Science.gov

Sample records for atomic physics experiments

  1. Atomic physics experiments at the high energy storage ring

    NASA Astrophysics Data System (ADS)

    Stöhlker, Thomas; Litvinov, Yuri A.; the SPARC Collaboration

    2015-11-01

    Facility for Antiproton and Ion Research (FAIR), will offer unprecedented experimental opportunities. The Stored Particles Atomic Research Collaboration (SPARC) at FAIR aims at creating a worldwide unique research program with highly charged ions by utilizing storage ring and trapping facilities. The foreseen experiments will address physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as the experiments at the border between nuclear and atomic physics. In view of the staged construction of the FAIR facility, SPARC worked out an early realization scheme for experiments with highly-charged heavy-ions at relativistic energies to be conducted in the High-Energy Storage Ring.

  2. Versatile single-chip event sequencer for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  3. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    NASA Astrophysics Data System (ADS)

    May, M. J.; Finkenthal, M.; Soukhanovskii, V.; Stutman, D.; Moos, H. W.; Pacella, D.; Mazzitelli, G.; Fournier, K.; Goldstein, W.; Gregory, B.

    1999-01-01

    In present magnetically confined fusion devices, high and intermediate Z impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high Z plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introduced through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3-1600 Å), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.)

  4. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  5. An open source digital servo for atomic, molecular, and optical physics experiments

    SciTech Connect

    Leibrandt, D. R. Heidecker, J.

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  6. An open source digital servo for atomic, molecular, and optical physics experiments

    NASA Astrophysics Data System (ADS)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  7. A distributed, graphical user interface based, computer control system for atomic physics experiments

    NASA Astrophysics Data System (ADS)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  8. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  9. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  10. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  11. Making custom fiber lasers for use in an atomic physics experiment

    NASA Astrophysics Data System (ADS)

    Khademian, Ali; Cameron, Garnet; Nault, Kyla; Shiner, David

    2016-05-01

    Fiber lasers can be a reasonable choice for a laser source in atomic physics. Our particular applications involve the optical pumping and in some applications cooling of various transitions in atomic helium. Doped fiber with emission at the required wavelengths is necessary. Readily available fiber and approximate wavelength emission ranges include Yb (990 - 1150 nm), Er/Yb (1530 - 1625 nm) and Th (1900 -2100 nm). High efficiency conversion of pump photons into stable single frequency laser emission at the required wavelength is the function of the fiber laser. A simple fiber laser cavity uses a short (~ few mm) fiber grating high reflector mirror, a doped fiber section for the laser cavity, and a long (~ few cm) fiber grating output coupler. To ensure reliable single frequency operation, the laser cavity length should be within 2-3 times the output grating length. However the cavity length must be long enough for round trip gains to compensate for the output mirror transmission loss. Efficiency can be maximized by avoiding fiber splices in the fiber laser cavity. This requires that the gratings be written into the doped fiber directly. In our previous designs, back coupling of the fiber laser into the pump laser contributes to instability and sometimes caused catastrophic pump failure. Current designs use a fiber based wavelength splitter (WDM) to study and circumvent this problem. Data will be presented on the fiber lasers at 1083 nm. Work on a Thulium 2057 nm fiber laser will also be discussed. This work is supported by NSF Grant # 1404498.

  12. Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics

    NASA Astrophysics Data System (ADS)

    Brandau, Carsten; Kozhuharov, Christophor; Lestinsky, Michael; Müller, Alfred; Schippers, Stefan; Stöhlker, Thomas

    2015-11-01

    A brief review about topical developments in the exploitation of the resonant electron-ion collision process of dielectronic recombination (DR) as a sensitive spectroscopic tool is given. The focus will be on DR storage-ring experiments of few-electron highly charged ions. Among others, the questions addressed in these studies cover diverse topics from the areas of strong-field quantum electrodynamics, of lifetime studies using DR resonances, and of nuclear physics. Examples from the storage rings CRYRING in Stockholm, TSR in Heidelberg, and ESR in Darmstadt are given. In addition, an overview is provided about the ongoing developments and future perspectives of DR collision spectroscopy at the upcoming Facility for Antiproton and Ion Research in Darmstadt, Germany.

  13. Physics through the 1990s: Atomic, molecular and optical physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  14. First atomic physics experiments with cooled stored ion beams at the Heidelberg heavy-ion ring TSR

    SciTech Connect

    Wolf, A.; Balykin, V.; Baumann, W.; Berger, J.; Bisoffi, G.; Blatt, P.; Blum, M.; Faulstich, A.; Friedrich, A.; Gerhard, M.; Geyer, C.; Grieser, M.; Grieser, R.; Habs, D.; Heyng, H.W.; Hochadel, B.; Holzer, B.; Huber, G.; Jaeschke, E.; Jung, M.; Karafillidis, A.; Kilgus, G.; Klein, R.; Kraemer, D.; Krause, P.; Krieg, M.; Kuehl, T.; Matl, K.; Mueller, A.; Music, M.; Neumann, R.; Neureither, G.; Ott, W.; Petrich, W.; Povh, B.; Repnow, R.; Schroeder, S.; Schuch, R.; Schwalm, D.; Sigray, P.; Steck, M.; Stokstad, R.; Szmola, E.; Wagner, M.; Wanner, B.; Welti, K.; Zwickler, S. Max-Planck-Institut fuer Kernphysik, Heidelberg Manne Siegbahn Institute , Stockholm Institut fuer Kernphysik, Universitaet Giessen, Institut fuer Physik, Universitaet Mainz Gesellschaft fuer Schwerionenforschung , Darmstadt (Fed

    1990-06-01

    An overview of atomic physics experiments at the heavy ion Test Storage Ring (TSR) is given. Highly charged ions up to fully stripped silicon have been stored at energies between 4 and 12 MeV/u. The enhancement of the beam intensity by stacking, the beam lifetime, and electron cooling of these ion beams are discussed. Radiative and state-selective dielectronic recombination rates of hydrogen-like oxygen ions with free electrons from the electron cooler were measured. Beam noise spectra are being investigated with regard to collective effects caused by the Coulomb interaction in the cold ion beams. Resonance fluorescence from stored single-charged ions was observed using tunable narrow-band lasers. First indications of laser cooling in a storage ring were seen.

  15. Contemporary Aspects of Atomic Physics

    ERIC Educational Resources Information Center

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  16. Four Weeks of Atomic Physics.

    ERIC Educational Resources Information Center

    Lo Presto, Michael C.

    1995-01-01

    Describes a strategy for presenting ideas of atomic physics in the laboratory portion of the course before it is introduced during a lecture in order to give students an appreciation for the concepts involved, a historical look at how the field developed, and a comprehensive review of physics concepts. Presents a worksheet for the Bohr atom…

  17. A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings

    NASA Astrophysics Data System (ADS)

    Trageser, C.; Brandau, C.; Kozhuharov, C.; Litvinov, Yu A.; Müller, A.; Nolden, F.; Sanjari, S.; Stöhlker, T.

    2015-11-01

    A new continuous and broadband data acquisition system for measurements of Schottky-signals of ions revolving in a storage ring has been implemented. This set-up is capable of recording the radio frequency (RF) signal of the ions that circulate in the storage ring with a sustained acquisition rate of more than 3.5× {10}7 IQ-samples per second. This allows several harmonics of the full momentum acceptance of a storage ring to be measured at the same time. The RF signal analyzer modules are complemented by further electronic modules such as counters, precision clocks and synchronization modules that facilitate a seamless integration with main experimental data acquisitions for atomic and nuclear physics. In this contribution, the setup and first results from a test run at the experimental storage ring at GSI, Darmstadt, Germany, are presented.

  18. Experiments in cold atom optics towards precision atom interferometry

    NASA Astrophysics Data System (ADS)

    Aveline, David C.

    magnetic field contours of the traps and the dynamics of atoms within those confining potentials. We also controlled the propagation along the atom chip guides by accelerating atoms with longitudinal magnetic gradients, and investigated an atom focusing scheme. While the atom chip wire guides perform a role analogous to optical fibers guiding light waves, "free space" cold atoms offer great opportunity for precision interferometry. We describe a second on-going atom optics experiment that measures gravity gradients using a pair of atom fountain interferometers separated by one meter. We have demonstrated Gravity Gradiometer resolution down to 4x10-9 g/m using a 40 kg test mass. The atomic physics subsystem is described in detail, including the vacuum, cold atom source, optics, magnetic coils and shields, and vibration isolation and compensation. The system is designed to be a compact, robust, transportable instrument, taking strides towards future gravity gradient measurements in the field. In the realm of space applications, there has been interest for micro-gravity science experiments aboard the International Space Station, along with instrument development for gravity mapping of Earth and planetary bodies with satellite-based instruments. Furthermore, there are ground-based applications for gravity imaging of local density distributions, precision measurement of gravity, as well as proposals for redefining the kilogram, detecting gravitational waves and determining the Gravitational constant.

  19. Atomic Physics 15: Proceedings of the Fifteenth International Conference on Atomic Physics.

    NASA Astrophysics Data System (ADS)

    van Linden van den Heuvell, H. B.; Walraven, J. T. M.; Reynolds, M. W.

    1997-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * Generation of a "Schrödinger cat" of radiation and observation of its decoherence * Synthesis of entangled states and quantum computing * Entangled states of atomic ions for quantum metrology and computation * Entanglement and indistinguishability: Coherence experiments with photon pairs and triplets * Atom optics as a testing ground for quantum chaos * Coherent ultra-bright XUV lasers and harmonics * Hollow atoms * Interdisciplinary experiments with polarized noble gases * The creation and study of Bose-Einstein condensation in a cold alkali vapor * oscopic quantum phenomena in trapped Bose-condensed gases * Doppler-free spectroscopy of trapped atomic hydrogen * QED and the ground state of helium * Towards coherent atomic samples using laser cooling * Bose-Einstein condensation of a weakly-interacting gas * Zeeman and his contemporaries: Dutch physics around 1900 * Zeeman's great discovery * The Zeeman effect: A tool for atom manipulation * The Zeeman effect a century later: New insights into classical physics * QED effects in few-electron high-Z systems * Lamb shift experiments on high-Z one- and two-electron systems * Fundamental constants of nature * Response of atoms in photonic lattices * Hydrogen-like systems and quantum electrodynamics * New experiments with atomic lattices bound by light * Bloch oscillations of atoms in an optical potential * Quantum decoherence and inertial sensing with atom interferometers * Quantum effects in He clusters * Atoms in super-intense radiation fields * Wave packet dynamics of excited atomic electrons in intense laser fields * Nonlinear laser-electron scattering * Comparing the antiproton and proton and progress toward cold antihydrogen * Author Index

  20. Physical Limits on Atomic Resolution

    NASA Astrophysics Data System (ADS)

    van Dyck, D.; van Aert, S.; den Dekker, A. J.

    2004-02-01

    It is shown that the ultimate resolution is not limited by the bandwidth of the microscope but by the bandwidth (i.e., the scattering power) of the object. In the case of a crystal oriented along a zone axis, the scattering is enhanced by the channeling of the electrons. However, if the object is aperiodic along the beam direction, the bandwidth is much more reduced. A particular challenge are the amorphous objects. For amorphous materials, the natural bandwidth is that of the single atom and of the order of 1 [Angstrom capital A, ring][minus sign]1, which can be reached with the present generation of medium voltage microscopes without aberration correctors. A clear distinction is made between resolving a structure and refining, that is, between resolution and precision. In the case of an amorphous structure, the natural bandwidth also puts a limit on the number of atom coordinates that can be refined quantitatively. As a consequence, amorphous structures cannot be determined from one projection, but only by using atomic resolution tomography. Finally a theory of experiment design is presented that can be used to predict the optimal experimental setting or the best instrumental improvement. Using this approach it is suggested that the study of amorphous objects should be done at low accelerating voltage with correction of both spherical and chromatic aberration.

  1. Bringing Atoms into First-Year Physics.

    ERIC Educational Resources Information Center

    Chabay, Ruth W.; Sherwood, Bruce A.

    1999-01-01

    Argues that thermal physics should not be treated as a separate topic in introductory physics. Provides an example of a course that emphasizes physical modeling of the phenomenon in terms of the atomic nature of matter. (Author/CCM)

  2. Some Experiments in Atomic Structure

    ERIC Educational Resources Information Center

    Logan, Kent R.

    1974-01-01

    The role of spectral color slides in laboratory situations is discussed, then experiments for secondary school students concerning color and wave length, evidence of quantization, and the ionization energy of the hydrogen atom are outlined. Teaching guidelines for creating a set of spectrograms and photographic specifications are provided. (DT)

  3. Physics Outreach Grant Experiences

    NASA Astrophysics Data System (ADS)

    Doss, Heide

    2014-03-01

    Descriptions of two different Physics Outreach grant projects will be presented. I will discuss my experiences trying to engage and teach the public in my locality some physics through birthday parties for the laser in 2010. I will also discuss my experiences trying to reach the general public through greeting cards and bookmarks with physics on the back in 2012-2013. These efforts spilled over to a larger audience, which led to a larger impact. I will describe what worked, what didn't, and the value of these efforts. I am pleased to acknowledge the support of my funder APS Outreach.

  4. Pulse Controlled Frequency-Chirped Laser Light at Large Detuning for Use in Atomic, Molecular, and Optical Physics Experiments

    NASA Astrophysics Data System (ADS)

    Kaufman, Brian; Paltoo, Tracy; Grogan, Tanner; Wright, Matthew

    2016-05-01

    We have developed a laser system that generates a moderate frequency chirp (1 GHz in 4 ns) at a large controllable detuning (~7 GHz) using an electro-optical phase modulator in an injection-lock laser system. This system can effectively pulse the laser on timescales less than 3 ns by turning on and off the injection lock. This system can also create arbitrary frequency chirp shapes on the laser on the tens of nanosecond time scales with a cutoff frequency of 200 MHz. As a test of the laser system, we have explored excitation of a room-temperature atomic Rb gas with frequency-chirped light. We have found that our experimental results agree with the solution to the Optical Bloch equations for the same parameters.

  5. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    2005-11-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  6. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    1998-09-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  7. Relativistic atomic physics at the SSC

    SciTech Connect

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  8. Future flavour physics experiments

    PubMed Central

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  9. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  10. Atomic physics of relativistic high contrast laser-produced plasmas in experiments on Leopard laser facility at UNR

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Faenov, A. Y.; Safronova, U. I.; Wiewior, P.; Renard-Le Galloudec, N.; Esaulov, A. A.; Weller, M. E.; Stafford, A.; Wilcox, P.; Shrestha, I.; Ouart, N. D.; Shlyaptseva, V.; Osborne, G. C.; Chalyy, O.; Paudel, Y.

    2012-06-01

    The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10-7) to moderate (10-5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ˜ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (˜1019 W/cm2) indicate electron beams, while at lower intensities (˜1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.

  11. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  12. Atomic physics at the advanced photon source

    SciTech Connect

    Berry, H.G.; Cowan, P.L.; Gemmell, D.S.

    1995-08-01

    Argonne`s 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons.

  13. Alkali--rare gas photodissociation lasers: Applications to laser physics and atom-atom interactions

    NASA Astrophysics Data System (ADS)

    Hewitt, John Darby

    This dissertation describes several experiments in which alkali--rare gas laser systems are utilized as a simple platform with which to isolate and study atom-atom interactions and fundamental physical processes that are ill-understood or have never been investigated previously. Specifically, the minimum allowable energy separation between levels 2 and 3 in a three-level laser system has been investigated experimentally, as have two-photon absorption processes in atomic Rb and Cs.

  14. New results in atomic physics at the Advanced Light Source

    SciTech Connect

    Schlachter, A.S.

    1995-01-01

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  15. Atomic Physics, Science (Experimental): 5318.42.

    ERIC Educational Resources Information Center

    Petit, Ralph E.

    Presented is the study of modern and classical concepts of the atom; the structure of the atom as a mass-energy relationship; practical uses of radioactivity; isotopes; and the strange particles. Performance objectives (16) are included as well as a detailed course outline. Experiments, demonstrations, projects and reports to enhance student…

  16. Crucial Experiments in Quantum Physics.

    ERIC Educational Resources Information Center

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  17. High School Physics Teaching Experience

    ERIC Educational Resources Information Center

    Physics Teacher, 2012

    2012-01-01

    We divided our high school physics teaching experience into three groups: first year teaching physics, second or third year teaching physics, and four or more years of experience teaching physics. We did this because everything is new for teachers teaching a course for the first time. The second and third time through the course, teachers learn…

  18. Sustained spheromak physics experiment

    SciTech Connect

    Hooper, E B

    1998-09-29

    The Sustained Spheromak Physics Experiment, SSPX, will study spheromak physics with particular attention to energy confinement and magnetic fluctuations in a spheromak sustained by electrostatic helicity injection. In order to operate in a low collisionality mode, requiring Te> 100 eV, vacuum techniques developed for tokamaks will be applied, and a divertor will be used for the first time in a spberomak. The discharge will operate for pulse lengths of several milliseconds, long compared to the time to establish a steady-state equilibrium but short compared to the L/R time of the flux conserver. The spheromak and helicity injector ("gun") are closely coupled, as shown by an ideal MHD model with force-free injector and edge plasmas. The current from the gun passes along the symmetry axis of the spheromak, and the resulting toroidal magnetic field causes the safety factor, q, to diverge on the separatrix. The q-profile depends on the ratio of the injector current to spheromak current and on the. magnetic flux coupling the injector to the spheromak. New diagnostics include magnetic field measurements by a reflectometer operating in combined 0- and X-modes and by a transient internal probe (TIP).

  19. Guide to Laboratory Practicum in Atomic Physics

    NASA Astrophysics Data System (ADS)

    Burbulea, N. F.; Golban, G. N.; Scurtul, V. V.; Oleynik, V. A.

    1980-12-01

    The broshure represents a collection of 11 Laboratory works in Quantum Optics, Semiconductor, Atomic and Nuclear Physics for students of 2-nd years from Technical High Schools. A minimum of theoretical knowledges is given as well as a description of experimental installation (setup),a number of control questions and a task to be carried out is presented for every of the Laboratory work.

  20. Atomic and molecular physics at LURE

    SciTech Connect

    Morin, P.

    1994-08-01

    A short overview of the present research activity at LURE is given, in the field of atomic and molecular physics. Three selected examples are discussed in more detail and the {open_quotes}SOLEIL{close_quotes} project of a new French synchrotron facility is presented.

  1. The ALADDIN atomic physics database system

    SciTech Connect

    Hulse, R.A. )

    1990-05-01

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. 8AB The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to be ALADDIN design, leading to the use of straightforward text files with concatentated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and database, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes.

  2. Efimov physics in {sup 6}Li atoms

    SciTech Connect

    Braaten, Eric; Hammer, H.-W.; Kang, Daekyoung; Platter, Lucas

    2010-01-15

    A new narrow three-atom loss resonance associated with an Efimov trimer crossing the three-atom threshold has recently been discovered in a many-body system of ultracold {sup 6}Li atoms in the three lowest hyperfine spin states at a magnetic field near 895 G. O'Hara and coworkers have used measurements of the three-body recombination rate in this region to determine the complex three-body parameter associated with Efimov physics. Using this parameter as the input, we calculate the universal predictions for the spectrum of Efimov states and for the three-body recombination rate in the universal region above 600 G where all three scattering lengths are large. We predict an atom-dimer loss resonance at 672+-2 G associated with an Efimov trimer disappearing through an atom-dimer threshold. We also predict an interference minimum in the three-body recombination rate at 759+-1 G where the three-spin mixture may be sufficiently stable to allow experimental study of the many-body system.

  3. High School Physics Teaching Experience

    NASA Astrophysics Data System (ADS)

    2012-04-01

    We divided our high school physics teaching experience into three groups: first year teaching physics, second or third year teaching physics, and four or more years of experience teaching physics. We did this because everything is new for teachers teaching a course for the first time. The second and third time through the course, teachers learn from past experiences and hone their approaches. By the time a teacher is in the fourth year of teaching a course, he or she is more comfortable with the material and better able to understand the ways in which different approaches work with different topics.

  4. Handbook explaining the fundamentals of nuclear and atomic physics

    NASA Technical Reports Server (NTRS)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  5. Efimov physics in atom-dimer scattering of {sup 6}Li atoms

    SciTech Connect

    Hammer, H.-W.; Kang, Daekyoung; Platter, Lucas

    2010-08-15

    {sup 6}Li atoms in the three lowest hyperfine states display universal properties when the S-wave scattering length between each pair of states is large. Recent experiments reported four pronounced features arising from Efimov physics in the atom-dimer relaxation rate, namely two resonances and two local minima. We use the universal effective-field theory to calculate the atom-dimer relaxation rate at zero temperature. Our results describe the four features qualitatively and imply there is a hidden local minimum. In the vicinity of the resonance at 685 G, we perform a finite temperature calculation which improves the agreement of theory and experiment. We conclude that finite temperature effects cannot be neglected in the analysis of the experimental data.

  6. Planning a School Physics Experiment.

    ERIC Educational Resources Information Center

    Blasiak, Wladyslaw

    1986-01-01

    Presents a model for planning the measurement of physical quantities. Provides two examples of optimizing the conditions of indirect measurement for laboratory experiments which involve measurements of acceleration due to gravity and of viscosity by means of Stokes' formula. (ML)

  7. More Homespun Experiments in Physics.

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1979-01-01

    Describes how some experiments in physics can be presented in class using cheap materials. How to produce an electrostatic charge using a polythene bottle and how to make a tissue paper electroscope using a tin can are among the experiments described. (HM)

  8. Atomic Hong-Ou-Mandel experiment

    NASA Astrophysics Data System (ADS)

    Lopes, R.; Imanaliev, A.; Aspect, A.; Cheneau, M.; Boiron, D.; Westbrook, C. I.

    2015-04-01

    Two-particle interference is a fundamental feature of quantum mechanics, and is even less intuitive than wave-particle duality for a single particle. In this duality, classical concepts--wave or particle--are still referred to, and interference happens in ordinary space-time. On the other hand, two-particle interference takes place in a mathematical space that has no classical counterpart. Entanglement lies at the heart of this interference, as it does in the fundamental tests of quantum mechanics involving the violation of Bell's inequalities. The Hong, Ou and Mandel experiment is a conceptually simpler situation, in which the interference between two-photon amplitudes also leads to behaviour impossible to describe using a simple classical model. Here we report the realization of the Hong, Ou and Mandel experiment using atoms instead of photons. We create a source that emits pairs of atoms, and cause one atom of each pair to enter one of the two input channels of a beam-splitter, and the other atom to enter the other input channel. When the atoms are spatially overlapped so that the two inputs are indistinguishable, the atoms always emerge together in one of the output channels. This result opens the way to testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, and to testing theories of the quantum-to-classical transition. Our work also demonstrates a new way to benchmark non-classical atom sources that may be of interest for quantum information processing and quantum simulation.

  9. I.I. Rabi Prize in Atomic, Molecular and Optical Physics Talk: Novel Quantum Physics in Few- and Many-body Atomic Systems

    NASA Astrophysics Data System (ADS)

    Chin, Cheng

    2011-05-01

    Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.

  10. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  11. Atomic frequency standard relativistic Doppler shift experiment

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  12. Polarized noble-gas atoms: A tool for fundamental physics

    SciTech Connect

    Chupp, T.E.

    1993-05-01

    Polarized noble gas atom samples suitable for a variety of experiments can be produced by spin exchange with laser optically pumped alkali-metal vapors. Most stable and even radioactive isotopes of He, Ne, Kr, Xe and Rn have been polarized, and the field has been paced, in part by laser developments and study of the atomic collision processes. I will focus on two kinds of application: (1) precision measurement of free precession frequencies to probe fundamental concepts such as CP violation, Local Lorentz Invariance and Linearity in Quantum Mechanics; (2) a polarized {sup 3}He target for electron scattering to extract information on the structure of the neutron. The precision measurement techniques take advantage of long coherence times (measured in hours for {sup 3}He and {sup 21}Ne) and large signal to noise ratios to measure frequency shifts with precision 10{sup -7} Hz in one hour. The polarized {sup 3}He target is used to measure asymmetries in deep inelastic electron scattering which are dominated by the neutron since the proton spins are approximately paired in the ground state of the nucleus. The spin dependent structure function of the neutron is an essential probe of the quark-parton structure of the nucleon. All of these investigations combine fundamental and particle physics motivation with atomic physics and precision measurement techniques in a way that spans many subfields of physics.

  13. Atomic physics and non-equilibrium plasmas

    SciTech Connect

    Weisheit, J.C.

    1986-04-25

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

  14. [The physics of coal liquid slurry atomization]. Annual report 1992

    SciTech Connect

    Chigier, N.; Brown, W.J.

    1994-06-01

    In order to understand the physics of atomization and to predict and improve the performance of atomizers, a survey on the effects of turbulence on atomization has been made. The influence of gas turbulence intensity on the disintegration of a liquid jet, while a constant mean velocity in both gas and liquid streams has been maintained, has been studied. A study has been made of the influence of changing dynamic surface tension on liquid surface wave characteristics and atomization. The dynamic surface tension of water was changed by adding Triton X-100 non-ionic surfactant into the liquid supplied to a two dimensional slot atomizer. Wave frequencies were measured using laser beam attenuation. Dynamic surface tension changes were found to influence liquid sheet disintegration with little effect on wave frequencies. A series of experiments have been conducted to determine the fundamental processes of injection and atomization of liquid propellants for rocket combustion chambers because of their direct influence on combustion instability. For coaxial injectors, liquid and gas flow rates have been progressively changed. Microphotography was used to obtain details of wave disturbances on liquid surfaces. Direct measurements were made of wavelength and frequency of wave propagation on liquid surfaces. Frequency was found to remain constant along the length of the liquid surface. Pulsations in the liquid jet caused drops to form clusters with the same frequency as that of jet surface waves. Measured frequencies were in the range of those measured in combustion instability experiments. Detailed measurements have been made in the sprays using the phase Doppler particle analyzer. Measurements of drop size, velocity and number density are related to the disintegration process. Increasing turbulence intensity in the gas stream is a very effective means of reducing drop size, increasing spray width, and therefore, improving combustion.

  15. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  16. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  17. Research in atomic and applied physics using a 6-GeV synchrotron source

    SciTech Connect

    Jones, K.W.

    1985-12-01

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented.

  18. Sustained Spheromak Physics Experiment, SSPX

    SciTech Connect

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  19. Project Physics Text 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  20. GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING NORTH, OF ATOMIC PHYSICS OBSERVATORY WHICH CONTAINS THE WHITE DOME STRUCTURE. THE SHED-LIKE STRUCTURE TO THE LEFT IS THE SEARCH-LIGHT BUILDING. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Atomic Physics Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  1. On the utility and ubiquity of atomic collision physics

    SciTech Connect

    Datz, S.

    1989-01-01

    This paper is divided into three parts. In the introduction, we discuss the history and makeup of ICPEAC. In the second part, we discuss the extent of applicability of atomic collision physics. In the third part, we chose one subject (dielectronic excitation) to show the interrelationship of various sub-branches of atomic collision physics. 28 refs., 14 figs.

  2. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  3. Solid Hydrogen Experiments for Atomic Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2001-01-01

    This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  4. Atomic physics: A milestone in quantum computing

    NASA Astrophysics Data System (ADS)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  5. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  6. Tight Binding Models in Cold Atoms Physics

    NASA Astrophysics Data System (ADS)

    Zakrzewski, J.

    2007-05-01

    Cold atomic gases placed in optical lattice potentials offer a unique tool to study simple tight binding models. Both the standard cases known from the condensed matter theory as well as novel situations may be addressed. Cold atoms setting allows for a precise control of parameters of the systems discussed, stimulating new questions and problems. The attempts to treat disorder in a controlled fashion are addressed in detail.

  7. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  8. The physics of spin polarized atomic vapors

    NASA Astrophysics Data System (ADS)

    Happer, William

    1988-05-01

    Research efforts are focussed on the study of spin polarized atoms, nuclei and electrons during the period covered by this report. Although this work is 6.1 basic research, it has applications to a number of important Air Force problems. For example, the atomic clocks used on the GPS satellite system operate with optically pumped rubidium absorption cells, very similar to the ones being investigated here. A number of the scientists and engineers working on atomic clocks used by Air Force satellite systems were trained with the support of this grant. We have participated in recent Air Force advisory panels to review concepts for high-energy-density fuels based on spin polarized atoms and molecules. The insights gained from research sponsored by this grant have been very useful in evaluating these ideas. Recent work has focussed on two main areas, the investigation of quadrupolar interactions between spin polarized noble gas nuclei and surfaces and the quantitative investigation of how magnetic field inhomogeneities cause spin relaxation.

  9. MISSE Scattered Atomic Oxygen Characterization Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2006-01-01

    An experiment designed to measure the atomic oxygen (AO) erosion profile of scattered AO was exposed to Low Earth Orbital (LEO) AO for almost four years as part of the Materials International Space Station Experiment 1 and 2 (MISSE 1 and 2). The experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), Tray 1, attached to the exterior of the International Space Station (ISS) Quest Airlock. The experiment consisted of an aperture disk lid of Kapton H (DuPont) polyimide coated on the space exposed surface with a thin AO durable silicon dioxide film. The aperture lid had a small hole in its center to allow AO to enter into a chamber and impact a base disk of aluminum. The AO that scattered from the aluminum base could react with the under side of the aperture lid which was coated sporadically with microscopic sodium chloride particles. Scattered AO erosion can occur to materials within a spacecraft that are protected from direct AO attack but because of apertures in the spacecraft the AO can attack the interior materials after scattering. The erosion of the underside of the Kapton lid was sufficient to be able to use profilometry to measure the height of the buttes that remained after washing off the salt particles. The erosion pattern indicated that peak flux of scattered AO occurred at and angle of approximately 45 from the incoming normal incidence on the aluminum base unlike the erosion pattern predicted for scattering based on Monte Carlo computational predictions for AO scattering from Kapton H polyimide. The effective erosion yield for the scattered AO was found to be a factor of 0.214 of that for direct impingement on Kapton H polyimide.

  10. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 2, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) ISOTOPES AND MASS NUMBERS, (2) MEASURING ATOMIC MASS, (3) DISCOVERY OF THE NUCLEUS, (4) STRUCTURE OF THE NUCLEUS, (5) DISCOVERY OF THE NEUTRON, (6) NUCLEAR REACTIONS,…

  11. Applications of atomic and molecular data to radiation physics

    SciTech Connect

    Inokuti, M.

    1982-01-01

    The general purpose of our work is to provide atomic and molecular collision cross sections useful for radiological physics, dosimetry, and other applications. Studies on the systematics of atomic oscillator-strength spectra and a survey of stopping power data are briefly described. (WHK)

  12. Experimental atomic physics in heavy-ion storage rings

    SciTech Connect

    Datz, S.; Andersen, L.H.; Briand, J.P.; Liesen, D.

    1987-01-01

    This paper outlines the discussion which took place at the ''round table'' on experimental atomic physics in heavy-ion storage rings. Areas of discussion are: electron-ion interactions, ion-ion collisions, precision spectroscopy of highly charged ions, beta decay into bound final states, and atomic binding energies from spectroscopy of conversion elections. 18 refs., 1 tab. (LSP)

  13. NASA GSFC Science Symposium on Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K. (Editor)

    2007-01-01

    This document is the proceedings of a conference on atomic and molecular physics in honor of the retirements of Dr. Aaron Temkin and Dr. Richard Drachman. The conference contained discussions on electron, positron, atomic, and positronium physics, as well as a discussion on muon catalyzed fusion. This proceedings document also contains photographs taken at the symposium, as well as speeches and a short biography made in tribute to the retirees.

  14. Design, fabrication and characterization of tunable external cavity diode laser and atom trapping chips for atomic physics

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao

    External cavity diode laser systems (ECDLs) have been well documented for their suitability in the fields of laser cooling and atom trapping, and are now widely used in optical and atomic physics. A particularly simple implementation of this idea uses feedback from a diffraction grating mounted in the Littrow configuration and the typical size of this laser is quite large (120mmx90mmx90mm). For atom optics, the current atom trapping chips are not in a feedthrough configuration, which makes the chips to glass cell assembly process complicated and the wires and solder areas vulnerable, resulting in an unreliable vacuum seal. Recent experimental realizations of atom optical devices such as atomic waveguides, beam splitters, and on-chip Bose-Einstein condensate (BEC) sources have opened a new field for the development of more complex devices such as, e.g., BEC-based atom transistor. This work focuses on micro/nano fabrication techniques to build three different devices for the miniature BEC system. The research work focuses on the development of new ECDLs, a novel fabrication process of feedthrough atom trapping chips for atomic optics and a fabrication process for atom transistor chips. In the ECDLs part, we describe a new method for constructing a smaller external-cavity diode laser by use of a micromachined silicon flexure and a VHG (Volume Holographic Grating). It is much smaller, inexpensive and easy to build because it is based on simple modifications of a few commercial optical and mechanical components but with a specific silicon flexure design enabled by micro-fabrication technology for the laser frequency tuning. In the feedthrough chips part, we present a novel fabrication process for feedthrough atom trapping chips in atomic condensate optics cells using the copper electroplating to seal the vias. The advantages of using feedthrough atom trapping chips are the simple microfabrication process and reduction of the overall chip area bonded on the glass atom

  15. Origin of the Universal Three-body Parameter in Atomic Efimov Physic

    NASA Astrophysics Data System (ADS)

    Naidon, Pascal; Endo, Shimpei; Ueda, Masahito

    2013-05-01

    Several experiments with different kinds of ultra-cold atoms have revealed that the three-body parameter that fixes the Efimov spectrum of few-atom systems near broad Feshbach resonances is universally determined by the atoms' van der Waals length. Using model potential calculations we find that the three-body parameter originates from a deformation of the three-atom system due to universal two-body correlations at separations on the order of the van der Waals length scale. This simple physical picture is consistent with the universality of the three-body parameter observed in the experiments, as well as previous numerical calculations. It explains why the low-energy physics of three bosonic atoms near a broad resonance is solely determined by their two-body parameters.

  16. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  17. SOHO: Atomic physics and the solar atmosphere

    SciTech Connect

    Kucera, T. A.

    1998-09-28

    Many aspects of the Sun's corona and wind are studied using data from the ultraviolet spectrum. Accurate atomic parameters are needed to interpret these data correctly, and a good understanding of the behaviors of atoms and ions in plasmas is essential to modeling the Sun's atmosphere. Here I present two examples of studies being carried out using the Solar and Heliospheric Observatory (SOHO) extreme ultraviolet spectrographs. The first of these is the study of flows in the Sun's chromosphere and corona. SOHO has provided new information concerning previous observations of the predominant down-flows in the Sun's lower atmosphere. Accurate measurements of Doppler line shifts have been extended to the corona. It has also been found that the Doppler shifts vary over different parts of the Sun. The second study discussed involves the use of SOHO data to measure elemental abundances in coronal structures know as streamers, giving more information on the 'FIP' effect--the observation that there is a relative deficit of elements with high first ionization potentials (FIPs) in the corona and solar wind.

  18. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGESBeta

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  19. The Los Alamos suite of relativistic atomic physics codes

    SciTech Connect

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  20. Kaonic atoms measurements at the DAFNE accelerator: the SIDDHARTA experiment

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Bazzi, M.; Beer, G.; Berucci, C.; Bombelli, L.; Bragadireanu, A. M.; Cargnelli, M.; Curceanu (Petrascu, C.; Corradi, G.; dUffizi, A.; Fiorini, C.; Frizzi, T.; Ghio, F.; Guaraldo, C.; Hayano, R. S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Lucherini, V.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Widmann, E.; Wunschek, B.; Zmeskal, J.

    2012-03-01

    Kaonic Hydrogen and Helium X-ray measurements play nowadays a fundamental role in testing the reliability of the Chiral Perturbation Theory as a realisation of the Quantum Chromodynamics at low energies. Dictated by both electromagnetic and strong interaction, X-ray transitions at lower energy levels of these complex bound systems offer indeed the unique opportunity to perform a threshold measurements of zero-energy meson-nucleon scattering. Nowadays the SIDDHARTA experiment at DAFNE collider is the only apparatus which can provide such kind of measurements with the high precision needed to disentangle different theoretical calculation scenarios. In this work we present the SIDDHARTA experiment performances and results, with a focus on the main topics of light kaonic atom physics.

  1. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  2. The Common Elements of Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  3. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  4. Apparatus for fermion atomic clock, atom interferometry and quantum pumping experiments

    NASA Astrophysics Data System (ADS)

    Ivory, M. K.; Ziltz, A.; Field, J.; Aubin, S.

    2010-03-01

    We present the current state of an apparatus designed to create and manipulate ultracold bosonic and fermionic Rb and K isotopes for a fermion atomic clock, atom interferometry, microwave trapping, and quantum pumping experiments. Quantum pumping is a phenomenon which can precisely control bias-less flow of single electrons in a circuit. Using ultracold atoms on atom chips, we can test theoretical predictions which have not yet been verified due to experimental difficulties in solid state systems. The apparatus design consists of a magneto-optical trap, magnetic transport system, atom chip, and optical dipole trap. We have demonstrated basic laser cooling and trapping and are working towards transport of the collected atoms to the atom chip for cooling to quantum degeneracy. Once quantum degeneracy is achieved at the chip, micro-magnetic reservoirs of ultracold atoms connected by a 1D ``wire'' create a circuit for various quantum pumping schemes. These schemes are also more broadly applicable to atomtronics experiments.

  5. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  6. Atomic physics with highly charged ions

    NASA Astrophysics Data System (ADS)

    Richard, P.

    1993-10-01

    The past year has been a busy one for all three accelerators: the LINAC, EBIS, and the tandem. The EBIS continues to deliver beams of highly charged ions around the clock for the study of low energy collisions with gases and surfaces. The electron beam energy was upgraded to 10 keV, and intensities of highly charged species such as Xe(44+) were greatly increased. The tandem, the traditional source of highly charged binary encounter electron production at zero degrees were studied for medium Z (Si,Cl,Cu) projectiles. Recoil momentum spectroscopy has been used to separate the contributions to collisional ionization of one-electron ions (C(5+), O(7+), F(8+)) from the nucleus and the electrons of a He target. Marked structure in the binary encounter electron spectra for Cu(sup q+) on H2 targets was measured for moderate velocity projectiles. Electron capture by slow multiply charged (EBIS) projectiles from laser excited targets has been carried out. Cross sections for capture from Na(3s) and Na*(3p) were measured for velocities between 0.1 and 1 au. The extension of these experiments to laser excited Rydberg targets is proceeding. Electron capture cross sections and average Q values for Ar(16+) on He at velocities between 0.23 and 1.67 au were measured. The charge state distribution of the He recoils following large angle scattering of C(4+) and C(6+) ions at 7.5 keV/u has been measured. Cross sections have been measured for up to sextuple capture from C60 (buckminsterfullerene) by highly charged slow projectiles. Coupled channel calculations for double capture from He by slow multicharge ions were carried out.

  7. TEACHING PHYSICS: Experiments in modern physics for the general public

    NASA Astrophysics Data System (ADS)

    Johansson, K. E.; Nilsson, Ch

    2000-07-01

    Experiments in modern physics interest and fascinate many people. In order to make such experiments available to them, the Stockholm Science Laboratory - normally dedicated to teachers and students - was opened to the general public on 15 occasions in Autumn 1999. AÂ total of nine different themes, mainly in modern physics and astronomy but also in the physics of sound, colour and light, were presented. Each laboratory session lasted for approximately three hours, and was almost always fully booked.

  8. Majorana: From Atomic and Molecular, to Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Pucci, R.; Angilella, G. G. N.

    2006-10-01

    In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some aspects of his fundamental scientific production in atomic and molecular physics, including a not well known short communication. There, Majorana critically discusses Fermi's solution of the celebrated Thomas-Fermi equation for electron screening in atoms and positive ions. We argue that some of Majorana's seminal contributions in molecular physics already prelude to the idea of exchange interactions (or Heisenberg-Majorana forces) in his later workson theoretical nuclear physics. In all his papers, he tended to emphasize the symmetries at the basis of a physical problem, as well as the limitations, rather than the advantages, of the approximations of the method employed.

  9. Integrated Atom Chip System for Optical Lattice Experiments

    NASA Astrophysics Data System (ADS)

    Salim, Evan A.; Ivory, Megan K.; Straatsma, Cameron J. E.; Anderson, Dana Z.

    2015-05-01

    We present an ultracold atom system incorporating a hybrid magnetic/optical atom chip for optical lattice experiments. The atom chip uses integrated, millimeter-scale optical elements to enable the production of optical lattice potentials near the atom chip traces and within a few hundred microns of a high-quality vacuum window. Due to their proximity to a window, the atoms are addressable by optics outside of vacuum operating at numerical apertures as high as 0.8. Demonstration of Bose-Einstein condensation in the chip trap and Landau-Zener tunneling in a 1D lattice are presented.

  10. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-11-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 Tm and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  11. Bringing atomic and nuclear physics laboratory data into the classroom

    SciTech Connect

    Norman, Eric B.; Larimer, Ruth-Mary; Rech, Gregory; Lee, Jeffrey; Vue, Chue; Leubane, Tholoana; Zamvil, Kenneth; Guthrie, Laura

    2003-05-27

    To illustrate a number of basic concepts in atomic and nuclear physics, we have developed three websites where students can analyze data from modern laboratories. By working through the on-line procedures, students will become acquainted with characteristic x-ray spectra, the concept of half-life, x-ray fluorescence, and neutron activation analysis.

  12. Project Physics Reader 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    As a supplement to Project Physics Unit 5, a collection of articles is presented in this reader for student browsing. Nine excerpts are given under the following headings: failure and success, Einstein, Mr. Tompkins and simultaneity, parable of the surveyors, outside and inside the elevator, the teacher and the Bohr theory of atom, Dirac and Born,…

  13. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  14. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 3, SUPPLEMENT.

    ERIC Educational Resources Information Center

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) NUCLEAR BINDING ENERGY, (2) DISCOVERY OF RADIOACTIVITY, (3) RADIOACTIVE RADIATIONS, (4) ALPHA AND BETA DECAY, (5) BETA DECAY REACTIONS, (6) RADIOACTIVE DATING AND…

  15. Physical Science Experiments for Scientific Glassblowing Technicians.

    ERIC Educational Resources Information Center

    Tillis, Samuel E.; Donaghay, Herbert C.

    The twenty experiments in this text have been designed to give the scientific glassblowing technician the opportunity to use scientific glass apparatus in the study of physical science. Primary emphasis of these experiments is on the practical application of the physical science program as a working tool for the scientific glassblowing technician.…

  16. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  17. Atomic physics with highly charged ions. Progress report

    SciTech Connect

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  18. Experiments in intermediate energy physics

    SciTech Connect

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  19. Customized Laboratory Experience in Physical Chemistry

    ERIC Educational Resources Information Center

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  20. Accelerator physics experiments at Aladdin

    SciTech Connect

    Chattopadhyay, S.; Cornacchia, M.; Jackson, A.; Zisman, M.S.

    1985-07-01

    The Aladdin accelerator is a 1 GeV synchrotron light source located at the University of Wisconsin. The results of experimental studies of the Aladdin accelerator are described. The primary purpose of the experiments reported was to investigate reported anomalies in the behavior of the linear lattice, particularly in the vertical plane. A second goal was to estimate the ring broadband impedance. Experimental observations and interpretation of the linear properties of the Aladdin ring are described, including the beta function and dispersion measurements. Two experiments are described to measure the ring impedance, the first a measurement of the parasitic mode loss, and the second a measurement of the beam transfer function. Measurements of the longitudinal and transverse emittance at 100 and 200 MeV are described and compared with predictions. 10 refs., 24 figs., 2 tabs. (LEW)

  1. Current Topics in Atomic, Molecular and Optical Physics

    NASA Astrophysics Data System (ADS)

    Sinha, Chandana; Bhattacharyya, Shib Shankar

    Preface -- Ultrafast dynamics of nano and mesoscopic systems driven by asymmetric electromagnetic pulses / A. Matos-Abiague, A. S. Moskalenko and J. Berakdar -- One-dimensional non-linear oscillators as models for atoms and molecules under intense laser fields / A. Wadehra and B. M. Deb -- Experimenting with topological states of Bose-Einstein condensates / C. Raman -- Laser cooling and trapping of Rb atoms / S. Chakraborty ... [et al.] -- Pair-correlation in Bose-Einstein condensate and fermi superfluid of atomic gases / B. Deb -- Properties of trapped Bose gas in the large-gas-parameter regime / A. Banerjee -- A Feynman-Kac path integral study of Rb gas / S. Datta -- Mean field theory for interacting spin-1 bosons on a lattice / R. V. Pai, K. Sheshadri and R. Pandit -- Mixed internal-external state approach for quantum computation with neutral atoms on atom chips / E. Charron ... [et al.] -- Ultrafast pulse shaping developments for quantum computation / S. K. Karthick Kumar and D. Goswami -- Quantum information transfer in atom-photon interactions in a cavity / A. S. Majumdar, N. Nayak and B. Ghosh -- Liouville density evolution in billiards and the quantum connection / D. Biswas -- MRCPA: theory and application to highly correlating system / K. Tanaka -- Calculation of negative ion shape resonances using coupled cluster theory / Y. Sajeev and S. Pal -- Optical frequency standard with Sr+: a theoretical many-body approach / C. Sur ... [et al.] -- Fast heavy ion collisions with H[symbol] molecules and young type interference / L. C. Tribedi and D. Misra -- Estimation of ion kinetic energies from time-of-flight and momentum spectra / B. Bapat -- Third-order optical susceptibility of metal nanocluster-glass 28 composites / B. Ghosh and P. Chakraborty -- Study of atom-surface interaction using magnetic atom mirror / A. K. Mohapatra.

  2. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    SciTech Connect

    Abdallah, J. Jr.; Clark, R.E.H.; Cowan, R.D.

    1988-12-01

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs.

  3. Current experiments in elementary particle physics. Revision

    SciTech Connect

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  4. Current experiments in elementary particle physics

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. ); Oyanagi, Y. ); Dodder, D.C. ); Ryabov, Yu.G.; Slabospitsky, S.R. . Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  5. Current experiments in elementary particle physics. Revised

    SciTech Connect

    Galic, H.; Wohl, C.G.; Armstrong, B.; Dodder, D.C.; Klyukhin, V.I.; Ryabov, Yu.G.; Illarionova, N.S.; Lehar, F.; Oyanagi, Y.; Olin, A.; Frosch, R.

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  6. Atomic oxygen effects on LDEF experiment AO171

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Norwood, Joseph K.

    1993-01-01

    The Solar Array Materials Passive Long Duration Exposure Facility (LDEF) Experiment (SAMPLE), AO171, contained in total approximately 100 materials and materials processes with a 300 specimen complement. With the exception of experiment solar cell and solar cell modules, all test specimens were weighed before flight, thus allowing an accurate determination of mass loss as a result of space exposure. Since almost all of the test specimens were thermal vacuum baked before flight, the mass loss sustained can be attributed principally to atomic oxygen attack. The atomic oxygen effects observed and measured in five classes of materials is documented. The atomic oxygen reactivity values generated for these materials are compared to those values derived for the same materials from exposures on short term shuttle flights. An assessment of the utility of predicting long term atomic oxygen effects from short term exposures is given. This experiment was located on Row 8 position A which allowed all experiment materials to be exposed to an atomic oxygen fluence of 6.93 x 10(exp 21) atoms/cm(sup 2) as a result of being positioned 38 degrees off the RAM direction.

  7. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  8. Low-Cost Accelerometers for Physics Experiments

    ERIC Educational Resources Information Center

    Vannoni, Maurizio; Straulino, Samuele

    2007-01-01

    The implementation of a modern game-console controller as a data acquisition interface for physics experiments is discussed. The investigated controller is equipped with three perpendicular accelerometers and a built-in infrared camera to evaluate its own relative position. A pendulum experiment is realized as a demonstration of the proposed…

  9. Current Experiments in Particle Physics (September 1996)

    SciTech Connect

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  10. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  11. Atomic physics at the Argonne PII ECR (electron cyclotron resonance) Ion Source

    SciTech Connect

    Dunford, R.W.; Berry, H.G.; Billquist, P.J.; Pardo, R.C.; Zabransky, B.J.; Bakke, E.; Groeneveld, K.O.; Hass, M.; Raphaelian, M.L.A.

    1987-01-01

    An atomic physics beam line has been set up at the Argonne PII ECR Ion Source. The source is on a 350-kV high-voltage platform which is a unique feature of particular interest in work on atomic collisions. We describe our planned experimental program which includes: measurement of state-selective electron-capture cross sections, studies of doubly-excited states, precision spectroscopy of few-electron ions, tests of quantum electrodynamics, and studies of polarization transfer using optically pumped polarized alkali targets. The first experiments will be measurements of cross sections for electron capture into specific nl subshells in ion-atom collisions. Our method is to observe the characteristic radiation emitted after capture using a VUV spectrometer. Initial data from these experiments are presented. 12 refs., 4 figs.

  12. Resource Article: Experiments with Vortices in Superfluid Atomic Gases

    NASA Astrophysics Data System (ADS)

    Anderson, Brian P.

    2010-12-01

    Observations of quantized vortices in dilute-gas Bose-Einstein condensates were first reported in 1999. Over the next 10 years, more than 70 papers describing experiments involving vortices in superfluid atomic gases were published in scientific journals. This resource article provides a guide to the published experimental studies related to quantized vortices in atomic Bose-Einstein condensates and superfluid Fermi gases. A BibTex-formatted bibliography document listing these published studies is also available electronically.

  13. HISTRAP proposal: heavy ion storage ring for atomic physics

    SciTech Connect

    Olsen, D.K.; Alton, G.D.; Datz, S.; Dittner, P.F.; Dowling, D.T.; Haynes, D.L.; Hudson, E.D.; Johnson, J.W.; Lee, I.Y.; Lord, R.S.

    1986-01-01

    HISTRAP is a proposed synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac. The ring will have a maximum bending power of 2.0 T.m and have a circumference of 46.8 m.

  14. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    SciTech Connect

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  15. Atomic physics effects on dissipative toroidal drift wave stability

    SciTech Connect

    Beer, M.A.; Hahm, T.S.

    1992-02-01

    The effects of atomic physics processes such as ionization, charge exchange, and radiation on the linear stability of dissipative drift waves are investigated in toroidal geometry both numerically and analytically. For typical TFTR and TEXT edge parameters, overall linear stability is determined by the competition between the destabilizing influence of ionization and the stabilizing effect due to the electron temperature gradient. An analytical expression for the linear marginal stability condition, {eta}{sub e}{sup crit}, is derived. The instability is most likely to occur at the extreme edge of tokamaks with a significant ionization source and a steep electron density gradient.

  16. Experiences from a Varied Career in Physics

    NASA Astrophysics Data System (ADS)

    Frame, Katherine

    2006-04-01

    I received my doctorate in Experimental High Energy Physics from Michigan State Univeristy. My thesis was based on my work with QCD jet physics at the D0 collider experiment at Fermi National Laboratory. My first postdoctoral position was with Oxford University working on solar neutrino oscillations at the Sudbury Neutrino Observatory (SNO). Following this, I joined what is now the Nuclear Nonproliferation Safeguards, Science and Technology group (N-1) at Los Alamos National Laboratory. Over this time, I've worked on a wide range of physics topics in a wide range of physical and social environments. I would like to share some of the experiences I've had working in such varied environment and the thoughts that have guided me on my path that eventually led me from basic research to a more applied field.

  17. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  18. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    NASA Astrophysics Data System (ADS)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  19. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    NASA Technical Reports Server (NTRS)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  20. Intelsat solar array coupon atomic oxygen flight experiment

    NASA Technical Reports Server (NTRS)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-01-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  1. Atomic, Molecular, and Optical Physics Workshop Final Report

    SciTech Connect

    Armstrong, Jr., Lloyd

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  2. Atomic Physics with Accelerators: Projectile Electron Spectroscopy (APAPES)

    NASA Astrophysics Data System (ADS)

    Madesis, I.; Dimitriou, A.; Laoutaris, A.; Lagoyannis, A.; Axiotis, M.; Mertzimekis, T.; Andrianis, M.; Harissopulos, S.; Benis, E. P.; Sulik, B.; Valastyán, I.; Zouros, T. J. M.

    2015-01-01

    The new research initiative APAPES (http://apapes.physics.uoc.gr/) has already established a new experimental station with a beam line dedicated for atomic collisions physics research, at the 5 MV TANDEM accelerator of the National Research Centre "Demokritos" in Athens, Greece. A complete zero-degree Auger projectile spectroscopy (ZAPS) apparatus has been put together to perform high resolution studies of electrons emitted in ion-atom collisions. A single stage hemispherical spectrometer with a 2-dimensional Position Sensitive Detector (PSD) combined with a doubly-differentially pumped gas target will be used to perform a systematic isoelectronic investigation of K-Auger spectra emitted from collisions of preexcited and ground state He-like ions with gas targets using novel techniques. Our intention is to provide a more thorough understanding of cascade feeding of the 1s2s2p 4P metastable states produced by electron capture in collisions of He-like ions with gas targets and further elucidate their role in the non-statistical production of excited three-electron 1s2s2p states by electron capture, recently a field of conflicting interpretations awaiting further resolution. At the moment, the apparatus is being completed and the spectrometer will soon be fully operational. Here we present the project progress and the recent high resolution spectrum obtained in collisions of 12 MeV C4+ on a Neon gas target.

  3. FROM THE HISTORY OF PHYSICS: Moscow State University physics alumni and the Soviet Atomic Project

    NASA Astrophysics Data System (ADS)

    Kiselev, Gennadii V.

    2005-12-01

    In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics.

  4. Surface science experiments involving the atomic force microscope

    NASA Astrophysics Data System (ADS)

    McBride, Sean P.

    Three diverse first author surfaces science experiments conducted by Sean P. McBride1-3 will be discussed in detail and supplemented by secondary co-author projects by Sean P. McBride,4-7 all of which rely heavily on the use of an atomic force microscope (AFM). First, the slip length parameter, b of liquids is investigated using colloidal probe AFM. The slip length describes how easily a fluid flows over an interface. The slip length, with its exact origin unknown and dependencies not overwhelming decided upon by the scientific community, remains a controversial topic. Colloidal probe AFM uses a spherical probe attached to a standard AFM imaging tip driven through a liquid. With the force on this colloidal AFM probe known, and using the simplest homologous series of test liquids, many of the suspected causes and dependencies of the slip length demonstrated in the literature can be suppressed or eliminated. This leaves the measurable trends in the slip length attributed only to the systematically varying physical properties of the different liquids. When conducting these experiments, it was realized that the spring constant, k, of the system depends upon the cantilever geometry of the experiment and therefore should be measured in-situ. This means that the k calibration needs to be performed in the same viscous liquid in which the slip experiments are performed. Current in-situ calibrations in viscous fluids are very limited, thus a new in-situ k calibration method was developed for use in viscous fluids. This new method is based upon the residuals, namely, the difference between experimental force-distance data and Vinogradova slip theory. Next, the AFM's ability to acquire accurate sub nanometer height profiles of structures on interfaces was used to develop a novel experimental technique to measure the line tension parameter, tau, of isolated nanoparticles at the three phase interface in a solid-liquid-vapor system. The tau parameter is a result of excess energy

  5. The Physics of the Imploding Can Experiment

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    One of the popular demonstrations of atmospheric pressure in introductory physics courses is the "crushing can" or "imploding can" experiment. In this demonstration, which has also been extensively discussed on the Internet, a small amount of water is placed in a soda can and heated until it boils and water vapor almost entirely fills the can. The…

  6. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  7. Multimedia Representation of Experiments in Physics

    ERIC Educational Resources Information Center

    Kirstein, Juergen; Nordmeier, Volkhard

    2007-01-01

    In most physics courses using multimedia, real experiments are represented as digital video demonstrations. These time-based media have the disadvantage that students are often in the state of passive learners. Also, traditional multimedia learning environments only allow for the selection of different digitized media, but the learning process is…

  8. Brahms Experiment at RHIC Day-1 Physics

    SciTech Connect

    Videbaek, Flemming

    1999-03-23

    The BRAHMS experiment is designed to measure semi-inclusive spectra of charged hadron over a wide range of rapidity. It will yield information on particle production, both at central rapidity and in the baryon rich fragmentation region. The physics plans for measurements in the first year of running at RHIC are discussed.

  9. Atomic oxygen effects on LDEF experiment A0171

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Norwood, Joseph K.

    1992-01-01

    Mass and thickness changes measured in thin films, composites, polymers, metals, and paints from LDEF Experiment A0171 are presented. Atomic oxygen accommodation and reactivity numbers along with morphology features are shown for a variety of A0171 materials. The validity of predicting long term erosion rates will be assessed from short term environmental exposures.

  10. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Exploring Flatland with Cold Atoms

    NASA Astrophysics Data System (ADS)

    Dalibard, Jean

    2012-06-01

    A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose-Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii-Kosterlitz-Thouless mechanism. Secondly, a weakly interacting Bose fluid in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will present recent experimental progress in the investigation of 2D atomic gases, which provide a nice illustration of the main features of low dimensional many-body physics.

  11. LDEF experiment A0034: Atomic oxygen stimulated outgassing

    NASA Astrophysics Data System (ADS)

    Linton, Roger C.; Kamenetzky, Rachel R.; Reynolds, John M.; Burris, Charles L.

    1992-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, 'Atomic Oxygen Stimulated Outgassing', consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge, and for reference, to the relative 'wake' environment of the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of the outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  12. Atomic Parity Violation and Related Physics in Ytterbium

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri Robert

    Atomic parity violation has been observed in the 408 nm 1 S0→3D1 forbidden transition of ytterbium. The parity violating amplitude is 8.7(1.4)e-10 ea0, two orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity violating amplitude yet observed. This also opens the way to future measurements of neutron skins and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition. We present a detailed description of the observation. Linearly polarized 408 nm light interacts with ytterbium atoms in crossed electric (E) and magnetic fields (B). The probability of the 1 S0→3D1 transition contains a parity-violating term, proportional to E'B[( E'xE B], arising from interference between the amplitudes of transitions induced by the electroweak interaction and the Stark effect ((E' is the optical electric field). The transition probability is detected by measuring the population of the metastable 3P0 state, to which 65% of the atoms excited to the 3D1 state spontaneously decay. The population of the 3P0 state is determined by resonantly exciting the atoms with 649 nm light to the 3S1 state and collecting the fluorescence resulting from its decay. Systematic corrections due to imperfections in the applied electric and magnetic fields are determined in auxiliary experiments. The statistical uncertainty is dominated by parasitic frequency excursions of the 408-nm excitation light due to imperfect stabilization of the optical reference with respect to the atomic resonance. The present uncertainties are 9% statistical and 8% systematic. Methods of improving the accuracy for the future experiments are discussed. We further present a measurement of the dynamic scalar and tensor polarizabilities of ytterbium's 3D1 state. The polarizabilities were measured by analyzing the spectral

  13. Atom optics and space physics: A summary of an 'Enrico Fermi' summer school

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ertmer, Wolfgang; Rasel, Ernst M.; Schleich, Wolfgang P.

    2008-03-01

    We describe the scientific content of the International School of Physics 'Enrico Fermi' on atom optics and space physics, organized by the Italian Physical Society in Varenna at Lake Como, Italy, 2-13 July 2007.

  14. Wheeler's delayed-choice gedanken experiment with a single atom

    NASA Astrophysics Data System (ADS)

    Manning, A. G.; Khakimov, R. I.; Dall, R. G.; Truscott, A. G.

    2015-07-01

    The wave-particle dual nature of light and matter and the fact that the choice of measurement determines which one of these two seemingly incompatible behaviours we observe are examples of the counterintuitive features of quantum mechanics. They are illustrated by Wheeler’s famous `delayed-choice’ experiment, recently demonstrated in a single-photon experiment. Here, we use a single ultracold metastable helium atom in a Mach-Zehnder interferometer to create an atomic analogue of Wheeler’s original proposal. Our experiment confirms Bohr’s view that it does not make sense to ascribe the wave or particle behaviour to a massive particle before the measurement takes place. This result is encouraging for current work towards entanglement and Bell’s theorem tests in macroscopic systems of massive particles.

  15. Recent Physics Results with the COMPASS Experiment

    SciTech Connect

    Paul, Stephan

    2006-02-11

    The COMPASS experiment has obtained first physics results in the field of polarized distribution functions for quarks and gluons using muon scattering off polarized deuterons. The analysis using open charm production and pairs of high pT hadrons is presented. We also have used a transversely polarized target to address transverse information for quarks inside the nucleon. In addition, a pilot run with incoming pions taken late 2004 will give first information on the pion polarizabilities and hadron resonances. The physics prospects from this run as well as from future data taking in this field are also outlined.

  16. Digital Electronics for Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team

    2015-10-01

    Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.

  17. Top Quark Physics at the CDF Experiment

    SciTech Connect

    Stelzer, Bernd; Collaboration, for the CDF

    2010-07-01

    Fermilab's Tevatron accelerator is recently performing at record luminosities that enables a program systematically addressing the physics of top quarks. The CDF collaboration has analyzed up to 5 fb{sup -1} of proton anti-proton collisions from the Tevatron at a center of mass energy of 1.96 TeV. The large datasets available allow to push top quark measurements to higher and higher precision and have lead to the recent observation of electroweak single top quark production at the Tevatron. This article reviews recent results on top quark physics from the CDF experiment.

  18. Efimov Physics in a 6Li-133Cs Atomic Mixture

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  19. The Collective Vector method in nuclear and atomic physics

    SciTech Connect

    Bloom, S.D.

    1989-12-01

    We present a brief review of the method of the Collective Vector (CV) and its use in conjunction with the Lanczos algorithm (LA). The combination of these two ideas produces a method for contracting super-large hamiltonians (up to 10{sup 6} {times} 10{sup 6}) by factors of 1000 or more. The contracted hamiltonians, which we call quasi-hamiltonians, typically have dimensions of the order of 10{sup 2} {times} 10{sup 2} and produce corresponding quasi-spectra with associated quasi-eigenfunctions which reproduce the features of the full microscopic spectrum thru the conservation of the spectral moments. Examples of applications to both nuclear and atomic physics are given demonstrating the convergence properties of the method. The application of the LA/CV approach to the problem of modelling nuclear level densities is described and finally we discuss the possibility of conjoining new collective models of nuclear structure with the LA/CV method. 13 refs., 4 figs.

  20. Atomic Physics in the Quest for Fusion Energy and ITER

    SciTech Connect

    Charles H. Skinner

    2008-02-27

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  1. Probing non-Hermitian physics with flying atoms

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang

    2016-05-01

    Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.

  2. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  3. Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire

    2010-01-01

    This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…

  4. Constraining fundamental physics with future CMB experiments

    SciTech Connect

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-15

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  5. Introductory Physics Experiments Using the Wiimote

    NASA Astrophysics Data System (ADS)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  6. Benchmark physics experiments for SP-100

    NASA Astrophysics Data System (ADS)

    Olsen, David N.; Carpenter, Stuart G.; Grasseschi, Gary L.; Smith, Dale M.

    A space nuclear power system (SNPS) benchmark reactor physics program was performed at Argonne's Zero Power Physics Reactor (ZPPR). Two uranium fuelled, BeO reflected reactors were assembled to test 300 kWe conceptual designs considered for the SP-100. The major difference between configurations was the reactivity control concept. Program goals were to aid designers in evaluating SP-100 designs and provide guidance in defining a series of engineering mockup criticals to be performed in support of the ground engineering test. ZPPR-16 was a short program aimed at providing basic physics data for cores representing early SP-100 designs. All measurement results from the experimental program are available. Initial analysis, using standard deterministic methods, shows significant errors when compared against the measurements. Calculational difficulties are enhanced by the need to model a natural B4C/graphite room-return shield used in the ZPPR experiments.

  7. Multifunctional radio-frequency generator for cold atom experiments

    NASA Astrophysics Data System (ADS)

    Wei, Chun-hua; Yan, Shu-hua

    2016-05-01

    We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

  8. The Cold Atom Laboratory: a facility for ultracold atom experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Aveline, David; CAL Team

    2016-05-01

    Spread across the globe there are many different experiments in cold quantum gases, enabling the creation and study of novel states of matter, as well as some of the most accurate inertial sensors currently known. The Cold Atom Laboratory (CAL), being built at NASA's Jet Propulsion Laboratory (JPL), will be a multi-user facility that will allow the first study of ultracold quantum gases in the microgravity conditions of the International Space Station (ISS). The microgravity environment offers a wealth of advantages for studies of cold atoms, including expansion into extremely weak traps and achieving unearthly cold temperatures. It will also enable very long interaction times with released samples, thereby enhancing the sensitivity of cold atom interferometry. We will describe the CAL mission objectives and the flight hardware architecture. We will also report our ongoing technology development for the CAL mission, including the first microwave evaporation to Bose-Einstein condensation (BEC) on a miniaturized atom chip system, demonstrated in JPL's CAL Ground Testbed. We will present the design, setup, and operation of two experiments that reliably generate and probe BECs and dual-species mixtures of Rb-87 and K-39 (or K-41). CAL is scheduled to launch to the ISS in 2017. The CAL mission is supported by NASA's SLPS and ISS-PO. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract with the National Aeronautics and Space Administration.

  9. Atomic Physics in ITER — The Foundation for the Next Step to Fusion Power

    NASA Astrophysics Data System (ADS)

    Stotler, D. P.; Bell, R. E.; Hill, K. W.; Johnson, D. W.; Levinton, F. M.

    2007-04-01

    ITER represents the next step towards practical magnetic confinement fusion power. Its primary physics objective is to study plasmas in which the fusion power exceeds the external heating power by a factor of 5 to 10; its technological objectives include the use of superconducting magnets and remote maintenance. We will describe the ITER experiment and then detail the fundamental roles that will be played by atomic physics processes in facilitating the achievement of ITER's objectives. First, atoms and molecules generated by the interaction of the ITER plasma with surrounding material surfaces will impact and, in some respects, dominate the particle, momentum, and energy balances in both the adjacent and confined, core plasmas. Second, impurity radiation in the edge plasma, either from intrinsic or extrinsic species, will ensure that heat coming out from the core is spread more uniformly over the surrounding material surfaces than it would otherwise. Third, many of the diagnostics used to monitor the dense (ne ˜ 1020 m-3), hot (˜ 1 × 108 K) core plasma leverage off of atomic physics effects.

  10. Microprocessors in physics experiments at SLAC

    SciTech Connect

    Rochester, L.S.

    1981-04-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed on line. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans.

  11. Containerless experiments in fluid physics in microgravity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1990-01-01

    The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.

  12. The Physics of the CMS Experiment

    SciTech Connect

    Sanabria, J. C.

    2007-10-26

    The Large Hadron Collider (LHC) at CERN will start running 2008 producing proton-proton collisions with a center-of-mass energy of 14 TeV. Four large experiments will operate together with this accelerator: ALICE, ATLAS, CMS and LHCb. The main scientific goal of this project is to understand in detail the mechanism for electro-weak symmetry breaking and to search for physics beyond the standard model of particles. ATLAS and CMS are general purpose detectors designed for search and discovery of new physics, and optimized to search for Higgs and signals of supersymmetric matter (SUSY). In this paper the main features of the CMS detector will be presented and its potential for Higgs and SUSY discoveries will be discussed.

  13. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  14. ELASR - An electrostatic storage ring for atomic and molecular physics at KACST

    NASA Astrophysics Data System (ADS)

    El Ghazaly, Mohamed O. A.

    A new ELectrostAtic Storage Ring (ELASR) has been designed and built at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. It was developed to be the core of a new storage ring laboratory for atomic and molecular physics at KACST. ELASR follows the standard design of the pioneering storage ring ELISA and it thereby features a racetrack single-bend shaped ring. Complementary simulation code packages were used to work out the design under the requirements of the projected experiments. This paper reports a short description of the ELASR storage ring through an overview of its design and construction.

  15. Tokamak physics experiment: Diagnostic windows study

    SciTech Connect

    Merrigan, M.; Wurden, G.A.

    1995-11-01

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented.

  16. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; Gannon, Jade

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  17. Precision atomic mass spectrometry with applications to fundamental constants, neutrino physics, and physical chemistry

    NASA Astrophysics Data System (ADS)

    Mount, Brianna J.; Redshaw, Matthew; Myers, Edmund G.

    2011-07-01

    We present a summary of precision atomic mass measurements of stable isotopes carried out at Florida State University. These include the alkalis 6Li, 23Na, 39,41K, 85,87Rb, 133Cs; the rare gas isotopes 84,86Kr and 129,130,132,136Xe; 17,18O, 19F, 28Si, 31P, 32S; and various isotope pairs of importance to neutrino physics, namely 74,76Se/74,76Ge, 130Xe/130Te, and 115In/115Sn. We also summarize our Penning trap measurements of the dipole moments of PH + and HCO + .

  18. Physical scale experiments on torrential filter structures

    NASA Astrophysics Data System (ADS)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  19. Characterization of the Source Physics Experiment Site

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Schultz-Fellenz, E. S.; Broome, S. T.; Townsend, M.; Abbott, R. E.; Snelson, C. M.; Cogbill, A. H.; Conklin, G.; Mitra, G.; Sabbeth, L.

    2012-12-01

    Designed to improve long-range treaty monitoring capabilities, the Source Physics Experiments, conducted at the Nevada National Security Site, also provide an opportunity to advance near-field monitoring and field-based investigations of suspected underground test locations. In particular, features associated with underground testing can be evaluated using Source Physics Experiment activities as analogs, linking on-site inspections with remote sensing technologies. Following a calibration shot (SPE 1), SPE 2 (10/2011) and SPE 3 (07/2012) were performed in the same emplacement hole with 1.0 ton of explosives at 150 ft depth. Because one of the goals of the Source Physics Experiments is to determine damage effects on seismic wave propagation and improve modeling capabilities, a key component in the predictive component and ultimate validation of the models is a full understanding of the intervening geology between the source and instrumented bore holes. Ground-based LIDAR and fracture mapping, mechanical properties determined via laboratory testing of rock core, discontinuity analysis and optical microscopy of the core rocks were performed prior to and following each experiment. In addition, gravity and magnetic data were collected between SPE 2 and 3. The source region of the explosions was also characterized using cross-borehole seismic tomography and vertical seismic profiling utilizing two sets of two boreholes within 40 meters of ground zero. The two sets of boreholes are co-linear with the explosives hole in two directions. Results of the LIDAR collects from both SPE 2 and 3 indicate a permanent ground displacement of up to several centimeters aligning along the projected surface traces of two faults observed in the core and fractures mapped at the surface. Laboratory testing and optical work show a difference in the characteristics of the rocks below and above 40 feet and within the fault zones.The estimated near-surface densities from the gravity survey show

  20. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    NASA Astrophysics Data System (ADS)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  1. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  2. Versatile cold atom source for multi-species experiments

    NASA Astrophysics Data System (ADS)

    Paris-Mandoki, A.; Jones, M. D.; Nute, J.; Wu, J.; Warriar, S.; Hackermüller, L.

    2014-11-01

    We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils, and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.

  3. Versatile cold atom source for multi-species experiments

    SciTech Connect

    Paris-Mandoki, A.; Jones, M. D.; Nute, J.; Warriar, S.; Hackermüller, L.; Wu, J.

    2014-11-15

    We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils, and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.

  4. Pre-service physics teachers' ideas on size, visibility and structure of the atom

    NASA Astrophysics Data System (ADS)

    Ünlü, Pervin

    2010-07-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of theories regarding the atom they will bring into their own classrooms. Six tasks were developed, comprising size, visibility and structure of the atom. These tasks carried out by pre-service physics teachers were examined by content analysis and six categories were determined. These are size, visibility, subatomic particles, atom models, electron orbit and electron features. Pre-service physics teachers' ideas about the atom were clarified under these categories.

  5. Many-body processes in atomic and molecular physics

    SciTech Connect

    Chu, Shih-I.

    1990-02-01

    This report discusses the following topics: Dynamics of Multiphoton Excitation in Rydberg Atoms; Nonlinear Schrodinger Equation and Dissipative Quantum Dynamics in Periodic Fields; Density Matrix Formulation of Complex Geometric Phases in Dissipative Systems; and A. C. Stark Shifts of Excited States of Atoms in Strong Fields.

  6. Further investigations of experiment A0034 atomic oxygen stimulated outgassing

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Finckenor, Miria M.; Kamenetzky, Rachel R.

    1995-01-01

    Thermal control coatings within the recessed compartments of LDEF Experiment A0034 experienced the maximum leading edge fluence of atomic oxygen with considerably less solar UV radiation exposure than top-surface mounted materials of other LDEF experiments on either the leading or the trailing edge. This combination of exposure within A0034 resulted in generally lower levels of darkening attributable to solar UV radiation than for similar materials on other LDEF experiments exposed to greater cumulative solar UV radiation levels. Changes in solar absorptance and infrared thermal emittance of the exposed coatings are thus unique to this exposure. Analytical results for other applications have been found for environmentally induced changes in fluorescence, surface morphology, light scattering, and the effects of coating outgassing products on adjacent mirrors and windows of the A0034 experiment. Some atmospheric bleaching of the thermal control coatings, in addition to that presumably experience during reentry and recovery operations, has been found since initial post-flight observations and measurements.

  7. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    SciTech Connect

    MacFarlane, Joseph J

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for

  8. Controlled Space Physics Experiments using Laboratory Magnetospheres

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Kesner, J.; Garnier, D.

    2013-12-01

    Modern society's reliance on space-based platforms for a variety of economic and geopolitical purposes makes understanding the physics of the magnetosphere and "space weather'' one of the most important applications of plasma science. During the past decade, results from the CTX and LDX laboratory magnetospheres and from the RT-1 device at University of Tokyo, we have developed techniques to explore space physics using controlled experiments in laboratory magnetospheres. This presentation briefly reviews observations from the laboratory magnetospheres at Columbia University and MIT, including adiabatic drift-resonant transport, low-frequency MHD turbulence, and the formation of high-beta plasmas with profiles similar to Earth's inner magnetosphere. First principle validation of ``whole plasma'' space weather models have been completed in relevant magnetic geometry, including the spectrum and dynamics of turbulence successfully modeled with nonlinear bounce-averaged gyrokinetic simulations. Plans to explore Alfvénic dynamics and whistler wave trapping are discussed through the achievement of higher-density plasmas using radio-frequency heating. Photographs of the laboratory magnetospheres located at MIT (top) and Columbia University (bottom).

  9. Infrasound Generation from the Source Physics Experiments

    NASA Astrophysics Data System (ADS)

    Preston, L. A.; Schramm, K. A.; Jones, K. R.

    2015-12-01

    Understanding the acoustic and infrasound source generation mechanisms from underground explosions is of great importance for usage of this unique data type in non-proliferation activities. One of the purposes of the Source Physics Experiments (SPE), a series of underground explosive shots at the Nevada National Security Site (NNSS), is to gain an improved understanding of the generation and propagation of physical signals, such as seismic and infrasound, from the near to far field. Two of the SPE shots (SPE-1 and SPE-4') were designed to be small "Green's Function" sources with minimal spall or permanent surface deformation. We analyze infrasound data collected from these two shots at distances from ~300 m to ~1 km and frequencies up to 20 Hz. Using weather models based upon actual observations at the times of these sources, including 3-D variations in topography, temperatures, pressures, and winds, we synthesized full waveforms using Sandia's moving media acoustic propagation simulation suite. Several source mechanisms were simulated and compared and contrasted with observed waveforms using full waveform source inversion. We will discuss results of these source inversions including the relative roll of spall from these small explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Skylab experiments. Volume 1: Physical science, solar astronomy

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.

  11. Physics evaluation of compact tokamak ignition experiments

    SciTech Connect

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.

  12. An all-optical vector atomic magnetometer for fundamental physics applications

    NASA Astrophysics Data System (ADS)

    Wurm, David; Mateos, Ignacio; Zhivun, Elena; Patton, Brian; Fierlinger, Peter; Beck, Douglas; Budker, Dmitry

    2014-05-01

    We have developed a laboratory prototype of a compact all-optical vector magnetometer. Due to their high precision and absolute accuracy, atomic magnetometers are crucial sensors in fundamental physics experiments which require extremely stable magnetic fields (e.g., neutron EDM searches). This all-optical sensor will allow high-resolution measurements of the magnitude and direction of a magnetic field without perturbing the magnetic environment. Moreover, its absolute accuracy makes it calibration-free, an advantage in space applications (e.g., space-based gravitational-wave detection). Magnetometry in precision experiments or space applications also demands long-term stability and well-understood noise characteristics at frequencies below 10-4 Hz. We have characterized the low-frequency noise floor of this sensor and will discuss methods to improve its long-time performance.

  13. Studying Atomic Physics Using the Nighttime Atmosphere as a Laboratory

    NASA Technical Reports Server (NTRS)

    Sharpee, B. D.; Slanger, T. G.; Huestis, D. L.; Cosby, P. C.

    2006-01-01

    A summary of our recent work using terrestrial nightglow spectra, obtained from astronomical instrumentation, to directly measure, or evaluate theoretical values for fundamental parameters of astrophysically important atomic lines.

  14. Physics of leptoquarks in precision experiments and at particle colliders

    NASA Astrophysics Data System (ADS)

    Doršner, I.; Fajfer, S.; Greljo, A.; Kamenik, J. F.; Košnik, N.

    2016-06-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low-energy observables such as electric dipole moments, (g - 2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on the strength of LQ interactions with the quarks and leptons to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision measurements, top, and Higgs physics. The Higgs physics analysis we present covers not only the most recent but also expected results from the Large Hadron Collider (LHC). We finally discuss direct LQ searches. Current experimental situation is summarized and self-consistency of assumptions that go into existing accelerator-based searches is discussed. A progress in making next-to-leading order predictions for both pair and single LQ productions at colliders is also outlined.

  15. AGS experiments in nuclear/QCD physics at medium energies

    SciTech Connect

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  16. Experiments at the Frontiers of Nuclear Physics: the Experimental Program of the Super-Frs Collaboration

    NASA Astrophysics Data System (ADS)

    Scheidenberger, C.; Äystö, J.; Behr, K.-H.; Benlliure, J.; Bracco, A.; Egelhof, P.; Fomichev, A.; Galès, S.; Geissel, H.; Grahn, T.; Grigorenko, L.; Harakeh, M. N.; Hayano, R.; Heinz, S.; Itahashi, K.; Jokinen, A.; Kalantar-Nayestanaki, N.; Kanungo, R.; Lenske, H.; Muenzenberg, G.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pfützner, M.; Prochazka, A.; Pietri, S.; Plaß, W. R.; Purushothaman, S.; Saito, T.; Simon, H.; Tanihata, I.; Terashima, S.; Toki, H.; Trache, L.; Weick, H.; Winfield, J. S.; Winkler, M.; Zamfir, V.

    2015-06-01

    The superconducting fragment separator (Super-FRS) will be one of the main scientific instruments of the future FAIR facility. This versatile high-resolution spectrometer allows for a variety of exciting experiments in atomic, nuclear and hadron physics. Future directions are presented in this contribution.

  17. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Meron, M.; Agagu, A.; Jones, K. W.

    1987-04-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the X-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the photon beam ion source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. An overview of the field, current plans, and future possibilities will be presented.

  18. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    ERIC Educational Resources Information Center

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  19. A Lifetime Experience. Physical Education K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This guidebook is designed for teachers of physical education at both the elementary and secondary levels. It is divided into six sections. The first section presents an overview of the scope and purpose of physical education in the schools. Discussions are included on developmental objectives, growth characteristics, physical fitness, safety in…

  20. From Casimir-Polder Force to Dicke Physics: Interaction between Atoms and a Topological Insulator

    NASA Astrophysics Data System (ADS)

    Fuchs, Sebastian; Buhmann, Stefan

    We apply the theory of macroscopic quantum electrodynamics in dispersing and absorbing media to study the Casimir-Polder force between an atom and a topological insulator. The electromagnetic response of a topological insulator surface leads to a mixing of electric and magnetic fields, breaking the time-reversal symmetry. The coupling of these fields to an atom causes shifts of the atom's eigenenergies and modified decay rates near the surface of the topological insulator. Energy shifts and modified decay rates cannot only be triggered by the presence of a material, but can be caused by other atoms in close proximity as well. The collective dynamics of atoms (Dicke Physics) leads to a superradiant burst. Combining macroscopic QED and Dicke physics opens the door to the investigation of cooperative atom-surface interactions.

  1. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  2. Are Atom-sized X-ray Experiments Possible?

    SciTech Connect

    Bilderback, Donald H.; Huang Rong

    2004-05-12

    The success of advanced microbeam facilities at third generation synchrotron sources have inspired us to ask ultimate questions such as how small an x-ray beam diameter can be made. With the hope of more brilliant Energy Recovery Linac or X-ray Free Electron Laser sources due to arrive in the next decade, it appears possible to think of fluorescent x-ray experiments that can be performed on even a single impurity atom in a silicon wafer, for instance. Not all x-ray optical developers are yet convinced, however, so there is critical need to assess whether in principle this can really be done or not. We are optimistic that 1 nm diameter x-ray beams can be made of sufficient flux from future sources or even demonstration experiments at lower count rates from 3rd generation sources if it turns out to be worthwhile to actively develop optics and methods that vastly exceed the current x-ray microbeam capabilities.

  3. Learning Pathways in High-School Level Quantum Atomic Physics.

    ERIC Educational Resources Information Center

    Niedderer, Hans; Petri, Juergen

    Investigations of changes in conceptions during physics instruction are the logical and necessary steps to follow successful international research on students' preinstructional conceptions. The theoretical perspective integrates currently available frameworks of cognition, cognitive states, and cognitive processes in physics. Particular emphasis…

  4. Pulsed power accelerator for material physics experiments

    NASA Astrophysics Data System (ADS)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  5. Summary of informal workshop on state of ion beam facilities for atomic physics research

    SciTech Connect

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  6. Request for Support for the Conference on Super Intense Laser Atom Physics

    SciTech Connect

    Todd Ditmire

    2004-10-21

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions.

  7. On-chip optical lattice for cold atom experiments.

    PubMed

    Straatsma, Cameron J E; Ivory, Megan K; Duggan, Janet; Ramirez-Serrano, Jaime; Anderson, Dana Z; Salim, Evan A

    2015-07-15

    An atom-chip-based integrated optical lattice system for cold and ultracold atom applications is presented. The retroreflection optics necessary for forming the lattice are bonded directly to the atom chip, enabling a compact and robust on-chip optical lattice system. After achieving Bose-Einstein condensation in a magnetic chip trap, we load atoms directly into a vertically oriented 1D optical lattice and demonstrate Landau-Zener tunneling. The atom chip technology presented here can be readily extended to higher dimensional optical lattices. PMID:26176471

  8. Physics design options for compact ignition experiments

    SciTech Connect

    Uckan, N.A.

    1985-01-01

    This paper considers the following topics: (1) physics assessments-design and engineering impact, (2) zero-dimensional confinement studies relating to physics requirements and options for ignited plasmas, classes of devices with equivalent performance, and sensitivity to variations in confinement models, and (3) one and one-half dimensional confinement studies relating to dynamic simulations, critical physics issues, startup analyses, and volt-second consumption. (MOW)

  9. Physics of the missing atoms: technetium and promethium

    SciTech Connect

    Aspden, H.

    1987-05-01

    Technetium (Z = 43) and promethium (Z = 61) are by far the least abundant of all atoms below the radioactive elements (Z = 84 onwards). Their scarcity confirms theoretical predictions emerging from a theory of the photon derived from synchronous lattice electrodynamics. This theory has given precise theoretical values for the fine-structure constant and the constant of gravitation G and is now shown in this paper to indicate resonant interactions between the vacuum lattice oscillations and technetium and promethium. In the case of promethium there is strong reason for believing that this atom can assume supergravitational or antigravitational properties, accounting for its scarcity. This paper not only adds support to the earlier theoretical work on the photon and gravitation, but suggests a research route that might lead to new technology based on controlled interactions with gravity fields.

  10. Atomic and molecular physics in the gas phase

    SciTech Connect

    Toburen, L.H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets.

  11. The Atomic Relay: Integrating Physical Education and Science.

    ERIC Educational Resources Information Center

    Menelly, Daniel J.

    1997-01-01

    Presents a lesson plan for teaching abstract science concepts to gifted middle school students. The lesson integrates a physical education component into science instruction to reinforce the abstract notion that electrons emit energy in the form of visible light. (CR)

  12. Physics Experiments with Nintendo Wii Controllers

    ERIC Educational Resources Information Center

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  13. Physics design requirements for the Tokamak Physics Experiment (TPX)

    SciTech Connect

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Nevins, W.M.; Porkolab, M.; Ulrickson, M.

    1993-11-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust.

  14. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  15. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGESBeta

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  16. Laboratory plasma physics experiments using merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ~ ni ~ 1016 cm-3, Te ~ Ti ~ 1.4 eV, V jet ~ 30-100 km/s, mean charge $\\bar{Z}$ ~ 1, sonic Mach number Ms ≡ V jet/Cs > 10, jet diameter = 5 cm, and jet length ~20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  17. The Physics of Bird Flight: An Experiment

    ERIC Educational Resources Information Center

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  18. Yang-Baxter integrable models in experiments: from condensed matter to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Batchelor, Murray T.; Foerster, Angela

    2016-04-01

    The Yang-Baxter equation has long been recognised as the masterkey to integrability, providing the basis for exactly solved models which capture the fundamental physics of a number of realistic classical and quantum systems. In this article we provide an introductory survey of the impact of Yang-Baxter integrable models on experiments in condensed matter physics and ultracold atoms. A number of prominent examples are covered, including the hard-hexagon model, the Heisenberg spin chain, the transverse quantum Ising chain, a spin ladder model, the Lieb-Liniger Bose gas, the Gaudin-Yang Fermi gas and the two-site Bose-Hubbard model. The review concludes by pointing to some other recent developments with promise for further progress.

  19. Plasma injection and atomic physics models for use in particle simulation codes

    SciTech Connect

    Procassini, R.J. California Univ., Berkeley, CA . Electronics Research Lab.)

    1991-06-12

    Models of plasma injection (creation) and charged/neutral atomic physics which are suitable for incorporation into particle simulation codes are described. Both planar and distributed source injection models are considered. Results obtained from planar injection into a collisionless plasma-sheath region are presented. The atomic physics package simulates the charge exchange and impact ionization interactions which occur between charged particles and neutral atoms in a partially-ionized plasma. These models are applicable to a wide range of problems, from plasma processing of materials to transport in the edge region of a tokamak plasma. 18 refs., 6 figs.

  20. Atomic physics techniques for studying nuclear ground state properties, fundamental interactions and symmetries: status and perspectives

    NASA Astrophysics Data System (ADS)

    Kluge, H.-Jürgen

    2010-02-01

    The international workshop on “Application of Lasers and Storage Devices in Atomic Nuclei Research” held during 2009 in Poznan gave an excellent overview on the latest experimental and theoretical results regarding the investigation of radionuclides by atomic physics techniques and the extraction of ground state properties of exotic nuclei. This publication intends to summarize the progress recently achieved by laser spectroscopy and mass spectrometry as well as by weak interaction studies using atomic physics techniques. Furthermore, it tries to point to some areas requiring urgent improvements and to indicate some routes of future research and challenging opportunities.

  1. Nuclear beta-decay, Atomic Parity Violation, and New Physics

    SciTech Connect

    Michael Ramsey-Musolf

    2000-08-01

    Determinations of vuds with super-allowed Fermi beta-decay in nuclei and of the weak charge of the cesium in atomic parity-violation deviate from the Standard Model predictions by 2 sigma or more. In both cases, the Standard Model over-predicts the magnitudes of the relevant observables. I discuss the implications of these results for R-parity violating (RPV) extensions of the minimal supersymmetric Standard Model. I also explore the possible consequences for RPV supersymmetry of prospective future low-energy electroweak measurements.

  2. Project Physics Handbook 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Five experiments and 19 activities are presented in this Unit 5 handbook. The experiments are related to electrolysis, charge-to-mass ratio, elementary charge determination, photoelectric effects, and spectroscopic analyses. The activities are concerned with Dalton's theory, water electrolysis, periodic tables, single-electron plating, cloud…

  3. Use of Video in the Harvard Project Physics Experiments

    ERIC Educational Resources Information Center

    Quan, Joyce

    1974-01-01

    The advantages are related of a video recorder over a Polaroid camera for doing experiments dealing with the "conservation of mass and momentum." Use of video records is advocated for recording measurements in physics experiments. (JP)

  4. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  5. Physics experiments with Nintendo Wii controllers

    NASA Astrophysics Data System (ADS)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  6. The Role of Physical Experiments in Popularization of Exact Sciences

    NASA Astrophysics Data System (ADS)

    Ledvinka, S.; Pisala, J.

    Physical experiments play crucial role in exact sciences.We test our theories which we try give account of the world by experiments. On the one hand, themselves are an inexorable judge which one judge our conceptions about function of the world and on the other side physical experiments can demonstrate a beauty of laws of nature. The Nicholas Copernicus Observatory and Planetarium in Brno (the Czech Republic - EU) has a longtime experience with it.

  7. Hyperthermal atomic oxygen source for near-space simulation experiments

    SciTech Connect

    Dodd, James A.; Baker, Paul M.; Hwang, Eunsook S.; Sporleder, David; Stearns, Jaime A.; Chambreau, Steven D.; Braunstein, Matthew; Conforti, Patrick F.

    2009-09-15

    A hyperthermal atomic oxygen (AO) beam facility has been developed to investigate the collisions of high-velocity AO atoms with vapor-phase counterflow. Application of 4.5 kW, 2.4 GHz microwave power in the source chamber creates a continuous discharge in flowing O{sub 2} gas. The O{sub 2} feedstock is introduced into the source chamber in a vortex flow to constrain the plasma to the center region, with the chamber geometry promoting resonant excitation of the TM{sub 011} mode to localize the energy deposition in the vicinity of the aluminum nitride (AlN) expansion nozzle. The approximately 3500 K environment serves to dissociate the O{sub 2}, resulting in an effluent consisting of 40% AO by number density. Downstream of the nozzle, a silicon carbide (SiC) skimmer selects the center portion of the discharge effluent, prior to the expansion reaching the first shock front and rethermalizing, creating a beam with a derived 2.5 km s{sup -1} velocity. Differential pumping of the skimmer chamber, an optional intermediate chamber and reaction chamber maintains a reaction chamber pressure in the mid-10{sup -6} to mid-10{sup -5} Torr range. The beam has been characterized with regard to total AO beam flux, O{sub 2} dissociation fraction, and AO spatial profile using time-of-flight mass spectrometric and Kapton-H erosion measurements. A series of reactions AO+C{sub n}H{sub 2n} (n=2-4) has been studied under single-collision conditions using mass spectrometric product detection, and at higher background pressure detecting dispersed IR emissions from primary and secondary products using a step-scan Michelson interferometer. In a more recent AO crossed-beam experiment, number densities and predicted IR emission intensities have been modeled using the direct simulation Monte Carlo technique. The results have been used to guide the experimental conditions. IR emission intensity predictions are compared to detected signal levels to estimate absolute reaction cross sections.

  8. Hyperthermal atomic oxygen source for near-space simulation experiments.

    PubMed

    Dodd, James A; Baker, Paul M; Hwang, Eunsook S; Sporleder, David; Stearns, Jaime A; Chambreau, Steven D; Braunstein, Matthew; Conforti, Patrick F

    2009-09-01

    A hyperthermal atomic oxygen (AO) beam facility has been developed to investigate the collisions of high-velocity AO atoms with vapor-phase counterflow. Application of 4.5 kW, 2.4 GHz microwave power in the source chamber creates a continuous discharge in flowing O(2) gas. The O(2) feedstock is introduced into the source chamber in a vortex flow to constrain the plasma to the center region, with the chamber geometry promoting resonant excitation of the TM(011) mode to localize the energy deposition in the vicinity of the aluminum nitride (AlN) expansion nozzle. The approximately 3500 K environment serves to dissociate the O(2), resulting in an effluent consisting of 40% AO by number density. Downstream of the nozzle, a silicon carbide (SiC) skimmer selects the center portion of the discharge effluent, prior to the expansion reaching the first shock front and rethermalizing, creating a beam with a derived 2.5 km s(-1) velocity. Differential pumping of the skimmer chamber, an optional intermediate chamber and reaction chamber maintains a reaction chamber pressure in the mid-10(-6) to mid-10(-5) Torr range. The beam has been characterized with regard to total AO beam flux, O(2) dissociation fraction, and AO spatial profile using time-of-flight mass spectrometric and Kapton-H erosion measurements. A series of reactions AO+C(n)H(2n) (n=2-4) has been studied under single-collision conditions using mass spectrometric product detection, and at higher background pressure detecting dispersed IR emissions from primary and secondary products using a step-scan Michelson interferometer. In a more recent AO crossed-beam experiment, number densities and predicted IR emission intensities have been modeled using the direct simulation Monte Carlo technique. The results have been used to guide the experimental conditions. IR emission intensity predictions are compared to detected signal levels to estimate absolute reaction cross sections. PMID:19791929

  9. Project Physics Teacher Guide 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 5 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  10. Physical state of interstellar atoms. [from Copernicus satellite UV data

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1974-01-01

    Brief survey of the physical conditions along the lines of sight to reddened and unreddened stars, as determined from Copernicus observation of interstellar lines between 95 and 300 nm. Differences in ionization structure and density between clouds and the local intercloud medium are discussed. Some new data for beta Centauri is used to supplement the previously available data.

  11. Nuclear physics (of the cell, not the atom).

    PubMed

    Pederson, Thoru; Marko, John F

    2014-11-01

    The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists. PMID:25368422

  12. Nuclear physics (of the cell, not the atom)

    PubMed Central

    Pederson, Thoru; Marko, John F.

    2014-01-01

    The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists. PMID:25368422

  13. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    SciTech Connect

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  14. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    NASA Astrophysics Data System (ADS)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  15. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    SciTech Connect

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S.; Jervis, D.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  16. Atom chip apparatus for experiments with ultracold rubidium and potassium gases.

    PubMed

    Ivory, M K; Ziltz, A R; Fancher, C T; Pyle, A J; Sensharma, A; Chase, B; Field, J P; Garcia, A; Jervis, D; Aubin, S

    2014-04-01

    We present a dual chamber atom chip apparatus for generating ultracold (87)Rb and (39)K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10(4) (87)Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold (39)K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems. PMID:24784588

  17. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  18. An Experiment on a Physical Pendulum and Steiner's Theorem

    ERIC Educational Resources Information Center

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  19. Youth with Visual Impairments: Experiences in General Physical Education

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi

    2006-01-01

    The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…

  20. Friendship, Physicality, and Physical Education: An Exploration of the Social and Embodied Dynamics of Girls' Physical Education Experiences

    ERIC Educational Resources Information Center

    Hills, Laura

    2007-01-01

    Physical education represents a dynamic social space where students experience and interpret physicality in a context that accentuates peer relationships and privileges particular forms of embodiment. This article focuses on girls' understandings of physicality with respect to the organisation of physical education and more informal social…

  1. Nuclear Physics Experiments Below The Coulomb Barrier

    SciTech Connect

    Sanders, J. M.; Clark, R. K.; Cifuentes, J. R. Morales

    2011-06-01

    In 1932, Cockcroft and Walton showed that (p,{alpha}) reactions with lithium were possible at energies near 100 keV. We report an undergraduate laboratory experiment with 90 keV protons colliding with a thick lithium target. The experiment allows students to observe the products of two reactions, to determine the product masses, and to learn techniques for deconvolving experimental spectra profiles.

  2. Nuclear physics experiments with ion storage rings

    NASA Astrophysics Data System (ADS)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stöhlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-12-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  3. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    SciTech Connect

    Neeleman, Marcel; Wolfe, Arthur M.; Prochaska, J. Xavier

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  4. Current experiments in elementary particle physics. Revision 1-85

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  5. Current experiments in elementary particle physics, revision 1-85

    NASA Astrophysics Data System (ADS)

    Wohl, C. G.; Armstrong, F. E.; Rittenberg, A.; Trippe, T. G.; Yost, G. P.; Oyanagi, Y.; Dodder, D. C.; Grudtsin, S. N.; Ryabov, Y. G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  6. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  7. Computation of Free-Free Transitions in Atomic Physics: Foundations

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sucher, J.

    2003-01-01

    The amplitude T for "free-free" processes, such as bremsstrahlung or photo- absorption by an electron in the continuum in the presence of an external field, is usually written as the matrix element of the radiation operator taken between two continuum states. However, unlike the case when at least one of the states is bound, as in radiative transitions, electron capture, or the photo-effect, this expression contains an unphysical term, proportional to a delta-function and is not really the physical amplitude Tphys. This continues to be true for both the velocity and length form of the dipole approximation to the amplitude T. We first give an a priori definition of Tphys in terms of the scattering parts of the continuum functions, which has an obvious interpretation in terms of time-ordered diagrams. We then show that when the formal amplitude is modified by a long- distance cutoff, the modified form approaches Tphys as the cutoff is removed. The modified form then serves as a basis for the definition of a physical velocity dipole amplitude and this in turn leads to an equivalent length form of the dipole amplitude. This exercise provides a clear theoretical basis for many extant calculations in which cutoff factors are introduces somewhat ad hoc, as needed.

  8. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    SciTech Connect

    Guiberteau, Ph.; Nokhamzon, J.G.

    2012-07-01

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA

  9. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g

  10. Using the Wiimote in Introductory Physics Experiments

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of…

  11. Precision electroweak physics at future collider experiments

    SciTech Connect

    Baur, U.; Demarteau, M.

    1996-11-01

    We present an overview of the present status and prospects for progress in electroweak measurements at future collider experiments leading to precision tests of the Standard Model of Electroweak Interactions. Special attention is paid to the measurement of the {ital W} mass, the effective weak mixing angle, and the determination of the top quark mass. Their constraints on the Higgs boson mass are discussed.

  12. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  13. Otto Stern (1888-1969): The founding father of experimental atomic physics

    NASA Astrophysics Data System (ADS)

    Toennies, J. P.; Schmidt-Böcking, H.; Friedrich, B.; Lower, J. C. A.

    2011-12-01

    We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental determination of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933).

  14. Determination of Spin-Lattice Relaxation of Time Using (Super 13)C NMR: An Undergraduate Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Gasyna, Zbigniew L.; Jurkiewicz, Antoni

    2004-01-01

    An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.

  15. Accurate abundance analysis of late-type stars: advances in atomic physics

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2016-05-01

    The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.

  16. Characterizing Student Experiences in Physics Competitions: The Power of Emotions

    NASA Astrophysics Data System (ADS)

    Moll, Rachel F.; Nashon, S.; Anderson, D.

    2006-12-01

    Low enrolment and motivation are key issues in physics education and recently the affective dimension of learning is being studied for evidence of its influence on student attitudes towards physics. Physics Olympics competitions are a novel context for stimulating intense emotional experiences. In this study, one team of students and their teacher were interviewed and observed prior to and during the event to characterize their emotions and determine the connections between their experiences and learning and attitudes/motivation towards physics. Results showed that certain types of events stimulated strong emotions of frustration and ownership, and that students’ attitudes were that physics is fun, diverse and relevant. Analysis of these themes indicated that the nature of emotions generated was connected to their attitudes towards physics. This finding points to the potential and value of informal and novel contexts in creating strong positive emotions, which have a strong influence on student attitudes towards physics.

  17. Learning Physics by Experiment: I. Falling Objects

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2014-03-01

    As a rule, students enjoy conducting experiments in which the practical aspects are straightforward and well-defined. This also applies even when there is no anticipated result for students to ``prove.'' A laboratory exercise with such properties was created for students to undertake in a completely blind manner, and they happily proceeded without any knowledge at all of what they might expect to find. The philosophy developed for the research in this paper expands the pioneering approach formulated some half century ago and successfully employed more recently. In the present era of differentiated instruction (DI) being implemented in a diversity of educational settings, the design of the subject experiment is especially significant for its inclusive nature and for the positive outcomes it produces for less academically capable students. All students benefit from such an environment because it preempts the wasted effort of undue manipulation and it removes the need to contrive agreement with a textbook via irregular attempts at reverse engineering.

  18. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  19. Cuban Techno-physical Experiments in Space

    NASA Astrophysics Data System (ADS)

    Altshuler, José; Calzadilla Amaya, Ocatvio; Falcon, Federico; Fuentes, Juan E.; Lodos, Jorge; Vigil Santos, Elena

    When Cuba joined the Intercosmos Program of the socialist countries in the mid-1960s, the great educational and scientific reform taking place at that time in the country had hardly begun to bear fruit. But when, a decade later, the Soviet Union offered all the participant countries the chance to make use of its space vehicles and related installations so that their cosmonauts could carry out original scientific experiments in space, the situation had changed radically in Cuba. In a short time around 200 people already involved in scientific and technological activities succeeded in designing and setting up—in close collaboration with various Soviet, East German and Bulgarian institutions—some 20 scientific experiments that were to be carried out in orbit around the earth during the joint Soviet-Cuban space flight of September 18-26, 1980. Those experiments, and a further one that was also set up for the same space flight—but carried out during a later flight, as mentioned below—are historically important since they were the first in their class to be carried out by humans in space under microgravity conditions.

  20. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    SciTech Connect

    Not Available

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  1. Atomic physics at the future facility for antiproton and ion research: status report 2014

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Stöhlker, Th; Litvinov, Yu A.; SPARC Collaboration

    2015-11-01

    In this contribution, a brief overview of the Stored Particle Atomic physics Research Collaboration scientific program at the upcoming Facility for Antiproton and Ion Research (FAIR) is given. The program comprises a very broad range of research topics addressing atomic structure and dynamics in hitherto unexplored regimes, light-matter interactions, lepton pair production phenomena, precision tests of quantum electrodynamics and standard model in the regime of extreme fields and many more. We also present the current strategy for the realization of the envisioned physics program within the modularized start version (MSV) of FAIR.

  2. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  3. Autoionization in atomic chlorine: Comparison of theories and experiment

    SciTech Connect

    Ruscic, B.; Berkowitz, J. )

    1989-12-01

    High-resolution spectra (0.07 and 0.14 A, full width at half-maximum) are presented for the region between 860 and 918 A of the photoionization spectrum of atomic chlorine. Comparison is made with several many-body theories. Significant disagreement with theory is found, particularly with the widths and profiles of the sharp autoionizing resonances.

  4. Divertor design for the Tokamak Physics Experiment

    SciTech Connect

    Hill, D.N.; Braams, B.; Brooks, J.N.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4{times} L-mode), high beta ({beta}{sub N} {ge} 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74{degrees} from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m{sup 2} with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities.

  5. Atom optical experiments in the drop tower: a pathfinder for space based precision measurements

    NASA Astrophysics Data System (ADS)

    Herrmann, Sven; Resch, Andreas; Müntinga, Hauke; Laemmerzahl, Claus

    Recent years have seen much technological progress towards the application of ultra-cold atoms and degenerate quantum gases in future space based precision measurements. A first milestone was achieved by the QUANTUS collaboration with the successful creation of a Bose-Einstein condensate in a freely falling compact drop tower experiment. A next step will now be to demonstrate the feasibility of matter wave interferometry with increased precision due to the extended free evolution time available in zero gravity. This is a particular focus of the PRIMUS project, which also explores concepts to apply a fiber based optical frequency comb in such microgravity experiments. Here we report on the current status of this activity, including the first operation of an optical frequency comb in a microgravity environment. We also discuss the perspectives for space based fundamental physics experiments that might be enabled by such earth-bound pathfinder experiments in the long run. PRIMUS is a collaboration of ZARM at the Universitüt Bremen and of the Leibniz Universitüt Hannover. It is supported by the a a German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number DLR 50 WM 0842.

  6. B Physics at the DO experiment

    SciTech Connect

    Cruz Burelo, Eduard de la

    2008-11-13

    At the beginning of RunII of the Tevatron and after more than 30 years of the discovery of the b quark at Fermilab, the lack of statistics had restricted our knowledge on b-baryons to the observation of the lightest b-baryon, the {lambda}{sub b}, and to its lifetime measured in decays which did not allow a fully reconstruction of this particle. I present results of the search for b-baryons in the DO experiment. As part of this program, a precise measurement of the {lambda}{sub b} lifetime was performed, and the discovery of the {xi}{sub b}{sup -} resulted from an analysis of 1.3 fb{sup -1} of data collected with the D0 detector during 2002-2006.

  7. Theory and experiment in gravitational physics

    NASA Technical Reports Server (NTRS)

    Will, C. M.

    1981-01-01

    New technological advances have made it feasible to conduct measurements with precision levels which are suitable for experimental tests of the theory of general relativity. This book has been designed to fill a new need for a complete treatment of techniques for analyzing gravitation theory and experience. The Einstein equivalence principle and the foundations of gravitation theory are considered, taking into account the Dicke framework, basic criteria for the viability of a gravitation theory, experimental tests of the Einstein equivalence principle, Schiff's conjecture, and a model theory devised by Lightman and Lee (1973). Gravitation as a geometric phenomenon is considered along with the parametrized post-Newtonian formalism, the classical tests, tests of the strong equivalence principle, gravitational radiation as a tool for testing relativistic gravity, the binary pulsar, and cosmological tests.

  8. Current experiments in elementary-particle physics - March 1983

    SciTech Connect

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  9. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  10. Simple Experiments on the Physics of Vision: The Retina

    ERIC Educational Resources Information Center

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.