remained enigmatic since its discovery nearly two decades ago. One reason is that the theory of polarized scattering has not been experimentally tested for multi-level atomic systems in the relevant parameter domains, although the theory is continually being used for the interpretation of astrophysical observations. A laboratory experiment that was set up a decade ago to find out whether the D1 enigma is a problem of solar physics or quantum physics revealed that the D1 system has a rich polarization structure in situations where standard scattering theory predicts zero polarization, even when optical pumping of the m state populations of the hyperfine-split ground state is accounted for. Here we show that the laboratory results can be modeled in great quantitative detail if the theory is extended to include the coherences in both the initial and final states of the scattering process. Radiative couplings between the allowed dipole transitions generate coherences in the initial state. Corresponding coherences in the final state are then demanded by a phase closure selection rule. The experimental results for the well understood D2 line are used to constrain the two free parameters of the experiment, collision rate and optical depth, to suppress the need for free parameters when fitting the D1 results.

  8. Progress of highly charged atomic physics at IMP

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zhu, X. L.; Liu, H. P.; Li, B.; Wei, B. R.; Sha, S.; Cao, S. P.; Chen, L. F.; Zhang, S. F.; Feng, W. T.; Zhang, D. C.; Qian, D. B.

    2007-06-01

    The progress of atomic physics researches at the Institute of Modern Physics (IMP) is reviewed, covering the studies on ion-atom/molecule collisions, ion-cluster interaction, negative ion formation, state-selective electron capture studied by COLTRIMS, as well as the progress of a new experimental area dedicated for atomic researches at moderate energies, and the advances of the cooler storage rings at the Heavy Ion Research Facility in Lanzhou (HIRFL). New opportunities to study collision dynamics from femto-second to atto-second regime are opened based on the present facilities and the on-going projects.

  9. Springer Handbook of Atomic, Molecular, and Optical Physics

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.

    This Springer Handbook of Atomic, Molecular, and Optical Physics comprises a comprehensive reference source that unifies the entire fields of atomic, molecular, and optical (AMO) physics, assembling the principal ideas, techniques and results of the field from atomic spectroscopy to applications in comets. Its 92 chapters are written by over 100 authors, all leaders in their respective disciplines. Carefully edited to ensure uniform coverage and style, with extensive cross references, and acting as a guide to the primary research literature, it is both a source of information and an inspiration for graduate students and other researchers new to the field.

  10. Status of the Los Alamos free atomic tritium beta-decay experiment

    SciTech Connect

    Wilkerson, J.F.; Bowles, T.J.; Browne, J.C.; Burritt, T.H.; Cohen, J.S.; Helffrich, J.A.; Knapp, D.A.; Maley, M.P.; Martin, R.L.; Robertson, R.G.H.

    1984-01-01

    An experiment to study the beta-decay of tritium using a gaseous source of free (unbound) atomic tritium is currently underway in the Physics Division at Los Alamos. The use of free atomic tritium along with careful design of the measurement scheme should allow a definitive determination for an electron antineutrino mass approx. 10 eV.

  11. The Los Alamos suite of relativistic atomic physics codes

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Zhang, H. L.; Abdallah, J., Jr.; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-07-01

    The Los Alamos suite of relativistic atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  12. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  13. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  14. The Common Elements of Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  15. The common elements of atomic and hadronic physics

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.

    2015-08-01

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  16. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  17. The Physics of Supersonic Gas Atomization of Molten Metal

    NASA Astrophysics Data System (ADS)

    Mates, S. P.; Settles, G. S.

    1996-11-01

    Gas atomization is used to fabricate fine metal powders for powder metallurgy applications. The process is similar to fuel atomization in propulsion systems, but also involves heat transfer and metallurgy. The physics involved is not well understood. Here, current atomization nozzle technology is examined in order to better understand the physics, to evaluate current nozzle performance, and to explore the potential for improvement. Molten tin is atomized with compressed air at gas-to-liquid mass flux ratios between 1 and 2, and with air velocities up to Mach 4. High-speed schlieren imaging reveals both the compressible airflow and the liquid breakup. Resulting tin powder is also analyzed. Results show that complex, multi-mode secondary atomization occurs near the nozzle exit, while breakup of large-scale ligaments persists many nozzle diameters downstream. Analysis of the flowfield and the powder shows that current-generation nozzles are not well suited to produce the desired fine particles and narrow size distributions. Thus there exists a significant potential for better metal powder atomization through improved nozzle design. (Research supported by NSF Grant CTS-9221863.)

  18. Atomic Clocks, Fundamental Symmetries, and the Search for New Physics

    NASA Astrophysics Data System (ADS)

    Safronova, Marianna

    2014-05-01

    I will give an overview of theoretical developments related to searches for new physics with atomic systems, including the study of parity violation, search for EDM, and the search for variation of fundamental constants. The study of parity nonconservation in cesium led to a first measurement of the nuclear anapole moment and allowed to place constraints on weak meson-nucleon couplings. I will review the present status of atomic parity violation studies and the implications for searches for physics beyond the standard model and study of weak hadronic interactions. In the second part of my talk, I will discuss the theoretical research related to state-of-the art atomic clock development focusing on the issue of the blackbody radiation shifts as well as application of clocks to the searches for variation of the fine-structure constant.

  19. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 3, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) NUCLEAR BINDING ENERGY, (2) DISCOVERY OF RADIOACTIVITY, (3) RADIOACTIVE RADIATIONS, (4) ALPHA AND BETA DECAY, (5) BETA DECAY REACTIONS, (6) RADIOACTIVE DATING AND

  20. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A

  1. Bringing atomic and nuclear physics laboratory data into the classroom

    SciTech Connect

    Norman, Eric B.; Larimer, Ruth-Mary; Rech, Gregory; Lee, Jeffrey; Vue, Chue; Leubane, Tholoana; Zamvil, Kenneth; Guthrie, Laura

    2003-05-27

    To illustrate a number of basic concepts in atomic and nuclear physics, we have developed three websites where students can analyze data from modern laboratories. By working through the on-line procedures, students will become acquainted with characteristic x-ray spectra, the concept of half-life, x-ray fluorescence, and neutron activation analysis.

  2. Project Physics Reader 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 5, a collection of articles is presented in this reader for student browsing. Nine excerpts are given under the following headings: failure and success, Einstein, Mr. Tompkins and simultaneity, parable of the surveyors, outside and inside the elevator, the teacher and the Bohr theory of atom, Dirac and Born,…

  3. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  4. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 3, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) NUCLEAR BINDING ENERGY, (2) DISCOVERY OF RADIOACTIVITY, (3) RADIOACTIVE RADIATIONS, (4) ALPHA AND BETA DECAY, (5) BETA DECAY REACTIONS, (6) RADIOACTIVE DATING AND…

  5. Physical Science Experiments for Scientific Glassblowing Technicians.

    ERIC Educational Resources Information Center

    Tillis, Samuel E.; Donaghay, Herbert C.

    The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…

  6. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  7. Crystal assisted experiments for multi-disciplinary physics with heavy ion beams at GANIL

    NASA Astrophysics Data System (ADS)

    Dauvergne, Denis

    2015-07-01

    We present a review of the channeling and blocking experiments that have been performed at GANIL during the 30 years of stable beam operation, with the strong support of the multi-disciplinary CIRIL-CIMAP laboratory. These experiments combine atomic physics, solid state physics and nuclear physics.

  8. Los Alamos free atomic tritium beta decay experiment

    SciTech Connect

    Knapp, D.A.; Bowles, T.J.; Browne, J.C.; Burritt, T.H.; Cohen, J.S.; Helffrich, J.A.; Maley, M.P.; Martin, R.L.; Robertson, R.G.H.; Wilkerson, J.F.

    1984-01-01

    An apparatus is under construction at Los Alamos to measure the beta spectrum of free tritium atoms and molecules. The tritium atoms decay in a gaseous windowless source and are analyzed by a Tret'yakov type toroidal field beta spectrometer. The ultimate sensitivity of the experiment to electron antineutrino mass is expected to be <10 eV.

  9. Quantum chaotic scattering in atomic physics: Ericson fluctuations in photoionization.

    PubMed

    Stania, Gernot; Walther, Herbert

    2005-11-01

    We report the first experimental investigation of quantum chaotic scattering in an atomic system: in strong crossed magnetic and electric fields in an energy regime beyond the ionization threshold, where the classical dynamics is an example of chaotic scattering. We find Ericson fluctuations in the spectra for photo excitation into this regime. This result constitutes the first observation of Ericson fluctuations in atomic and molecular physics. Furthermore, we confirm the prediction that chaotic scattering in the underlying classical dynamics implies Ericson fluctuations. PMID:16383982

  10. Quantum Chaotic Scattering in Atomic Physics: Ericson Fluctuations in Photoionization

    SciTech Connect

    Stania, Gernot; Walther, Herbert

    2005-11-04

    We report the first experimental investigation of quantum chaotic scattering in an atomic system: {sup 85}Rb in strong crossed magnetic and electric fields in an energy regime beyond the ionization threshold, where the classical dynamics is an example of chaotic scattering. We find Ericson fluctuations in the spectra for photo excitation into this regime. This result constitutes the first observation of Ericson fluctuations in atomic and molecular physics. Furthermore, we confirm the prediction that chaotic scattering in the underlying classical dynamics implies Ericson fluctuations.

  11. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  12. Customized Laboratory Experience in Physical Chemistry

    ERIC Educational Resources Information Center

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  13. Accelerator physics experiments at Aladdin

    SciTech Connect

    Chattopadhyay, S.; Cornacchia, M.; Jackson, A.; Zisman, M.S.

    1985-07-01

    The Aladdin accelerator is a 1 GeV synchrotron light source located at the University of Wisconsin. The results of experimental studies of the Aladdin accelerator are described. The primary purpose of the experiments reported was to investigate reported anomalies in the behavior of the linear lattice, particularly in the vertical plane. A second goal was to estimate the ring broadband impedance. Experimental observations and interpretation of the linear properties of the Aladdin ring are described, including the beta function and dispersion measurements. Two experiments are described to measure the ring impedance, the first a measurement of the parasitic mode loss, and the second a measurement of the beam transfer function. Measurements of the longitudinal and transverse emittance at 100 and 200 MeV are described and compared with predictions. 10 refs., 24 figs., 2 tabs. (LEW)

  14. Current experiments in elementary particle physics. Revision

    SciTech Connect

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  15. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. ); Oyanagi, Y. ); Dodder, D.C. ); Ryabov, Yu.G.; Slabospitsky, S.R. . Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  16. Current experiments in elementary particle physics. Revised

    SciTech Connect

    Galic, H.; Wohl, C.G.; Armstrong, B.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Olin, A.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  17. Application of ECR ion source beams in atomic physics

    SciTech Connect

    Meyer, F.W.

    1987-01-01

    The availability of intense, high charge state ion beams from ECR ion sources has had significant impact not only on the upgrading of cyclotron and synchrotron facilities, but also on multicharged ion collision research, as evidenced by the increasing number of ECR source facilities used at least on a part time basis for atomic physics research. In this paper one such facility, located at the ORNL ECR source, and dedicated full time to the study of multicharged ion collisions, is described. Examples of applications of ECR ion source beams are given, based on multicharged ion collision physics studies performed at Oak Ridge over the last few years. 21 refs., 18 figs., 2 tabs.

  18. A Group Experience with Physically Handicapped Children.

    ERIC Educational Resources Information Center

    Castle, Norma

    1980-01-01

    Describes a group experience program developed as an alternative to the long-term hospitalization of physically handicapped children. The program emphasizes emotional growth through participation in meetings designed to counteract dependency. (CM)

  19. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    SciTech Connect

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    1988-12-01

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.

  20. Source formulation for fluid turbulence simulations from atomic physics differential cross sections

    NASA Astrophysics Data System (ADS)

    Muller, S. H.; Holland, C.; Tynan, G. R.; Xu, M.; Yu, J. H.

    2009-11-01

    The derivation of the correct functional form of source terms in plasma fluid theory is revisited. The relation between the fluid source terms and atomic physics differential cross sections is established for particle-impact ionization. It is shown that the interface between atomic and plasma physics is completely described by three scalar functions of the incident particle energy, which are properties of the differential cross sections only. For electron-impact ionization, the BEB and BED models [Y.-K. Kim and M. E. Rudd, Phys. Rev. A, 50 (1994) 3954] are used to calculate these functions analytically, yielding expressions that both accurately capture the physics and can be efficiently evaluated within fluid simulation codes. The source terms explain the observed electron temperature regimes in a wide variety of basic plasma physics experiments, including the trends across different gases.

  1. Experiences and Perceptions of Physical Education

    ERIC Educational Resources Information Center

    Medcalf, Richard; Marshall, Joe; Hardman, Ken; Visser, John

    2011-01-01

    This research has studied how children and young people, who are deemed by their school to have social, emotional and behavioural difficulties (SEBD), experience the National Curriculum of Physical Education (PE) in England. Research has previously highlighted the physical, social, affective and cognitive benefits of participation in PE.…

  2. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  3. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  4. Current Experiments in Particle Physics (September 1996)

    SciTech Connect

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  5. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  6. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  7. MOLAT: Atomic and Molecular Physics Databases of the Paris Observatory

    NASA Astrophysics Data System (ADS)

    Bruston, M.; Cornille, M.; Dubau, J.; Eidelsberg, M.; Lesage, A.; Launay, F.; Rostas, F.; Spielfiedel, A.; Tchang-Brillet, W.-Ü. L.

    2004-12-01

    MOLAT (http://molat.obspm.fr/) is a joint project of several departments of the Paris Observatory supported by its Scientific Council. Its purpose is to make available original atomic and molecular data and compilations produced independently or in the course of collaborations by members of the Observatory. The data are of interest for the interpretation of observations made by spaceborne or ground based instruments and of laboratory experiments. The experimental data include mainly VUV spectroscopic data obtained by the Meudon group using either the 10m high resolution VUV spectrograph of the Meudon Observatory or the LURE-Orsay synchrotron facility. The theoretical data include calculations from different groups of the Observatory concerning atomic or molecular structures, radiative transition probabilities, collisional excitation cross-sections and line broadening parameters. The bibliographic compilations are maintained by members of the Observatory. The database also provides a selection of links to other pertinent atomic or molecular databases thus serving as a gateway between atomic and molecular physicists and astrophysicists. The data formats have been kept as provided by the authors. An effort is underway to give a unified presentation.

  8. Charmonium physics in the belle experiment

    SciTech Connect

    Mizuk, R. V.; Pakhlova, G. V.; Pakhlov, P. N.; Chistov, R. N.

    2010-04-15

    At the present time, charmonium physics experiences renaissance. Among many discoveries made within the past six years, the majority do not have an unambiguous interpretation and do not comply with traditional theoretical expectations. This review article is devoted to experimental results obtained by the members of the Belle Collaboration from the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the realms of charmonium spectroscopy and the production and decays of charmonia and charmonium-like states.

  9. Integrated physics package of a chip-scale atomic clock

    NASA Astrophysics Data System (ADS)

    Li, Shao-Liang; Xu, Jing; Zhang, Zhi-Qiang; Zhao, Lu-Bing; Long, Liang; Wu, Ya-Ming

    2014-07-01

    The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, λ/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7 × 10-10 τ-1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC.

  10. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  11. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  12. Intelsat solar array coupon atomic oxygen flight experiment

    NASA Astrophysics Data System (ADS)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-05-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  13. Intelsat solar array coupon atomic oxygen flight experiment

    NASA Technical Reports Server (NTRS)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-01-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  14. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  15. The Physical Conditions of Atomic Gas at High Redshift

    NASA Astrophysics Data System (ADS)

    Neeleman, Marcel

    In this thesis we provide insight into the chemical composition, physical conditions and cosmic distribution of atomic gas at high redshift. We study this gas in absorption against bright background quasars in absorption systems known as Damped Ly-alpha Systems (DLAs). These systems contain the bulk of the atomic gas at high redshift and are the likely progenitors of modern-day galaxies. In Chapter 2, we find that the atomic gas in DLAs obeys a mass-metallicity relationship that is similar to the mass-metallicity relationship seen in star-forming galaxies. The evolution of this relationship is linear with redshift, allowing for a planar equation to accurately describe this evolution, which provides a more stringent constraint on simulations modeling DLAs. Furthermore, the concomitant evolution of the mass-metallicity relationship of atomic gas and star-forming galaxies suggests an intimate link between the two. We next use a novel way to measure the physical conditions of the gas by using fine-structure line ratios of singly ionized carbon and silicon. By measuring the density of the upper and lower level states, we are able to determine the temperature, hydrogen density and electron density of the gas. We find that the conditions present in this high redshift gas are consistent with the conditions we see in the local interstellar medium (ISM). A few absorbers have higher than expected pressure, which suggests that they probe the ISM of star-forming galaxies. Finally in Chapter 4, we measure the cosmic neutral hydrogen density at redshifts below 1.6. Below this redshift, the Ly-alpha line of hydrogen is absorbed by the atmosphere, making detection difficult. Using the archive of the Hubble Space Telescope, we compile a comprehensive list of quasars for a search of DLAs at redshift below 1.6. We find that the incidence rate of DLAs and the cosmic neutral hydrogen density is smaller than previously measured, but consistent with the values both locally and at redshifts of about 2. Altogether, these results improve our understanding of atomic gas at high redshift and help illuminate how this important component shapes the galaxies we see today.

  16. Atomic Physics with Accelerators: Projectile Electron Spectroscopy (APAPES)

    NASA Astrophysics Data System (ADS)

    Madesis, I.; Dimitriou, A.; Laoutaris, A.; Lagoyannis, A.; Axiotis, M.; Mertzimekis, T.; Andrianis, M.; Harissopulos, S.; Benis, E. P.; Sulik, B.; Valastyán, I.; Zouros, T. J. M.

    2015-01-01

    The new research initiative APAPES (http://apapes.physics.uoc.gr/) has already established a new experimental station with a beam line dedicated for atomic collisions physics research, at the 5 MV TANDEM accelerator of the National Research Centre "Demokritos" in Athens, Greece. A complete zero-degree Auger projectile spectroscopy (ZAPS) apparatus has been put together to perform high resolution studies of electrons emitted in ion-atom collisions. A single stage hemispherical spectrometer with a 2-dimensional Position Sensitive Detector (PSD) combined with a doubly-differentially pumped gas target will be used to perform a systematic isoelectronic investigation of K-Auger spectra emitted from collisions of preexcited and ground state He-like ions with gas targets using novel techniques. Our intention is to provide a more thorough understanding of cascade feeding of the 1s2s2p 4P metastable states produced by electron capture in collisions of He-like ions with gas targets and further elucidate their role in the non-statistical production of excited three-electron 1s2s2p states by electron capture, recently a field of conflicting interpretations awaiting further resolution. At the moment, the apparatus is being completed and the spectrometer will soon be fully operational. Here we present the project progress and the recent high resolution spectrum obtained in collisions of 12 MeV C4+ on a Neon gas target.

  17. The Physics of the Imploding Can Experiment

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    One of the popular demonstrations of atmospheric pressure in introductory physics courses is the "crushing can" or "imploding can" experiment. In this demonstration, which has also been extensively discussed on the Internet, a small amount of water is placed in a soda can and heated until it boils and water vapor almost entirely fills the can. The

  18. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  19. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochncek, Zdenek; Konecn, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and

  20. Multimedia Representation of Experiments in Physics

    ERIC Educational Resources Information Center

    Kirstein, Juergen; Nordmeier, Volkhard

    2007-01-01

    In most physics courses using multimedia, real experiments are represented as digital video demonstrations. These time-based media have the disadvantage that students are often in the state of passive learners. Also, traditional multimedia learning environments only allow for the selection of different digitized media, but the learning process is…

  1. The Physics of the Imploding Can Experiment

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    One of the popular demonstrations of atmospheric pressure in introductory physics courses is the "crushing can" or "imploding can" experiment. In this demonstration, which has also been extensively discussed on the Internet, a small amount of water is placed in a soda can and heated until it boils and water vapor almost entirely fills the can. The…

  2. Atomic oxygen effects on LDEF experiment A0171

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Norwood, Joseph K.

    1992-01-01

    Mass and thickness changes measured in thin films, composites, polymers, metals, and paints from LDEF Experiment A0171 are presented. Atomic oxygen accommodation and reactivity numbers along with morphology features are shown for a variety of A0171 materials. The validity of predicting long term erosion rates will be assessed from short term environmental exposures.

  3. FROM THE HISTORY OF PHYSICS: Moscow State University physics alumni and the Soviet Atomic Project

    NASA Astrophysics Data System (ADS)

    Kiselev, Gennadii V.

    2005-12-01

    In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics.

  4. LDEF experiment A0034: Atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Kamenetzky, Rachel R.; Reynolds, John M.; Burris, Charles L.

    1992-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, 'Atomic Oxygen Stimulated Outgassing', consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge, and for reference, to the relative 'wake' environment of the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of the outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  5. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Exploring Flatland with Cold Atoms

    NASA Astrophysics Data System (ADS)

    Dalibard, Jean

    2012-06-01

    A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose-Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii-Kosterlitz-Thouless mechanism. Secondly, a weakly interacting Bose fluid in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will present recent experimental progress in the investigation of 2D atomic gases, which provide a nice illustration of the main features of low dimensional many-body physics.

  6. Wheeler's delayed-choice gedanken experiment with a single atom

    NASA Astrophysics Data System (ADS)

    Manning, A. G.; Khakimov, R. I.; Dall, R. G.; Truscott, A. G.

    2015-07-01

    The wave-particle dual nature of light and matter and the fact that the choice of measurement determines which one of these two seemingly incompatible behaviours we observe are examples of the counterintuitive features of quantum mechanics. They are illustrated by Wheeler’s famous `delayed-choice’ experiment, recently demonstrated in a single-photon experiment. Here, we use a single ultracold metastable helium atom in a Mach-Zehnder interferometer to create an atomic analogue of Wheeler’s original proposal. Our experiment confirms Bohr’s view that it does not make sense to ascribe the wave or particle behaviour to a massive particle before the measurement takes place. This result is encouraging for current work towards entanglement and Bell’s theorem tests in macroscopic systems of massive particles.

  7. Atomic Parity Violation and Related Physics in Ytterbium

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri Robert

    Atomic parity violation has been observed in the 408 nm 1 S0→3D1 forbidden transition of ytterbium. The parity violating amplitude is 8.7(1.4)e-10 ea0, two orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity violating amplitude yet observed. This also opens the way to future measurements of neutron skins and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition. We present a detailed description of the observation. Linearly polarized 408 nm light interacts with ytterbium atoms in crossed electric (E) and magnetic fields (B). The probability of the 1 S0→3D1 transition contains a parity-violating term, proportional to E'B[( E'xE B], arising from interference between the amplitudes of transitions induced by the electroweak interaction and the Stark effect ((E' is the optical electric field). The transition probability is detected by measuring the population of the metastable 3P0 state, to which 65% of the atoms excited to the 3D1 state spontaneously decay. The population of the 3P0 state is determined by resonantly exciting the atoms with 649 nm light to the 3S1 state and collecting the fluorescence resulting from its decay. Systematic corrections due to imperfections in the applied electric and magnetic fields are determined in auxiliary experiments. The statistical uncertainty is dominated by parasitic frequency excursions of the 408-nm excitation light due to imperfect stabilization of the optical reference with respect to the atomic resonance. The present uncertainties are 9% statistical and 8% systematic. Methods of improving the accuracy for the future experiments are discussed. We further present a measurement of the dynamic scalar and tensor polarizabilities of ytterbium's 3D1 state. The polarizabilities were measured by analyzing the spectral lineshape of the 1 S0→3D1 transition. Due to the interaction of atoms with the standing wave, the lineshape has a characteristic polarizability-dependent distortion. A theoretical model was used to simulate the lineshape and determine a combination of the polarizabilities of the ground and excited states by fitting the model to experimental data. This combination was measured with a 13% uncertainty, only 3% of which is due to uncertainty in the simulation and fitting procedure. By comparing two different combinations of polarizabilities, the scalar and tensor polarizabilities of the state 3D1 were measured to be 0.151(36) Hz/(V/cm)2 and -0.205(53) Hz/(V/cm)2, respectively. We showthat this technique can be applied to similar atomic systems. →Finally, we propose two methods for improving future measurements of atomic parity violation using two-photon transitions. The first method is characterized by the absence of static external electric and magnetic fields. Such measurements can be achieved by observing the interference of parity-conserving and parity-violating two-photon transition amplitudes between energy eigenstates of zero electronic angular momentum. General expressions for induced two-photon transition amplitudes are derived. The two-photon scheme using the 1S0→1P1→3 P0 transition in ytterbium (399 nm and 1280 nm) is proposed as a crosscheck of the APV experiment which uses the single-photon 408 nm 1S0→3D 1 transition. We estimate that the signal-to-noise ratio of the proposed experiment is comparable to that achieved in the 408 nm system. The second method allows for measurement of nuclear spin dependent atomic parity violation without nuclear spin independent background. Such measurements can be achieved by driving parity violating two-photon J= 0→1 transitions driven by identical photons in the presence of an external static magnetic field. We discuss two promising applications: the 462 nm 5s2 1S0→5s9p 1P1transition in strontium-87, and the 741 nm 7s2 1S0→7s7p 3P1 transition in unstable radium-225.

  8. Top Quark Physics at the CDF Experiment

    SciTech Connect

    Stelzer, Bernd; Collaboration, for the CDF

    2010-07-01

    Fermilab's Tevatron accelerator is recently performing at record luminosities that enables a program systematically addressing the physics of top quarks. The CDF collaboration has analyzed up to 5 fb{sup -1} of proton anti-proton collisions from the Tevatron at a center of mass energy of 1.96 TeV. The large datasets available allow to push top quark measurements to higher and higher precision and have lead to the recent observation of electroweak single top quark production at the Tevatron. This article reviews recent results on top quark physics from the CDF experiment.

  9. Digital Electronics for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team

    2015-10-01

    Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.

  10. Atomic Physics in the Quest for Fusion Energy and ITER

    SciTech Connect

    Charles H. Skinner

    2008-02-27

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  11. Efimov Physics in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  12. Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire

    2010-01-01

    This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…

  13. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating interactions at the nanoscale, such as ligand-receptor interactions. This work examines the interactions between the enzyme dihydrofolate reductase (DHFR), a widely investigated enzyme targeted for cancer and antimicrobial pharmaceutical, and methotrexate (MTX), a strong competitive inhibitor of DHFR. The DHFR was immobilized on a gold substrate, bound through a single surface cysteine, and maintained catalytic activity. AFM probe was functionalized with MTX and the interaction strength was measured using AFM. This work highlights the versatility of AFM, specifically force spectroscopy for the quantification of electrical, mechanical, and ligand-receptor interactions at the nanoscale.

  14. Using the Wiimote in Introductory Physics Experiments

    NASA Astrophysics Data System (ADS)

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of using the Wiimote in introductory physics experiments. The linear dependence of centripetal acceleration on the radial distance at constant angular velocity is verified and compared with data obtained using photogate timers. A second application to simple harmonic oscillators tests the capabilities of the Wiimote to measure variable accelerations.

  15. Introductory Physics Experiments Using the Wiimote

    NASA Astrophysics Data System (ADS)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  16. Multifunctional radio-frequency generator for cold atom experiments

    NASA Astrophysics Data System (ADS)

    Wei, Chun-hua; Yan, Shu-hua

    2016-05-01

    We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

  17. Microprocessors in physics experiments at SLAC

    SciTech Connect

    Rochester, L.S.

    1981-04-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed on line. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans.

  18. The physics design of the Tokamak Physics Experiment

    SciTech Connect

    Thomassen, K.I.; Batchelor, D.B.; Bialek, J.

    1994-08-08

    The physics approaches to improved, steady-state tokamak reactors, as evolved through reactor design studies, ideas based on experimental results, and better theoretical understanding, are the foundation for the mission and physics design of the Tokamak Physics Experiment (TPX). The mission of TPX is to develop the scientific basis for cost-competitive, continuously operating tokamak power plants. We report here the design status of TPX, a device optimized to achieve improved performance through strong plasma shaping, recycling control, and current profile shaping, while operating continuously. The design incorporates poloidal field flexibility for a wide range of operation in normalized beta and internal inductance, a double-null ``Vee`` divertor configuration for power and particle control, internal and external n {ne} 0 coils, as well as passive stabilizers, for control of MHD activity, and remote maintenance for continuous high-power operation in deuterium. Having superconducting poloidal and toroidal coils, the TPX device itself is capable of continuous operation, although initially auxiliary equipment limits the pulse length to 1000 sec.

  19. Containerless experiments in fluid physics in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.

  20. The Physics of the CMS Experiment

    SciTech Connect

    Sanabria, J. C.

    2007-10-26

    The Large Hadron Collider (LHC) at CERN will start running 2008 producing proton-proton collisions with a center-of-mass energy of 14 TeV. Four large experiments will operate together with this accelerator: ALICE, ATLAS, CMS and LHCb. The main scientific goal of this project is to understand in detail the mechanism for electro-weak symmetry breaking and to search for physics beyond the standard model of particles. ATLAS and CMS are general purpose detectors designed for search and discovery of new physics, and optimized to search for Higgs and signals of supersymmetric matter (SUSY). In this paper the main features of the CMS detector will be presented and its potential for Higgs and SUSY discoveries will be discussed.

  1. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  2. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 1, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    AUTOINSTRUCTIONAL MATERIALS WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY OF THE SELF-TUTORING APPROACH IN EDUCATION. THE MATERIALS COVER SECTIONS ON (1) THE ATOM, (2) ATOMIC PARTICLES, (3) CATHODE RAYS, (4) MEASURING THE ELECTRON, (5) CHARGE AND MASS OF THE ELECTRON, AND (6) MASS OF ATOMS. RELATED REPORTS ARE ED 003 205 THROUGH ED 003 207, ED…

  3. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  4. Atomic physics with relativistic ion beams, using the Brookhaven 200 MeV linac and 1.5 GeV booster synchrotron

    NASA Astrophysics Data System (ADS)

    von Wimmersperg, U.; Jones, K. W.; McKenzie-Wilson, R. B.; Ward, T. E.; Snead, C. L.

    1991-05-01

    A survey of atomic physics experiments with relativistic ion beams at the Brookhaven Neutral Beam Test Facility is presented and special techniques using 150 m flight paths and precision particle and laser beam optics are described.

  5. Davisson-Germer Prize in Atomic or Surface Physics Talk: Few-body processes in the quantum limit

    NASA Astrophysics Data System (ADS)

    Greene, Chris

    2010-03-01

    Recent theoretical studies of low energy collisions and resonant processes will be reviewed. These include the process of molecular dissociation induced by electron collision, and the role of universal Efimov physics in collisions of three or four atoms in an ultracold gas. The role of experiment in testing and advancing our understanding of these few-body studies will also be discussed.

  6. ELASR - An electrostatic storage ring for atomic and molecular physics at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.

    A new ELectrostAtic Storage Ring (ELASR) has been designed and built at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. It was developed to be the core of a new storage ring laboratory for atomic and molecular physics at KACST. ELASR follows the standard design of the pioneering storage ring ELISA and it thereby features a racetrack single-bend shaped ring. Complementary simulation code packages were used to work out the design under the requirements of the projected experiments. This paper reports a short description of the ELASR storage ring through an overview of its design and construction.

  7. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; Gannon, Jade

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard the ISS, the other is re-integrated on the ground with new experiments. When the cryogen of the facility in space are exhausted, it will be swapped with the other facility with the new experiment. A total of 20 science missions are envisioned over the next 20 years.

  8. Physical methods in nanoscale science with the atomic force microscope

    NASA Astrophysics Data System (ADS)

    Schaffer, Tilman Erich

    1998-12-01

    The atomic force microscope (AFM) has opened up a wide gate to the nanoscopic world. Since its invention twelve years ago, it has allowed researchers to advance to new science. The extent of this advancement is strongly coupled to the sophistication of AFM instrumentation and to the methods with which AFMs are used. New AFMs and methods are needed to push the limits. Chapter 1 and 2 introduce such new AFMs with low-noise and high-speed characteristics. The AFM presented in Chapter 2 has a focused spot size of 1.6 m m in diameter and is capable of using cantilevers much smaller than previously possible. Chapter 3 discusses the physics of the detection system and gives methods for improving the detection sensitivity. Thermal motion of the cantilever, usually contributing to the noise in a measurement, is a method for probing the oscillatory hydration potential at a calcite-water interface in Chapter 4. Chapter 5 establishes a method of measuring the three-dimensional electromagnetic field over a surface and comparing the data to micro-magnetic models. Biomineralization of marine abalone nacre is the subject of interdisciplinary Chapter 6, where a variety of microscopic and statistical methods distinguish between two competing models of nacre growth.

  9. Characterization of the Source Physics Experiment Site

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Broome, S. T.; Townsend, M.; Abbott, R. E.; Snelson, C. M.; Cogbill, A. H.; Conklin, G.; Mitra, G.; Sabbeth, L.

    2012-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiments, conducted at the Nevada National Security Site, also provide an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. In addition, gravity and magnetic data were collected between SPE 2 and 3. The source region of the explosions was also characterized using cross-borehole seismic tomography and vertical seismic profiling utilizing two sets of two boreholes within 40 meters of ground zero. The two sets of boreholes are co-linear with the explosives hole in two directions. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Laboratory testing and optical work show a difference in the characteristics of the rocks below and above 40 feet and within the fault zones.The estimated near-surface densities from the gravity survey show substantial changes in apparent near-surface density and may help explain independently-observed near-surface velocity changes. Work by Los Alamos National Laboratory was sponsored by the National Nuclear Security AdministrationAward No. DE-AC52-06NA25946/NST10-NCNS-PD00. Work by National Security Technologies, LLC, was performed under Contract No. DE AC52 06NA25946 with the U.S. Department of Energy. Sandia National Laboratories, is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    NASA Astrophysics Data System (ADS)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  11. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  12. Versatile cold atom source for multi-species experiments

    SciTech Connect

    Paris-Mandoki, A.; Jones, M. D.; Nute, J.; Warriar, S.; Hackermüller, L.; Wu, J.

    2014-11-15

    We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils, and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.

  13. Semiclassical atom theory applied to solid-state physics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Terentjevs, Aleksandrs; Della Sala, Fabio; Cortona, Pietro; Fabiano, Eduardo

    2016-01-01

    Using the semiclassical neutral atom theory, we extend to fourth order the modified gradient expansion of the exchange energy of density functional theory. This expansion can be applied both to large atoms and solid-state problems. Moreover, we show that it can be employed to construct a simple and nonempirical generalized gradient approximation (GGA) exchange-correlation functional competitive with state-of-the-art GGAs for solids, but also reasonably accurate for large atoms and ordinary chemistry.

  14. Some Computational Methods in Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Krauthauser, Carl, Jr.

    The first part of the present work follows the standard approach in atomic and molecular physics and solves for the non-relativistic ground state of Lithium. What was sought was a very precise calculation. For this calculation, a Hylleraas basis set was to be used. This basis set was chosen because such basis sets had worked well for calculations on the ground state and excited states of Helium. With an accurate non-relativistic calculation, the low-order corrections due to relativity and QED could next be sought, thus mirroring the approach used with Helium. Unfortunately, as this work will show, an efficient method for determining the needed matrix elements could not be found at the time. The complexity of QED corrections grows rapidly with increasing order. In a recent order alpha ^6 calculation of the QED contribution to the fine structure splittings for the Helium 1s2p ^3P_{J} intervals, 15 terms were needed. Additional work was needed to calculate improved corrections at lower orders. An alternative to the standard approach mentioned above would be to attempt to solve the field theory equations directly using a few-body Dirac equation as the zeroth-order approximation. In this way, though it is expected that higher-order contributions will still prove difficult, it is hoped that the level of difficulty will grow more slowly than for the standard approach. The second part of this work provides a firm foundation for the solution of few-body Dirac equations by solving the problem of variational collapse for the one-particle Dirac equation. This should make it possible to use basis sets for few-particle Dirac equations which have been successful for their non-relativistic counterparts. This development of tools for the accurate solution of few-body Dirac equations is an essential first step in the direct solution of the QED equations.

  15. Further investigations of experiment A0034 atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Thermal control coatings within the recessed compartments of LDEF Experiment A0034 experienced the maximum leading edge fluence of atomic oxygen with considerably less solar UV radiation exposure than top-surface mounted materials of other LDEF experiments on either the leading or the trailing edge. This combination of exposure within A0034 resulted in generally lower levels of darkening attributable to solar UV radiation than for similar materials on other LDEF experiments exposed to greater cumulative solar UV radiation levels. Changes in solar absorptance and infrared thermal emittance of the exposed coatings are thus unique to this exposure. Analytical results for other applications have been found for environmentally induced changes in fluorescence, surface morphology, light scattering, and the effects of coating outgassing products on adjacent mirrors and windows of the A0034 experiment. Some atmospheric bleaching of the thermal control coatings, in addition to that presumably experience during reentry and recovery operations, has been found since initial post-flight observations and measurements.

  16. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    SciTech Connect

    MacFarlane, Joseph J

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have:  Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2].  Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas.  Updated LSP to support the use of Prism’s multi-frequency opacity tables.  Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies.  Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP.  Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations.  Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments.  Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments.  Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output.  Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP.  Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables).  Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.

  17. A capstone research experience for physics majors

    NASA Astrophysics Data System (ADS)

    Jackson, David

    2013-03-01

    Dickinson College is a small liberal arts college with a thriving physics program. For years, one of the key features of our program has been a year-long senior research project that was required for each student. Unfortunately, as our number of majors increased, it became more and more difficult to supervise such a large number of senior research projects. To deal with this growing challenge, we developed a capstone research experience that involves a larger number of students working together on an independent group project. In this talk I will give a broad overview of our new senior research model and provide a few examples of projects that have been carried out over the past few years. I will also briefly describe the positive and negative aspects of this model from the perspective of faculty and students.

  18. A data readout approach for physics experiments

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Gao, Li-Wei; Zheng, Jia-Jun

    2015-07-01

    With increasing physical event rates and the number of electronic channels, traditional readout schemes meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane. In this paper, a high-speed data readout method based on the Ethernet is presented to make each readout module capable of transmitting data to the DAQ. Features of explicitly parallel data transmitting and distributed network architecture give the readout system the advantage of adapting varying requirements of particle physics experiments. Furthermore, to guarantee the readout performance and flexibility, a standalone embedded CPU system is utilized for network protocol stack processing. To receive the customized data format and protocol from front-end electronics, a field programmable gate array (FPGA) is used for logic reconfiguration. To optimize the interface and to improve the data throughput between CPU and FPGA, a sophisticated method based on SRAM is presented in this paper. For the purpose of evaluating this high-speed readout method, a simplified readout module is designed and implemented. Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  19. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.

  20. Skylab experiments. Volume 1: Physical science, solar astronomy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.

  1. Exploring many-body physics with ultracold atoms

    NASA Astrophysics Data System (ADS)

    LeBlanc, Lindsay Jane

    The emergence of many-body physical phenomena from the quantum mechanical properties of atoms can be studied using ultracold alkali gases. The ability to manipulate both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer potential energy landscapes, variable interaction strengths and out-of-equilibrium initial conditions provides the opportunity to investigate collective behaviour under diverse conditions. With an appropriately chosen wavelength, optical standing waves provide a lattice potential for one target species while ignoring another spectator species. A "tune-in" scheme provides an especially strong potential for the target and works best for Li-Na, Li-K, and K-Na mixtures, while a "tune-out" scheme zeros the potential for the spectator, and is preferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices provide unique environments for studying many-body behaviour by allowing for a phonon-like background, providing for effective mass tuning, and presenting opportunities for increasing the phase-space density of one species. Ferromagnetism is manifest in a two-component DFG when the energetically preferred many-body configuration segregates components. Within the local density approximation (LDA), the characteristic energies and the three-body loss rate of the system all give an observable signature of the crossover to this ferromagnetic state in a trapped DFG when interactions are increased beyond kFa(0) = 1:84. Numerical simulations of an extension to the LDA that account for magnetization gradients show that a hedgehog spin texture emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of strong interactions in 40K constitute the first steps towards the realization of ferromagnetism in a trapped 40K gas. The many-body dynamics of a 87Rb BEC in a double well potential are driven by spatial phase gradients and depend on the character of the junction. The amplitude and frequency characteristics of the transport across a tunable barrier show a crossover between two paradigms of super uidity: Josephson plasma oscillations emerge for high barriers, where transport is via tunnelling, while hydrodynamic behaviour dominates for lower barriers. The phase dependence of the many-body dynamics is also evident in the observation of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpretation of system dynamics, but do not describe the observed damping.

  2. AGS experiments in nuclear/QCD physics at medium energies

    SciTech Connect

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  3. The FAMU experiment: muonic atoms to probe the proton structure

    NASA Astrophysics Data System (ADS)

    Guffanti, D.; FAMU collaboration

    2016-02-01

    The goal of the FAMU experiment is the measurement of the proton Zemach radius using muonic hydrogen, a subject that has raised much interest in recent years due to its implications in the so-called proton radius puzzle. In order to extract the Zemach radius, the FAMU collaboration aims at measuring the hyperfine splitting of the µp ground state, since the effect of the proton finite size affects the HF transition energy. The proposed experimental method requires a detection system which is suited for time resolved X-ray spectroscopy: in this contribution the results of the first measurements performed at the RIKEN-RAL muon facility in order to verify the fitness of the detection system in the pulsed intense muon beam are presented. The characteristic X-rays from atomic transitions in muonic atoms formed in different targets have been detected using a HPGe detector and five scintillating counters based on LaBr3(Ce) crystals, whose output has been recorded for 5 ps using a 500 MHz digitizer to measure both the energy and the time spectrum of the detected events. With a detailed pulse analysis considering pile-up events, both the expected characteristic X-rays and lifetimes of various elements were measured, paving the way for future measurements to be carried out in early 2016.

  4. Probing surfaces with single-polymer atomic force microscope experiments.

    PubMed

    Friedsam, C; Gaub, H E; Netz, R R

    2006-03-01

    In the past 15 years atomic force microscope (AFM) based force spectroscopy has become a versatile tool to study inter- and intramolecular interactions of single polymer molecules. Irreversible coupling of polymer molecules between the tip of an AFM cantilever and the substrate allows one to study the stretching response up to the high force regime of several nN. For polymers that glide or slip laterally over the surface with negligible friction, on the other hand, the measured force profiles exhibit plateaus which allow one to extract the polymer adsorption energies. Long-term stable polymer coatings of the AFM tips allow for the possibility of repeating desorption experiments from solid supports with individual molecules many times, yielding good sampling statistics and thus reliable estimates for adsorption energies. In combination with recent advances in theoretical modeling, a detailed picture of the conformational statistics, backbone elasticity, and the adsorption characteristics of single polymer molecules is obtained. PMID:20408606

  5. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  6. Hadron physics at the COMPASS experiment

    NASA Astrophysics Data System (ADS)

    Krinner, Fabian

    2015-05-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420), is observed with a mass and width in the ranges m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2.

  7. Experiments at the Frontiers of Nuclear Physics: the Experimental Program of the Super-Frs Collaboration

    NASA Astrophysics Data System (ADS)

    Scheidenberger, C.; Äystö, J.; Behr, K.-H.; Benlliure, J.; Bracco, A.; Egelhof, P.; Fomichev, A.; Galès, S.; Geissel, H.; Grahn, T.; Grigorenko, L.; Harakeh, M. N.; Hayano, R.; Heinz, S.; Itahashi, K.; Jokinen, A.; Kalantar-Nayestanaki, N.; Kanungo, R.; Lenske, H.; Muenzenberg, G.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pfützner, M.; Prochazka, A.; Pietri, S.; Plaß, W. R.; Purushothaman, S.; Saito, T.; Simon, H.; Tanihata, I.; Terashima, S.; Toki, H.; Trache, L.; Weick, H.; Winfield, J. S.; Winkler, M.; Zamfir, V.

    2015-06-01

    The superconducting fragment separator (Super-FRS) will be one of the main scientific instruments of the future FAIR facility. This versatile high-resolution spectrometer allows for a variety of exciting experiments in atomic, nuclear and hadron physics. Future directions are presented in this contribution.

  8. A Lifetime Experience. Physical Education K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This guidebook is designed for teachers of physical education at both the elementary and secondary levels. It is divided into six sections. The first section presents an overview of the scope and purpose of physical education in the schools. Discussions are included on developmental objectives, growth characteristics, physical fitness, safety in…

  9. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    ERIC Educational Resources Information Center

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of

  10. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    ERIC Educational Resources Information Center

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  11. Are Atom-sized X-ray Experiments Possible?

    SciTech Connect

    Bilderback, Donald H.; Huang Rong

    2004-05-12

    The success of advanced microbeam facilities at third generation synchrotron sources have inspired us to ask ultimate questions such as how small an x-ray beam diameter can be made. With the hope of more brilliant Energy Recovery Linac or X-ray Free Electron Laser sources due to arrive in the next decade, it appears possible to think of fluorescent x-ray experiments that can be performed on even a single impurity atom in a silicon wafer, for instance. Not all x-ray optical developers are yet convinced, however, so there is critical need to assess whether in principle this can really be done or not. We are optimistic that 1 nm diameter x-ray beams can be made of sufficient flux from future sources or even demonstration experiments at lower count rates from 3rd generation sources if it turns out to be worthwhile to actively develop optics and methods that vastly exceed the current x-ray microbeam capabilities.

  12. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  13. "Reaction Microscopes": The "Cloud Chambers" of Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Ullrich, Joachim

    2004-09-01

    Reaction-Microscopes, developed 10 years ago in order to investigate fast ion-atom collisions [1], allow to determine the complete vector momenta of several electrons and ions emerging as a result of the fragmentation of single atoms, molecules or clusters interacting with electrons, ions, single photons or intense laser pulses. Thus, the complete final-state many-particle wave function in momentum space becomes observable for single and multiple ionisation of atoms as well as for the dissociation of molecules [2]. In the talk the working principle of these machines will be described. Illustrative examples will be given demonstrating the ability of the method to identify the ``mechanisms'' of single and multiple ionisation for electron and ion impact. Its potential for the investigation of single photon as well as of intense laser-pulse induced fragmentation will be highlighted. Future possibilities to investigate ultra-low-energy electron atom or molecule collisions, laser assisted ionisation, using few-cycle phase controlled laser pulses or future free-electron lasers are envisaged. [1] R. Moshammer et al., Phys. Rev. Lett. 73 (1994) 3371 [2] J. Ullrich et al., Rep. Prog. Phys. 66 (2003) 1463

  14. Introducing Fundamental Physical Experiments to Students.

    ERIC Educational Resources Information Center

    Golin, Genrikh

    2002-01-01

    If students are restricted to making educational experiments only, they might acquire incorrect ideas concerning the nature and role of the experimental method because the educational experiment differs greatly from the scientific experiment by its tasks, complexity, number and variability of experiments and devices used, measurements, and…

  15. Hyperthermal atomic oxygen source for near-space simulation experiments

    NASA Astrophysics Data System (ADS)

    Dodd, James A.; Baker, Paul M.; Hwang, Eunsook S.; Sporleder, David; Stearns, Jaime A.; Chambreau, Steven D.; Braunstein, Matthew; Conforti, Patrick F.

    2009-09-01

    A hyperthermal atomic oxygen (AO) beam facility has been developed to investigate the collisions of high-velocity AO atoms with vapor-phase counterflow. Application of 4.5 kW, 2.4 GHz microwave power in the source chamber creates a continuous discharge in flowing O2 gas. The O2 feedstock is introduced into the source chamber in a vortex flow to constrain the plasma to the center region, with the chamber geometry promoting resonant excitation of the TM011 mode to localize the energy deposition in the vicinity of the aluminum nitride (AlN) expansion nozzle. The approximately 3500 K environment serves to dissociate the O2, resulting in an effluent consisting of 40% AO by number density. Downstream of the nozzle, a silicon carbide (SiC) skimmer selects the center portion of the discharge effluent, prior to the expansion reaching the first shock front and rethermalizing, creating a beam with a derived 2.5 km s-1 velocity. Differential pumping of the skimmer chamber, an optional intermediate chamber and reaction chamber maintains a reaction chamber pressure in the mid-10-6 to mid-10-5 Torr range. The beam has been characterized with regard to total AO beam flux, O2 dissociation fraction, and AO spatial profile using time-of-flight mass spectrometric and Kapton-H erosion measurements. A series of reactions AO+CnH2n (n =2-4) has been studied under single-collision conditions using mass spectrometric product detection, and at higher background pressure detecting dispersed IR emissions from primary and secondary products using a step-scan Michelson interferometer. In a more recent AO crossed-beam experiment, number densities and predicted IR emission intensities have been modeled using the direct simulation Monte Carlo technique. The results have been used to guide the experimental conditions. IR emission intensity predictions are compared to detected signal levels to estimate absolute reaction cross sections.

  16. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  17. Learning Pathways in High-School Level Quantum Atomic Physics.

    ERIC Educational Resources Information Center

    Niedderer, Hans; Petri, Juergen

    Investigations of changes in conceptions during physics instruction are the logical and necessary steps to follow successful international research on students' preinstructional conceptions. The theoretical perspective integrates currently available frameworks of cognition, cognitive states, and cognitive processes in physics. Particular emphasis

  18. On-chip optical lattice for cold atom experiments.

    PubMed

    Straatsma, Cameron J E; Ivory, Megan K; Duggan, Janet; Ramirez-Serrano, Jaime; Anderson, Dana Z; Salim, Evan A

    2015-07-15

    An atom-chip-based integrated optical lattice system for cold and ultracold atom applications is presented. The retroreflection optics necessary for forming the lattice are bonded directly to the atom chip, enabling a compact and robust on-chip optical lattice system. After achieving Bose-Einstein condensation in a magnetic chip trap, we load atoms directly into a vertically oriented 1D optical lattice and demonstrate Landau-Zener tunneling. The atom chip technology presented here can be readily extended to higher dimensional optical lattices. PMID:26176471

  19. Physics design options for compact ignition experiments

    SciTech Connect

    Uckan, N.A.

    1985-01-01

    This paper considers the following topics: (1) physics assessments-design and engineering impact, (2) zero-dimensional confinement studies relating to physics requirements and options for ignited plasmas, classes of devices with equivalent performance, and sensitivity to variations in confinement models, and (3) one and one-half dimensional confinement studies relating to dynamic simulations, critical physics issues, startup analyses, and volt-second consumption. (MOW)

  20. Ground-based laboratory atomic oxygen calibration experiments

    NASA Astrophysics Data System (ADS)

    Matcham, Jeremy Stephen

    1998-12-01

    Existing devices and analysis techniques for the monitoring of space and laboratory simulated Atomic Oxygen (AO) environments have been investigated and improved to enable more accurate and reliable measurement and calibration of AO flux and fluences than previously possible. This research was based on experimental work carried out in a ground based AO facility designed to simulate the low Earth orbit (LEO) AO space environment, an environment which contributes significantly to the degradation of spacecraft materials. Three types of AO measuring device, referred to as 'silver film', 'bulk polymer mass loss' and 'polymer overlay' devices, were used in the experiments and were based on the following principles for detection of AO, respectively: (1) The electrical resistivity characteristics of oxidising, thin silver films. (2) The mass loss of bulk polymeric materials. (3) The combination of both the above phenomena. In calibrating the responses of these devices upon exposure to AO, it was necessary to improve an existing technique to establish reference measurements of AO fluences based on the mass loss of the polymeric material 'Kapton-H'. Experiments showed that the most significant disturbance factor affecting accurate measurements of mass loss was atmospheric humidity, which was found to be responsible for a disturbance of 0.012(±0.002)mg per percent change in atmospheric humidity level for the particular samples used in this research. Experiments also revealed a novel technique which indicated the relative stability of conditions within a simulated AO environment by the ratio of mass losses of a set of polymeric test samples, including polyethylene, polytetrafluoroethylene and Kapton-H, described as a 'signature analysis technique'. Interactions occurring between AO and a variety of polyethylene related polymeric materials were shown to be influenced by the methods used to manufacture and process the polymers. This influence has been related to changes in polymeric material density and crystallinity. In addition, the limitations in protecting a polymeric material from AO erosion by insertion of fluorine into the side-chain group chemistry has been indicated. Of most significance to the development of polymer overlay devices was the discovery that the overlay material AO erosion yield was dependent upon the rate at which the polymer overlay material was sputter deposited. These devices were also shown to detect AO fluences that were linearly dependent upon the initial thickness of the overlay material up to certain thicknesses, beyond which the effects of overlay porosity or fracturing weakened the linear relationship. A novel method for analysing silver film device electrical resistances under AO exposure has been developed from a combination of existing fundamental theories concerning the electrical resistivity phenomena in thin metallic films. Validation of this analysis method revealed that experimental silver film data were consistently in disagreement with the existing theories due to a factor influencing the conduction electron mean free path length in the silver films. Final validation of this analysis technique was performed by comparing results derived from the same set of experimental silver film device data using the new technique and an example of a previous technique. It was confirmed that the novel analysis technique produced far more consistent values for the oxidation yield of silver, 3/pm0.5×10-24cm3.atom-1, than the previously used technique, 6/pm3×10- 24cm3.atom-1. The novel analysis technique has been demonstrated to be theoretically more accurate for the analysis of silver film resistance data than any previously applied theories.

  1. Summary of informal workshop on state of ion beam facilities for atomic physics research

    SciTech Connect

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  2. Request for Support for the Conference on Super Intense Laser Atom Physics

    SciTech Connect

    Todd Ditmire

    2004-10-21

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions.

  3. Physics of the missing atoms: technetium and promethium

    SciTech Connect

    Aspden, H.

    1987-05-01

    Technetium (Z = 43) and promethium (Z = 61) are by far the least abundant of all atoms below the radioactive elements (Z = 84 onwards). Their scarcity confirms theoretical predictions emerging from a theory of the photon derived from synchronous lattice electrodynamics. This theory has given precise theoretical values for the fine-structure constant and the constant of gravitation G and is now shown in this paper to indicate resonant interactions between the vacuum lattice oscillations and technetium and promethium. In the case of promethium there is strong reason for believing that this atom can assume supergravitational or antigravitational properties, accounting for its scarcity. This paper not only adds support to the earlier theoretical work on the photon and gravitation, but suggests a research route that might lead to new technology based on controlled interactions with gravity fields.

  4. Physics Experiments with Nintendo Wii Controllers

    ERIC Educational Resources Information Center

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  5. Physics design requirements for the Tokamak Physics Experiment (TPX)

    SciTech Connect

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Nevins, W.M.; Porkolab, M.; Ulrickson, M.

    1993-11-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust.

  6. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ? ni ~ 10? cm?, Te ? Ti ? 1.4 eV, Vjet ? 30100 km/s, mean charge $\\bar{Z}$ ? 1, sonic Mach number Ms ? Vjet/Cs > 10, jet diameter = 5 cm, and jet length ? 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  7. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGESBeta

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  8. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  9. The Physics of Bird Flight: An Experiment

    ERIC Educational Resources Information Center

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  10. The Physics of Bird Flight: An Experiment

    ERIC Educational Resources Information Center

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a

  11. Yang-Baxter integrable models in experiments: from condensed matter to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Batchelor, Murray T.; Foerster, Angela

    2016-04-01

    The Yang-Baxter equation has long been recognised as the masterkey to integrability, providing the basis for exactly solved models which capture the fundamental physics of a number of realistic classical and quantum systems. In this article we provide an introductory survey of the impact of Yang-Baxter integrable models on experiments in condensed matter physics and ultracold atoms. A number of prominent examples are covered, including the hard-hexagon model, the Heisenberg spin chain, the transverse quantum Ising chain, a spin ladder model, the Lieb-Liniger Bose gas, the Gaudin-Yang Fermi gas and the two-site Bose-Hubbard model. The review concludes by pointing to some other recent developments with promise for further progress.

  12. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  13. Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives

    NASA Astrophysics Data System (ADS)

    Kluge, H.-Jürgen

    2010-02-01

    The international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” held during 2009 in Poznan gave an excellent overview on the latest experimental and theoretical results regarding the investigation of radionuclides by atomic physics techniques and the extraction of ground state properties of exotic nuclei. This publication intends to summarize the progress recently achieved by laser spectroscopy and mass spectrometry as well as by weak interaction studies using atomic physics techniques. Furthermore, it tries to point to some areas requiring urgent improvements and to indicate some routes of future research and challenging opportunities.

  14. Physics experiments with Nintendo Wii controllers

    NASA Astrophysics Data System (ADS)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  15. Project Physics Handbook 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Five experiments and 19 activities are presented in this Unit 5 handbook. The experiments are related to electrolysis, charge-to-mass ratio, elementary charge determination, photoelectric effects, and spectroscopic analyses. The activities are concerned with Dalton's theory, water electrolysis, periodic tables, single-electron plating, cloud…

  16. Baryonium, a common ground for atomic and high energy physics

    NASA Astrophysics Data System (ADS)

    Wycech, S.; Dedonder, J.-P.; Loiseau, B.

    2015-08-01

    Indications of the existence of quasi-bound states in the system are presented. In their measurements, the BES collaboration has discoverd a broad enhancement close to the threshold in the S wave, isospin 0 state formed in radiative decays of J/ ?. Another enhancement located about 50 MeV below the threshold was found in mesonic decays of J/ ?. In terms of the Paris potential model it was shown that these are likely to represent the same state. Antiprotonic atomic data provide some support for this interpretation and indicate the existence of another fairly narrow quasi-bound state in a P wave.

  17. Nuclear physics (of the cell, not the atom)

    PubMed Central

    Pederson, Thoru; Marko, John F.

    2014-01-01

    The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists. PMID:25368422

  18. Project Physics Teacher Guide 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 5 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  19. An Experiment on a Physical Pendulum and Steiner's Theorem

    ERIC Educational Resources Information Center

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  20. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  1. Gross Anatomy and Physical Diagnosis: The First 'Hands On' Experience.

    ERIC Educational Resources Information Center

    Theut, Susan K.; Smith, C. Wayne

    1981-01-01

    A patient interaction course designed to provide an introductory experience to the gross anatomy laboratory and to the interview and physical examination settings is described. The patient interaction course is composed of a series of four experiences: anatomy laboratory sessions, interviews, physical examinations, and small group discussions.…

  2. Youth with Visual Impairments: Experiences in General Physical Education

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi

    2006-01-01

    The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'

  3. Youth with Visual Impairments: Experiences in General Physical Education

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi

    2006-01-01

    The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…

  4. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    SciTech Connect

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S.; Jervis, D.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  5. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  6. First order error corrections in common introductory physics experiments

    NASA Astrophysics Data System (ADS)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  7. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of the Institute of Physics. The support from the IOPCS staff made this publication possible. The 8th AISAMP was sponsored primarily by the University of Western Australia and Curtin University of Technology, both in Perth, Western Australia, and by Journal of Physics: Conference Series. Support was also received from the International Council of Science, ICSU. Guidance and active participation from colleagues, particularly from the University of Western Australia, and Curtin University, and from the Australian National University and Melbourne University were sources of strength for the actual organization of the conference. Dr Elena Semidelova receives special thanks for her organizing abilities. We hope that this issue of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between all scientists and their countries. Evan Bieske, Stephen Buckman and Jim F Williams Guest Editors

  8. Friendship, Physicality, and Physical Education: An Exploration of the Social and Embodied Dynamics of Girls' Physical Education Experiences

    ERIC Educational Resources Information Center

    Hills, Laura

    2007-01-01

    Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…

  9. Current experiments in elementary particle physics. Revision 1-85

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  10. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  11. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    SciTech Connect

    Neeleman, Marcel; Wolfe, Arthur M.; Prochaska, J. Xavier

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  12. Hyperpolarized Gases: From Atomic Physics to Seeing Lungs Breathe

    NASA Astrophysics Data System (ADS)

    Saam, Brian

    2003-10-01

    Despite the constraints of the Boltzmann factor, nuclear magnetic resonance (NMR) has been enormously successful using tiny (ppm) thermal polarizations to generate the signal. By comparison, enormous non-equilibrium nuclear-spin polarizations (of order 10%) can be achieved in ^3He and ^129Xe via spin-exchange optical pumping, greatly enhancing the NMR sensitivity of these nuclei. These hyperpolarized (HP) noble gases are being applied to a broad range of problems in physics, chemistry, biology, and even medicine. Perhaps the most dramatic example is magnetic resonance imaging (MRI) of the air spaces of the lung, a notoriously difficult organ to image conventionally. This lecture will address the physics of optical pumping and spin exchange, the application to lung MRI, including some recent ^3He lung-imaging results, and one particular aspect of HP-gas physics that has concerned us most recently: the interaction of ^3He nuclei with surfaces. The understanding of surface interactions is crucial for efficient production and handling of HP gases for applications such as MRI, since these interactions cause the nuclei to relax back to thermal equilibrium, destroying their NMR sensitivity. For example, we recently discovered that ferromagnetic sites at or near the glass surface of ^3He spin-exchange cells play a key role in surface relaxation. These sites produce hysteresis in the measured longitudinal spin relaxation time T1 as a function of the cell's history of exposure to magnetic fields. In addition to implications for HP-gas production, the exquisite sensitivity of T1 to the changing magnetic moments of the sites suggests the use of ^3He as an inert probe of surface magnetism.

  13. Quantum Zeno effect and quantum Zeno paradox in atomic physics

    NASA Astrophysics Data System (ADS)

    Block, Ellen; Berman, P. R.

    1991-08-01

    Itano and co-workers [Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990)] have recently reported the experimental verification of the quantum Zeno effect, which is the inhibition of a quantum transition by frequent measurements. In this article, we offer an alternative interpretation of the quantum Zeno effect. We show that an analysis of the dynamics of the full three-level system gives the same result. There is no need to assume explicitly that the wave function has collapsed, nor even to assume that an ideal measurement has been made. In addition, we differentiate between what has been referred to as the quantum Zeno effect and what has been termed the quantum Zeno paradox. The former is the inhibition of induced transitions, and the latter is the, as yet experimentally unobserved, inhibition of spontaneous decay. Our interpretation, which emphasizes the ``measurement''-induced interruption of atomic-state coherences as the cause of inhibited quantum transitions, suggests a resolution to the quantum Zeno paradox. The theoretical limit of continuous observation is discussed.

  14. Physically Measuring Thickness of Thin Films via Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Acosta, Guillermo; Allred, D.; Davis, R.; Webb, Nick

    2002-03-01

    In our research of thin films, we invest a great deal of time and energy in characterizing our films physical and optical properties. We have found that it is imperative to have the ability to determine, with confidence, the thickness of our films when we try to describe a materials optical performance, especially true for work in the extreme ultraviolet. Unfortunately, weve learned this is not as simple a task as it would seem. Methods that are optical in nature that determine how thick a film is are less effective for very thin films (typically our films are 25-150 A thick). We would much rather be able to use an AFM to physically measure a films thickness. After much trial and tribulation, we are happy to report the method we have developed. Our technique involves using a rigidly supported, stainless steel razor blade to mask the substrate during deposition, leaving a distinct, abrupt edge when removed. The device is named the Abruptor.

  15. Computation of Free-Free Transitions in Atomic Physics: Foundations

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sucher, J.

    2003-01-01

    The amplitude T for "free-free" processes, such as bremsstrahlung or photo- absorption by an electron in the continuum in the presence of an external field, is usually written as the matrix element of the radiation operator taken between two continuum states. However, unlike the case when at least one of the states is bound, as in radiative transitions, electron capture, or the photo-effect, this expression contains an unphysical term, proportional to a delta-function and is not really the physical amplitude Tphys. This continues to be true for both the velocity and length form of the dipole approximation to the amplitude T. We first give an a priori definition of Tphys in terms of the scattering parts of the continuum functions, which has an obvious interpretation in terms of time-ordered diagrams. We then show that when the formal amplitude is modified by a long- distance cutoff, the modified form approaches Tphys as the cutoff is removed. The modified form then serves as a basis for the definition of a physical velocity dipole amplitude and this in turn leads to an equivalent length form of the dipole amplitude. This exercise provides a clear theoretical basis for many extant calculations in which cutoff factors are introduces somewhat ad hoc, as needed.

  16. An Apollo compatible cloud physics experiment.

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Hollinden, A. B.; Satterblom, P. R.

    1973-01-01

    Consideration of the utilization of a low-gravity environment to obtain experimental information, in the area of cloud microphysics, which cannot be obtained in ground laboratories. The experiment discussed is designed to obtain quantitative answers about evaporation and breakup of salt particles from ocean spray and other sources. In addition to salt nuclei distribution mechanisms, this breakup has ecological importance in relation to the spreading of salt mists from salted highways and spreading of brine cooling tower spray from electrical power generation plants. This experiment is being submitted for consideration on the Apollo-Soyuz Test Program in 1975.

  17. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  18. Using the Wiimote in Introductory Physics Experiments

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of

  19. Using the Wiimote in Introductory Physics Experiments

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of…

  20. New ion-atom collision experiments with aligned and oriented Rydberg atoms

    SciTech Connect

    MacAdam, K.B.

    1994-12-31

    The alignment and orientation of Rydberg target atoms, effected by polarized-laser excitation and the use of external electric and magnetic fields, has recently allowed investigation of new effects in Rydberg-atom collisions at projectile velocities comparable to Rydberg-electron speeds. Results on capture from orbitally aligned Na(nd) targets and circular and elliptical Rydberg states of Li(n=25) will be discussed, and prospects for new alignment studies will be described.

  1. Determination of Spin-Lattice Relaxation of Time Using (Super 13)C NMR: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.; Jurkiewicz, Antoni

    2004-01-01

    An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.

  2. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  3. Learning Physics by Experiment: I. Falling Objects

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2014-03-01

    As a rule, students enjoy conducting experiments in which the practical aspects are straightforward and well-defined. This also applies even when there is no anticipated result for students to ``prove.'' A laboratory exercise with such properties was created for students to undertake in a completely blind manner, and they happily proceeded without any knowledge at all of what they might expect to find. The philosophy developed for the research in this paper expands the pioneering approach formulated some half century ago and successfully employed more recently. In the present era of differentiated instruction (DI) being implemented in a diversity of educational settings, the design of the subject experiment is especially significant for its inclusive nature and for the positive outcomes it produces for less academically capable students. All students benefit from such an environment because it preempts the wasted effort of undue manipulation and it removes the need to contrive agreement with a textbook via irregular attempts at reverse engineering.

  4. Characterizing Student Experiences in Physics Competitions: The Power of Emotions

    NASA Astrophysics Data System (ADS)

    Moll, Rachel F.; Nashon, S.; Anderson, D.

    2006-12-01

    Low enrolment and motivation are key issues in physics education and recently the affective dimension of learning is being studied for evidence of its influence on student attitudes towards physics. Physics Olympics competitions are a novel context for stimulating intense emotional experiences. In this study, one team of students and their teacher were interviewed and observed prior to and during the event to characterize their emotions and determine the connections between their experiences and learning and attitudes/motivation towards physics. Results showed that certain types of events stimulated strong emotions of frustration and ownership, and that students’ attitudes were that physics is fun, diverse and relevant. Analysis of these themes indicated that the nature of emotions generated was connected to their attitudes towards physics. This finding points to the potential and value of informal and novel contexts in creating strong positive emotions, which have a strong influence on student attitudes towards physics.

  5. Cuban Techno-physical Experiments in Space

    NASA Astrophysics Data System (ADS)

    Altshuler, José; Calzadilla Amaya, Ocatvio; Falcon, Federico; Fuentes, Juan E.; Lodos, Jorge; Vigil Santos, Elena

    When Cuba joined the Intercosmos Program of the socialist countries in the mid-1960s, the great educational and scientific reform taking place at that time in the country had hardly begun to bear fruit. But when, a decade later, the Soviet Union offered all the participant countries the chance to make use of its space vehicles and related installations so that their cosmonauts could carry out original scientific experiments in space, the situation had changed radically in Cuba. In a short time around 200 people already involved in scientific and technological activities succeeded in designing and setting up—in close collaboration with various Soviet, East German and Bulgarian institutions—some 20 scientific experiments that were to be carried out in orbit around the earth during the joint Soviet-Cuban space flight of September 18-26, 1980. Those experiments, and a further one that was also set up for the same space flight—but carried out during a later flight, as mentioned below—are historically important since they were the first in their class to be carried out by humans in space under microgravity conditions.

  6. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    SciTech Connect

    Not Available

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  7. Physics Analysis of the FIRE Experiment

    SciTech Connect

    S.C. Jardin; C.E. Kessel; D. Meade; J. Breslau; G. Fu; N. Gorelenkov; J. Manickam; W. Park; H. Strauss

    2002-06-19

    An integrated model of a complete discharge in the FIRE experiment has been developed based on the TSC simulation code. The complete simulation model includes a choice of several models for core transport, combined with an edge pedestal model and the Porcelli sawtooth model. Burn control is provided by feedback on the auxiliary heating power. We find that with the GLF23 and MMM95 transport models, Q >10 operation should be possible for H-mode pedestal temperatures in the range of 4-5 keV.

  8. Atomic physics at the future facility for antiproton and ion research: status report 2014

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Stöhlker, Th; Litvinov, Yu A.; SPARC Collaboration

    2015-11-01

    In this contribution, a brief overview of the Stored Particle Atomic physics Research Collaboration scientific program at the upcoming Facility for Antiproton and Ion Research (FAIR) is given. The program comprises a very broad range of research topics addressing atomic structure and dynamics in hitherto unexplored regimes, light-matter interactions, lepton pair production phenomena, precision tests of quantum electrodynamics and standard model in the regime of extreme fields and many more. We also present the current strategy for the realization of the envisioned physics program within the modularized start version (MSV) of FAIR.

  9. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  10. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  11. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of bound-bound and bound-free radiative transitions. Chapter 4 concentrates on the formulation of basic theoretical methods and physical approaches to collisions involving R. atoms. Chapters 5 to 8 contain a systematic description of major directions and modern techniques in the collision theory of R. atoms and ions with atoms, molecules, electrons, and ions. Finally, Chapter 9 deals with the spectral-line broadening and shift of R. atomic series induced by collisions with neutral and charged particles. A subject index of four pages and 250 references are given. This monograph will be a basic tool and reference for all scientists working in the fields of plasma physics, spectroscopy, physics of electronic and atomic collisions, as well as astrophysics, radio astronomy, and space physics.

  12. B Physics at the DO experiment

    SciTech Connect

    Cruz Burelo, Eduard de la

    2008-11-13

    At the beginning of RunII of the Tevatron and after more than 30 years of the discovery of the b quark at Fermilab, the lack of statistics had restricted our knowledge on b-baryons to the observation of the lightest b-baryon, the {lambda}{sub b}, and to its lifetime measured in decays which did not allow a fully reconstruction of this particle. I present results of the search for b-baryons in the DO experiment. As part of this program, a precise measurement of the {lambda}{sub b} lifetime was performed, and the discovery of the {xi}{sub b}{sup -} resulted from an analysis of 1.3 fb{sup -1} of data collected with the D0 detector during 2002-2006.

  13. Theory and experiment in gravitational physics

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1981-01-01

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  14. Simple Experiments on the Physics of Vision: The Retina

    ERIC Educational Resources Information Center

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.

  15. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  16. Distributed System of Processing of Data of Physical Experiments

    NASA Astrophysics Data System (ADS)

    Nazarov, A. A.; Moiseev, A. N.

    2014-11-01

    Complication of physical experiments and increasing volumes of experimental data necessitate the application of supercomputer and distributed computing systems for data processing. Design and development of such systems, their mathematical modeling, and investigation of their characteristics and functional capabilities is an urgent scientific and practical problem. In the present work, the characteristics of operation of such distributed system of processing of data of physical experiments are investigated using the apparatus of theory of queuing networks.

  17. Web life: The Internet Plasma Physics Education Experience

    NASA Astrophysics Data System (ADS)

    2009-02-01

    An educational outreach site maintained by the Princeton Plasma Physics Laboratory in the US, IPPEX features several interactive, game-like tools (applets) for exploring the physics of fusion, the doughnut-shaped "tokamak" reactors used in fusion experiments around the world, and related topics.

  18. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  19. Toolbar to Highlight Important Expressions in Scientific Articles on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Murata, Masaki; Sasaki, Akira; Kanamaru, Toshiyuki; Shirado, Tamotsu; Isahara, Hitoshi

    We introduce software that recognizes, extracts, and displays expressions concerning atomic and molecular data from academic papers in the electronic form. This software includes a toolbar application that can be installed in Internet Explorer (IE). This toolbar can be used by scientific readers and researchers to highlight, color-code, and collect important expressions more easily. Those expressions include atomic and molecular symbols (e.g., Xe+ and H2O) and electron configurations(e.g., 4d95s25p) from the atomic and molecular data of a large number of academic papers. We confirmed by experiments that the software could find important expressions with high precision (0.8-1.0). This software is also useful for compiling databases of atomic and molecular data, which is important for plasma simulations, because the simulations critically depend on atomic and molecular data, including the energy levels and collisional and radiative rate coefficients.

  20. Microwave ionization of hydrogen atoms: Experiment vs classical dynamics

    SciTech Connect

    van Leeuwen, K.A.H.; Oppen, G.V.; Renwick, S.; Bowlin, J.B.; Koch, P.M.; Jensen, R.V.; Rath, O.; Richards, D.; Leopold, J.G.

    1985-11-18

    Ionization of hydrogen atoms with principal quantum number n = 32, 40, and 51--74 by a 9.92-GHz electric field F(t)zF0 cos t was studied with a superimposed static electric field F-bar/sub s/ = 0,2,5,8 V/cm. The measured field strengths F0(10%) at which 10% of the atoms were ionized are in excellent agreement with classical calculations in both one and two spatial dimensions. Covering finer detail as well as gross structure of the n dependence of F0(10%), the agreement supports the application of classical dynamics to the analysis of this strongly perturbed quantum system.

  1. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  2. PREFACE: 7th Asian International Seminar on Atomic and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Deshmukh, Pranawa C.; Chakraborty, Purushottam; Williams, Jim F.

    2007-09-01

    These proceedings arose from the 7th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the Indian Institute of Technology, Madras from 4-7 December 2006. The history of the AISAMP has been reviewed by Takayanagi http://www.physics.iitm.ac.in/~aisamp7/history.html. This international seminar/conference series grew out of the Japan-China meetings which were launched in 1985, the fourth of which was held in 1992 and carried a second title: The First Asian International Seminar on Atomic and Molecular Physics (AISAMP), thus providing a formal medium for scientists in this part of the world to report periodically and exchange their scientific thoughts. The founding nations of Japan and China were joined subsequently by Korea, Taiwan, India and Australia. The aims of the symposia included bringing together leading experts and students of atomic and molecular physics, the discussion of important problems, learning and sharing modern techniques and expanding the horizons of modern atomic and molecular physics. The fields of interest ranged from atomic and molecular structure and dynamics to photon, electron and positron scattering, to quantum information processing, the effects of symmetry and many body interactions, laser cooling, cold traps, electric and magnetic fields and to atomic and molecular physics with synchrotron radiation. Particular interest was evident in new techniques and the changes of the physical properties from atomic to condensed matter. Details of the 7th AISAMP, including the topics for the special sessions and the full programme, are available online at the conference website http://www.physics.iitm.ac.in/~aisamp7/. In total, 95 presentations were made at the 7th AISAMP, these included the Invited Talks and Contributed Poster Presentations, of which 52 appear in the present Proceedings after review by expert referees, refereed to the usual standard of the Institute of Physics journal: Journal of Physics B: Atomic, Molecular and Optical Physics. We received extensive support from the Journal of Physics: Conference Series staff; Graham Douglas, in particular, has been of tremendous help. The 7th AISAMP was very well attended and was sponsored primarily by the host Indian Institute of Technology, Madras (Chennai), the Board of Research in Nuclear Sciences, (Department of Atomic Energy, Government of India), the Department of Science and Technology, (Government of India), and the Asian Office of Aerospace Research and Development (AOARD) of the US Air Force. There was support from various quarters—each was invaluable and added to the success of the 7th AISAMP. We are very grateful to all the sponsors. It is superfluous to add that guidance and active participation from several colleagues within the host Institute was the primary source of strength for the actual organization of the conference and the multitude of arrangements for the organization came from the young graduate students at the IIT-Madras. We hope that this volume of Journal of Physics: Conference Series will be referenced widely and that it will strengthen ties between various countries in the region in and around Asia, and also of course to all scientists in this field the world over. Pranawa C Deshmukh, Purushottam Chakraborty and Jim F Williams Editors Conference photograph

  3. Minimum Detection Efficiency for a Loophole-Free Atom-Photon Bell Experiment

    SciTech Connect

    Cabello, Adan; Larsson, Jan-Aake

    2007-06-01

    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon nonmaximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photodetection efficiency exceeds 0.50.

  4. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    NASA Astrophysics Data System (ADS)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  5. Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…

  6. Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general

  7. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  8. Thought Experiments in Physics Education: A Simple and Practical Example.

    ERIC Educational Resources Information Center

    Lattery, Mark J.

    2001-01-01

    Uses a Galilean thought experiment to enhance learning in a college-level physical science course. Presents both modern and historical perspectives of Galileo's work. As a final project, students explored Galileo's thought experiment in the laboratory using modern detectors with satisfying results. (Contains 25 references.) (Author/ASK)

  9. Perceptions of Overweight Students Concerning Their Experiences in Physical Education

    ERIC Educational Resources Information Center

    Trout, Josh; Graber, Kim C.

    2009-01-01

    The purpose of this investigation was to examine overweight students' perceptions of and experiences in physical education. Specifically, the applicability of learned helplessness as a framework to understand their experiences was explored. Participants were seven female and five male high school students whose body mass index was at or higher…

  10. Low Cost Alternatives to Commercial Lab Kits for Physics Experiments

    ERIC Educational Resources Information Center

    Kodejka, C.; De Nunzio, G.; Kubinek, R.; Rha, J.

    2015-01-01

    Conducting experiments in physics using modern measuring techniques, and particularly those utilizing computers, is often much more attractive to students than conducting experiments conventionally. However, the cost of professional kits in the Czech Republic is still very expensive for many schools. The basic equipment for one student workplace

  11. Autonomy and the Student Experience in Introductory Physics

    ERIC Educational Resources Information Center

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  12. Bicycle Freewheeling with Air Drag as a Physics Experiment

    ERIC Educational Resources Information Center

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…

  13. Physics Lab Experiments and Correlated Computer Aids. Teacher Edition.

    ERIC Educational Resources Information Center

    Gottlieb, Herbert H.

    Forty-nine physics experiments are included in the teacher's edition of this laboratory manual. Suggestions are given in margins for preparing apparatus, organizing students, and anticipating difficulties likely to be encountered. Sample data, graphs, calculations, and sample answers to leading questions are also given for each experiment. It is…

  14. Low Cost Alternatives to Commercial Lab Kits for Physics Experiments

    ERIC Educational Resources Information Center

    Kodejška, C.; De Nunzio, G.; Kubinek, R.; Ríha, J.

    2015-01-01

    Conducting experiments in physics using modern measuring techniques, and particularly those utilizing computers, is often much more attractive to students than conducting experiments conventionally. However, the cost of professional kits in the Czech Republic is still very expensive for many schools. The basic equipment for one student workplace…

  15. Bicycle Freewheeling with Air Drag as a Physics Experiment

    ERIC Educational Resources Information Center

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models

  16. Introducing New Experiments to the Contemporary Physics Lab: Emphasis on Quantum Mechanics Foundations and New Physics Frontiers

    NASA Astrophysics Data System (ADS)

    Eid, Khalid; Yarrison-Rice, Jan; Jaeger, Herbert

    2013-03-01

    We remodeled our sophomore curriculum extensively both in the laboratories and the lectures. Our Experimental Contemporary Physics laboratory (PHY293) was almost completely re-built both in curriculum and pedagogy. Among the new experiments that we introduced are Nanoparticle plasmon resonance, Saturated absorption and fluorescence in iodine molecules, Quantized conductance in atomic-scale constrictions, and Water droplets behavior and manipulation on metal surfaces. This presentation will focus on the last two experiments. Quantized conductance in a constriction in a gold wire being pulled slowly is a unique direct application of the one-dimensional potential wells. Unlike most experiments on quantum mechanics that use optics, this experiment is transport-based, conceptually simple, and robust in addition to being low-cost. The transport properties of the wire span multiple transport regimes while being pulled. It is quite valuable for students (a significant fraction of whom are biological physics and engineering physics majors) to understand the behavior of water droplets on different surfaces. Water is the medium in which biological activities occur and is important in many other applications like air conditioning and refrigeration. We design simple gradients in the hydrophobic/hydrophilic properties of metal surfaces in order to move water droplets in a controlled way, even against gravity. Students explore the effects of surface tension and metal roughness on droplets.

  17. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics

    ERIC Educational Resources Information Center

    Donnelly, Denis P.; And Others

    1971-01-01

    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  18. The PHOBOS experiment at RHIC - physics and capabilities.

    SciTech Connect

    Back, B. B.

    1998-11-17

    The PHOBOS experiment at RHIC is designed to study multiplicity distributions and fluctuations over all of 4{pi}, as well as particle spectra and correlations at mid rapidity, with a particular emphasis on physics at low p{sub T}. The experiment is relatively small and relies almost entirely on silicon pad detector technology. The flexibility of the design, the conservative nature of the technologies used, and the ability to take data at high rates place the experiment in a good position to search for exotic physics from heavy-ion collisions at the early stages of RHIC operations.

  19. The Basic Physics of Electron-Atom Collisions: How Much Do We Know and How Much Is Left to Learn?

    NASA Astrophysics Data System (ADS)

    Gay, T. J.

    2001-05-01

    Electron-atom scattering is perhaps the most investigated quantum mechanical process in physics, but not the best understood. Indeed, the simplest example of this process, electron-hydrogen scattering, has only just recently succumbed to comprehensive solution. Given that we believe in Quantum Mechanics, Special Relativity, and Coulomb's Law, what makes electron-atom scattering so difficult to understand? This talk will present a review of where we stand, both theoretically and experimentally, in our knowledge of these collisions ranging from total cross sections to the most esoteric spin and polarization parameters. Particular attention will be paid to areas where lack of basic knowledge limits our understanding of applied electron-driven processes. Recommendations for future experiments will be made.

  20. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  1. Do general physics textbooks discuss scientists’ ideas about atomic structure? A case in Korea

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general physics textbooks often lack detail about the history and philosophy of science. This result is quite similar to those published for the USA. Furthermore, chemistry textbooks published in the USA, Turkey and Venezuela are quite similar to the physics textbooks. This is a cause for concern as textbooks present theories as facts and ignore the historical reconstructions based on the development of scientific theories that frequently involve controversies and conflicts among scientists. The inclusion of historical reconstructions of ideas about atomic structure can provide students with a better appreciation of the dynamics of scientific progress.

  2. Experiments with Ultracold Quantum-degenerate Fermionic Lithium Atoms

    NASA Technical Reports Server (NTRS)

    Ketterle, Wolfgang

    2003-01-01

    Experimental methods of laser and evaporative cooling, used in the production of atomic Bose-Einstein condensates have recently been extended to realize quantum degeneracy in trapped Fermi gases. Fermi gases are a new rich system to explore the implications of Pauli exclusion on scattering properties of the system, and ultimately fermionic superfluidity. We have produced a new macroscopic quantum system, in which a degenerate Li-6 Fermi gas coexists with a large and stable Na-23 BEC. This was accomplished using inter-species sympathetic cooling of fermionic 6Li in a thermal bath of bosonic Na-23. We have achieved high numbers of both fermions (less than 10(exp 5) and bosons (less than 10(exp 6), and Li-6 quantum degeneracy corresponding to one half of the Fermi temperature. This is the first time that a Fermi sea was produced with a condensate as a "refrigerator".

  3. PREFACE: Atomically controlled fabrication technology: new physics and functional device realization Atomically controlled fabrication technology: new physics and functional device realization

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuji; Kasai, Hideaki

    2011-10-01

    To realize next generation functional devices, atomic level controllability of the application and fabrication techniques is necessary. The conventional route to advance solid state devices, which involves improvement of 'instrumental accuracy', is now facing a major paradigm shift towards 'phenomenal accuracy'. Therefore, to keep up with this critical turn in the development of devices, pioneering research (both theoretical and experimental) on relevant materials, focusing on new physics at the atomic scale, is inevitable. This special section contains articles on the advancements in fabrication of functional devices with an emphasis on the exploration, clarification and understanding of atomistic phenomena. Research articles reporting theoretical and experimental findings on various materials such as semiconductors, metals, magnetic and organic systems, collectively present and 'capture' the appropriate processes and mechanisms of this rapidly developing field. The theoretical investigations employ first-principles quantum-mechanical simulations to clarify and bring about design principles and guidelines, or to develop more reliable computational methods. Experimental studies, on the other hand, introduce novel capabilities to build, view and manipulate materials at the atomic scale by employing pioneering techniques. Thus, the section pays significant attention to novel structures and properties and the accompanying fabrication techniques and design arising from the understanding of properties and structures at the atomic scale. We hope that researchers in the area of physics, materials science and engineering, interested in the development of functional devices via atomic level control, will find valuable information in this collaborative work. We are grateful to all of the authors for their contributions. Atomically controlled fabrication contents On the mechanism of carbon nanotube formation: the role of the catalyst G N Ayre, T Uchino, B Mazumder, A L Hector, J L Hutchison, D C Smith, P Ashburn and C H de Groot Mechanism of atomic-scale passivation and flattening of semiconductor surfaces by wet-chemical preparationsKenta Arima, Katsuyoshi Endo, Kazuto Yamauchi, Kikuji Hirose, Tomoya Ono and Yasuhisa Sano Real-space calculations for electron transport properties of nanostructuresTomoya Ono, Shigeru Tsukamoto, Yoshiyuki Egami and Yoshitaka Fujimoto Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulationsDavid S G Bauer, Phivos Mavropoulos, Samir Lounis and Stefan Blügel An atomically controlled Si film formation process at low temperatures using atmospheric-pressure VHF plasmaK Yasutake, H Kakiuchi, H Ohmi, K Inagaki, Y Oshikane and M Nakano Single-nanometer focusing of hard x-rays by Kirkpatrick-Baez mirrorsKazuto Yamauchi, Hidekazu Mimura, Takashi Kimura, Hirokatsu Yumoto, Soichiro Handa, Satoshi Matsuyama, Kenta Arima, Yasuhisa Sano, Kazuya Yamamura, Koji Inagaki, Hiroki Nakamori, Jangwoo Kim, Kenji Tamasaku, Yoshinori Nishino, Makina Yabashi and Tetsuya Ishikawa Surface magnetism in O2 dissociation—from basics to applicationY Kunisada, M C Escaño and H Kasai Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization methodAkira Sasaki, Masashi Kojo, Kikuji Hirose and Hidekazu Goto Electrical conduction of organic ultrathin films evaluated by an independently driven double-tip scanning tunneling microscopeK Takami, S Tsuruta, Y Miyake, M Akai-Kasaya, A Saito, M Aono and Y Kuwahara

  4. Modern Laser-Atomic Physics and Stable Oscillators for Real World Applications

    NASA Astrophysics Data System (ADS)

    Hollberg, Leo

    2010-03-01

    This talk will consider how, when and where modern laser/atomic physics might play a significant role in real world applications. Advances in laser technology, control systems and precision laser spectroscopy are enabling many new capabilities for measurements and instrumentation, and can improve the performance of atomic clocks, magnetometers and inertial sensors by several orders of magnitude. Initial ideas of using lasers to enhance the performance of atom-based instruments dates back to the 1960s, and those early predictions were mostly well founded and have now been demonstrated, to varying degrees, in research laboratories and environments around the world. However, 40 years later, these promises have yet to be realized in industrial, governmental or commercial applications. As an example, the technology and performance (in terms of accuracy and stability) of commercially available atomic clocks has been rather stagnate since the 1970s, whereas those in research laboratories have continued to improve so that their performance is roughly 1000x better than the commercial frequency standards. We can, and should, ask why there is such a large gap between what is possible and what is commercially available? Reasons for the large disconnect in performance are multifold, and will be discussed. Atom-Optic Inertial sensors (gyros, accelerometers) are a more recent development and application that uses the same methods of laser atomic physics. Efforts are now underway to bring these atom interferometer inertial sensors to real world applications and commercial availability. Extremely stable microwave sources are another spinoff of precision laser technology and spectroscopy. It now appears that lasers may soon find their way into high performance commercial clocks and magnetometers and other instruments. However, our community has been making such promises and predictions for decades now...

  5. Photoemission from solids: the transition from solid-state to atomic physics

    SciTech Connect

    Shirley, D.A.

    1980-08-01

    As the photon energy is increased, photoemission from solids undergoes a slow transition from solid-state to atomic behavior. However, throughout the energy range h..nu.. = 10 to 1000 eV or higher both types of phenomena are present. Thus angle-resolved photoemission can only be understood quantitatively if each experimenter recognizes the presence of band-structure, photoelectron diffraction, and photoelectron asymmetry effects. The quest for this understanding will build some interesting bridges between solid-state and atomic physics and should also yield important new insights about the phenomena associated with photoemission.

  6. Employing confinement induced resonances to realize Kondo physics with ultracold atoms

    NASA Astrophysics Data System (ADS)

    Bauer, J.; Demler, E.; Salomon, C.

    2015-03-01

    We recently proposed a novel realization of Kondo physics with ultracold atomic gases and illustrated that a mixture of 40K and 23Na atoms has suitable properties for the generation of a Kondo-correlated state with experimentally accessible scales. This system fortuitously satisfies rather special conditions. Here we discuss an alternative realization based on confinement induced resonances which could also be applicable for other mixtures. We first explain the general principle of how to engineer the Kondo correlated state like this. Then we present results for local spectral functions from numerical renormalization group (NRG) calculations for the appropriate effective Anderson impurity model and also predict the experimentally measurable radio frequency response.

  7. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    NASA Astrophysics Data System (ADS)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  8. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    ERIC Educational Resources Information Center

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  9. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    ERIC Educational Resources Information Center

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.

  10. Resiliency in Physics: The Lived Experiences of African-American Women Who Completed Doctoral Physics Programs

    ERIC Educational Resources Information Center

    Burnette, Samara Fleming

    2013-01-01

    Currently, little is known about African-American women with doctoral degrees in physics. This study examined the lived experiences of African-American women who completed doctoral programs in physics. Due to factors of race and gender, African-American women automatically enter a double-bind in science, technology, engineering, and mathematics…

  11. Attitude towards Physics Lessons and Physical Experiments of the High School Students

    ERIC Educational Resources Information Center

    Kaya, Hasan; Boyuk, Ugur

    2011-01-01

    In order that students can develop researching, questioning, critical thinking, problem solving and decision making skills, so that they become lifelong learning individuals, they should be improved regarding their knowledge, understanding and attitude towards natural sciences. Attitudes towards physics lessons and physical experiments of high…

  12. Experiences in Sport, Physical Activity, and Physical Education Among Christian, Buddhist, and Hindu Asian Adolescent Girls

    PubMed Central

    Kodani, Iku; Gupta, Nidhi; Gill, Diane L.

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed. PMID:23412952

  13. Experiences in sport, physical activity, and physical education among Christian, Buddhist, and Hindu Asian adolescent girls.

    PubMed

    Araki, Kaori; Kodani, Iku; Gupta, Nidhi; Gill, Diane L

    2013-01-01

    Multicultural scholarship in sport and exercise psychology should help us understand and apply cultural competencies for all to be physically active. In the present study, two Asian countries, Japan and Singapore, were chosen. The participation rate for physical activities among adolescent girls tends to be lower than that of boys in both countries. Thus, the purpose of the project was to gain knowledge and understanding about sociocultural factors that may explain adolescent girls' perceptions and behaviors toward sport, physical activity, and physical education (PE). A qualitative approach using semi-structured interviews with focus groups was used to understand meanings of physical activity among Buddhist Japanese, and Hindu Indians and Christian Chinese from Singapore. Each focus group consisted of four or five girls and female researchers. Based on the analysis, we created four themes which were "cultural identities," "Asian girls and sport/physical activities," "PE experiences," "motivation for future involvement." The Buddhist Japanese, Hindu Indian, and Christian Chinese participants each reported unique physical activity experiences, and all the participants were aware of how Asian culture may affect being physically active. Experiences of PE classes were similar but perceptions of their PE attire were different for Christian Chinese and Hindu Indian adolescent girls. Based on the results, the importance of nurturing cultural competencies and ways to encourage girls to be physically active throughout life were discussed. PMID:23412952

  14. The physics of musical scales: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  15. Thought Experiments in Physics Education: A Simple and Practical Example

    NASA Astrophysics Data System (ADS)

    Lattery, Mark J.

    Thought experiments play a vital role in scientific argumentation. However, implications for pedagogy are generally neglected. In this article, a Galilean thought experiment is used to enhance learning in a college-level physical science course. Both modern and historical perspectives of Galileo's work are presented. As a final project, students explore Galileo's thought experiment in the laboratory using modern detectors with satisfying results. The project experience lends insight into both the content and processes of science. Extensions to other educational contexts are discussed.

  16. Current experiments in particle physics - particle data group

    SciTech Connect

    Galic, H.; Lehar, F.; Kettle, P.R.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  17. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g (Earth's gravity), and the emergence of face-centered-cubic (FCC) crystals late in the coarsening process (as small crystallites lost particles to the slow ripening of large crystallites). Significant quantitative findings from the microgravity experiments have been developed describing complex interactions among crystallites during the growth process, as concentration fields overlap in the surrounding disordered phase. Time-resolved Bragg scattering under microgravity captures one effect of these interactions quite conclusively for the sample at a volume fraction of 0.528. From the earliest time until the sample is almost fully crystalline, the size and overall crystallinity grow monotonically, but the number of crystallites per unit volume (number density) falls. Apparently nucleation is slower than the loss of crystallites because of the transfer of particles from small to large crystals. Thus, coarsening occurs simultaneously with growth, rather than following the completion of nucleation and growth as is generally assumed. In the same sample, an interesting signature appears in the apparent number density of crystallites and the volume fraction within the crystallites shortly before full crystallinity is reached. A brief upturn in both indicates the creation of more domains of the size of the average crystallite simultaneous with the compression of the crystallites. Only the emergence of dendritic arms offers a reasonable explanation. The arms would be "seen" by the light scattering as separate domains whose smaller radii of curvature would compress the interior phase. In fiscal year 1999, numerous papers, a doctoral dissertation, and the PHaSE final report were produced. Although this flight project has been completed, plans are in place for a follow-on colloid experiment by Chaikin and Russel that employs a light microscope within Glenn's Fluids and Combustion Facility on the International Space Station. PHaSE is providing us with a deeper understanding of the nure of phase transitions. The knowledge derived has added to the understanding of condensed matter. In addition, the burgeoning study of the dynamics of colloidal self-assembly may lead to the development of a range of photonic materials that control the desirable properties of light. Thus, applications of ordered colloidal structures include not only ultrastructure ceramics, but also photonic crystals and photothermal nanosecond light-switching devices. Industries dealing with semiconductors, electro-optics, ceramics, and composites stand to benefit from such advancements.

  18. Tritium handling experience at Atomic Energy of Canada Limited

    SciTech Connect

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I.

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  19. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing.

    1993-01-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  20. Future high precision experiments and new physics beyond Standard Model

    SciTech Connect

    Luo, Mingxing

    1993-04-01

    High precision (< 1%) electroweak experiments that have been done or are likely to be done in this decade are examined on the basis of Standard Model (SM) predictions of fourteen weak neutral current observables and fifteen W and Z properties to the one-loop level, the implications of the corresponding experimental measurements to various types of possible new physics that enter at the tree or loop level were investigated. Certain experiments appear to have special promise as probes of the new physics considered here.

  1. Compilation of current high-energy-physics experiments

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  2. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  3. Simulation of Physical Experiments in Immersive Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Wasfy, Tamer M.

    2001-01-01

    An object-oriented event-driven immersive Virtual environment is described for the creation of virtual labs (VLs) for simulating physical experiments. Discussion focuses on a number of aspects of the VLs, including interface devices, software objects, and various applications. The VLs interface with output devices, including immersive stereoscopic screed(s) and stereo speakers; and a variety of input devices, including body tracking (head and hands), haptic gloves, wand, joystick, mouse, microphone, and keyboard. The VL incorporates the following types of primitive software objects: interface objects, support objects, geometric entities, and finite elements. Each object encapsulates a set of properties, methods, and events that define its behavior, appearance, and functions. A container object allows grouping of several objects. Applications of the VLs include viewing the results of the physical experiment, viewing a computer simulation of the physical experiment, simulation of the experiments procedure, computational steering, and remote control of the physical experiment. In addition, the VL can be used as a risk-free (safe) environment for training. The implementation of virtual structures testing machines, virtual wind tunnels, and a virtual acoustic testing facility is described.

  4. Physical essence of the multibody contact-sliding at atomic scale

    NASA Astrophysics Data System (ADS)

    Han, Xuesong

    2014-01-01

    Investigation the multibody contact-sliding occurred at atomic discrete contact spot will play an important role in determine the origin of tribology behavior and evaluates the micro-mechanical property of nanomaterials and thus optimizing the design of surface texture. This paper carries out large scale parallel molecular dynamics simulation on contact-sliding at atomic scale to uncover the special physical essence. The research shows that some kind of force field exists between nanodot pair and the interaction can be expressed by the linear combination of exponential function while the effective interaction distance limited in 1 angstrom for nanodot with several tens of nanometer diameter. The variation tendency about the interaction force between nanodot array is almost the same between nanodot pairs and thus the interaction between two nanodot array can be characterized by parallel mechanical spring. Multibody effect which dominates the interaction between atoms or molecules will gradually diminish with the increasing of length scales.

  5. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    SciTech Connect

    Santarius, John F.; Emmert, Gilbert A.

    2013-11-07

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat the species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.

  6. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging

    PubMed Central

    Giordano, V. M.; Ruta, B

    2016-01-01

    Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization. PMID:26787443

  7. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging.

    PubMed

    Giordano, V M; Ruta, B

    2016-01-01

    Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization. PMID:26787443

  8. Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging

    NASA Astrophysics Data System (ADS)

    Giordano, V. M.; Ruta, B.

    2016-01-01

    Understanding and controlling physical aging, that is, the spontaneous temporal evolution of out-of-equilibrium systems, represents one of the greatest tasks in material science. Recent studies have revealed the existence of a complex atomic motion in metallic glasses, with different aging regimes in contrast with the typical continuous aging observed in macroscopic quantities. By combining dynamical and structural synchrotron techniques, here for the first time we directly connect previously identified microscopic structural mechanisms with the peculiar atomic motion, providing a broader unique view of their complexity. We show that the atomic scale is dominated by the interplay between two processes: rearrangements releasing residual stresses related to a cascade mechanism of relaxation, and medium range ordering processes, which do not affect the local density, likely due to localized relaxations of liquid-like regions. As temperature increases, a surprising additional secondary relaxation process sets in, together with a faster medium range ordering, likely precursors of crystallization.

  9. Precisely detecting atomic position of atomic intensity images.

    PubMed

    Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe

    2015-03-01

    We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. PMID:25544105

  10. When Physical Activity Participation Promotes Inactivity: Negative Experiences of Spanish Adolescents in Physical Education and Sport

    ERIC Educational Resources Information Center

    Beltran-Carrillo, Vicente J.; Devis-Devis, Jose; Peiro-Velert, Carmen; Brown, David H. K.

    2012-01-01

    This article analyses negative experiences in physical education and sport reported during qualitative interviews of a group of inactive adolescent Spanish boys and girls. The purpose of this analysis is twofold. First and most important, it seeks to give voice to these young people reporting negative experiences and connect them to contexts of…

  11. Construction and characterization of external cavity diode lasers for atomic physics.

    PubMed

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-01-01

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included. PMID:24796259

  12. Construction and Characterization of External Cavity Diode Lasers for Atomic Physics

    PubMed Central

    Hardman, Kyle S.; Bennetts, Shayne; Debs, John E.; Kuhn, Carlos C. N.; McDonald, Gordon D.; Robins, Nick

    2014-01-01

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs1,2. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling1,2 makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman3, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included. PMID:24796259

  13. Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Dean, W. C., II

    1975-01-01

    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described.

  14. FROM THE HISTORY OF PHYSICS: The development of the first Soviet atomic bomb

    NASA Astrophysics Data System (ADS)

    Goncharov, German A.; Ryabev, Lev D.

    2001-01-01

    In the late 1930s and early 1940s, two remarkable physical phenomena — the fission of heavy nuclei and the chain fission reaction — were discovered, implying that a new powerful source of energy (nuclear fission energy) might become a practical possibility for mankind. At that time, however, the political situation in the world made the development of the atomic bomb the main objective of nuclear energy research in the countries involved. The first atomic bombs, notoriously used in the war against Japan, were produced by the United States of America only six and a half years after the discovery of fission. Four years later, the first Soviet atomic bomb was tested. This was a major step toward the establishment of nuclear parity which led to stability and global peace and thus greatly influenced the destiny of human kind. Based on documentary materials covering the period from 1939 to 1949, this paper traces the origin and evolution of the physical ideas behind the first Soviet atomic bomb and discusses the most important events associated with the project.

  15. Particle-, nuclear- and atomic-physics aspects of rare weak decays of nuclei

    NASA Astrophysics Data System (ADS)

    Suhonen, Jouni

    2012-10-01

    Neutrinoless double-beta (0νββ) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. The 0νββ decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. This work touches a special topic of the 0νββ decay, namely the emerging field of experimental and theoretical studies of the resonant neutrinoless double electron-capture decay of an atomic nucleus.

  16. Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport

    NASA Astrophysics Data System (ADS)

    Cai, Huacheng; Wang, Wendong; Liu, Peiwen; Wang, Guangming; Liu, Ankang; He, Zhe; Cheng, Zhaofang; Zhang, Shengli; Xia, Minggang

    2015-06-01

    We demonstrate tin (Sn) nanowires growth enhanced by Selenium (Se) atoms via physical vapor transport (PVT) method. The Raman spectroscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy show that Sn nanowires are synthesized with a large quantity, good quality and high purity of Sn. The growth of Sn nanowires is attributed to Solid-Vapor-Liquid mechanism. The effects of gold nanoparticles catalyst, Si substrate, and Se atoms on Sn nanowires growth are discussed in detail. We find that Se atom plays a key role in the growth of Sn nanowires. The gaseous Sn atoms are absorbed by the eutectic alloy droplets of Se-Au at first. Then Sn atoms precipitate at the liquid-solid phase interface due to a supersaturated solution and form a one-dimensional nanostructure. In all, this PVT method could provide a simple and quick way to synthesize monocrystalline Sn nanowires with an advantage in both quality and quantity. The optical transmittance of Sn nanowires thin film with 2 μm2 density approaches 85-90% in visible wavelength. Therefore, the Sn nanowires thin film can be applied to transparent electrode along with their metallic property.

  17. From the Dawn of Nuclear Physics to the First Atomic Bombs

    NASA Astrophysics Data System (ADS)

    Woolbright, Stephen; Schumacher, Jacob; Michonova-Alexova, Ekaterina

    2014-03-01

    This work gives a fresh look at the major discoveries leading to nuclear fission within the historical perspective. The focus is on the main contributors to the discoveries in nuclear physics, leading to the idea of fission and its application to the creation of the atomic bombs used at the end of the World War II. The present work is a more complete review on the history of the nuclear physics discoveries and their application to the atomic bomb. In addition to the traditional approach to the topic, focusing mainly on the fundamental physics discoveries in Europe and on the Manhattan Project in the United States, the nuclear research in Japan is also emphasized. Along with that, a review of the existing credible scholar publications, providing evidence for possible atomic bomb research in Japan, is provided. Proper credit is given to the women physicists, whose contributions had not always been recognized. Considering the historical and political situation at the time of the scientific discoveries, thought-provoking questions about decision-making, morality, and responsibility are also addressed. The work refers to the contributions of over 20 Nobel Prize winners. EM-A is grateful to Prof. Walter Grunden and to Prof. Emeritus Shadahiko Kano, Prof. Emeritus Monitori Hoshi for sharing their own notes, documents, and references, and to CCCU for sponsoring her participation in the 2013 Nuclear Weapons Seminar in Japan.

  18. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in multiphase flows, capillary phenomena, and heat pipes. Finally in complex fluids, experiments in rheology and soft condensed materials will be presented.

  19. Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience

    ERIC Educational Resources Information Center

    Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.

    2013-01-01

    Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It

  20. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  1. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  2. Early Career Experiences of Physical Education Teachers in Urban Schools

    ERIC Educational Resources Information Center

    Flory, Sara B.

    2015-01-01

    The purpose of this study was to examine the early career experiences of three physical education (PE) teachers who taught in urban charter schools. Using cultural relevance theory, three early career PE teachers were observed and interviewed for approximately six weeks each. Data were analyzed using constant comparison. Two major themes emerged…

  3. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    ERIC Educational Resources Information Center

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  4. Physical Activity Experiences of Boys with and without ADHD

    ERIC Educational Resources Information Center

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,…

  5. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  6. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer

  7. Skylab Experiments, Volume I, Physical Science, Solar Astronomy.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…

  8. The Hispanic Experience in Physical Education Programs and Departments

    ERIC Educational Resources Information Center

    Hodge, Samuel R.; Cervantes, Carlos M.; Vigo-Valentin, Alexander N.; Canabal-Torres, Maria Y.; Ortiz-Castillo, Esther M.

    2012-01-01

    The purpose of this article is to discuss challenges and identify strategies to increase the representation of Hispanic faculty in the academy, particularly Physical Education (PE) programs and departments at doctorate-granting universities. Recommendations to increase the presence and improve the experiences of Hispanic faculty are provided.

  9. Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience

    ERIC Educational Resources Information Center

    Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.

    2013-01-01

    Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It…

  10. Teachers' Experiences with an Adapted Igcse Physics Syllabus in Botswana

    ERIC Educational Resources Information Center

    Koosimile, A.T.

    2005-01-01

    This paper focuses on teachers' experiences with implementing a modified International General Certificate of Secondary Education (IGCSE) physics syllabus in Botswana. The syllabus, characterised by a new organisational and pedagogic paradigm, is a significant shift from the traditional ''teacher-proof'' syllabus to one that is flexible,…

  11. The Hispanic Experience in Physical Education Programs and Departments

    ERIC Educational Resources Information Center

    Hodge, Samuel R.; Cervantes, Carlos M.; Vigo-Valentin, Alexander N.; Canabal-Torres, Maria Y.; Ortiz-Castillo, Esther M.

    2012-01-01

    The purpose of this article is to discuss challenges and identify strategies to increase the representation of Hispanic faculty in the academy, particularly Physical Education (PE) programs and departments at doctorate-granting universities. Recommendations to increase the presence and improve the experiences of Hispanic faculty are provided.…

  12. Daily Life Experiences of Japanese Adults with Physical Disabilities.

    ERIC Educational Resources Information Center

    Wilhite, Barbara C.

    1995-01-01

    Interviews with 13 Japanese individuals (mean age 50 years) with physical disabilities found that their disabilities permeated every aspect of their daily experience. Informants described a life style in which they maximized their energies and abilities and limited unnecessary activities. Those who worked in the community or were able to…

  13. Physical Activity Experiences of Boys with and without ADHD

    ERIC Educational Resources Information Center

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,

  14. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    ERIC Educational Resources Information Center

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional

  15. B-physics prospects with the LHCb experiment

    SciTech Connect

    Harnew, N.

    2008-04-15

    This paper summarizes the B-physics prospects of the LHCb experiment. Firstly, a brief introduction to the CKM matrix and the mechanism of CP violation in the Standard Model is given. The advantages of the LHCb experiment for B-physics exploitation will then be described, together with a short description of the detector components. Finally, the LHCb physics aims and prospects will be summarized, focusing on the measurements of sin(2{beta}) in tree and gluonic penguin diagrams, sin(2{alpha}) in B{sub d}{sup 0} {sup {yields}} {pi}{sup +}{pi}{sup -} and {pi}{sup +}{pi}{sup -}{pi}{sup 0}, neutral B-meson oscillations and the B{sub s}{sup 0} mixing phase, and the measurement of {gamma} using a variety of complementary methods.

  16. On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach

    SciTech Connect

    Pan, Dongqing; Ma, Lulu; Xie, Yuanyuan; Yuan, Chris; Jen, Tien Chien

    2015-03-15

    Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions.

  17. Medical physics in Europe following recommendations of the International Atomic Energy Agency

    PubMed Central

    Lopes, Maria do Carmo; Drljević, Advan; Gershkevitsh, Eduard; Pesznyak, Csilla

    2016-01-01

    Background Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014), and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014). Also the International Atomic Energy Agency (IAEA) has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013) and the International Basic Safety Standards, General Safety Requirements Part 3 (2014). The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics. Conclusions Published recommendations of IAEA Regional Meeting on Medical Physics in Europe shall be followed and enforced in all European states. Appropriate qualification framework including education, clinical specialization, certification and registration of medical physicists shall be established and international recommendation regarding staffing levels in the field of medical physics shall be fulfilled in particular. European states have clear legal and moral responsibility to effectively transpose Basic Safety Standards into national legislation in order to ensure high quality and safety in patient healthcare. PMID:27069451

  18. Review: Experiments in Fundamental Physics Scheduled and in Development for the ISS

    NASA Astrophysics Data System (ADS)

    Lämmerzahl, C.; Ahlers, G.; Ashby, N.; Barmatz, M.; Biermann, P. L.; Dittus, H.; Dohm, V.; Duncan, R.; Gibble, K.; Lipa, J.; Lockerbie, N.; Mulders, N.; Salomon, C.

    2004-03-01

    This is a review of those experiments in the area of Fundamental Physics that are either approved by ESA and NASA, or are currently under development, which are to be performed in the microgravity environment of the International Space Station. These experiments cover the physics of liquid Helium (SUE, BEST, MISTE, DYNAMX, and EXACT), ultrastable atomic clocks (PHARAO, PARCS, RACE), ultrastable microwave resonators (SUMO), and particle detectors (AMS and EUSO). The scientific goals are to study more precisely the universality properties of liquid Helium under microgravity conditions, to establish better time standards and to test the universality of the gravitational red shift, to make more precise tests of the constancy of the speed of light, and to measure the particle content in space directly without disturbances from the Earth's inner atmosphere.

  19. Industrial metrology as applied to large physics experiments

    SciTech Connect

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.

  20. Scintillation counters in modern high-energy physics experiments (Review)

    NASA Astrophysics Data System (ADS)

    Kharzheev, Yu. N.

    2015-07-01

    Scintillation counters (SCs) based on organic plastic scintillators (OPSs) are widely used in modern high-energy physics (HEP) experiments. A comprehensive review is given to technologies for production of OPS strips and tiles (extrusion, injection molding, etc.), optical and physical characteristics of OPSs, and methods of light collection based on the use of wavelength-shifting (WLS) fibers coupled to multipixel vacuum and silicon PMs. Examples are given of the use of SCs in modern experiments involved in the search for quarks and new particles, including the Higgs boson (D0, CDF, ATLAS, CMS), new states of matter (ALICE), CP violation (LHCb, KLOE), neutrino oscillations (MINOS, OPERA), and cosmic particles in a wide mass and energy interval (AMS-02). Scintillation counters hold great promise for future HEP experiments (at the ILC, NICA, FAIR) due to properties of a high segmentation, WLS fiber light collection, and multipixel silicon PMT readout.

  1. Precision spectroscopy of light kaonic atom X-rays in the SIDDHARTA experiment

    SciTech Connect

    Ishiwatari, T.; Cargnelli, M.; Marton, J.; Widmann, E.; Zmeskal, J.; Bazzi, M.; Corradi, G.; Curceanu, C.; d'Uffizi, A.; Guaraldo, C.; Sandri, P. Levi; Lucherini, V.; Okada, S.; Pietreanu, D.; Rizzo, A.; Vidal, A. Romero; Scordo, A.; Doce, O. Vazquez; Beer, G.; Bombelli, L.

    2010-12-28

    The SIDDHARTA experiment successfully measured kaonic atom X-rays using four gas targets of hydrogen, deuterium, helium-3, and helium-4 at the DA{Phi}NH electron-positron collider. Excellent performance of the SDDs under beam conditions was found in terms of X-ray energy resolution and a good background suppression capability. The preliminary results of the strong-interaction shifts of the kaonic atoms with Z = 1 and 2 are given.

  2. Fluid physics, thermodynamics, and heat transfer experiments in space

    NASA Technical Reports Server (NTRS)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  3. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  4. Statistical physics of human beings in games: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Huang, Ji-Ping

    2014-07-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.

  5. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very early days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for combustion, complex fluids, and fluid physics; GRC has led the successful implementation of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion; fire detection; fire extinguishment; soot phenomena; flame liftoff and stability; and material flammability. The fluids experiments have studied capillary flow; magneto-rheological fluids; colloidal systems; extensional rheology; pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years.

  6. Interactive Lecture Experiments in Large Introductory Physics Classes

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  7. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  8. Low cost alternatives to commercial lab kits for physics experiments

    NASA Astrophysics Data System (ADS)

    Kodejška, Č.; De Nunzio, G.; Kubínek, R.; Říha, J.

    2015-08-01

    Conducting experiments in physics using modern measuring techniques, and particularly those utilizing computers, is often much more attractive to students than conducting experiments conventionally. However, the cost of professional kits in the Czech Republic is still very expensive for many schools. The basic equipment for one student workplace in the case of professional kits such as Vernier, Pasco or Coach costs around 800 euros. In this paper some physics experiments in which a computer, or a tablet with Microsoft Windows, is used as the measuring device, along with available physical devices such as a laser pointer, a solar cell or an electret microphone, are presented as suitable and alternative ways to carry out lab work. We show that it is possible to perform very simple school experiments (both as a central demonstration and as individual experimentation), in which high accuracy and clear final conclusions can be achieved at a very low cost. Further information is published on the specialized webpage www.sclpx.eu/index.php?lang=en. The worksheets are in Czech, but the English version is in preparation.

  9. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    SciTech Connect

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  10. Resolving all-order method convergence problems for atomic physics applications

    SciTech Connect

    Gharibnejad, H.; Derevianko, A.; Eliav, E.; Safronova, M. S.

    2011-05-15

    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for a large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction (CI)+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct inversion of iterative subspace. Examples are presented for B, Al, Zn{sup +}, and Yb{sup +}. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications.

  11. The 2010 Nobel Prize in physicsground-breaking experiments on graphene

    NASA Astrophysics Data System (ADS)

    Hancock, Y.

    2011-11-01

    The 2010 Nobel Prize in physics was awarded to Professors Andre Geim and Konstantin Novoselov for their ground-breaking experiments on graphene, a single atomic layer of carbon, and more generally, for their pioneering work in uncovering a new class of materials, namely two-dimensional atomic crystals. This paper gives an accessible account and review of the story of graphene; from its first description in the literature, to the realization and confirmation of its remarkable properties, through to its impressive potential for broad-reaching applications. The story of graphene is written within the context of the enormous impact that Geim and Novoselovs' work has had on this field of research, and recounts their personal pathways of discovery, which ultimately led to their award of the 2010 Nobel Prize.

  12. Symmetry and aesthetics in introductory physics: An experiment in interdisciplinary physics and fine arts education

    NASA Astrophysics Data System (ADS)

    van der Veen, Janet Krause

    In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.

  13. Physics Results from the Antiproton Experiment (APEX) at Fermilab

    DOE Data Explorer

    APEX Collaboration

    Is Antimatter stable? The APEX experiment searches for the decay of antiprotons at the Fermilab Antiproton Accumulator. Observation of antiproton decay would indicate a violation of the CPT theorem, which is one of the most fundamental theorems of modern physics. The best laboratory limits on antiproton decay come from the APEX experiment which achieved a sensitivity to antiproton lifetimes up to of order 700,000 years for the most sensitive decay modes. Antiproton lifetimes in this range could arise from CPT violation at the Planck scale.[copied from http://www-apex.fnal.gov/] This website presents published results from the APEX Test Experiment (T861) and from the E868 Experiment. Limits were placed on six antiproton decay modes with a muon in the final state and on seven antiproton decay modes with an electron in the final state. See also the summary table and plot and the APEX picture gallery.

  14. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    SciTech Connect

    Nielsen, Joseph Wayne

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  15. Bicycle Freewheeling with Air Drag as a Physics Experiment

    NASA Astrophysics Data System (ADS)

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models for the air resistance on a moving object. The relevant parameters are extracted from the data and the validity of the different models is be discussed. Finally findings are presented in a poster session.

  16. Tevatron End-of-Run Beam Physics Experiments

    SciTech Connect

    Valishev, A.; Gu, X.; Miyamoto, R.; White, S.; Schmidt, F.; Qiang, J.; /LBNL

    2012-05-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beam-beam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  17. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  18. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  19. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    SciTech Connect

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 less than or equal to Z less than or equal to 28) and neonlike (34 less than or equal to Z less than or equal to 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs.

  20. Testing for a cosmological influence on local physics using atomic and gravitational clocks

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Hellings, R. W.; Canuto, V. M.; Goldman, I.

    1983-01-01

    The existence of a possible influence of the large-scale structure of the universe on local physics is discussed. A particular realization of such an influence is discussed in terms of the behavior in time of atomic and gravitational clocks. Two natural categories of metric theories embodying a cosmic infuence exist. The first category has geodesic equations of motion in atomic units, while the second category has geodesic equations of motion in gravitational units. Equations of motion for test bodies are derived for both categories of theories in the appropriate parametrized post-Newtonian limit and are applied to the Solar System. Ranging data to the Viking lander on Mars are of sufficient precision to reveal (1) if such a cosmological influence exists at the level of Hubble's constant, and (2) which category of theories is appropriate for a descripton of the phenomenon.

  1. Long Term Physical Health Consequences of Adverse Childhood Experiences

    PubMed Central

    Monnat, Shannon M.; Chandler, Raeven Faye

    2015-01-01

    This study examined associations between adverse childhood family experiences and adult physical health using data from 52,250 US adults aged 18–64 from the 2009–2012 Behavioral Risk Factor Surveillance System (BRFSS). We found that experiencing childhood physical, verbal, or sexual abuse, witnessing parental domestic violence, experiencing parental divorce, and living with someone who was depressed, abused drugs or alcohol, or who had been incarcerated were associated with one or more of the following health outcomes: self-rated health, functional limitations, diabetes, and heart attack. Adult socioeconomic status and poor mental health and health behaviors significantly mediated several of these associations. The results of this study highlight the importance of family-based adverse childhood experiences on adult health outcomes and suggest that adult SES and stress-related coping behaviors may be crucial links between trauma in the childhood home and adult health. PMID:26500379

  2. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-06-19

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals.

  3. An Overview of the International Reactor Physics Experiment Evaluation Project

    SciTech Connect

    Briggs, J. Blair; Gulliford, Jim

    2014-10-09

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties associated with advanced modeling and simulation accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. Two Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) activities, the International Criticality Safety Benchmark Evaluation Project (ICSBEP), initiated in 1992, and the International Reactor Physics Experiment Evaluation Project (IRPhEP), initiated in 2003, have been identifying existing integral experiment data, evaluating those data, and providing integral benchmark specifications for methods and data validation for nearly two decades. Data provided by those two projects will be of use to the international reactor physics, criticality safety, and nuclear data communities for future decades. An overview of the IRPhEP and a brief update of the ICSBEP are provided in this paper.

  4. Understanding the learning assistant experience with physics identity

    NASA Astrophysics Data System (ADS)

    Close, Eleanor W.; Close, Hunter G.; Donnelly, David

    2013-01-01

    Learning Assistants (LAs) have been shown to have better conceptual understanding and more favorable beliefs about science than non-LAs, and are more likely to choose a career in K-12 science teaching [1]. We propose that connections between elements of identity, persistence, and participation in an LA program can be explained using the concept of the community of practice and its intimate relationship to identity [2]. In separate work, Hazari et al. found that physics identity was highly correlated to expressed career plans in physics [3]. We hypothesize that a thriving LA program has many features of a well-functioning community of practice and contributes to all four elements of physics identity: personal interest, student performance, competence, and recognition by others. We explore how this analysis of the LA experience might shape decisions and influence outcomes of adoption and adaptations of the LA model.

  5. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    NASA Astrophysics Data System (ADS)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.

  6. Micro Pattern Gas Detectors for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2015-10-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Nowadays, advances in photolithography and micro processing techniques have enabled the transition from the old generation of multi wire gaseous chamber (MWPCs) to a new family commonly refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGD technologies combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Several technical breakthroughs over the past decade have allowed the possibility for large area MPGDs, making them cost effective and high performance detector candidates for future nuclear physics (NP) and high energy physics (HEP) experiments. We give in the present talk, an overview of the state of the art of the MPGDs. We will then briefly present the CERN-based RD51 collaboration established in 2008 with the goal of further advancing technological developments and applications of MPGDs and associated electronic-readout systems. Finally we report on the rich and diverse R&D activities on MPGDs to prepare for the detector challenges of the next generation of accelerators and for the frontiers of physics research.

  7. Hydrogen atom recombination on tungsten at high temperature: Experiment and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Rutigliano, M.; Santoro, D.; Balat-Pichelin, M.

    2014-10-01

    Atom recombination at wall is a phenomenon involved in many plasma experiments and also in present tokamaks and future fusion plasma reactors like ITER. This exothermic surface reaction is catalyzed by the material and depends on its composition and temperature. In the MESOX experimental set-up, several methods were developed for the measurement of the recombination parameters. In this paper, a method developed for the experimental evaluation of the recombination coefficient of atomic hydrogen γH on tungsten at high temperature is presented using two series of atomic lines (Hα and He or Hβ and H2) and the results obtained for surface temperature up to 1350 K are given. A Molecular Dynamics Simulation has been done for the recombination of hydrogen atoms on tungsten in conditions close to the experimental ones using a semi-classical collisional method. Modeling results are compared to the experimental data for two surface temperature values and a fairly good agreement was obtained.

  8. The FrPNC experiment at TRIUMF: Atomic parity non-conservation in francium

    NASA Astrophysics Data System (ADS)

    Aubin, S.; Gomez, E.; Behr, J. A.; Pearson, M. R.; Sheng, D.; Zhang, J.; Collister, R.; Melconian, D.; Flambaum, V. V.; Sprouse, G. D.; Orozco, L. A.; Gwinner, G.

    2012-09-01

    The FrPNC collaboration has begun the construction of an on-line laser cooling and trapping apparatus at TRIUMF to measure atomic parity non-conservation (PNC) and the nuclear anapole moment in a string of artificially produced francium isotopes. Atomic PNC experiments provide unique high precision tests of the electroweak sector of the Standard Model at very low energies. Furthermore, precision measurements of spin-dependent atomic PNC can determine nuclear anapole moments and probe the weak force within the nucleus. Francium is an excellent candidate for precision measurements of atomic PNC due to its simple electronic structure and enhanced parity violation: both the optical PNC and anapole moment signals are expected to be over an order of magnitude larger than in cesium.

  9. Science Goals of the Primary Atomic Reference Clock in Space (PARCS) Experiment

    NASA Technical Reports Server (NTRS)

    Ashby, N.

    2003-01-01

    The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled Cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. PARCS is a joint project of the National Institute of Standards and Technology (NIST), NASA's Jet Propulsion Laboratory (JPL), and the University of Colorado (CU). This paper concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5x10(exp -14) at one second, and accuracies better than 10(exp -16) are projected.

  10. Stony Brook Mineral Physics Institute Research Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vaughan, M. T.; Arthur, E. J.; Cintrón, I. A.; Labold, J. A.; Mounier, M. T.; Plotnick, D. S.; Pottish, S. D.; Richard, G. A.

    2008-12-01

    Each summer, the Mineral Physics Institute (MPI) at Stony Brook University offers a group of upper-level undergraduate students a paid opportunity to participate in mineral physics research during a ten-week Summer Scholars experience, funded by the National Science Foundation's Research Experience for Undergraduates program. Since 1992, when the program was established under by the Center for High Pressure Research, over 100 students have participated. Students are matched with existing research groups led by Institute faculty representing the physical sciences and mathematics. Research is conducted in MPI's High Pressure Laboratory and at the National Synchrotron Light Source at nearby Brookhaven National Laboratory. Students may also register to earn up to 6 credits of Stony Brook University undergraduate research course work for their participation in the program. 1 Effect of Al Substitution on the Talc to 10Å Phase Transition 2 X-ray Characterization of Clay Minerals and their Thermal Decomposition Products 3 Synthesis of Hydrous Olivine under High Pressure and Temperature 4 Strain Behavior of MgO at High Pressure 5 Temperature Variations in DIA Pressure Assembly using MgO 6 Potassium Carbonate (K2CO3) Fusion Curve Reexamined: New Experiments at 5 GPa During the summer of 2008, six students participated in the program. Their research projects were: The results of the six projects will be presented by the student participants in this session.

  11. Generative Role of Experiments in Physics and in Teaching Physics: A Suggestion for Epistemological Reconstruction

    ERIC Educational Resources Information Center

    Koponen, Ismo T.; Mantyla, Terhi

    2006-01-01

    In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of…

  12. Generative Role of Experiments in Physics and in Teaching Physics: A Suggestion for Epistemological Reconstruction

    ERIC Educational Resources Information Center

    Koponen, Ismo T.; Mantyla, Terhi

    2006-01-01

    In physics teaching experimentality is an integral component in giving the starting point of knowledge formation and conceptualization. However, epistemology of experiments is not often addressed directly in the educational and pedagogical literature. This warrants an attempt to produce an acceptable reconstruction of the epistemological role of

  13. On the Limitations of Thought Experiments in Physics and the Consequences for Physics Education.

    ERIC Educational Resources Information Center

    Reiner, Miriam; Burko, Lior M.

    2003-01-01

    Focuses on the role of Thought Experiments (TEs) in ongoing processes of conceptual refinement for physicists and physics learners. Analyze TEs related to stellar evolution and general relativity. Identifies the stages at which crucial errors are made in these TEs and the cognitive processes which lead to these errors. Discusses implications for…

  14. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate

  15. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  16. Quantum double-exchange physics with ultracold atoms and synthetic gauge potentials

    NASA Astrophysics Data System (ADS)

    Schachenmayer, Johannes; Isaev, Leonid; Rey, Ana Maria

    We study an interplay between local spin exchange and Néel antiferromagnetism in a two-band optical lattice. The lowest narrow band is half-filled and implements the magnetic background, while a higher band contains mobile atoms. When the local spins are locked in a Néel state, the motion of itinerant atoms is hindered by exchange energy barriers and the system is a flat-band insulator. As we show, this picture breaks down when exchange interaction between local and mobile spins is comparable to an energy scale of the Néel state. In this regime, formation of singlets between local and itinerant spins gives rise to a metallic phase of mobile atoms dressed by the spin fluctuations. This state is characterized by coupled spin-charge excitations whose spin is transverse to the Néel vector. Our predictions can be realized with ultracold alkaline-earth fermionic atoms coupled to a laser-induced staggered magnetic field, which stabilizes the Néel order and controls the amount of quantum fluctuations of local spins. By tuning the strength of this laser coupling relative to the exchange interaction, one can either adiabatically drive the crossover between the flat-band insulator and correlated metal phases, or explore non-equilibrium spin-charge dynamics in quench experiments. This work was supported by the NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  17. Physics Basis and Simulation of Burning Plasma Physics for the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    C.E. Kessel; D. Meade; S.C. Jardin

    2002-01-18

    The FIRE [Fusion Ignition Research Experiment] design for a burning plasma experiment is described in terms of its physics basis and engineering features. Systems analysis indicates that the device has a wide operating space to accomplish its mission, both for the ELMing H-mode reference and the high bootstrap current/high beta advanced tokamak regimes. Simulations with 1.5D transport codes reported here both confirm and constrain the systems projections. Experimental and theoretical results are used to establish the basis for successful burning plasma experiments in FIRE.

  18. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    PubMed Central

    Hayano, Ryugo S.

    2010-01-01

    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  19. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  20. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of

  1. Experience in teaching intensive course of thermal physics for undergraduate physics students

    NASA Astrophysics Data System (ADS)

    Aliev, Farkhad

    2009-03-01

    This talk of non-technical nature describes experience of the author in teaching the intensive course of thermal physics for the undergraduate physics students at the Universidad Autonoma de Madrid, Spain. After brief introduction to the program, description of the WEB support of the course, I shall describe practical classes ( home-works, visits to the Laboratories, experimental demonstrations, typical problems and typical topics for presentations on the advanced thermodynamics, etc. ). I shall further discuss different possible actions to wake up an interest of the students to the thermal physics and ways to simulate their active participation in the class discussions. I also describe different schemes employed in the last few years to evaluate effectively and clearly the students work and knowledge. Finally, I will analyze the efficiency of our methodic in improving teaching of thermal physics at University level.

  2. Autonomy and the Student Experience in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect, on the student experience, of the number of opportunities for choice built into the course format. This was done by comparing two sets of classes. In one set of classes, students spent each class period working through a required series of activities. In the other set of classes, with additional choice, students were free to choose what to work on during nearly half of each class. It was found that the effect of additional choice on student interest and enjoyment in learning physics was significantly different for men vs. women, with a Cohen's d of 0.62 (0.16-1.08; 95% CI). Men became somewhat more interested with additional choice and women became less interested. This gender difference in interest and enjoyment as a result of additional choice could not be accounted for by differences in performance. It was also found that only in classes with additional choice did performance in the course correlate with the degree to which students reasons for studying physics became more autonomous during the quarter (beta=0.30*). I discuss the implications that these effects of additional choice have for instruction and course design in similar contexts.

  3. Introductory Physics Experiments Using the Wii Balance Board

    NASA Astrophysics Data System (ADS)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  4. The experiment PANDA: physics with antiprotons at FAIR

    NASA Astrophysics Data System (ADS)

    Boca, Gianluigi

    2015-05-01

    PANDA is an experiment that will run at the future facility FAIR, Darmstadt, Germany. A high intensity and cooled antiproton beam will collide on a fixed hydrogen or nuclear target covering center-of-mass energies between 2.2 and 5.5 GeV. PANDA addresses various physics aspects from the low energy non-perturbative region towards the perturbative regime of QCD. With the impressive theoretical developments in this field, e.g. lattice QCD, the predictions are becoming more accurate in the course of time. The data harvest with PANDA will, therefore, be an ideal test bench with the aim to provide a deeper understanding of hadronic phenomena such as confinement and the generation of hadron masses. A variety of physics topics will be covered with PANDA, for example: the formation or production of exotic non-qqbar charm meson states connected to the recently observed XYZ spectrum; the study of gluon-rich matter, such as glueballs and hybrids; the spectroscopy of the excited states of strange and charm baryons, their production cross section and their spin correlations; the behaviour of hadrons in nuclear matter; the hypernuclear physics; the electromagnetic proton form factors in the timelike region. The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1-2 % at 1 GeV/c in the central region); secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons); a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  5. Experiences of Psychological and Physical Aggression in Adolescent Romantic Relationships: Links to Psychological Distress

    ERIC Educational Resources Information Center

    Jouriles, Ernest N.; Garrido, Edward; Rosenfield, David; McDonald, Renee

    2009-01-01

    Objective: This research examined links between adolescents' experiences of psychological and physical relationship aggression and their psychological distress. Experiences of psychological and physical aggression were expected to correlate positively with symptoms of psychological distress, but experiences of psychological aggression were…

  6. Experiences of Psychological and Physical Aggression in Adolescent Romantic Relationships: Links to Psychological Distress

    ERIC Educational Resources Information Center

    Jouriles, Ernest N.; Garrido, Edward; Rosenfield, David; McDonald, Renee

    2009-01-01

    Objective: This research examined links between adolescents' experiences of psychological and physical relationship aggression and their psychological distress. Experiences of psychological and physical aggression were expected to correlate positively with symptoms of psychological distress, but experiences of psychological aggression were

  7. The Influence of Hands On Physics Experiments on Scientific Process Skills According to Prospective Teachers' Experiences

    ERIC Educational Resources Information Center

    Hirça, Necati

    2013-01-01

    In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…

  8. Source physics experiments at the Nevada Test Site.

    SciTech Connect

    Lee, Ping; Snelson, Catherine; Abbott, Robert; Coblentz, David D.; Corbell, Robert; Bowyer, Theodore W.; Sussman, Aviva J.; Carrigan, Charles R.; Bradley, Christopher R.; Patton, Howard J.; Seifert, Carolyn E.; Sweeney, Jerry J.; Brunish, Wendee M.; Hawkins, Ward L.; Antoun,Tarabay H.; Wohletz, Kenneth H.; Zucca, John Jay

    2010-10-01

    The U. S. capability to monitor foreign underground nuclear test activities relies heavily on measurement of explosion phenomena, including characteristic seismic, infrasound, radionuclide, and acoustic signals. Despite recent advances in each of these fields, empirical, rather than physics-based, approaches are used to predict and explain observations. Seismologists rely on prior knowledge of the variations of teleseismic and regional seismic parameters such as p- and s-wave arrivals from simple one-dimensional models for the teleseismic case to somewhat more complicated enhanced two-dimensional models for the regional case. Likewise, radionuclide experts rely on empirical results from a handful of limited experiments to determine the radiological source terms present at the surface after an underground test. To make the next step in the advancement of the science of monitoring we need to transform these fields to enable predictive, physics-based modeling and analysis. The Nevada Test Site Source Physics Experiments (N-SPE) provide a unique opportunity to gather precise data from well-designed experiments to improve physics-based modeling capability. In the seismic experiments, data collection will include time domain reflectometry to measure explosive performance and yield, free-field accelerometers, extensive seismic arrays, and infrasound and acoustic measurements. The improved modeling capability that we will develop using this data should enable important advances in our ability to monitor worldwide for nuclear testing. The first of a series of source physics experiments will be conducted in the granite of Climax Stock at the NTS, near the locations of the HARD HAT and PILE DRIVER nuclear tests. This site not only provides a fairly homogeneous and well-documented geology, but also an opportunity to improve our understanding of how fractures, joints, and faults affect seismic wave generation and propagation. The Climax Stock experiments will consist of a 220 lb (TNT equivalent) calibration shot and a 2200 lb (TNT equivalent) over-buried shot conducted in the same emplacement hole. An identical 2200 lb shot at the same location will follow to investigate the effects of pre-conditioning. These experiments also provide an opportunity to advance capabilities for near-field monitoring, and on-site inspections (OSIs) of suspected testing sites. In particular, geologic, physical, and cultural signatures of underground testing can be evaluated using the N-SPE activities as case studies. Furthermore, experiments to measure the migration of radioactive noble gases to the surface from underground explosions will enable development of higher fidelity radiological source term models that can predict migration through a variety of geologic conditions. Because the detection of short-lived radionuclides is essential to determining if an explosion was nuclear or conventional, a better understanding of the gaseous and particulate radionuclide source terms that reach the surface from underground testing is critical to development of OSI capability.

  9. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  10. Experience Using Formal Methods in High Energy Physics

    NASA Astrophysics Data System (ADS)

    Balke, A. C.; Carter, J.; Haveman, J.

    We report our experience using the formal method VDM++ in high energy physics real-time applications. VDM++ is an extension of the established formal method VDM to include object-oriented, concurrency and real-time features. VDM++ is supported by the VENUS tool-set, comprising an OMT graphical editor, VDM++ syntax and type checker, and a C++ code generator. Formal specification meta-languages allow formal data modeling, algorithm and system behavior specification at a highly abstract level. Once an abstract design has converged it is refined towards a particular implementation, with formal validation of each step if desired. We have applied VDM++ to the design of a fast track pattern recognition algorithm; the design of a global second- level trigger system for LHC experiments; the specification of simulated physics data; and the design of a data router hardware unit for a LHC second-level trigger. We are encouraged by the application of mathematics in an engineering discipline and conclude that formal methods have the potential to make a valuable contribution to the systems development process in high energy physics.

  11. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    SciTech Connect

    Benage, John F.; Albright, Brian J.; Fernandez, Juan C.

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL, and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation. Without a high-intensity high-power laser with some unique attributes available on Trident today (e.g., ultra-high laser-pulse contrast), there is no way to deliver such diverse probes, with the required flux and/or brilliance, exquisitely synchronized to the plasma formation source.

  12. Atomic Oxygen and Space Environment Effects on Aerospace Materials Flown with EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Clatterbuck, Carroll H.; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

    1996-01-01

    Polymer materials samples mounted on a passive carrier tray were flown aboard the STS-46 Atlantis shuttle as complement to the EOIM-3 (Evaluation of Oxygen Interaction with Materials) experiment to evaluate the effects of atomic oxygen on the materials and to measure the gaseous shuttle bay environment. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07 x 10(exp 20) atoms/cm(exp 2) are being reported. The changes have been verified using Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurement, microscopic observations and thermo-optical measurements. The samples, including Kapton, Delrin, epoxies, Beta Cloth, Chemglaze Z306, silver Teflon, silicone coatings, 3M tape and Uralane and Ultem, PEEK, Victrex (PES), Polyethersulfone and Polymethylpentene thermoplastic, have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the oxygen fluence. Those efficiencies have been compared to results from other experiments, when available. The efficiencies of the samples are all in the range of E-24 g/atom. The results indicate that the reaction efficiencies of the reported materials can be grouped in about three ranges of values. The least affected materials which have efficiencies varying from 1 to 10(exp 25) g/atom, include silicones, epoxies, Uralane and Teflon. A second group with efficiency from 10 to 45(exp 25) g/atom includes additional silicone coatings, the Chemglaze Z306 paint and Kapton. The third range from 50 to 75(exp 25) includes organic compound such as Pentene, Peek, Ultem, Sulfone and a 3M tape. A Delrin sample had the highest reaction efficiency of 179(exp 25) g/atom. Two samples, the aluminum Beta cloth X389-7 and the epoxy fiberglass G-11 nonflame retardant, showed a slight mass increase.

  13. Physics of Hard Spheres Experiment (PhaSE) or "Making Jello in Space"

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Doherty, Michael P.

    1998-01-01

    The Physics of Hard Spheres Experiment (PHaSE) is a highly successful experiment that flew aboard two shuttle missions to study the transitions involved in the formation of jellolike colloidal crystals in a microgravity environment. A colloidal suspension, or colloid, consists of fine particles, often having complex interactions, suspended in a liquid. Paint, ink, and milk are examples of colloids found in everyday life. In low Earth orbit, the effective force of gravity is thousands of times less than at the Earth's surface. This provides researchers a way to conduct experiments that cannot be adequately performed in an Earth-gravity environment. In microgravity, colloidal particles freely interact without the complications of settling that occur in normal gravity on Earth. If the particle interactions within these colloidal suspensions could be predicted and accurately modeled, they could provide the key to understanding fundamental problems in condensed matter physics and could help make possible the development of wonderful new "designer" materials. Industries that make semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. Atomic interactions determine the physical properties (e.g., weight, color, and hardness) of ordinary matter. PHaSE uses colloidal suspensions of microscopic solid plastic spheres to model the behavior of atomic interactions. When uniformly sized hard spheres suspended in a fluid reach a certain concentration (volume fraction), the particle-fluid mixture changes from a disordered fluid state, in which the spheres are randomly organized, to an ordered "crystalline" state, in which they are structured periodically. The thermal energy of the spheres causes them to form ordered arrays, analogous to crystals. Seven of the eight PHaSE samples ranged in volume fraction from 0.483 to 0.624 to cover the range of interest, while one sample, having a concentration of 0.019, was included for instrument calibration.

  14. Simulations of the edge plasma: the role of atomic, molecular and surface physics

    SciTech Connect

    Coster, D. P.; Gori, S.; Bonnin, X.; Reiter, D.; Kukushkin, A.; Krstic, P.; Strand, P.; Eriksson, L.-G.

    2009-05-02

    Atomic, molecular and surface physics plays an important role in simulations of the edge plasma in present day tokamaks, and in the predictive simulations of new devices. The edge plasma - in this context, the Scrape-Off Layer (SOL), the Private Flux Region (PFR) and core region close to the separatrix (or Last Closed Flux Surface, LCFS) - provides the boundary conditions for the main plasma, and is the region where much of the power and all of the particle exhaust occurs. It is also the region where the plasma interacts with solid surfaces, puffed gases and gas arising from recycling. The results of plasma edge simulations can depend strongly on the availability and quality of the atomic, molecular and surface data (the peak plasma temperature at the divertor was found to vary by a factor of five dependent on the choice of atomic physics data in a recent sensitivity analysis). The current material choice for ITER with Plasma Facing Components (PFCs) consisting of C, Be and W also presents challenges, both in the availability of the necessary data for W, and in the plethora of charge states for W. Another challenge presented by the material choice is the likely presence of mixed materials formed by the migration of material from one surface to another. These introduce effects like alloying and preferential sputtering as well as new (much longer) time-scales in the problem.Efforts to incorporate a bundled charge state model within one of the present edge simulation codes, SOLPS, will be described, as well as efforts to address some of the questions raised by mixed materials. Some issues related to data consistency and traceability within the context of the European effort on Integrated Tokamak Modelling will also be addressed.

  15. Position determination of fragile objects in nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Kit Cheung, Hoi; Tsang, M. Betty

    2008-10-01

    To study the single particle nature of unstable nuclei, inverse kinematics with radioactive beams in transfer reactions have to be used. In such experiments, it is important to determine the exact positions of the beam and detected particles. A Laser Based Alignment System (LBAS) has been successfully used in several nuclear physics experiments. LBAS is designed to determine positions of sharp edges with sub-millimeter accuracy without physical contact with the measured object. In the recent p(^34,46Ar,d) transfer experiments, the beam positions at the target are reconstructed with Channel Plate Detectors, the emitted deuteron particles are detected with the High Resolution Array (HiRA) and the recoil particles are measured with the S800 spectrometer. The HiRA device consists of multiple telescopes, each of which consists of 1024 pixels, with the dimension of 1.95x1.95mm^2 for each pixel. We use LBAS to determine the positions of the target, the channel plate detectors, and the pixels positions of HiRA. We then map these elements to the global positions of the S800 spectrometer and its magnetic elements.

  16. Initial Physics Operation of the National Spherical Torus Experiment- Upgrade

    NASA Astrophysics Data System (ADS)

    Mueller, Dennis; NSTX-U Team

    2015-11-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) is an experiment designed to study the physics of Spherical Torus (ST) at about twice the toroidal field and neutral beam injection (NBI) power as NSTX for 5 s. at full parameters. In its initial operational period NSTX-U will limit operation to BT <= .75 T but the full complement of 6 neutral beam (NB) sources will be available. Three NB sources added during the upgrade inject more tangentially and will be essential to investigate the physics of neutral beam current drive. In NSTX-U, use of a digital real-time plasma control system and the application of wall conditioning techniques will be used to achieve routine operation with good confinement. The wall conditioning techniques include bakeout to over 300°C, helium glow discharge cleaning, boronization of the plasma facing surfaces using deuterated trimethylboron gas in a helium glow discharge and lithium evaporation onto the walls. Auxiliary heating by up to 6 MW of High Harmonic Fast Waves will be available. The operational experience during the plasma commissioning phase will be discussed. Work Supported by U.S.D.O.E. Contract No. DE-AC02-09CH11466.

  17. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  18. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    NASA Astrophysics Data System (ADS)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  19. Tokamak Physics Experiment (TPX) power supply design and development

    SciTech Connect

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-04-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes.

  20. Flavour physics and the Large Hadron Collider beauty experiment.

    PubMed

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future. PMID:22253243

  1. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  2. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  3. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood

  4. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    ERIC Educational Resources Information Center

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  5. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    SciTech Connect

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of the expression 'CSC studies' ('computing system commissioning'), which is occasionally referred to in these volumes. The work reported does generally assume that the detector is fully operational, and in this sense represents an idealised detector: establishing the best performance of the ATLAS detector with LHC proton-proton collisions is a challenging task for the future. The results summarised here therefore represent the best estimate of ATLAS capabilities before real operational experience of the full detector with beam. Unless otherwise stated, simulations also do not include the effect of additional interactions in the same or other bunch-crossings, and the effect of neutron background is neglected. Thus simulations correspond to the low-luminosity performance of the ATLAS detector. This report is broadly divided into two parts: firstly the performance for identification of physics objects is examined in detail, followed by a detailed assessment of the performance of the trigger system. This part is subdivided into chapters surveying the capabilities for charged particle tracking, each of electron/photon, muon and tau identification, jet and missing transverse energy reconstruction, b-tagging algorithms and performance, and finally the trigger system performance. In each chapter of the report, there is a further subdivision into shorter notes describing different aspects studied. The second major subdivision of the report addresses physics measurement capabilities, and new physics search sensitivities. Individual chapters in this part discuss ATLAS physics capabilities in Standard Model QCD and electroweak processes, in the top quark sector, in b-physics, in searches for Higgs bosons, supersymmetry searches, and finally searches for other new particles predicted in more exotic models.

  6. Comparison of Numerical Simulations to Experiments for Atomization in a Jet Nebulizer

    PubMed Central

    Lelong, Nicolas; Vecellio, Laurent; Sommer de Gélicourt, Yann; Tanguy, Christian; Diot, Patrice; Junqua-Moullet, Alexandra

    2013-01-01

    The development of jet nebulizers for medical purposes is an important challenge of aerosol therapy. The performance of a nebulizer is characterized by its output rate of droplets with a diameter under 5 µm. However the optimization of this parameter through experiments has reached a plateau. The purpose of this study is to design a numerical model simulating the nebulization process and to compare it with experimental data. Such a model could provide a better understanding of the atomization process and the parameters influencing the nebulizer output. A model based on the Updraft nebulizer (Hudson) was designed with ANSYS Workbench. Boundary conditions were set with experimental data then transient 3D calculations were run on a 4 µm mesh with ANSYS Fluent. Two air flow rate (2 L/min and 8 L/min, limits of the operating range) were considered to account for different turbulence regimes. Numerical and experimental results were compared according to phenomenology and droplet size. The behavior of the liquid was compared to images acquired through shadowgraphy with a CCD Camera. Three experimental methods, laser diffractometry, phase Doppler anemometry (PDA) and shadowgraphy were used to characterize the droplet size distributions. Camera images showed similar patterns as numerical results. Droplet sizes obtained numerically are overestimated in relation to PDA and diffractometry, which only consider spherical droplets. However, at both flow rates, size distributions extracted from numerical image processing were similar to distributions obtained from shadowgraphy image processing. The simulation then provides a good understanding and prediction of the phenomena involved in the fragmentation of droplets over 10 µm. The laws of dynamics apply to droplets down to 1 µm, so we can assume the continuity of the distribution and extrapolate the results for droplets between 1 and 10 µm. So, this model could help predicting nebulizer output with defined geometrical and physical parameters. PMID:24244334

  7. The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    SciTech Connect

    J. Blair Briggs; Enrico Sartori; Lori Scott

    2006-09-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined.

  8. Preliminary Safety Analysis Report for the Tokamak Physics Experiment

    SciTech Connect

    Motloch, C.G.; Bonney, R.F.; Levine, J.D.; McKenzie-Carter, M.A.; Masson, L.S.; Commander, J.C.

    1995-04-01

    This Preliminary Safety Analysis Report (PSAR), includes an indication of the magnitude of facility hazards, complexity of facility operations, and the stage of the facility life-cycle. It presents the results of safety analyses, safety assurance programs, identified vulnerabilities, compensatory measures, and, in general, the rationale describing why the Tokamak Physics Experiment (TPX) can be safely operated. It discusses application of the graded approach to the TPX safety analysis, including the basis for using Department of Energy (DOE) Order 5480.23 and DOE-STD-3009-94 in the development of the PSAR.

  9. A Summer Research Experience in Particle Physics Using Skype

    NASA Astrophysics Data System (ADS)

    Johnston, Curran; Alexander, Steven; Mahmood, A. K.

    2012-10-01

    This last summer I did research in particle physics as part of a ``remote REU.'' This poster will describe that experience and the results of my project which was to experimentally verify the mass ranges of the Z' boson. Data from the LHC's Atlas detector was filtered by computers to select for likely Z boson decays; my work was in noting all instances of Z or Z' boson decays in one thousand events and their masses, separating the Z from Z' bosons, and generating histograms of the masses.

  10. Report on Physics of Channelization: Theory, Experiment, and Observation

    SciTech Connect

    Kudrolli, Arshad

    2014-05-19

    The project involved a study of physical processes that create eroded channel and drainage networks. A particular focus was on how the shape of the channels and the network depended on the nature of the fluid flow. Our approach was to combine theoretical, experimental, and observational studies in close collaboration with Professor Daniel Rothman of the Massachusetts Institute of Technology. Laboratory -scaled experiments were developed and quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique and fluorescent optical imaging techniques.

  11. Chladni Patterns on Drumheads: A ``Physics of Music'' Experiment

    NASA Astrophysics Data System (ADS)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional systems, such as string and wind instruments, to the two-dimensional membranes and plates of the percussion family. Although the sand patterns attributed to Ernst Florens Friedrich Chladni (1756-1827) are often demonstrated for this purpose using metal plates,2-4 the use of drumheads offers several pedagogical and practical advantages in the lab.

  12. Physical mechanism of the Schwarzschild effect in film dosimetry—theoretical model and comparison with experiments

    NASA Astrophysics Data System (ADS)

    Djouguela, A.; Kollhoff, R.; Rühmann, A.; Willborn, K. C.; Harder, D.; Poppe, B.

    2006-09-01

    In consideration of the importance of film dosimetry for the dosimetric verification of IMRT treatment plans, the Schwarzschild effect or failure of the reciprocity law, i.e. the reduction of the net optical density under 'protraction' or 'fractionation' conditions at constant dose, has been experimentally studied for Kodak XOMAT-V (Martens et al 2002 Phys. Med. Biol. 47 2221-34) and EDR 2 dosimetry films (Djouguela et al 2005 Phys. Med. Biol. 50 N317-N321). It is known that this effect results from the competition between two solid-state physics reactions involved in the latent-image formation of the AgBr crystals, the aggregation of two Ag atoms freshly formed from Ag+ ions near radiation-induced occupied electron traps and the spontaneous decomposition of the Ag atoms. In this paper, we are developing a mathematical model of this mechanism which shows that the interplay of the mean lifetime τ of the Ag atoms with the time pattern of the irradiation determines the magnitude of the observed effects of the temporal dose distribution on the net optical density. By comparing this theory with our previous protraction experiments and recent fractionation experiments in which the duration of the pause between fractions was varied, a value of the time constant τ of roughly 10 s at room temperature has been determined for EDR 2. The numerical magnitude of the Schwarzschild effect in dosimetry films under the conditions generally met in radiotherapy amounts to only a few per cent of the net optical density (net OD), so that it can frequently be neglected from the viewpoint of clinical applications. But knowledge of the solid-state physical mechanism and a description in terms of a mathematical model involving a typical time constant of about 10 s are now available to estimate the magnitude of the effect should the necessity arise, i.e. in cases of large fluctuations of the temporal pattern of film exposure.

  13. Physics Teaching Assistants' Experiences in Teaching Nature of Science (NOS) in Physics Laboratories

    NASA Astrophysics Data System (ADS)

    Aydeniz, Mehmet; Yeter-Aydeniz, Kubra

    2014-03-01

    The purpose of this study is to investigate physics teaching assistants' experiences with teaching the nature of science to their students. The participants consist of 10 teaching assistants who had taught various undergraduate physics lab sections at least one semester. Data were collected through an open-ended questionnaire, one semi-structured interview and document analyses. The results show that majority of students have difficulty in appropriating the epistemic norms of science in their laboratory reports. The analyses of lab reports show that students fail to develop robust scientific explanations for the data they gather through experiments. The discussion focuses on enhancing teaching assistants' pedagogical content knowledge for promoting students' adequate understanding and use of NOS in their reports.

  14. The Meaning of Patient Experiences of Medically Unexplained Physical Symptoms.

    PubMed

    Kornelsen, Jude; Atkins, Chloe; Brownell, Keith; Woollard, Robert

    2016-02-01

    Current diagnostic models in medical practice do not adequately account for patient symptoms that cannot be classified. At the moment, when all known diagnostic possibilities have been excluded, physicians-and patients-confront uncertainty in diagnosis, which gives rise to the label of Medically Unexplained Physical Symptoms (MUPS). This phenomenological study, conducted by two research teams in two geographic locations, sought to explore patients' experiences of prolonged uncertainty in diagnosis. Participants in this study described their experiences with and consequences of MUPS primarily in relation to levels of acuity and acceptance of uncertainty, the latter loosely correlated to length of time since onset of symptoms (the longer the time, the more forbearance participants expressed). We identified three experiential periods including the active search for a diagnosis, living with MUPS, and, finally, acceptance/resignation of their condition. Findings point to the heightened importance of the therapeutic relationship when dealing with uncertainty. PMID:25583957

  15. Controlled damping of a physical pendulum: experiments near critical conditions

    NASA Astrophysics Data System (ADS)

    González, Manuel I.; Bol, Alfredo

    2006-03-01

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions.

  16. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  17. Maximizing the DUNE early physics output with current experiments

    NASA Astrophysics Data System (ADS)

    Ghosh, Monojit; Goswami, Srubabati; Raut, Sushant K.

    2016-03-01

    The deep underground neutrino experiment (DUNE) is a proposed next generation superbeam experiment at Fermilab. Its aims include measuring the unknown neutrino oscillation parameters—the neutrino mass hierarchy, the octant of the mixing angle θ _{23}, and the CP-violating phase δ _{CP}. The current and upcoming experiments T2K, NOν A, and ICAL@INO will also be collecting data for the same measurements. In this paper, we explore the sensitivity reach of DUNE in combination with these other experiments. We evaluate the least exposure required by DUNE to determine the above three unknown parameters with reasonable confidence. We find that for each case, the inclusion of data from T2K, NOν A, and ICAL@INO help to achieve the same sensitivity with a reduced exposure from DUNE thereby helping to economize the configuration. Further, we quantify the effect of the proposed near detector on systematic errors and study the consequent improvement in sensitivity. We also examine the role played by the second oscillation cycle in furthering the physics reach of DUNE. Finally, we present an optimization study of the neutrino-antineutrino running of DUNE.

  18. The Physics of Miniature Atomic Clocks: 0-0 Versus "End" Transitions

    NASA Astrophysics Data System (ADS)

    Post, Amber; Jau, Yuan-Yu; Kuzma, Nicholas; Happer, William

    2003-05-01

    The majority of traditional atomic-clock designs are based on the 0-0 hyperfine transition of a Cs 133 atom. We are currently investigating the advantages of operating a miniature optical atomic clock using the "end" transitions, e.g. connecting states |f=1, mf =+/-1> and |f=2, mf=+/-2> in 87Rb. In our paper we present extensive new measurements of relevant relaxation rates, such as those due to spin-exchange collisions, buffer-gas pressure shifts, Carver Rates and others, which ultimately determine the choices of an operating regime for the miniature optical atomic clock. The relationship between these rates is non-trivial: for example, using higher laser power will increase polarization and reduce the spin-exchange rate [1], but it can simultaneously increase the linewidth due to the optical pumping rate. The dependence of these and other relaxation rates on the cell size, temperature, pressure, a choice of buffer gas, and other parameters will be reported. Based on these measured rates, our modeling can be used to predict the transition linewidths, signal-to-noise ratios and thus the stability of the clock in different operating regimes. The trade-off between the stability of the clock and the desired small cell size and low power consumption needs to be carefully considered in order to optimize our design. In our experiments we used optical, microwave, and radio-frequency excitation to study hyperfine and Zeeman resonance lines in heated glass cells containing pure-isotope alkali-metal vapor and buffer gasses (N2, Ar, He, etc.) at low (0 - 10 G) magnetic fields. Simultaneous use of light, microwave and radio-frequency fields allowed us to calibrate surrounding magnetic fields by observing the corresponding shifts of the resonance, thus leading us to a quantitative understanding of our system. [1] S. Appelt, A. B. Baranga, A. R. Young, W. Happer, Phys. Rev. A 59, 2078 (1999).

  19. Between atomic and nuclear physics: radioactive decays of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Atanasov, Dinko; Blaum, Klaus; Bosch, Fritz; Brandau, Carsten; Bühler, Paul; Chen, Xiangcheng; Dillmann, Iris; Faestermann, Thomas; Gao, Bingshui; Geissel, Hans; Gernhäuser, Roman; Hagmann, Siegbert; Izumikawa, Takuji; Hillenbrand, Pierre-Michel; Kozhuharov, Christophor; Kurcewicz, Jan; Litvinov, Sergey A.; Litvinov, Yuri A.; Ma, Xinwen; Münzenberg, Gottfried; Najafi, Mohammad Ali; Nolden, Fritz; Ohtsubo, Takashi; Ozawa, Akira; Cagla Ozturk, Fatma; Patyk, Zygmunt; Reed, Matthew; Reifarth, Rene; Shahab Sanjari, Mohammad; Schneider, Dieter; Steck, Markus; Stöhlker, Thomas; Sun, Baohua; Suzaki, Fumi; Suzuki, Takeshi; Trageser, Christian; Tu, Xiaolin; Uesaka, Tomohiro; Walker, Philip; Wang, Meng; Weick, Helmut; Winckler, Nicolas; Woods, Philip; Xu, Hushan; Yamaguchi, Takayuki; Yan, Xinliang; Zhang, Yuhu; FRS-ESR,the; ILIMA; SPARC; TBWD Collaborations

    2015-07-01

    Highly charged radioactive ions can be stored for extended periods of time in storage rings which allows for precision measurements of their decay modes. The straightforward motivation for performing such studies is that fully ionised nuclei or few-electron ions can be viewed as clean quantum-mechanical systems, in which the interactions of the many electrons can be either excluded or treated precisely. Thus, the influence of the electron shell on the decay probability can be investigated. Another important motivation is stellar nucleosynthesis, which proceeds at high temperatures and the involved atoms are therefore highly ionised. Presented here is a compact review of the relevant experiments conducted at heavy-ion storage rings. Furthermore, we outline the perspectives for future experiments at new-generation storage-ring facilities.

  20. Relativistic Momentum-Space Equations with Applications to Atomic and Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Hardekopf, Eugene Edward

    Relativistic equal-time wave equations obtained from field theory which describe bound states of N Dirac particles inevitably involve free or external-field positive -energy projection operators (LAMDA)(,+)(i). For N > 2 these operators are vital if the equations are to admit normaliz- able solutions. Such equations have been used in the past to obtain relativistic corrections to simple atomic systems, and to provide a theoretical basis for the Dirac-Hartree-Fock type of equations for many-electron atoms. These equations also find applications in ele- mentary particle physics in describing bound states of quarks. Here we initiate a numerical study of such equations, avoiding an expan- sion in powers of v/c. We work in momentum space, where the free projection operators are simple functions of (')p. We describe tech- niques for finding the eigenvalues and eigenfunctions of H(,+)(1,2) = h(,D)(1) + h(,D)(2) + (LAMDA)(,++)V(LAMDA)(,++) where h(,D)(i) is the free Dirac Hamiltonian and V is a local potential with either a (VBAR)(')r(,1)-(')r(,2)(VBAR)('-1) singularity in the case of atomic systems, or a (VBAR)(')r(,1)-(')r(,2)(VBAR) behavior plus a Coulomb-like singular- ity in the case of bound quarks. Results are presented for both pure Coulomb and a Coulomb plus Breit potential for the atomic case, and for a pure Lorentz scalar in the linear potential case. In the atomic case a wide range of m(,1)/m(,2) and coupling strength (gamma) is studied and the m(,2) = (INFIN) limit is compared with the Dirac equation. The magni- tude of level shifts associated with virtual pair production in such two-body systems is discussed. For intermediate values of (gamma) a com- parison is made between the numerical results and those of pertur- bation theory. We find that there can often be large corrections to perturbative results even for not terribly large values of v/c. We also study the strong coupling limit and find the value (gamma)(,max) for which the lowest-lying bound state disappears from the spectrum. For the linear potential, the relativistic eigenfunctions are used to study, in the absence of pair effects, the dipole amplitude of radiative transitions between bound states of charmonium. We again make a comparison with a v/c expansion and find that in our model of the (c,c) system perturbation theory may not be yielding reliable results.

  1. High school student physics research experience yields positive results

    NASA Astrophysics Data System (ADS)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  2. Ion irradiation experiments relevant to the physics of comets

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Castorina, A. C.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    1994-09-01

    We present the results of new experiments on some physical-chemical effects induced by fast ion colliding with solids of relevance for the physics of comets. In particular we have studied the transition from crystalline to amorphous water ice induced by keV ion irradiation at temperatures between 10 and 100 K. After ion-induced amorphization occurred, at low T, the samples have been heated and their crystallization at around 150 K has been studied. Our results are compared with those recently reported in the literature (Hudson and Moore, 1992). The production of molecular solids, polymer-like materials and amorphous carbon by irradiation of simple carbon-containing ices is discussed as well as some preliminary results on the changes in the sublimation rates of irridiated CO-ices. We also report on a set of experimental results obtained irradiating methanol and water-methanol mixtures. As a consequence of bombardment, different species form. Among these, the formation of CO, CH4 and CO2 is evident. The production of formaldehyde questionable is; upper limits are given. The ratios among different molecules have been evaluated as a function of the deposited energy. The results are compared with those obtained by UV irradiation of the same mixtures (Allamandola et al., 1988). The experimental results are finally discussed in the light of their relevance to cometary physics.

  3. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  4. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses that can be offered for curricula in Earth Sciences. The primary goal is to open up a research laboratory such as the one available at Stanford to promising students worldwide who are currently left out of such educational resources.

  5. Phase-locked laser system for use in atomic coherence experiments.

    PubMed

    Marino, Alberto M; Stroud, C R

    2008-01-01

    We describe a phase-coherent laser system designed for use in experiments involving coherently prepared atomic media. We implement a simple technique based on a sample-and-hold circuit together with a reset of the integrating electronics that makes it possible to scan continuously the relative frequency between the lasers of over tens of gigahertz while keeping them phase locked. The system consists of three external-cavity diode lasers operating around 795 nm. A low-power laser serves as a frequency reference for two high-power lasers which are phased locked with an optical phase-locked loop. We measured the residual phase noise of the system to be less than 0.04 rad(2). In order to show the application of the system towards atomic coherence experiments, we used it to implement electromagnetically induced transparency in a rubidium vapor cell and obtained a reduction in the absorption coefficient of 92%. PMID:18248019

  6. Multi-wavelength holography with a single spatial light modulator for ultracold atom experiments.

    PubMed

    Bowman, David; Ireland, Philip; Bruce, Graham D; Cassettari, Donatella

    2015-04-01

    We demonstrate a method to independently and arbitrarily tailor the spatial profile of light of multiple wavelengths and we show possible applications to ultracold atoms experiments. A single spatial light modulator is programmed to create a pattern containing multiple spatially separated structures in the Fourier plane when illuminated with a single wavelength. When the modulator is illuminated with overlapped laser beams of different wavelengths, the position of the structures is wavelength-dependent. Hence, by designing their separations appropriately, a desired overlap of different structures at different wavelengths is obtained. We employ regional phase calculation algorithms and demonstrate several possible experimental scenarios by generating light patterns with 670 nm, 780 nm and 1064 nm laser light which are accurate to the level of a few percent. This technique is easily integrated into cold atom experiments, requiring little optical access. PMID:25968675

  7. Electron electric-dipole-moment experiment using electric-field quantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger, Charles T. Jr.; Gould, Harvey

    2007-06-15

    A proof-of-principle electron electric-dipole-moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric-field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal |m{sub F}| and, along with the low ({approx_equal}3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small residual magnetic field have made it possible to induce transitions between states and to perform state preparation, analysis, and detection in regions free of applied static magnetic and electric fields. This experiment demonstrates techniques that may be used to improve the e-EDM limit by two orders of magnitude, but it is not in itself a sensitive e-EDM search, mostly due to limitations of the laser system.

  8. Two-body physics in quasi-low-dimensional atomic gases under spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Kun; Yi, Wei; Zhang, Wei

    2016-06-01

    One of the most dynamic directions in ultracold atomic gas research is the study of low-dimensional physics in quasi-low-dimensional geometries, where atoms are confined in strongly anisotropic traps. Recently, interest has significantly intensified with the realization of synthetic spin-orbit coupling (SOC). As a first step toward understanding the SOC effect in quasi-low-dimensional systems, the solution of two-body problems in different trapping geometries and different types of SOC has attracted great attention in the past few years. In this review, we discuss both the scattering-state and the bound-state solutions of two-body problems in quasi-one and quasi-two dimensions. We show that the degrees of freedom in tightly confined dimensions, in particular with the presence of SOC, may significantly affect system properties. Specifically, in a quasi-one-dimensional atomic gas, a one-dimensional SOC can shift the positions of confinement-induced resonances whereas, in quasitwo- dimensional gases, a Rashba-type SOC tends to increase the two-body binding energy, such that more excited states in the tightly confined direction are occupied and the system is driven further away from a purely two-dimensional gas. The effects of the excited states can be incorporated by adopting an effective low-dimensional Hamiltonian having the form of a two-channel model. With the bare parameters fixed by two-body solutions, this effective Hamiltonian leads to qualitatively different many-body properties compared to a purely low-dimensional model.

  9. Navigating a Career in Science: from Experimental Atomic Physics to AGU

    NASA Astrophysics Data System (ADS)

    Killeen, T. L.

    2007-12-01

    Building and sustaining a satisfying career in the geosciences involves hard work, some luck, some pluck - and a lot off tenacity. In this presentation I will recount some lessons I learned - and am still learning - on my own path from a start in a graduate program in experimental atomic physics to my current position as president of the AGU and Director of the National Center for Atmospheric Research. The presentation will describe some of the scientific and science management contributions of which I am most proud - and some of the dead ends too. AGU, in particular, has been an excellent resource and venue for connecting with colleagues and following the evolution of dynamic fields of inquiry in the geosciences. AGU is still evolving and the presentation will also describe some of the current trends that make the Union such an interesting and valuable hub for our field.

  10. Design of heavy-ion APF-IH type linac for atomic physics and medical use

    NASA Astrophysics Data System (ADS)

    Hata, T.; Hattori, T.; Kashiwagi, H.; Takahashi, Y.; Yamamoto, K.; Matsui, S.; Dudu, D.; Osvath, E.; Vata, I.; Yamada, S.

    2002-04-01

    We have studied a compact heavy-ion linac for atomic physics and medical use. The design of the linac was based on using alternating-phase-focus (APF) and interdigital-H (IH) structures which give sufficient electric power efficiency. Thereby, it will be possible to design a small and high efficiency linac. The APF-IH linac was designed to accelerate ions from C 2+ to U 40+, from 30 to 300 keV/u and an operating frequency of 100 MHz. We made a half-scale cold model of this linac using orbit calculation and measured its RF characteristics. Then, we designed a APF-IH type linac using the results of the measurement.

  11. High charge state, ion-atom collision experiments using accel-decel

    SciTech Connect

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.

    1987-01-01

    Recent studies of /sub 16/S/sup 13 +/ + He collisions between 2.5 and 200 MeV, which were made using the accel-decel technique with the Brookhaven National Laboratory coupled MP tandem Van de Graaff accelerators, are discussed. Cross sections were measured for single electron-capture and -loss as well as K x rays correlated to electron-capture. Other planned ion-atom collision experiments requiring accel-decel are also presented. 18 refs., 3 figs.

  12. The AMS Measurements and Its Applications in Nuclear Physics at China Institute of Atomic Energy (CIAE)

    SciTech Connect

    Jiang Shan; Shen Hongtao; He Ming; Dong Kejun; He Guozhu; Wang Xianggao; Yuan Jian; Wang Wei; Wu Shaoyong; Ruan Xiangdong; Wu Weimin

    2010-05-12

    Accelerator Mass Spectrometry (AMS), initiated in late 1970s at McMaster university based on the accelerator and detector technique, has long been applied in the studies on archaeology, geology, and cosmology, as a powerful tool for isotope dating. The advantages of AMS in the analysis of rare nuclides by direct counting of the atoms, small sample size and relatively free from the interferences of molecular ions have been well documented. This paper emphasizes that AMS can not only be used for archaeology, geology, environment, biology and so on, but also served as a unique tool for nuclear physics research. In this paper, the determination of the half-lives of {sup 79}Se, the measurements of the cross-sections of {sup 93}Nb(n,2n){sup 92g}Nb and {sup 238}U(n,3n){sup 236}U reactions, the detection and determination of ultratrace impurities in neutrino detector materials, and the measurement of the fission product nuclide {sup 126}Sn, are to be introduced, as some of examples of AMS applications in nuclear research conducted in AMS lab of China Institute of Atomic Energy. Searching for superheavy nuclides by using AMS is being planned.

  13. ATOMIC PHYSICS PROCESSES IMPORTANT TO THE UNDERSTANDING OF THE SCRAPE-OFF LAYER OF TOKAMAKS

    SciTech Connect

    WEST, W.P.; GOLDSMITH,; B. EVANS,T.E.; OLSON, R.J.

    2002-05-01

    The region between the well-confined plasma and the vessel walls of a magnetic confinement fusion research device, the scrape-off layer (SOL), is typically rich in atomic and molecular physics processes. The most advanced magnetic confinement device, the magnetically diverted tokamak, uses a magnetic separatrix to isolate the confinement zone (closed flux surfaces) from the edge plasma (open field lines). Over most of their length the open field lines run parallel to the separatrix, forming a thin magnetic barrier with the nearby vessel walls. In a poloidally-localized region, the open field lines are directed away from the separatrix and into the divertor, a region spatially separated from the separatrix where intense plasma wall interaction can occur relatively safely. Recent data from several tokamaks indicate that particle transport across the field lines of the SOL can be somewhat faster than previously thought. In these cases, the rate at which particles reach the vessel wall is comparable to the rate to the divertor from parallel transport. The SOL can be thin enough that the recycling neutrals and sputtered impurities from the wall may refuel or contaminate the confinement zone more efficiently than divertor plasma wall interaction. Just inside the SOL is a confinement barrier that produces a sharp pedestal in plasma density and temperature. Understanding neutral transport through the SOL and into the pedestal is key to understanding particle balance and particle and impurity exhaust. The SOL plasma is sufficiently hot and dense to excite and ionize neutrals. Ion and neutral temperatures are high enough that charge exchange between the neutrals and fuel and impurity ions is fast. Excitation of neutrals can be fast enough to lead to nonlinear behavior in charge exchange and ionization processes. In this paper the detailed atomic physics important to the understanding of the neutral transport through the SOL will be discussed.

  14. Results From the Physics of Colloids Experiment on ISS

    NASA Technical Reports Server (NTRS)

    Weitz, David; Bailey, Arthur; Manley, Suliana; Prasad, Vikram; Christianson, Rebecca; Sankaran, Subramanian; Doherty, Michael; Jankovsky, Amy; Lorik, Tibor; Shiley, William

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center (TSC) in Cleveland, Ohio, and from the remote site at Harvard University in Cambridge, Massachusetts. PCS was launched on 4/19/2001 on Space Shuttle STS-100. The experiment was activated on 5/31/2001. The entire experimental setup performed remarkably well, and accomplished 2400 hours of science operations on-orbit. The sophisticated instrumentation in PCS is capable of dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, dynamic and static light scattering at low angles from 0.3 to 6.0 degrees, and color imaging. The long duration microgravity environment on the ISS facilitated extended studies on the growth and coarsening characteristics of binary crystals. The de-mixing of the colloid-polymer critical-point sample was also studied as it phase-separated into two phases. Further, aging studies on a col-pol gel, gelation rate studies in extremely low concentration fractal gels over several days, and studies on a glass sample, all provided valuable information. Several exciting and unique aspects of these results are discussed here.

  15. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    NASA Astrophysics Data System (ADS)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found that the computed plasma heating compares well with experimental observation when the effects of the windows, hydrodynamics, and non-equilbirium neon emissivity and opacity are employed. The atomic kinetics shows significant time-dependent effects because the timescale of the x-ray drive is too short compared to that of the photoionization process. These modeling and simulation results are important to test theory and modeling assumptions and approximations, and also to provide guidance on data interpretation and analysis.

  16. Competing atomic processes in Ba and Sr injection critical velocity experiments

    NASA Technical Reports Server (NTRS)

    Newell, P. T.; Torbert, R. B.

    1985-01-01

    The critical ionization velocity effect requires a superthermal electron population to ionize through collisional impact. Such superthermal electrons can however lose energy to competing atomic processes, as well as to ionization, thus limiting the efficiency of the effect. Considering Ba and Sr magnetospheric injection experiments designed to test the CIV theory, it is found that in both cases roughly 60 percent of the superthermal electron energy is lost on exciting line radiation. Moreover, energy loss to background neutral oxygen places a strict limit on the injected cloud densities for which critical velocity effects are possible; a finding which explains the consistently negative results in radial injection experiments.

  17. Virtual experiments, physical validation: dental morphology at the intersection of experiment and theory

    PubMed Central

    Anderson, P. S. L.; Rayfield, E. J.

    2012-01-01

    Computational models such as finite-element analysis offer biologists a means of exploring the structural mechanics of biological systems that cannot be directly observed. Validated against experimental data, a model can be manipulated to perform virtual experiments, testing variables that are hard to control in physical experiments. The relationship between tooth form and the ability to break down prey is key to understanding the evolution of dentition. Recent experimental work has quantified how tooth shape promotes fracture in biological materials. We present a validated finite-element model derived from physical compression experiments. The model shows close agreement with strain patterns observed in photoelastic test materials and reaction forces measured during these experiments. We use the model to measure strain energy within the test material when different tooth shapes are used. Results show that notched blades deform materials for less strain energy cost than straight blades, giving insights into the energetic relationship between tooth form and prey materials. We identify a hypothetical ‘optimal’ blade angle that minimizes strain energy costs and test alternative prey materials via virtual experiments. Using experimental data and computational models offers an integrative approach to understand the mechanics of tooth morphology. PMID:22399789

  18. Performance of the High-Resolution Beamline for Atomic and Molecular Physics at the Advanced Light Source

    NASA Astrophysics Data System (ADS)

    Bozek, J. D.; Heimann, P. A.

    1996-05-01

    Beamline 9.0.1 at the Advanced Light Source provides an intense photon beam with high spectral resolution and is well suited for a variety of experiments in atomic and molecular physics. The high brightness synchrotron source, 4.5 m long undulator and high quality spherical grating monochromator are all critical to the high perfomance of the beamline. The accessible photon energy range covers 20 to 300 eV with approximately 10^12 photons per second with a bandwidth of one part in 10,000. The resolution--flux ratio can be varied to meet the demands of the experiment. Very high resolution spectra of the He double excitation resonances have recently been obtained, for example,(G. Kaindl, K. Schulz, J.D. Bozek, P.A. Heimann and A.S. Schlachter, Synchrotron Radiation News, 8), 29 (1995). using slit widths of <5 ? m. Examples of high resolution photoionization, ion yield and photoelectron spectra measured using beamline 9.0.1 will be presented.

  19. The Entangled Cosmos: an experiment in physical theopoetics

    NASA Astrophysics Data System (ADS)

    Keller, Catherine

    2012-09-01

    As an experiment in constructive transdisciplinary relationality, a theology of nonseparable difference here engages a physics of quantum entanglement. The metaphoric potential of "spooky action at a distance" to intensify a cosmology resistant to the dominant individualism and conducive to ethical ecologies of interdependence has only begun to develop across multiple discourses. This essay contemplates the specific unfolding of a theory of nonlocal superpositions by physicists such as Stapp, Bohm and Barad. It does not literalize any God-trope, but rather entangles theology in the mysterious uncertainty of our widest interdependencies. This essay, first presented as a lecture at the American Academy of Religion "Science, Technology and Religion" Group, San Francisco, November 2011, forms the core of a chapter in a book I am currently completing, The Cloud of the Impossible: Theological Entanglements.

  20. First experience of vectorizing electromagnetic physics models for detector simulation

    SciTech Connect

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; Licht, J.de Fine; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  1. First experience of vectorizing electromagnetic physics models for detector simulation

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.

    2015-12-01

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  2. Results on QCD Physics from the CDF-II Experiment

    SciTech Connect

    Pagliarone, C.; /Cassino U. /INFN, Pisa

    2006-12-01

    In this paper the authors review a selection of recent results obtained, in the area of QCD physics, from the CDF-II experiment that studies p{bar p} collisions at {radical}s = 1.96 TeV provided by the Fermilab Tevatron Collider. All results shown correspond to analysis performed using the Tevatron Run II data samples. In particular they will illustrate the progress achieved and the status of the studies on the following QCD processes: jet inclusive production, using different jet clustering algorithm, W({yields} e{nu}{sub e}) + jets and Z({yields} e{sup +}e{sup -}) + jets production, {gamma} + b-jet production, dijet production in double pomeron exchange and finally exclusive e{sup +}e{sup -} and {gamma}{gamma} production. No deviations from the Standard Model have been observed so far.

  3. High Energy Physics Research with the CMS Experiment at CERN

    SciTech Connect

    Hanson, Gail G.

    2013-05-31

    The highlight of our last budget period, June 1, 2010, to May 31, 2013, was the discovery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC), announced on July 4, 2012, and for which François Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics on October 8, 2013. The Higgs boson was postulated in 1964 to explain how elementary particles obtain mass and was the missing piece of the Standard Model. However, the Standard Model does not describe everything that we know. There are many unanswered questions, such as how can the Higgs boson have the mass that we have observed, are there more Higgs bosons, why is there more matter than antimatter, and what is the invisible dark matter, which constitutes about 85% of the matter in the universe. Our group played a significant role in the discovery of the Higgs boson and in subsequent analyses. We also carried out searches for new physics, in ways that could help elucidate some of the remaining questions. Our role in the CMS detector focused on the Tracker, a silicon strip outer tracker and pixel inner tracker.

  4. Self-directed learning: A heretical experiment in teaching physics

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    1995-06-01

    An account is given of the instruction of university-level introductory physics courses according to an educational framework in which (1) curiosity-driven inquiry is recognized as an essential activity of both science and science teaching; (2) the principal role of the instructor is to provide students the incentive to learn science through their pursuit of personally meaningful questions; (3) the commission of errors is regarded as a natural concomitant to learning and is not penalized; (4) emphasis is placed on laboratory investigations that foster minimally restrictive free exploration rather than prescriptive adherence to formal procedure; (5) research skills are developed through out-of-class projects that involve literature search, experiment, and the modeling of real-world physical phenomena: (6) the precise and articulate use of language is regarded as seminal to communication in science (as it is in the humanities) and is promoted through activities that help develop written and oral language skills; (7) the evaluation of student performance is based on a portfolio of accomplished work rather than on the outcome of formal testing.

  5. Power supplies and quench protection for the Tokamak Physics Experiment

    SciTech Connect

    Neumeyer, C.L.

    1994-07-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.

  6. Atomic layer deposition of metal oxide patterns on nonwoven fiber mats using localized physical compression.

    PubMed

    Sweet, William J; Oldham, Christopher J; Parsons, Gregory N

    2014-06-25

    Patterning is an essential part of many industrial processes from printing to semiconductor manufacturing. In this work, we demonstrate a new method to pattern and selectively coat nonwoven textiles by atomic layer deposition (ALD) using compressive mask patterning. A physical mask combined with mechanical compression allows lateral definition and fidelity of the ALD coating to be controlled. We produce features of several sizes on different nonwoven fiber materials and demonstrate the ability to limit diffusion effects to within <200 μm of the pattern edge. Lateral and vertical penetration of reactive growth species into nonwoven mats is investigated by plan-view and cross-sectional imaging. Vertical growth is also analyzed by imaging coating depth into fiber mat stacks. We develop a fully quantitative transport model that describes well the effect of fiber structure and mechanical compression on the extent of coating under the physical mask. This method could be implemented for high-volume patterning for applications including flexible electronics. PMID:24850237

  7. Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: An atomic force microscopy study

    NASA Astrophysics Data System (ADS)

    Nesheva, D.; Petrova, A.; Stavrev, S.; Levi, Z.; Aneva, Z.

    2007-05-01

    Amorphous/nanocrystalline SiOx/CdSe, GeS2/CdSe, SiOx/ZnSe and Se/CdSe amorphous multilayers (MLs) were grown by consecutive physical vapour deposition of the constituent materials at room substrate temperature. A step-by-step manner of deposition was applied for the preparation of each layer (2 10nm thick) of MLs. Surface morphology has been investigated by atomic force microscopy (AFM) in order to get information about ML interfaces. For a scanned area of 3.4×4μmSiOx/CdSe and GeS2/CdSe MLs showed surface roughness which is around three times greater than the roughness of SiOx/ZnSe MLs. This observation has been connected with effects of both film composition and deposition rate. For a scanned area of 250×250nm the roughness determined in all MLs displayed close values and a similar increase with the ML period. The latter has been related to the flexible structure of amorphous materials. The AFM results, in good agreement with previous X-ray diffraction and high resolution electron microscopy data, indicate that the application of step-by-step physical vapour deposition makes possible fabrication of various amorphous/nanocrystalline MLs with smooth interfaces and good artificial periodicity at low substrate temperatures.

  8. Physics prospects of future neutrino oscillation experiments in Asia

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  9. The physics of non-Newtonian liquid slurry atomization. Part 2: Twin-fluid atomization of non-Newtonian liquids -- First quarterly technical report, 1 January--31 March 1994

    SciTech Connect

    Mansour, A.; Chigier, N.

    1994-06-01

    The changes in the physical processes of atomization as a result of adding a high molecular weight polymer in low concentrations to liquid have been studied. Both Newtonian and non-Newtonian liquids were investigated with particular emphasis on the non-Newtonian rheological characteristics. It was found that viscoelastic liquids are much more difficult to atomize than viscoinelastic liquids. Viscoinelastic liquids showed a breakup behavior similar to that of water sprays. Viscoelastic materials showed remarkably different breakup patterns. The ligaments were seen to undergo a very large stretching motion before they breakup, resulting in long threads of liquid attached to droplets. The normal stresses developed in viscoelastic materials are much higher than their associated shear stresses. Consequently, the development of the large normal stresses appears to be the most important rheological mechanism that inhibits breakup. The non-Newtonian liquids selected for the experiment were aqueous solutions of Xanthan gum and Polyacrylamide E10.

  10. Studies on implementation of pellet tracking in hadron physics experiments

    NASA Astrophysics Data System (ADS)

    Pyszniak, A.; Calén, H.; Fransson, K.; Hejny, V.; Johansson, T.; Löfgren, J.; Rudy, Z.; Wolke, M.; Wüstner, P.

    2014-11-01

    A system for optical tracking of frozen hydrogen microsphere targets (pellets) has been designed. It is intended for the upcoming hadron physics experiment PANDA at FAIR, Darmstadt, Germany. With such a tracking system one can reconstruct the positions of the individual pellets at the time of a hadronic interaction in the offline event analysis. This gives information on the position of the primary interaction vertex with an accuracy of a few 100 µm, which is very useful e.g. for reconstruction of charged particle tracks and secondary vertices and for background suppression. A study has been done at the WASA detector setup (Forschungszentrum Jülich, Germany) to check the possibility of classification of hadronic events as originating in pellets or in background. The study has been done based on the instantaneous rate a Long Range TDC which was used to determine if a pellet was present in the accelerator beam region. It was clearly shown that it is possible to distinguish the two event classes. Also, an experience was gained with operation of two synchronized systems operating in different time scales, as it will also be the case with the optical pellet tracking.

  11. Creating a Before-School Physical Activity Program: Pre-Service Physical Educators' Experiences and Implications for PETE

    ERIC Educational Resources Information Center

    McMullen, Jaimie; van der Mars, Hans; Jahn, Julie A.

    2014-01-01

    The purpose of this study is to describe the experiences of physical education teacher education (PETE) majors enrolled in an internship course that provided them with authentic experiences promoting and facilitating a before-school physical activity (PA) program and to examine the associated implications for PETE programs within the Comprehensive…

  12. Creating a Before-School Physical Activity Program: Pre-Service Physical Educators' Experiences and Implications for PETE

    ERIC Educational Resources Information Center

    McMullen, Jaimie; van der Mars, Hans; Jahn, Julie A.

    2014-01-01

    The purpose of this study is to describe the experiences of physical education teacher education (PETE) majors enrolled in an internship course that provided them with authentic experiences promoting and facilitating a before-school physical activity (PA) program and to examine the associated implications for PETE programs within the Comprehensive

  13. Review of controlled laboratory experiments on physics of magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Yamada, Masaaki

    1999-07-01

    We review results from the most recent experiments in the past 2 decades in which magnetic reconnection has been generated and studied in controlled laboratory settings. As a whole, research on the fundamental physics of the reconnection process and its hydromagnetic consequences has been largely theoretical. Laboratory experiments are crucial for understanding the fundamental physics of magnetic reconnection since they can provide well-correlated plasma parameters at multiple plasma locations simultaneously, while satellites can only provide information from a single location at a given time in a space plasma. Thanks to the significant progress of data acquisition technology, the detailed magnetic field structures of the reconnection regions were measured and plasma acceleration and strong ion heating were identified. Extensive data have been accumulated in the electron MHD plasma regimes [in which electrons are magnetized] with relatively low Lundquist number of S=1-10 as well as in MHD plasmas with S=100-1000. This article puts a special focus on the most recent plasma merging experiments in the MHD regime since they are new and have been published in the past several years. Two distinctly different shapes of diffusion regions were identified both in the electron MHD plasma regime [Stenzel and Gekelman, 1983] and in the MHD plasmas in MRX [Yamada et al., 1997b]. The familiar two-dimensional (2-D) feature, a double-Y-shaped diffusion region, was identified when there is no or very little axial magnetic field (third vector component). In cohelicity merging with a sizable third field component, an O-shaped diffusion region appears and the reconnection rate decreases substantially; this is attributed to the axial field pressure and the incompressibility of the plasma. Another important achievement is the experimental verification of a generalized Sweet-Parker model [Ji et al., 1998]. In this recent work it is found that the observed reconnection rate can be explained by a generalized Sweet-Parker model, which incorporates compressibility, downstream pressure and the effective resistivity. The latter is often enhanced over its classical values in the collisionless limit. A significant implication of this result is that the generalized Sweet-Parker model is valid in certain 2-D reconnection cases with axisymmetric geometry. In MHD plasmas, the thickness of this thin current layer is found to be of the order of the ion gyroradius and the ion skin depth as well.

  14. Neutrino oscillation physics potential of the T2K experiment

    NASA Astrophysics Data System (ADS)

    T2K Collaboration; Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; de Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Johnson, R. A.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaker, F.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2015-04-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ _{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin ^22θ _{23}, the octant of θ _{23}, and the mass hierarchy, in addition to the measurements of δ _{CP}, sin ^2θ _{23}, and Δ m^2_{32}, for various combinations of ν-mode and bar {ν }-mode data-taking. With an exposure of 7.8× 10^{21} protons-on-target, T2K can achieve 1σ resolution of 0.050 (0.054) on sin ^2θ _{23} and 0.040 (0.045)× 10^{-3} {eV}^2 on Δ m^2_{32} for 100% (50%) neutrino beam mode running assuming sin ^2θ _{23}=0.5 and Δ m^2_{32} = 2.4× 10^{-3} eV^2. T2K will have sensitivity to the CP-violating phase δ _{CP} at 90% C.L. or better over a significant range. For example, if sin ^22θ _{23} is maximal (i.e. θ _{23}=45°) the range is -115° < δ _{CP}< -60° for normal hierarchy and +50° < δ _{CP}< +130° for inverted hierarchy. When T2K data is combined with data from the NOνA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δ _{CP} is substantially increased compared to if each experiment is analyzed alone.

  15. Electron electric dipole moment experiment using electric-fieldquantized slow cesium atoms

    SciTech Connect

    Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey.

    2007-04-05

    A proof-of-principle electron electric dipole moment (e-EDM)experiment using slow cesium atoms, nulled magnetic fields, and electricfield quantization has been performed. With the ambient magnetic fieldsseen by the atoms reduced to less than 200 pT, an electric field of 6MV/m lifts the degeneracy between states of unequal lbar mF rbar and,along with the low (approximately 3 m/s) velocity, suppresses thesystematic effect from the motional magnetic field. The low velocity andsmall residual magnetic field have made it possible to induce transitionsbetween states and to perform state preparation, analysis, and detectionin regions free of applied static magnetic and electric fields. Thisexperiment demonstrates techniques that may be used to improve the e-EDMlimit by two orders of magnitude, but it is not in itself a sensitivee-EDM search, mostly due to limitations of the laser system.

  16. Girls' Experiences in Physical Education: Competition, Evaluation, & Degradation

    ERIC Educational Resources Information Center

    van Daalen, Cheryl

    2005-01-01

    School nurses are often asked to participate in the health component of many physical education (PE) programs in schools. With this opportunity comes an ability to invite a model of physical education that enables physical, mental, and relational health. A pilot study was initiated to explore why girls' enrollment in physical education was…

  17. EDITORIAL: First merged issue of Journal of Physics B: Atomic, Molecular and Optical Physics with Journal of Optics B: Quantum and Semiclassical Optics

    NASA Astrophysics Data System (ADS)

    Rost, J.-M.

    2006-01-01

    With the first issue of 2006 Journal of Physics B: Atomic, Molecular and Optical Physics (J. Phys. B) has successfully incorporated the former journal J. Opt. B. Under the well known and recognized name Journal of Physics B: Atomic, Molecular and Optical Physics the new merged journal will have a much wider scope, serving both the atomic, molecular and optical community and the quantum optics community. We have already taken a visible measure towards this direction in 2005 with the publication of a special issue on the occasion of Einstein's annus mirabilis 100 years before. This issue, edited by 2005 Nobel laureate Ted Hänsch, Horst Schmidt-Böcking and Herbert Walther, provides a wide and deep survey of leading research in the fields J. Phys. B will promote in the years to come. You will also find the broadening in scope reflected in the scientific interests of the members of the new Editorial Board of J. Phys. B. J. Phys. B continues its dedication to innovative collision physics. At the same time it is ready to prominently disseminate with its wider scope the new and exciting research developments in connection with ultracold gases and new light sources which will deliver intense pulses of much shorter wave- and pulse length than available in the past, creating new research possibilities for atomic and molecular physics. As Editor-in-Chief I would also like to take the opportunity to thank the staff at the Institute of Physics, and especially of J. Phys. B, for all the work they have put into the journal over the last year with preparing the incorporation of J. Opt. B into J. Phys. B while continuing their much appreciated high quality service to readers and authors. In this spirit I wish all of you a good and scientifically exciting year 2006.

  18. A data transmission method for particle physics experiments based on Ethernet physical layer

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun

    2015-11-01

    Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  19. On high explosive launching of projectiles for shock physics experiments.

    PubMed

    Swift, Damian C; Forest, Charles A; Clark, David A; Buttler, William T; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements are likely to be insensitive to porous regions caused by damaged or recollected material. PMID:17614623

  20. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    NASA Technical Reports Server (NTRS)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  1. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  2. Review study and evaluation of possible flight experiments relating to cloud physics experiments in space

    NASA Technical Reports Server (NTRS)

    Hunt, R. J.; Wu, S. T.

    1976-01-01

    The general objectives of the Zero-Gravity Atmospheric Cloud Physics Laboratory Program are to improve the level of knowledge in atmospheric cloud research by placing at the disposal of the terrestrial-bound atmospheric cloud physicist a laboratory that can be operated in the environment of zero-gravity or near zero-gravity. This laboratory will allow studies to be performed without mechanical, aerodynamic, electrical, or other techniques to support the object under study. The inhouse analysis of the Skylab 3 and 4 experiments in dynamics of oscillations, rotations, collisions and coalescence of water droplets under low gravity-environment is presented.

  3. Experiences developing ALEGRA: A C++ coupled physics framework

    SciTech Connect

    Budge, K.G.; Peery, J.S.

    1998-11-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA`s success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm.

  4. Lower hybrid system design for the Tokamak physics experiment

    SciTech Connect

    Goranson, P.L.; Conner, D.L.; Swain, D.W.; Yugo, J.J.; Bernabei, S.; Greenough, N.

    1995-12-31

    The lower hybrid (LH) launcher configuration has been redesigned to integrate the functions of the vertical four-way power splitter and the front waveguide array (front array). This permits 256 waveguide channels to be fed by only 64 waveguides at the vacuum window interface. The resulting configuration is a more compact coupler, which incorporates the simplicity of a multijunction coupler while preserving the spectral flexibility of a conventional lower hybrid launcher. Other spin-offs of the redesign are reduction in thermal incompatibility between the front array and vacuum windows, improved maintainability, in situ vacuum window replacement, a reduced number of radio frequency (rf) connections, and a weight reduction of 7300 kg. There should be a significant cost reduction as well. Issues associated with the launcher design and fabrication have been addressed by a research and development program that includes brazing of the front array and testing of the power splitter configuration to confirm that phase errors due to reflections in the shorted splitter legs will not significantly impact the rf spectrum. The Conceptual Design Review requires that radiation levels at the torus radial port mounting flange and outer surface of the toroidal field coils should be sufficiently low to permit hands-on maintenance. Low activation materials and neutron shielding are incorporated in the launcher design to meet these requirements. The launcher is configured to couple 3 MW of steady state LH heating/LH current drive power at 3.7 GHz to the Tokamak Physics Experiment plasma.

  5. Quench detection and instrumentation for the Tokamak Physics Experiment magnets

    NASA Astrophysics Data System (ADS)

    Chaplin, M. R.; Hassenzahl, W. V.; Schultz, J. H.

    1993-10-01

    The design of the local instrumentation and control (I&C) system for the Tokamak Physics Experiment (TPX) superconducting poloidal-field (PF) and toroidal-field (TF) magnets is presented. The local I&C system monitors the status of the magnet systems and initiates the proper control sequences to protect the magnets from any foreseeable fault. Local I&C also stores magnet-system data for analysis and archiving. Quench detection for the TPX magnets must use a minimum of two independent sensing methods and is allowed a detection time of one second. Proposed detection methods include the measurement of normal-zone resistive voltage, cooling-path helium flow, local temperature in the winding pack, and local pressure in the winding pack. Fiber optic based isolation systems are used to remove high common-mode magnet voltages and eliminate ground loops. The data acquisition and fault detection systems are computer based. The design of the local I&C system incorporates redundant, fault tolerant, and/or fail-safe features at all component levels. As part of a quench detection research and development plan, a quench detection model coil has been proposed to test all detection methods. Initial cost estimates and schedule for the local I&C system are presented.

  6. Atomic and molecular physics of plasma-based environmental technologies for abatement of volatile organic compounds

    SciTech Connect

    Penetrante, B.M.; Hsiao, M.C.; Bardsley, J.N.; Merritt, B.T.; Vogtlin, G.E.; Kuthi, A.; Burkhart, C.P.; Bayless, J.R.

    1996-08-01

    Non-thermal plasma techniques represent a new generation of air emission control technology that potentially could treat large-volume emissions containing dilute concentrations of volatile organic compounds (VOCs). In order to apply non-thermal plasmas in an industrial scale, it is important to establish the electrical power requirements and byproducts of the process. There is a need for reliable data concerning the primary decomposition mechanisms and subsequent chemical kinetics associated with non-thermal processing of VOCs. There are many basic atomic and molecular physics issues that are essential in evaluating the economic performance of non- thermal plasma reactors. These studies are important in understanding how the input electrical power is dissipated in the plasma and how efficiently it is converted to the production of the plasma species (radicals, ions, or electrons) responsible for the decomposition of the VOCs. This paper will present results from the basic experimental and theoretical studies aimed at identifying the reaction mechanisms responsible for the primary decomposition of various types of VOCs.

  7. H I ZEEMAN EXPERIMENTS OF SHOCKED ATOMIC GAS IN TWO SUPERNOVA REMNANTS INTERACTING WITH MOLECULAR CLOUDS

    SciTech Connect

    Koo, Bon-Chul; Heiles, Carl; Stanimirovic, Snezana; Troland, Tom

    2010-07-15

    We have carried out observations of Zeeman splitting of the H I 21 cm emission line from shocked atomic gas in the supernova remnants (SNRs) IC 443 and W51C using the Arecibo telescope. The observed shocked atomic gas is expanding at {approx}100 km s{sup -1} and this is the first Zeeman experiment of such fast-moving, shocked atomic gas. The emission lines, however, are very broad and the systematic error due to baseline curvature hampers an accurate measurement of field strengths. We derive an upper limit of 100-150 {mu}G on the strength of the line-of-sight field component. These two SNRs are interacting with molecular clouds, but the derived upper limits are considerably smaller than the field strengths expected from a strongly shocked dense cloud. We discuss the implications and conclude that either the magnetic field within the telescope beam is mostly randomly oriented or the high-velocity H I emission is from a shocked interclump medium of relatively low density.

  8. ATOMIC AND MOLECULAR PHYSICS: Correspondence between classical dynamics and recurrence spectra of Rydberg hydrogen atom near a metal surface

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yun; Gao, Song; Zhou, Hui; Zhang, Yan-Hui; Lin, Sheng-Lu

    2008-08-01

    The chaotic behaviours of the Rydberg hydrogen atom near a metal surface are presented. A numerical comparison of Poincaré surfaces of section with recurrence spectra for a few selected scaled energies indicates the correspondence between classical motion and quantum properties of an excited electron. Both results demonstrate that the scaled energy dominates sensitively the dynamical properties of system. There exists a critical scaled energy ɛc, for ɛ < ɛc, the system is near-integrable, and as the decrease of ɛ the spectrum is gradually rendered regular and finally turns into a pure Coulomb field situation. On the contrary, if ɛ > ɛc, with the increase of ɛ, the system tends to be non-integrable, the ergodic motion in phase space presages that chaotic motion appears, and more and more electrons are adsorbed on the metal surface, thus the spectrum becomes gradually simple.

  9. Experiences in Movement: Physical Education for the Elementary School Child.

    ERIC Educational Resources Information Center

    Fait, Hollis F.

    This book is designed for physical education teachers at the elementary level. It includes a discussion of physical education for grades seven and eight, which provides specific background knowledge for teachers who did not receive adequate training for this age group. Information concerning the physical, mental, social, and creative development…

  10. Physical Education for Children: Movement Foundations and Experiences.

    ERIC Educational Resources Information Center

    Bucher, Charles A.; Thaxton, Nolan A.

    This textbook for elementary physical education teachers is divided into seven parts. The topics covered are: (1) instructional objectives and competencies definitions for elementary physical education; (2) physical and mental characteristics of elementary school children; (3) the science of movement and perceptual motor development of children;…

  11. Exotic atoms: Antimatter may matter

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas J.

    2016-01-01

    The charge neutrality of the antimatter atom antihydrogen has been confirmed with unprecedented accuracy, paving the way for experiments that could simultaneously solve several of physics' biggest mysteries. See Letter p.373

  12. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations

    PubMed Central

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-01-01

    It is known that phosphatidylserine (PS−) lipids have a very similar affinity for Ca2+ and Mg2+ cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca2+ or Mg2+ induces very different aggregation behavior for PS− liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca2+ or Mg2+ cations. These puzzling results suggest that although these two cations have a similar affinity for PS− lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS− membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca2+ and Mg2+ cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca2+ cations present a peak at a distance ∼2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg2+ cations has two different peaks, located a few angstroms before and after the Ca2+ peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca2+ and Mg2+, respectively. PMID:22824273

  13. Folding peptides and proteins with all-atom physics: methods and applications

    NASA Astrophysics Data System (ADS)

    Shell, M. Scott

    2008-03-01

    Computational methods offer powerful tools for investigating proteins and peptides at the molecular-level; however, it has proven challenging to reproduce the long time scale folding processes of these molecules at a level that is both faithful to the atomic driving forces and attainable with modern commodity cluster computing. Alternatively, the past decade has seen significant progress in using bioinformatics-based approaches to infer the three dimensional native structures of proteins, drawing upon extensive knowledge databases of known protein structures [1]. These methods work remarkably well when a homologous protein can be found to provide a structural template for a candidate sequence. However, in cases where homology to database proteins is low, where the folding pathway is of interest, or where conformational flexibility is substantial---as in many emerging protein and peptide technologies---bioinformatics methods perform poorly. There is therefore great interest in seeing purely physics-based approaches succeed. We discuss a purely physics-based, database-free folding method, relying on proper thermal sampling (replica exchange molecular dynamics) and molecular potential energy functions. In order to surmount the tremendous computational demands of all-atom folding simulations, our approach implements a conformational search strategy based on a putative protein folding mechanism called zipping and assembly [2-4]. That is, we explicitly seek out potential folding pathways inferred from short simulations, and iteratively pursue all such routes by coaxing a polypeptide chain along them. The method is called the Zipping and Assembly Method (ZAM) and it works in two parts: (1) the full polypeptide chain is broken into small fragments that are first simulated independently and then successively re-assembled into larger segments with further sampling, and (2) consistently stable structure in fragments is detected and locked into place, in order to avoid re-sampling those degrees of freedom in subsequent steps. ZAM pursues all potential folding routes it finds, which may be mutually exclusive, and it ranks these by calculating free energies along the way. Importantly, it gives full conformational ensembles and folding pathways, features not captured by bioinformatics approaches. We also discuss ways in which the structural ensembles and folding pathways of ZAM can facilitate the rational design of peptide technologies. In particular, we examine the coupling of ZAM-produced structures with coarse-grained theories of transport and association, in order to model the interactions of peptides with membranes (for insertion processes), proteins (for binding processes), and other peptides (for aggregation processes). Importantly, this approach is able to capture highly sequence-specific effects due to the atomistic nature of the ZAM folding simulations, providing a predictive tool for targeted sequence mutations. 1. J. Moult, A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction, Curr. Opin. Struct. Biol. 15, (2005). 2. K.M. Fiebig and K.A. Dill, Protein core assembly processes, J. Chem. Phys. 98, (1993). 3. S.B. Ozkan, G.H.A. Wu, J.D. Chodera, and K.A. Dill, Protein folding by zipping and assembly, Proc. Natl. Acad. Sci. U. S. A. 104, (2007). 4. M.S. Shell, S.B. Ozkan, V.A. Voelz, G.H.A. Wu, and K. Dill, Can molecular physics predict the native structures of globular proteins?, under review, (2007).

  14. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  15. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  16. Electrochromic WO[subscript 3] Films: Nanotechnology Experiments in Instrumental Analysis and Physical Chemistry Laboratories

    ERIC Educational Resources Information Center

    Hepel, Maria

    2008-01-01

    This experiment teaches students the methodology of investigating novel properties of materials using new instrumental techniques: atomic force microscopy (AFM), electrochemical quartz crystal nanobalance (EQCN), voltammetric techniques (linear potential scan and chronoamperometry), and light reflectance measurements. The unique capabilities of…

  17. Electrochromic WO[subscript 3] Films: Nanotechnology Experiments in Instrumental Analysis and Physical Chemistry Laboratories

    ERIC Educational Resources Information Center

    Hepel, Maria

    2008-01-01

    This experiment teaches students the methodology of investigating novel properties of materials using new instrumental techniques: atomic force microscopy (AFM), electrochemical quartz crystal nanobalance (EQCN), voltammetric techniques (linear potential scan and chronoamperometry), and light reflectance measurements. The unique capabilities of

  18. Experiences that influence a student's choice on majoring in physics

    NASA Astrophysics Data System (ADS)

    Dobbin, Donya Rae

    Currently the production of college graduates with science and engineering degrees is insufficient to fill the increasing number of jobs requiring these skills. This study focuses on physics majors with an in-depth examination of student transitions from high school to college. Many different areas of influence could affect a student's decision to major in physics. The first phase of this study addresses all of the potential areas of influence identified from the literature. The goal was to identify common influences that might be used to increase students' interest in majoring in physics. Subjects (N=35) from the first phase were recruited from physics majors at diverse Michigan colleges and universities. The second phase of this study explored, in more depth, important areas of influence identified in the first phase of the study. Subjects (N=94) from the second phase were recruited from diverse colleges and universities in Indiana, Illinois, and Ohio. The interviews were also conducted via email. Approximately half of the students in the study decided to major in physics while still in high school. Their reasons relate to many of the areas of influence. For example, high school physics teachers were cited as a strong influence in many students' decisions to major in physics. Influential physics teachers were described as being helpful, encouraging and interesting. The teachers also need to be their students' number one cheerleader and not their number one critic. Some areas of influence were found to be different for males vs. females. A high percentage of all physics majors had influential adults with careers in physical or biological science fields. This percentage was even larger for female physics majors. Female students also showed a greater initial interest in astronomy than the male students. Thus, high school and college physics teachers should seek to expose students to science-related careers and adults with these careers. Astronomy is also an important and often over looked entry into physics.

  19. Atomic effects of beta decay in astrophysics and in elementary particle physics

    NASA Astrophysics Data System (ADS)

    Chen, Zonghua

    The bound-state beta decay of Re-187 and its application in Astrophysics is studied. There existed an uncertainty in the ratio of rhop of bound-state to continuum beta decay of Re-187 in both theory and experiment. A more definite theoretical result of rhop of approximately 1 percent is obtained by using single-configuration and multi-configuration Hartree-Fock-Dirac approximations. The results obtained are close to those obtained by Williams, Fowler, and Koonin by a modified Thomas-Fermi model. The bound-state beta decay of Re-187 at high temperatures is also studied. A generalization of the Thomas-Fermi results of various energy contributions to the ground-state energy of a neutral atom is also presented. An analytical expression for the ratio of the electron-electron to electron-nuclear interaction is obtained by the corrected Thomas-Fermi result, the ratio obtained gives a better agreement with the Hartree-Fock numerical results.

  20. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    ERIC Educational Resources Information Center

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  1. The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts

    ERIC Educational Resources Information Center

    Bednarek, Stanislaw; Krysiak, Jerzy

    2011-01-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…

  2. A preliminary discussion of gravitational physics experiments for the Spacelab era

    NASA Technical Reports Server (NTRS)

    Decher, R.; Winkler, C. G.

    1976-01-01

    An overview of past, present, and proposed future experiments in gravitational physics is given. These experiments are concerned with the measurement of relativistic gravity effects to test theories of gravitation. Certain experiments which could be performed on shuttle and Spacelab missions and the potential of Spacelab for gravitation physics research are discussed.

  3. The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts

    ERIC Educational Resources Information Center

    Bednarek, Stanislaw; Krysiak, Jerzy

    2011-01-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by

  4. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario E.; Molek, Christopher D.; Vesely, Annamaria L.

    2015-10-01

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N2 gas cell to encode the Doppler shift of reflected near-resonant (λ0 ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N2 gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N2 vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N2 collisions. The minimum necessary N2 buffer gas density ≈0.3 amagat translates into a smallest useful velocity range of 0 to 2 km/s, which can readily be extended to cover the 0 to 10 km/s range, and beyond. The recognition that coherent optical transients can be produced within low pressure vapor cells during velocimetry experiments may offer new insights into some quantitative discrepancies reported in earlier DGV studies. Future plans include "line-RALF" experiments with streak camera detection, and two-dimensional surface velocity mapping using pulsed laser illumination and/or gated intensified CCD camera detection.

  5. Cold-Atom Physics Using Ultrathin Optical Fibers: Light-Induced Dipole Forces and Surface Interactions

    SciTech Connect

    Sague, G.; Vetsch, E.; Alt, W.; Meschede, D.; Rauschenbeutel, A.

    2007-10-19

    The strong evanescent field around ultrathin unclad optical fibers bears a high potential for detecting, trapping, and manipulating cold atoms. Introducing such a fiber into a cold-atom cloud, we investigate the interaction of a small number of cold cesium atoms with the guided fiber mode and with the fiber surface. Using high resolution spectroscopy, we observe and analyze light-induced dipole forces, van der Waals interaction, and a significant enhancement of the spontaneous emission rate of the atoms. The latter can be assigned to the modification of the vacuum modes by the fiber.

  6. Severe Obesity and the Ambivalence of Attending Physical Activity: Exploring Lived Experiences.

    PubMed

    Danielsen, Kjersti Karoline; Sundgot-Borgen, Jorunn; Rugseth, Gro

    2016-04-01

    Physical activity is considered fundamental in lifestyle interventions. We explore experiences of physical activity prior to, during, and following a 10- to 14-week inpatient lifestyle modification program, including high volume of physical activity, for the treatment of severe obesity. Eight participants from a prospective clinical trial were selected to participate in a complementary qualitative study. The participants' experiences with physical activity during and following the treatment program represented different opposites: "pain and pleasure," "desire and duty," and "bubble and battle." We summarized the findings into one overall theme: "the ambivalence of attending physical activity." The ambivalence is experienced as a shift in how participants experience physical activity during the intervention period and as an ongoing, dynamic, and constantly shifting experience during such activity. To address and reflect upon such experiences with the participants, and acknowledge ambivalence as a legitimate part of being physically active, might be important within obesity treatment. PMID:26246522

  7. Physics of forced magnetic reconnection in coaxial helicity injection experiments in National Spherical Torus Experiment

    SciTech Connect

    Ebrahimi, F.; Bhattacharjee, A.; Raman, R.; Hooper, E. B.; Sovinec, C. R.

    2014-05-15

    We numerically examine the physics of fast flux closure in transient coaxial helicity injection (CHI) experiments in National Spherical Torus Experiment (NSTX). By performing resistive Magnetohydrodynamics (MHD) simulations with poloidal injector coil currents held constant in time, we find that closed flux surfaces are formed through forced magnetic reconnection. Through a local Sweet-Parker type reconnection with an elongated current sheet in the injector region, closed flux surfaces expand in the NSTX global domain. Simulations demonstrate outflows approaching poloidally Alfvénic flows and reconnection times consistent with the Sweet-Parker model. Critical requirements for magnetic reconnection and flux closure are studied in detail. These primary effects, which are magnetic diffusivity, injector flux, injector flux footprint width, and rate of injector voltage reduction, are simulated for transient CHI experiments. The relevant time scales for effective reconnection are τ{sub V}<τ{sub rec}≈τ{sub A}√(S)(1+Pm){sup 1/4}<τ{sub R}, where τ{sub V} is the time for the injector voltage reduction, τ{sub A} is the poloidal Alfvén transit time, τ{sub R} is the global resistive diffusion time, and Pm and S are Prandtl and Lundquist numbers.

  8. Comments on the interaction between theory and experiment in high energy physics

    SciTech Connect

    Derrick, M.

    1990-09-14

    This paper discusses work being conducted in High Energy Physics and Nuclear Physics where theory and experiment go hand in hand. Pion capture, proton-antiproton interactions, kaon-pion interactions and hypernuclei decay are discussed as examples. (LSP)

  9. Physics Demonstration Experiments at William Jewell College. Revised Edition.

    ERIC Educational Resources Information Center

    Hilton, Wallace A.

    Presented are descriptions (with photographs) of demonstration equipment purchased, assembled, developed, and used at William Jewell College (Missouri) during the past 25 years. The descriptions are organized into the following topic areas: (1) mechanics; (2) heat; (3) waves, sound, and acoustics; (4) electricity; (5) optics; and (6) atomic and…

  10. Energetic Neutral Atoms from the Moon: Populations, physics, applications, and the future

    NASA Astrophysics Data System (ADS)

    Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Bhardwaj, Anil; Wurz, Peter

    Coexistence of plasma particles and neutral materials in space creates energetic neutral atoms (ENAs). For example, when solar wind plasma interacts with the lunar surface, ENA production is expected. We review recent investigations of the Moon-associated ENAs observed by a lunar orbiter, Chandrayaan-1, and discuss lessons learnt from the experiment. Intensive observations were conducted by the Chandrayaan-1 Energetic Neutrals Analyzer (CENA) sensor, the first and the only ever ENA sensor in a lunar orbit. CENA started its operation in the beginning of 2009. CENA can measure low energy ENAs, i.e. the energy below 3 keV. Using the dataset obtained from its 6-month operation, we discovered several populations of ENAs emitted from the Moon: begin{itemize} Backscattered ENAs of solar wind proton origin Backscattered ENAs of plasmasheet proton origin Sputtered hydrogen from the surface Indeed, backscattered ENAs had never expected as a major ENA population because the porosity (roughness) of the lunar surface is extremely high, and thus impinging plasma particles must have experienced several scattering to be absorbed. However, the observations clearly showed extremely high flux of backscattered ENAs. The discovery gave us a new insight in the field of low energy plasma interaction with porous surface in space. From the measured ENA flux and flying direction at the orbiter, we can derive the place of the ENA production and its flux at the lunar surface. They include information about solar wind plasma at the surface. One of the most attractive regions for investigation is a locally magnetized region (magnetic anomaly). Magnetic anomalies form mini-magnetospheres, which prevent the solar wind to precipitate. The efficiency of the protection influences directly the effectiveness of the space weathering by solar wind plasmas. Using the obtained CENA data, we could successfully image a reduction of the ENA flux inside known magnetic anomalies. The image clearly indicates the effective protection of the surface from the solar wind proton. Recently, we also developed a new method to obtain the electrostatic surface potential inside the anomaly from ENA observations. Improved ENA sensor will fly to Mercury by a Europe-Japan joint Mercury exploration, BepiColombo, as a part of Mercury Plasma Particle Experiment on board Mercury Magnetospheric Orbiter. The ENA experiment will image precipitating plasma at the surface of Mercury. Field-aligned potential in the precipitating regions is also to be derived. European Jupiter mission, JUpiter ICy moons Explorer (JUICE), will also equip an ENA sensor. ENA environment of the icy moons will be addressed as well.

  11. Early Childhood Educators' Experience of an Alternative Physical Education Model

    ERIC Educational Resources Information Center

    Tsangaridou, Niki; Genethliou, Nicholas

    2016-01-01

    Alternative instructional and curricular models are regarded as more comprehensive and suitable approaches to providing quality physical education (Kulinna 2008; Lund and Tannehill 2010; McKenzie and Kahan 2008; Metzler 2011; Quay and Peters 2008). The purpose of this study was to describe the impact of the Early Steps Physical Education…

  12. Physical activity policy and program development: the experience in Finland.

    PubMed Central

    Vuori, Ilkka; Lankenau, Becky; Pratt, Michael

    2004-01-01

    This article describes the development of sports and physical activity policies and programs in Finland during the past 30 years. The past two decades have been marked by a shift in emphasis from competitive and elite sports to health-enhancing physical activity for all, as seen most clearly in two successive sports acts and a government resolution. The new, increasingly multisectoral policies have led to substantial changes in the public funding of sports organizations, services, and construction of sports sites. Furthermore, three successive five-year national physical activity promotion programs have been launched. As a result, increased and new types of opportunities to participate in physical activity have become available, and the infrastructure and networks for provision of services have been strengthened. Until the mid 1990s, leisure time physical activity increased in Finland, but during the last seven to eight years, both leisure time and commuting physical activity have been stable. This finding may be an indication of the difficulty to increase physical activity in an industrialized country with already relatively high levels of physical activity even when systematic, long-term policies and measures are applied. PMID:15158112

  13. Computer Simulations for Lab Experiences in Secondary Physics

    ERIC Educational Resources Information Center

    Murphy, David Shannon

    2012-01-01

    Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain…

  14. Computer Simulations for Lab Experiences in Secondary Physics

    ERIC Educational Resources Information Center

    Murphy, David Shannon

    2012-01-01

    Physical science instruction often involves modeling natural systems, such as electricity that possess particles which are invisible to the unaided eye. The effect of these particles' motion is observable, but the particles are not directly observable to humans. Simulations have been developed in physics, chemistry and biology that, under certain

  15. Atoms and Molecules. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    There are more than 20 million known substances in the universe, and they are all made of the same basic ingredients--atoms and molecules. In this fun and engaging program, kids will learn about the three main subatomic particles--protons, neutrons and electrons--as well as the forces that keep atoms and molecules together. They'll discover how

  16. Atoms and Molecules. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].

    ERIC Educational Resources Information Center

    2000

    There are more than 20 million known substances in the universe, and they are all made of the same basic ingredients--atoms and molecules. In this fun and engaging program, kids will learn about the three main subatomic particles--protons, neutrons and electrons--as well as the forces that keep atoms and molecules together. They'll discover how…

  17. Physical Construction of the Chemical Atom: Is It Convenient to Go All the Way Back?

    ERIC Educational Resources Information Center

    Izquierdo-Aymerich, Merce; Aduriz-Bravo, Agustin

    2009-01-01

    In this paper we present an analysis of chemistry texts (mainly textbooks) published during the first half of the 20th century. We show the evolution of the explanations therein in terms of atoms and of atomic structure, when scientists were interpreting phenomena as evidence of the discontinuous, corpuscular structure of matter. In this process…

  18. Physical Construction of the Chemical Atom: Is It Convenient to Go All the Way Back?

    ERIC Educational Resources Information Center

    Izquierdo-Aymerich, Merce; Aduriz-Bravo, Agustin

    2009-01-01

    In this paper we present an analysis of chemistry texts (mainly textbooks) published during the first half of the 20th century. We show the evolution of the explanations therein in terms of atoms and of atomic structure, when scientists were interpreting phenomena as evidence of the discontinuous, corpuscular structure of matter. In this process

  19. Movie of phase separation during physics of colloids in space experiment

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area in the video is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.

  20. Phase separation during the Experiment on Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Still photographs taken over 16 hours on Nov. 13, 2001, on the International Space Station have been condensed into a few seconds to show the de-mixing -- or phase separation -- process studied by the Experiment on Physics of Colloids in Space. Commanded from the ground, dozens of similar tests have been conducted since the experiment arrived on ISS in 2000. The sample is a mix of polymethylmethacrylate (PMMA or acrylic) colloids, polystyrene polymers and solvents. The circular area is 2 cm (0.8 in.) in diameter. The phase separation process occurs spontaneously after the sample is mechanically mixed. The evolving lighter regions are rich in colloid and have the structure of a liquid. The dark regions are poor in colloids and have the structure of a gas. This behavior carnot be observed on Earth because gravity causes the particles to fall out of solution faster than the phase separation can occur. While similar to a gas-liquid phase transition, the growth rate observed in this test is different from any atomic gas-liquid or liquid-liquid phase transition ever measured experimentally. Ultimately, the sample separates into colloid-poor and colloid-rich areas, just as oil and vinegar separate. The fundamental science of de-mixing in this colloid-polymer sample is the same found in the annealing of metal alloys and plastic polymer blends. Improving the understanding of this process may lead to improving processing of these materials on Earth.