Science.gov

Sample records for atomic scale characterization

  1. Atomic Scale Characterization of Compound Semiconductors Using Atom Probe Tomography

    SciTech Connect

    Gorman, B. P.; Norman, A. G.; Lawrence, D.; Prosa, T.; Guthrey, H.; Al-Jassim, M.

    2011-01-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  2. Atomic Scale Characterization of Complex Oxide Interfaces

    SciTech Connect

    Varela del Arco, Maria; Pennycook, Timothy J; Tian, Wei; Mandrus, David; Pennycook, Stephen J; Pena, V.; Sefrioui, Z.; Santamaria, J.

    2006-01-01

    Complex oxides exhibit the most disparate behaviors, from ferroelectricity to high Tc superconductivity, colossal magnetoresistance to insulating properties. For these reasons, oxide thin films are of interest for electronics and the emerging field of spintronics. But epitaxial complex oxide ultrathin films and heterostructures can be significantly affected or even dominated by the presence of interfaces and may exhibit intriguing new physical properties quite different from the bulk. A study of the relations between structure and chemistry at the atomic scale is needed to understand the macroscopic properties of such "interface-controlled" materials. For this purpose, the combination of aberration corrected Z-contrast scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) represents a very powerful tool. The availability of sub- ngstr m probes allows a level of unprecedented detail when analyzing not only the interface structure with sensitivity to single atoms, but also the interface chemistry. In this work state of the art STEM-EELS will be applied to the study of different oxide interfaces in heterostructures with titanates, manganites and cuprates based on the perovskite structure.

  3. Atomic scale characterization of materials using scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aguiar, Jeffery Andrew

    Coupling the development of emerging experimental techniques in STEM and EELS with a fundamental understanding of atomic electronic structure afforded by DFT represents the unique approach and intention of this thesis. Scanning transmission electron microscopes equipped with high-angle annular dark field (HAADF) detectors and Gatan image filters (GIF) provide images and spectra, where the image brightness is interpreted as a function of atomic mass and thickness, and elemental specific spectra provide a means for the exploration of electronic and chemical structure of materials at the angstrom size scale. Over the past 20 years, the application of EELS in STEM has enabled more accurate elemental identification and exploration of electronic and chemical structure on angstrom-length scales, and arguably has provided an unprecedented wealth of materials characterization compared to other available techniques. Many materials issues related to specific novel properties that cannot be analyzed using the traditional techniques of the past, however, still remain unanswered. These concepts require a married approach of experiment and theory to fully explain. The intent of this dissertation is the development of improved analysis techniques that derive quantitative atomic scale information in connection with unraveling the origins of materials properties linked to the electronic structure and chemistry of materials.

  4. Atomic-Scale Characterization of II-VI Compound Semiconductors

    NASA Astrophysics Data System (ADS)

    Smith, David J.

    2013-11-01

    Alloys of II-VI compound semiconductors with suitable band gap selection potentially provide broad coverage of wavelengths for photodetector applications. Achievement of high-quality epitaxial growth is, however, essential for successful development of integrated photonic and optoelectronic devices. Atomic-scale characterization of structural defects in II-VI heterostructures using electron microscopy plays an invaluable role in accomplishing this goal. This paper reviews some recent high-resolution studies of II-VI compound semiconductors with zincblende crystal structure, as grown epitaxially on commonly used substrates. Exploratory studies using aberration-corrected electron microscopes are also briefly considered.

  5. Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint

    SciTech Connect

    Gorman, B. P.; Guthrey, H.; Norman, A. G.; Al-Jassim, M.; Lawrence, D.; Prosa, T.

    2011-07-01

    Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron microscopy (TEM), atom probe tomography (APT), and density functional calculations enables a more fundamental understanding of carrier dynamics in photovoltaic (PV) device structures. To achieve full atomic scale spatial and chemical resolution, data acquisition parameters in laser pulsed APT must be carefully studied to eliminate surface diffusion. Atom probe data with minimized group V ion clustering and expected stoichiometry can be achieved by adjusting laser pulse power, pulse repetition rate, and specimen preparation parameters such that heat flow away from the evaporating surface is maximized. Applying these improved analysis conditions to III-V based PV gives an atomic scale understanding of compositional and dopant profiles across interfaces and tunnel junctions and the initial stages of alloy clustering and dopant accumulation. Details on APT experimental methods and future in-situ instrumentation developments are illustrated.

  6. Atomic-scaled characterization of graphene PN junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaodong; Wang, Dennis; Dadgar, Ali; Agnihotri, Pratik; Lee, Ji Ung; Reuter, Mark C.; Ross, Frances M.; Pasupathy, Abhay N.

    Graphene p-n junctions are essential devices for studying relativistic Klein tunneling and the Veselago lensing effect in graphene. We have successfully fabricated graphene p-n junctions using both lithographically pre-patterned substrates and the stacking of vertical heterostructures. We then use our 4-probe STM system to characterize the junctions. The ability to carry out scanning electron microscopy (SEM) in our STM instrument is essential for us to locate and measure the junction interface. We obtain both the topography and dI/dV spectra at the junction area, from which we track the shift of the graphene chemical potential with position across the junction interface. This allows us to directly measure the spatial width and roughness of the junction and its potential barrier height. We will compare the junction properties of devices fabricated by the aforementioned two methods and discuss their effects on the performance as a Veselago lens.

  7. ATOMIC SCALE CHARACTERIZATION OF OXYGEN VACANCY DYNAMICS BY IN SITU REDUCTION AND ANALYTICAL ATOMIC RESOLUTION STEM.

    SciTech Connect

    KLIE,R.F.; BROWNING,N.D.; ZHU,Y.

    2002-08-04

    In this study, we present nano-scale investigations of point defect dynamics in perovskite oxides by correlated atomic resolution high angle annular dark field imaging (HAADF) and electron energy loss spectroscopy (EELS). The point defect dynamics and interactions during in-situ reduction in the microscope column are analyzed. In particular, oxygen vacancy creation, diffusion and clustering are studied, as oxygen vacancies comprise the majority of the point defects present in these perovskite oxide systems [1]. The results have been acquired using the JEOL2010F, a STEM/TEM, equipped with a 200 keV field emission gun, a high angle annular dark field detector and a post column Gatan imaging filter (GIF). The combination of the Z-contrast and EELS techniques [2] allows us to obtain direct images (spatial resolution of 2 {angstrom}) of the atomic structure and to correlate this information with the atomically resolved EELS information (3s acquisition time, 1.2 eV energy resolution). In-situ heating of the material is performed in a Gatan double tilt holder with a temperature range of 300 K-773 K at an oxygen partial pressure of P{sub O{sub 2}} = 5 * 10{sup -8} Pa.

  8. Atomic-scale characterization of germanium isotopic multilayers by atom probe tomography

    SciTech Connect

    Shimizu, Y.; Takamizawa, H.; Toyama, T.; Inoue, K.; Nagai, Y.; Kawamura, Y.; Uematsu, M.; Itoh, K. M.; Haller, E. E.

    2013-01-14

    We report comparison of the interfacial sharpness characterization of germanium (Ge) isotopic multilayers between laser-assisted atom probe tomography (APT) and secondary ion mass spectrometry (SIMS). An alternating stack of 8-nm-thick naturally available Ge layers and 8-nm-thick isotopically enriched {sup 70}Ge layers was prepared on a Ge(100) substrate by molecular beam epitaxy. The APT mass spectra consist of clearly resolved peaks of five stable Ge isotopes ({sup 70}Ge, {sup 72}Ge, {sup 73}Ge, {sup 74}Ge, and {sup 76}Ge). The degree of intermixing at the interfaces between adjacent layers was determined by APT to be around 0.8 {+-} 0.1 nm which was much sharper than that obtained by SIMS.

  9. Quantitative characterization of the atomic-scale structure of oxyhydroxides in rusts formed on steel surfaces

    SciTech Connect

    Saito, M.; Suzuki, S. . E-mail: ssuzuki@tagen.tohoku.ac.jp; Kimura, M.; Suzuki, T.; Kihira, H.; Waseda, Y.

    2005-11-15

    Quantitative X-ray structural analysis coupled with anomalous X-ray scattering has been used for characterizing the atomic-scale structure of rust formed on steel surfaces. Samples were prepared from rust layers formed on the surfaces of two commercial steels. X-ray scattered intensity profiles of the two samples showed that the rusts consisted mainly of two types of ferric oxyhydroxide, {alpha}-FeOOH and {gamma}-FeOOH. The amounts of these rust components and the realistic atomic arrangements in the components were estimated by fitting both the ordinary and the environmental interference functions with a model structure calculated using the reverse Monte Carlo simulation technique. The two rust components were found to be the network structure formed by FeO{sub 6} octahedral units, the network structure itself deviating from the ideal case. The present results also suggest that the structural analysis method using anomalous X-ray scattering and the reverse Monte Carlo technique is very successful in determining the atomic-scale structure of rusts formed on the steel surfaces.

  10. Characterization of aging in organic materials on atomic-, meso- and macro-length scales by {sup 13}C NMR spectroscopy

    SciTech Connect

    Assink, R.A.; Jamison, G.M.; Alam, T.M.; Gillen, K.T.

    1997-10-01

    A fundamental understanding of aging in an organic material requires that one understand how aging affects the chemical structure of a material, and how these chemical changes are related to the material`s macroscopic properties. This level of understanding is usually achieved by examining the material on a variety of length scales ranging from atomic to meso-scale to macroscopic. The authors are developing and applying several {sup 13}C nuclear magnetic resonance (NMR) spectroscopy experiments to characterize the aging process of organic materials over a broad range of length scales. Examples of studies which range from atomic to macroscopic will be presented.

  11. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level. PMID:26670551

  12. Characterization of Graphene and Transition Metal Dichalcogenide at the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Lin, Yung-Chang; Warner, Jamie H.; Teng, Po-Yuan; Yeh, Chao-Hui; Chiu, Po-Wen; Iijima, Sumio; Suenga, Kazu

    2015-12-01

    Edge structures and atomic defects are of fundamental importance since they can significantly affect the physical and chemical properties of low-dimensional materials, such as nanoribbons, and therefore merit thorough investigations at the atomic level. Recent developments of direct imaging and analytical techniques using an aberration-corrected scanning transmission electron microscope (STEM) have provided direct access to information on the local atomic structure and the chemical composition at the atomic scale. In this review, we report on the discrimination of single atoms including dopant atoms on a monolayered transition-metal dichalcogenide (TMD) nanoribbon and a single nitrogen adatom on graphene by time-resolved annular dark-field (ADF) imaging and spatially resolved electron energy loss spectroscopy (EELS). We also show that in situ scanning transmission electron microscopy can be used to monitor the structural transformation between semiconducting (2H) and metallic (1T) phases in monolayer MoS2, and can enable direct observation of in-plane graphene growth at a step edge of a bi-layer graphene and domain boundary formation during growth with atomic-resolution.

  13. INL Laboratory Scale Atomizer

    SciTech Connect

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  14. Atomic Scale Chemical and Structural Characterization of Ceramic Oxide Heterostructure Interfaces

    SciTech Connect

    Singh, R. K.

    2003-04-16

    The research plan was divided into three tasks: (a) growth of oxide heterostructures for interface engineering using standard thin film deposition techniques, (b) atomic level characterization of oxide heterostructure using such techniques as STEM-2 combined with AFM/STM and conventional high-resolution microscopy (HRTEM), and (c) property measurements of aspects important to oxide heterostructures using standard characterization methods, including dielectric properties and dynamic cathodoluminescence measurements. Each of these topics were further classified on the basis of type of oxide heterostructure. Type I oxide heterostructures consisted of active dielectric layers, including the materials Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST), Y{sub 2}O{sub 3} and ZrO{sub 2}. Type II heterostructures consisted of ferroelectric active layers such as lanthanum manganate and Type III heterostructures consist of phosphor oxide active layers such as Eu-doped Y{sub 2}O{sub 3}.

  15. Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel

    NASA Astrophysics Data System (ADS)

    Rogozhkin, S. V.; Aleev, A. A.; Zaluzhnyi, A. G.; Nikitin, A. A.; Iskandarov, N. A.; Vladimirov, P.; Lindau, R.; Möslang, A.

    2011-02-01

    Our previous investigations of unirradiated ODS Eurofer by tomographic atom probe (TAP) revealed numerous nano-scaled features (nanoclusters) enriched in vanadium, yttrium and oxygen. In this work the effect of neutron irradiation on nanostructure behaviour of ODS Eurofer (9%-CrWVTa) was investigated. The irradiation was performed in the research reactor BOR-60 (Dimitrovgrad, Russia) where materials were irradiated at 330 °С to 32 dpa. TAP studies were performed on the needles prepared from parts of broken Charpy specimens. For all specimens except one, which was tested at 500 °C, the Charpy tests were performed at temperatures not exceeding the irradiation temperature. A high number density 2-4 × 10 24 m -3 of ultra fine 1-3 nm diameter nanoclusters enriched in yttrium, oxygen, manganese and chromium was observed in the irradiated state. The composition of detected clusters differs from that for unirradiated ODS Eurofer. It was observed in this work that after neutron irradiation vanadium atoms had left the clusters, moving from the core into solid solution. The concentrations of yttrium and oxygen in the matrix, as it was detected, increase several times under irradiation. In the samples tested at 500 °C both the number density of clusters and the yttrium concentration in the matrix decrease by a factor of two.

  16. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  17. Atomic-scale characterization of graphene grown on copper (100) single crystals.

    PubMed

    Rasool, Haider I; Song, Emil B; Mecklenburg, Matthew; Regan, B C; Wang, Kang L; Weiller, Bruce H; Gimzewski, James K

    2011-08-17

    Growth of graphene on copper (100) single crystals by chemical vapor deposition has been accomplished. The atomic structure of the graphene overlayer was studied using scanning tunneling microscopy. A detailed analysis of moiré superstructures present in the graphene topography reveals that growth occurs in a variety of orientations over the square atomic lattice of the copper surface. Transmission electron microscopy was used to elucidate the crystallinity of the grown graphene. Pristine, defect-free graphene was observed over copper steps, corners, and screw dislocations. Distinct protrusions, known as "flower" structures, were observed on flat terraces, which are attributed to carbon structures that depart from the characteristic honeycomb lattice. Continuous graphene growth also occurs over copper adatoms and atomic vacancies present at the single-crystal surface. The copper atom mobility within vacancy islands covered with suspended graphene sheets reveals a weak graphene-substrate interaction. The observed continuity and room-temperature vacancy motion indicates that copper mobility likely plays a significant role in the mechanism of sheet extension on copper substrates. Lastly, these results suggest that the quality of graphene grown on copper substrates is ultimately limited by nucleation at the surface of the metal catalyst. PMID:21732685

  18. Atomic scale characterization of the origin of mobility loss at the silicon carbide/silicon dioxide interface

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Trinity Leigh

    Silicon carbide (SiC) is a wide band gap semiconductor with material properties which make it ideally suited for high temperature, high frequency, and high power metal oxide semiconductor field effect transistor (MOSFET) applications. The wide scale commercial development of these devices has been hindered due to disappointing electron mobility when compared to properties of the bulk material. This mobility loss has been associated with the interface between SiC and the native oxide formed (SiO2). Many improvements in mobility have been realized, but it is currently still significantly less than that of the bulk material. The work in this dissertation is aimed at understanding the origin of this mobility loss from an atomic perspective. Analytical electron microscopy techniques including scanning transmission electron microscopy (STEM), Z-contrast imaging, electron energy loss spectroscopy (EELS), and convergent beam electron diffraction (CBED) are used in this study to characterize the 4HSiC/SiO2 interface. The effect of aluminum implantation, nitric oxide annealing, oxidation rate, and activation annealing temperature on the interface was examined. We found a carbon rich transition layer present on the SiC side of the interface which varies in thickness depending on processing conditions. The thickness of this transition region is linearly related to the electron mobility. We were also able to determine that this transition region occurs as a result of the oxidation process. During oxidation, carbon interstitials are emitted on both sides of the interface, causing a carbon pileup on the SiC side of the interface, which we detect as a transition region. The rate of oxidation is also very important as oxidizing at a fast rate leads to greater carbon pileup. The extra carbon in this transition region acts as electron scattering centers, which ultimately lead to a reduced electron mobility. This study is able to directly correlate the microstructure on an atomic

  19. Visions of Atomic Scale Tomography

    SciTech Connect

    Kelly, T. F.; Miller, Michael K; Rajan, Krishna; Ringer, S. P.

    2012-01-01

    A microscope, by definition, provides structural and analytical information about objects that are too small to see with the unaided eye. From the very first microscope, efforts to improve its capabilities and push them to ever-finer length scales have been pursued. In this context, it would seem that the concept of an ultimate microscope would have received much attention by now; but has it really ever been defined? Human knowledge extends to structures on a scale much finer than atoms, so it might seem that a proton-scale microscope or a quark-scale microscope would be the ultimate. However, we argue that an atomic-scale microscope is the ultimate for the following reason: the smallest building block for either synthetic structures or natural structures is the atom. Indeed, humans and nature both engineer structures with atoms, not quarks. So far as we know, all building blocks (atoms) of a given type are identical; it is the assembly of the building blocks that makes a useful structure. Thus, would a microscope that determines the position and identity of every atom in a structure with high precision and for large volumes be the ultimate microscope? We argue, yes. In this article, we consider how it could be built, and we ponder the answer to the equally important follow-on questions: who would care if it is built, and what could be achieved with it?

  20. Combining Atomic Force Microscopy and Depth-Sensing Instruments for the Nanometer-Scale Mechanical Characterization of Soft Matter

    NASA Astrophysics Data System (ADS)

    Tranchida, Davide; Piccarolo, Stefano

    Complex materials exhibit a hierarchical structure where a gradient of features on nanometer scale is induced by the synthetic route eventually enhanced by the loading condition. The nanometer scale at which individual components arrange, determining their properties, is a current challenge of mechanical testing. In this work, a survey on nanoindentation is outlined based on the comparison of results obtained by Atomic Force Microscopy and Depth-Sensing Instruments and their combination. An Atomic Force Microscope equipped with a Force Transducer gives indeed the possibility to scan the sample surface in contact mode, thereby allowing one to choose a suitable position for the nanoindentation, as well as imaging the residual imprint left on the sample. The analysis of the applied load vs. penetration depth curve, also called force curve, shows the limitations of current approaches to determine elastic moduli of compliant viscoelastic materials. Significant deviations from the expected values are observed even after optimizing testing conditions, so as to minimize the artifacts like viscoelastic effects or pile-up. As rigorous approaches are yet to be applied to the interpretation of force curves accounting also of viscoelastic material behavior, an empirical calibration recently proposed by the authors is verified against a set of data on model samples spanning a range of moduli, typical of compliant materials and close to each other, so as to challenge the resolution potential of this method, as well as others in use in the literature.

  1. Scanning Josephson spectroscopy on the atomic scale

    NASA Astrophysics Data System (ADS)

    Randeria, Mallika T.; Feldman, Benjamin E.; Drozdov, Ilya K.; Yazdani, Ali

    2016-04-01

    The Josephson effect provides a direct method to probe the strength of the pairing interaction in superconductors. By measuring the phase fluctuating Josephson current between a superconducting tip of a scanning tunneling microscope and a BCS superconductor with isolated magnetic adatoms on its surface, we demonstrate that the spatial variation of the pairing order parameter can be characterized on the atomic scale. This system provides an example where the local pairing potential suppression is not directly reflected in the spectra measured via quasiparticle tunneling. Spectroscopy with such superconducting tips also shows signatures of previously unexplored Andreev processes through individual impurity-bound Shiba states. The atomic resolution achieved here establishes scanning Josephson spectroscopy as a promising technique for the study of novel superconducting phases.

  2. Ohm's law survives to the atomic scale.

    PubMed

    Weber, B; Mahapatra, S; Ryu, H; Lee, S; Fuhrer, A; Reusch, T C G; Thompson, D L; Lee, W C T; Klimeck, G; Hollenberg, L C L; Simmons, M Y

    2012-01-01

    As silicon electronics approaches the atomic scale, interconnects and circuitry become comparable in size to the active device components. Maintaining low electrical resistivity at this scale is challenging because of the presence of confining surfaces and interfaces. We report on the fabrication of wires in silicon--only one atom tall and four atoms wide--with exceptionally low resistivity (~0.3 milliohm-centimeters) and the current-carrying capabilities of copper. By embedding phosphorus atoms within a silicon crystal with an average spacing of less than 1 nanometer, we achieved a diameter-independent resistivity, which demonstrates ohmic scaling to the atomic limit. Atomistic tight-binding calculations confirm the metallicity of these atomic-scale wires, which pave the way for single-atom device architectures for both classical and quantum information processing. PMID:22223802

  3. Atomic scale memory at a silicon surface

    NASA Astrophysics Data System (ADS)

    Bennewitz, R.; Crain, J. N.; Kirakosian, A.; Lin, J.-L.; McChesney, J. L.; Petrovykh, D. Y.; Himpsel, F. J.

    2002-08-01

    The limits of pushing storage density to the atomic scale are explored with a memory that stores a bit by the presence or absence of one silicon atom. These atoms are positioned at lattice sites along self-assembled tracks with a pitch of five atom rows. The memory can be initialized and reformatted by controlled deposition of silicon. The writing process involves the transfer of Si atoms to the tip of a scanning tunnelling microscope. The constraints on speed and reliability are compared with data storage in magnetic hard disks and DNA.

  4. Atomic oxygen damage characterization by photothermal scanning

    NASA Technical Reports Server (NTRS)

    Williams, A. W.; Wood, N. J.; Zakaria, A. B.

    1993-01-01

    In this paper we use a photothermal imaging technique to characterize the damage caused to an imperfectly coated gold-coated Kapton sample exposed to successively increased fluences of atomic oxygen in a laboratory atomic source.

  5. Characterizing single atom optical dipole traps

    NASA Astrophysics Data System (ADS)

    Shih, Chung-Yu; Gibbons, Michael; Chapman, Michael

    2012-06-01

    Trapping and manipulating individual neutral atoms in far off-resonant traps (FORTs) is a promising approach for quantum information processing. It is important to characterize the trapping environment of the atom and the atomic level shifts due to the trapping fields. Using non-destructive measurement techniques,ootnotetextM. J. Gibbons et al., Phys. Rev. Lett 106, 133002 (2011). we have measured the level dependent AC Stark shifts, trap frequencies, and temperature of single rubidium atoms confined in optical dipole trap.

  6. Seebeck effect at the atomic scale.

    PubMed

    Lee, Eui-Sup; Cho, Sanghee; Lyeo, Ho-Ki; Kim, Yong-Hyun

    2014-04-01

    The atomic variations of electronic wave functions at the surface and electron scattering near a defect have been detected unprecedentedly by tracing thermoelectric voltages given a temperature bias [Cho et al., Nat. Mater. 12, 913 (2013)]. Because thermoelectricity, or the Seebeck effect, is associated with heat-induced electron diffusion, how the thermoelectric signal is related to the atomic-scale wave functions and what the role of the temperature is at such a length scale remain very unclear. Here we show that coherent electron and heat transport through a pointlike contact produces an atomic Seebeck effect, which is described by the mesoscopic Seebeck coefficient multiplied by an effective temperature drop at the interface. The mesoscopic Seebeck coefficient is approximately proportional to the logarithmic energy derivative of local density of states at the Fermi energy. We deduced that the effective temperature drop at the tip-sample junction could vary at a subangstrom scale depending on atom-to-atom interaction at the interface. A computer-based simulation method of thermoelectric images is proposed, and a point defect in graphene was identified by comparing experiment and the simulation of thermoelectric imaging. PMID:24745445

  7. Atomic-Scale Imprinting into Amorphous Metals

    NASA Astrophysics Data System (ADS)

    Schwarz, Udo; Li, Rui; Simon, Georg; Kinser, Emely; Liu, Ze; Chen, Zheng; Zhou, Chao; Singer, Jonathan; Osuji, Chinedum; Schroers, Jan

    Nanoimprinting by thermoplastic forming (TPF) has attracted significant attention in recent years due to its promise of low-cost fabrication of nanostructured devices. Usually performed using polymers, amorphous metals have been identified as a material class that might be even better suited for nanoimprinting due to a combination of mechanical properties and processing ability. Commonly referred to as metallic glasses, their featureless atomic structure suggests that there may not be an intrinsic size limit to the material's ability to replicate a mold. To study this hypothesis, we demonstrate atomic-scale imprinting into amorphous metals by TPF under ambient conditions. Atomic step edges of a SrTiO3 (STO) single crystal used as mold were successfully imprinted into Pt-based bulk metallic glasses (BMGs) with high fidelity. Terraces on the BMG replicas possess atomic smoothness with sub-Angstrom roughness that is identical to the one measured on the STO mold. Systematic studies revealed that the quality of the replica depends on the loading rate during imprinting, that the same mold can be used multiple times without degradation of mold or replicas, and that the atomic-scale features on as-imprinted BMG surfaces has impressive long-term stability (months).

  8. Structural materials: understanding atomic scale microstructures

    SciTech Connect

    Marquis, E A; Miller, Michael K; Blavette, D; Ringer, S. P.; Sudbrack, C; Smith, G.D.W.

    2009-01-01

    With the ability to locate and identify atoms in three dimensions, atom-probe tomography (APT) has revolutionized our understanding of structure-property relationships in materials used for structural applications. The atomic-scale details of clusters, second phases, and microstructural defects that control alloy properties have been investigated, providing an unprecedented level of detail on the origins of aging behavior, strength, creep, fracture toughness, corrosion, and irradiation resistance. Moreover, atomic-scale microscopy combined with atomistic simulation and theoretical modeling of material behavior can guide new alloy design. In this article, selected examples highlight how APT has led to a deeper understanding of materials structures and therefore properties, starting with the phase transformations controlling the aging and strengthening behavior of complex Al-, Fe-, and Ni-based alloys systems. The chemistry of interfaces and structural defects that play a crucial role in high-temperature strengthening, fracture, and corrosion resistance are also discussed, with particular reference to Zr- and Al-alloys and FeAl intermetallics.

  9. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.

    PubMed

    Baldwin, Samuel J; Kreplak, Laurent; Lee, J Michael

    2016-07-01

    Tendons exposed to tensile overload show a structural alteration at the fibril scale termed discrete plasticity. Serial kinks appear along individual collagen fibrils that are susceptible to enzymatic digestion and are thermally unstable. Using atomic force microscopy we mapped the topography and mechanical properties in dehydrated and hydrated states of 25 control fibrils and 25 fibrils displaying periodic kinks, extracted from overloaded bovine tail tendons. Using the measured modulus of the hydrated fibrils as a probe of molecular density, we observed a non-linear negative correlation between molecular density and kink density of individual fibrils. This is accompanied by an increase in water uptake with kink density and a doubling of the coefficient of variation of the modulus between kinked, and control fibrils. The mechanical property maps of kinked collagen fibrils show radial heterogeneity that can be modeled as a high-density core surrounded by a low-density shell. The core of the fibril contains the kink structures characteristic of discrete plasticity; separated by inter-kink regions, which often retain the D-banding structure. We propose that the shell and kink structures mimic characteristic damage motifs observed in laid rope strands. PMID:26925699

  10. Atomic-scale characterization of hydrogenated amorphous-silicon films and devices. Annual subcontract report, 14 February 1994--14 April 1995

    SciTech Connect

    Gallagher, A.; Tanenbaum, D.; Laracuente, A.; Jelenkovic, B.

    1995-08-01

    Properties of the hydrogenated amorphous silicon (a-Si:H) films used in photovoltaic (PV) panels are reported. The atomic-scale topology of the surface of intrinsic a-Si:H films, measured by scanning tunneling microscopy (STM) as a function of film thickness, are reported and diagnosed. For 1-500-nm-thick films deposited under normal device-quality conditions from silane discharges, most portions of these surfaces are uniformly hilly without indications of void regions. However, the STM images indicate that 2-6-nm silicon particulates are continuously deposited into the growing film from the discharge and fill approximately 0.01% of the film volume. Although the STM data are not sensitive to the local electronic properties near these particulates, it is very likely that the void regions grow around them and have a deleterious effect on a-Si:H photovoltaics. Preliminary observations of particulates in the discharge, based on light scattering, confirm that particulates are present in the discharge and that many collect and agglomerate immediately downstream of the electrodes. Progress toward STM measurements of the electronic properties of cross-sectioned a-Si:H PV cells is also reported.

  11. Characterization of an Oscillating Fluidic Atomizer

    NASA Astrophysics Data System (ADS)

    Kumar, Ujjwal; Kiger, Kenneth; Raghu, Surya

    1998-11-01

    The atomization characteristics of a capillary-jet fluidic oscillator is studied. A unique feature of this atomizer is that the nozzle geometry produces a thin capillary jet which is forced to oscillate in a 2-dimensional plane through the use of passive feedback limited internal instabilities. The objective of the current work is to characterize the influence of the jet oscillation and stretching on the break-up properties of the capillary ligament. To this end, particle tracking velocimetry and shadowgraph techniques are used to measure droplet size, number density and velocity as a function of position within the spray fan. The break-up length and spray angle is also used to analyze the atomization behavior. The nozzle is studied for a viscosity range of 0.5 - 1.9 centistokes, flowrates from 5 to 30 cc/min, which gives Reynolds number range between 400 - 7500 and a Weber number from 78 to 700. Preliminary results show that the droplets produced by the atomizer are relatively uniform in size, while their velocity is a strong function of the supply pressure (flowrate). Break-up length initially decreases while spray-angle increases with flowrate and saturates at constant values. Effects of turbulent transition on the atomization will be discussed. Work supported by Bowles Fluidics Inc., and the NSF under contract CTS-097027.

  12. A millimeter-scale atomic frequency reference

    NASA Astrophysics Data System (ADS)

    Schwindt, Peter; Kitching, John; Knappe, Svenja; Liew, Li-Anne; Shah, Vishal; Moreland, John; Hollberg, Leo

    2004-05-01

    We are developing a MEMS-fabricated chip-scale atomic clock that uses all-optical excitation to interrogate the hyperfine splitting of cesium. To date, we have constructed several clock physics packages that include a laser, micro-optics package, cesium vapor cell, and photo diode. A recent physics package had a fractional frequency instability of 3*10-10 at one second, had a volume of 9.5 mm^3, and used 75 mW of power. We are working to decrease power consumption of physics package to 15 mW and to integrate control electronics and a local oscillator, such that the entire clock will be 1 cm^3 in size and use 30 mW of power, allowing battery operation. Because of the MEMS fabrication techniques employed, frequency references of this type could be assembled at the wafer level, enabling low-cost mass-production of thousands of identical units with the same process sequence, and easy integration with other electronics.

  13. Atomic-scale imaging of DNA using scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Driscoll, Robert J.; Youngquist, Michael G.; Baldeschwieler, John D.

    1990-07-01

    THE scanning tunnelling microscope (STM) has been used to visualize DNA1 under water2, under oil3 and in air4-6. Images of single-stranded DNA have shown that submolecular resolution is possible7. Here we describe atomic-resolution imaging of duplex DNA. Topographic STM images of uncoated duplex DNA on a graphite substrate obtained in ultra-high vacuum are presented that show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles show excellent correlation with atomic contours of the van der Waals surface of A-form DNA derived from X-ray crystallography. A comparison of variations in the barrier to quantum mechanical tunnelling (barrier-height) with atomic-scale topography shows correlation over the phosphate-sugar backbone but anticorrelation over the base pairs. This relationship may be due to the different chemical characteristics of parts of the molecule. Further investigation of this phenomenon should lead to a better understanding of the physics of imaging adsorbates with the STM and may prove useful in sequencing DNA. The improved resolution compared with previously published STM images of DNA may be attributable to ultra-high vacuum, high data-pixel density, slow scan rate, a fortuitously clean and sharp tip and/or a relatively dilute and extremely clean sample solution. This work demonstrates the potential of the STM for characterization of large biomolecular structures, but additional development will be required to make such high resolution imaging of DNA and other large molecules routine.

  14. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction is an old subject of research: the empirical da Vinci-Amontons laws are common knowledge. Macroscopic experiments systematically performed by the school of Bowden and Tabor have revealed that macroscopic friction can be related to the collective action of small asperities. During the last 15 years, experiments performed with the atomic force microscope gave new insight into the physics of single asperities sliding over surfaces. This development, together with complementary experiments by means of surface force apparatus and quartz microbalance, established the new field of nanotribology. At the same time, increasing computing power allowed for the simulation of the processes in sliding contacts consisting of several hundred atoms. It became clear that atomic processes cannot be neglected in the interpretation of nanotribology experiments. Experiments on even well-defined surfaces directly revealed atomic structures in friction forces. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes in the sliding contact.

  15. Invited review article: The statistical modeling of atomic clocks and the design of time scales.

    PubMed

    Levine, Judah; Ibarra-Manzano, O

    2012-02-01

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed. PMID:22380071

  16. Invited Review Article: The statistical modeling of atomic clocks and the design of time scales

    SciTech Connect

    Levine, Judah

    2012-02-15

    I will show how the statistical models that are used to describe the performance of atomic clocks are derived from their internal design. These statistical models form the basis for time scales, which are used to define international time scales such as International Atomic Time and Coordinated Universal Time. These international time scales are realized by ensembles of clocks at national laboratories such as the National Institute of Standards and Technology, and I will describe how ensembles of atomic clocks are characterized and managed.

  17. Tip characterizer for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Hiroshi; Fujimoto, Toshiyuki; Ichimura, Shingo

    2006-10-01

    A tip characterizer for atomic force microscopy (AFM) was developed based on the fabrication of multilayer thin films. Comb-shaped line and space (LS) and wedge-shaped knife-edge structures were fabricated on a GaAs substrate. GaAs /InGaP superlattices were used to control the width of the structures precisely, and selective chemical etching was used to form sharp edges on the nanostructures. The minimum size of the LS structure was designed to be 10nm, and the radius of the knife edge was less than 5nm. These nanostructures were used as a well-defined tip characterizer to measure the shape of a tip on a cantilever from line profiles of AFM images.

  18. Atomic scale electron vortices for nanoresearch

    SciTech Connect

    Verbeeck, J.; Van Tendeloo, G.; Schattschneider, P.; Loeffler, S.; Lazar, S.; Stoeger-Pollach, M.; Steiger-Thirsfeld, A.

    2011-11-14

    Electron vortex beams were only recently discovered and their potential as a probe for magnetism in materials was shown. Here we demonstrate a method to produce electron vortex beams with a diameter of less than 1.2 Angst . This unique way to prepare free electrons to a state resembling atomic orbitals is fascinating from a fundamental physics point of view and opens the road for magnetic mapping with atomic resolution in an electron microscope.

  19. Atomic-scale yield and dislocation nucleation in KBr

    NASA Astrophysics Data System (ADS)

    Filleter, T.; Maier, S.; Bennewitz, R.

    2006-04-01

    Atomic-scale plastic deformation on a KBr(100) surface has been produced and characterized by use of atomic force microscopy (AFM) in ultrahigh vacuum. The structure of displaced material was imaged using noncontact mode AFM after first implementing the sharp silicon tip as an indenter. After indentation the KBr(100) surface is found to exhibit monatomic terraces which are formed via dislocation nucleation and glide. Discontinuities in the force-distance curves recorded during indentation are correlated to the creation of dislocation loops in the crystal. Incipient dislocation nucleation has been characterized as the abrupt monatomic layer displacement of the tip into the sample and the corresponding creation of monatomic terraces. The indenter radius has been found to significantly influence the lateral extent of the dislocation structure and the distribution of force discontinuities during indentation. The shear stress at the yield point was experimentally determined to be 2.5GPa which is consistent with recent theoretical predictions for the ideal shear stress of KBr.

  20. Friction and Wear on the Atomic Scale

    NASA Astrophysics Data System (ADS)

    Gnecco, Enrico; Bennewitz, Roland; Pfeiffer, Oliver; Socoliuc, Anisoara; Meyer, Ernst

    Friction has long been the subject of research: the empirical da Vinci-Amontons friction laws have been common knowledge for centuries. Macroscopic experiments performed by the school of Bowden and Tabor revealed that macroscopic friction can be related to the collective action of small asperities. Over the last 15 years, experiments performed with the atomic force microscope have provided new insights into the physics of single asperities sliding over surfaces. This development, together with the results from complementary experiments using surface force apparatus and the quartz microbalance, have led to the new field of nanotribology. At the same time, increasing computing power has permitted the simulation of processes that occur during sliding contact involving several hundreds of atoms. It has become clear that atomic processes cannot be neglected when interpreting nanotribology experiments. Even on well-defined surfaces, experiments have revealed that atomic structure is directly linked to friction force. This chapter will describe friction force microscopy experiments that reveal, more or less directly, atomic processes during sliding contact.

  1. Atomic-scale disproportionation in amorphous silicon monoxide

    PubMed Central

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  2. Atomic-scale disproportionation in amorphous silicon monoxide

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-05-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material.

  3. Atomic-scale disproportionation in amorphous silicon monoxide.

    PubMed

    Hirata, Akihiko; Kohara, Shinji; Asada, Toshihiro; Arao, Masazumi; Yogi, Chihiro; Imai, Hideto; Tan, Yongwen; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    Solid silicon monoxide is an amorphous material which has been commercialized for many functional applications. However, the amorphous structure of silicon monoxide is a long-standing question because of the uncommon valence state of silicon in the oxide. It has been deduced that amorphous silicon monoxide undergoes an unusual disproportionation by forming silicon- and silicon-dioxide-like regions. Nevertheless, the direct experimental observation is still missing. Here we report the amorphous structure characterized by angstrom-beam electron diffraction, supplemented by synchrotron X-ray scattering and computer simulations. In addition to the theoretically predicted amorphous silicon and silicon-dioxide clusters, suboxide-type tetrahedral coordinates are detected by angstrom-beam electron diffraction at silicon/silicon-dioxide interfaces, which provides compelling experimental evidence on the atomic-scale disproportionation of amorphous silicon monoxide. Eventually we develop a heterostructure model of the disproportionated silicon monoxide which well explains the distinctive structure and properties of the amorphous material. PMID:27172815

  4. Atomic scale interface structure in metallic superlattices

    NASA Astrophysics Data System (ADS)

    Uzdin, V. M.; Keune, W.

    2007-04-01

    We present an atomistic model of interface alloying that presupposes exchange of adatoms with substrate atoms and floating of adatoms on the upper layers during deposition. Due to the existence of a preferred direction (the growth direction), the chemical profile near the interface proves to be asymmetrical. The floating algorithm combined with self-consistent calculations of atomic magnetic moments is used as a model for interpreting Mössbauer data obtained from 57Fe-enriched interfacial tracer layers in Fe/Cr(001) superlattices. The superlattices were grown at different temperatures in order to modify their interface roughness. A linear correlation between calculated moment peaks and observed distinct magnetic hyperfine fields was found. Our experimental samples exhibit larger intermixing than the simplified theoretical model we used. The experimental giant magnetoresistance ratio was observed to increase with the decreasing fraction of certain 57Fe atoms located in the interfacial region. Therefore, bulk scattering from impurity atoms appears to provide the main contribution to the giant magnetoresistance in Fe/Cr. Moreover, our theoretical results clarify the dependence of the short-wavelength period of interlayer coupling on the interface roughness in Fe/Cr.

  5. Atomic scale elemental mapping of light elements in multilayered perovskite coatings

    NASA Astrophysics Data System (ADS)

    Negrea, R. F.; Teodorescu, V. S.; Ghica, C.

    2015-11-01

    Spherical aberration corrected transmission electron microscopes offer unprecedented capabilities in materials structural characterization down to atomic resolution. Electron energy loss spectroscopy (EELS) - spectrum imaging (SI) and annular bright field (ABF) imaging allow to simultaneously identify both the position and nature of the atomic species in a crystalline material. These techniques, along with conventional high-resolution transmission electron microscopy are particularly useful in heterostructures interfaces like epitaxial multilayers characterization, for identifying possible atomic interdiffusion at sub-nanometric scale. This paper presents the structural and compositional microanalysis down to atomic resolution of an epitaxial BaTiO3/SrRuO3/SrTiO3 ferroelectric heterostructure using complex complementary analytical electron microscopy techniques. The atomic arrangement of both heavy and light atomic species across the interfaces in the BaTiO3/SrRuO3/SrTiO3 heterostructures is revealed.

  6. Atomic level microstructural characterization by APFIM

    SciTech Connect

    Miller, M.K.

    1996-10-01

    Atom probe field ion microscopy has been used to characterize Ni aluminides in addition to changes in microstructure of pressure vessel steels as a result of exposure to neutron irradiation. Ultrafine intragranular Cu precipitates and P segregation to grain and lath boundaries have been quantified in the pressure vessel steels. In boron-doped Ni{sub 3}Al, the B additions were found to segregate to dislocations, low angle boundaries, antiphase boundaries, stacking faults, and grain boundaries. In boron-doped NiAl, B segregation to grain boundaries and ultrafine MB{sub 2} precipitates were observed. In Mo-doped NiAl, enrichments of Mo, C, N/Si, B, and Fe were observed at the grain boundaries together with Mo precipitates and low Mo matrix solubility.

  7. Atomic-Scale Imaging and Spectroscopy Using Scanning Tunneling Microscopy.

    NASA Astrophysics Data System (ADS)

    Youngquist, Michael George

    Advances in scanning tunneling microscopy (STM) instrumentation and applications are presented. An ultrahigh vacuum (UHV) scanning tunneling microscope incorporating computer-controlled two-dimensional sample translation and in vacuo tip and sample transfer was developed. Its performance is documented through large-area and atomic -resolution imaging of highly stepped Si(111) 7 x 7 reconstructed surfaces and physisorbed clusters on graphite. An STM with automated approach and intra-Dewar spring suspension was developed for operation in cryogenic liquids. A high performance digital signal processor (DSP) based control system was constructed, and software with advanced spectroscopic imaging and data processing capabilities was developed. The feasibility of individual-molecule vibrational spectroscopy via STM-detected inelastic electron tunneling is assessed. In preliminary experiments, a low-temperature STM was used for energy gap and phonon spectroscopy of superconducting Pb films. The first STM observation of phonon density of states effects in a superconductor is reported. A systematic UHV STM imaging and spectroscopy study of 2H-MoS_2 was conducted. Atom -resolved images from three distinct imaging modes are presented. Occasional appearance of negative differential resistance (NDR) in I vs. V measurements is traced to changing tip electronic structure rather than localized surface states. Other potential NDR mechanisms are discussed including electron trap charging and resonant tunneling through a double-barrier quantum well structure arising from layer separation in the MoS_2 crystal. DNA was imaged at atomic resolution with a UHV STM. Images show double-helical structure, base pairs, and atomic-scale substructure. Experimental STM profiles have atom-for-atom correlation with the A-DNA van der Waals surface. This work demonstrates the potential of the STM for characterization of large biomolecular structures. Impurity-pinned steps on silicon and gold surfaces

  8. TOPICAL REVIEW Plasmons in nanoscale and atomic-scale systems

    NASA Astrophysics Data System (ADS)

    Nagao, Tadaaki; Han, Gui; Hoang, ChungVu; Wi, Jung-Sub; Pucci, Annemarie; Weber, Daniel; Neubrech, Frank; Silkin, Vyacheslav M.; Enders, Dominik; Saito, Osamu; Rana, Masud

    2010-10-01

    Plasmons in metallic nanomaterials exhibit very strong size and shape effects, and thus have recently gained considerable attention in nanotechnology, information technology, and life science. In this review, we overview the fundamental properties of plasmons in materials with various dimensionalities and discuss the optical functional properties of localized plasmon polaritons in nanometer-scale to atomic-scale objects. First, the pioneering works on plasmons by electron energy loss spectroscopy are briefly surveyed. Then, we discuss the effects of atomistic charge dynamics on the dispersion relation of propagating plasmon modes, such as those for planar crystal surface, atomic sheets and straight atomic wires. Finally, standing-wave plasmons, or antenna resonances of plasmon polariton, of some widely used nanometer-scale structures and atomic-scale wires (the smallest possible plasmonic building blocks) are exemplified along with their applications.

  9. Resistance to Sliding on Atomic Scales

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    The structure and stability of agglomerates of micron-sized particles is determined by the mechanical properties of the individual contacts between the constituent particles. In this paper we study the possibility of aggregate rearrangements by sliding. Since the contacts between (sub)micron particles are only a few hundred atoms in diameter, processes on atomic levels will play the dominating roll. We study a theoretical model of sliding friction for surfaces that are either flat or contain steps in their grids. The results show that sliding over flat surfaces may produce a large range of friction coefficients, including zero if the adhesive forces are small compared to the binding forces inside a body. However, both grid alignment and steps in the surface will lead to high values for friction. These processes combined virtually eliminate the possibility of sliding in a collision of two (sub)micron sized particles at velocities low enough for sticking to occur. On the other hand we show that in collisions between aggregates sliding may be an important factor for energy dissipation and compaction.

  10. Atomic-scale confinement of resonant optical fields.

    PubMed

    Kern, Johannes; Grossmann, Swen; Tarakina, Nadezda V; Häckel, Tim; Emmerling, Monika; Kamp, Martin; Huang, Jer-Shing; Biagioni, Paolo; Prangsma, Jord C; Hecht, Bert

    2012-11-14

    In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices. PMID:22984927

  11. Characterizing atomic force microscopy tip shape in use.

    PubMed

    Wang, Chunmei; Itoh, Hiroshi; Sun, Jielin; Hu, Jun; Shen, Dianhong; Ichimura, Shingo

    2009-02-01

    A new tip characterizer based on the fabrication of multilayer thin films for atomic force microscopy (AFM) was developed to analyze the effective tip shape while in use. The precise structure of this tip characterizer was measured by transmission electron microscopy. Four different types of commercial tips with various radii were characterized by the tip characterizer and by conventional scanning electron microscopy (SEM). The results were compared to obtain a relationship between the actual and effective tip shapes. A quantitative analysis was performed of apex radii measured from line profiles of comb-shaped patterns and nanometer-scale knife-edges without the problem of edge uncertainty in the SEM image. Degradation of the AFM tip induced by electron-beam irradiation was studied by using SEM and the tip characterizer. A potential technique for fabricating symmetric AFM tips based on irradiation by an electron beam and a quantitative analysis of changing the tip apex in SEM were examined with AFM using the tip characterizer. PMID:19441396

  12. Atomic-scale control of graphene magnetism by using hydrogen atoms.

    PubMed

    González-Herrero, Héctor; Gómez-Rodríguez, José M; Mallet, Pierre; Moaied, Mohamed; Palacios, Juan José; Salgado, Carlos; Ugeda, Miguel M; Veuillen, Jean-Yves; Yndurain, Félix; Brihuega, Iván

    2016-04-22

    Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20-millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed. This atomically modulated spin texture, which extends several nanometers away from the hydrogen atom, drives the direct coupling between the magnetic moments at unusually long distances. By using the STM tip to manipulate hydrogen atoms with atomic precision, it is possible to tailor the magnetism of selected graphene regions. PMID:27102478

  13. Atomic-scale control of graphene magnetism by using hydrogen atoms

    NASA Astrophysics Data System (ADS)

    González-Herrero, Héctor; Gómez-Rodríguez, José M.; Mallet, Pierre; Moaied, Mohamed; Palacios, Juan José; Salgado, Carlos; Ugeda, Miguel M.; Veuillen, Jean-Yves; Yndurain, Félix; Brihuega, Iván

    2016-04-01

    Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20–millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed. This atomically modulated spin texture, which extends several nanometers away from the hydrogen atom, drives the direct coupling between the magnetic moments at unusually long distances. By using the STM tip to manipulate hydrogen atoms with atomic precision, it is possible to tailor the magnetism of selected graphene regions.

  14. Atomic force microscopy characterization of cellulose nanocrystals.

    PubMed

    Lahiji, Roya R; Xu, Xin; Reifenberger, Ronald; Raman, Arvind; Rudie, Alan; Moon, Robert J

    2010-03-16

    Cellulose nanocrystals (CNCs) are gaining interest as a "green" nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs is performed using atomic force microscopy (AFM). AFM experiments involving high-resolution dynamic mode imaging and jump-mode measurements were performed on individual CNCs under ambient conditions with 30% relative humidity (RH) and under a N(2) atmosphere with 0.1% RH. A procedure was also developed to calculate the CNC transverse elastic modulus (E(T)) by comparing the experimental force-distance curves measured on the CNCs with 3D finite element calculations of tip indentation on the CNC. The E(T) of an isolated CNC was estimated to be between 18 and 50 GPa at 0.1% RH; however, the associated crystallographic orientation of the CNC could not be determined. CNC properties were reasonably uniform along the entire CNC length, despite variations along the axis of 3-8 nm in CNC height. The range of RH used in this study was found to have a minimal effect on the CNC geometry, confirming the resistance of the cellulose crystals to water penetration. CNC flexibility was also investigated by using the AFM tip as a nanomanipulator. PMID:20055370

  15. Effect of atomizer scale and fluid properties on atomization mechanisms and spray characteristics

    NASA Astrophysics Data System (ADS)

    Waind, Travis

    Atomization is chaos. The breakup of liquid structures by a gas encompasses such a wide range of possible configurations that a definitive mechanism describing breakup in any and all situations is an impossibility. However, when focus is applied, trends can be teased out of experimental data that seem to appropriately describe the action undertaken. These studies sought to better understand atomization, specifically coaxial, two-stream, airblast (or air-assist) atomization in which a central liquid jet is broken up by an annular, high-velocity gas stream. The studies enclosed focused on identifying the effect of changing the atomizer's scale on atomization. While most (but not all) atomization studies only focus on the resulting far-field drop diameters, these studies placed the focus largely on the intermediate structures, in the form of the intact liquid jet (ILJ), while also quantifying the resulting drop diameters. The location and shape of the ILJ constantly change, and on its surface, wavelengths were seen to form and grow, which have been correlated to the resulting drop diameters in previous studies. The studies enclosed herein are unique in that they attempt to apply and explain exiting mechanism-based breakup mechanisms to regimes, fluids, and geometry changes not yet evaluated in the literature. Existing correlations were compared to the experimental data for a range of atomizer geometries, and when they were found lacking, Buckingham-(Pi) theorem was used to develop new correlations for predicting behavior. Additionally, the method developed for the calculation of these parameters for other image sets is included, allowing for easy comparison and value verification. A small-scale, coaxial atomization system was used to atomize water and two silicone oils with air. The atomizers used in these studies had the same general geometry type, but had varying sizes, allowing for the effect of both scale and geometry to be evaluated. These studies quantified

  16. Zirconium oxidation on the atomic scale.

    PubMed

    Hudson, Daniel; Cerezo, Alfred; Smith, George D W

    2009-04-01

    Zirconium alloys are used in the nuclear industry as fuel rod cladding. They are chosen for this role because of their good mechanical properties and low thermal neutron absorption. Oxidation of these alloys by coolant is one of the chief limiting factors of the fuel burn-up efficiency. The aim of the present study is to understand these oxidation mechanisms. As a first step, a fundamental study of the oxidation of commercially pure zirconium has been conducted using the 3D atom probe (3DAP). The current generation of 3DAPs allows both voltage and laser pulsing, providing data sets of many millions of ions. According to the literature the only stable oxide of zirconium is ZrO(2). However, the 3DAP shows that an initial layer a few nanometres thick forms with a composition of ZrO(1-)(x) when subjected to light oxidation. This result confirms and extends the work of Wadman et al. [Colloque de Physique 50 (1989) C8 303; Journal de Physique, 11 (1988) C6 49] and Wadman and Andrén [in: C.M. Euchen, A.M. Garde (Eds.), Zirconium in the Nuclear Industry: Ninth Symposium, ASTM STP 1132, ASTM, USA, 1991, p. 461], who used 1DAP techniques, obtaining reduced data sets. Segregation of hydrogen to the metal-oxide interface and a distinct ZrH phase were observed in this study. A novel kinetics study of the room temperature oxidation of zirconium showed the ZrO layer to be non-protective over the time period investigated (up to 1h). PMID:19101084

  17. Conduction in alumina with atomic scale copper filaments

    SciTech Connect

    Xu, Xu; Liu, Jie; Anantram, M. P.

    2014-10-28

    The conductance of atomic scale filaments with three and seven Cu atoms in α-alumina are calculated using ab initio density functional theory. We find that the filament with 3 Cu atoms is sufficient to increase the conductance of 1.3 nm thick alumina film by more than 10{sup 3} times in linear response. As the applied voltage increases, the current quickly saturates and differential resistance becomes negative. Compared to the filament with three Cu atoms, while the conductance of the filament with seven Cu atoms is comparable in linear response, they carry as much as twenty times larger current at large biases. The electron transport is analyzed based on local density of states, and the negative differential resistance in the seven Cu filaments occurs due to their narrow bandwidth.

  18. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    PubMed

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena. PMID:25697199

  19. Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation

    NASA Astrophysics Data System (ADS)

    Lehtinen, O.; Kurasch, S.; Krasheninnikov, A. V.; Kaiser, U.

    2013-06-01

    Dislocations, one of the key entities in materials science, govern the properties of any crystalline material. Thus, understanding their life cycle, from creation to annihilation via motion and interaction with other dislocations, point defects and surfaces, is of fundamental importance. Unfortunately, atomic-scale investigations of dislocation evolution in a bulk object are well beyond the spatial and temporal resolution limits of current characterization techniques. Here we overcome the experimental limits by investigating the two-dimensional graphene in an aberration-corrected transmission electron microscope, exploiting the impinging energetic electrons both to image and stimulate atomic-scale morphological changes in the material. The resulting transformations are followed in situ, atom-by-atom, showing the full life cycle of a dislocation from birth to annihilation. Our experiments, combined with atomistic simulations, reveal the evolution of dislocations in two-dimensional systems to be governed by markedly long-ranging out-of-plane buckling.

  20. VCSEL polarization control for chip-scale atomic clocks.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Wendt, Joel Robert; Serkland, Darwin Keith; Keeler, Gordon Arthur

    2007-01-01

    Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

  1. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    PubMed Central

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  2. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors.

    PubMed

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level. PMID:26691537

  3. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    NASA Astrophysics Data System (ADS)

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-12-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  4. Understanding the Atomic-Scale World with the Molecular Workbench

    NASA Astrophysics Data System (ADS)

    Tinker, Robert F.

    2006-12-01

    The Molecular Workbench (MW) is a sophisticated system for developing and delivering interactive learning activities to teach basic concepts that govern atomic and nanoscale phenomena. The system is based on a molecular dynamics model that calculates the motion of atoms, molecules, and other objects in real time as a result of the applicable forces, including Lennard-Jones potentials, electrostatic potentials, elastic bonds, and external fields. Light-atom interactions are modeled with photons of selectable energy that interact with the excited states of atoms. The built-in authoring functions can be used to create or modify learning activities. The ease of creating MW materials has led to over 200 activities contributed by staff and collaborators. Many are housed in a database with fields that include an overview, learning objectives, a description of the central concepts addressed, textbook references, and extensions. MW has been used extensively in classrooms in grades 7-14. In several settings student learning gains have been measured using a pre-posttest design. Research results will be reported that show Overall increases in understanding of atomic scale phenomena at high school and community college levels. The ability to transfer understanding of atomic-scale phenomena to new situations and to reason about macroscopic phenomena on the basis of atomic-scale interactions. Better understanding of difficult questions that required immersive visualization and prediction MW is written in Java, so it runs under all common operating systems, including Mac OSX, Windows, and Linux. It is open source, so it can be shared and copied by any user.

  5. Physical essence of the multibody contact-sliding at atomic scale

    NASA Astrophysics Data System (ADS)

    Han, Xuesong

    2014-01-01

    Investigation the multibody contact-sliding occurred at atomic discrete contact spot will play an important role in determine the origin of tribology behavior and evaluates the micro-mechanical property of nanomaterials and thus optimizing the design of surface texture. This paper carries out large scale parallel molecular dynamics simulation on contact-sliding at atomic scale to uncover the special physical essence. The research shows that some kind of force field exists between nanodot pair and the interaction can be expressed by the linear combination of exponential function while the effective interaction distance limited in 1 angstrom for nanodot with several tens of nanometer diameter. The variation tendency about the interaction force between nanodot array is almost the same between nanodot pairs and thus the interaction between two nanodot array can be characterized by parallel mechanical spring. Multibody effect which dominates the interaction between atoms or molecules will gradually diminish with the increasing of length scales.

  6. Characterization and limits of a cold-atom Sagnac interferometer

    SciTech Connect

    Gauguet, A.; Canuel, B.; Leveque, T.; Chaibi, W.; Landragin, A.

    2009-12-15

    We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generation of ultrasensitive atom gyroscopes.

  7. Atomic-Scale Investigations of Multiwall Carbon Nanotube Growth

    NASA Astrophysics Data System (ADS)

    Behr, Michael John

    The combination of unique mechanical, thermal, optical, and electronic properties of carbon nanotubes (CNTs) make them a desirable material for use in a wide range of applications. Many of these unique properties are highly sensitive to how carbon atoms are arranged within the graphene nanotube wall. Precise structural control of this arrangement remains the key challenge of CNT growth to realizing their technological potential. Plasma-enhanced chemical vapor deposition (PECVD) from methane-hydrogen gas mixtures using catalytic nanoparticles enables large-scale growth of CNT films and controlled spatial placement of CNTs on a substrate, however, much is still unknown about what happens to the catalyst particle during growth, the atomistic mechanisms involved, and how these dictate the final nanotube structure. To investigate the fundamental processes of CNT growth by PECVD, a suite of characterization techniques were implemented, including attenuated total-reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical emission spectroscopy (OES), Raman spectroscopy, convergent-beam electron diffraction (CBED), high-resolution transmission and scanning-transmission electron microscopy (TEM, STEM), energy dispersive x-ray spectroscopy, and electron energy-loss spectroscopy (EELS). It is found that hydrogen plays a critical role in determining the final CNT structure through controlling catalyst crystal phase and morphology. At low hydrogen concentrations in the plasma iron catalysts are converted to Fe3C, from which high-quality CNTs grow; however, catalyst particles remain as pure iron when hydrogen is in abundance, and produce highly defective CNTs with large diameters. The initially faceted and equiaxed catalyst nanocrystals become deformed and are elongated into a teardrop morphology once a tubular CNT structure is formed around the catalyst particles. Although catalyst particles are single crystalline, they exhibit combinations of small-angle (˜1°-3

  8. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the

  9. Directing Matter: Towards Atomic Scale 3D Nanofabrication

    DOE PAGESBeta

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason Davidson; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Ovchinnikova, Olga S

    2016-01-01

    Enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids,more » and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less

  10. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    PubMed

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies. PMID:27183171

  11. Directing Matter: Toward Atomic-Scale 3D Nanofabrication

    DOE PAGESBeta

    Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; Lupini, Andrew R.; Rack, Philip D.; Unocic, Raymond R.; Sumpter, Bobby G.; Kalinin, Sergei V.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-05-16

    Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less

  12. Atomic-Scale Sliding Friction on Graphene in Water.

    PubMed

    Vilhena, J G; Pimentel, Carlos; Pedraz, Patricia; Luo, Feng; Serena, Pedro A; Pina, Carlos M; Gnecco, Enrico; Pérez, Rubén

    2016-04-26

    The sliding of a sharp nanotip on graphene completely immersed in water is investigated by molecular dynamics (MD) and atomic force microscopy. MD simulations predict that the atomic-scale stick-slip is almost identical to that found in ultrahigh vacuum. Furthermore, they show that water plays a purely stochastic role in sliding (solid-to-solid) friction. These observations are substantiated by friction measurements on graphene grown on Cu and Ni, where, oppositely of the operation in air, lattice resolution is readily achieved. Our results promote friction force microscopy in water as a robust alternative to ultra-high-vacuum measurements. PMID:26982997

  13. The chip-scale atomic clock : prototype evaluation.

    SciTech Connect

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert; Serkland, Darwin Keith; Tepolt, Gary; Geib, Kent Martin; Leblanc, John; Peake, Gregory Merwin; Rashid, Ahmed

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  14. Atomic scale investigation of silicon nanowires and nanoclusters

    PubMed Central

    2011-01-01

    In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers. PMID:21711788

  15. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination

    NASA Astrophysics Data System (ADS)

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-05-01

    We study three-body recombination of Ba++Rb +Rb in the mK regime where a single 138Ba+ ion in a Paul trap is immersed into a cloud of ultracold 87Rb atoms. We measure the energy dependence of the three-body rate coefficient k3 and compare the results to the theoretical prediction, k3∝Ecol-3 /4, where Ecol is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s -wave regime.

  16. Energy Scaling of Cold Atom-Atom-Ion Three-Body Recombination.

    PubMed

    Krükow, Artjom; Mohammadi, Amir; Härter, Arne; Denschlag, Johannes Hecker; Pérez-Ríos, Jesús; Greene, Chris H

    2016-05-13

    We study three-body recombination of Ba^{+}+Rb+Rb in the mK regime where a single ^{138}Ba^{+} ion in a Paul trap is immersed into a cloud of ultracold ^{87}Rb atoms. We measure the energy dependence of the three-body rate coefficient k_{3} and compare the results to the theoretical prediction, k_{3}∝E_{col}^{-3/4}, where E_{col} is the collision energy. We find agreement if we assume that the nonthermal ion energy distribution is determined by at least two different micromotion induced energy scales. Furthermore, using classical trajectory calculations we predict how the median binding energy of the formed molecules scales with the collision energy. Our studies give new insights into the kinetics of an ion immersed in an ultracold atom cloud and yield important prospects for atom-ion experiments targeting the s-wave regime. PMID:27232021

  17. An ignition key for atomic-scale engines.

    PubMed

    Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T; Todorov, Tchavdar N

    2012-10-10

    A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling. PMID:22987859

  18. Proteoglycans and their heterogeneous glycosaminoglycans at the atomic scale

    PubMed Central

    Sattelle, Benedict M.; Shakeri, Javad; Cliff, Matthew J.; Almond, Andrew

    2015-01-01

    Proteoglycan spatiotemporal organization underpins extracellular matrix biology but atomic scale glimpses of this microarchitecture are obscured by glycosaminoglycan size and complexity. To overcome this, multi-microsecond aqueous simulations of chondroitin and dermatan sulfates were abstracted into a prior coarse-grained model, which was extended to heterogeneous glycosaminoglycans and small leucine-rich proteoglycans. Exploration of relationships between sequence and shape led to hypotheses that proteoglycan size is dependent on glycosaminoglycan unit composition but independent of sequence permutation. Uronic acid conformational equilibria were modulated by adjacent hexosamine sulfonation and iduronic acid increased glycosaminoglycan chain volume and rigidity, while glucuronic acid imparted chain plasticity. Consequently, block copolymeric glycosaminoglycans contained microarchitectures capable of multivalent binding to growth factors and collagen, with potential for interactional synergy at greater chain number. The described atomic scale views of proteoglycans and heterogeneous glycosaminoglycans provide structural routes to understanding their fundamental signaling and mechanical biological roles and development of new biomaterials. PMID:25645947

  19. Interface of transition metal oxides at the atomic scale

    NASA Astrophysics Data System (ADS)

    Shang, Tong-Tong; Liu, Xin-Yu; Gu, Lin

    2016-09-01

    Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.

  20. Microfabricated chip-scale rubidium plasma light source for miniature atomic clocks.

    PubMed

    Venkatraman, Vinu; Pétremand, Yves; Affolderbach, Christoph; Mileti, Gaetano; de Rooij, Nico F; Shea, Herbert

    2012-03-01

    We present the microfabrication and characterization of a low-power, chip-scale Rb plasma light source, designed for optical pumping in miniature atomic clocks. A dielectric barrier discharge (DBD) configuration is used to ignite a Rb plasma in a micro-fabricated Rb vapor cell on which external indium electrodes were deposited. The device is electrically driven at frequencies between 1 and 36 MHz, and emits 140 μW of stable optical power while coupling less than 6 mW of electrical power to the discharge cell. Optical powers of up to 15 and 9 μW are emitted on the Rb D2 and D1 lines, respectively. Continuous operation of the light source for several weeks has been demonstrated, showing its capacity to maintain stable optical excitation of Rb atoms in chip-scale double-resonance atomic clocks. PMID:22481778

  1. Dynamic In-Situ Experimentation on Nanomaterials at the Atomic Scale.

    PubMed

    Xu, Tao; Sun, Litao

    2015-07-15

    With the development of in situ techniques inside transmission electron microscopes (TEMs), external fields and probes can be applied to the specimen. This development transforms the TEM specimen chamber into a nanolab, in which reactions, structures, and properties can be activated or altered at the nanoscale, and all processes can be simultaneously recorded in real time with atomic resolution. Consequently, the capabilities of TEM are extended beyond static structural characterization to the dynamic observation of the changes in specimen structures or properties in response to environmental stimuli. This extension introduces new possibilities for understanding the relationships between structures, unique properties, and functions of nanomaterials at the atomic scale. Based on the idea of setting up a nanolab inside a TEM, tactics for design of in situ experiments inside the machine, as well as corresponding examples in nanomaterial research, including in situ growth, nanofabrication with atomic precision, in situ property characterization, and nanodevice construction are presented. PMID:25703228

  2. Characterizing Soil Cracking at the Field Scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physical characterization of the soil cracking has always been a major challenge in scaling soil water interaction to the field level. This scaling would allow for the soil water flow in the field to be modeled in two distinct pools: across the soil matrix and in preferential flows thus tackling maj...

  3. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  4. Bohr model and dimensional scaling analysis of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Svidzinsky, Anatoly; Chen, Goong; Chin, Siu; Kim, Moochan; Ma, Dongxia; Murawski, Robert; Sergeev, Alexei; Scully, Marlan; Herschbach, Dudley

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to few electron systems, such as the H2 molecule. Here we review recent developments of the Bohr model that connect it with dimensional scaling procedures adapted from quantum chromodynamics. This approach treats electrons as point particles whose positions are determined by optimizing an algebraic energy function derived from the large-dimension limit of the Schrödinger equation. The calculations required are simple yet yield useful accuracy for molecular potential curves and bring out appealing heuristic aspects. We first examine the ground electronic states of H2, HeH, He2, LiH, BeH and Li2. Even a rudimentary Bohr model, employing interpolation between large and small internuclear distances, gives good agreement with potential curves obtained from conventional quantum mechanics. An amended Bohr version, augmented by constraints derived from Heitler-London or Hund-Mulliken results, dispenses with interpolation and gives substantial improvement for H2 and H3. The relation to D-scaling is emphasized. A key factor is the angular dependence of the Jacobian volume element, which competes with interelectron repulsion. Another version, incorporating principal quantum numbers in the D-scaling transformation, extends the Bohr model to excited S states of multielectron atoms. We also discuss kindred Bohr-style applications of D-scaling to the H atom subjected to superstrong magnetic fields or to atomic anions subjected to high frequency, superintense laser fields. In conclusion, we note correspondences to the prequantum bonding models of Lewis and Langmuir and to the later resonance theory of Pauling, and discuss prospects for joining D-scaling with other methods to extend its utility and scope.

  5. Atomic-scale electrochemistry on the surface of a manganite

    DOE PAGESBeta

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstratemore » the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.« less

  6. Atomic-scale electrochemistry on the surface of a manganite

    SciTech Connect

    Vasudevan, Rama K.; Tselev, Alexander; Baddorf, Arthur P.; Kalinin, Sergei V.

    2015-04-09

    The doped manganese oxides (manganites) have been widely studied for their colossal magnetoresistive effects, for potential applications in oxide spintronics, electroforming in resistive switching devices, and are materials of choice as cathodes in modern solid oxide fuel cells. However, little experimental knowledge of the dynamics of the surfaces of perovskite manganites at the atomic scale exists. Here, through in-situ scanning tunnelling microscopy (STM), we demonstrate atomic resolution on samples of La0.625Ca0.375MnO3 grown on (001) SrTiO3 by pulsed laser deposition (PLD). Furthermore, by applying triangular DC waveforms of increasing amplitude to the STM tip, and measuring the tunnelling current, we demonstrate the ability to both perform and monitor surface electrochemical processes at the atomic level, including, for the first time in a manganite, formation of single and multiple oxygen vacancies, disruption of the overlying manganite layers, and removal and deposition of individual atomic units or clusters. Our work paves the way for better understanding of surface oxygen reactions in these systems.

  7. Molecular dynamics simulation investigations of atomic-scale wear

    NASA Astrophysics Data System (ADS)

    Shao, Yuchong; Falk, Michael

    2013-03-01

    Frictional running-in and material transfer in wear take place at the micro- and nano-scale but the fundamental physics remain poorly understood. Here we intend to investigate wear and running-in phenomena in silicon based materials, which are widely utilized in micro/nano electromechanical systems(MEMS/NEMS). We use an atomic force microscopy (AFM) model composed of a crystalline silicon tip and substrate coated with native oxide layers. Molecular dynamics simulation has been performed over a range of temperatures, external loads and slip rates. Results show that adhesive wear takes place across the interface in an atom-by-atom fashion which remodels the tip leading to a final steady state. We quantify the rate of material transfer as a function of the coverage of non-bridging oxygen (NBO) atoms, which has a pronounced change of the system's tribological and wear behaviors. A constitutive rate and state model is proposed to predict the evolution of frictional strength and wear. This work is supported by the National Science Foundation under Award No. 0926111.

  8. MISSE Scattered Atomic Oxygen Characterization Experiment

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Miller, Sharon K.

    2006-01-01

    An experiment designed to measure the atomic oxygen (AO) erosion profile of scattered AO was exposed to Low Earth Orbital (LEO) AO for almost four years as part of the Materials International Space Station Experiment 1 and 2 (MISSE 1 and 2). The experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), Tray 1, attached to the exterior of the International Space Station (ISS) Quest Airlock. The experiment consisted of an aperture disk lid of Kapton H (DuPont) polyimide coated on the space exposed surface with a thin AO durable silicon dioxide film. The aperture lid had a small hole in its center to allow AO to enter into a chamber and impact a base disk of aluminum. The AO that scattered from the aluminum base could react with the under side of the aperture lid which was coated sporadically with microscopic sodium chloride particles. Scattered AO erosion can occur to materials within a spacecraft that are protected from direct AO attack but because of apertures in the spacecraft the AO can attack the interior materials after scattering. The erosion of the underside of the Kapton lid was sufficient to be able to use profilometry to measure the height of the buttes that remained after washing off the salt particles. The erosion pattern indicated that peak flux of scattered AO occurred at and angle of approximately 45 from the incoming normal incidence on the aluminum base unlike the erosion pattern predicted for scattering based on Monte Carlo computational predictions for AO scattering from Kapton H polyimide. The effective erosion yield for the scattered AO was found to be a factor of 0.214 of that for direct impingement on Kapton H polyimide.

  9. Atomic-scale theoretical investigations of compound semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, G. P.

    2005-05-01

    Atomic-scale theoretical investigations of clean and covered low-index surfaces of compound semiconductors are presented. Particular emphasis is laid on the role of the electron counting rule (ECR) in governing plausible surface reconstructions. Trends are presented for the characeristic tilt of the topmost atomic layer and the highest localised phonon mode on nonpolar III-V(1 1 0) surfaces, including III-nitride compounds. Reconstructions and electronic properties of polar surfaces are explained in terms of dimer formation on (0 0 1), and trimer and/or chain formation on (1 1 1) faces. It is pointed out that some surface reconstructions stabilise as a result of a balance between the ECR and minimization of adsorbate-induced local distortion. This is demonstrated for the long-range ordered reconstruction on the Sb:GaAs(1 1 1)B surface.

  10. pH in atomic scale simulations of electrochemical interfaces.

    PubMed

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan; Tripković, Vladimir; Björketun, Mårten E

    2013-07-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity of electrochemical interfaces. PMID:23703376

  11. Magnetoencephalography with a chip-scale atomic magnetometer

    PubMed Central

    Sander, T. H.; Preusser, J.; Mhaskar, R.; Kitching, J.; Trahms, L.; Knappe, S.

    2012-01-01

    We report on the measurement of somatosensory-evoked and spontaneous magnetoencephalography (MEG) signals with a chip-scale atomic magnetometer (CSAM) based on optical spectroscopy of alkali atoms. The uncooled, fiber-coupled CSAM has a sensitive volume of 0.77 mm3 inside a sensor head of volume 1 cm3 and enabled convenient handling, similar to an electroencephalography (EEG) electrode. When positioned over O1 of a healthy human subject, α-oscillations were observed in the component of the magnetic field perpendicular to the scalp surface. Furthermore, by stimulation at the right wrist of the subject, somatosensory-evoked fields were measured with the sensors placed over C3. Higher noise levels of the CSAM were partly compensated by higher signal amplitudes due to the shorter distance between CSAM and scalp. PMID:22567591

  12. Compositional characterization of atomic layer deposited alumina

    SciTech Connect

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  13. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOEpatents

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  14. Tuning magnetotransport in a compensated semimetal at the atomic scale

    PubMed Central

    Wang, Lin; Gutiérrez-Lezama, Ignacio; Barreteau, Céline; Ubrig, Nicolas; Giannini, Enrico; Morpurgo, Alberto F.

    2015-01-01

    Either in bulk form, or in atomically thin crystals, layered transition metal dichalcogenides continuously reveal new phenomena. The latest example is 1T'-WTe2, a semimetal found to exhibit the largest known magnetoresistance in the bulk, and predicted to become a topological insulator in strained monolayers. Here we show that reducing the thickness through exfoliation enables the electronic properties of WTe2 to be tuned, which allows us to identify the mechanisms responsible for the observed magnetotransport down to the atomic scale. The longitudinal resistance and the unconventional magnetic field dependence of the Hall resistance are reproduced quantitatively by a classical two-band model for crystals as thin as six monolayers, whereas a crossover to an Anderson insulator occurs for thinner crystals. Besides establishing the origin of the magnetoresistance of WTe2, our results represent a complete validation of the classical theory for two-band electron-hole transport, and indicate that atomically thin WTe2 layers remain gapless semimetals. PMID:26600289

  15. Tuning magnetotransport in a compensated semimetal at the atomic scale

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Gutiérrez-Lezama, Ignacio; Barreteau, Céline; Ubrig, Nicolas; Giannini, Enrico; Morpurgo, Alberto F.

    2015-11-01

    Either in bulk form, or in atomically thin crystals, layered transition metal dichalcogenides continuously reveal new phenomena. The latest example is 1T'-WTe2, a semimetal found to exhibit the largest known magnetoresistance in the bulk, and predicted to become a topological insulator in strained monolayers. Here we show that reducing the thickness through exfoliation enables the electronic properties of WTe2 to be tuned, which allows us to identify the mechanisms responsible for the observed magnetotransport down to the atomic scale. The longitudinal resistance and the unconventional magnetic field dependence of the Hall resistance are reproduced quantitatively by a classical two-band model for crystals as thin as six monolayers, whereas a crossover to an Anderson insulator occurs for thinner crystals. Besides establishing the origin of the magnetoresistance of WTe2, our results represent a complete validation of the classical theory for two-band electron-hole transport, and indicate that atomically thin WTe2 layers remain gapless semimetals.

  16. Tuning magnetotransport in a compensated semimetal at the atomic scale.

    PubMed

    Wang, Lin; Gutiérrez-Lezama, Ignacio; Barreteau, Céline; Ubrig, Nicolas; Giannini, Enrico; Morpurgo, Alberto F

    2015-01-01

    Either in bulk form, or in atomically thin crystals, layered transition metal dichalcogenides continuously reveal new phenomena. The latest example is 1T'-WTe2, a semimetal found to exhibit the largest known magnetoresistance in the bulk, and predicted to become a topological insulator in strained monolayers. Here we show that reducing the thickness through exfoliation enables the electronic properties of WTe2 to be tuned, which allows us to identify the mechanisms responsible for the observed magnetotransport down to the atomic scale. The longitudinal resistance and the unconventional magnetic field dependence of the Hall resistance are reproduced quantitatively by a classical two-band model for crystals as thin as six monolayers, whereas a crossover to an Anderson insulator occurs for thinner crystals. Besides establishing the origin of the magnetoresistance of WTe2, our results represent a complete validation of the classical theory for two-band electron-hole transport, and indicate that atomically thin WTe2 layers remain gapless semimetals. PMID:26600289

  17. The Atomic scale structure of liquid metal-electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Murphy, B. M.; Festersen, S.; Magnussen, O. M.

    2016-07-01

    Electrochemical interfaces between immiscible liquids have lately received renewed interest, both for gaining fundamental insight as well as for applications in nanomaterial synthesis. In this feature article we demonstrate that the atomic scale structure of these previously inaccessible interfaces nowadays can be explored by in situ synchrotron based X-ray scattering techniques. Exemplary studies of a prototypical electrochemical system - a liquid mercury electrode in pure NaCl solution - reveal that the liquid metal is terminated by a well-defined atomic layer. This layering decays on length scales of 0.5 nm into the Hg bulk and displays a potential and temperature dependent behaviour that can be explained by electrocapillary effects and contributions of the electronic charge distribution on the electrode. In similar studies of nanomaterial growth, performed for the electrochemical deposition of PbFBr, a complex nucleation and growth behaviour is found, involving a crystalline precursor layer prior to the 3D crystal growth. Operando X-ray scattering measurements provide detailed data on the processes of nanoscale film formation.

  18. The Atomic scale structure of liquid metal-electrolyte interfaces.

    PubMed

    Murphy, B M; Festersen, S; Magnussen, O M

    2016-08-01

    Electrochemical interfaces between immiscible liquids have lately received renewed interest, both for gaining fundamental insight as well as for applications in nanomaterial synthesis. In this feature article we demonstrate that the atomic scale structure of these previously inaccessible interfaces nowadays can be explored by in situ synchrotron based X-ray scattering techniques. Exemplary studies of a prototypical electrochemical system - a liquid mercury electrode in pure NaCl solution - reveal that the liquid metal is terminated by a well-defined atomic layer. This layering decays on length scales of 0.5 nm into the Hg bulk and displays a potential and temperature dependent behaviour that can be explained by electrocapillary effects and contributions of the electronic charge distribution on the electrode. In similar studies of nanomaterial growth, performed for the electrochemical deposition of PbFBr, a complex nucleation and growth behaviour is found, involving a crystalline precursor layer prior to the 3D crystal growth. Operando X-ray scattering measurements provide detailed data on the processes of nanoscale film formation. PMID:27301317

  19. EON: software for long time simulations of atomic scale systems

    NASA Astrophysics Data System (ADS)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  20. Surface microstructure of bitumen characterized by atomic force microscopy.

    PubMed

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  1. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    SciTech Connect

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  2. Geochemical Proxy Distribution at the Atomic-Scale: Atom Probe Tomography of Foraminiferal Calcite

    NASA Astrophysics Data System (ADS)

    Branson, O.; Perea, D. E.; Winters, M. A.; Fehrenbacher, J. S.; Russell, A. D.; Spero, H. J.; Gagnon, A. C.

    2014-12-01

    Biomineral composition reflects a complex interplay between minute-scale biological control, mineral growth processes, and the influence of environmental conditions. For this reason, the mechanisms responsible for the formation of these minerals, as well as the incorporation of trace elements during biomineral growth, are poorly understood. Potential mechanisms governing the production and composition of biominerals can be organized into two distinct groups: a) biological mechanisms controlling the calcifying environment and b) mineral growth processes from this controlled environment. Despite significant advances in both these areas, critical gaps remain in our understanding of biomineral production and geochemical tracer incorporation. We are adapting Atom Probe Tomography (APT), a technique that maps the arrangement and identity of individual atoms within a bulk material, to analyze foraminiferal calcite for the first time. These data-rich atom-scale chemical maps provide a unique opportunity to deconvolve the effects of biological and crystal growth processes in the incorporation of geochemical tracers. Our first experiments have examined the influence of the biological-mineral interface on geochemical proxy element incorporation. Preliminary measurements show that (1) we can successfully map impurities in calcite biominerals, while also distinguishing between mineral and organic zones, overcoming a major technical hurdle; and (2) that elements like sodium appear to be recruited to the organic-mineral interface. The high-resolution chemical data from the APT will further allow us to investigate the fundamental basis for geochemical proxy behavior. For example, we can determine for a certain set of conditions whether the substitution of trace elements into the calcite follows ideal solid-solution behavior, as tacitly assumed in many geochemical proxy systems, or is modulated by intra-shell organics, or coupled-substitution interactions. Collectively, the

  3. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.

    PubMed

    Vahdat, Vahid; Grierson, David S; Turner, Kevin T; Carpick, Robert W

    2013-04-23

    Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-sample interaction regime during AM-AFM scanning, determining the tip-sample contact geometry, calculating the peak repulsive force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging. The peak repulsive tip-sample interaction force is estimated from a closed-form equation accompanied by an effective tip radius measurement procedure, which combines transmission electron microscopy and blind tip reconstruction. The contact stress is estimated by applying Derjaguin-Müller-Toporov contact mechanics model and also numerically solving a general contact mechanics model recently developed for the adhesive contact of arbitrary axisymmetric punch shapes. We discuss the important role that the assumed tip shape geometry plays in calculating both the interaction forces and the contact stresses. Contact stresses are significantly affected by the tip geometry while the peak repulsive force is mainly determined by experimentally controlled parameters, specifically, the free oscillation amplitude and amplitude ratio. The applicability of this protocol is demonstrated experimentally by assessing the performance of diamond-like carbon-coated and silicon-nitride-coated silicon probes scanned over ultrananocrystalline diamond substrates in repulsive mode AM-AFM. There is no sign of fracture or plastic deformation in the case of diamond-like carbon; wear could be characterized as a gradual atom-by-atom process. In contrast, silicon nitride wears through removal of the cluster of atoms and plastic

  4. Atomic scale insights on chlorinated gamma-alumina surfaces.

    PubMed

    Digne, Mathieu; Raybaud, Pascal; Sautet, Philippe; Guillaume, Denis; Toulhoat, Hervé

    2008-08-20

    The thermochemistry of chlorinated gamma-alumina surfaces is explored by means of density functional calculations as a function of relevant reaction conditions used in experiments and in high-octane fuel production in the refining industry such as hydrocarbon isomerization and reforming. The role of chlorine as a dope of the Brønsted acidity of gamma-alumina surfaces is investigated at an atomic scale. Combining infrared spectroscopy and density functional theory calculations, the most favorable location of chlorine atoms on the (110), (100) and (111) surfaces of gamma-alumina is found to result either from direct adsorption or from the exchange of basic hydroxyl groups. Moreover, the modification of the hydrogen bond network upon chlorine adsorption is put forward as a key parameter for changing the Brønsted acidity. In a second step, we use a thermodynamic approach based on DFT total energy calculations corrected by the chemical potentials of HCl and H2O to determine the adsorption isotherms of chlorine and the relative surface concentration of hydroxyl groups and chlorine species on the gamma-alumina surfaces. The determination of chlorine content as a function of temperature and partial pressures of H2O and HCl offers new quantitative data required for optimizing the state of the support surface in industrial conditions. The mechanisms of chlorination are also discussed as a function of reaction conditions. PMID:18646849

  5. Atom-scale insights into carbonate organic-mineral interfaces

    NASA Astrophysics Data System (ADS)

    Branson, O.; Perea, D. E.; Spero, H. J.; Winters, M. A.; Gagnon, A.

    2015-12-01

    Biominerals are formed by the complex interaction between guiding biological structures and the kinetics of inorganic mineral growth. Inorganic crystal growth experiments have advanced our understanding of mineral precipitation in the context of biological systems, but the structure and chemistry of the mineralizing interface between these two systems has remained elusive. We have used laser-pulsed Atom Probe Tomography to reveal the first atom-scale 3D view of an organic-mineral interface in calcite produced by the planktic foraminifera Orbulina universa. We observe elevated Na and Mg throughout the organic, and a 9-fold increase in Na in the surface 2 nm of the organic layer, relative to the adjacent calcite. The surface-specificity of this Na maximum suggests that Na may play an integral role in conditioning the organic layer for calcite nucleation. Na could accomplish this by modifying surface hydration or structure, to modify organic-fluid and/or organic-calcite interfacial energies. Our data constitute the first evidence of the role of 'spectator' ions in facilitating biomineralisation, which could be an overlooked but crucial aspect of the initial steps of skeleton formation in calcifying organisms.

  6. Shrinking light to allow forbidden transitions on the atomic scale

    NASA Astrophysics Data System (ADS)

    Rivera, Nicholas; Kaminer, Ido; Zhen, Bo; Joannopoulos, John D.; Soljačić, Marin

    2016-07-01

    The diversity of light-matter interactions accessible to a system is limited by the small size of an atom relative to the wavelength of the light it emits, as well as by the small value of the fine-structure constant. We developed a general theory of light-matter interactions with two-dimensional systems supporting plasmons. These plasmons effectively make the fine-structure constant larger and bridge the size gap between atom and light. This theory reveals that conventionally forbidden light-matter interactions—such as extremely high-order multipolar transitions, two-plasmon spontaneous emission, and singlet-triplet phosphorescence processes—can occur on very short time scales comparable to those of conventionally fast transitions. Our findings may lead to new platforms for spectroscopy, sensing, and broadband light generation, a potential testing ground for quantum electrodynamics (QED) in the ultrastrong coupling regime, and the ability to take advantage of the full electronic spectrum of an emitter.

  7. Shrinking light to allow forbidden transitions on the atomic scale.

    PubMed

    Rivera, Nicholas; Kaminer, Ido; Zhen, Bo; Joannopoulos, John D; Soljačić, Marin

    2016-07-15

    The diversity of light-matter interactions accessible to a system is limited by the small size of an atom relative to the wavelength of the light it emits, as well as by the small value of the fine-structure constant. We developed a general theory of light-matter interactions with two-dimensional systems supporting plasmons. These plasmons effectively make the fine-structure constant larger and bridge the size gap between atom and light. This theory reveals that conventionally forbidden light-matter interactions--such as extremely high-order multipolar transitions, two-plasmon spontaneous emission, and singlet-triplet phosphorescence processes--can occur on very short time scales comparable to those of conventionally fast transitions. Our findings may lead to new platforms for spectroscopy, sensing, and broadband light generation, a potential testing ground for quantum electrodynamics (QED) in the ultrastrong coupling regime, and the ability to take advantage of the full electronic spectrum of an emitter. PMID:27418505

  8. Spin mapping at the nanoscale and atomic scale

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    2009-10-01

    The direct observation of spin structures with atomic-scale resolution, a long-time dream in condensed matter research, recently became a reality based on the development of spin-sensitive scanning probe methods, such as spin-polarized scanning-tunneling microscopy (SP-STM) and magnetic exchange force microscopy (MExFM). This article reviews the basic principles and methods of SP-STM and MExFM and describes recently achieved milestones in the application of these techniques to metallic and electrically insulating magnetic nanostructures. Discoveries of novel types of magnetic order at the nanoscale are presented as well as challenges for the future, including studies of local spin excitations based on spin-resolved inelastic tunneling spectroscopy and measurements of damping forces in MExFM experiments.

  9. Atomic scale insights into urea-peptide interactions in solution.

    PubMed

    Steinke, Nicola; Gillams, Richard J; Pardo, Luis Carlos; Lorenz, Christian D; McLain, Sylvia E

    2016-02-01

    The mechanism by which proteins are denatured by urea is still not well understood, especially on the atomic scale where these interactions occur in vivo. In this study, the structure of the peptide GPG has been investigated in aqueous urea solutions in order to understand the combination of roles that both urea and water play in protein unfolding. Using a combination of neutron diffraction enhanced by isotopic substitution and computer simulations, it was found, in opposition with previous simulations studies, that urea is preferred over water around polar and charged portions of the peptides. Further, it appears that while urea directly replaces water around the nitrogen groups on GPG that urea and water occupy different positions around the peptide bond carbonyl groups. This suggests that urea may in fact weaken the peptide bond, disrupting the peptide backbone, thus ultimately causing denaturation. PMID:26764567

  10. Atomic scale modelling of hexagonal structured metallic fission product alloys

    PubMed Central

    Middleburgh, S. C.; King, D. M.; Lumpkin, G. R.

    2015-01-01

    Noble metal particles in the Mo-Pd-Rh-Ru-Tc system have been simulated on the atomic scale using density functional theory techniques for the first time. The composition and behaviour of the epsilon phases are consistent with high-entropy alloys (or multi-principal component alloys)—making the epsilon phase the only hexagonally close packed high-entropy alloy currently described. Configurational entropy effects were considered to predict the stability of the alloys with increasing temperatures. The variation of Mo content was modelled to understand the change in alloy structure and behaviour with fuel burnup (Mo molar content decreases in these alloys as burnup increases). The predicted structures compare extremely well with experimentally ascertained values. Vacancy formation energies and the behaviour of extrinsic defects (including iodine and xenon) in the epsilon phase were also investigated to further understand the impact that the metallic precipitates have on fuel performance. PMID:26064629

  11. Atomic-scale studies of hydrogenated semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Mayne, A. J.; Riedel, D.; Comtet, G.; Dujardin, G.

    The adsorption of hydrogen on semiconductors strongly modifies the electronic and chemical properties of the surfaces, whether on the surface or in the sub-surface region. This has been the starting point, in recent years, of many new areas of research and technology. This paper will discuss the properties, at the atomic scale, of hydrogenated semiconductor surfaces studied with scanning tunnelling microscopy (STM) and synchrotron radiation. Four semiconductor surfaces will be described - germanium(1 1 1), silicon(1 0 0), silicon carbide(1 0 0) and diamond(1 0 0). Each surface has its particularities in terms of the physical and electronic structure and in regard to the adsorption of hydrogen. The manipulation of hydrogen on these surfaces by electronic excitation using electrons from the STM tip will be discussed in detail highlighting the excitation mechanisms. The reactivity of these surfaces towards various molecules and semiconductor nanocrystals will be illustrated.

  12. The gold/ampicillin interface at the atomic scale.

    PubMed

    Tarrat, N; Benoit, M; Giraud, M; Ponchet, A; Casanove, M J

    2015-09-14

    In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of these hybrid systems remains misunderstood. In this paper, the structure of the interface between an ampicillin molecule AMP and three flat gold facets Au(111), Au(110) and Au(100) has been investigated with numerical simulations (dispersion-corrected DFT). Adsorption energies, bond distances and electron densities indicate that the adsorption of AMP on these facets goes through multiple partially covalent bonding. The stability of the AuNP/AMP nanoconjugates is explained by large adsorption energies and their potential antibacterial activity is discussed on the basis of the constrained spatial orientation of the grafted antibiotic. PMID:26260342

  13. The gold/ampicillin interface at the atomic scale

    NASA Astrophysics Data System (ADS)

    Tarrat, N.; Benoit, M.; Giraud, M.; Ponchet, A.; Casanove, M. J.

    2015-08-01

    In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of these hybrid systems remains misunderstood. In this paper, the structure of the interface between an ampicillin molecule AMP and three flat gold facets Au(111), Au(110) and Au(100) has been investigated with numerical simulations (dispersion-corrected DFT). Adsorption energies, bond distances and electron densities indicate that the adsorption of AMP on these facets goes through multiple partially covalent bonding. The stability of the AuNP/AMP nanoconjugates is explained by large adsorption energies and their potential antibacterial activity is discussed on the basis of the constrained spatial orientation of the grafted antibiotic.In the fight against antibiotic resistance, gold nanoparticles (AuNP) with antibiotics grafted on their surfaces have been found to be potent agents. Ampicillin-conjugated AuNPs have been thus reported to overcome highly ampicillin-resistant bacteria. However, the structure at the atomic scale of these hybrid systems remains misunderstood. In this paper, the structure of the interface between an ampicillin molecule AMP and three flat gold facets Au(111), Au(110) and Au(100) has been investigated with numerical simulations (dispersion-corrected DFT). Adsorption energies, bond distances and electron densities indicate that the adsorption of AMP on these facets goes through multiple partially covalent bonding. The stability of the AuNP/AMP nanoconjugates is explained by large adsorption energies and their potential antibacterial activity is discussed on the basis of the constrained spatial orientation of the grafted antibiotic. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03318g

  14. Scaling Linguistic Characterization of Precipitation Variability

    NASA Astrophysics Data System (ADS)

    Primo, C.; Gutierrez, J. M.

    2003-04-01

    Rainfall variability is influenced by changes in the aggregation of daily rainfall. This problem is of great importance for hydrological, agricultural and ecological applications. Rainfall averages, or accumulations, are widely used as standard climatic parameters. However different aggregation schemes may lead to the same average or accumulated values. In this paper we present a fractal method to characterize different aggregation schemes. The method provides scaling exponents characterizing weekly or monthly rainfall patterns for a given station. To this aim, we establish an analogy with linguistic analysis, considering precipitation as a discrete variable (e.g., rain, no rain). Each weekly, or monthly, symbolic precipitation sequence of observed precipitation is then considered as a "word" (in this case, a binary word) which defines a specific weekly rainfall pattern. Thus, each site defines a "language" characterized by the words observed in that site during a period representative of the climatology. Then, the more variable the observed weekly precipitation sequences, the more complex the obtained language. To characterize these languages, we first applied the Zipf's method obtaining scaling histograms of rank ordered frequencies. However, to obtain significant exponents, the scaling must be maintained some orders of magnitude, requiring long sequences of daily precipitation which are not available at particular stations. Thus this analysis is not suitable for applications involving particular stations (such as regionalization). Then, we introduce an alternative fractal method applicable to data from local stations. The so-called Chaos-Game method uses Iterated Function Systems (IFS) for graphically representing rainfall languages, in a way that complex languages define complex graphical patterns. The box-counting dimension and the entropy of the resulting patterns are used as linguistic parameters to quantitatively characterize the complexity of the patterns

  15. Bohr model and dimensional scaling analysis of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Urtekin, Kerim

    It is generally believed that the old quantum theory, as presented by Niels Bohr in 1913, fails when applied to many-electron systems, such as molecules, and nonhydrogenic atoms. It is the central theme of this dissertation to display with examples and applications the implementation of a simple and successful extension of Bohr's planetary model of the hydrogenic atom, which has recently been developed by an atomic and molecular theory group from Texas A&M University. This "extended" Bohr model, which can be derived from quantum mechanics using the well-known dimentional scaling technique is used to yield potential energy curves of H2 and several more complicated molecules, such as LiH, Li2, BeH, He2 and H3, with accuracies strikingly comparable to those obtained from the more lengthy and rigorous "ab initio" computations, and the added advantage that it provides a rather insightful and pictorial description of how electrons behave to form chemical bonds, a theme not central to "ab initio" quantum chemistry. Further investigation directed to CH, and the four-atom system H4 (with both linear and square configurations), via the interpolated Bohr model, and the constrained Bohr model (with an effective potential), respectively, is reported. The extended model is also used to calculate correlation energies. The model is readily applicable to the study of molecular species in the presence of strong magnetic fields, as is the case in the vicinities of white dwarfs and neutron stars. We find that magnetic field increases the binding energy and decreases the bond length. Finally, an elaborative review of doubly coupled quantum dots for a derivation of the electron exchange energy, a straightforward application of Heitler-London method of quantum molecular chemistry, concludes the dissertation. The highlights of the research are (1) a bridging together of the pre- and post quantum mechanical descriptions of the chemical bond (Bohr-Sommerfeld vs. Heisenberg-Schrodinger), and

  16. Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic scale modelling.

    SciTech Connect

    Osetskiy, Yury N; Stoller, Roger E; Matsukawa, Yoshitaka

    2004-01-01

    The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, {approx}100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations.

  17. Time scale algorithms for an inhomogeneous group of atomic clocks

    NASA Technical Reports Server (NTRS)

    Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.

    1993-01-01

    Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.

  18. Atomic Scale Predictive Simulation for Silicon Bulk Processing

    NASA Astrophysics Data System (ADS)

    Diaz de La Rubia, Tomas; Caturla, Maria; Johnson, Mark; Zhu, Jing

    1997-08-01

    We have developed a new, atomic-scale process simulator for predictive modeling of ion implantation and dopant diffusion in silicon. The simulator is based on a kinetic Monte Carlo description of the defect and dopant diffusion processes that occur during implantation and thermal annealing in silicon manufacturing. We use ab initio planewave pseudopotential methods to obtain the activation barries of defect and dopants and the binding energies of the clusters and extended defects. The results are used in a new kinetic Monte Carlo code to describe the long time scale evolution of the lattice damage introduced by the implantation and the changes in the three dimensional dopant profile during elevated temperature annealing. We validate the approach by showing that the simulator can be used to predict boron profiles for implant condition similar to those use in manufacturing for 0.35 micron technology. In addition, we apply the method to make predictions on boron profiles after rapid thermal annealing for ultra shallow junction devices with gate lengths below 0.1 microns. The simulations provide detail information on the mechanisms of interstitial clustering, boron diffusion and clustering and transient enhanced diffusion.

  19. Characterization of Filtration Scale-Up Performance

    SciTech Connect

    Daniel, Richard C.; Billing, Justin M.; Luna, Maria L.; Cantrell, Kirk J.; Peterson, Reid A.; Bonebrake, Michael L.; Shimskey, Rick W.; Jagoda, Lynette K.

    2009-03-09

    The scale-up performance of sintered stainless steel crossflow filter elements planned for use at the Pretreatment Engineering Platform (PEP) and at the Waste Treatment and Immobilization Plant (WTP) were characterized in partial fulfillment (see Table S.1) of the requirements of Test Plan TP RPP WTP 509. This test report details the results of experimental activities related only to filter scale-up characterization. These tests were performed under the Simulant Testing Program supporting Phase 1 of the demonstration of the pretreatment leaching processes at PEP. Pacific Northwest National Laboratory (PNNL) conducted the tests discussed herein for Bechtel National, Inc. (BNI) to address the data needs of Test Specification 24590-WTP-TSP-RT-07-004. Scale-up characterization tests employ high-level waste (HLW) simulants developed under the Test Plan TP-RPP-WTP-469. The experimental activities outlined in TP-RPP-WTP-509 examined specific processes from two broad areas of simulant behavior: 1) leaching performance of the boehmite simulant as a function of suspending phase chemistry and 2) filtration performance of the blended simulant with respect to filter scale-up and fouling. With regard to leaching behavior, the effect of anions on the kinetics of boehmite leaching was examined. Two experiments were conducted: 1) one examined the effect of the aluminate anion on the rate of boehmite dissolution and 2) another determined the effect of secondary anions typical of Hanford tank wastes on the rate of boehmite dissolution. Both experiments provide insight into how compositional variations in the suspending phase impact the effectiveness of the leaching processes. In addition, the aluminate anion studies provide information on the consequences of gibbsite in waste. The latter derives from the expected fast dissolution of gibbsite relative to boehmite. This test report concerns only results of the filtration performance with respect to scale-up. Test results for boehmite

  20. Quantitative bond energetics in atomic-scale junctions with significant van der Waals character

    NASA Astrophysics Data System (ADS)

    Venkataraman, Latha; Aradhya, Sriharsha; Hybertsen, Mark

    2015-03-01

    A direct measurement of the potential energy surface that characterizes individual chemical bonds in complex materials has fundamental significance for many disciplines. Here, we demonstrate that the energy profile for metallic single-atom contacts and single-molecule junctions can be mapped by fitting ambient atomic force microscope measurements carried out in the near-equilibrium regime to a physical, but simple, functional form. In particular we are able to extract bond energies for metal-molecule link bonds in cases where the interaction has significant contribution from nonspecific interactions attributed to van der Waals (vdW) interactions at short length scale in addition to specific donor-acceptor bonds. Our approach significantly expands the quantitative information extracted from these measurements, allowing direct comparisons to density functional theory (DFT) calculations instead of relying on trends in bond rupture forces alone. Currently at Cornell University.

  1. Atomic-scale structure of grain boundaries: Correlations to grain boundary properties

    SciTech Connect

    Merkle, K.L.; Buckett, M.I.; Gao, Y.; Rozeveld, S.J.; Vuchic, B.L.; Wolf, D.

    1994-01-01

    It is generally believed that many properties of solid interfaces are ultimately determined by their structure and composition at the atomic level. We report here on work in two areas of grain boundary (GB) research in which structure-property correlations have been investigated recently. HREM observations in connection with computer modeling of GBs in fcc metals have given considerable insight into correlations between GB energy and atomic-scale GB structure. Efforts to understand and possibly control the supercurrent transport behavior across GBs in high-temperature superconductors require the combination of microstructure characterizations with investigations of electric transport properties. In both areas considerable progress is being made and has already lead to important insights concerning interfacial properties.

  2. Mechanisms for Enhanced Hydrophobicity by Atomic-Scale Roughness.

    PubMed

    Katasho, Yumi; Liang, Yunfeng; Murata, Sumihiko; Fukunaka, Yasuhiro; Matsuoka, Toshifumi; Takahashi, Satoru

    2015-01-01

    It is well known that the close-packed CF3-terminated solid surface is among the most hydrophobic surfaces in nature. Molecular dynamic simulations show that this hydrophobicity can be further enhanced by the atomic-scale roughness. Consequently, the hydrophobic gap width is enlarged to about 0.6 nm for roughened CF3-terminated solid surfaces. In contrast, the hydrophobic gap width does not increase too much for a rough CH3-terminated solid surface. We show that the CF3-terminated surface exists in a microscopic Cassie-Baxter state, whereas the CH3-terminated surface exists as a microscopic Wenzel state. This finding elucidates the underlying mechanism for the different widths of the observed hydrophobic gap. The cage structure of the water molecules (with integrated hydrogen bonds) around CH3 terminal assemblies on the solid surface provides an explanation for the mechanism by which the CH3-terminated surface is less hydrophobic than the CF3-terminated surface. PMID:26337567

  3. Atomic-scale mechanisms of helium bubble hardening in iron

    DOE PAGESBeta

    Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less

  4. Atomic-scale mechanisms of helium bubble hardening in iron

    SciTech Connect

    Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effect of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.

  5. Mechanisms for Enhanced Hydrophobicity by Atomic-Scale Roughness

    PubMed Central

    Katasho, Yumi; Liang, Yunfeng; Murata, Sumihiko; Fukunaka, Yasuhiro; Matsuoka, Toshifumi; Takahashi, Satoru

    2015-01-01

    It is well known that the close-packed CF3-terminated solid surface is among the most hydrophobic surfaces in nature. Molecular dynamic simulations show that this hydrophobicity can be further enhanced by the atomic-scale roughness. Consequently, the hydrophobic gap width is enlarged to about 0.6 nm for roughened CF3-terminated solid surfaces. In contrast, the hydrophobic gap width does not increase too much for a rough CH3-terminated solid surface. We show that the CF3-terminated surface exists in a microscopic Cassie–Baxter state, whereas the CH3-terminated surface exists as a microscopic Wenzel state. This finding elucidates the underlying mechanism for the different widths of the observed hydrophobic gap. The cage structure of the water molecules (with integrated hydrogen bonds) around CH3 terminal assemblies on the solid surface provides an explanation for the mechanism by which the CH3-terminated surface is less hydrophobic than the CF3-terminated surface. PMID:26337567

  6. Atomic-scale mechanisms of helium bubble hardening in iron

    NASA Astrophysics Data System (ADS)

    Osetsky, Yuri N.; Stoller, Roger E.

    2015-10-01

    Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material's properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effect of He bubble size and He concentration inside bubbles. We found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.

  7. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene

    SciTech Connect

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; Son, Young-Woo; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Choi, Choon-Gi; Bostwick, Aaron; Rotenberg, Eli; Park, Bae Ho

    2014-12-01

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. Lastly, the correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.

  8. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene

    DOE PAGESBeta

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; Son, Young-Woo; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Choi, Choon-Gi; Bostwick, Aaron; et al

    2014-12-01

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzagmore » directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. Lastly, the correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene.« less

  9. Correlation between micrometer-scale ripple alignment and atomic-scale crystallographic orientation of monolayer graphene

    PubMed Central

    Choi, Jin Sik; Chang, Young Jun; Woo, Sungjong; Son, Young-Woo; Park, Yeonggu; Lee, Mi Jung; Byun, Ik-Su; Kim, Jin-Soo; Choi, Choon-Gi; Bostwick, Aaron; Rotenberg, Eli; Park, Bae Ho

    2014-01-01

    Deformation normal to the surface is intrinsic in two-dimensional materials due to phononic thermal fluctuations at finite temperatures. Graphene's negative thermal expansion coefficient is generally explained by such an intrinsic property. Recently, friction measurements on graphene exfoliated on a silicon oxide surface revealed an anomalous anisotropy whose origin was believed to be the formation of ripple domains. Here, we uncover the atomistic origin of the observed friction domains using a cantilever torsion microscopy in conjunction with angle-resolved photoemission spectroscopy. We experimentally demonstrate that ripples on graphene are formed along the zigzag direction of the hexagonal lattice. The formation of zigzag directional ripple is consistent with our theoretical model that takes account of the atomic-scale bending stiffness of carbon-carbon bonds and the interaction of graphene with the substrate. The correlation between micrometer-scale ripple alignment and atomic-scale arrangement of exfoliated monolayer graphene is first discovered and suggests a practical tool for measuring lattice orientation of graphene. PMID:25434431

  10. Atomic-scale details of dislocation - stacking fault tetrahedra interaction.

    SciTech Connect

    Osetskiy, Yury N; Stoller, Roger E; Rodney, David; Bacon, David J

    2005-01-01

    Stacking fault tetrahedra (SFTs) are formed during irradiation of fcc. metals and alloys with low stacking fault energy. The high number density of SFTs observed suggests that they should contribute to radiation-induced hardening and, therefore, be taken into account when estimating mechanical property changes of irradiated materials. The key issue is to describe the interaction between a moving dislocation and an individual SFT, which is characterized by a small physical scale of about 100 nm. In this paper we present results of an atomistic simulation of edge and screw dislocations interacting with small SFTs at different temperatures and strain rates and present mechanisms which can explain the formation of defect-free channels observed experimentally.

  11. Temperature Dependent Dislocation Mobility in MgSiO3 Perovskite: An Atomic Scale Study

    NASA Astrophysics Data System (ADS)

    Kraych, A.; Hirel, P.; Carrez, P.; Cordier, P.

    2014-12-01

    Heat transfer through the mantle is carried by convection, which involves plastic flow of the mantle constituents. Among these constituents, (Mg,Fe,Al)(Si,Al)O3 perovskite is known to be the most abundant. This material is deformed at very low strain rate (from 10-12 to 10-16 s-1), and under extreme pressure and temperature conditions (from 30 to 140GPa, 1500 to 4000°C). Its plastic behaviour is challenging to reproduce experimentally, but crucial for a better understanding of the Earth's dynamic. The recent progress in modelling the behaviours of materials, which until now have been mostly used on metals, are applied here on MgSiO3 perovskite (Mg-Pv). We characterize dislocations at the atomic scale, as the first step of a multi-scale modelling approach on Mg-Pv plastic deformation. We model dislocations with [100] and [010] Burgers vectors (described within the Pbnm space group), which are the shortest lattice parameters in the orthorhombic structure. Dislocation cores are determined to be described at various pressures. The resistance to glide of the dislocations is quantified indicating that [100](010) and [010](100) are the easiest slip systems in Mg-Pv over the full pressure range of the lower mantle. The effect of temperature is introduced by assimilating the thermal activation on dislocation lines to vibrations of a string lying into a potential valley. These vibrations allow the dislocation to overcome locally the energy barrier that represents the lattice friction, and then propagates under the effect of stress. With this model, by combining elastic theory of dislocations and calculations at the atomic scale, a first expression of the strain rate produced by dislocation glide is provided.Left figure : Thermally activated propagation of dislocation over the energy barrierRight figure : Shape of the crossing dislocation obtained from atomic scale modelling

  12. Atomic Scale Modeling of High Strain Rate Deformation and Failure of HCP Metals

    NASA Astrophysics Data System (ADS)

    Mackenchery, Karoon; Agarwal, Garvit; Dongare, Avinash

    2015-06-01

    A fundamental understanding of the microstructure effects on the defect evolution at the atomic resolution and the related contribution to plasticity at the macro-scales is needed to obtain a reliable performance of metallic materials in extreme environments. Large-scale molecular dynamics simulations are carried out to characterize the dynamic evolution of defect/damage structures during the deformation and failure behavior of HCP (Mg, Ti) metallic systems (single crystal and nanocrystalline at high strain rates as well as under shock loading conditions. The evolution of various types of dislocations, twins, faults, etc. and the related deformation and failure response (nucleation and growth of voids/cracks) will be discussed. The effects of strain rates on relationships between the microstructure and the strength of these materials at high strain rates and the underlying micromechanisms related to deformation and failure will be discussed.

  13. Determining Structure Distribution In Inhomogenous Samples On The Nanometer Scale By Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Tranchida, Davide; Piccarolo, Stefano

    2007-04-01

    A nanoindentation technique using an Atomic Force Microscope (AFM) was applied to characterize the mechanical behaviour of several polymeric samples. Samples with well-defined morphologies, spanning from amorphous to rubbery and semi-crystalline ones, were studied for identifying experimental conditions determining contact mechanics within the elastic range such that Young's moduli could be drawn by the Sneddon's elastic contact model. Structure homogeneity, up to the scale of macroscopic samples used to evaluate the elastic moduli, allowed a successful comparison of these values with those determined by macroscopic tension test on full size samples (a few mm), provided that comparable "overall" deformation rates are used (approx. 10∧-5 m/s). Therefore, it is possible to scale down the measurement of mechanical properties by AFM to the typical resolution of nanoindentations. With this method the distribution of mechanical properties on systems with a spatial distribution of morphology (injection moulded samples) is presented..

  14. Microstructural Characterization of Hierarchical Structured Surfaces by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomareva, A. A.; Moshnikov, V. A.; Suchaneck, G.

    2013-12-01

    In this work, we evaluate the hierarchical surface topography of reactively sputtered nanocrystalline Pb(Zr,Ti)O3 and TiO2 thin films as well as plasma-treated antireflective PET films by means of determining the fractal dimension and power spectral density (PSD) of surface topography recorded by atomic force microscopy (AFM). Local fractal dimension was obtained using the triangulation method. The PSDs of all samples were fitted to the k-correlation model (also called ABC model) valid for a self-affine surface topography. Fractal analysis of AFM images was shown to be an appropriate and easy to use tool for the characterization of hierarchical nanostructures.

  15. Pattern generation with cesium atomic beams at nanometer scales

    NASA Astrophysics Data System (ADS)

    Kreis, M.; Lison, F.; Haubrich, D.; Meschede, D.; Nowak, S.; Pfau, T.; Mlynek, J.

    1996-12-01

    We have demonstrated that a cesium atomic beam can be used to pattern a gold surface using a self assembling monolayer (SAM) as a resist. A 12.5 μm period mesh was used as a proximity mask for the atomic beam. The cesium atoms locally change the wetability of the SAM, which allows a wet etching reagent to remove the underlying gold in the exposed regions. An edge resolution of better than 100 nm was obtained. The experiment suggests that this method can either be used as a sensitive position detector with nanometer resolution in atom optics, or for nanostructuring in a resist technique.

  16. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGESBeta

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  17. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  18. Holographic Scaling and Dynamical Gauge Effects in Disordered Atomic Gases

    NASA Astrophysics Data System (ADS)

    Gemelke, Nathan

    2016-05-01

    Quantum systems with strong disorder, and those far from equilibrium or interacting with a thermal reservior, present unique challenges in a range of physical contexts, from non-relativistic condensed-matter settings, such as in study of localization phenomena, to relativistic cosmology and the study of fundamental interactions. Recently, two related concepts, that of the entropy of entanglement, and the controversial suggestion of entropic emergent gravity, have shed insight on several long-standing questions along these lines, suggesting that strongly disordered systems with causal barriers (either relativistic or those with Lieb-Robinson-like bounds) can be understood using holographic principles in combination with the equivalence between quantum vacuua thermal baths via the Unruh effect. I will discuss a range of experiments performed within a strong, topologically disordered medium for neutral atoms which simultaneously introduces quenched disorder for spin and mass transport, and provides simple mechanisms for open coupling to various types of dissipative baths. Under conditions in which a subset of quantum states are continuously decoupled from the thermal bath, dark state effects lead to slow light phenomena mimicking gravitational lensing in general relativity in a characterizable table-top disordered medium. Non-equilibrium steady-states are observed in direct analogy with the evaporation of gravitational singularities, and we observe scaling behaviors that can be directly connected to holographic measures of the information contained in disorder. Finally, I will show how a dynamic-gauge-field picture of this and similar systems can lead to a natural description of non-equilibrium and disordered phenomena, and how it provides some advantages over the Harris and Luck criteria for describing critical phenomena. Connections between out-of-equilibrium dynamics and some long-unresolved issues concerning the existence of a gauge-boson mass gap in certain Yang

  19. Towards an interpretation of the scale diffusivity in liquid atomization process: An experimental approach

    NASA Astrophysics Data System (ADS)

    Dumouchel, Christophe; Ménard, Thibaut; Aniszewski, Wojciech

    2015-11-01

    Recent investigations have presented an application of the scale entropy diffusion theory to model liquid atomization process. This theory describes multi-scale behavior by a diffusion equation of the scale entropy function. In atomization, this function is related to the scale-distribution which provides a measurement of the specific-length of the eroded liquid system according to the scale of erosion. The present paper performs a detailed description of the scale diffusion mechanism for the atomization process of a liquid jet emanating from a gasoline injector with the objective of determining the scale diffusivity parameter introduced by the diffusion theory. The 2-D description of the gasoline jet as a function of the injection pressure reveals that the scale space is divided into two regions according to the sign of the scale specific-length variation rate: The small-scale region refers to the scales that undergo an elongation mechanism whereas the large-scale region concerns the scales that undergo a contraction mechanism. Furthermore, two phases of the atomization process are identified depending on whether the elongation mechanism is governed by the jet dynamics or surface tension effects. A non-dimensional number segregating these two phases is established. During the atomization process, the contraction mechanism diffuses in the small scale region. This manifests by a temporal decrease of the scale with a zero specific-length variation. It is found that the scale diffusivity parameter can be determined from the evolution of this characteristic scale in the second phase of the atomization process.

  20. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.

    PubMed

    Herbig, M; Raabe, D; Li, Y J; Choi, P; Zaefferer, S; Goto, S

    2014-03-28

    Grain boundary segregation leads to nanoscale chemical variations that can alter a material's performance by orders of magnitude (e.g., embrittlement). To understand this phenomenon, a large number of grain boundaries must be characterized in terms of both their five crystallographic interface parameters and their atomic-scale chemical composition. We demonstrate how this can be achieved using an approach that combines the accuracy of structural characterization in transmission electron microscopy with the 3D chemical sensitivity of atom probe tomography. We find a linear trend between carbon segregation and the misorientation angle ω for low-angle grain boundaries in ferrite, which indicates that ω is the most influential crystallographic parameter in this regime. However, there are significant deviations from this linear trend indicating an additional strong influence of other crystallographic parameters (grain boundary plane, rotation axis). For high-angle grain boundaries, no general trend between carbon excess and ω is observed; i.e., the grain boundary plane and rotation axis have an even higher influence on the segregation behavior in this regime. Slight deviations from special grain boundary configurations are shown to lead to unexpectedly high levels of segregation. PMID:24724663

  1. Quantitative Z-Contrast Imaging of Supported Metal Complexes and Clusters - A Gateway to Understanding Catalysis on the Atomic Scale

    SciTech Connect

    Browning, Nigel D.; Aydin, C.; Lu, Jing; Kulkarni, Apoorva; Okamoto, Norihiko L.; Ortalan, V.; Reed, Bryan W.; Uzun, Alper; Gates, Bruce C.

    2013-09-01

    Z-contrast imaging in an aberration-corrected scanning transmission electron microscope can be used to observe and quantify the sizes, shapes, and compositions of the metal frames in supported mono-, bi-, and multimetallic metal clusters and can even detect the metal atoms in single-metal-atom complexes, as well as providing direct structural information characterizing the metal-support interface. Herein, we assess the major experimental challenges associated with obtaining atomic resolution Z-contrast images of the materials that are highly beam-sensitive, that is, the clusters readily migrate and sinter on support surfaces, and the support itself can drastically change in structure if the experiment is not properly controlled. Calibrated and quantified Z-contrast images are used in conjunction with exsitu analytical measurements and larger-scale characterization methods such as extended X-ray absorption fine structure spectroscopy to generate an atomic-scale understanding of supported catalysts and their function. Examples of the application of these methods include the characterization of a wide range of sizes and compositions of supported clusters, primarily those incorporating Ir, Os, and Au, on highly crystalline supports (zeolites and MgO).

  2. Characterization of new drug delivery nanosystems using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  3. Characterization of Nanoporous Materials with Atom Probe Tomography.

    PubMed

    Pfeiffer, Björn; Erichsen, Torben; Epler, Eike; Volkert, Cynthia A; Trompenaars, Piet; Nowak, Carsten

    2015-06-01

    A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT. PMID:25990813

  4. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    SciTech Connect

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries.

  5. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  6. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  7. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide

    NASA Astrophysics Data System (ADS)

    Kraus, H.; Soltamov, V. A.; Fuchs, F.; Simin, D.; Sperlich, A.; Baranov, P. G.; Astakhov, G. V.; Dyakonov, V.

    2014-07-01

    Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of -1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response.

  8. Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide

    PubMed Central

    Kraus, H.; Soltamov, V. A.; Fuchs, F.; Simin, D.; Sperlich, A.; Baranov, P. G.; Astakhov, G. V.; Dyakonov, V.

    2014-01-01

    Quantum systems can provide outstanding performance in various sensing applications, ranging from bioscience to nanotechnology. Atomic-scale defects in silicon carbide are very attractive in this respect because of the technological advantages of this material and favorable optical and radio frequency spectral ranges to control these defects. We identified several, separately addressable spin-3/2 centers in the same silicon carbide crystal, which are immune to nonaxial strain fluctuations. Some of them are characterized by nearly temperature independent axial crystal fields, making these centers very attractive for vector magnetometry. Contrarily, the zero-field splitting of another center exhibits a giant thermal shift of −1.1 MHz/K at room temperature, which can be used for thermometry applications. We also discuss a synchronized composite clock exploiting spin centers with different thermal response. PMID:24993103

  9. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation

    SciTech Connect

    Zheng, He; Wu, Shujing; Sheng, Huaping; Liu, Chun; Liu, Yu; Cao, Fan; Zhou, Zhichao; Zhao, Dongshan E-mail: dszhao@whu.edu.cn; Wang, Jianbo E-mail: dszhao@whu.edu.cn; Zhao, Xingzhong

    2014-04-07

    The atomic-scale oxide growth dynamics are directly revealed by in situ high resolution transmission electron microscopy during the oxidation of Mg surface. The oxidation process is characterized by the layer-by-layer growth of magnesium oxide (MgO) nanocrystal via the adatom process. Consistently, the nucleated MgO crystals exhibit faceted surface morphology as enclosed by (200) lattice planes. It is believed that the relatively lower surface energies of (200) lattice planes should play important roles, governing the growth mechanism. These results facilitate the understanding of the nanoscale oxide growth mechanism that will have an important impact on the development of magnesium or magnesium alloys with improved resistance to oxidation.

  10. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy.

    PubMed

    Chen, Z; Weyland, M; Sang, X; Xu, W; Dycus, J H; LeBeau, J M; D'Alfonso, A J; Allen, L J; Findlay, S D

    2016-09-01

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. PMID:27258645

  11. Multi-scale characterization of nanostructured sodium aluminum hydride

    NASA Astrophysics Data System (ADS)

    NaraseGowda, Shathabish

    Complex metal hydrides are the most promising candidate materials for onboard hydrogen storage. The practicality of this class of materials is counter-poised on three critical attributes: reversible hydrogen storage capacity, high hydrogen uptake/release kinetics, and favorable hydrogen uptake/release thermodynamics. While a majority of modern metallic hydrides that are being considered are those that meet the criteria of high theoretical storage capacity, the challenges lie in addressing poor kinetics, thermodynamics, and reversibility. One emerging strategy to resolve these issues is via nanostructuring or nano-confinement of complex hydrides. By down-sizing and scaffolding them to retain their nano-dimensions, these materials are expected to improve in performance and reversibility. This area of research has garnered immense interest lately and there is active research being pursued to address various aspects of nanostructured complex hydrides. The research effort documented here is focused on a detailed investigation of the effects of nano-confinement on aspects such as the long range atomic hydrogen diffusivities, localized hydrogen dynamics, microstructure, and dehydrogenation mechanism of sodium alanate. A wide variety of microporous and mesoporous materials (metal organic frameworks, porous silica and alumina) were investigated as scaffolds and the synthesis routes to achieve maximum pore-loading are discussed. Wet solution infiltration technique was adopted using tetrahydrofuran as the medium and the precursor concentrations were found to have a major role in achieving maximum pore loading. These concentrations were optimized for each scaffold with varying pore sizes and confinement was quantitatively characterized by measuring the loss in specific surface area. This work is also aimed at utilizing neutron and synchrotron x-ray characterization techniques to study and correlate multi-scale material properties and phenomena. Some of the most advanced

  12. Atomic-scale wavefunctions and dynamics inside the hidden order compound URu2 Si2

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; Denlinger, Jonathan; Huang, Shih-Wen; Butch, Nicholas; Maple, M. Brian; Hussain, Zahid; Chuang, Yi-De

    2015-03-01

    Understanding the emergent wavefunctions of correlated electron systems requires experimental probes that can resolve electronic states on an atomic scale. However, imaging techniques such as STM that resolve single atoms do not provide a good way to distinguish the entangled symmetries of nearby electrons. I will talk about how energy-resolved scattering measurements performed with resonance-tuned X-rays can open a unique window into many-body entangled states on an atomic length scale and femtosecond time scale. The presentation will focus on data that unveil low temperature wavefunction symmetries and energetics of uranium electrons in the ``hidden order'' compound URu2Si2.

  13. First-Principles Mobility Calculations and Atomic-Scale Interface Roughness in Nanoscale Structures

    SciTech Connect

    Evans, Matthew H; Zhang, Xiaoguang; Joannopoulos, J. D.; Pantelides, Sokrates T

    2005-01-01

    Calculations of mobilities have so far been carried out using approximate methods that suppress atomic-scale detail. Such approaches break down in nanoscale structures. Here we report the development of a method to calculate mobilities using atomic-scale models of the structures and density functional theory at various levels of sophistication and accuracy. The method is used to calculate the effect of atomic-scale roughness on electron mobilities in ultrathin double-gate silicon-on-insulator structures. The results elucidate the origin of the significant reduction in mobility observed in ultrathin structures at low electron densities.

  14. The Bichromatic Optical Force on the Atomic Life- time Scale

    NASA Astrophysics Data System (ADS)

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2013-05-01

    Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force. Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question. We drive the 23 S -->33 P transition of He at λ = 389 nm with laser frequencies ωl =ωa +/- δ , where ωa is the atomic transition frequency and δ ~ 30 MHz. Thus the velocity range of the force is Δv ~ δ / 2 k = 6 m/s. Because of the large and nearly constant strength of the BF, F ~ ℏkδ / π , all atoms can reach the velocity limit in a time <= MΔv / F = π / 4ωr = 380 ns, where ωr is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state (τ = 106 ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain. Supported by ONR and Dept. of Ed. GAANN.

  15. Atomic-scale insights into 1D and 2D nano-materials

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C. B.; Migliorato, M.; Pan, C.-T.; Harvey, A. J.; Kepatsoglou, D. M.; Ramasse, Q. M.

    2015-10-01

    Atomic resolution imaging and narrow-energy spread spectroscopy in aberration corrected (scanning) transmission electron microscopes, in combination with DFT modelling has made it possible to uncover atomic-scale morphology, defect constellations, lattice impurities and ad-atoms in nano-materials, as well as revealing their influence on the surrounding bandstructure. Using atomic-scale imaging, EEL spectroscopy and EFTEM, we address issues beyond the more common investigations of their atomic lattice structure. We focus on the demonstration of (i) ripples in graphene and on effects of (ii) metal ad-atoms as well as of (iii) controllably introduced impurities -via low energy ion implantation- in both, graphene and carbon nanotubes, on the electronic band structure. We demonstrate the creation of a new feature with collective charge carrier behaviour (plasmon) in the UV/vis range in graphene and carbon nanotubes via EEL spectrum imaging and EFTEM, and support this with dielectric theory modelling.

  16. The possibility of constructing the hydrogen scale of the absolute atomic masses of the elements

    NASA Astrophysics Data System (ADS)

    Kuz'min, I. I.

    2009-12-01

    The paper presents a scheme for the experimental-empirical construction of the existing chemical, physical, and carbon scales of the relative nonintegral atomic masses of the elements. The quantitative interrelation between the nonintegral relative atomic masses, their minimized fractional positive and negative natural deviations from integral numbers, and their integral parts are reproduced mathematically. Nonisotopic fractional deviations are shown to be a consequence of methodological side effects of the scheme for theoretical processing of the data of thorough physical and chemical measurements performed by Stas and Aston in constructing scales of relative atomic masses. In conformity with the Prout hypothesis, the absolute atomic mass unit and the corresponding Avogadro’s number value are suggested for the construction of the hydrogen scale of absolute atomic masses of nonisotopic elements, individual isotopes, and isotope-containing elements.

  17. Atomic-scale simulations of atomic and molecular mobility in models of interstellar ice

    NASA Astrophysics Data System (ADS)

    Andersson, Stefan

    The mobility of atoms and molecular radicals at ice-covered dust particles controls the surprisingly rich chemistry of circumstellar and interstellar environments, where a large number of different organic molecules have been observed. Both thermal and non-thermal processes, for instance caused by UV radiation, have been inferred to play important roles in this chemistry. A growing number of experimental studies support previously suggested mechanisms and add to the understanding of possible astrochemical processes. Simulations, of both experiments and astrophysical environments, aid in interpreting experiments and suggesting important mechanisms. Still, the exact mechanisms behind the mobility of species in interstellar ice are far from fully understood. We have performed calculations at the molecular level on the mobility of H atoms and OH radicals at water ice surfaces of varying morphology. Calculations of binding energies and diffusion barriers of H atoms at crystalline and amorphous ice surfaces show that the experimentally observed slower diffusion at amorphous ice is due to considerably stronger binding energies and higher diffusion barriers than at crystalline ice. These results are in excellent agreement with recent experiments. It was also found that quantum tunneling is important for H atom mobility below 10 K. The binding energies and diffusion barriers of OH radicals at crystalline ice have been studied using the ONIOM(QM:AMOEBA) approach. Results indicate that OH diffusion over crystalline ice, contrary to the case of H atoms, might be slower at crystalline ice than at amorphous ice, due to a higher surface density of stronger binding sites at crystalline ice. We have also performed molecular dynamics simulations of the photoexcitation of vapor-deposited water at a range of surface temperatures. These results support that the experimentally observed desorption of H atoms following UV excitation is best explained by release of H atoms from

  18. Characterizing interfacial structure at non-common-atom heterojunctions with cross-sectional scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Steinshnider, Jeremy David

    We show how cross-sectional scanning tunneling microscopy may be used to characterize the structure and composition of the non-common-atom heterojunctions in 6.1 A semiconductor heterostructures through isovalent impurity discrimination and interface bond identification on the atomic scale. This precision makes possible a concrete understanding of the individual roles played by fundamental atomic processes such as anion and cation segregation in heterojunction formation, as well as of unanticipated interactions between these processes that subsequently limit heterostructure perfection. Specifically, we show how the lattice-mismatched bonds associated with non-common-atom interfaces may be visualized with cross-sectional scanning tunneling microscopy, directly illustrating the connection between these bonds and molecular beam epitaxy growth conditions. These insights are then used to demonstrate how antimony segregation across the InAs-on-GaInSb and InAs-on-GaSb heterojunctions results in a uniformly graded anion sublattice that leaves the antimonide-like bonds at these interfaces intact, and, conversely, how indium segregation across the GaSb-on-InAs heterojunction produces a discontinuously graded cation sublattice that compromises the antimonide---like bonds formed by antimony-for-arsenic exchange and leaves a predominantly arsenide---like interface behind.

  19. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    de la Torre, B.; Ellner, M.; Pou, P.; Nicoara, N.; Pérez, Rubén; Gómez-Rodríguez, J. M.

    2016-06-01

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.

  20. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

    PubMed

    de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M

    2016-06-17

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale. PMID:27367394

  1. ARECIBO MULTI-EPOCH H I ABSORPTION MEASUREMENTS AGAINST PULSARS: TINY-SCALE ATOMIC STRUCTURE

    SciTech Connect

    Stanimirovic, S.; Weisberg, J. M.; Pei, Z.; Tuttle, K.; Green, J. T.

    2010-09-01

    We present results from multi-epoch neutral hydrogen (H I) absorption observations of six bright pulsars with the Arecibo telescope. Moving through the interstellar medium (ISM) with transverse velocities of 10-150 AU yr{sup -1}, these pulsars have swept across 1-200 AU over the course of our experiment, allowing us to probe the existence and properties of the tiny-scale atomic structure (TSAS) in the cold neutral medium (CNM). While most of the observed pulsars show no significant change in their H I absorption spectra, we have identified at least two clear TSAS-induced opacity variations in the direction of B1929+10. These observations require strong spatial inhomogeneities in either the TSAS clouds' physical properties themselves or else in the clouds' galactic distribution. While TSAS is occasionally detected on spatial scales down to 10 AU, it is too rare to be characterized by a spectrum of turbulent CNM fluctuations on scales of 10{sup 1}-10{sup 3} AU, as previously suggested by some work. In the direction of B1929+10, an apparent correlation between TSAS and interstellar clouds inside the warm Local Bubble (LB) indicates that TSAS may be tracing the fragmentation of the LB wall via hydrodynamic instabilities. While similar fragmentation events occur frequently throughout the ISM, the warm medium surrounding these cold cloudlets induces a natural selection effect wherein small TSAS clouds evaporate quickly and are rare, while large clouds survive longer and become a general property of the ISM.

  2. Propagation of Structural Disorder in Epitaxially Connected Quantum Dot Solids from Atomic to Micron Scale.

    PubMed

    Savitzky, Benjamin H; Hovden, Robert; Whitham, Kevin; Yang, Jun; Wise, Frank; Hanrath, Tobias; Kourkoutis, Lena F

    2016-09-14

    Epitaxially connected superlattices of self-assembled colloidal quantum dots present a promising route toward exquisite control of electronic structure through precise hierarchical structuring across multiple length scales. Here, we uncover propagation of disorder as an essential feature in these systems, which intimately connects order at the atomic, superlattice, and grain scales. Accessing theoretically predicted exotic electronic states and highly tunable minibands will therefore require detailed understanding of the subtle interplay between local and long-range structure. To that end, we developed analytical methods to quantitatively characterize the propagating disorder in terms of a real paracrystal model and directly observe the dramatic impact of angstrom scale translational disorder on structural correlations at hundreds of nanometers. Using this framework, we discover improved order accompanies increasing sample thickness and identify the substantial effect of small fractions of missing epitaxial bonds on statistical disorder. These results have significant experimental and theoretical implications for the elusive goals of long-range carrier delocalization and true miniband formation. PMID:27540863

  3. Enhanced Atomic-Scale Spin Contrast due to Spin Friction

    NASA Astrophysics Data System (ADS)

    Ouazi, S.; Kubetzka, A.; von Bergmann, K.; Wiesendanger, R.

    2014-02-01

    Atom manipulation with the magnetic tip of a scanning tunneling microscope is a versatile technique to construct and investigate well-defined atomic spin arrangements. Here we explore the possibility of using a magnetic adatom as a local probe to image surface spin textures. As a model system we choose a Néel state with 120° between neighboring magnetic moments. Close to the threshold of manipulation, the adatom resides in the threefold, magnetically frustrated hollow sites, and consequently no magnetic signal is detected in manipulation images. At smaller tip-adatom distances, however, the adatom is moved towards the magnetically active bridge sites and due to the exchange force of the tip the manipulation process becomes spin dependent. In this way the adatom can be used as an amplifying probe for the surface spin texture.

  4. Deciphering Adsorption Structure on Insulators at the Atomic Scale

    SciTech Connect

    Thurmer, Konrad; Feibelman, Peter J.

    2014-09-01

    We applied Scanning Probe Microscopy and Density Functional Theory (DFT) to discover the basics of how adsorbates wet insulating substrates, addressing a key question in geochemistry. To allow experiments on insulating samples we added Atomic Force Microscopy (AFM) capability to our existing UHV Scanning Tunneling Microscope (STM). This was accomplished by integrating and debugging a commercial qPlus AFM upgrade. Examining up-to-40-nm-thick water films grown in vacuum we found that the exact nature of the growth spirals forming around dislocations determines what structure of ice, cubic or hexagonal, is formed at low temperature. DFT revealed that wetting of mica is controlled by how exactly a water layer wraps around (hydrates) the K+ ions that protrude from the mica surface. DFT also sheds light on the experimentally observed extreme sensitivity of the mica surface to preparation conditions: K atoms can easily be rinsed off by water flowing past the mica surface.

  5. Scaling Cross Sections for Ion-atom Impact Ionization

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  6. Atomic-Scale Control of Electron Transport through Single Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Y. F.; Kröger, J.; Berndt, R.; Vázquez, H.; Brandbyge, M.; Paulsson, M.

    2010-04-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of the surface electrode. Nonequilibrium Green’s function calculations reproduce the trend of the conductance and visualize the current flow through the junction, which is guided through molecule-electrode chemical bonds.

  7. Atomic scale modeling of boron transient diffusion in silicon

    SciTech Connect

    Caturla, M. J.; Diaz de la Rubia, T.; Foad, M.; Giles, M.; Johnson, M. D.; Law, M.; Lilak, A.

    1998-06-17

    We presents results from a predictive atomic level simulation of Boron diffusion in Silicon under a wide variety of implant and annealing conditions. The parameters for this simulation have been extracted from first principle approximation models and molecular dynamics simulations. The results are compared with experiments showing good agreement in all cases. The parameters and reactions used have been implemented into a continuum-level model simulator.

  8. Atom-probe for FinFET dopant characterization.

    PubMed

    Kambham, A K; Mody, J; Gilbert, M; Koelling, S; Vandervorst, W

    2011-05-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10° and 45°) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values. PMID:21288644

  9. Three-dimensional atomic-scale imaging of impurity segregation to line defects

    PubMed

    Blavette; Cadel; Fraczkiewicz; Menand

    1999-12-17

    Clouds of impurity atoms near line defects are believed to affect the plastic deformation of alloys. Three-dimensional atom probe techniques were used to image these so-called Cottrell atmospheres directly. Ordered iron-aluminum alloys (40 atomic percent aluminum) doped with boron (400 atomic parts per million) were investigated on an atomic scale along the <001> direction. A boron enrichment was observed in the vicinity of an <001> edge dislocation. The enriched region appeared as a three-dimensional pipe 5 nanometers in diameter, tangent to the dislocation line. The dislocation was found to be boron-enriched by a factor of 50 (2 atomic percent) relative to the bulk. The local boron enrichment is accompanied by a strong aluminum depletion of 20 atomic percent. PMID:10600736

  10. Atomic-scale imaging of surfaces and interfaces. Materials Research Society Symposium Proceedings, volume 295

    NASA Astrophysics Data System (ADS)

    Biegelsen, David K.; Smith, David J.; Tong, S. Y.

    The gap between imagining and imaging is getting ever smaller. The Atomic-Scale Imaging of Surfaces and Interfaces, Symposium W at the 1992 MRS Fall Meeting in Boston, Massachusetts, brought together researchers using state-of-the-art imaging techniques capable of resolving atomic features. Methods represented were scanning tunneling microscopy (STM), atomic force microscopy (AFM), low energy electron microscopy (LEEM), transmission (TEM) and reflection (REM) electron microscopy, scanning electron microscopy (SEM), atom probe field ion microscopy (APFIM or POSAP), high and low energy external source electron holographies, and internal source electron holographies. Some highlights from the STM papers included discussions of the limitations and future potential of STM as well as current findings. Several papers presented work with STM at elevated temperatures. Jene Golovchenko reviewed STM work showing cooperative diffusion events (Pb on Ge) involving many tens of substrate atoms. Don Eigler focused on atomic manipulation and some of its uses to enable fundamental studies of small atomic clusters.

  11. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    DOE PAGESBeta

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-04-21

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales – from single atoms to macroscopic devices. Our short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. In this discussion we present the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  12. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

    PubMed Central

    Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; Baum, Peter

    2015-01-01

    For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene. PMID:26412407

  13. Atomic-scale diffractive imaging of sub-cycle electron dynamics in condensed matter

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vladislav S.; Stockman, Mark I.; Krausz, Ferenc; Baum, Peter

    2015-09-01

    For interaction of light with condensed-matter systems, we show with simulations that ultrafast electron and X-ray diffraction can provide a time-dependent record of charge-density maps with sub-cycle and atomic-scale resolutions. Using graphene as an example material, we predict that diffraction can reveal localised atomic-scale origins of optical and electronic phenomena. In particular, we point out nontrivial relations between microscopic electric current and density in undoped graphene.

  14. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach.

    PubMed

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K; Kalinin, Sergei V

    2016-08-01

    Energy technologies of the 21(st) century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry. PMID:27146961

  15. Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach

    NASA Astrophysics Data System (ADS)

    Strelcov, Evgheni; Yang, Sang Mo; Jesse, Stephen; Balke, Nina; Vasudevan, Rama K.; Kalinin, Sergei V.

    2016-07-01

    Energy technologies of the 21st century require an understanding and precise control over ion transport and electrochemistry at all length scales - from single atoms to macroscopic devices. This short review provides a summary of recent studies dedicated to methods of advanced scanning probe microscopy for probing electrochemical transformations in solids at the meso-, nano- and atomic scales. The discussion presents the advantages and limitations of several techniques and a wealth of examples highlighting peculiarities of nanoscale electrochemistry.

  16. A single-atom detector integrated on an atom chip: fabrication, characterization and application

    NASA Astrophysics Data System (ADS)

    Heine, D.; Rohringer, W.; Fischer, D.; Wilzbach, M.; Raub, T.; Loziczky, S.; Liu, XiYuan; Groth, S.; Hessmo, B.; Schmiedmayer, J.

    2010-09-01

    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated on an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single-atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows us to determine the number of detected photons per atom and from there the atom detection efficiency. The second-order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi oscillations. With simple improvements, one can increase the detection efficiency to 95%.

  17. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.

    PubMed

    Tao, Franklin Feng; Crozier, Peter A

    2016-03-23

    Heterogeneous catalysis is a chemical process performed at a solid-gas or solid-liquid interface. Direct participation of catalyst atoms in this chemical process determines the significance of the surface structure of a catalyst in a fundamental understanding of such a chemical process at a molecular level. High-pressure scanning tunneling microscopy (HP-STM) and environmental transmission electron microscopy (ETEM) have been used to observe catalyst structure in the last few decades. In this review, instrumentation for the two in situ/operando techniques and scientific findings on catalyst structures under reaction conditions and during catalysis are discussed with the following objectives: (1) to present the fundamental aspects of in situ/operando studies of catalysts; (2) to interpret the observed restructurings of catalyst and evolution of catalyst structures; (3) to explore how HP-STM and ETEM can be synergistically used to reveal structural details under reaction conditions and during catalysis; and (4) to discuss the future challenges and prospects of atomic-scale observation of catalysts in understanding of heterogeneous catalysis. This Review focuses on the development of HP-STM and ETEM, the in situ/operando characterizations of catalyst structures with them, and the integration of the two structural analytical techniques for fundamentally understanding catalysis. PMID:26955850

  18. Design, fabrication and characterization of tunable external cavity diode laser and atom trapping chips for atomic physics

    NASA Astrophysics Data System (ADS)

    Chuang, Ho-Chiao

    -trapping cell. The fabricated feedthrough atom trapping chips for atomic optics experiments meet both requirements for high current electrical conduction as well as high vacuum sealing. In the atom transistor chips part, we describe a fabrication process using a combination of UV-optical and electron beam lithography to pattern micrometer and nanometer scale copper wires on a single chip. The electrical current test results establish the feasibility of realizing chip-based atom-tunneling experiments.

  19. Temperature dependence of atomic-scale stick-slip friction.

    PubMed

    Jansen, Lars; Hölscher, Hendrik; Fuchs, Harald; Schirmeisen, André

    2010-06-25

    We report experiments of atomic stick-slip friction on graphite as an explicit function of surface temperature between 100 and 300 K under ultrahigh vacuum conditions. A statistical analysis of the individual stick-slip events as a function of the velocity reveals an agreement with the thermally activated Prandtl-Tomlinson model at all temperatures. Taking into account an explicit temperature-dependence of the attempt frequency all data points collapse onto one single master curve. PMID:20867399

  20. Evidence for Contact Delocalization in Atomic Scale Friction

    NASA Astrophysics Data System (ADS)

    Abel, D. G.; Krylov, S. Yu.; Frenken, J. W. M.

    2007-10-01

    We analyze an advanced two-spring model with an ultralow effective tip mass to predict nontrivial and physically rich “fine structure” in the atomic stick-slip motion in friction force microscopy (FFM) experiments. We demonstrate that this fine structure is present in recent, puzzling experiments. This shows that the tip apex can be completely or partially delocalized, thus shedding new light on what is measured in FFM and, possibly, what can happen with the asperities that establish the contact between macroscopic sliding bodies.

  1. Perfect electromagnetic absorption at one-atom-thick scale

    SciTech Connect

    Li, Sucheng; Duan, Qian; Li, Shuo; Yin, Qiang; Lu, Weixin; Li, Liang; Hou, Bo; Gu, Bangming; Wen, Weijia

    2015-11-02

    We experimentally demonstrate that perfect electromagnetic absorption can be realized in the one-atom thick graphene. Employing coherent illumination in the waveguide system, the absorbance of the unpatterned graphene monolayer is observed to be greater than 94% over the microwave X-band, 7–13 GHz, and to achieve a full absorption, >99% in experiment, at ∼8.3 GHz. In addition, the absorption characteristic manifests equivalently a wide range of incident angle. The experimental results agree very well with the theoretical calculations. Our work accomplishes the broadband, wide-angle, high-performance absorption in the thinnest material with simple configuration.

  2. Atomic-scale thermocapillary flow in focused ion beam milling

    SciTech Connect

    Das, K.; Johnson, H. T.; Freund, J. B.

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  3. Atomic-Scale Studies of Oxides Supported Catalysts by X-ray and Imaging Methods

    NASA Astrophysics Data System (ADS)

    Feng, Zhenxing

    2011-12-01

    Oxide supported metal and metal oxide catalysts have been synthesized by molecular beam epitaxy (MBE) and atomic-layer deposition (ALD). To obtain a general idea of how a catalyst behaves chemically and structurally during reduction-oxidization (redox) reaction at atomic-scale, oxide single crystals with well-defined surfaces are used as supports to grow monolayer (ML) and sub-ML catalysts. Several model catalysis systems are investigated: Pt/SrTiO 3(001), WOX/alpha-Fe2O3(0001), VO X/alpha-TiO2(110) and mixed VOX/WOX/alpha-TiO 2(110). For purposes of comparison the catalysts include a noble metal (Pt), inert oxide (WOX) and active oxide (VOX). The oxide supports are categorized as a reducible substrate, alpha-Fe2 O3(0001), and non-reducible substrates, alpha-TiO 2(110) and SrTiO3(001). To obtain in situ information, a variety of X-ray and scanning imaging methods have been applied together to study the atomic-scale surface morphology, structure and cation dynamics during chemical reactions. These characterization techniques are: X-ray standing wave (XSW), grazing-incident small angle X-ray scattering (GISAXS), X-ray absorption fine structure (XAFS), X-ray reflectivity (XRR), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), atomic-force microscopy (AFM) and scanning electron microscopy (SEM). Our studies show that different combinations of catalysts and substrates give distinct structural and chemical state changes in redox reactions. For MBE deposited sub-monolayer (sub-ML) Pt on the 2 x 1 SrTiO 3(001) surface, AFM shows the formation of nanoparticles and XSW atomic imaging shows that these nanoparticles are composed of Pt face-centered-cubic nanocrystals with cube-on-cube epitaxy coherent to the substrate unit cell. Different Pt coverages lead to differences in the observed XSW image of the interfacial structure, which is explained by the Pt-Pt interaction becoming stronger than the Pt-substrate interaction as the coverage is increased from 0.2 to

  4. Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Hu, Y. C.; Guan, P. F.; Li, M. Z.; Liu, C. T.; Yang, Y.; Bai, H. Y.; Wang, W. H.

    2016-06-01

    Heterogeneity is commonly believed to be intrinsic to metallic glasses (MGs). Nevertheless, how to distinguish and characterize the heterogeneity at the atomic level is still debated. Based on the extensive molecular dynamics simulations that combine isoconfigurational ensemble and atomic pinning methods, we directly reveal that MG contains flow units and the elastic matrix which can be well distinguished by their distinctive atomic-level responsiveness and mechanical performance. The microscopic features of the flow units, such as the shape, spatial distribution dimensionality, and correlation length, are characterized from atomic position analyses. Furthermore, the correlation between the flow units and the landscape of energy state, free volume, atomic-level stress, and especially the local bond orientational order parameter is discussed.

  5. Characterization and Detection of Biological Weapons with Atomic Force Microscopy

    SciTech Connect

    Malkin, A J; Plomp, M; Leighton, T J; McPherson, A

    2006-09-25

    Critical gaps exist in our capabilities to rapidly characterize threat agents which could be used in attacks on facilities and military forces. DNA-based PCR and immunoassay-based techniques provide unique identification of species, strains and protein signatures of pathogens. However, differentiation between naturally occurring and weaponized bioagents and the identification of formulation signatures are beyond current technologies. One of the most effective and often the only definitive means to identify a threat agent is by its direct visualization. Atomic force microscopy (AFM) is a rapid imaging technique that covers the size range of most biothreat agents (several nanometers to tens of microns), is capable of resolving pathogen morphology and structure, and could be developed into a portable device for biological weapons (BW) field characterization. AFM can detect pathogens in aerosol, liquid, surface and soil samples while concomitantly acquiring their weaponization and threat agent digital signatures. BW morphological and structural signatures, including modifications to pathogen microstructural architecture and topology that occur during formulation and weaponization, provide the means for their differentiation from crude or purified unformulated agent, processing signatures, as well as assessment of their potential for dispersion, inhalation and environmental persistence. AFM visualization of pathogen morphology and architecture often provides valuable digital signatures and allows direct detection and identification of threat agents. We have demonstrated that pathogens, spanning the size range from several nanometers for small agricultural satellite viruses to almost half micron for pox viruses, and to several microns for bacteria and bacterial spores, can be visualized by AFM under physiological conditions to a resolution of {approx}20-30 {angstrom}. We have also demonstrated that viruses from closely related families could be differentiated by AFM on

  6. An algorithm for the Italian atomic time scale

    NASA Technical Reports Server (NTRS)

    Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.

    1994-01-01

    During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.

  7. Electronic and Atomic-Scale Properties of Ultraflat CVD Graphene

    NASA Astrophysics Data System (ADS)

    Gutierrez, Christopher; Rosenthal, Ethan; Dadgar, Ali; Brown, Lola; Lochocki, Edward; Shen, Kyle; Park, Jiwoong; Pasupathy, Abhay

    2014-03-01

    Chemical vapor deposition (CVD) growth on copper foils has proven to be a reliable and cost-effective method for the production of graphene. However, most films grown by this method suffer from misoriented graphene grains as well as topographic roughness due to the polycrystallinity of the underlying copper foil substrate. Recent methods of copper foil treatment have allowed for the growth of graphene predominantly on large single crystal Cu(111) facets. In this talk we discuss scanning tunneling microscope (STM) measurements on such samples that reveal large terraces and atomically-resolved images that allow us to analyze the graphene-copper interaction during the growth. Scanning tunneling spectroscopy (STS) measurements and mapping are further employed to probe the electronic interaction between the graphene and copper substrate.

  8. Lateral vibration effects in atomic-scale friction

    SciTech Connect

    Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E.; Gnecco, E.

    2014-02-24

    The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superimposed at finite temperature. Nevertheless, the peak values of the lateral force, and the total energy losses, are expected to increase with the excitation amplitude, which may limit the practical relevance of this effect.

  9. Review of time scales. [Universal Time-Ephemeris Time-International Atomic Time

    NASA Technical Reports Server (NTRS)

    Guinot, B.

    1974-01-01

    The basic time scales are presented: International Atomic Time, Universal Time, and Universal Time (Coordinated). These scales must be maintained in order to satisfy specific requirements. It is shown how they are obtained and made available at a very high level of precision.

  10. Characterization of ultrathin SiO x layers formed on a spatially controlled atomic-step-free Si(001) surface

    NASA Astrophysics Data System (ADS)

    Ando, Atsushi; Sakamoto, Kunihiro; Miki, Kazushi; Matsumoto, Kazuhiko; Sakamoto, Tsunenori

    1999-04-01

    We have demonstrated the characterizations of the morphologies and local electrical properties of ultrathin (<5 nm) SiO x/Si(001) structures that were formed by thermal oxidation of a spatially controlled atomic-step-free Si(001) surface. Both the SiO x surface and the SiO x/Si(001) interface had good morphology, with root-mean-square values of roughness, less than 0.12 nm. In contrast, spatial differences were observed in the local electrical properties measured using an atomic force microscope (AFM) with nanometer scale resolution.

  11. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  12. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    ERIC Educational Resources Information Center

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  13. Surface characterization of silica glass substrates treated by atomic hydrogen

    SciTech Connect

    Inoue, Hiroyuki; Masuno, Atsunobu; Ishibashi, Keiji; Tawarayama, Hiromasa; Zhang, Yingjiu; Utsuno, Futoshi; Koya, Kazuo; Fujinoki, Akira; Kawazoe, Hiroshi

    2013-12-15

    Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 °C, there was no significant change in the surface. By the treatment at 1000 °C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: • Silica glass surface was treated by atomic hydrogen at various temperatures. • Surface roughness was measured by an atomic force microscope. • Roughness data were analyzed by two-dimensional power spectral density. • Atomic hydrogen can flatten silica glass surfaces.

  14. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  15. Characterizing the effects of scale and heating rate on micro-scale explosive ignition criteria.

    SciTech Connect

    Hafenrichter, Everett Shingo; Pahl, Robert J.

    2005-01-01

    Laser diode ignition experiments were conducted in an effort to characterize the effects of scale and heating rate on micro-scale explosive ignition criteria. Over forty experiments were conducted with various laser power densities and laser spot sizes. In addition, relatively simple analytical and numerical calculations were performed to assist with interpretation of the experimental data and characterization of the explosive ignition criteria.

  16. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena. PMID:26943670

  17. Wafer-scale process and materials optimization in cross-flow atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lecordier, Laurent Christophe

    The exceptional thickness control (atomic scale) and conformality (uniformity over nanoscale 3D features) of atomic layer deposition (ALD) has made it the process of choice for numerous applications from microelectronics to nanotechnology, and for a wide variety of ALD processes and resulting materials. While its benefits derive from self-terminated chemisorbed reactions of alternatively supplied gas precursors, identifying a suitable process window in which ALD's benefits are realized can be a challenge, even in favorable cases. In this work, a strategy exploiting in-situ gas phase sensing in conjunction with ex-situ measurements of the film properties at the wafer scale is employed to explore and optimize the prototypical Al2O3 ALD process. Downstream mass-spectrometry is first used to rapidly identify across the [H2O x Al(CH3)3] process space the exposure conditions leading to surface saturation. The impact of precursor doses outside as well as inside the parameter space outlined by mass-spectrometry is then investigated by characterizing film properties across 100 mm wafer using spectroscopic ellipsometry, CV and IV electrical characterization, XPS and SIMS. Under ideal dose conditions, excellent thickness uniformity was achieved (1sigma/mean<1%) in conjunction with a deposition rate and electrical properties in good agreement with best literature data. As expected, under-dosing of precursor results in depletion of film growth in the flow direction across the wafer surface. Since adsorbed species are reactive with respect to subsequent dose of the complementary precursor, such depletion magnifies non-uniformities as seen in the cross-flow reactor, thereby decorating deviations from a suitable ALD process recipe. Degradation of the permittivity and leakage current density across the wafer was observed though the film composition remained unchanged. Upon higher water dose in the over-exposure regime, deposition rates increased by up to 40% while the uniformity

  18. Quantum mechanical study of the coupling of plasmon excitations to atomic-scale electron transport

    SciTech Connect

    Song Peng; Nordlander, Peter; Gao Shiwu

    2011-02-21

    The coupling of optical excitation and electron transport through a sodium atom in a plasmonic dimer junction is investigated using time-dependent density functional theory. The optical absorption and dynamic conductance is determined as a function of gap size. Surface plasmons are found to couple to atomic-scale transport through several different channels including dipolar, multipolar, and charge transfer plasmon modes. These findings provide insight into subnanoscale couplings of plasmons and atoms, a subject of general interest in plasmonics and molecular electronics.

  19. The Design, Fabrication and Characterization of a Transparent Atom Chip

    PubMed Central

    Chuang, Ho-Chiao; Huang, Chia-Shiuan; Chen, Hung-Pin; Huang, Chi-Sheng; Lin, Yu-Hsin

    2014-01-01

    This study describes the design and fabrication of transparent atom chips for atomic physics experiments. A fabrication process was developed to define the wire patterns on a transparent glass substrate to create the desired magnetic field for atom trapping experiments. An area on the chip was reserved for the optical access, so that the laser light can penetrate directly through the glass substrate for the laser cooling process. Furthermore, since the thermal conductivity of the glass substrate is poorer than other common materials for atom chip substrate, for example silicon, silicon carbide, aluminum nitride. Thus, heat dissipation copper blocks are designed on the front and back of the glass substrate to improve the electrical current conduction. The testing results showed that a maximum burnout current of 2 A was measured from the wire pattern (with a width of 100 μm and a height of 20 μm) without any heat dissipation design and it can increase to 2.5 A with a heat dissipation design on the front side of the atom chips. Therefore, heat dissipation copper blocks were designed and fabricated on the back of the glass substrate just under the wire patterns which increases the maximum burnout current to 4.5 A. Moreover, a maximum burnout current of 6 A was achieved when the entire backside glass substrate was recessed and a thicker copper block was electroplated, which meets most requirements of atomic physics experiments. PMID:24922456

  20. Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Albrecht, F.; Repp, J.; Fleischmann, M.; Scheer, M.; Ondráček, M.; Jelínek, P.

    2015-08-01

    Kelvin probe force spectroscopy was used to characterize the charge distribution of individual molecules with polar bonds. Whereas this technique represents the charge distribution with moderate resolution for large tip-molecule separations, it fails for short distances. Here, we introduce a novel local force spectroscopy technique which allows one to better disentangle electrostatic from other contributions in the force signal. It enables one to obtain charge-related maps at even closer tip-sample distances, where the lateral resolution is further enhanced. This enhanced resolution allows one to resolve contrast variations along individual polar bonds.

  1. Probing Charges on the Atomic Scale by Means of Atomic Force Microscopy.

    PubMed

    Albrecht, F; Repp, J; Fleischmann, M; Scheer, M; Ondráček, M; Jelínek, P

    2015-08-14

    Kelvin probe force spectroscopy was used to characterize the charge distribution of individual molecules with polar bonds. Whereas this technique represents the charge distribution with moderate resolution for large tip-molecule separations, it fails for short distances. Here, we introduce a novel local force spectroscopy technique which allows one to better disentangle electrostatic from other contributions in the force signal. It enables one to obtain charge-related maps at even closer tip-sample distances, where the lateral resolution is further enhanced. This enhanced resolution allows one to resolve contrast variations along individual polar bonds. PMID:26317733

  2. Multi-scale characterization of topographic anisotropy

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.

    2016-05-01

    We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.

  3. Phase-operation for conduction electron by atomic-scale scattering via single point-defect

    SciTech Connect

    Nagaoka, Katsumi Yaginuma, Shin; Nakayama, Tomonobu

    2014-03-17

    In order to propose a phase-operation technique for conduction electrons in solid, we have investigated, using scanning tunneling microscopy, an atomic-scale electron-scattering phenomenon on a 2D subband state formed in Si. Particularly, we have noticed a single surface point-defect around which a standing-wave pattern created, and a dispersion of scattering phase-shifts by the defect-potential against electron-energy has been measured. The behavior is well-explained with appropriate scattering parameters: the potential height and radius. This result experimentally proves that the atomic-scale potential scattering via the point defect enables phase-operation for conduction electrons.

  4. Generalization of atoms-in-molecules theory to include independent scaling of inner and outer shells

    NASA Astrophysics Data System (ADS)

    Ellison, Frank O.; Chen, Cheng

    1984-12-01

    Scaled atoms-in-molecules (SAIM) theory is required for obtaining diatomic fragment eigenvectors, and often useful for providing diatomic fragment potential energy curves, needed as input in the scaled diatomic-in-molecules (SDIM) method. Independent scaling of inner shells and valence shells is not admitted in the current formulation of SAIM. A new extension is developed here in which atomic eigenfunctions are partitioned into inner-shell and outer-shell components. These component functions are rigorously defined as solutions of two simultaneous eigenvalue equations; the Hamiltonians in these equations add to yield the original total atomic Hamiltonian. The component Hamiltonians so defined are shown to contain potential energy functions which are approximately homogeneous functions of degree minus one; hence, Coulomb-like. Thus, the inner-shell and outer-shell eigenfunctions may be scaled independently using methods generalized from standard scaled atoms-in-molecules (SAIM) theory. Preliminary applications to LiH, BeH, and Li2, and their positive ions, yield dissociation energies accurate to 7 kcal/mol or better.

  5. Geometric Characterization of Carbon Nanotubes by Atomic Force Microscopy in Conjunction with a Tip Characterizer

    NASA Astrophysics Data System (ADS)

    Wang, Chunmei; Itoh, Hiroshi; Homma, Yoshikazu; Sun, Jielin; Hu, Jun; Ichimura, Shingo

    2008-07-01

    An atomic force microscopy (AFM) probe tip characterizer with 14 line and space structures and two knife edges was fabricated by means of a superlattice technique. The shape of a probe tip both before and after AFM imaging was acquired by this tip characterizer with general variations <1.5 nm; depending on imaging conditions. The geometric structures of carbon nanotubes (CNTs) on a SiO2 substrate were studied by dynamic mode AFM in conjunction with this tip characterizer. Contact points between the tip and the CNTs were detected by observing changes in the AFM phase images. A modified CNT width correction model was established to calculate the estimated and upper-limit widths of two CNTs. The experimental results showed that imaging under a weak attractive force was suitable for obtaining accurate CNT height measurements, whereas a weak repulsive force provided the most accurate widths. Differing heights and widths between the two CNTs suggested that one CNT was double-walled, whereas the other had more than two walls; these results agree with transmission electron microscopy (TEM) measurements of the CNTs.

  6. Shock wave propagation in semi-crystalline polyethylene: An atomic-scale investigation

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.; O'Connor, Thomas C.; Yeh, In-Chul; Chantawansri, Tanya L.; Sirk, Timothy W.; Robbins, Mark O.; Andzelm, Jan W.

    Highly oriented polyethylene (PE) fibers are used in protection applications, therefore elucidation of their response under high strain-rate impact events is vital. Although PE fibers can have high crystallinity (>95%), they also contain defects such as amorphous domains. Using molecular dynamics simulations, we investigate shock propagation through crystalline, amorphous, and semi-crystalline PE. We generate compressive shock waves of varying strength, quantify their dynamics, and characterize their effect on material properties at the atomic scale. In the semi-crystalline PE model, the differing density and molecular order of amorphous PE and crystalline PE result in differing shock impedances, which causes reflection and refraction of shock waves at interfaces between the phases. We quantify the properties (e.g. pressure, velocity) of the reflected and refracted waves, which differ from those of the incident wave, and compare with results from impedance matching. We also examine the reflection, absorption, and transmission of energy at the crystalline-amorphous interface. Depending on shock strength, amorphous defects can dissipate shock energy, which attenuates the shock and leads to effects such as localized heating.

  7. Enhanced noise at high bias in atomic-scale Au break junctions.

    PubMed

    Chen, Ruoyu; Wheeler, Patrick J; Di Ventra, M; Natelson, D

    2014-01-01

    Heating in nanoscale systems driven out of equilibrium is of fundamental importance, has ramifications for technological applications, and is a challenge to characterize experimentally. Prior experiments using nanoscale junctions have largely focused on heating of ionic degrees of freedom, while heating of the electrons has been mostly neglected. We report measurements in atomic-scale Au break junctions, in which the bias-driven component of the current noise is used as a probe of the electronic distribution. At low biases (<150 mV) the noise is consistent with expectations of shot noise at a fixed electronic temperature. At higher biases, a nonlinear dependence of the noise power is observed. We consider candidate mechanisms for this increase, including flicker noise (due to ionic motion), heating of the bulk electrodes, nonequilibrium electron-phonon effects, and local heating of the electronic distribution impinging on the ballistic junction. We find that flicker noise and bulk heating are quantitatively unlikely to explain the observations. We discuss the implications of these observations for other nanoscale systems, and experimental tests to distinguish vibrational and electron interaction mechanisms for the enhanced noise. PMID:24573177

  8. Enhanced noise at high bias in atomic-scale Au break junctions

    PubMed Central

    Chen, Ruoyu; Wheeler, Patrick J.; Di Ventra, M.; Natelson, D.

    2014-01-01

    Heating in nanoscale systems driven out of equilibrium is of fundamental importance, has ramifications for technological applications, and is a challenge to characterize experimentally. Prior experiments using nanoscale junctions have largely focused on heating of ionic degrees of freedom, while heating of the electrons has been mostly neglected. We report measurements in atomic-scale Au break junctions, in which the bias-driven component of the current noise is used as a probe of the electronic distribution. At low biases (<150 mV) the noise is consistent with expectations of shot noise at a fixed electronic temperature. At higher biases, a nonlinear dependence of the noise power is observed. We consider candidate mechanisms for this increase, including flicker noise (due to ionic motion), heating of the bulk electrodes, nonequilibrium electron-phonon effects, and local heating of the electronic distribution impinging on the ballistic junction. We find that flicker noise and bulk heating are quantitatively unlikely to explain the observations. We discuss the implications of these observations for other nanoscale systems, and experimental tests to distinguish vibrational and electron interaction mechanisms for the enhanced noise. PMID:24573177

  9. Atomic-scale imaging of albite feldspar, calcium carbonate, rectorite, and bentonite using atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Drake, Barney; Hellmann, Roland; Sikes, C. Steven; Occelli, Mario L.

    1992-05-01

    Atomic force microscopy (AFM) was used to investigate the (010) surface of Amelia albite, the basal and (001) planes of CaCO3 (calcite), and the basal planes of rectorite and bentonite. Atomic scale images of the albite surface show six sided, interconnected en-echelon rings. Fourier transforms of the surface scans reveal two primary nearest neighbor distances of 4.7 and 4.9 +/- 0.5 angstroms. Analysis of the images using a 6 angstroms thick projection of the bulk structure was performed. Close agreement between the projection and the images suggests the surface is very close to an ideal termination of the bulk structure. Images of the calcite basal plane show a hexagonal array of Ca atoms measured to within +/- 0.3 angstroms of the 4.99 angstroms predicted by x-ray diffraction data. Putative images of the (001) plane of carbonate ions, with hexagonal 5 angstroms spacing, are also presented and discussed. Basal plane images of rectorite show hexagonal symmetry with 9.1 +/- 2.5 angstroms spacing, while bentonite results reveal a 4.9 +/- 0.5 angstroms nearest neighbor spacing.

  10. Atomic-scale calculations of interfacial structures and their properties in electronic materials

    NASA Astrophysics Data System (ADS)

    Liang, Tao

    With the tremendous increase in computational power over the last two decades as well as the continuous shrinkage of Si-based Metal Oxide Semiconductor Field Effect Transistors (MOSFET), quantum mechanically based ab initio methods become indispensable tools in nano-scale device engineering. In this work, atomistic simulations including ab initio, nudged elastic band (NEB) and kinetic Monte Carlo methods have been used to (1) calculate the dopant segregation energy at silicon/gate oxide interfaces; (2) characterize the Si:Ge/SiO2 interfacial structure; (3) study the effects of impurity atoms on the diffusion process at Al and Al(Cu) grain boundaries. Using VASP, an ab initio simulation package, we calculated B segregation energy at different atomic sites in perfect and defected Si/SiO 2 interfaces and arsenic segregation energy in Si/LaAlO3 structures. With the presence of O vacancies and H in B doped systems, the predicted segregation energy is 0.85 eV for neutral systems and 1.12 eV for negatively charged systems, which is consistent with experimental measurements (0.51 to 1.47 eV). Recent ab initio structure calculations have examined the stability of various Si(001)/LaAlO3 interfaces and find that a LaO terminated interface with La deficiency or perfect stoichiometry depending on oxygen partial pressure has the lowest energy. Focussing on the La deficient Si/LaAlO3 interfacial structure, we find that the arsenic prefers energetically not to segregate into LaAlO3 nor does it pile up in front of the interface. In combation of atomic-resolution Z-contrast imaging and electron energy loss spectroscopy (EELS), we theorectically calculated the band structure and EELS of a Ge/SiO2 interface. We actually found a chemically abrupt Ge/SiO2 interface, which has never been reported before and which is quite desirable for applications. Furthermore, we formulated a kinetic Monte Carlo model to simulate the oxidation process of Ge ion-implanted Si. Our modeling suggests the

  11. Time scaling with efficient time-propagation techniques for atoms and molecules in pulsed radiation fields

    SciTech Connect

    Hamido, Aliou; Frapiccini, Ana Laura; Piraux, Bernard; Eiglsperger, Johannes; Madronero, Javier; Mota-Furtado, Francisca; O'Mahony, Patrick

    2011-07-15

    We present an ab initio approach to solving the time-dependent Schroedinger equation to treat electron- and photon-impact multiple ionization of atoms or molecules. It combines the already known time-scaled coordinate method with a high-order time propagator based on a predictor-corrector scheme. In order to exploit in an optimal way the main advantage of the time-scaled coordinate method, namely, that the scaled wave packet stays confined and evolves smoothly toward a stationary state, of which the squared modulus is directly proportional to the electron energy spectra in each ionization channel, we show that the scaled bound states should be subtracted from the total scaled wave packet. In addition, our detailed investigations suggest that multiresolution techniques like, for instance, wavelets are the most appropriate ones to represent the scaled wave packet spatially. The approach is illustrated in the case of the interaction of a one-dimensional model atom as well as atomic hydrogen with a strong oscillating field.

  12. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect

    Evans, J. Chapman, S.

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  13. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  14. Linear scaling approach for atomistic calculation of excitonic properties of 10-million-atom nanostructures

    NASA Astrophysics Data System (ADS)

    RóŻański, Piotr T.; Zieliński, Michał

    2016-07-01

    Numerical calculations of excitonic properties of novel nanostructures, such as nanowire and crystal phase quantum dots, must combine atomistic accuracy with an approachable computational complexity. The key difficulty comes from the fact that excitonic spectra details arise from atomic-scale contributions that must be integrated over a large spatial domain containing a million and more atoms. In this work we present a step-by-step solution to this problem: a combined empirical tight-binding and configuration interaction scheme that unites linearly scaling computational time with the essentials of the atomistic modeling. We benchmark our method on the example of well-studied self-assembled InAs/GaAs quantum dots. Next, we apply our atomistic approach to crystal phase quantum dots containing more than 10 million atoms.

  15. Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing

    PubMed Central

    Chi, Miaofang; Wang, Chao; Lei, Yinkai; Wang, Guofeng; Li, Dongguo; More, Karren L.; Lupini, Andrew; Allard, Lawrence F.; Markovic, Nenad M.; Stamenkovic, Vojislav R.

    2015-01-01

    The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance. PMID:26576477

  16. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  17. Scale-Space Mutual Information for Textural-Patterns Characterization

    SciTech Connect

    Seedahmed, Gamal H.; Ward, Andy L.

    2005-08-22

    The essence of image texture is typically understood by two aspects. First, within a texture-pattern there is a significant variation in intensity values between nearby pixels. Second, texture is a homogeneous property at some spatial scale larger than the spatial resolution of the image. Motivated by the essential aspects of image texture, this paper proposes a novel methodology that combines the use of scale-space and mutual information to characterize textural-patterns. Scale-space offers the mechanism for a multi-scale representation of the image, which will be used to address the scale aspect of texture. On the other hand, mutual information provides a measure to quantify the dependency relationship across the scale-space. It has been found that the proposed methodology has the potential to capture different properties of texture such as periodicity, scale, fineness, coarseness, and spatial extent or size. Practical examples are provided to demonstrate the applicability of the proposed methodology.

  18. Atomic Scale Study of Interfaces Involved in Epitaxial Fe/MgO/Fe Magnetic Tunnel Junctions

    SciTech Connect

    Andrieu, S.; Serra, R.; Bonell, F.; Tiusan, C.; Calmels, L.; Snoeck, E.; Varela del Arco, Maria; Pennycook, Stephen J; Walls, M.; Colliex, C.

    2009-01-01

    Epitaxial Fe/MgO/Fe(001) magnetic tunnel junctions grown by Molecular Beam Epitaxy have been studied by using spatially resolved Electron Energy Loss Spectroscopy (EELS). The structure, the chemical composition as well as the bonding variations across the interfaces were investigated up to the atomic scale.

  19. Atomic-scale control of competing electronic phases in ultrathin LaNiO₃.

    PubMed

    King, P D C; Wei, H I; Nie, Y F; Uchida, M; Adamo, C; Zhu, S; He, X; Božović, I; Schlom, D G; Shen, K M

    2014-06-01

    In an effort to scale down electronic devices to atomic dimensions, the use of transition-metal oxides may provide advantages over conventional semiconductors. Their high carrier densities and short electronic length scales are desirable for miniaturization, while strong interactions that mediate exotic phase diagrams open new avenues for engineering emergent properties. Nevertheless, understanding how their correlated electronic states can be manipulated at the nanoscale remains challenging. Here, we use angle-resolved photoemission spectroscopy to uncover an abrupt destruction of Fermi liquid-like quasiparticles in the correlated metal LaNiO₃ when confined to a critical film thickness of two unit cells. This is accompanied by the onset of an insulating phase as measured by electrical transport. We show how this is driven by an instability to an incipient order of the underlying quantum many-body system, demonstrating the power of artificial confinement to harness control over competing phases in complex oxides with atomic-scale precision. PMID:24705511

  20. Multi-Scale Simulation of Atomization with small drops represented by Lagrangian Point-Particle Model

    NASA Astrophysics Data System (ADS)

    Ling, Yue; Zaleski, Stéphane; Institut Jean Le Rond d'Alembert Team

    2014-11-01

    Numerical simulation is conducted to investigate the drop formation and evolution in gas-assisted atomization. The atomizer consists of two parallel planar jets: the fast gas jet and the slow liquid jet. Due to the shear between gas and liquid streams, the liquid-gas interface is unstable, and this eventually leads to full atomization. A fundamental challenge in atomization simulations is the existence of multiple length scales involved. In order to accurately capture both the gas-liquid interface instability and the drop dynamics, a multi-scale multiphase flow simulation strategy is proposed. In the present model, the gas-liquid interface is resolved by the Volume-of-Fluid (VOF) method, while the small drops are represented by Lagrangian point-particle (LPP) models. Particular attention is paid on validating the coupling and conversion between LPP and VOF. The present model is validated by comparing with direct numerical simulation (DNS) results and also experimental data. The simulation results show complex coupling between the interface instability and the turbulent gas jet, which in turn influence the formation and evolution of the drops formed in atomization. ANR-11-MONU-0011.

  1. Characterizing heart rate variability by scale-dependent Lyapunov exponent

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Gao, Jianbo; Tung, Wen-wen

    2009-06-01

    Previous studies on heart rate variability (HRV) using chaos theory, fractal scaling analysis, and many other methods, while fruitful in many aspects, have produced much confusion in the literature. Especially the issue of whether normal HRV is chaotic or stochastic remains highly controversial. Here, we employ a new multiscale complexity measure, the scale-dependent Lyapunov exponent (SDLE), to characterize HRV. SDLE has been shown to readily characterize major models of complex time series including deterministic chaos, noisy chaos, stochastic oscillations, random 1/f processes, random Levy processes, and complex time series with multiple scaling behaviors. Here we use SDLE to characterize the relative importance of nonlinear, chaotic, and stochastic dynamics in HRV of healthy, congestive heart failure, and atrial fibrillation subjects. We show that while HRV data of all these three types are mostly stochastic, the stochasticity is different among the three groups.

  2. Atomic-scale surface roughness of rutile and implications for organic molecule adsorption.

    PubMed

    Livi, Kenneth J T; Schaffer, Bernhard; Azzolini, David; Seabourne, Che R; Hardcastle, Trevor P; Scott, Andrew J; Hazen, Robert M; Erlebacher, Jonah D; Brydson, Rik; Sverjensky, Dimitri A

    2013-06-11

    Crystal surfaces provide physical interfaces between the geosphere and biosphere. It follows that the arrangement of atoms at the surfaces of crystals profoundly influences biological components at many levels, from cells through biopolymers to single organic molecules. Many studies have focused on the crystal-molecule interface in water using large, flat single crystals. However, little is known about atomic-scale surface structures of the nanometer- to micrometer-sized crystals of simple metal oxides typically used in batch adsorption experiments under conditions relevant to biogeochemistry and the origins of life. Here, we present atomic-resolution microscopy data with unprecedented detail of the circumferences of nanosized rutile (α-TiO2) crystals previously used in studies of the adsorption of protons, cations, and amino acids. The data suggest that one-third of the {110} faces, the largest faces on individual crystals, consist of steps at the atomic scale. The steps have the orientation to provide undercoordinated Ti atoms of the type and abundance for adsorption of amino acids as inferred from previous surface complexation modeling of batch adsorption data. A remarkably uniform pattern of step proportions emerges: the step proportions are independent of surface roughness and reflect their relative surface energies. Consequently, the external morphology of rutile nanometer- to micrometer-sized crystals imaged at the coarse scale of scanning electron microscope images is not an accurate indicator of the atomic smoothness or of the proportions of the steps present. Overall, our data strongly suggest that amino acids attach at these steps on the {110} surfaces of rutile. PMID:23675906

  3. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes.

    PubMed

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  4. Atomic scale observation of oxygen delivery during silver-oxygen nanoparticle catalysed oxidation of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-07-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars-van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes.

  5. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing

    SciTech Connect

    Schnohr, C. S.

    2015-09-15

    Compound semiconductor alloys such as In{sub x}Ga{sub 1−x}As, GaAs{sub x}P{sub 1−x}, or CuIn{sub x}Ga{sub 1−x}Se{sub 2} are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI{sub 2} chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  6. Atomic scale observation of oxygen delivery during silver–oxygen nanoparticle catalysed oxidation of carbon nanotubes

    PubMed Central

    Yue, Yonghai; Yuchi, Datong; Guan, Pengfei; Xu, Jia; Guo, Lin; Liu, Jingyue

    2016-01-01

    To probe the nature of metal-catalysed processes and to design better metal-based catalysts, atomic scale understanding of catalytic processes is highly desirable. Here we use aberration-corrected environmental transmission electron microscopy to investigate the atomic scale processes of silver-based nanoparticles, which catalyse the oxidation of multi-wall carbon nanotubes. A direct semi-quantitative estimate of the oxidized carbon atoms by silver-based nanoparticles is achieved. A mechanism similar to the Mars–van Krevelen process is invoked to explain the catalytic oxidation process. Theoretical calculations, together with the experimental data, suggest that the oxygen molecules dissociate on the surface of silver nanoparticles and diffuse through the silver nanoparticles to reach the silver/carbon interfaces and subsequently oxidize the carbon. The lattice distortion caused by oxygen concentration gradient within the silver nanoparticles provides the direct evidence for oxygen diffusion. Such direct observation of atomic scale dynamics provides an important general methodology for investigations of catalytic processes. PMID:27406595

  7. Theoretical and experimental investigation of force imaging at the atomic scale on alkali halide crystals

    NASA Astrophysics Data System (ADS)

    Shluger, A. L.; Wilson, R. Mark; Williams, R. T.

    1994-02-01

    Assuming a model tip (Si4O10H10) as a reasonable representation of the surface of a Si3N4 cantilever stylus having a hydrogen-terminated asperity and a broader load-bearing base, we investigate the interaction of an atomic force microscope (AFM) with an alkali halide crystal by quantum chemical methods. Structural relaxation of the sample during engagement is allowed, and defect formation is investigated. Force curves above cation and anion positions are calculated, determining maximum sustainable loads and indicating a basis for atomic contrast. Experiments using a Si3N4 cantilever for AFM imaging of 12 alkali halide and alkaline earth fluoride crystals in air and desiccated helium are reported, in the widest AFM survey of such materials to date. Adsorbed water is shown to significantly enhance the observation of atomic periodicity on ionic halide samples, and rapid surface diffusion on alkali halide crystals is illustrated as it affects prospects for defect investigations. Observations of step edges and point-defect candidates at atomic scale are reported. The theoretical and experimental results are discussed together in the effort to provide a quantum-mechanical model for observations of alkali halide samples at atomic resolution, and to examine a possible basis for atomic resolution in the presence of long-range attractive forces.

  8. Atomic-Scale Mechanism for Hydrogenation of o-Cresol on Pt Catalysis

    NASA Astrophysics Data System (ADS)

    Li, Yaping; Liu, Zhimin; Xue, Wenhua; Crossley, Steven; Jentoft, Friederike; Wang, Sanwu

    Biofuels derived from lignocellulosic biomass have received significant attention lately due to increasing environmental concerns. With first-principles density-functional theory and ab initio molecular dynamic simulations, we investigated the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone (the intermediate product) was found to involve two steps. The first step is the dehydrogenation, that is, the H atom in the hydroxyl group moves to the Pt surface. The second step is the hydrogenation, that is, the H atoms on Pt react with the carbon atoms in the aromatic ring. The first step involves a smaller barrier, suggesting that dehydrogenation occurs first, followed by hydrogenation of the ring. In particular, tautomerization is found to occur via a two-step process over the catalyst. On the other hand, 2-methyl-cyclohexanol (the final product) is produced through two paths. One is direct hydrogenation of the aromatic ring. Another pathway includes partial hydrogenation of the ring, dehydrogenation of -OH group, finally hydrogenation of remaining C atoms and the O atom. Our theoretical results agree well with the experimental observations. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of NERSC, XSEDE, TACC.

  9. Structure and bonding at the atomic scale by scanning transmission electron microscopy.

    PubMed

    Muller, David A

    2009-04-01

    A new generation of electron microscopes is able to explore the microscopic properties of materials and devices as diverse as transistors, turbine blades and interfacial superconductors. All of these systems are made up of dissimilar materials that, where they join at the atomic scale, display very different behaviour from what might be expected of the bulk materials. Advances in electron optics have enabled the imaging and spectroscopy of these buried interface states and other nanostructures with atomic resolution. Here I review the capabilities, prospects and ultimate limits for the measurement of physical and electronic properties of nanoscale structures with these new microscopes. PMID:19308085

  10. Visualization of atomic-scale phenomena in superconductors: application to FeSe

    SciTech Connect

    Choubey, Peayush; Berlijn, Tom; Kreisel, Andreas; Cao, Chao; Hirschfeld, Peter J.

    2014-10-31

    Here we propose a simple method of calculating inhomogeneous, atomic-scale phenomena in superconductors which makes use of the wave function information traditionally discarded in the construction of tight-binding models used in the Bogoliubov-de Gennes equations. The method uses symmetry- based first principles Wannier functions to visualize the effects of superconducting pairing on the distribution of electronic states over atoms within a crystal unit cell. Local symmetries lower than the global lattice symmetry can thus be exhibited as well, rendering theoretical comparisons with scanning tunneling spectroscopy data much more useful. As a simple example, we discuss the geometric dimer states observed near defects in superconducting FeSe.

  11. Atomic-Scale Engineering of the SiC-SiO{sub 2} Interface

    SciTech Connect

    Buczko, R.; Chung, G.; Di Ventra, M.; Duscher, G.; Feldman, L.C.; Huang, M.B.; McDonald, K.; Pantelides, S.T.; Pennycook, S.J.; Radtke, C.; Stedile, F.C.; Tin, C.C.; Weller, R.A. Baumvol, I.; Williams, J.R.; Won, J.

    1999-11-14

    We report results from three distinct but related thrusts that aim to elucidate the atomic-scale structure and properties of the Sic-SiO{sub 2} interface. (a) First-principles theoretical calculations probe the global bonding arrangements and the local processes during oxidation; (b) Z-contrast atomic-resolution transmission electron microscopy and electron-energy-loss spectroscopy provide images and interface spectra, and (c) nuclear techniques and electrical measurements are used to profile N at the interface and determine interface trap densities.

  12. Pulsed EPR characterization of encapsulated atomic hydrogen in octasilsesquioxane cages.

    PubMed

    Mitrikas, George

    2012-03-21

    Hydrogen atoms encapsulated in molecular cages are potential candidates for quantum computing applications. They provide the simplest two-spin system where the 1s electron spin, S = 1/2, is hyperfine-coupled to the proton nuclear spin, I = 1/2, with a large isotropic hyperfine coupling (A = 1420.40575 MHz for a free atom). While hydrogen atoms can be trapped in many matrices at cryogenic temperatures, it has been found that they are exceptionally stable in octasilsesquioxane cages even at room temperature [Sasamori et al., Science, 1994, 256, 1691]. Here we present a detailed spin-lattice and spin-spin relaxation study of atomic hydrogen encapsulated in Si(8)O(12)(OSiMe(2)H)(8) using X-band pulsed EPR spectroscopy. The spin-lattice relaxation times T(1) range between 1.2 s at 20 K and 41.8 μs at room temperature. The temperature dependence of the relaxation rate shows that for T < 60 K the spin-lattice relaxation is best described by a Raman process with a Debye temperature of θ(D) = 135 K, whereas for T > 100 K a thermally activated process with activation energy E(a) = 753 K (523 cm(-1)) prevails. The phase memory time T(M) = 13.9 μs remains practically constant between 200 and 300 K and is determined by nuclear spin diffusion. At lower temperatures T(M) decreases by an order of magnitude and exhibits two minima at T = 140 K and T = 60 K. The temperature dependence of T(M) between 20 and 200 K is attributed to dynamic processes that average inequivalent hyperfine couplings, e.g. rotation of the methyl groups of the cage organic substituents. The hyperfine couplings of the encapsulated proton and the cage (29)Si nuclei are obtained through numerical simulations of field-swept FID-detected EPR spectra and HYSCORE experiments, respectively. The results are discussed in terms of existing phenomenological models based on the spherical harmonic oscillator and compared to those of endohedral fullerenes. PMID:22323086

  13. Characterization of borosilicate microchannel plates functionalized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ertley, C.; Siegmund, O. H. W.; Schwarz, J.; Mane, A. U.; Minot, M. J.; O'Mahony, A.; Craven, C. A.; Popecki, M.

    2015-08-01

    Borosilicate microcapillary arrays have been functionalized by Atomic Layer Deposition (ALD) of resistive and secondary emissive layers to produce robust microchannel plates (MCPs) with improved performance characteristics over traditional MCPs. These techniques produce MCP's with enhanced stability and lifetime, low background rates, and low levels of adsorbed gas. Using ALD to functionalize the substrate decouples the two and provides the opportunity to explore many new materials. The borosilicate substrates have many advantages over traditional lead glass MCPs, including the ability to be fabricated in large areas (currently at 400 cm2).

  14. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.

    PubMed

    Hybertsen, Mark S; Venkataraman, Latha

    2016-03-15

    Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they

  15. Demonstration of atomic scale stick-slip events stimulated by the force versus distance mode using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-08-01

    It has been shown that longitudinal deformation of the force-sensing/imposing lever can be stimulated by the conventional force versus distance (F-d), analytical mode of a scanning force microscope. Accordingly it is possible to measure simultaneously both in-plane and out-of-plane force components acting between a tip and a surface. Discrete atomic scale stick-slip events have been observed by F-d generated friction loop analysis of cleaved WTe2, Mica and HOPG single crystals, and of a Langmuir-Blodgett film. Due to the lever geometry, the lateral resolution arising from z-stage movement is better by an order of magnitude than that obtained from translation of the x-y-stage.

  16. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L.; Chase, George G.; Reneker, Darrell H.

    2015-12-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules.Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of

  17. Spanning the scales from atomic to rock microstructure to planetary seismology

    NASA Astrophysics Data System (ADS)

    Mainprice, D.; Tommasi, A.

    2015-12-01

    There is strong connection from atomic structure (sub-nm scale) to microstructure (mm scale); for example the elastic properties of minerals are directly linked to their atomic arrangement. This link between atomic arrangement and elastic properties has been extensively exploited in recent years with ab initio methods providing the elastic tensors of many minerals in extreme conditions. The use of ab initio modeling to predict the behavior of dislocations pioneered by Patrick Cordier's group in Lille provides another link between atomic structure and deformation at the crystal scale. These data may be further up-scaled via the prediction of the evolution of crystal preferred orientations (CPO) using polycrystalline modeling codes (e.g.,VPSC) to complete the link to anisotropic physical properties at the scale of the Earth deformation patterns. The link between upper mantle seismology and the microstructure of peridotite rocks recovered at the Earth's surface was one the first cases where a quantitative estimate of anisotropy measured by seismology could be directly compared with rock samples to provide results in good agreement, even though the length scales measurement differed by several orders of magnitude. The agreement between seismology with propagation path lengths of hundreds to thousands of km and physical properties of rock samples of a few cm3implies that in the upper mantle the flow field must be coherent over large distances. Large-scale convection currents at the planetary scale are clearly a key factor in creating this coherence, but analysis of seismic data also points to coherence in the deformation patterns at the scale of hundreds to thousands of km in the lithospheric mantle. Yet the interpretation of seismic anisotropy data in terms of flow patterns in the mantle relies on our knowledge of the crystal scale plasticity and on the CPO evolution. Ab-initio modelling of crystal plasticity is an essential tool here. In the upper mantle, this

  18. Atomic-scale friction modulated by potential corrugation in multi-layered graphene materials

    SciTech Connect

    Zhuang, Chunqiang; Liu, Lei

    2015-03-21

    Friction is an important issue that has to be carefully treated for the fabrication of graphene-based nano-scale devices. So far, the friction mechanism of graphene materials on the atomic scale has not yet been clearly presented. Here, first-principles calculations were employed to unveil the friction behaviors and their atomic-scale mechanism. We found that potential corrugations on sliding surfaces dominate the friction force and the friction anisotropy of graphene materials. Higher friction forces correspond to larger corrugations of potential energy, which are tuned by the number of graphene layers. The friction anisotropy is determined by the regular distributions of potential energy. The sliding along a fold-line path (hollow-atop-hollow) has a relatively small potential energy barrier. Thus, the linear sliding observed in macroscopic friction experiments may probably be attributed to the fold-line sliding mode on the atomic scale. These findings can also be extended to other layer-structure materials, such as molybdenum disulfide (MoS{sub 2}) and graphene-like BN sheets.

  19. The dynamic Allan Variance IV: characterization of atomic clock anomalies.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2015-05-01

    The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies. PMID:25965674

  20. Direct observation of electron propagation and dielectric screening on the atomic length scale.

    PubMed

    Neppl, S; Ernstorfer, R; Cavalieri, A L; Lemell, C; Wachter, G; Magerl, E; Bothschafter, E M; Jobst, M; Hofstetter, M; Kleineberg, U; Barth, J V; Menzel, D; Burgdörfer, J; Feulner, P; Krausz, F; Kienberger, R

    2015-01-15

    The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations--periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology (1 as = 10(-18) seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10(-15) seconds) extreme-ultraviolet light pulses to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer--constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale. PMID:25592539

  1. Phonon interference and thermal conductance reduction in atomic-scale metamaterials

    NASA Astrophysics Data System (ADS)

    Han, Haoxue; Potyomina, Lyudmila G.; Darinskii, Alexandre A.; Volz, Sebastian; Kosevich, Yuriy A.

    2014-05-01

    We introduce and model a three-dimensional (3D) atomic-scale phononic metamaterial producing two-path phonon interference antiresonances to control the heat flux spectrum. We show that a crystal plane partially embedded with defect-atom arrays can completely reflect phonons at the frequency prescribed by masses and interaction forces. We emphasize the predominant role of the second phonon path and destructive interference in the origin of the total phonon reflection and thermal conductance reduction in comparison with the Fano-resonance concept. The random defect distribution in the plane and the anharmonicity of atom bonds do not deteriorate the antiresonance. The width of the antiresonance dip can provide a measure of the coherence length of the phonon wave packet. All our conclusions are confirmed both by analytical studies of the equivalent quasi-1D lattice models and by numerical molecular dynamics simulations of realistic 3D lattices.

  2. Scale Factor Measurements for a Gyroscope Based on an Expanding Cloud of Atoms

    NASA Astrophysics Data System (ADS)

    Hoth, Gregory; Pelle, Bruno; Riedl, Stefan; Kitching, John; Donley, Elizabeth

    2016-05-01

    We present an atom interferometer that can simultaneously measure two-axis rotations and one-axis accelerations with a single cloud of atoms in an active evacuated volume of about 1 cm3. This is accomplished by extending the point-source interferometry technique (Dickerson et al. PRL, 111, 083001, 2013) to a compact regime. In this technique, the cloud of atoms is imaged after the interferometer sequence. Rotations cause spatial fringes to appear across the cloud. To realize a gyroscope with this method, it is necessary to know how the wave-vector of the spatial fringes, k, is related to the rotation rate, Ω. If the cloud is initially infinitesimally small, it can be shown that k = FΩ with a scale factor F determined by the time between interferometer pulses, the total free expansion time, and the wavelength of the interrogating laser. However, the point-source approximation is not appropriate in our case because the final size of the cloud in our experiment is between 1.4 and 5 times its initial size. We show experimentally that in this finite expansion regime the phase gradient is still well described by k = FΩ , but the scale factor F depends on the initial distribution of the atoms. We also present modeling that explains this dependence.

  3. Vibrational Spectroscopic Observation of Atomic-Scale Local Surface Sites Using Site-Selective Signal Enhancement.

    PubMed

    Hu, Jian; Hoshi, Nagahiro; Uosaki, Kohei; Ikeda, Katsuyoshi

    2015-12-01

    Molecule-substrate interactions are sensitively affected by atomic-scale surface structures. Unique activity in heterogeneous catalysts or electrocatalysts is often related with local surface sites with specific structures. We demonstrate that adsorption geometry of a model molecule with an isocyanide anchor is drastically varied among one-fold atop, two-fold bridge, and three-fold hollow configurations with increasing the size of atomic-scale local surface sites of Pd islands on an Au(111) model surface. The vibrational spectroscopic observation of such local information is realized by site-selective and self-assembled formation of hotspots, where Raman scattering intensity is significantly enhanced via excitation of localized surface plasmons. PMID:26551000

  4. Characterization of a 5-eV neutral atomic oxygen beam facility

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Linton, R. C.; Carruth, M. R., Jr.; Whitaker, A. F.; Cuthbertson, J. W.; Langer, W. D.; Motley, R. W.

    1991-01-01

    An experimental effort to characterize an existing 5-eV neutral atomic oxygen beam facility being developed at Princeton Plasma Physics Laboratory is described. This characterization effort includes atomic oxygen flux and flux distribution measurements using a catalytic probe, energy determination using a commercially designed quadrupole mass spectrometer (QMS), and the exposure of oxygen-sensitive materials in this beam facility. Also, comparisons were drawn between the reaction efficiencies of materials exposed in plasma ashers, and the reaction efficiencies previously estimated from space flight experiments. The results of this study show that the beam facility is capable of producing a directional beam of neutral atomic oxygen atoms with the needed flux and energy to simulate low Earth orbit (LEO) conditions for real time accelerated testing. The flux distribution in this facility is uniform to +/- 6 percent of the peak flux over a beam diameter of 6 cm.

  5. Study of the Mechanical Behavior of Radially Grown Fivefold Twinned Nanowires on the Atomic Scale.

    PubMed

    Yue, Yonghai; Zhang, Qi; Yang, Zhenyu; Gong, Qihua; Guo, Lin

    2016-07-01

    In situ bending tests and dynamic modeling simulations are for the first time revealing the mechanical behavior of copper nanowires (NW) with radially grown fivefold twin structures on the atomic scale. Combining the simulations with the experimental results it is shown that both the twin boundaries (TBs) and the twin center act as dislocation sources. TB migration and L-locks are readily observed in these types of radially grown fivefold-twin structures. PMID:27231215

  6. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    SciTech Connect

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore, the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.

  7. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy.

    PubMed

    Lolla, Dinesh; Gorse, Joseph; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip L; Chase, George G; Reneker, Darrell H

    2016-01-01

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed with aberration corrected transmission electron microscopy. Thin, self-supporting PVDF nanofibers were used to create images that show conformations and relative locations of atoms in segments of polymer molecules, particularly segments near the surface of the nanofiber. Rows of CF2 atomic groups, at 0.25 nm intervals, which marked the paths of segments of the PVDF molecules, were seen. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, promise quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Promising synergism between high resolution electron microscopy and molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. PMID:26369731

  8. Polyvinylidene fluoride molecules in nanofibers, imaged at atomic scale by aberration corrected electron microscopy

    NASA Astrophysics Data System (ADS)

    Reneker, Darrell; Gorse, Joseph; Lolla, Dinesh; Kisielowski, Christian; Miao, Jiayuan; Taylor, Philip; Chase, George

    Atomic scale features of polyvinylidene fluoride molecules (PVDF) were observed. Electron micrographs of thin, self-supporting PVDF nanofibers showed conformations and relative locations of atoms in segments of polymer molecules. Rows of CF2 atomic groups, at 0.25 nm intervals, marked the paths of segments of the PVDF molecules. The fact that an electron microscope image of a segment of a PVDF molecule depended upon the particular azimuthal direction, along which the segment was viewed, enabled observation of twist around the molecular axis. The 0.2 nm side-by-side distance between the two fluorine atoms attached to the same carbon atom was clearly resolved. Morphological and chemical changes produced by energetic electrons, ranging from no change to fiber scission, over many orders of magnitude of electrons per unit area, provide quantitative new insights into radiation chemistry. Relative movements of segments of molecules were observed. Synergism between high resolution electron micrographs and images created by molecular dynamic modeling was demonstrated. This paper is at the threshold of growing usefulness of electron microscopy to the science and engineering of polymer and other molecules. Support from Coalescence Filtration Nanofiber Consortium and from the Office of Basic Energy Sciences Contract No. DE-AC02-05CH11231.

  9. Chemical Quantification of Atomic-Scale EDS Maps under Thin Specimen Conditions

    DOE PAGESBeta

    Lu, Ping; Romero, Eric; Lee, Shinbuhm; MacManus-Driscoll, Judith L.; Jia, Quanxi

    2014-10-13

    We report our effort to quantify atomic-scale chemical maps obtained by collecting energy-dispersive X-ray spectra (EDS) using scanning transmission electron microscopy (STEM) (STEM-EDS). Under a thin specimen condition and when the EDS scattering potential is localized, the X-ray counts from atomic columns can be properly counted by fitting Gaussian peaks at the atomic columns, and can then be used for site-by-site chemical quantification. The effects of specimen thickness and X-ray energy on the Gaussian peak-width are investigated by using SrTiO3 (STO) as a model specimen. The relationship between the peak-width and spatial-resolution of an EDS map is also studied. Furthermore,more » the method developed by this work is applied to study a Sm-doped STO thin film and antiphase boundaries present within the STO film. We find that Sm atoms occupy both Sr and Ti sites but preferably the Sr sites, and Sm atoms are relatively depleted at the antiphase boundaries likely due to the effect of strain.« less

  10. Atomic-scale study of lateral graphene/h-BN hybrid structure

    NASA Astrophysics Data System (ADS)

    Lee, Jaekwang; Park, Jewook; Li, An-Ping; Yoon, Mina

    2014-03-01

    Recently, atomically sharp 1D interfaces have been successfully implemented in lateral graphene/hexagonal boron nitride (h-BN) hybrid structures. Graphene/h-BN interfaces are of particular interest, because their bandgap and magnetic properties can be engineered by controlling the arrangement of nonmagnetic B, C and N atoms. Despite the enormous interest in graphene/h-BN, there has been very limited experimental success in determining the local atomic structure of the graphene/h-BN interface. Here, using state-of-the-art scanning tunneling microscopy, we report the direct and precise observation of a graphene/h-BN interface bonding structure at the atomic scale. Based on the detailed atomic structure, first-principles density-functional calculations show that graphene zigzag edge states and the h-BN polarity are strongly coupled to each other near the interface and induce spatial modulation of physical properties along the lateral direction. In addition, we investigate how the d-orbitals of metal surfaces (Cu (111), Cu (001)) and the pi-orbital of graphene/h-BN hybridize and predict resulting modification of the electronic properties of graphene/h-BN. This research was conducted at the CNMS, which is sponsored at ORNL by the Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge partial support provided by a Laboratory Directed Research and Development award (#7004).