Science.gov

Sample records for atp iii definition

  1. ATP Utilization by Yeast Replication Factor C III. THE ATP-BINDING DOMAINS OF Rfc2, Rfc3, AND Rfc4 ARE ESSENTIAL FOR DNA RECOGNITION AND

    E-print Network

    Burgers, Peter M.

    ATP Utilization by Yeast Replication Factor C III. THE ATP-BINDING DOMAINS OF Rfc2, Rfc3, AND Rfc4 lysine in the Walker A motif of the ATP- binding domain encoded by the yeast RFC1, RFC2, RFC3, and RFC4 loading activity. In addition to their defects in ATP hydrolysis, these complexes were defective for DNA

  2. Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes

    PubMed Central

    Tóth, Júlia; Bollins, Jack; Szczelkun, Mark D.

    2015-01-01

    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ?10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding. PMID:26538601

  3. Cellular ATP synthesis mediated by type III sodium-dependent phosphate transporter Pit-1 is critical to chondrogenesis.

    PubMed

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-28

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of P(i) in chondrogenesis. We studied the role of the sodium-dependent P(i) cotransporters (NPT), which are a widely recognized regulator of cellular P(i) homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and P(i) uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced P(i) uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed P(i) uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to P(i) uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent. PMID:21075853

  4. Cellular ATP Synthesis Mediated by Type III Sodium-dependent Phosphate Transporter Pit-1 Is Critical to Chondrogenesis*

    PubMed Central

    Sugita, Atsushi; Kawai, Shinji; Hayashibara, Tetsuyuki; Amano, Atsuo; Ooshima, Takashi; Michigami, Toshimi; Yoshikawa, Hideki; Yoneda, Toshiyuki

    2011-01-01

    Disturbed endochondral ossification in X-linked hypophosphatemia indicates an involvement of Pi in chondrogenesis. We studied the role of the sodium-dependent Pi cotransporters (NPT), which are a widely recognized regulator of cellular Pi homeostasis, and the downstream events in chondrogenesis using Hyp mice, the murine homolog of human X-linked hypophosphatemia. Hyp mice showed reduced apoptosis and mineralization in hypertrophic cartilage. Hyp chondrocytes in culture displayed decreased apoptosis and mineralization compared with WT chondrocytes, whereas glycosaminoglycan synthesis, an early event in chondrogenesis, was not altered. Expression of the type III NPT Pit-1 and Pi uptake were diminished, and intracellular ATP levels were also reduced in parallel with decreased caspase-9 and caspase-3 activity in Hyp chondrocytes. The competitive NPT inhibitor phosphonoformic acid and ATP synthesis inhibitor 3-bromopyruvate disturbed endochondral ossification with reduced apoptosis in vivo and suppressed apoptosis and mineralization in conjunction with reduced Pi uptake and ATP synthesis in WT chondrocytes. Overexpression of Pit-1 in Hyp chondrocytes reversed Pi uptake and ATP synthesis and restored apoptosis and mineralization. Our results suggest that cellular ATP synthesis consequent to Pi uptake via Pit-1 plays an important role in chondrocyte apoptosis and mineralization, and that chondrogenesis is ATP-dependent. PMID:21075853

  5. ATP molecule ATP molecule

    E-print Network

    ATP molecule 9 ATP molecule 8 Autumn 2003 · Vol. 1 No. 2 · inSiDE inSiDE · Vol. 1 No. 2 · Autumn with adenosine 5`-triphosphate (ATP). ATP is the most important energy carrier in cellular metabolism, and each human being produces its own weight in ATP every day. The ATP molecule is shown in Figure 1, where

  6. Inhibition of the Fe(III)-Catalyzed Dopamine Oxidation by ATP and Its Relevance to Oxidative Stress in Parkinson’s Disease

    PubMed Central

    2013-01-01

    Parkinson’s disease (PD) is characterized by the progressive degeneration of dopaminergic cells, which implicates a role of dopamine (DA) in the etiology of PD. A possible DA degradation pathway is the Fe(III)-catalyzed oxidation of DA by oxygen, which produces neuronal toxins as side products. We investigated how ATP, an abundant and ubiquitous molecule in cellular milieu, affects the catalytic oxidation reaction of dopamine. For the first time, a unique, highly stable DA–Fe(III)–ATP ternary complex was formed and characterized in vitro. ATP as a ligand shifts the catecholate–Fe(III) ligand metal charge transfer (LMCT) band to a longer wavelength and the redox potentials of both DA and the Fe(III) center in the ternary complex. Remarkably, the additional ligation by ATP was found to significantly reverse the catalytic effect of the Fe(III) center on the DA oxidation. The reversal is attributed to the full occupation of the Fe(III) coordination sites by ATP and DA, which blocks O2 from accessing the Fe(III) center and its further reaction with DA. The biological relevance of this complex is strongly implicated by the identification of the ternary complex in the substantia nigra of rat brain and its attenuation of cytotoxicity of the Fe(III)–DA complex. Since ATP deficiency accompanies PD and neurotoxin 1-methyl-4-phenylpyridinium (MPP+) induced PD, deficiency of ATP and the resultant impairment toward the inhibition of the Fe(III)-catalyzed DA oxidation may contribute to the pathogenesis of PD. Our finding provides new insight into the pathways of DA oxidation and its relationship with synaptic activity. PMID:23823941

  7. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms. PMID:25839341

  8. Utility of the modified ATP III defined metabolic syndrome and severe obesity as predictors of insulin resistance in overweight children and adolescents: a cross-sectional study

    PubMed Central

    Dhuper, Sarita; Cohen, Hillel W; Daniel, Josephine; Gumidyala, Padmasree; Agarwalla, Vipin; St Victor, Rosemarie; Dhuper, Sunil

    2007-01-01

    Background The rising prevalence of obesity and metabolic syndrome (MetS) has received increased attention since both place individuals at risk for Type II diabetes and cardiovascular disease. Insulin resistance (IR) has been implicated in the pathogenesis of obesity and MetS in both children and adults and is a known independent cardiovascular risk factor. However measures of IR are not routinely performed in children while MetS or severe obesity when present, are considered as clinical markers for IR. Objective The study was undertaken to assess the utility of ATPIII defined metabolic syndrome (MetS) and severe obesity as predictors of insulin resistance (IR) in a group of 576 overweight children and adolescents attending a pediatric obesity clinic in Brooklyn. Methods Inclusion criteria were children ages 3–19, and body mass index > 95th percentile for age. MetS was defined using ATP III criteria, modified for age. IR was defined as upper tertile of homeostasis model assessment (HOMA) within 3 age groups (3–8, n = 122; 9–11, n = 164; 12–19, n = 290). Sensitivity, specificity, positive predictive values and odds ratios (OR) with 95% confidence intervals (CI) were calculated within age groups for predicting IR using MetS and severe obesity respectively. Results MetS was present in 45%, 48% and 42% of the respective age groups and significantly predicted IR only in the oldest group (OR = 2.0, 95% CI 1.2, 3.4; p = .006). Sensitivities were <55%; specificities <63% and positive predictive values ? 42% in all groups. Severe obesity was significantly associated with IR in both the 9–11 (p = .002) and 12–18 (p = .01) groups but positive predictive values were nonetheless ? 51% for all groups. Conclusion The expression of IR in overweight children and adolescents is heterogeneous and MetS or severe obesity may not be sufficiently sensitive and specific indicators of insulin resistance. In addition to screening for MetS in overweight children markers for IR should be routinely performed. Further research is needed to establish threshold values of insulin measures in overweight children who may be at greater associated risk of adverse outcomes whether or not MetS is present. PMID:17300718

  9. Optical ATP Biosensor for Extracellular ATP Measurement

    PubMed Central

    Wang, C.; Huang, C.-Y.C; Lin, W-C

    2013-01-01

    Extracellular Adenosine-5?-triphosphate (ATP) is an important multi-functional molecule which can mediate numerous physiological activities by activating purinergic P2 receptors. The objective of this study was to develop a novel optical ATP sensor for in-situ extracellular ATP measurement in biological tissues. The optical ATP sensor was made by applying two layers of sol-gel coating to the end of an optical fiber probe end. The first layer contained ruthenium complex for sensing changes in oxygen concentration which resulted from oxidation of ATP by glycerol kinase and glycerol 3-phosphate oxidase entrapped in the second layer. It was demonstrated that the optical ATP sensor was capable of detecting ATP concentration at a broad range of 10?3 mM to 1.5 mM. A compensation method was established to enable the optical sensor to determine ATP concentration at different oxygen levels. This study also demonstrated the capability of ATP sensor to measure extracellular ATP content in biological tissues (i.e., porcine intervertebral disc). In addition, it was shown that the optical ATP sensor was not affected by pH and derivatives of extracellular ATP. Therefore, the newly developed optical ATP sensor is a good option for in-situ extracellular ATP measurement. PMID:23357001

  10. The Light Sensitivity of ATP Synthase Mutants of Chlamydomonas reinhardtii1

    E-print Network

    for production or stability of the monocistronic atpH mRNA encoding CFO-III. In this and other ATP synthase in these experimental conditions is demonstrated. RESULTS The ac46 Mutant Lacks CFO-III Due to the Absence of the atp defect is the absence of CFO-III, a major chloroplast- encoded CFO subunit (Lemaire and Wollman, 1989a

  11. ATP regulation in bioproduction.

    PubMed

    Hara, Kiyotaka Y; Kondo, Akihiko

    2015-01-01

    Adenosine-5'-triphosphate (ATP) is consumed as a biological energy source by many intracellular reactions. Thus, the intracellular ATP supply is required to maintain cellular homeostasis. The dependence on the intracellular ATP supply is a critical factor in bioproduction by cell factories. Recent studies have shown that changing the ATP supply is critical for improving product yields. In this review, we summarize the recent challenges faced by researchers engaged in the development of engineered cell factories, including the maintenance of a large ATP supply and the production of cell factories. The strategies used to enhance ATP supply are categorized as follows: addition of energy substrates, controlling pH, metabolic engineering of ATP-generating or ATP-consuming pathways, and controlling reactions of the respiratory chain. An enhanced ATP supply generated using these strategies improves target production through increases in resource uptake, cell growth, biosynthesis, export of products, and tolerance to toxic compounds. PMID:26655598

  12. The definition of posttraumatic stress disorder in alcoholic Vietnam veterans. Are the DSM-III criteria necessary and sufficient?

    PubMed

    Van Kampen, M; Watson, C G; Tilleskjor, C; Kucala, T; Vassar, P

    1986-03-01

    The authors evaluated the validities of the DSM-III elements defining posttraumatic stress disorder (PTSD) in alcoholic Vietnam veterans by studying the relationships of each to qualification for a PTSD diagnosis under DSM-III standards, the history of a major stressor (3 or more months of combat), and the presence/absence of enough other problems to meet the symptomatic DSM-III requirements for this diagnosis. Elements dealing with the reexperiencing of traumas, diminished pleasure, detachment from others, hyperalertness, sleep disturbance, guilt over behaviors required for survival, and avoidance of stimuli reminiscent of traumas showed substantial correlations with eligibility for a PTSD diagnosis. However, items dealing with emotional expressiveness, response to intimacy, survival guilt, impaired memory, and trouble concentrating either failed to correlate with qualification for a PTSD diagnosis or yielded marginal results. One ("lacking direction") of 10 additional symptoms sometimes termed as "post-Vietnam syndrome" behaviors correlated with eligibility for a PTSD diagnosis as well. The present results and those described in earlier studies suggest that several modifications in the DSM-III definition of PTSD are desirable. PMID:3950595

  13. Customized ATP towpreg

    NASA Astrophysics Data System (ADS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  14. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  15. ATP release via anion channels.

    PubMed

    Sabirov, Ravshan Z; Okada, Yasunobu

    2005-12-01

    ATP serves not only as an energy source for all cell types but as an 'extracellular messenger' for autocrine and paracrine signalling. It is released from the cell via several different purinergic signal efflux pathways. ATP and its Mg(2+) and/or H(+) salts exist in anionic forms at physiological pH and may exit cells via some anion channel if the pore physically permits this. In this review we survey experimental data providing evidence for and against the release of ATP through anion channels. CFTR has long been considered a probable pathway for ATP release in airway epithelium and other types of cells expressing this protein, although non-CFTR ATP currents have also been observed. Volume-sensitive outwardly rectifying (VSOR) chloride channels are found in virtually all cell types and can physically accommodate or even permeate ATP(4-) in certain experimental conditions. However, pharmacological studies are controversial and argue against the actual involvement of the VSOR channel in significant release of ATP. A large-conductance anion channel whose open probability exhibits a bell-shaped voltage dependence is also ubiquitously expressed and represents a putative pathway for ATP release. This channel, called a maxi-anion channel, has a wide nanoscopic pore suitable for nucleotide transport and possesses an ATP-binding site in the middle of the pore lumen to facilitate the passage of the nucleotide. The maxi-anion channel conducts ATP and displays a pharmacological profile similar to that of ATP release in response to osmotic, ischemic, hypoxic and salt stresses. The relation of some other channels and transporters to the regulated release of ATP is also discussed. PMID:18404516

  16. Strategies for Primary Prevention of Coronary Heart Disease Based on Risk Stratification by the ACC/AHA Lipid Guidelines, ATP III Guidelines, Coronary Calcium Scoring, and C-Reactive Protein, and a Global Treat-All Strategy: A Comparative--Effectiveness Modeling Study

    PubMed Central

    Galper, Benjamin Z.; Wang, Y. Claire; Einstein, Andrew J.

    2015-01-01

    Background Several approaches have been proposed for risk-stratification and primary prevention of coronary heart disease (CHD), but their comparative and cost-effectiveness is unknown. Methods We constructed a state-transition microsimulation model to compare multiple approaches to the primary prevention of CHD in a simulated cohort of men aged 45–75 and women 55–75. Risk-stratification strategies included the 2013 American College of Cardiology/American Heart Association (ACC/AHA) guidelines on the treatment of blood cholesterol, the Adult Treatment Panel (ATP) III guidelines, and approaches based on coronary artery calcium (CAC) scoring and C-reactive protein (CRP). Additionally we assessed a treat-all strategy in which all individuals were prescribed either moderate-dose or high-dose statins and all males received low-dose aspirin. Outcome measures included CHD events, costs, medication-related side effects, radiation-attributable cancers, and quality-adjusted-life-years (QALYs) over a 30-year timeframe. Results Treat-all with high-dose statins dominated all other strategies for both men and women, gaining 15.7 million QALYs, preventing 7.3 million myocardial infarctions, and saving over $238 billion, compared to the status quo, far outweighing its associated adverse events including bleeding, hepatitis, myopathy, and new-onset diabetes. ACC/AHA guidelines were more cost-effective than ATP III guidelines for both men and women despite placing 8.7 million more people on statins. For women at low CHD risk, treat-all with high-dose statins was more likely to cause a statin-related adverse event than to prevent a CHD event. Conclusions Despite leading to a greater proportion of the population placed on statin therapy, the ACC/AHA guidelines are more cost-effective than ATP III. Even so, at generic prices, treating all men and women with statins and all men with low-dose aspirin appears to be more cost-effective than all risk-stratification approaches for the primary prevention of CHD. Especially for low-CHD risk women, decisions on the appropriate primary prevention strategy should be based on shared decision making between patients and healthcare providers. PMID:26422204

  17. Microglia release ATP by exocytosis.

    PubMed

    Imura, Yoshio; Morizawa, Yosuke; Komatsu, Ryohei; Shibata, Keisuke; Shinozaki, Youichi; Kasai, Hirotake; Moriishi, Kohji; Moriyama, Yoshinori; Koizumi, Schuichi

    2013-08-01

    Microglia survey the brain environment by sensing several types of diffusible molecules, among which extracellular nucleotides released/leaked from damaged cells have central roles. Microglia sense ATP or other nucleotides by multiple P2 receptors, after which they change into several different phenotypes. However, so far, it is largely unknown whether microglia themselves release ATP and, if so, by what mechanism. Here we show that exocytosis is the mechanism by which microglia release ATP. When we stimulated microglia with ionomycin, they released ATP and the release was dependent on Ca²?, vesicular H?-ATPase, or SNAREs but independent of connexin/pannexin hemichannels. VNUT was found to be expressed in microglia and exhibited no colocalization with lysosome. We also visualized the exocytosis of ATP by a quinacrine-based fluorescent time-lapse imaging. Moreover, we found that lipopolysaccharide increased the ionomycin-induced release of ATP, which was dependent on the increase in VNUT. Taken together, our data suggested that exocytosis is the mechanism of ATP release from microglia. When activated, they would release ATP by increasing VNUT-dependent exocytotic mechanisms. PMID:23832620

  18. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    PubMed Central

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  19. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    SciTech Connect

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  20. 75 FR 25294 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-High Definition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...of 1993--High Definition Metrology and Process-2 Micron Manufacturing Under ATP Award No. 70NANB77041 Notice is...Act''), High Definition Metrology and Process-2 Micron Manufacturing under ATP Award No. 70NANB7H7041 has...

  1. ATP Consumption Promotes Cancer Metabolism

    E-print Network

    Israelsen, William James

    Cancer cells metabolize glucose by aerobic glycolysis, a phenomenon known as the Warburg effect. Fang et al. (2010) show that the endoplasmic reticulum enzyme ENTPD5 promotes ATP consumption and favors aerobic glycolysis. ...

  2. ATP Synthase Wolfgang Junge1

    E-print Network

    Junge, Wolfgang

    2015 by Annual Reviews. All rights reserved Keywords FOF1 ATPase, photosynthesis, proton transfer, ATP synthesis, chloroplasts, cyanobacteria Abstract Oxygenic photosynthesis is the principal converter enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis

  3. Promiscuous archaeal ATP synthase concurrently coupled to Na+ translocation

    E-print Network

    Huang, Ching-Tsan

    Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation Katharina98B02057 Chii-Shen Yang, PhD December 25, 2012 The 6th Classroom ATP (adenosine triphosphate) synthase ATP ATP ATP synthase ATP synthase ATP synthase ATP synthase Methanosarcina acetivorans

  4. Energy transduction in ATP synthase

    NASA Astrophysics Data System (ADS)

    Elston, Timothy; Wang, Hongyun; Oster, George

    1998-01-01

    Mitochondria, bacteria and chloroplasts use the free energy stored in transmembrane ion gradients to manufacture ATP by the action of ATP synthase. This enzyme consists of two principal domains. The asymmetric membrane-spanning Fo portion contains the proton channel, and the soluble F1 portion contains three catalytic sites which cooperate in the synthetic reactions. The flow of protons through Fo is thought to generate a torque which is transmitted to F1 by an asymmetric shaft, the coiled-coil ?-subunit. This acts as a rotating `cam' within F1, sequentially releasing ATPs from the three active sites. The free-energy difference across the inner membrane of mitochondria and bacteria is sufficient to produce three ATPs per twelve protons passing through the motor. It has been suggested that this protonmotive force biases the rotor's diffusion so that Fo constitutes a rotary motor turning the ? shaft. Here we show that biased diffusion, augmented by electrostatic forces, does indeed generate sufficient torque to account for ATP production. Moreover, the motor's reversibility - supplying torque from ATP hydrolysis in F1 converts the motor into an efficient proton pump - can also be explained by our model.

  5. January 2007 Economic Impact of ATP's

    E-print Network

    January 2007 Economic Impact of ATP's Contributions to DNA Diagnostics Technologies GCR 06 Alan O'Connor, Brent Rowe, Michael Gallaher Joel Sevinsky, and Dallas Wood #12;About ATP's Economic payoffs and widespread benefits for the economy. Since the inception of ATP in 1990, ATP's Economic

  6. Treatment outcomes of patients with FIGO Stage I/II uterine cervical cancer treated with definitive radiotherapy: a multi-institutional retrospective research study.

    PubMed

    Ariga, Takuro; Toita, Takafumi; Kato, Shingo; Kazumoto, Tomoko; Kubozono, Masaki; Tokumaru, Sunao; Eto, Hidehiro; Nishimura, Tetsuo; Niibe, Yuzuru; Nakata, Kensei; Kaneyasu, Yuko; Nonoshita, Takeshi; Uno, Takashi; Ohno, Tatsuya; Iwata, Hiromitsu; Harima, Yoko; Wada, Hitoshi; Yoshida, Kenji; Gomi, Hiromichi; Numasaki, Hodaka; Teshima, Teruki; Yamada, Shogo; Nakano, Takashi

    2015-09-01

    The purpose of this study was to analyze the patterns of care and outcomes of patients with FIGO Stage I/II cervical cancer who underwent definitive radiotherapy (RT) at multiple Japanese institutions. The Japanese Radiation Oncology Study Group (JROSG) performed a questionnaire-based survey of their cervical cancer patients who were treated with definitive RT between January 2000 and December 2005. A total of 667 patients were entered in this study. Although half of the patients were considered suitable for definitive RT based on the clinical features of the tumor, about one-third of the patients were prescribed RT instead of surgery because of poor medical status. The RT schedule most frequently utilized was whole-pelvic field irradiation (WP) of 30 Gy/15 fractions followed by WP with midline block of 20 Gy/10 fractions, and high-dose-rate intracavitary brachytherapy (HDR-ICBT) of 24 Gy/4 fractions prescribed at point A. Chemotherapy was administered to 306 patients (46%). The most frequent regimen contained cisplatin (CDDP). The median follow-up time for all patients was 65 months (range, 2-135 months). The 5-year overall survival (OS), pelvic control (PC) and disease-free survival (DFS) rates for all patients were 78%, 90% and 69%, respectively. Tumor diameter and nodal status were significant prognostic indicators for OS, PC and DFS. Chemotherapy has potential for improving the OS and DFS of patients with bulky tumors, but not for non-bulky tumors. This study found that definitive RT for patients with Stage I/II cervical cancer achieved good survival outcomes. PMID:26109680

  7. Treatment outcomes of patients with FIGO Stage I/II uterine cervical cancer treated with definitive radiotherapy: a multi-institutional retrospective research study

    PubMed Central

    Ariga, Takuro; Toita, Takafumi; Kato, Shingo; Kazumoto, Tomoko; Kubozono, Masaki; Tokumaru, Sunao; Eto, Hidehiro; Nishimura, Tetsuo; Niibe, Yuzuru; Nakata, Kensei; Kaneyasu, Yuko; Nonoshita, Takeshi; Uno, Takashi; Ohno, Tatsuya; Iwata, Hiromitsu; Harima, Yoko; Wada, Hitoshi; Yoshida, Kenji; Gomi, Hiromichi; Numasaki, Hodaka; Teshima, Teruki; Yamada, Shogo; Nakano, Takashi

    2015-01-01

    The purpose of this study was to analyze the patterns of care and outcomes of patients with FIGO Stage I/II cervical cancer who underwent definitive radiotherapy (RT) at multiple Japanese institutions. The Japanese Radiation Oncology Study Group (JROSG) performed a questionnaire-based survey of their cervical cancer patients who were treated with definitive RT between January 2000 and December 2005. A total of 667 patients were entered in this study. Although half of the patients were considered suitable for definitive RT based on the clinical features of the tumor, about one-third of the patients were prescribed RT instead of surgery because of poor medical status. The RT schedule most frequently utilized was whole-pelvic field irradiation (WP) of 30 Gy/15 fractions followed by WP with midline block of 20 Gy/10 fractions, and high-dose-rate intracavitary brachytherapy (HDR-ICBT) of 24 Gy/4 fractions prescribed at point A. Chemotherapy was administered to 306 patients (46%). The most frequent regimen contained cisplatin (CDDP). The median follow-up time for all patients was 65 months (range, 2–135 months). The 5-year overall survival (OS), pelvic control (PC) and disease-free survival (DFS) rates for all patients were 78%, 90% and 69%, respectively. Tumor diameter and nodal status were significant prognostic indicators for OS, PC and DFS. Chemotherapy has potential for improving the OS and DFS of patients with bulky tumors, but not for non-bulky tumors. This study found that definitive RT for patients with Stage I/II cervical cancer achieved good survival outcomes. PMID:26109680

  8. Proceedings of the CADE-19 ATP System Competition Page 1 The CADE-19 ATP System Competition

    E-print Network

    Sutcliffe, Geoff

    Proceedings of the CADE-19 ATP System Competition Page 1 The CADE-19 ATP System Competition (CASC In order to stimulate ATP system development, and to expose ATP systems to interested researchers, the CADE-19 ATP System Competition (CASC-19) will be held on 31st July 2003. CASC evaluates the performance

  9. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium

    PubMed Central

    Igamberdiev, Abir U.; Kleczkowski, Leszek A.

    2015-01-01

    The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg2+, supported by adenylate kinase (AK) equilibrium in the intermembrane space, (ii) the supply of phosphate via membrane transporter in symport with H+, and (iii) the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg2+ contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg2+, adenylate transport, and phosphate release and supply. PMID:25674099

  10. Optimization of ATP synthase function in mitochondria and chloroplasts via the adenylate kinase equilibrium.

    PubMed

    Igamberdiev, Abir U; Kleczkowski, Leszek A

    2015-01-01

    The bulk of ATP synthesis in plants is performed by ATP synthase, the main bioenergetics engine of cells, operating both in mitochondria and in chloroplasts. The reaction mechanism of ATP synthase has been studied in detail for over half a century; however, its optimal performance depends also on the steady delivery of ATP synthase substrates and the removal of its products. For mitochondrial ATP synthase, we analyze here the provision of stable conditions for (i) the supply of ADP and Mg(2+), supported by adenylate kinase (AK) equilibrium in the intermembrane space, (ii) the supply of phosphate via membrane transporter in symport with H(+), and (iii) the conditions of outflow of ATP by adenylate transporter carrying out the exchange of free adenylates. We also show that, in chloroplasts, AK equilibrates adenylates and governs Mg(2+) contents in the stroma, optimizing ATP synthase and Calvin cycle operation, and affecting the import of inorganic phosphate in exchange with triose phosphates. It is argued that chemiosmosis is not the sole component of ATP synthase performance, which also depends on AK-mediated equilibrium of adenylates and Mg(2+), adenylate transport, and phosphate release and supply. PMID:25674099

  11. Proceedings of the CADE-18 ATP System Competition Page 1 The CADE-18 ATP System Competition

    E-print Network

    Sutcliffe, Geoff

    CASC-18 CASC-18 CASC-18 CASC-18 #12;#12;Proceedings of the CADE-18 ATP System Competition Page 1 The CADE-18 ATP System Competition (CASC-18) Geoff Sutcliffe Department of Computer Science University of Miami geoff@cs.miami.edu Abstract In order to stimulate ATP system development, and to expose ATP

  12. Assaying ATP Synthase Rotor Activity

    NASA Astrophysics Data System (ADS)

    Maguire, D.; Shah, J.; McCabe, M.

    With the development of laser excitation and detection systems, it has become possible to consider analyses that have otherwise been beyond the capacity of experimentalists. In this investigation, a case is made for the development of a device to analyse ATP synthase activity in-vivo. Such analyses ultimately have applications in clinical practice, particularly in the field of mitochondrial disorders, of both nuclear and mitochondrial DNA origin.

  13. Metabolic syndrome in a sample of the 6- to 16-year-old overweight or obese pediatric population: a comparison of two definitions

    PubMed Central

    Saffari, Fatemeh; Jalilolghadr, Shabnam; Esmailzadehha, Neda; Azinfar, Peyman

    2012-01-01

    Purpose The purpose of this study was to estimate the presence of metabolic syndrome (MS) in a group of children and adolescents with a body mass index (BMI) above the 85th percentile for their age and sex in Qazvin Province, Iran; to evaluate the relationship between obesity and metabolic abnormalities; and to compare two proposed definitions of MS. Patients and methods The study was conducted on 100 healthy subjects aged between 6 and 16 years (average age, 10.52 ± 2.51 years) with a high BMI for their age and sex. Fifty- eight percent of subjects were female. Physical examination including evaluation of weight, height, BMI, and blood pressure measurement was performed (“overweight” was defined as a BMI between the 85th and 95th percentiles for children of the same age and sex; “obese” was defined as a BMI over the 95th percentile for children of the same age and sex). Blood levels of glucose, insulin, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and uric acid were measured after a 12-hour overnight fast. The authors used and compared two definitions of MS: the National Cholesterol Education Program’s Adult Treatment Panel III (NCEP ATP III) criteria and a modified definition by Weiss et al. Variables were compared using the Student’s t-test and chi-square and Mann-Whitney U tests, and agreement between the two definitions was analyzed using kappa values. Results The subjects had a mean BMI of 26.02 ± 4.38 and 80% had obesity. Insulin resistance was found in 81% of the study population. MS was present in ten (50%) of the overweight and 53 (66.2%) of the obese subjects using the NCEP ATP III criteria. MS was present in five (25%) of the overweight and 34 (42.5%) of the obese subjects using the definition by Weiss et al. The overall kappa value for the two definitions of MS was 0.533. There were no statistically significant differences between the two definitions of MS in participants. Conclusion The prevalence of MS in children and adolescents depends on the criteria chosen and their respective cutoff points. The NCEP ATP III criteria, the parameters of which include higher cutoff values for high-density lipoprotein cholesterol and triglycerides, detected the higher prevalence and therefore the NCEP ATP III criteria are able to diagnose a larger number of children and adolescents at metabolic risk. PMID:22346358

  14. Proceedings of the CADE17 ATP System Competition In order to stimulate ATP system development, and to expose ATP systems to interested researchers, the

    E-print Network

    Sutcliffe, Geoff

    Proceedings of the CADE­17 ATP System Competition Abstract In order to stimulate ATP system development, and to expose ATP systems to interested researchers, the CADE­17 ATP System Competition (CASC­17) will be held on 17 June 2000. CASC­17 will evaluate the performance of sound, fully automatic, 1st order ATP

  15. ATPase Activity Measurements Using Radiolabeled ATP.

    PubMed

    Swarts, Herman G P; Koenderink, Jan B

    2016-01-01

    ATP provides the energy that is essential for all P-type ATPases to actively transport their substrates against an existing gradient. This ATP hydrolysis can be measured using different methods. Here, we describe a method that uses radiolabeled [?-(32)P]ATP, which is hydrolyzed by P-type ATPases to ADP and (32)Pi. Activated charcoal is used to bind the excess of [?-(32)P]ATP, which can be separated from the unbound (32)Pi by centrifugation. With this method, a wide range (0.1 ?M-10 mM) of ATP can be used. In addition, we also describe in detail how ATP hydrolysis is translated into ATPase activity. PMID:26695028

  16. Coupling of kinesin steps to ATP hydrolysis

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Young, Edgar C.; Fleming, Margaret L.; Gelles, Jeff

    1997-07-01

    A key goal in the study of the function of ATP-driven motor enzymes is to quantify the movement produced from consumption of one ATP molecule. Discrete displacements of the processive motor kinesin along a microtubule have been reported as 5 and/or 8 nm (refs 4, 5). However, analysis of nanometre-scale movements is hindered by superimposed brownian motion. Moreover, because kinesin is processive and turns over stochastically, some observed displacements must arise from summation of smaller movements that are too closely spaced in time to be resolved. To address both of these problems, we used light microscopy instrumentation with low positional drift (<39 pm s-1) to observe single molecules of a kinesin derivative moving slowly (~2.5 nm s-1) at very low (150 nM) ATP concentration, so that ATP-induced displacements were widely spaced in time. This allowed increased time-averaging to suppress brownian noise (without application of external force), permitting objective measurement of the distribution of all observed displacement sizes. The distribution was analysed with a statistics-based method which explicitly takes into account the occurrence of unresolved movements, and determines both the underlying step size and the coupling of steps to ATP hydrolytic events. Our data support a fundamental enzymatic cycle for kinesin in which hydrolysis of a single ATP molecule is coupled to a step distance of the microtubule protofilament lattice spacing of 8.12 nm (ref.7). Step distances other than 8 nm are excluded, as is the coupling of each step to two or more consecutive ATP hydrolysis reactions with similar rates, or the coupling of two 8-nm steps to a single hydrolysis. The measured ratio of ATP consumption rate to stepping rate is invariant over a wide range of ATP concentration, suggesting that the 1 ATP to 8 nm coupling inferred from behaviour at low ATP can be generalized to high ATP.

  17. Assembly of F1F0-ATP synthases.

    PubMed

    Rühle, Thilo; Leister, Dario

    2015-09-01

    F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit ? in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis. PMID:25667968

  18. 15 CFR 295.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CFR part 121. (q) The term United States-owned company means a for-profit organization, including sole... General § 295.2 Definitions. (a) For the purposes of the ATP, the term award means Federal financial... working on the ATP project and associated reasonable fringe benefits such as medical insurance....

  19. 15 CFR 295.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CFR part 121. (q) The term United States-owned company means a for-profit organization, including sole... General § 295.2 Definitions. (a) For the purposes of the ATP, the term award means Federal financial... working on the ATP project and associated reasonable fringe benefits such as medical insurance....

  20. 15 CFR 295.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CFR part 121. (q) The term United States-owned company means a for-profit organization, including sole... General § 295.2 Definitions. (a) For the purposes of the ATP, the term award means Federal financial... working on the ATP project and associated reasonable fringe benefits such as medical insurance....

  1. Proceedings of the IJCAR ATP System Competition Page 1 The IJCAR ATP System Competition

    E-print Network

    Sutcliffe, Geoff

    CASC­JC CASC­JC CASC­JC CASC­JC CASC­JC #12; #12; Proceedings of the IJCAR ATP System Competition Page 1 The IJCAR ATP System Competition (CASC­JC) Geoff Sutcliffe Department of Computer Science University of Miami geoff@cs.jcu.edu.au Abstract In order to stimulate ATP system development, and to expose

  2. ATP: A Reliable Transport Protocol for Ad-hoc Networks

    E-print Network

    Sivakumar, Raghupathy

    ATP: A Reliable Transport Protocol for Ad-hoc Networks Karthikeyan Sundaresan Vaidyanathan-point of proposing a new transport protocol called ATP #12;Outline Problems with TCP ATP design elements ATP Protocol to the characteristics of the reverse path in wireline networks #12;ATP: Ad-hoc Transport Protocol TCP's components

  3. Comparison of the prevalence of metabolic syndrome and its association with diabetes and cardiovascular disease in the rural population of Bangladesh using the modified National Cholesterol Education Program Expert Panel Adult Treatment Panel III and International Diabetes Federation definitions

    PubMed Central

    Bhowmik, Bishwajit; Afsana, Faria; Siddiquee, Tasnima; Munir, Sanjida B; Sheikh, Fareeha; Wright, Erica; Bhuiyan, Farjana R; Ashrafuzzaman, Sheikh Mohammad; Mahtab, Hajera; Azad Khan, Abul Kalam; Hussain, Akhtar

    2015-01-01

    Aims/Introduction To compare the prevalence of metabolic syndrome (MS) using the modified National Cholesterol Education Program Adult Treatment Plan III (NCEP) and the International Diabetes Federation (IDF) definitions and, using both definitions, determine and compare the association of MS, prediabetes, type 2 diabetes, hypertension (HTN) and cardiovascular disease risk (CVD). Materials and Methods A total of 2,293 randomly selected participants (aged ?20 years) in a rural community in Bangladesh were investigated in a population-based cross-sectional study. Sociodemographic and anthropometric characteristics, blood pressure, blood glucose, and lipid profiles were studied. Age-adjusted data for MS and cardiometabolic risk factors were assessed, and their relationships were examined. Results The age-adjusted prevalence of MS was 30.7% (males 30.5%; females 30.5%) using the NCEP definition, and 24.5% (males 19.2%, females 27.5%) using the IDF definition. The prevalence of MS using the NCEP definition was also higher in study participants with prediabetes, type 2 diabetes, HTN and CVD risk. The agreement rate between both definitions was 92% (k = 0.80). The NCEP definition had a stronger association with type 2 diabetes and HTN (odds ratio 12.4 vs 5.2; odds ratio 7.0 vs 4.7, respectively) than the IDF definition. However, the odds ratios for prediabetes and CVD risk were not significantly different. Conclusions The prevalence of MS was higher using the NCEP definition, and was more strongly associated with prediabetes, type 2 diabetes, HTN and CVD in this Bangladeshi population. PMID:25969712

  4. Historical review: ATP as a neurotransmitter

    E-print Network

    Burnstock, Geoffrey

    acceptance when receptor subtypes for ATP were cloned and characterized and when purinergic synaptic signalling and its therapeutic potential. Early history The diverse range of physiological actions of ATP and therapeutic use of adenylyl compounds in humans was published in 1957 by Boettge et al. [8]. Subsequently

  5. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24??M in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  6. ATP Utilization by Yeast Replication Factor C II. MULTIPLE STEPWISE ATP BINDING EVENTS ARE REQUIRED TO LOAD PROLIFERATING CELL

    E-print Network

    Burgers, Peter M.

    ATP Utilization by Yeast Replication Factor C II. MULTIPLE STEPWISE ATP BINDING EVENTS ARE REQUIRED of adenosine (3-thiotriphosphate) (ATP S), a nonhydrolyzable analog of ATP, to replication factor C with a N-terminal truncation ( 2­273) of the Rfc1 sub- unit (RFC) was studied by filter binding. RFC alone bound 1.8 ATP

  7. ATP and Presentation Service for Mizar Formalizations

    E-print Network

    Urban, Josef; Sitcliffe, Geoff

    2011-01-01

    This paper describes the Automated Reasoning for Mizar (MizAR) service, which integrates several automated reasoning, artificial intelligence, and presentation tools with Mizar and its authoring environment. The service provides ATP assistance to Mizar authors in finding and explaining proofs, and offers generation of Mizar problems as challenges to ATP systems. The service is based on a sound translation from the Mizar language to that of first-order ATP systems, and relies on the recent progress in application of ATP systems in large theories containing tens of thousands of available facts. We present the main features of MizAR services, followed by an account of initial experiments in finding proofs with the ATP assistance. Our initial experience indicates that the tool offers substantial help in exploring the Mizar library and in preparing new Mizar articles.

  8. ATP signalling in epilepsy Ashwin Kumaria & Christos M. Tolias &

    E-print Network

    Burnstock, Geoffrey

    REVIEW ATP signalling in epilepsy Ashwin Kumaria & Christos M. Tolias & Geoffrey Burnstock Received Astrocytes . ATP. Epilepsy. Gliotransmission . Seizure Abbreviations AEDs Antiepileptic drugs ATP Adenosine 5 for purinergic signalling in epilepsy included the finding that seizure- prone mice have increased extracellular

  9. Negative-feedback regulation of ATP release: ATP release from cardiomyocytes is strictly regulated during ischemia.

    PubMed

    Kunugi, Satohiko; Iwabuchi, Sadahiro; Matsuyama, Daisuke; Okajima, Takaharu; Kawahara, Koichi

    2011-12-16

    Extracellular ATP acts as a potent agonist on cardiomyocytes, inducing a broad range of physiological responses via P2 purinoceptors. Its concentration in the interstitial space within the heart is elevated during ischemia or hypoxia due to its release from a number of cell types, including cardiomyocytes. However, the exact mechanism responsible for the release of ATP from cardiomyocytes during ischemia is not known. In this study, we investigated whether and how the release of ATP was strictly regulated during ischemia in cultured neonatal rat cardiomyocytes. Ischemia was mimicked by oxygen-glucose deprivation (OGD). Exposure of cardiomyocytes to OGD resulted in an increase in the concentration of extracellular ATP shortly after the onset of OGD (15 min), and the increase was reversed by treatment with blockers of maxi-anion channels. Unexpectedly, at 1 and 2h after the onset of OGD, the blocking of maxi-anion channels increased the concentration of extracellular ATP, and the increase was significantly suppressed by co-treatment with blockers of hemichannels, suggesting that ATP release via maxi-anion channels was involved in the suppression of ATP release via hemichannels during persistent OGD. Here we show the possibility that the release of ATP from cardiomyocytes was strictly regulated during ischemia by negative-feedback mechanisms; that is, maxi-anion channel-derived ATP-induced suppression of ATP release via hemichannels in cardiomyocytes. PMID:22133679

  10. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  11. Customized ATP towpreg. [Automated Tow Placement

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  12. Cell-free expression and assembly of ATP synthase.

    PubMed

    Matthies, Doreen; Haberstock, Stefan; Joos, Friederike; Dötsch, Volker; Vonck, Janet; Bernhard, Frank; Meier, Thomas

    2011-10-28

    Cell-free (CF) expression technologies have emerged as promising methods for the production of individual membrane proteins of different types and origin. However, many membrane proteins need to be integrated in complex assemblies by interaction with soluble and membrane-integrated subunits in order to adopt stable and functionally folded structures. The production of complete molecular machines by CF expression as advancement of the production of only individual subunits would open a variety of new possibilities to study their assembly mechanisms, function, or composition. We demonstrate the successful CF formation of large molecular complexes consisting of both membrane-integrated and soluble subunits by expression of the atp operon from Caldalkalibacillus thermarum strain TA2.A1 using Escherichia coli extracts. The operon comprises nine open reading frames, and the 542-kDa F(1)F(o)-ATP synthase complex is composed of 9 soluble and 16 membrane-embedded proteins in the stoichiometry ?(3)?(3)???ab(2)c(13). Complete assembly into the functional complex was accomplished in all three typically used CF expression modes by (i) solubilizing initial precipitates, (ii) cotranslational insertion into detergent micelles or (iii) cotranslational insertion into preformed liposomes. The presence of all eight subunits, as well as specific enzyme activity and inhibition of the complex, was confirmed by biochemical analyses, freeze-fracture electron microscopy, and immunogold labeling. Further, single-particle analysis demonstrates that the structure and subunit organization of the CF and the reference in vivo expressed ATP synthase complexes are identical. This work establishes the production of highly complex molecular machines in defined environments either as proteomicelles or as proteoliposomes as a new application of CF expression systems. PMID:21925509

  13. What Is The Role of ATP in Molecular Clock Synchronization?

    E-print Network

    Rowell, Eric C.

    What Is The Role of ATP in Molecular Clock Synchronization? Joseph Donnelly July 23, 2015 Abstract of brain cells in mice suggests a synchro- nizing role of ATP in the mammalian clock. The biochemical mechanism of synchronization via ATP remains unknown. Furthermore, instances in which ATP behaves

  14. The Design of the CADE13 ATP System Competition

    E-print Network

    Sutcliffe, Geoff

    The Design of the CADE­13 ATP System Competition Technical Report 95/15 1 Technical Report AR­95@informatik.tu­muenchen.de Abstract Running a competition for Automated Theorem Proving (ATP) systems is a difficult and arguable. The motivations for running the CADE­13 ATP system competition are to contribute to the evaluation of ATP systems

  15. A Novel Method for Measurement of Submembrane ATP Concentration*

    E-print Network

    Tucker, Stephen J.

    A Novel Method for Measurement of Submembrane ATP Concentration* Received for publication, February adenosine triphosphate (ATP) is compartmentalized within cells and, in particular, whether the ATP concen as that of the bulk cytoplasm. This issue has been difficult to address because there is no indicator of cytosolic ATP

  16. ATP Synthesis in the Extremely Halophilic Bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Morrison, David (Technical Monitor)

    1994-01-01

    The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other Archaea). One, the V-like enzyme which, provides protons that are subsequently used for solute translocation. The other ATPase is the familiar and ubiquitous F-ATPase that functions as a reversible proton pump and is the ATP Synthase in the extreme halophiles. Thus, while the suggested evolution of the proton -translocating ATPases accounts for the relationship among these ATPases, this scheme does not account for the presence of F-ATPases in the Archaea. Discounting lateral gene transfer, perhaps an F-type ATPase evolved before the eucaryal-archaeal and bacterial bifurcation. The presence of V-type ATPases in the Bacterial Domain is consistent with this suggestion. Finally, it is of interest to note that if an F-type ATPase appeared before the bifurcation, an endosymbiotic event need not be invoked to explain the presence of F-ATPases in the Eucarya.

  17. SAGE III

    Atmospheric Science Data Center

    2014-12-04

    SAGE III Data and Information The Stratospheric Aerosol and Gas Experiment ( SAGE ) III obtains profile measurements of aerosol extinction, ozone, water ... Theoretical Basis Documents (ATBD) Join SAGE III News List SAGE I Data Table SAGE II Data Table ...

  18. Dynein ATPase pathway: ATP analogs and regulation by phosphorylation

    SciTech Connect

    Chilcote, T.J.

    1988-01-01

    Three biochemical aspects of 22S dynein from Tetrahymena cilia have been investigated: its ATP binding polypeptides and the manner in which they bind ATP, its AMPPNP-induced dissociation from microtubules, and its phosphorylation. We have attempted to identify the polypeptides of dynein that bind ATP, i.e., the active site polypeptides, with the photoaffinity ATP analog 8-N{sub 3}ATP. The 8-N{sub 3}ATP has been shown to bind to dyneins active sites and in a manner similar to that of ATP. Upon irradiation, (2-{sup 3}H)8-N{sub 3}ATP covalently labels the three heavy chains, i.e., heads, which is detected by autoradiography of SDS PAG's. Thus, the three heads are considered to be the three active sites of dynein. AMPPNP is a nonhydrolyzable ATP analog which we have assayed for the ability to induce dynein dissociation from microtubules.

  19. Sulfide-based ATP production in Urechis unicinctus

    NASA Astrophysics Data System (ADS)

    Ma, Zhuojun; Bao, Zhenmin; Wang, Sifeng; Zhang, Zhifeng

    2010-05-01

    We measured sulfide-based ATP production by isolated mitochondria from four tissues of Urechis unicinctus and the effects of inhibitors of respiratory complexes on ATP production were evaluated. The results show that these mitochondria could oxidize sulfide to produce ATP. The yield of sulfide-stimulated ATP varied from 5 nmol ATP/min/mg to 90 nmol ATP/min/mg according to the sulfide concentration and the source of the mitochondria. The maximum ATP synthesis occurred in hindgut mitochondria using 5 ?mol/L sulfide as a substrate. The effects of inhibitors (Rotenone, Antimycin A, Cyanide, and Salicylhydroxamic acid) on mitochondrial ATP production varied with the source of the mitochondria. Our results indicate that sulfide-based ATP production and the associated electron transport pathway are tissue-specific in U. unicinctus.

  20. Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand

    PubMed Central

    Yaniv, Yael; Spurgeon, Harold A.; Ziman, Bruce D.; Lyashkov, Alexey E.

    2013-01-01

    The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca2+-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca2+ cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to ?-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca2+ (Ca2+m) and an indirect effect via enhanced Ca2+-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca2+ and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O2 consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O2 consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca2+m and cAMP increased concurrently with the increase in AP firing rate. When Ca2+m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca2+m and an increase in Ca2+ activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level. PMID:23604710

  1. Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand.

    PubMed

    Yaniv, Yael; Spurgeon, Harold A; Ziman, Bruce D; Lyashkov, Alexey E; Lakatta, Edward G

    2013-06-01

    The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to ?-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca(2+) (Ca(2+)m) and an indirect effect via enhanced Ca(2+)-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca(2+) and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O? consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O? consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca(2+)m and cAMP increased concurrently with the increase in AP firing rate. When Ca(2+)m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca(2+)m and an increase in Ca(2+) activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level. PMID:23604710

  2. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase

    SciTech Connect

    Zhou, J.; Xue, Z.; Du, Z.; Melese, T.; Boyer, P.D.

    1988-07-12

    Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F/sub 1/ ATPase (CF/sub 1/) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. The authors have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg/sup 2 +/ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF/sub 1/ that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF/sub 1/. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (P/sub i/) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with (/sup 32/P)P/sub i/, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. They also report the occurrence of a 1-2-min delay in the onset of the Mg/sup 2 +/-induced inhibition after addition of CF/sub 1/ to solutions containing Mg/sup 2 +/ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of P/sub i/ formation is followed by a much lower, constant steady-state rate. The burst is not observed with GTP as a substrate or with Ca/sup 2 +/ as the activating cation.

  3. ATP drives eosinophil effector responses through P2 purinergic receptors

    PubMed Central

    Kobayashi, Takehito; Soma, Tomoyuki; Noguchi, Toru; Nakagome, Kazuyuki; Nakamoto, Hidetomo; Kita, Hirohito; Nagata, Makoto

    2015-01-01

    Background Eosinophils recognize various stimuli, such as cytokines, chemokines, immunoglobulins, complement, and external pathogens, resulting in their accumulation in mucosal tissues and the progression of inflammation. Eosinophils are also involved in innate Th2-type immune responses mediated through endogenous danger signals, including IL-33, uric acid (UA), or ATP, in non-sensitized mice exposed to environmental allergens. However, the mechanism involved in eosinophil responses to these danger signals remains insufficiently understood. Methods We examined migration, adhesion, superoxide production and degranulation of human eosinophils. Isolated eosinophils were incubated with monosodium urate (MSU) crystals and ATP?S, a nonhydrolysable ATP analogue. To determine the involvement of P2 or P2Y2 receptors in eosinophil responses to UA and ATP, eosinophils were preincubated with a pan-P2 receptor inhibitor, oxidized ATP (oATP), or anti-P2Y2 antibody before incubation with MSU crystals or ATP?S. Results MSU crystals induced adhesion of eosinophils to recombinant human (rh)-ICAM-1 and induced production of superoxide. oATP abolished eosinophil responses to MSU crystals, suggesting involvement of endogenous ATP and its receptors. Furthermore, exogenous ATP, as ATP?S, induced migration of eosinophils through a model basement membrane, adhesion to rh-ICAM-1, superoxide generation, and degranulation of eosinophil-derived neurotoxin (EDN). oATP and anti-P2Y2 significantly reduced these eosinophil responses. Conclusions ATP serves as an essential mediator of functional responses in human eosinophils. Eosinophil responses to ATP may be implicated in airway inflammation in patients with asthma. PMID:26344078

  4. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  5. The molecular mechanism of ATP synthesis by F1F0-ATP synthase.

    PubMed

    Senior, Alan E; Nadanaciva, Sashi; Weber, Joachim

    2002-02-15

    ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis. PMID:11997128

  6. ATP Hydrolysis Stimulates Large Length Fluctuations in Single Actin Filaments

    E-print Network

    ATP Hydrolysis Stimulates Large Length Fluctuations in Single Actin Filaments Evgeny B. Stukalin Engineering, Rice University, Houston, Texas ABSTRACT Polymerization dynamics of single actin filaments is investigated theoretically using a stochastic model that takes into account the hydrolysis of ATP

  7. Renal cell-to-cell communication via extracellular ATP.

    PubMed

    Komlosi, Peter; Fintha, Attila; Bell, P Darwin

    2005-04-01

    In the kidney, macula densa cells communicate with the mesangial cell-afferent arteriolar smooth muscle cell complex through ATP signaling. This signaling process involves release of ATP across the macula densa basolateral membrane through a maxi anion channel and the interaction of ATP with purinergic P2 receptors. PMID:15772296

  8. The CADE-22 ATP System Competition (CASC-22) Geoff Sutcliffe

    E-print Network

    Sutcliffe, Geoff

    #12;#12;The CADE-22 ATP System Competition (CASC-22) Geoff Sutcliffe University of Miami, USA Abstract The CADE ATP System Computer (CASC) evaluates the performance of sound, fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of problems solved, the number

  9. ATP: A Reliable Transport Protocol for Ad-hoc Networks

    E-print Network

    Sivakumar, Raghupathy

    ATP: A Reliable Transport Protocol for Ad-hoc Networks Karthikeyan Sundaresan, Vaidyanathan protocol for ad-hoc net- works called ATP (ad-hoc transport protocol). We show through ns2 based simulations that ATP outperforms both default TCP and TCP-ELFN. Categories and Subject Descriptors C.2

  10. Proceedings of the 5th IJCAR ATP System Competition

    E-print Network

    Sutcliffe, Geoff

    Proceedings of the 5th IJCAR ATP System Competition CASC-J5 Geoff Sutcliffe University of Miami, USA Abstract The CADE ATP System Computer (CASC) evaluates the performance of sound, fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of problems solved, the number

  11. Minireview R67 ATP synthase: two motors, two fuels

    E-print Network

    Oster, George

    Minireview R67 ATP synthase: two motors, two fuels George Oster* and Hongyun Wang FoF1 ATPase is the universal protein responsible for ATP synthesis. The enzyme comprises two reversible rotary motors: Fo is either an ion `turbine' or an ion pump, and F1 is either a hydrolysis motor or an ATP synthesizer. Recent

  12. Intertwined translational regulations set uneven stoichiometry of chloroplast ATP synthase

    E-print Network

    Intertwined translational regulations set uneven stoichiometry of chloroplast ATP synthase subunits/UPMC, Institut de Biologie Physico-Chimique, Paris, France The (C)F1 sector from Hþ -ATP synthases comprises five; Published online 26 July 2007 Subject Categories: proteins Keywords: ATP synthase assembly; Chlamydomonas

  13. Extracellular ATP signaling in plants Kiwamu Tanaka1

    E-print Network

    Jones, Alan M.

    Extracellular ATP signaling in plants Kiwamu Tanaka1 , Simon Gilroy2 , Alan M. Jones3 and Gary of North Carolina, Chapel Hill, NC 27599, USA Extracellular adenosine-5'-triphosphate (ATP) induces provide details of the gen- eral fundamentals of extracellular ATP signaling in eukaryotes. Extracellular

  14. Proceedings of the CADE-23 ATP System Competition

    E-print Network

    Sutcliffe, Geoff

    Proceedings of the CADE-23 ATP System Competition CASC-23 Geoff Sutcliffe University of Miami, USA Abstract The CADE ATP System Competition (CASC) evaluates the performance of sound, fully automatic, classical logic, ATP systems. The evaluation is in terms of the number of problems solved, the number

  15. Transient accumulation of elastic energy in proton translocating ATP synthase

    E-print Network

    Steinhoff, Heinz-Jürgen

    Hypothesis Transient accumulation of elastic energy in proton translocating ATP synthase Dmitry A 12 March 1999 Abstract ATP synthase is conceived as a rotatory engine with two reversible drives that the hydrolysis of three molecules of ATP in FI drives the shaft over a full circle in three steps of 120³ each

  16. PATTERNS & PHENOTYPES ATP-Binding Cassette (ABC) Transporter

    E-print Network

    a PATTERNS & PHENOTYPES ATP-Binding Cassette (ABC) Transporter Expression and Localization in Sea Urchin Development Lauren E. Shipp and Amro Hamdoun* Background: ATP-binding cassette (ABC) transporters of polarized cells. Accepted 26 March 2012 INTRODUCTION ATP-binding cassette (ABC) trans- porters

  17. ATP System Results for the TPTP Problem Library

    E-print Network

    Sutcliffe, Geoff

    ATP System Results for the TPTP Problem Library up to TPTP v1.2.1 -- TR Date 5.6.96 Technical, many researchers have used the TPTP as an appropriate and convenient basis for ATP system evaluation. Some researchers, who have tested their ATP systems over the entire TPTP, have made their result data

  18. External Dentin Stimulation Induces ATP Release in Human Teeth.

    PubMed

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain. PMID:26130258

  19. ATP synthase subunit-? down-regulation aggravates diabetic nephropathy

    PubMed Central

    Guan, Siao-Syun; Sheu, Meei-Ling; Wu, Cheng-Tien; Chiang, Chih-Kang; Liu, Shing-Hwa

    2015-01-01

    In this study, we investigated the role of ATP synthase subunit-? (ATP5b) in diabetic nephropathy. Histopathological changes, fibrosis, and protein expressions of ?-smooth muscle actin (?-SMA), advanced glycation end-products (AGEs), and ATP5b were obviously observed in the kidneys of db/db diabetic mice as compared with the control db/m+ mice. The increased ATP5b expression was majorly observed in diabetic renal tubules and was notably observed to locate in cytoplasm of tubule cells, but no significant increase of ATP5b in diabetic glomeruli. AGEs significantly increased protein expression of ATP5b and fibrotic factors and decreased ATP content in cultured renal tubular cells via an AGEs-receptor for AGEs (RAGE) axis pathway. Oxidative stress was also induced in diabetic kidneys and AGEs-treated renal tubular cells. The increase of ATP5b and CTGF protein expression in AGEs-treated renal tubular cells was reversed by antioxidant N-acetylcysteine. ATP5b-siRNA transfection augmented the increased protein expression of ?-SMA and CTGF and CTGF promoter activity in AGEs-treated renal tubular cells. The in vivo ATP5b-siRNA delivery significantly enhanced renal fibrosis and serum creatinine in db/db mice with ATP5b down-regulation. These findings suggest that increased ATP5b plays an important adaptive or protective role in decreasing the rate of AGEs-induced renal fibrosis during diabetic condition. PMID:26449648

  20. ATP synthase subunit-? down-regulation aggravates diabetic nephropathy.

    PubMed

    Guan, Siao-Syun; Sheu, Meei-Ling; Wu, Cheng-Tien; Chiang, Chih-Kang; Liu, Shing-Hwa

    2015-01-01

    In this study, we investigated the role of ATP synthase subunit-? (ATP5b) in diabetic nephropathy. Histopathological changes, fibrosis, and protein expressions of ?-smooth muscle actin (?-SMA), advanced glycation end-products (AGEs), and ATP5b were obviously observed in the kidneys of db/db diabetic mice as compared with the control db/m(+) mice. The increased ATP5b expression was majorly observed in diabetic renal tubules and was notably observed to locate in cytoplasm of tubule cells, but no significant increase of ATP5b in diabetic glomeruli. AGEs significantly increased protein expression of ATP5b and fibrotic factors and decreased ATP content in cultured renal tubular cells via an AGEs-receptor for AGEs (RAGE) axis pathway. Oxidative stress was also induced in diabetic kidneys and AGEs-treated renal tubular cells. The increase of ATP5b and CTGF protein expression in AGEs-treated renal tubular cells was reversed by antioxidant N-acetylcysteine. ATP5b-siRNA transfection augmented the increased protein expression of ?-SMA and CTGF and CTGF promoter activity in AGEs-treated renal tubular cells. The in vivo ATP5b-siRNA delivery significantly enhanced renal fibrosis and serum creatinine in db/db mice with ATP5b down-regulation. These findings suggest that increased ATP5b plays an important adaptive or protective role in decreasing the rate of AGEs-induced renal fibrosis during diabetic condition. PMID:26449648

  1. Density Functional Calculations of ATP Systems. 1. Crystalline ATP Hydrates and Related J. Akola and R. O. Jones*

    E-print Network

    Density Functional Calculations of ATP Systems. 1. Crystalline ATP Hydrates and Related Molecules J¨lich, Germany ReceiVed: August 31, 2005; In Final Form: February 8, 2006 Adenosine 5-triphosphate (ATP ) 1, 4-7), the crystalline pyrophosphates Mg2P2O7,6H2O and R-CaNa2P2O7,4H2O, and crystalline Na2ATP,3H

  2. Density Functional Calculations of ATP Systems. 2. ATP Hydrolysis at the Active Site of J. Akola and R. O. Jones*

    E-print Network

    Density Functional Calculations of ATP Systems. 2. ATP Hydrolysis at the Active Site of Actin J¨lich, Germany ReceiVed: August 31, 2005; In Final Form: February 8, 2006 The hydrolysis of adenosine 5 in the initial reactants. Classical simulations of ATP- and ADP,Pi- actin show few hydrolysis-induced differences

  3. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  4. Space shuttle (ATP configuration) abort staging investigation

    NASA Technical Reports Server (NTRS)

    Rampy, J. M.; Blackwell, K. L.; Allen, E. C., Jr.; Fossler, I.

    1973-01-01

    A wind tunnel test conducted in a 14-inch trisonic wind tunnel to determine the force and moment characteristics of the ATP Orbiter and modified ATP External Tank/SRB combination during abort staging conditions is discussed. Six component aerodynamic force and moment data were recorded for the orbiter and ET/SRB combination. Pitch polars were obtained for an angle of attack range from minus 10 to plus 10 degrees and orbiter incidence angles (orbiter relative to the ET/SRB combination) of 0 and 2 degrees. A limited amount of yaw data were obtained at 0 degree angle of attack and beta range from minus 10 to plus 10 degrees. In addition, orbiter pitch control effectiveness was determined at several grid points. These force and moment data were obtained for Mach numbers of 0.9, 1.2 and 2.0.

  5. The catalytic transition state in ATP synthase.

    PubMed

    Senior, A E; Weber, J; Nadanaciva, S

    2000-10-01

    The catalytic transition state of ATP synthase has been characterized and modeled by combined use of (1) Mg-ADP-fluoroaluminate, Mg-ADP-fluoroscandium, and corresponding Mg-IDP-fluorometals as transition-state analogs; (2) fluorescence signals of beta-Trp331 and beta-Trp148 as optical probes to assess formation of the transition state; (3) mutations of critical catalytic residues to determine side-chain ligands required to stabilize the transition state. Rate acceleration by positive catalytic site cooperativity is explained as due to mobility of alpha-Arg376, acting as an "arginine finger" residue, which interacts with nucleotide specifically at the transition state step of catalysis, not with Mg-ATP- or Mg-ADP-bound ground states. We speculate that formation and collapse of the transition state may engender catalytic site alpha/beta subunit-interface conformational movement, which is linked to gamma-subunit rotation. PMID:15254388

  6. ATP synthases from archaea: the beauty of a molecular motor.

    PubMed

    Grüber, Gerhard; Manimekalai, Malathy Sony Subramanian; Mayer, Florian; Müller, Volker

    2014-06-01

    Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed. PMID:24650628

  7. When Too Much ATP Is Bad for Protein Synthesis.

    PubMed

    Pontes, Mauricio H; Sevostyanova, Anastasia; Groisman, Eduardo A

    2015-08-14

    Adenosine triphosphate (ATP) is the energy currency of living cells. Even though ATP powers virtually all energy-dependent activities, most cellular ATP is utilized in protein synthesis via tRNA aminoacylation and guanosine triphosphate regeneration. Magnesium (Mg(2+)), the most common divalent cation in living cells, plays crucial roles in protein synthesis by maintaining the structure of ribosomes, participating in the biochemistry of translation initiation and functioning as a counterion for ATP. A non-physiological increase in ATP levels hinders growth in cells experiencing Mg(2+) limitation because ATP is the most abundant nucleotide triphosphate in the cell, and Mg(2+) is also required for the stabilization of the cytoplasmic membrane and as a cofactor for essential enzymes. We propose that organisms cope with Mg(2+) limitation by decreasing ATP levels and ribosome production, thereby reallocating Mg(2+) to indispensable cellular processes. PMID:26150063

  8. Resolution of the ATP-dependent proteolytic system from reticulocytes: a component that interacts with ATP.

    PubMed Central

    Hershko, A; Ciechanover, A; Rose, I A

    1979-01-01

    The ATP-dependent proteolytic cell-free system from reticulocytes has been resolved into three components, each of which is absolutely required for acid solubilization of 125I-labeled bovine serum albumin radioactivity. In addition to the previously reported heat-stable polypeptide [Ciechanover, A., Hod, Y. & Hershko, A. (1978) Biochem. Biophys. Res Commun. 81, 1100-1105], we now describe a protein of high molecular weight (approximately 450,000) that is labile at 42 degrees C. The extremely heat-labile factors is remarkably stabilized by ATP. GTP and CTP, which do not stimulate protolysis, do not stabilize this factor. Adenylate nucleotides such as ADP or the nonhydrolyzable beta,gamma imido or methylene analogues of ATP cause stabilization although they do not activate proteolysis. A third protein component of the protease system, stable at 42 degrees C, has been separated from the heat-labile species by salt precipitation. All three components are required with ATP for proteolytic activity, but thus far only the heat-labile factor has been shown to interact directly with ATP. PMID:290989

  9. Efficient ATP synthesis by thermophilic Bacillus FoF1-ATP synthase.

    PubMed

    Soga, Naoki; Kinosita, Kazuhiko; Yoshida, Masasuke; Suzuki, Toshiharu

    2011-08-01

    F(o)F(1)-ATP synthase (F(o)F(1)) synthesizes ATP in the F(1) portion when protons flow through F(o) to rotate the shaft common to F(1) and F(o). Rotary synthesis in isolated F(1) alone has been shown by applying external torque to F(1) of thermophilic origin. Proton-driven ATP synthesis by thermophilic Bacillus PS3 F(o)F(1) (TF(o)F(1)), however, has so far been poor in vitro, of the order of 1 s(-1) or less, hampering reliable characterization. Here, by using a mutant TF(o)F(1) lacking an inhibitory segment of the ?-subunit, we have developed highly reproducible, simple procedures for the preparation of active proteoliposomes and for kinetic analysis of ATP synthesis, which was driven by acid-base transition and K(+)-diffusion potential. The synthesis activity reached ? 16 s(-1) at 30 °C with a Q(10) temperature coefficient of 3-4 between 10 and 30 °C, suggesting a high level of activity at the physiological temperature of ? 60 °C. The Michaelis-Menten constants for the substrates ADP and inorganic phosphate were 13 ?M and 0.55 mM, respectively, which are an order of magnitude lower than previous estimates and are suited to efficient ATP synthesis. PMID:21605343

  10. Efficient ATP synthesis by thermophilic Bacillus FoF1-ATP synthase

    PubMed Central

    Soga, Naoki; Kinosita, Kazuhiko; Yoshida, Masasuke; Suzuki, Toshiharu

    2011-01-01

    FoF1-ATP synthase (FoF1) synthesizes ATP in the F1 portion when protons flow through Fo to rotate the shaft common to F1 and Fo. Rotary synthesis in isolated F1 alone has been shown by applying external torque to F1 of thermophilic origin. Proton-driven ATP synthesis by thermophilic Bacillus PS3 FoF1 (TFoF1), however, has so far been poor in vitro, of the order of 1 s?1 or less, hampering reliable characterization. Here, by using a mutant TFoF1 lacking an inhibitory segment of the ?-subunit, we have developed highly reproducible, simple procedures for the preparation of active proteoliposomes and for kinetic analysis of ATP synthesis, which was driven by acid–base transition and K+-diffusion potential. The synthesis activity reached ? 16 s?1 at 30 °C with a Q10 temperature coefficient of 3–4 between 10 and 30 °C, suggesting a high level of activity at the physiological temperature of ? 60 °C. The Michaelis–Menten constants for the substrates ADP and inorganic phosphate were 13 ?m and 0.55 mm, respectively, which are an order of magnitude lower than previous estimates and are suited to efficient ATP synthesis. PMID:21605343

  11. Rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase.

    PubMed

    Senior, A E; Nadanaciva, S; Weber, J

    2000-01-01

    The rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase is of the order of 10(11)-fold. We present a cyclic enzyme mechanism for the reaction, relate it to known F(1) X-ray structure and speculate on the linkage between enzyme reaction intermediates and subunit rotation. Next, we describe five factors known to be important in the Escherichia coli enzyme for the rate acceleration. First, the provision of substrate binding energy by residues lining the catalytic site is substantial; beta-Lys155 and beta-Arg182 are specific examples, both of which differentially support substrate MgATP versus product MgADP binding. Second, octahedral coordination of the Mg(2+) in MgATP is crucial for both catalysis and catalytic site asymmetry. The residues involved are beta-Thr156, beta-Glu185 and beta-Asp242. Third, there is stabilization of a pentacoordinate phosphorus catalytic transition state by residues beta-Lys155, beta-Arg182 and alpha-Arg376. Fourth, residue beta-Glu181 binds the substrate water and stabilizes the catalytic transition state. Fifth, there is strong positive catalytic cooperativity, with binding of MgATP at all three sites yielding the maximum rate (V(max)); the molecular basis of this factor remains to be elucidated. PMID:10600671

  12. Coupling of proton ow to ATP synthesis in Rhodobacter capsulatus: F0F1-ATP synthase is absent from about half of chromatophores

    E-print Network

    Steinhoff, Heinz-Jürgen

    Coupling of proton £ow to ATP synthesis in Rhodobacter capsulatus: F0F1-ATP synthase is absent from; accepted 13 August 2001 Abstract F0F1-ATP synthase (H -ATP synthase, F0F1) utilizes the transmembrane protonmotive force to catalyze the formation of ATP from ADP and inorganic phosphate (Pi). Structurally

  13. Dynamic Sensitivity of ATP-sensitive K Channels to ATP* Received for publication, March 16, 2001, and in revised form, April 17, 2001

    E-print Network

    Pike, Linda J.

    Dynamic Sensitivity of ATP-sensitive K Channels to ATP* Received for publication, March 16, 2001, Oxford OX1 3PT, United Kingdom ATP and MgADP regulate KATP channel activity and hence potentially couple-cell activity can be observed with widely varying apparent submembrane [ATP] ([ATP]sub). Meta- bolic inhibition

  14. Sm-like protein Hfq: Location of the ATP-binding site and the effect of ATP on HfqRNA complexes

    E-print Network

    Mura, Cameron

    Sm-like protein Hfq: Location of the ATP-binding site and the effect of ATP on Hfq­RNA complexes the first evidence indicating that Hfq is an ATP-binding protein. Using a combination of biochemical and genetic techniques, we have now determined a plausible ATP-binding site in Hfq and tested Hfq's ATP

  15. Met23Lys mutation in subunit gamma of FOF1-ATP synthase from Rhodobacter capsulatus impairs the activation of ATP hydrolysis by protonmotive force.

    E-print Network

    Steinhoff, Heinz-Jürgen

    the activation of ATP hydrolysis by protonmotive force. Boris A. Feniouk1,#* , Alberto Rebecchi2 , Donatella of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive+ transporting FOF1-ATP synthase (FOF1-complex) catalyses ATP synthesis/hydrolysis that is coupled

  16. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    SciTech Connect

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  17. K(ATP) channel-dependent metaboproteome decoded: systems approaches to heart failure prediction, diagnosis, and therapy.

    PubMed

    Arrell, D Kent; Zlatkovic Lindor, Jelena; Yamada, Satsuki; Terzic, Andre

    2011-05-01

    Systems biology provides an integrative platform by which to account for the biological complexity related to cardiac health and disease. In this way, consequences of ATP-sensitive K(+) (K(ATP)) channel deficiency for heart failure prediction, diagnosis, and therapy were resolved recently at a proteomic level. Under stress-free conditions, knockout of the Kir6.2 K(ATP) channel pore induced metabolic proteome remodelling, revealing overrepresentation of markers of cardiovascular disease. Imposed stress precipitated structural and functional defects in Kir6.2-knockout hearts, decreasing survival and validating prediction of disease susceptibility. In the setting of hypertension, a leading risk for heart failure development, proteomic analysis diagnosed the metabolism-centric impact of K(ATP) channel deficiency in disease. Bioinformatic interrogation of K(ATP) channel-dependent proteome prioritized heart-specific adverse effects, exposing cardiomyopathic traits of aggravated contractility, fibrosis, and ventricular hypertrophy. In dilated cardiomyopathy induced by Kir6.2-knockout pressure overload, proteomic remodelling was exacerbated, underlying a multifaceted molecular pathology that indicates the necessity for a broad-based strategy to achieve repair. Embryonic stem cell intervention in cardiomyopathic K(ATP) channel knockout hearts elicited a distinct proteome signature that forecast amelioration of adverse cardiac outcomes. Functional/structural measurements validated improved contractile performance, reduced ventricular size, and decreased cardiac damage in the treated cohort, while systems assessment unmasked cardiovascular development as a prioritized biological function in stem cell-reconstructed hearts. Thus, proteomic deconvolution of K(ATP) channel-deficient hearts provides definitive evidence for the channel's homeostatic contribution to the cardiac metaboproteome and establishes the utility of systems-oriented approaches to predict disease susceptibility, diagnose consequences of heart failure progression, and monitor therapy outcome. PMID:21321057

  18. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    SciTech Connect

    Jason Alan Gruenhagen

    2003-12-12

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca{sup 2+} imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca{sup 2+} signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K{sup +} and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized CdS monocrystals. Aggregates of nanospheres were bathed in imaging solution, and ATP bioluminescence was monitored to investigated the release kinetics of the nanosphere drug delivery systems. Addition of disulfide bond-cleaving molecules induced uncapping of the nanospheres and subsequently, the release of ATP. Increasing the concentration of the uncapping molecule decreased the temporal maximum and increased the magnitude of release of encapsulated ATP from the nanospheres. Furthermore, the release kinetics from the nanospheres varied with the size of the particle aggregates.

  19. ATP-induced reverse temperature effect in isohemoglobins from the endothermic porbeagle shark (Lamna nasus).

    PubMed

    Larsen, Christina; Malte, Hans; Weber, Roy E

    2003-08-15

    The evolutionary convergence of endothermic tunas and lamnid sharks is unique. Their heat exchanger-mediated endothermy represents an interesting example of the evolutionary pressure associated with this specific characteristic. To assess the implications of endothermy for gas transport and the possible contribution of hemoglobin (Hb), we investigated the effect of temperature on the oxygen equilibria of purified isohemoglobin components V and III from the porbeagle shark (Lamna nasus). In the absence of ATP the effect of temperature on oxygen affinity is normal in both Hb III (P50 = 0.9 and 2.2 torr at 10 and 26 degrees C, respectively) and Hb V (P50 = 1.5 and 2.5 torr at 10 and 26 degrees C, respectively). In the presence of this effector P50 decreases with increasing temperature in both components (P50 at 10 and 26 degrees C = 9.9 and 8.4 torr (Hb III), respectively, and 9.6 and 7.4 torr (Hb V), respectively. The reverse temperature effect in the presence of ATP will reduce the risk of oxygen loss from the arterial to the venous blood by lowering the oxygen tension gradient between the blood vessels. The mechanism behind the reverse temperature effect resembles that found in the bluefin tuna (Thunnus thynnus), an endothermic teleost, thus evidencing further convergent evolution. PMID:12773532

  20. The role of mitochondrially derived ATP in synaptic vesicle recycling.

    PubMed

    Pathak, Divya; Shields, Lauren Y; Mendelsohn, Bryce A; Haddad, Dominik; Lin, Wei; Gerencser, Akos A; Kim, Hwajin; Brand, Martin D; Edwards, Robert H; Nakamura, Ken

    2015-09-11

    Synaptic mitochondria are thought to be critical in supporting neuronal energy requirements at the synapse, and bioenergetic failure at the synapse may impair neural transmission and contribute to neurodegeneration. However, little is known about the energy requirements of synaptic vesicle release or whether these energy requirements go unmet in disease, primarily due to a lack of appropriate tools and sensitive assays. To determine the dependence of synaptic vesicle cycling on mitochondrially derived ATP levels, we developed two complementary assays sensitive to mitochondrially derived ATP in individual, living hippocampal boutons. The first is a functional assay for mitochondrially derived ATP that uses the extent of synaptic vesicle cycling as a surrogate for ATP level. The second uses ATP FRET sensors to directly measure ATP at the synapse. Using these assays, we show that endocytosis has high ATP requirements and that vesicle reacidification and exocytosis require comparatively little energy. We then show that to meet these energy needs, mitochondrially derived ATP is rapidly dispersed in axons, thereby maintaining near normal levels of ATP even in boutons lacking mitochondria. As a result, the capacity for synaptic vesicle cycling is similar in boutons without mitochondria as in those with mitochondria. Finally, we show that loss of a key respiratory subunit implicated in Leigh disease markedly decreases mitochondrially derived ATP levels in axons, thus inhibiting synaptic vesicle cycling. This proves that mitochondria-based energy failure can occur and be detected in individual neurons that have a genetic mitochondrial defect. PMID:26126824

  1. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance

    PubMed Central

    Anjum, Naser A.; Gill, Ritu; Kaushik, Manjeri; Hasanuzzaman, Mirza; Pereira, Eduarda; Ahmad, Iqbal; Tuteja, Narendra; Gill, Sarvajeet S.

    2015-01-01

    Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO42-), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO42--activation and yields activated high-energy compound adenosine-5?-phosphosulfate that is reduced to sulfide (S2-) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes. PMID:25904923

  2. Coupled ATP and potassium efflux from intercalated cells

    PubMed Central

    Holtzclaw, J. David; Cornelius, Ryan J.; Hatcher, Lori I.

    2011-01-01

    Increased flow in the distal nephron induces K secretion through the large-conductance, calcium-activated K channel (BK), which is primarily expressed in intercalated cells (IC). Since flow also increases ATP release from IC, we hypothesized that purinergic signaling has a role in shear stress (?; 10 dynes/cm2) -induced, BK-dependent, K efflux. We found that 10 ?M ATP led to increased IC Ca concentration, which was significantly reduced in the presence of the P2 receptor blocker suramin or calcium-free buffer. ATP also produced BK-dependent K efflux, and IC volume decrease. Suramin inhibited ?-induced K efflux, suggesting that K efflux is at least partially dependent on purinergic signaling. BK-?4 small interfering (si) RNA, but not nontarget siRNA, decreased ATP secretion and both ATP-dependent and ?-induced K efflux. Similarly, carbenoxolone (25 ?M), which blocks connexins, putative ATP pathways, blocked ?-induced K efflux and ATP secretion. Compared with BK-?4?/? mice, wild-type mice with high distal flows exhibited significantly more urinary ATP excretion. These data demonstrate coupled electrochemical efflux between K and ATP as part of the mechanism for ?-induced ATP release in IC. PMID:21454249

  3. Relation of rumen ATP concentration to bacterial and protozoal numbers.

    PubMed

    Nuzback, D E; Bartley, E E; Dennis, S M; Nagaraja, T G; Galitzer, S J; Dayton, A D

    1983-09-01

    Cultures of Streptococcus bovis and mixed populations of rumen bacteria were used to investigate the concentration of ATP and rumen bacterial numbers at various stages of growth. ATP, extracted with Tris buffer, was analyzed using the firefly luciferin-luciferase bioluminescent reaction. ATP concentrations of S. bovis and mixed cultures of rumen bacteria significantly correlated with live cell counts during the log phase of growth but not during the stationary phase. The average cellular ATP concentration of rumen bacteria was calculated to be 0.3 fg of ATP per cell. Studies done with in vivo artificial rumen apparatus revealed that the protozoal contribution to rumen fluid ATP pool size was much more substantial than was the bacterial contribution. The rumen fluid ATP concentration was greater in cattle with protozoa than in those that were defaunated. Differences in ATP concentration due to size differences of ciliate protozoa were observed. Due to the unbalanced distribution of ATP in rumen microbes, ATP appears to be an unsuitable indicator of rumen microbial biomass. PMID:6639012

  4. Relation of rumen ATP concentration to bacterial and protozoal numbers.

    PubMed Central

    Nuzback, D E; Bartley, E E; Dennis, S M; Nagaraja, T G; Galitzer, S J; Dayton, A D

    1983-01-01

    Cultures of Streptococcus bovis and mixed populations of rumen bacteria were used to investigate the concentration of ATP and rumen bacterial numbers at various stages of growth. ATP, extracted with Tris buffer, was analyzed using the firefly luciferin-luciferase bioluminescent reaction. ATP concentrations of S. bovis and mixed cultures of rumen bacteria significantly correlated with live cell counts during the log phase of growth but not during the stationary phase. The average cellular ATP concentration of rumen bacteria was calculated to be 0.3 fg of ATP per cell. Studies done with in vivo artificial rumen apparatus revealed that the protozoal contribution to rumen fluid ATP pool size was much more substantial than was the bacterial contribution. The rumen fluid ATP concentration was greater in cattle with protozoa than in those that were defaunated. Differences in ATP concentration due to size differences of ciliate protozoa were observed. Due to the unbalanced distribution of ATP in rumen microbes, ATP appears to be an unsuitable indicator of rumen microbial biomass. PMID:6639012

  5. Single molecule thermodynamics of ATP synthesis by F$_1$-ATPase

    E-print Network

    Shoichi Toyabe; Eiro Muneyuki

    2015-01-16

    F$_\\mathrm{o}$F$_1$-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F$_1$-motor (F$_1$-ATPase) and performs the reversible mechanochemical coupling. Isolated F$_1$-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central $\\gamma$-shaft. When a strong opposing torque is imposed, the $\\gamma$-shaft rotates in the opposite direction and drives the F$_1$-motor to synthesize ATP. This mechanical-to-chemical free-energy transduction is the final and central step of the multistep cellular ATP-synthetic pathway. Here, we determined the amount of mechanical work exploited by the F$_1$-motor to synthesize an ATP molecule during forced rotations using methodology combining a nonequilibrium theory and single molecule measurements of responses to external torque. We found that the internal dissipation of the motor is negligible even during rotations far from a quasistatic process.

  6. Single molecule thermodynamics of ATP synthesis by F1-ATPase

    NASA Astrophysics Data System (ADS)

    Toyabe, Shoichi; Muneyuki, Eiro

    2015-01-01

    FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. The isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central ? -shaft. When a strong opposing torque is imposed, the ? -shaft rotates in the opposite direction and drives the F1-motor to synthesize ATP. This mechanical-to-chemical free-energy transduction is the final and central step of the multistep cellular ATP-synthetic pathway. Here, we determined the amount of mechanical work exploited by the F1-motor to synthesize an ATP molecule during forced rotations using a methodology combining a nonequilibrium theory and single molecule measurements of responses to external torque. We found that the internal dissipation of the motor is negligible even during rotations far from a quasistatic process.

  7. Snapshots of the maltose transporter during ATP hydrolysis

    SciTech Connect

    Oldham, Michael L.; Chen, Jue

    2011-12-05

    ATP-binding cassette transporters are powered by ATP, but the mechanism by which these transporters hydrolyze ATP is unclear. In this study, four crystal structures of the full-length wild-type maltose transporter, stabilized by adenosine 5{prime}-({beta},{gamma}-imido)triphosphate or ADP in conjunction with phosphate analogs BeF{sub 3}{sup -}, VO{sub 4}{sup 3-}, or AlF{sub 4}{sup -}, were determined to 2.2- to 2.4-{angstrom} resolution. These structures led to the assignment of two enzymatic states during ATP hydrolysis and demonstrate specific functional roles of highly conserved residues in the nucleotide-binding domain, suggesting that ATP-binding cassette transporters catalyze ATP hydrolysis via a general base mechanism.

  8. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  9. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    PubMed

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide-inactivating and nucleotide-phosphorylating ecto-enzymes. We suggest that extracellular ATP homeostasis in pancreatic ducts may be important in pancreas physiology and potentially in pancreas pathophysiology. PMID:26431833

  10. ATP is released from guinea pig ureter epithelium on distension

    E-print Network

    Burnstock, Geoffrey

    ATP is released from guinea pig ureter epithelium on distension G. E. KNIGHT,1 P. BODIN,1 W. C. DE Knight, G. E., P. Bodin, W. C. De Groat, and G. Burn- stock. ATP is released from guinea pig ureter.2001.--Distension of the perfused guinea pig ureter at pressures from 20 to 700 cmH2O in- creased the amount of ATP

  11. Efficient Purification and Reconstitution of ATP Binding Cassette Transporter B6 (ABCB6) for Functional and Structural Studies*

    PubMed Central

    Chavan, Hemantkumar; Taimur Khan, Mohiuddin Md.; Tegos, George; Krishnamurthy, Partha

    2013-01-01

    The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 ?m) and an ATPase activity with a Km of 0.99 mm. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6. PMID:23792964

  12. Diversity and regulation of ATP sulfurylase in photosynthetic organisms

    PubMed Central

    Prioretti, Laura; Gontero, Brigitte; Hell, Ruediger; Giordano, Mario

    2014-01-01

    ATP sulfurylase (ATPS) catalyzes the first committed step in the sulfate assimilation pathway, the activation of sulfate prior to its reduction. ATPS has been studied in only a few model organisms and even in these cases to a much smaller extent than the sulfate reduction and cysteine synthesis enzymes. This is possibly because the latter were considered of greater regulatory importance for sulfate assimilation. Recent evidences (reported in this paper) challenge this view and suggest that ATPS may have a crucial regulatory role in sulfate assimilation, at least in algae. In the ensuing text, we summarize the current knowledge on ATPS, with special attention to the processes that control its activity and gene(s) expression in algae. Special attention is given to algae ATPS proteins. The focus on algae is the consequence of the fact that a comprehensive investigation of ATPS revealed that the algal enzymes, especially those that are most likely involved in the pathway of sulfate reduction to cysteine, possess features that are not present in other organisms. Remarkably, algal ATPS proteins show a great diversity of isoforms and a high content of cysteine residues, whose positions are often conserved. According to the occurrence of cysteine residues, the ATPS of eukaryotic algae is closer to that of marine cyanobacteria of the genera Synechococcus and Prochlorococcus and is more distant from that of freshwater cyanobacteria. These characteristics might have evolved in parallel with the radiation of algae in the oceans and the increase of sulfate concentration in seawater. PMID:25414712

  13. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  14. Application of luciferase assay for ATP to antimicrobial drug susceptibility

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Vellend, H.; Tuttle, S. A.; Barza, M. J.; Weinstein, L. (inventors)

    1977-01-01

    The susceptibility of bacteria, particularly those derived from body fluids, to antimicrobial agents is determined in terms of an ATP index measured by culturing a bacterium in a growth medium. The amount of ATP is assayed in a sample of the cultured bacterium by measuring the amount of luminescent light emitted when the bacterial ATP is reacted with a luciferase-luciferin mixture. The sample of the cultured bacterium is subjected to an antibiotic agent. The amount of bacterial adenosine triphosphate is assayed after treatment with the antibiotic by measuring the luminescent light resulting from the reaction. The ATP index is determined from the values obtained from the assay procedures.

  15. A study of spinach chloroplast ATP synthase

    SciTech Connect

    Musier-Forsyth, K.M.

    1989-01-01

    New heterobifunctional photoaffinity cross-linking reagents, 6-maleimido-N-(4-benzoylphenyl)hexanamide, 12-maleimido-N-(4-benzoylphenyl) dodecanamide, and 12-({sup 14}C)maleimido-N-(4-benzoylphenyl) dodecanamide, have been synthesized to investigate the mechanism of ATP hydrolysis by the soluble portion of the DSA, chloroplast coupling factor one (CF{sub 1}). The cross-linkers prevent major movements of the {gamma} polypeptide with respect to the {alpha} and {beta} polypeptides, but permit some flexibility in the enzyme structure. When {approximately}50% of the {gamma} polypeptide is cross-linked to a {alpha} and {beta} polypeptides, a 7%-12% loss in ATPase activity has been observed. The method of continuous variation (Job plot analysis) and difference absorbance spectroscopy have been used to investigate the bind of 2{prime}(3{prime})-(trinitrophenyl)-ADP and -ATP to CF{sub 1}. Computer-generated Job plots gave good fits to the experimental data at all concentrations when 4 binding sites were modeled. The dissociation constant of the fourth site was estimated to be {approximately}20 {mu}M. Additional nucleotide binding sites, if they exist, have very weak binding affinities. The rotational dynamics of the DSA reconstituted into phospholipid vesicles and co-reconstituted with the proton pump bacteriorhodopsin have been investigated using the technique of time-resolve phosphorescence anisotropy.

  16. Is ATP a substrate for 15-lipoxygenase?

    PubMed

    Kumarathasan, R; Leenen, F H

    2000-01-01

    Lipoxygenases catalyze peroxidation of polyunsaturated fatty acids containing the 1-cis, 4-cis pentadiene structure. Linoleic (18:2), linolenic (18:3), and arachidonic (20:4) acids are the predominant substrates for this class of enzymes. Effects of 15-lipoxygenase on the hydrolysis of adenosine 5'-triphosphate were investigated in vitro using soybean lipoxygenase and adenosine 5'-[gamma-32P]triphosphate. The amount of inorganic phosphate released from adenosine 5'-triphosphate was dependent upon enzyme as well as substrate concentrations, pH, and the duration of incubation. The ATPase activity with a Vmax value of 3.3 mumol.mg protein-1.h-1 and a Km value of 5.9 mM was noted in the presence of different concentrations of ATP at pH = 7.4. Phenidone, a lipoxygenase inhibitor, had no effect on this reaction. These findings suggest that soybean lipoxygenase catalyzes the release of inorganic phosphate from ATP primarily via hydrolysis. PMID:10874469

  17. ATP5H/KCTD2 locus is associated with Alzheimer's disease risk

    PubMed Central

    Boada, M; Antúnez, C; Ramírez-Lorca, R; DeStefano, A L; González-Pérez, A; Gayán, J; López-Arrieta, J; Ikram, M A; Hernández, I; Marín, J; Galán, J J; Bis, J C; Mauleón, A; Rosende-Roca, M; Moreno-Rey, C; Gudnasson, V; Morón, F J; Velasco, J; Carrasco, J M; Alegret, M; Espinosa, A; Vinyes, G; Lafuente, A; Vargas, L; Fitzpatrick, A L; Launer, L J; Sáez, M E; Vázquez, E; Becker, J T; López, O L; Serrano-Ríos, M; Tárraga, L; van Duijn, C M; Real, L M; Seshadri, S; Ruiz, A

    2014-01-01

    To identify loci associated with Alzheimer disease, we conducted a three-stage analysis using existing genome-wide association studies (GWAS) and genotyping in a new sample. In Stage I, all suggestive single-nucleotide polymorphisms (at P<0.001) in a previously reported GWAS of seven independent studies (8082 Alzheimer's disease (AD) cases; 12?040 controls) were selected, and in Stage II these were examined in an in silico analysis within the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium GWAS (1367 cases and 12904 controls). Six novel signals reaching P<5 × 10?6 were genotyped in an independent Stage III sample (the Fundació ACE data set) of 2200 sporadic AD patients and 2301 controls. We identified a novel association with AD in the adenosine triphosphate (ATP) synthase, H+ transporting, mitochondrial F0 (ATP5H)/Potassium channel tetramerization domain-containing protein 2 (KCTD2) locus, which reached genome-wide significance in the combined discovery and genotyping sample (rs11870474, odds ratio (OR)=1.58, P=2.6 × 10?7 in discovery and OR=1.43, P=0.004 in Fundació ACE data set; combined OR=1.53, P=4.7 × 10?9). This ATP5H/KCTD2 locus has an important function in mitochondrial energy production and neuronal hyperpolarization during cellular stress conditions, such as hypoxia or glucose deprivation. PMID:23857120

  18. Evidence for the Synthesis of ATP by an F0F1 ATP Synthase in Membrane Vesicles from Halorubrum Saccharovorum

    NASA Technical Reports Server (NTRS)

    Faguy, David; Lawson, Darion; Hochstein, Lawrence I.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Vesicles prepared in a buffer containing ADP, Mg(2+) and Pi synthesized ATP at an initial rate of 2 nmols/min/mg protein after acidification of the bulk medium (pH 8 (right arrow) 4). The intravesicular ATP concentration reached a steady state after about 30 seconds and slowly declined thereafter. ATP synthesis was inhibited by low concentrations of dicyclohexylcarbodiimide and m-chlorophenylhydrazone indicating that synthesis took place in response to the proton gradient. NEM and PCMS, which inhibit vacuolar ATPases and the vacuolar-like ATPases of extreme halophiles, did not affect ATP synthesis, and, in fact, produced higher steady state levels of ATP. This suggested that two ATPase activities were present, one which catalyzed ATP synthesis and one that caused its hydrolysis. Azide, a specific inhibitor of F0F1 ATP Synthases, inhibited halobacterial ATP synthesis. The distribution of acridine orange as imposed by a delta pH demonstrated that azide inhibition was not due to the collapse of the proton gradient due to azide acting as a protonophore. Such an effect was observed, but only at azide concentrations higher than those that inhibited ATP synthesis. These results confirm the earler observations with cells of H. saccharovorum and other extreme halophiles that ATP synthesis is inconsistent with the operation of a vacuolar-like ATPase. Therefore, the observation that a vacuolar-like enzyme is responsible for ATP synthesis (and which serves as the basis for imputing ATP synthesis to the vacuolar-like ATPases of the extreme halophiles, and the Archaea in general) should be taken with some degree of caution.

  19. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1992-01-01

    Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.

  20. : ATP Photosynthetic vesicles for light-driven bioprocesses Kiyotaka Y. Hara, Rie Suzuki, Toshiharu Suzuki, Masasuke Yoshida, Kuniki

    E-print Network

    Huang, Ching-Tsan

    : ATP Photosynthetic vesicles for light-driven bioprocesses Kiyotaka Y. Hara, Rie Suzuki-Chung Shen R99B22019 Chii-Shen Yang, PhD April 11, 2011 The 6th Classroom e.coli ---- deltarhodopsin ATP synthase ---- TF0F1-ATP synthaseATP ATP-hydrolyzing hexokinase (glucose) ATP ATP Keywordsdeltarhodopsin, TF

  1. ATP technology, a tool for monitoring microbes in cooling systems

    SciTech Connect

    Czechowski, M.H.

    1996-11-01

    Rapid and accurate measurement of microbes is important for controlling the formation of troublesome microbial slimes in cooling water systems. One method for accomplishing this involves the measurement of Adenosine Triphosphate (ATP), a compound used to store and transfer energy in microbial cells. Cellular ATP is determined by chemically rupturing cells, which releases ATP that reacts with a luciferase reagent (the firefly enzyme). This reaction produces light which can be detected by a sensitive luminometer/photometer. The amount of light produced is proportional to the amount of ATP in the cell. A quantitative indication of biological activity is obtained in minutes, compared to traditional plating methods which often require days of incubation. The use of ATP for microbial detection has been available for many years; however, industrial usage was limited because the ATP procedure was neither easy to perform nor was it cost effective. Recently, advances in instrument technology, extractant chemistry and enzyme stability have made ATP detection more practical and less expensive. ATP technology can be used for determining microbial content in cooling water systems, predicting biocide effectiveness, and monitoring efficacy of biocides in cooling systems. A good correlation (0.85) was found between microbial ATP values and bacterial Colony Forming Units (CFU) in cooling waters. ATP technology was used to determine the effectiveness of different concentrations of a biocide in a test system within 1 hour after biocide addition. Test results accurately predicted the biocide efficacy in the cooling tower. Effectiveness of other biocides in cooling systems were monitored with results being obtained within minutes after sampling. These findings indicate the potential for ATP technology to be an effective tool in monitoring microbes in cooling water systems.

  2. ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment

    PubMed Central

    Bianchi, G; Vuerich, M; Pellegatti, P; Marimpietri, D; Emionite, L; Marigo, I; Bronte, V; Di Virgilio, F; Pistoia, V; Raffaghello, L

    2014-01-01

    Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b+/Gr-1+ cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1+ population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-?1 (TGF-?1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-?1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment. PMID:24651438

  3. Zeplin-Iii

    NASA Astrophysics Data System (ADS)

    Murphy, A. Stj.

    2009-09-01

    The direct detection of weakly interacting massive particles by a terrestrial device is widely recognised as a definitive proof of the cold dark matter hypothesis and a robust test of physics beyond the Standard Model. ZEPLIN-III is one of the latest generation of instruments specifically designed for this objective. This instrument has developed the two-phase liquid-gas xenon technology, and features high-field extraction, open plan geometry and low background compoments. Here we present the status of the project as of February 2008.

  4. Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5)P2

    PubMed Central

    Zakharian, Eleonora; Cao, Chike; Rohacs, Tibor

    2011-01-01

    Transient receptor potential vanilloid 6 (TRPV6) channels play an important role in Ca2+ absorption in the intestines. Both phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and cytoplasmic ATP have been proposed to be important for maintaining TRPV6 activity. To evaluate whether PtdIns(4,5)P2 and ATP affect channel activity directly or indirectly, we have used a dual approach, examining channel activity in excised patches and planar lipid bilayers. In excised inside-out patch-clamp measurements, ATP reactivated the human TRPV6 channels after current rundown only in the presence of Mg2+. The effect of MgATP was inhibited by 3 structurally different compounds that inhibit type III phosphatidylinositol 4-kinases (PI4Ks). PtdIns(4,5)P2 also activated TRPV6 in excised patches, while its precursor PtdIns(4)P had only minimal effect. These data demonstrate that MgATP provides substrate for lipid kinases, allowing the resynthesis of PtdIns(4,5)P2. To determine whether PtdIns(4,5)P2 is a direct activator of TRPV6, we purified and reconstituted the channel protein in planar lipid bilayers. The reconstituted channel showed high activity in the presence of PtdIns(4,5)P2, while PtdIns(4)P induced only minimal activity. Our data establish PtdIns(4,5)P2 as a direct activator of TRPV6 and demonstrate that intracellular ATP regulates the channel indirectly as a substrate for type III PI4Ks.—Zakharian, E., Cao, C., Rohacs, T. Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5)P2. PMID:21810903

  5. Modelling the ATP production in mitochondria

    E-print Network

    Saa, Alberto

    2012-01-01

    We revisit here the mathematical model for ATP production in mitochondria introduced recently by Bertram, Pedersen, Luciani, and Sherman (BPLS) as a simplification of the more complete but intricate Magnus and Keizer's model. We correct some inaccuracies in the BPLS original approximations and then analyze some of the dynamical properties of the model. We infer from exhaustive numerical explorations that the enhanced BPLS equations have a unique attractor fixed point for physiologically acceptable ranges of mitochondrial variables and respiration inputs. We determine, in the stationary regime, the dependence of the mitochondrial variables on the respiration inputs, namely the cytosolic concentration of calcium ${\\rm Ca}_{\\rm c}$ and the substrate fructose 1,6-bisphosphate FBP. The same effect of calcium saturation reported for the original BPLS model is observed here. We find out, however, an interesting non-stationary effect: the inertia of the model tends to increase considerably for high concentrations of ...

  6. Constitutive and agonist stimulated ATP secretion in leukocytes

    PubMed Central

    Campwala, Hinnah; Fountain, Samuel J.

    2013-01-01

    Release and reception of extracellular ATP by leukocytes plays a critical role in immune responses to infection, injury and cardiovascular disease. Leukocytes of both the innate, adaptive immune and central nervous system express a repertoire of cell surface receptors for ATP (P2X and P2Y receptors) and its metabolites. ATP acts as a damage-associated molecule pattern (DAMP) released by injured or dying cells. Detection of released ATP by neighboring leukocytes initiates inflammation and wound healing. However, recent evidence from our group and others suggests ATP release by leukocytes themselves serves to regulate homeostatic mechanisms and coordinate responses to external pro-inflammatory cues. Examples include the homeostatic control of intracellular calcium and regulation of migratory guidance during chemotactic response to external cues. Though there has been some progress in elucidating ATP release mechanisms of some mammalian cells types, release conduits and coupling signal transduction machinery remain larger elusive for leukocytes. Our recent studies suggest a role for secretory lysosomes in releasing ATP in monocytes. Though poorly defined, targeting ATP release mechanisms in leukocytes have great anti-inflammatory potential. PMID:23713132

  7. Extracellular ATP: a potential regulator of plant cell death.

    PubMed

    Feng, Hanqing; Guan, Dongdong; Bai, Jingyue; Sun, Kun; Jia, Lingyun

    2015-08-01

    Adenosine 5'-triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane-associated receptor proteins. It has also been reported that eATP is a signalling molecule required for the regulation of plant growth, development and responses to environmental stimuli. Recently, the first plant receptor for eATP was identified in Arabidopsis thaliana. Interestingly, some studies have shown that eATP is of particular importance in the control of plant cell death. In this review article, we summarize and discuss the theoretical and experimental advances that have been made with regard to the roles and mechanisms of eATP in plant cell death. We also make an attempt to address some speculative aspects to help develop and expand future research in this area. PMID:25395168

  8. Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions.

    PubMed

    Dutta, Amal K; Sabirov, Ravshan Z; Uramoto, Hiromi; Okada, Yasunobu

    2004-09-15

    It is known that the level of ATP in the interstitial spaces within the heart during ischaemia or hypoxia is elevated due to its release from a number of cell types, including cardiomyocytes. However, the mechanism by which ATP is released from these myocytes is not known. In this study, we examined a possible involvement of the ATP-conductive maxi-anion channel in ATP release from neonatal rat cardiomyocytes in primary culture upon ischaemic, hypoxic or hypotonic stimulation. Using a luciferin-luciferase assay, it was found that ATP was released into the bulk solution when the cells were subjected to chemical ischaemia, hypoxia or hypotonic stress. The swelling-induced ATP release was inhibited by the carboxylate- and stilbene-derivative anion channel blockers, arachidonic acid and Gd3+, but not by glibenclamide. The local concentration of ATP released near the cell surface of a single cardiomyocyte, measured by a biosensor technique, was found to exceed the micromolar level. Patch-clamp studies showed that ischaemia, hypoxia or hypotonic stimulation induced the activation of single-channel events with a large unitary conductance (approximately 390 pS). The channel was selective to anions and showed significant permeability to ATP4- (PATP/PCl approximately 0.1) and MgATP2- (PATP/PCl approximately 0.16). The channel activity exhibited pharmacological properties essentially identical to those of ATP release. These results indicate that neonatal rat cardiomyocytes respond to ischaemia, hypoxia or hypotonic stimulation with ATP release via maxi-anion channels. PMID:15272030

  9. Radioprotective effects of ATP in human blood ex vivo

    SciTech Connect

    Swennen, Els L.R. Dagnelie, Pieter C.; Van den Beucken, Twan; Bast, Aalt

    2008-03-07

    Damage to healthy tissue is a major limitation of radiotherapy treatment of cancer patients, leading to several side effects and complications. Radiation-induced release of pro-inflammatory cytokines is thought to be partially responsible for the radiation-associated complications. The aim of the present study was to investigate the protective effects of extracellular ATP on markers of oxidative stress, radiation-induced inflammation and DNA damage in irradiated blood ex vivo. ATP inhibited radiation-induced TNF-{alpha} release and increased IL-10 release. The inhibitory effect of ATP on TNF- {alpha} release was completely reversed by adenosine 5'-O-thiomonophosphate, indicating a P2Y{sub 11} mediated effect. Furthermore, ATP attenuated radiation-induced DNA damage immediate, 3 and 6 h after irradiation. Our study indicates that ATP administration alleviates radiation-toxicity to blood cells, mainly by inhibiting radiation-induced inflammation and DNA damage.

  10. Pancreatic beta-cells communicate via intermittent release of ATP.

    PubMed

    Hellman, Bo; Dansk, Heléne; Grapengiesser, Eva

    2004-05-01

    The role of external ATP for intercellular communication was studied in glucose-stimulated pancreatic beta-cells isolated from ob/ob mice. Digital image analyses with fura-2 revealed spontaneous transients of cytoplasmic Ca2+ appearing in synchrony in the absence of cell contacts. After removal of slow oscillations with methoxyverapamil, addition of ATP (0.1-100 microM) resulted in prompt firing of a transient, followed by suppression of the generation and synchronization of spontaneously occurring transients. It was possible to trigger transients during the suppressive phase by raising the concentration of ATP. The dual action of ATP was mimicked by ADP or 2-methylthio-ATP but not by AMP or UTP. The number of spontaneous transients and their synchronization were reduced in the presence of the dephosphorylating agent apyrase. Additional evidence that intermittent release of ATP participates in the generation of spontaneous Ca2+ transients was obtained from the suppression observed from use of antagonists of the purinoceptors [suramin (0.3-30 microM), pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS; 10-30 microM) and 2-deoxy-N-methyladenosine (MRS 2179; 0.3-30 microM)] or from counteracting beta-cell release of ATP by inhibiting exocytosis with 100 nM epinephrine, 100 nM somatostatin, or lowering the temperature below 30 degrees C. The data indicate that ATP has time-dependent actions (prompt stimulation followed by inhibition) on the generation of Ca2+ transients mediated by P2Y receptors. It is proposed that beta-cells both receive a neural ATP signal with coordinating effects on their Ca2+ oscillations and propagate this message to adjacent cells via intermittent release of ATP combined with gap junction coupling. PMID:14722025

  11. ATP binding to the ? subunit of thermophilic ATP synthase is crucial for efficient coupling of ATPase and H+ pump activities.

    PubMed

    Kadoya, Fumitaka; Kato, Shigeyuki; Watanabe, Kei; Kato-Yamada, Yasuyuki

    2011-07-01

    ATP binding to the ? subunit of F1-ATPase, a soluble subcomplex of TFoF1 (FoF1-ATPase synthase from the thermophilic Bacillus strain PS3), affects the regulation of F1-ATPase activity by stabilizing the compact, ATPase-active, form of the ? subunit [Kato, S., Yoshida, M. and Kato-Yamada, Y. (2007) J. Biol. Chem. 282, 37618-37623]. In the present study, we report how ATP binding to the ? subunit affects ATPase and H+ pumping activities in the holoenzyme TFoF1. Wild-type TFoF1 showed significant H+ pumping activity when ATP was used as the substrate. However, GTP, which bound poorly to the ? subunit, did not support efficient H+ pumping. Addition of small amounts of ATP to the GTP substrate restored coupling between GTPase and H+ pumping activities. Similar uncoupling was observed when TFoF1 contained an ATP-binding-deficient ? subunit, even with ATP as a substrate. Further analysis suggested that the compact conformation of the ? subunit induced by ATP binding was required to couple ATPase and H+ pumping activities in TFoF1 unless the ? subunit was in its extended-state conformation. The present study reveals a novel role of the ? subunit as an ATP-sensitive regulator of the coupling of ATPase and H+ pumping activities of TFoF1. PMID:21510843

  12. Multi-allele genotyping platform for the simultaneous detection of mutations in the Wilson disease related ATP7B gene.

    PubMed

    Amvrosiadou, Maria; Petropoulou, Margarita; Poulou, Myrto; Tzetis, Maria; Kanavakis, Emmanuel; Christopoulos, Theodore K; Ioannou, Penelope C

    2015-12-01

    Wilson's disease is an inherited disorder of copper transport in the hepatocytes with a wide range of genotype and phenotype characteristics. Mutations in the ATP7B gene are responsible for the disease. Approximately, over 500 mutations in the ATP7B gene have been described to date. We report a method for the simultaneous detection of the ten most common ATP7B gene mutations in Greek patients. The method comprises 3 simple steps: (i) multiplex PCR amplification of fragments in the ATP7B gene flanking the mutations (ii) multiplex primer extension reaction of the unpurified amplification products using allele-specific primers and (iii) visual detection of the primer extension reaction products within minutes by means of dry-reagent multi-allele dipstick assay using anti-biotin conjugated gold nanoparticles. Optimization studies on the efficiency and specificity of the PEXT reaction were performed. The method was evaluated by genotyping 46 DNA samples of known genotype and 34 blind samples. The results were fully concordant with those obtained by reference methods. The method is simple, rapid, cost-effective and it does not require specialized instrumentation or highly qualified personnel. PMID:26580967

  13. Expression of the atpE Gene Coding for the epsilon Subunit of Maize Chloroplast Coupling Factor.

    PubMed

    Shi, Jin; Wei, Jian-Mian; Shen, Yun-Gang

    1996-01-01

    The entire atpE gene of the maize chloroplast coupling factor was inserted into the polylinker region of vectors pJLA505 and pWA to form recombinant plasmids pJLA505-atpE and pWA-atpE respectively. These expression plasmids were transformed into E. coli NM522 which induced at 42 degrees. By the analysis of SDS-PAGE, the expressed product of interest was observed to account fore more than 3o% of total E. coliproteins. The identification of the expressed product demonstrated that its immunological specificity was well retained. The antiserum cross-reacted with the expressed epsilon protein and CF(1)-epsilon protein of spinach and produced precipitin lines on Ouchterlony immunodiffusion test. The expressed product aggregated insolubly as the inclusion body and was purified to over 80% purity. The purified product had the same function as that of the native epsilon subunit. PMID:12237708

  14. 77 FR 39626 - Further Definition of “Swap Dealer,” “Security-Based Swap Dealer,” “Major Swap Participant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ...in the third column, correct paragraph (hhh)(6)(iii)(B)(2) to read as follows: Sec. 1.3 Definitions. * * * * * (hhh) * * * (6) * * * (iii) * * * (B...the amount calculated under paragraph (hhh)(6)(iii)(B)(1) of this...

  15. Dimers of mitochondrial ATP synthase form the permeability transition pore.

    PubMed

    Giorgio, Valentina; von Stockum, Sophia; Antoniel, Manuela; Fabbro, Astrid; Fogolari, Federico; Forte, Michael; Glick, Gary D; Petronilli, Valeria; Zoratti, Mario; Szabó, Ildikó; Lippe, Giovanna; Bernardi, Paolo

    2013-04-01

    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalk of the FOF1 ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca(2+) like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca(2+). Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca(2+), addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (?-imino ATP, a nonhydrolyzable ATP analog) and Mg(2+)/ADP. These results indicate that the PTP forms from dimers of the ATP synthase. PMID:23530243

  16. Modeling K,ATP-Dependent Excitability in Pancreatic Islets

    PubMed Central

    Silva, Jonathan R.; Cooper, Paige; Nichols, Colin G.

    2014-01-01

    In pancreatic ?-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic ?-cell excitability reproduces the ?-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca2+ channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of ?-cell excitability and suggests future experiments that will lead to improved characterization of ?-cell excitability and the control of insulin secretion. PMID:25418087

  17. Modeling the ATP production in mitochondria.

    PubMed

    Saa, Alberto; Siqueira, Kellen M

    2013-09-01

    We revisit here the mathematical model for ATP production in mitochondria introduced recently by Bertram, Pedersen, Luciani, and Sherman (BPLS) as a simplification of the more complete but intricate Magnus and Keizer's model. We identify some inaccuracies in the BPLS original approximations for two flux rates, namely the adenine nucleotide translocator rate JANT and the calcium uniporter rate Juni. We introduce new approximations for such flux rates and then analyze some of the dynamical properties of the model. We infer, from exhaustive numerical explorations, that the enhanced BPLS equations have a unique attractor fixed point for physiologically acceptable ranges of mitochondrial variables and respiration inputs, as one would indeed expect from homeostasis. We determine, in the stationary regime, the dependence of the mitochondrial variables on the respiration inputs, namely the cytosolic concentration of calcium Cac and the substrate fructose 1,6-bisphosphate FBP. The same dynamical effects of calcium and FBP saturations reported for the original BPLS model are observed here. We find out, however, a novel nonstationary effect, which could be, in principle, physiologically interesting: some response times of the model tend to increase considerably for high concentrations of calcium and/or FBP. In particular, the larger the concentrations of Cac and/or FBP, the larger the necessary time to attain homeostasis. PMID:23760661

  18. The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells.

    PubMed Central

    Yegutkin, Gennady G; Henttinen, Tiina; Samburski, Sergei S; Spychala, Jozef; Jalkanen, Sirpa

    2002-01-01

    Extracellular purines are important signalling molecules in the vasculature that are regulated by a network of cell surface ectoenzymes. By using human endothelial cells and normal and leukaemic lymphocytes as enzyme sources, we identified the following purine-converting ectoenzymes: (1) ecto-nucleotidases, NTP diphosphohydrolase/CD39 (EC 3.6.1.5) and ecto-5'-nucleotidase/CD73 (EC 3.1.3.5); (2) ecto-nucleotide kinases, adenylate kinase (EC 2.7.4.3) and nucleoside diphosphate kinase (EC 2.7.4.6); (3) ecto-adenosine deaminase (EC 3.5.4.4). Evidence for this was obtained by using enzyme assays with (3)H-labelled nucleotides and adenosine as substrates, direct evaluation of gamma-phosphate transfer from [gamma-(32)P]ATP to AMP/NDP, and bioluminescent measurement of extracellular ATP synthesis. In addition, incorporation of radioactivity into an approx. 20 kDa surface protein was observed following incubation of Namalwa B cells with [gamma-(32)P]ATP. Thus two opposite, ATP-generating and ATP-consuming, pathways coexist on the cell surface, where basal ATP release, re-synthesis of high-energy phosphoryls, and selective ecto-protein phosphorylation are counteracted by stepwise nucleotide breakdown with subsequent adenosine inactivation. The comparative measurements of enzymic activities indicated the predominance of the nucleotide-inactivating pathway via ecto-nucleotidase reactions on the endothelial cells. The lymphocytes are characterized by counteracting ATP-regenerating/adenosine-eliminating phenotypes, thus allowing them to avoid the lymphotoxic effects of adenosine and maintain surrounding ATP at a steady-state level. These results are in agreement with divergent effects of ATP and adenosine on endothelial function and haemostasis, and provide a novel regulatory mechanism of local agonist availability for nucleotide- or nucleoside-selective receptors within the vasculature. PMID:12099890

  19. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  20. Astrocytes Protect Neurons against Methylmercury via ATP/P2Y1 Receptor-Mediated Pathways in Astrocytes

    PubMed Central

    Shibata, Keisuke; Imura, Yoshio; Morizawa, Yosuke; Gachet, Christian; Koizumi, Schuichi

    2013-01-01

    Methylmercury (MeHg) is a well known environmental pollutant that induces serious neuronal damage. Although MeHg readily crosses the blood-brain barrier, and should affect both neurons and glial cells, how it affects glia or neuron-to-glia interactions has received only limited attention. Here, we report that MeHg triggers ATP/P2Y1 receptor signals in astrocytes, thereby protecting neurons against MeHg via interleukin-6 (IL-6)-mediated pathways. MeHg increased several mRNAs in astrocytes, among which IL-6 was the highest. For this, ATP/P2Y1 receptor-mediated mechanisms were required because the IL-6 production was (i) inhibited by a P2Y1 receptor antagonist, MRS2179, (ii) abolished in astrocytes obtained from P2Y1 receptor-knockout mice, and (iii) mimicked by exogenously applied ATP. In addition, (iv) MeHg released ATP by exocytosis from astrocytes. As for the intracellular mechanisms responsible for IL-6 production, p38 MAP kinase was involved. MeHg-treated astrocyte-conditioned medium (ACM) showed neuro-protective effects against MeHg, which was blocked by anti-IL-6 antibody and was mimicked by the application of recombinant IL-6. As for the mechanism of neuro-protection by IL-6, an adenosine A1 receptor-mediated pathway in neurons seems to be involved. Taken together, when astrocytes sense MeHg, they release ATP that autostimulates P2Y1 receptors to upregulate IL-6, thereby leading to A1 receptor-mediated neuro-protection against MeHg. PMID:23469098

  1. Hypoxia Stimulates Vesicular ATP Release From Rat Osteoblasts

    E-print Network

    Burnstock, Geoffrey

    to a range of adenine and uridine-containing nucleotides including adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine triphosphate (UTP), and uridine diphosphate (UDP). In recent years, it has become

  2. Distinct neurological disorders with ATP1A3 mutations

    PubMed Central

    Heinzen, Erin L.; Arzimanoglou, Alexis; Brashear, Allison; Clapcote, Steven J.; Gurrieri, Fiorella; Goldstein, David B.; Jóhannesson, Sigurður H.; Mikati, Mohamad A.; Neville, Brian; Nicole, Sophie; Ozelius, Laurie J.; Poulsen, Hanne; Schyns, Tsveta; Sweadner, Kathleen J.; van den Maagdenberg, Arn; Vilsen, Bente

    2014-01-01

    Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the ?3 subunit of Na+/K+-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in vitro and animal model systems, and the role of Na+/K+-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases. PMID:24739246

  3. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  4. Reaction dynamics of ATP hydrolysis catalyzed by P-glycoprotein.

    PubMed

    Scian, Michele; Acchione, Mauro; Li, Mavis; Atkins, William M

    2014-02-18

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug-drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With ?(18)O4-labeled ATP, no positional isotope exchange is detectable at the bridging ?-phosphorus-O-?-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three (18)O/two (18)O/one (18)O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO4(2-) (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the ?-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  5. ATP-dependent degradation of ubiquitin-protein conjugates.

    PubMed Central

    Hershko, A; Leshinsky, E; Ganoth, D; Heller, H

    1984-01-01

    Previous studies have indicated that the ATP-requiring conjugation of ubiquitin with proteins plays a role in the energy-dependent degradation of intracellular proteins. To examine whether such conjugates are indeed intermediates in protein breakdown, conjugates of 125I-labeled lysozyme with ubiquitin were isolated and incubated with a fraction of reticulocyte extract that lacks the enzymes that carry out ubiquitin-protein conjugation. ATP markedly stimulated degradation of the lysozyme moiety of ubiquitin conjugates to products soluble in trichloroacetic acid. By contrast, free 125I-labeled lysozyme was not degraded under these conditions, unless ubiquitin and the three enzymes required for ubiquitin conjugation were supplemented. Mg2+ was absolutely required for conjugate breakdown. Of various nucleotides, only CTP replaced ATP. Nonhydrolyzable analogs of ATP were not effective. In the absence of ATP, free lysozyme is released from ubiquitin-lysozyme conjugates by isopeptidases present in the extract. Thus, ATP is involved in both the formation and the breakdown of ubiquitin-protein conjugates. Images PMID:6324208

  6. Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes Nikolay Buzhynskyy,* Pierre Sens,y

    E-print Network

    Sens, Pierre

    Rows of ATP Synthase Dimers in Native Mitochondrial Inner Membranes Nikolay Buzhynskyy,* Pierre Marseille, France ABSTRACT The ATP synthase is a nanometric rotary machine that uses a transmembrane electrochemical gradient to form ATP. The structures of most components of the ATP synthase are known, andtheir

  7. The CADE14 ATP System Competition Dep't of Computer Science, James Cook University

    E-print Network

    Sutcliffe, Geoff

    The CADE­14 ATP System Competition Dep't of Computer Science, James Cook University Technical of the CADE­14 ATP System Competition (CASC­14). 1 Introduction The CADE­14 ATP System Competition (CASC­14, Australia. CASC­14 was the second CADE ATP system competition, following the successful competition at CADE

  8. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation

    E-print Network

    Economou, Tassos

    A molecular switch in SecA protein couples ATP hydrolysis to protein translocation SpyridoulaA dimers. NBD1 is suffi- cient for single rounds of SecA ATP hydrolysis. Multi- ple ATP turnovers at NBD1. This intramolecular regulator of ATP hydrolysis (IRA) mediates N-/C-domain binding and acts as a molecular switch

  9. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...and Clauses 52.234-1 Industrial Resources Developed Under...insert the following clause: Industrial Resources Developed Under...Definitions. Title III industrial resource means materials, services,...

  10. Molecular mechanisms of ATP secretion during immunogenic cell death.

    PubMed

    Martins, I; Wang, Y; Michaud, M; Ma, Y; Sukkurwala, A Q; Shen, S; Kepp, O; Métivier, D; Galluzzi, L; Perfettini, J-L; Zitvogel, L; Kroemer, G

    2014-01-01

    The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy. PMID:23852373

  11. Molecular mechanisms of ATP secretion during immunogenic cell death

    PubMed Central

    Martins, I; Wang, Y; Michaud, M; Ma, Y; Sukkurwala, A Q; Shen, S; Kepp, O; Métivier, D; Galluzzi, L; Perfettini, J-L; Zitvogel, L; Kroemer, G

    2014-01-01

    The immunogenic demise of cancer cells can be induced by various chemotherapeutics, such as anthracyclines and oxaliplatin, and provokes an immune response against tumor-associated antigens. Thus, immunogenic cell death (ICD)-inducing antineoplastic agents stimulate a tumor-specific immune response that determines the long-term success of therapy. The release of ATP from dying cells constitutes one of the three major hallmarks of ICD and occurs independently of the two others, namely, the pre-apoptotic exposure of calreticulin on the cell surface and the postmortem release of high-mobility group box 1 (HMBG1) into the extracellular space. Pre-mortem autophagy is known to be required for the ICD-associated secretion of ATP, implying that autophagy-deficient cancer cells fail to elicit therapy-relevant immune responses in vivo. However, the precise molecular mechanisms whereby ATP is actively secreted in the course of ICD remain elusive. Using a combination of pharmacological screens, silencing experiments and techniques to monitor the subcellular localization of ATP, we show here that, in response to ICD inducers, ATP redistributes from lysosomes to autolysosomes and is secreted by a mechanism that requires the lysosomal protein LAMP1, which translocates to the plasma membrane in a strictly caspase-dependent manner. The secretion of ATP additionally involves the caspase-dependent activation of Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)-mediated, myosin II-dependent cellular blebbing, as well as the opening of pannexin 1 (PANX1) channels, which is also triggered by caspases. Of note, although autophagy and LAMP1 fail to influence PANX1 channel opening, PANX1 is required for the ICD-associated translocation of LAMP1 to the plasma membrane. Altogether, these findings suggest that caspase- and PANX1-dependent lysosomal exocytosis has an essential role in ATP release as triggered by immunogenic chemotherapy. PMID:23852373

  12. ATP-synthase of Rhodobacter capsulatus: coupling of proton ow through FH to reactions in FI under the ATP synthesis and slip conditions

    E-print Network

    Steinhoff, Heinz-Jürgen

    ATP-synthase of Rhodobacter capsulatus: coupling of proton £ow through FH to reactions in FI under the ATP synthesis and slip conditions Boris A. FenioukY , Dmitry A. CherepanovY , Wolfgang Junge , Armen Y. Proton transfer through ATP-synthase (measured by electrochromic carotenoid bandshift and by p

  13. Rotation and structure of FoF1-ATP synthase.

    PubMed

    Okuno, Daichi; Iino, Ryota; Noji, Hiroyuki

    2011-06-01

    F(o)F(1)-ATP synthase is one of the most ubiquitous enzymes; it is found widely in the biological world, including the plasma membrane of bacteria, inner membrane of mitochondria and thylakoid membrane of chloroplasts. However, this enzyme has a unique mechanism of action: it is composed of two mechanical rotary motors, each driven by ATP hydrolysis or proton flux down the membrane potential of protons. The two molecular motors interconvert the chemical energy of ATP hydrolysis and proton electrochemical potential via the mechanical rotation of the rotary shaft. This unique energy transmission mechanism is not found in other biological systems. Although there are other similar man-made systems like hydroelectric generators, F(o)F(1)-ATP synthase operates on the nanometre scale and works with extremely high efficiency. Therefore, this enzyme has attracted significant attention in a wide variety of fields from bioenergetics and biophysics to chemistry, physics and nanoscience. This review summarizes the latest findings about the two motors of F(o)F(1)-ATP synthase as well as a brief historical background. PMID:21524994

  14. Phenomenological analysis of ATP dependence of motor protein

    E-print Network

    Yunxin Zhang

    2011-08-09

    In this study, through phenomenological comparison of the velocity-force data of processive motor proteins, including conventional kinesin, cytoplasmic dynein and myosin V, we found that, the ratio between motor velocities of two different ATP concentrations is almost invariant for any substall, superstall or negative external loads. Therefore, the velocity of motor can be well approximated by a Michaelis-Menten like formula $V=\\atp k(F)L/(\\atp +K_M)$, with $L$ the step size, and $k(F)$ the external load $F$ dependent rate of one mechanochemical cycle of motor motion in saturated ATP solution. The difference of Michaelis-Menten constant $K_M$ for substall, superstall and negative external load indicates, the ATP molecule affinity of motor head for these three cases are different, though the expression of $k(F)$ as a function of $F$ might be unchanged for any external load $F$. Verifications of this Michaelis-Menten like formula has also been done by fitting to the recent experimental data.

  15. Phenomenological analysis of ATP dependence of motor protein

    E-print Network

    Zhang, Yunxin

    2011-01-01

    In this study, through phenomenological comparison of the velocity-force data of processive motor proteins, including conventional kinesin, cytoplasmic dynein and myosin V, we found that, the ratio between motor velocities of two different ATP concentrations is almost invariant for any substall, superstall or negative external loads. Therefore, the velocity of motor can be well approximated by a Michaelis-Menten like formula $V=\\atp k(F)L/(\\atp +K_M)$, with $L$ the step size, and $k(F)$ the external load $F$ dependent rate of one mechanochemical cycle of motor motion in saturated ATP solution. The difference of Michaelis-Menten constant $K_M$ for substall, superstall and negative external load indicates, the ATP molecule affinity of motor head for these three cases are different, though the expression of $k(F)$ as a function of $F$ might be unchanged for any external load $F$. Verifications of this Michaelis-Menten like formula has also been done by fitting to the recent experimental data.

  16. ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation

    PubMed Central

    Teixeira, Felipe K.; Sanchez, Carlos G.; Hurd, Thomas R.; Seifert, Jessica R. K.; Czech, Benjamin; Preall, Jonathan B.; Hannon, Gregory J.; Lehmann, Ruth

    2015-01-01

    The differentiation of stem cells is a tightly regulated process essential for animal development and tissue homeostasis. Through this process, attainment of new identity and function is achieved by marked changes in cellular properties. Intrinsic cellular mechanisms governing stem cell differentiation remain largely unknown, in part because systematic forward genetic approaches to the problem have not been widely used1,2. Analysing genes required for germline stem cell differentiation in the Drosophila ovary, we find that the mitochondrial ATP synthase plays a critical role in this process. Unexpectedly, the ATP synthesizing function of this complex was not necessary for differentiation, as knockdown of other members of the oxidative phosphorylation system did not disrupt the process. Instead, the ATP synthase acted to promote the maturation of mitochondrial cristae during differentiation through dimerization and specific upregulation of the ATP synthase complex. Taken together, our results suggest that ATP synthase-dependent crista maturation is a key developmental process required for differentiation independent of oxidative phosphorylation. PMID:25915123

  17. Mechanism of Feedback Allosteric Inhibition of ATP Phosphoribosyltransferase

    PubMed Central

    2012-01-01

    MtATP-phosphoribosyltransferase catalyzes the first and committed step in l-histidine biosynthesis in Mycobacterium tuberculosis and is therefore subjected to allosteric feedback regulation. Because of its essentiality, this enzyme is being studied as a potential target for novel anti-infectives. To understand the basis for its regulation, we characterized the allosteric inhibition using gel filtration, steady-state and pre-steady-state kinetics, and the pH dependence of inhibition and binding. Gel filtration experiments indicate that MtATP-phosphoribosyltransferase is a hexamer in solution, in the presence or absence of l-histidine. Steady-state kinetic studies demonstrate that l-histidine inhibition is uncompetitive versus ATP and noncompetitive versus PRPP. At pH values close to neutrality, a Kii value of 4 ?M was obtained for l-histidine. Pre-steady-state kinetic experiments indicate that chemistry is not rate-limiting for the overall reaction and that l-histidine inhibition is caused by trapping the enzyme in an inactive conformation. The pH dependence of binding, obtained by nuclear magnetic resonance, indicates that l-histidine binds better as the neutral ?-amino group. The pH dependence of inhibition (Kii), on the contrary, indicates that l-histidine better inhibits MtATP-phosphoribosytransferase with a neutral imidazole and an ionized ?-amino group. These results are combined into a model that accounts for the allosteric inhibition of MtATP-phosphoribosyltransferase. PMID:22989207

  18. 31 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING § 132.2 Definitions. The following...switched data networks. (r) Internet gambling business means the business of...amateur sports protection); (iii) The Gambling Devices Transportation Act (15...

  19. 31 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING § 132.2 Definitions. The following...switched data networks. (r) Internet gambling business means the business of...amateur sports protection); (iii) The Gambling Devices Transportation Act (15...

  20. 31 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING § 132.2 Definitions. The following...switched data networks. (r) Internet gambling business means the business of...amateur sports protection); (iii) The Gambling Devices Transportation Act (15...

  1. 31 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING § 132.2 Definitions. The following...switched data networks. (r) Internet gambling business means the business of...amateur sports protection); (iii) The Gambling Devices Transportation Act (15...

  2. 31 CFR 132.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...PROHIBITION ON FUNDING OF UNLAWFUL INTERNET GAMBLING § 132.2 Definitions. The following...switched data networks. (r) Internet gambling business means the business of...amateur sports protection); (iii) The Gambling Devices Transportation Act (15...

  3. 40 CFR 82.62 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Containing or Manufactured With Class II Substances § 82.62 Definitions. For purposes of this subpart: Chlorofluorocarbon means any substance listed as Class I group I or Class I group III in 40 CFR part 82, appendix A to...

  4. 40 CFR 82.62 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Containing or Manufactured With Class II Substances § 82.62 Definitions. For purposes of this subpart: Chlorofluorocarbon means any substance listed as Class I group I or Class I group III in 40 CFR part 82, appendix A to...

  5. 40 CFR 82.62 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Containing or Manufactured With Class II Substances § 82.62 Definitions. For purposes of this subpart: Chlorofluorocarbon means any substance listed as Class I group I or Class I group III in 40 CFR part 82, appendix A to...

  6. 40 CFR 82.62 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Containing or Manufactured With Class II Substances § 82.62 Definitions. For purposes of this subpart: Chlorofluorocarbon means any substance listed as Class I group I or Class I group III in 40 CFR part 82, appendix A to...

  7. 40 CFR 82.62 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Containing or Manufactured With Class II Substances § 82.62 Definitions. For purposes of this subpart: Chlorofluorocarbon means any substance listed as Class I group I or Class I group III in 40 CFR part 82, appendix A to...

  8. ATP Exhibits Antimicrobial Action by Inhibiting Bacterial Utilization of Ferric Ions

    PubMed Central

    Tatano, Yutaka; Kanehiro, Yuichi; Sano, Chiaki; Shimizu, Toshiaki; Tomioka, Haruaki

    2015-01-01

    ATP up-regulates macrophage antimycobacterial activity in a P2X7-dependent manner, but little is known about whether ATP directly exhibits antimicrobial effects against intracellular mycobacteria. In this study, we found that ATP inhibited the growth of various bacteria, including Staphylococcus, Pseudomonas, and mycobacteria, without damaging bacterial surface structures. Using gene technology, we newly established an enterobactin-deficient (entB?) mutant from ATP-resistant Klebsiella pneumoniae, and found the recovery of ATP susceptibility in the enterobactin-deleted mutant. Therefore, ATP's antibacterial activity is attributable to its iron-chelating ability. Since ATP distributed in the cytosol of macrophages at high concentrations, ATP appears to augment macrophage's antimicrobial activity by directly attacking intracytosolic and intra-autophagosomal pathogens. Furthermore, ATP exhibited combined effects with some antimicrobials against methicillin-resistant S. aureus (MRSA) and M. intracellulare, suggesting its usefulness as an adjunctive drug in the chemotherapy of certain intractable infections. PMID:25712807

  9. ATP level and caffeine efficiency on cytokinesis inhibition in plants.

    PubMed

    López-Sáez, J F; Mingo, R; González-Fernández, A

    1982-06-01

    Plant cytokinesis appears to be a topographically organized process of exocytosis. Golgi vesicles which contain cell wall precursors are translocated during telophase, by interzonal microtubules, to the equatorial region of the mitotic apparatus where they fuse with each other giving rise to the new cell wall. Caffeine inhibits cytokinesis by hindering Golgi vesicle coalescence. The present results demonstrate that treatments which increase the cellular ATP level (adenosine, cycloheximide and anisomycin) counteract caffein-induced cytokinesis inhibition in meristem cells of onion root tips (Allium cepa L.), while treatments which decrease ATP level potentiate this caffeine effect (dinitrophenol, fluoroacetate, low oxygen tensions, etc.). We postulate that caffeine, in competition with the cellular ATP level, blocks cell plate formation by inhibiting a certain ATPase activity required for membrane fusion of Golgi vesicles. PMID:7117265

  10. Processing mechanics of alternate twist ply (ATP) yarn technology

    NASA Astrophysics Data System (ADS)

    Elkhamy, Donia Said

    Ply yarns are important in many textile manufacturing processes and various applications. The primary process used for producing ply yarns is cabling. The speed of cabling is limited to about 35m/min. With the world's increasing demands of ply yarn supply, cabling is incompatible with today's demand activated manufacturing strategies. The Alternate Twist Ply (ATP) yarn technology is a relatively new process for producing ply yarns with improved productivity and flexibility. This technology involves self plying of twisted singles yarn to produce ply yarn. The ATP process can run more than ten times faster than cabling. To implement the ATP process to produce ply yarns there are major quality issues; uniform Twist Profile and yarn Twist Efficiency. The goal of this thesis is to improve these issues through process modeling based on understanding the physics and processing mechanics of the ATP yarn system. In our study we determine the main parameters that control the yarn twist profile. Process modeling of the yarn twist across different process zones was done. A computational model was designed to predict the process parameters required to achieve a square wave twist profile. Twist efficiency, a measure of yarn torsional stability and bulk, is determined by the ratio of ply yarn twist to singles yarn twist. Response Surface Methodology was used to develop the processing window that can reproduce ATP yarns with high twist efficiency. Equilibrium conditions of tensions and torques acting on the yarns at the self ply point were analyzed and determined the pathway for achieving higher twist efficiency. Mechanistic modeling relating equilibrium conditions to the twist efficiency was developed. A static tester was designed to zoom into the self ply zone of the ATP yarn. A computer controlled, prototypic ATP machine was constructed and confirmed the mechanistic model results. Optimum parameters achieving maximum twist efficiency were determined in this study. The successful results of this work have led to the filing of a US patent disclosing the method for producing ATP yarns with high yarn twist efficiency using a high convergence angle at the self ply point together with applying ply torque.

  11. Simulation research on ATP system of airborne laser communication

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongyi; Huang, Hailong

    2015-02-01

    The compound axis tracking control circuits model of the ATP system was established and simulation was run on the tracking control performance of the ATP system. It was found through simulation that with the fixed coarse tracking error, the dynamic lag error in the coarse tracking servo system could be suppressed to 120?rad and with the fixed fine tracking error, the dynamic lag error in the fine tracking servo system could be restrained to 2.73?rad, and the vibration residual could be controlled within 1.5?rad.

  12. Adenosine 5 -O-(3-thio)triphosphate (ATP S) is a substrate for the nucleotide hydrolysis and RNA unwinding activities

    E-print Network

    Herschlag, Dan

    REPORT Adenosine 5 -O-(3-thio)triphosphate (ATP S) is a substrate for the nucleotide hydrolysis Whereas ATP S is often considered a nonhydrolyzable substrate for ATPases, we present evidence that ATP. In the presence of saturating single-stranded poly(U) RNA, eIF4A hydrolyzes ATP S·Mg and ATP·Mg with similar

  13. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier.

    PubMed

    Harborne, Steven P D; Ruprecht, Jonathan J; Kunji, Edmund R S

    2015-10-01

    The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic ?-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic ?-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic ?-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic ?-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane. PMID:26164100

  14. Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier

    PubMed Central

    Harborne, Steven P.D.; Ruprecht, Jonathan J.; Kunji, Edmund R.S.

    2015-01-01

    The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF-hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region with an amphipathic ?-helix of unknown function. The mechanism by which calcium binding to the regulatory domain modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate carrier, which is dimeric. The structure showed that an amphipathic ?-helix is bound to the regulatory domain in a hydrophobic cleft of EF-hand 3/4. Detailed bioinformatics analyses of different EF-hand states indicate that upon release of calcium, EF-hands close, meaning that the regulatory domain would release the amphipathic ?-helix. We propose a mechanism for ATP-Mg/Pi carriers in which the amphipathic ?-helix becomes mobile upon release of calcium and could block the transport of substrates across the mitochondrial inner membrane. PMID:26164100

  15. The Q Motif Is Involved in DNA Binding but Not ATP Binding in ChlR1 Helicase

    PubMed Central

    Ding, Hao; Guo, Manhong; Vidhyasagar, Venkatasubramanian; Talwar, Tanu; Wu, Yuliang

    2015-01-01

    Helicases are molecular motors that couple the energy of ATP hydrolysis to the unwinding of structured DNA or RNA and chromatin remodeling. The conversion of energy derived from ATP hydrolysis into unwinding and remodeling is coordinated by seven sequence motifs (I, Ia, II, III, IV, V, and VI). The Q motif, consisting of nine amino acids (GFXXPXPIQ) with an invariant glutamine (Q) residue, has been identified in some, but not all helicases. Compared to the seven well-recognized conserved helicase motifs, the role of the Q motif is less acknowledged. Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw Breakage Syndrome, which is characterized by cellular defects in genome maintenance. To examine the roles of the Q motif in ChlR1 helicase, we performed site directed mutagenesis of glutamine to alanine at residue 23 in the Q motif of ChlR1. ChlR1 recombinant protein was overexpressed and purified from HEK293T cells. ChlR1-Q23A mutant abolished the helicase activity of ChlR1 and displayed reduced DNA binding ability. The mutant showed impaired ATPase activity but normal ATP binding. A thermal shift assay revealed that ChlR1-Q23A has a melting point value similar to ChlR1-WT. Partial proteolysis mapping demonstrated that ChlR1-WT and Q23A have a similar globular structure, although some subtle conformational differences in these two proteins are evident. Finally, we found ChlR1 exists and functions as a monomer in solution, which is different from FANCJ, in which the Q motif is involved in protein dimerization. Taken together, our results suggest that the Q motif is involved in DNA binding but not ATP binding in ChlR1 helicase. PMID:26474416

  16. A Fluorescent, Reagentless Biosensor for ATP, Based on Malonyl-Coenzyme A Synthetase

    PubMed Central

    2015-01-01

    A fluorescent reagentless biosensor for ATP has been developed, based on malonyl-coenzyme A synthetase from Rhodopseudomonas palustris as the protein scaffold and recognition element. Two 5-iodoacetamidotetramethylrhodamines were covalently bound to this protein to provide the readout. This adduct couples ATP binding to a 3.7-fold increase in fluorescence intensity with excitation at 553 nm and emission at 575 nm. It measures ATP concentrations with micromolar sensitivity and is highly selective for ATP relative to ADP. Its ability to monitor enzymatic ATP production or depletion was demonstrated in steady-state kinetic assays in which ATP is a product or substrate, respectively. PMID:26355992

  17. A Fluorescent, Reagentless Biosensor for ATP, Based on Malonyl-Coenzyme A Synthetase.

    PubMed

    Vancraenenbroeck, Renée; Webb, Martin R

    2015-11-20

    A fluorescent reagentless biosensor for ATP has been developed, based on malonyl-coenzyme A synthetase from Rhodopseudomonas palustris as the protein scaffold and recognition element. Two 5-iodoacetamidotetramethylrhodamines were covalently bound to this protein to provide the readout. This adduct couples ATP binding to a 3.7-fold increase in fluorescence intensity with excitation at 553 nm and emission at 575 nm. It measures ATP concentrations with micromolar sensitivity and is highly selective for ATP relative to ADP. Its ability to monitor enzymatic ATP production or depletion was demonstrated in steady-state kinetic assays in which ATP is a product or substrate, respectively. PMID:26355992

  18. Mechanism for reactivation of the ATP-sensitive K+ channel by MgATP complexes in guinea-pig ventricular myocytes.

    PubMed Central

    Furukawa, T; Virág, L; Furukawa, N; Sawanobori, T; Hiraoka, M

    1994-01-01

    1. A mechanism underlying reactivation of the adenosine 5'-triphosphate-sensitive K+ (K+ATP) channels by MgATP complexes after run-down was examined in guinea-pig ventricular myocytes using the patch-clamp technique with inside-out patch configuration. 2. After run-down was induced by exposure of the intracellular side of the membrane patch to Ca2+ (1 mM), channel activity was reactivated by exposure and subsequent wash-out of MgATP (2 mM). Addition of inhibitors of various serine/threonine protein kinases to the MgATP solution did not suppress reactivation of the run-down channels. 3. Non- or poorly hydrolysable ATP analogues were unable to reactivate run-down channels. 4. The degree of channel recovery was dependent upon the duration of MgATP exposure. The apparent half-activation value (K1/2) of MgATP for reactivation was decreased with increasing exposure time. 5. Various products of ATP hydrolysis were unable to reactivate run-down channels except a relatively low concentration (100 microM) of ADP exposure. 6. Other nucleotide triphosphates, in the presence of Mg2+, were unable to reactivate rundown channels. 7. Fluorescein 5-isothiocyanate (50 microM), which interacts with lysine residues of the nucleotide-binding site on various ATPases, inhibited K+ATP channel activity. After wash-out, channel activity recovered only slightly. 8. These data suggest that the hydrolysis of ATP is important for reactivation of run-down K+ATP channels but that protein phosphorylation by serine/threonine protein kinases may not be involved. Since no products of ATP hydrolysis could reproduce MgATP-induced channel reactivation and since the degree of channel recovery was dependent upon the duration of MgATP application, the hydrolysis energy appears to be utilized for channel reactivation. PMID:7990037

  19. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis.

    PubMed

    Koprivova, Anna; Giovannetti, Marco; Baraniecka, Patrycja; Lee, Bok-Rye; Grondin, Cécile; Loudet, Olivier; Kopriva, Stanislav

    2013-11-01

    Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidopsis (Arabidopsis thaliana) was underlain by the APR2 isoform of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase. To increase the knowledge of the control of this trait, we cloned a second QTL from the same analysis. Surprisingly, the gene underlying this QTL encodes the ATPS1 isoform of the enzyme ATP sulfurylase, which precedes adenosine 5'-phosphosulfate reductase in the sulfate assimilation pathway. Plants with the Bay allele of ATPS1 accumulate lower steady-state levels of ATPS1 transcript than those with the Sha allele, which leads to lower enzyme activity and, ultimately, the accumulation of sulfate. Our results show that the transcript variation is controlled in cis. Examination of ATPS1 sequences of Bay-0 and Shahdara identified two deletions in the first intron and immediately downstream the gene in Bay-0 shared with multiple other Arabidopsis accessions. The average ATPS1 transcript levels are lower in these accessions than in those without the deletions, while sulfate levels are significantly higher. Thus, sulfate content in Arabidopsis is controlled by two genes encoding subsequent enzymes in the sulfate assimilation pathway but using different mechanisms, variation in amino acid sequence and variation in expression levels. PMID:24027241

  20. CATION CHANNELS BY RECONSTITIJTION OF CF0 CF1 AND BY SUBUNIT III OF CF0

    E-print Network

    Schönknecht, Gerald

    ATP synthesis driven by an artificial pH-gradient (6). From dialysis vesicles large liposomes were formed by a dehydration/rehydration procedure (7). Subunit III of CF0 was isolated by electroelution from SDS-gels (8) and added to lipid vesicles prior to dehydration. Single bilayer inside-out patches were

  1. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics.

    PubMed

    Naito, Tomoki; Takatsu, Hiroyuki; Miyano, Rie; Takada, Naoto; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-06-12

    We showed previously that ATP11A and ATP11C have flippase activity toward aminophospholipids (phosphatidylserine (PS) and phosphatidylethanolamine (PE)) and ATP8B1 and that ATP8B2 have flippase activity toward phosphatidylcholine (PC) (Takatsu, H., Tanaka, G., Segawa, K., Suzuki, J., Nagata, S., Nakayama, K., and Shin, H. W. (2014) J. Biol. Chem. 289, 33543-33556). Here, we show that the localization of class 5 P4-ATPases to the plasma membrane (ATP10A and ATP10D) and late endosomes (ATP10B) requires an interaction with CDC50A. Moreover, exogenous expression of ATP10A, but not its ATPase-deficient mutant ATP10A(E203Q), dramatically increased PC flipping but not flipping of PS or PE. Depletion of CDC50A caused ATP10A to be retained at the endoplasmic reticulum instead of being delivered to the plasma membrane and abrogated the increased PC flipping activity observed by expression of ATP10A. These results demonstrate that ATP10A is delivered to the plasma membrane via its interaction with CDC50A and, specifically, flips PC at the plasma membrane. Importantly, expression of ATP10A, but not ATP10A(E203Q), dramatically altered the cell shape and decreased cell size. In addition, expression of ATP10A, but not ATP10A(E203Q), delayed cell adhesion and cell spreading onto the extracellular matrix. These results suggest that enhanced PC flipping activity due to exogenous ATP10A expression alters the lipid composition at the plasma membrane, which may in turn cause a delay in cell spreading and a change in cell morphology. PMID:25947375

  2. Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells

    PubMed Central

    Fliedner, Stephanie MJ; Yang, Chunzhang; Thompson, Eli; Abu-Asab, Mones; Hsu, Chang-Mei; Lampert, Gary; Eiden, Lee; Tischler, Arthur S; Wesley, Robert; Zhuang, Zhengping; Lehnert, Hendrik; Pacak, Karel

    2015-01-01

    F1FoATP synthase (ATP synthase) is a ubiquitous enzyme complex in eukaryotes. In general it is localized to the mitochondrial inner membrane and serves as the last step in the mitochondrial oxidative phosphorylation of ADP to ATP, utilizing a proton gradient across the inner mitochondrial membrane built by the complexes of the electron transfer chain. However some cell types, including tumors, carry ATP synthase on the cell surface. It was suggested that cell surface ATP synthase helps tumor cells thriving on glycolysis to survive their high acid generation. Angiostatin, aurovertin, resveratrol, and antibodies against the ? and ? subunits of ATP synthase were shown to bind and selectively inhibit cell surface ATP synthase, promoting tumor cell death. Here we show that ATP synthase ? (ATP5B) is present on the cell surface of mouse pheochromocytoma cells as well as tumor cells of human SDHB-derived paragangliomas (PGLs), while being virtually absent on chromaffin primary cells from bovine adrenal medulla by confocal microscopy. The cell surface location of ATP5B was verified in the tissue of an SDHB-derived PGL by immunoelectron microscopy. Treatment of mouse pheochromocytoma cells with resveratrol as well as ATP5B antibody led to statistically significant proliferation inhibition. Our data suggest that PGLs carry ATP synthase on their surface that promotes cell survival or proliferation. Thus, cell surface ATP synthase may present a novel therapeutic target in treating metastatic or inoperable PGLs. PMID:26101719

  3. Evidence for Extracellular ATP as a Stress Signal in a Single-Celled Organism.

    PubMed

    Sivaramakrishnan, Venketesh; Fountain, Samuel J

    2015-08-01

    ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium. Release of micromolar ATP could be detected during cell swelling and regulatory cell volume decrease (RVD) phases during hypotonic challenge. Scavenging ATP with apyrase caused profound cell swelling and loss of RVD. Apyrase-induced swelling could be rescued by 100 ?M ??-imidoATP. N-Ethylmalemide (NEM), an inhibitor of vesicular exocytosis, caused heightened cell swelling, loss of RVD, and inhibition of ATP release. Amoebas with impaired contractile vacuole (CV) fusion (drainin knockout [KO] cells) displayed increased swelling but intact ATP release. One hundred micromolar Gd(3+) caused cell swelling while blocking any recovery by ??-imidoATP. ATP release was 4-fold higher in the presence of Gd(3+). Cell swelling was associated with an increase in intracellular nitric oxide (NO), with NO-scavenging agents causing cell swelling. Swelling-induced NO production was inhibited by both apyrase and Gd(3+), while NO donors rescued apyrase- and Gd(3+)-induced swelling. These data suggest extracellular ATP released during cell swelling is an important signal that elicits RVD. Though the cell surface receptor for ATP in Dictyostelium remains elusive, we suggest ATP operates through a Gd(3+)-sensitive receptor that is coupled with intracellular NO production. PMID:26048010

  4. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport.

    PubMed

    Tang, Wenqiang; Brady, Shari R; Sun, Yu; Muday, Gloria K; Roux, Stanley J

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed. PMID:12529523

  5. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  6. ATP Binding Turns Plant Cryptochrome Into an Efficient Natural Photoswitch

    PubMed Central

    Müller, Pavel; Bouly, Jean-Pierre; Hitomi, Kenichi; Balland, Véronique; Getzoff, Elizabeth D.; Ritz, Thorsten; Brettel, Klaus

    2014-01-01

    Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH· radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD·?, from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396?. Its negative charge could trigger conformational changes necessary for signal transduction. PMID:24898692

  7. ATP binding turns plant cryptochrome into an efficient natural photoswitch.

    PubMed

    Müller, Pavel; Bouly, Jean-Pierre; Hitomi, Kenichi; Balland, Véronique; Getzoff, Elizabeth D; Ritz, Thorsten; Brettel, Klaus

    2014-01-01

    Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH(·) radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD·(-), from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396(-). Its negative charge could trigger conformational changes necessary for signal transduction. PMID:24898692

  8. Teacher Development Program for ATP 2000. Project Report.

    ERIC Educational Resources Information Center

    Sutphin, Dean; And Others

    Agri Tech Prep 2000 (ATP 2000) is a 4-year tech prep program linking high school and postsecondary curricula designed to prepare New York students for careers in agriculture or acceptance into a college program in agriculture. Because teacher development was designated an integral project component for fiscal year 1991-1992, a weeklong teacher…

  9. Rapid and precise determination of ATP using a modified photometer

    USGS Publications Warehouse

    Shultz, David J.; Stephens, Doyle W.

    1980-01-01

    An inexpensive delay timer was designed to modify a commercially available ATP photometer which allows a disposable tip pipette to be used for injecting either enzyme or sample into the reaction cuvette. The disposable tip pipette is as precise and accurate as a fixed-needle syringe but eliminates the problem of sample contamination and decreases analytical time. (USGS)

  10. ATP Interior Noise Technology and Flight Demonstration Program

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Powell, Clemans A.

    1988-01-01

    The paper provides an overview of the ATP (Advanced Turboprop Program) acoustics program with emphasis on the NASA technology program and the recent NASA/Industry demonstration programs aimed at understanding and controlling passenger cabin noise. Technology developments in propeller (source) noise, cabin noise transmission, and subjective acoustics are described. Finally, an overview of the industry demonstrator programs is presented.

  11. Interaction between ATP, metal ions, glycine, and several minerals

    NASA Technical Reports Server (NTRS)

    Rishpon, J.; Ohara, P. J.; Lawless, J. G.; Lahav, N.

    1982-01-01

    Interactions between ATP, glycine and montmorillonite and kaolinite clay minerals in the presence of various metal cations are investigated. The adsorption of adenine nucleotides on clays and Al(OH)3 was measured as a function of pH, and glycine condensation was followed in the presence of ATP, ZnCl2, MgCl2 and either kaolinite or montmorillonite. The amounts of ATP and ADP adsorbed are found to decrease with increasing Ph, and to be considerably enhanced in experiments with Mg(2+)- and Zn(2+)-montmorillonite with respect to Na(+)-montmorillonite. The effects of divalent cations are less marked in kaolinite. Results for Al(OH)3 show the importance of adsorption at clay platelet edges at high pH. The decomposition of ATP during drying at high temperature is observed to be inhibited by small amounts of clay, vacuum, or Mg(2+) or Zn(2+) ions, and to be accompanied by peptide formation in the presence of glycine. Results suggest the importance of Zn(2+) and Mg(2+) in chemical evolution.

  12. Teacher Development for ATP 2000. Project Report 1993-1994.

    ERIC Educational Resources Information Center

    Newsom-Stewart, Mhora; Sutphin, Dean

    Agri Tech Prep 2000 (ATP 2000) is a 4-year tech prep program intended to link high school and postsecondary curricula preparing New York students for careers in agriculture or acceptance into a college program in agriculture. Because teacher development was designated an integral project component for fiscal year 1992-93, a weeklong teacher…

  13. Cyclodextrin-based microcapsules as bioreactors for ATP biosynthesis.

    PubMed

    Li, Jian-Hu; Wang, Yi-Fu; Ha, Wei; Liu, Yan; Ding, Li-Sheng; Li, Bang-Jing; Zhang, Sheng

    2013-09-01

    A biomimetic energy converter was fabricated via the assembly of CF0F1-ATPase on lipid-coated hollow nanocapsules composed of ?-cyclodextrins/chitosan-graft-poly(ethylene glycol) methacrylate. Upon entrapped GOD into these capsules, the addition of glucose could trigger proton-motive force and then drive the rotation of ATPase to synthesize ATP. PMID:23962233

  14. ATP-induced noncooperative thermal unfolding of hen lysozyme

    SciTech Connect

    Liu, Honglin; Yin, Peidong; He, Shengnan; Sun, Zhihu; Tao, Ye; Huang, Yan; Zhuang, Hao; Zhang, Guobin; Wei, Shiqiang

    2010-07-02

    To understand the role of ATP underlying the enhanced amyloidosis of hen egg white lysozyme (HEWL), the synchrotron radiation circular dichroism, combined with tryptophan fluorescence, dynamic light-scattering, and differential scanning calorimetry, is used to examine the alterations of the conformation and thermal unfolding pathway of the HEWL in the presence of ATP, Mg{sup 2+}-ATP, ADP, AMP, etc. It is revealed that the binding of ATP to HEWL through strong electrostatic interaction changes the secondary structures of HEWL and makes the exposed residue W62 move into hydrophobic environments. This alteration of W62 decreases the {beta}-domain stability of HEWL, induces a noncooperative unfolding of the secondary structures, and produces a partially unfolded intermediate. This intermediate containing relatively rich {alpha}-helix and less {beta}-sheet structures has a great tendency to aggregate. The results imply that the ease of aggregating of HEWL is related to the extent of denaturation of the amyloidogenic region, rather than the electrostatic neutralizing effect or monomeric {beta}-sheet enriched intermediate.

  15. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  16. Footprint traversal by ATP-dependent chromatin remodeler motor

    E-print Network

    Ashok Garai; Jesrael Mani; Debashish Chowdhury

    2012-03-14

    ATP-dependent chromatin remodeling enzymes (CRE) are bio-molecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, adenosine triphosphate (ATP). CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp $\\sim$ 50 nm of a double stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called "footprint". We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechano-chemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP-dependence of the mean traversal time can be tested by carrying out {\\it in-vitro} experiments on mono-nucleosomes.

  17. RESEARCH PAPER Role of ATP and related purines in inhibitory

    E-print Network

    Burnstock, Geoffrey

    bladder neck Medardo Hernández1 , Gillian E Knight2 , Scott SP Wildman3 and Geoffrey Burnstock2 1) and the purinoceptor(s) involved in nerve-mediated relaxations of the pig urinary bladder neck. Experimental approach relaxations. At basal tension, EFS- and ATP-induced contractions were resistant to desensitization or blockade

  18. Chemistry & Biology ATP-Independent Control of Autotransporter

    E-print Network

    Clark, Patricia L.

    a novel type of ATP-independent, folding- driven transporter. INTRODUCTION Gram-negative bacterial infections lead to diverse human diseases, including bacterial meningitis, dysentery, whooping cough, peptic; also known as Type Va) secretion. The AT secretion mechanism was originally named to reflect

  19. ATP-association to intrabacterial nanotransportation system in Vibrio cholerae.

    PubMed

    Matsuzaki, Yuji; Wu, Hong; Nakano, Takashi; Nakahari, Takashi; Sano, Kouichi

    2015-12-01

    Vibrio cholerae colonizes the lumen of the proximal small intestine, which has an alkaline environment, and secretes cholera toxin (CT) through a type II secretion machinery. V. cholerae possesses the intrabacterial nanotransportation system (ibNoTS) for transporting CT from the inner portion toward the peripheral portion of the cytoplasm, and this system is controlled by extrabacterial pH. Association of ATP with ibNoTS has not yet been examined in detail. In this study, we demonstrated by immunoelectron microscopy that ibNoTS of V. cholerae under the extrabacterial alkaline condition was inhibited by ATP inhibitors, 2,4-dinitrophenol (DNP), a protonophore, or 8-amino-adenosine which produces inactive form of ATP. The inhibition of CT transport can be reversed by neutralization of DNP. Those inhibitions were associated with decrease of CT secretion by which ibNoTS followed. We propose that ATP closely associates with V. cholerae ibNoTS for transporting CT. PMID:25986680

  20. ATP Binding Turns Plant Cryptochrome Into an Efficient Natural Photoswitch

    NASA Astrophysics Data System (ADS)

    Müller, Pavel; Bouly, Jean-Pierre; Hitomi, Kenichi; Balland, Véronique; Getzoff, Elizabeth D.; Ritz, Thorsten; Brettel, Klaus

    2014-06-01

    Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH. radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD.-, from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396-. Its negative charge could trigger conformational changes necessary for signal transduction.

  1. Treatment of heterotopic ossification through remote ATP hydrolysis

    PubMed Central

    Peterson, Jonathan R.; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E.; Agarwal, Shailesh; Buchman, Steven R.; Cederna, Paul S.; Xi, Chuanwu; Morris, Michael D.; Herndon, David N.; Xiao, Wenzhong; Tompkins, Ronald G.; Krebsbach, Paul H.; Wang, Stewart C.; Levi, Benjamin

    2015-01-01

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein–mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3?,5?-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury–exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. PMID:25253675

  2. Treatment of heterotopic ossification through remote ATP hydrolysis.

    PubMed

    Peterson, Jonathan R; De La Rosa, Sara; Eboda, Oluwatobi; Cilwa, Katherine E; Agarwal, Shailesh; Buchman, Steven R; Cederna, Paul S; Xi, Chuanwu; Morris, Michael D; Herndon, David N; Xiao, Wenzhong; Tompkins, Ronald G; Krebsbach, Paul H; Wang, Stewart C; Levi, Benjamin

    2014-09-24

    Heterotopic ossification (HO) is the pathologic development of ectopic bone in soft tissues because of a local or systemic inflammatory insult, such as burn injury or trauma. In HO, mesenchymal stem cells (MSCs) are inappropriately activated to undergo osteogenic differentiation. Through the correlation of in vitro assays and in vivo studies (dorsal scald burn with Achilles tenotomy), we have shown that burn injury enhances the osteogenic potential of MSCs and causes ectopic endochondral heterotopic bone formation and functional contractures through bone morphogenetic protein-mediated canonical SMAD signaling. We further demonstrated a prevention strategy for HO through adenosine triphosphate (ATP) hydrolysis at the burn site using apyrase. Burn site apyrase treatment decreased ATP, increased adenosine 3',5'-monophosphate, and decreased phosphorylation of SMAD1/5/8 in MSCs in vitro. This ATP hydrolysis also decreased HO formation and mitigated functional impairment in vivo. Similarly, selective inhibition of SMAD1/5/8 phosphorylation with LDN-193189 decreased HO formation and increased range of motion at the injury site in our burn model in vivo. Our results suggest that burn injury-exacerbated HO formation can be treated through therapeutics that target burn site ATP hydrolysis and modulation of SMAD1/5/8 phosphorylation. PMID:25253675

  3. ATP hydrolysis stimulates large length fluctuations in single actin filaments

    E-print Network

    Evgeny B. Stukalin; Anatoly B. Kolomeisky

    2005-07-27

    Polymerization dynamics of single actin filaments is investigated theoretically using a stochastic model that takes into account the hydrolysis of ATP-actin subunits, the geometry of actin filament tips, the lateral interactions between the monomers as well as the processes at both ends of the polymer. Exact analytical expressions are obtained for a mean growth velocity and for dispersion in length fluctuations. It is found that the ATP hydrolysis has a strong effect on dynamic properties of single actin filaments. At high concentrations of free actin monomers the mean size of unhydrolyzed ATP-cap is very large, and the dynamics is governed by association/dissociation of ATP-actin subunits. However, at low concentrations the size of the cap becomes finite, and the dissociation of ADP-actin subunits makes a significant contribution to overall dynamics. Actin filament length fluctuations reach the maximum at the boundary between two dynamic regimes, and this boundary is always larger than the critical concentration. Random and vectorial mechanisms of hydrolysis are compared, and it is found that they predict qualitatively similar dynamic properties. The possibility of attachment and detachment of oligomers is also discussed. Our theoretical approach is successfully applied to analyze the latest experiments on the growth and length fluctuations of individual actin filaments.

  4. 5 CFR 630.201 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... project and paid on an hourly rate. (b) In subparts B through G of this part: Accrued leave means the... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.201 Definitions. (a) In section 6301(2)(iii)...

  5. 5 CFR 630.201 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... project and paid on an hourly rate. (b) In subparts B through G of this part: Accrued leave means the... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.201 Definitions. (a) In section 6301(2)(iii)...

  6. 32 CFR 562.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2009-07-01 true Definitions. 562.3 Section 562...TRAINING CORPS § 562.3 Definitions. The following terms...attended between Military Science (MS)-III and MS-IV...consisting of 4 years of military science (MS-I, -II,...

  7. 32 CFR 562.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Definitions. 562.3 Section 562...TRAINING CORPS § 562.3 Definitions. The following terms...attended between Military Science (MS)-III and MS-IV...consisting of 4 years of military science (MS-I, -II,...

  8. 32 CFR 562.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2009-07-01 true Definitions. 562.3 Section 562...TRAINING CORPS § 562.3 Definitions. The following terms...attended between Military Science (MS)-III and MS-IV...consisting of 4 years of military science (MS-I, -II,...

  9. 32 CFR 562.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Definitions. 562.3 Section 562...TRAINING CORPS § 562.3 Definitions. The following terms...attended between Military Science (MS)-III and MS-IV...consisting of 4 years of military science (MS-I, -II,...

  10. 32 CFR 562.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 2010-07-01 true Definitions. 562.3 Section 562...TRAINING CORPS § 562.3 Definitions. The following terms...attended between Military Science (MS)-III and MS-IV...consisting of 4 years of military science (MS-I, -II,...

  11. 47 CFR 301.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Definitions. 301.2 Section 301.2 Telecommunication NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION, DEPARTMENT OF COMMERCE DIGITAL-TO-ANALOG CONVERTER BOX COUPON PROGRAM § 301.2 Definitions. Act means Title III of the Deficit Reduction Act of 2005, Pub. L. No. 109-171, 120 Stat. 4,...

  12. Loss of the gene for the alpha subunit of ATP synthase (ATP5A1) from the W chromosome in the African grey parrot (Psittacus erithacus).

    PubMed

    de Kloet, S R

    2001-08-01

    This study describes the results of an analysis using Southern blotting, the polymerase chain reaction, and sequencing which shows that the African grey parrot (Psittacus erithacus) lacks the W-chromosomal gene for the alpha subunit of mitochondrial ATP synthase (ATP5A1W). Additional evidence shows that in other psittacines a fragment of the ATP5A1W gene contains five times as many nonsynonymous nucleotide replacements as the homologous fragment of the Z gene. Therefore, whereas in these other psittacines the corresponding ATP5A1Z protein fragment is highly conserved and varies by only a few, moderately conservative amino acid substitutions, the homologous ATP5A1W fragments contain a considerable number of, sometimes highly nonconservative, amino acid replacements. In one of these species, the ringneck parakeet (Psittacula krameri), the ATP5A1W gene is present in an inactive form because of the presence of a nonsense codon. Other changes, possibly leading to an inactive ATP5A1W gene product, involve the substitution of arginine residues by cysteine in the ATP5A1W protein of the mitred conure (Aratinga mitrata) and the blue and gold macaw (Ara ararauna). The data suggest also that although the divergence of the psittacine ATP5A1W and ATP5A1Z genes preceded the origin of the psittacidae, this divergence occurred independently of a similar process in the myna (Gracula religiosa), the outgroup used in this study. PMID:11479684

  13. Mechanisms by which reactions catalyzed by chloroplast coupling factor 1 are inhibited: ATP synthesis and ATP-H2O oxygen exchange

    SciTech Connect

    Spencer, J.G.; Wimmer, M.J.

    1985-07-16

    The ATP-H2O back-exchange reaction catalyzed by membrane-bound chloroplast coupling factor 1 (CF1) in the light is known to be extensive; each reacting ATP molecule nearly equilibrates its gamma-PO2 oxygens with H2O before it dissociates from the enzyme. Pi, ASi, ADP, and GDP, alternate substrates of photophosphorylation, each inhibit the exchange reaction. At all concentrations of these substrate/inhibitor molecules tested, the high extent of exchange per molecule of ATP that reacts remains the same, while the number of ATP molecules experiencing exchange decreases. Thus, these inhibitors appear to act in a competitive-type manner, decreasing ATP turnover, as opposed to modulating the rate constants responsible for the partitioning of E X ATP during the exchange reaction. This is consistent with the identity of CF1 catalytic sites for ATP-H2O back-exchange and ATP synthesis. The extent of ATP-H2O forward oxygen exchange, which occurs during net ATP synthesis prior to product dissociation, is unaffected by uncouplers, whether catalyzed by native CF1 (ATPase latent) or the dithiothreitol/light-activated ATPase form.

  14. Regulation of Extracellular ATP in Human Erythrocytes Infected with Plasmodium falciparum

    PubMed Central

    Alvarez, Cora Lilia; Schachter, Julieta; de Sá Pinheiro, Ana Acacia; Silva, Leandro de Souza; Verstraeten, Sandra Viviana; Persechini, Pedro Muanis; Schwarzbaum, Pablo Julio

    2014-01-01

    In human erythrocytes (h-RBCs) various stimuli induce increases in [cAMP] that trigger ATP release. The resulting pattern of extracellular ATP accumulation (ATPe kinetics) depends on both ATP release and ATPe degradation by ectoATPase activity. In this study we evaluated ATPe kinetics from primary cultures of h-RBCs infected with P. falciparum at various stages of infection (ring, trophozoite and schizont stages). A “3V” mixture containing isoproterenol (?-adrenergic agonist), forskolin (adenylate kinase activator) and papaverine (phosphodiesterase inhibitor) was used to induce cAMP-dependent ATP release. ATPe kinetics of r-RBCs (ring-infected RBCs), t-RBCs (trophozoite-infected RBCs) and s-RBCs (schizont-infected RBCs) showed [ATPe] to peak acutely to a maximum value followed by a slower time dependent decrease. In all intraerythrocytic stages, values of ?ATP1 (difference between [ATPe] measured 1 min post-stimulus and basal [ATPe]) increased nonlinearly with parasitemia (from 2 to 12.5%). Under 3V exposure, t-RBCs at parasitemia 94% (t94-RBCs) showed 3.8-fold higher ?ATP1 values than in h-RBCs, indicative of upregulated ATP release. Pre-exposure to either 100 µM carbenoxolone, 100 nM mefloquine or 100 µM NPPB reduced ?ATP1 to 83–87% for h-RBCs and 63–74% for t94-RBCs. EctoATPase activity, assayed at both low nM concentrations (300–900 nM) and 500 µM exogenous ATPe concentrations increased approx. 400-fold in t94-RBCs, as compared to h-RBCs, while intracellular ATP concentrations of t94-RBCs were 65% that of h-RBCs. In t94-RBCs, production of nitric oxide (NO) was approx. 7-fold higher than in h-RBCs, and was partially inhibited by L-NAME pre-treatment. In media with L-NAME, ?ATP1 values were 2.7-times higher in h-RBCs and 4.2-times higher in t94-RBCs, than without L-NAME. Results suggest that P. falciparum infection of h-RBCs strongly activates ATP release via Pannexin 1 in these cells. Several processes partially counteracted ATPe accumulation: an upregulated ATPe degradation, an enhanced NO production, and a decreased intracellular ATP concentration. PMID:24858837

  15. NIF Title III engineering plan

    SciTech Connect

    Deis, G

    1998-06-01

    The purpose of this document is to define the work that must be accomplished by the NIF Project during Title III Engineering. This definition is intended to be sufficiently detailed to provide a framework for yearly planning, to clearly identify the specific deliverables so that the Project teams can focus on them, and to provide a common set of objectives and processes across the Project. This plan has been preceded by similar documents for Title I and Title II design and complements the Site Management Plan, the Project Control Manual, the Quality Assurance Program Plan, the RM Parsons NIF Title III Configuration Control Plan, the Integrated Project Schedule, the Preliminary Safety Analysis Report, the Configuration Management Plan, and the Transition Plan.

  16. Reactive oxygen species affect ATP hydrolysis by targeting a highly conserved amino acid cluster in the thylakoid ATP synthase ? subunit.

    PubMed

    Buchert, Felix; Schober, Yvonne; Römpp, Andreas; Richter, Mark L; Forreiter, Christoph

    2012-11-01

    The vast majority of organisms produce ATP by a membrane-bound rotating protein complex, termed F-ATP synthase. In chloroplasts, the corresponding enzyme generates ATP by using a transmembrane proton gradient generated during photosynthesis, a process releasing high amounts of molecular oxygen as a natural byproduct. Due to its chemical properties, oxygen can be reduced incompletely which generates several highly reactive oxygen species (ROS) that are able to oxidize a broad range of biomolecules. In extension to previous studies it could be shown that ROS dramatically decreased ATP synthesis in situ and affected the CF1 portion in vitro. A conserved cluster of three methionines and a cysteine on the chloroplast ? subunit could be identified by mass spectrometry to be oxidized by ROS. Analysis of amino acid substitutions in a hybrid F1 assembly system indicated that these residues were exclusive catalytic targets for hydrogen peroxide and singlet oxygen, although it could be deduced that additional unknown amino acid targets might be involved in the latter reaction. The cluster was tightly integrated in catalytic turnover since mutants varied in MgATPase rates, stimulation by sulfite and chloroplast-specific ? subunit redox-modulation. Some partial disruptions of the cluster by mutagenesis were dominant over others regarding their effects on catalysis and response to ROS. PMID:22727877

  17. Synthesis and in vitro microbial evaluation of La(III), Ce(III), Sm(III) and Y(III) metal complexes of vitamin B6 drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-06-01

    Metal complexes of pyridoxine mono hydrochloride (vitamin B6) are prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes are investigated. Some physical properties, conductivity, analytical data and the composition of the four pyridoxine complexes are discussed. The elemental analysis shows that the formed complexes of La(III), Ce(III), Sm(III) and Y(III) with pyridoxine are of 1:2 (metal:PN) molar ratio. All the synthesized complexes are brown in color and possess high melting points. These complexes are partially soluble in hot methanol, dimethylsulfoxide and dimethylformamide and insoluble in water and some other organic solvents. Elemental analysis data, spectroscopic (IR, UV-vis. and florescence), effective magnetic moment in Bohr magnetons and the proton NMR suggest the structures. However, definite particle size is determined by invoking the X-ray powder diffraction and scanning electron microscopy data. The results obtained suggested that pyridoxine reacted with metal ions as a bidentate ligand through its phenolate oxygen and the oxygen of the adjacent group at the 4?-position. The molar conductance measurements proved that the pyridoxine complexes are electrolytic in nature. The kinetic and thermodynamic parameters such as: Ea, ?H*, ?S* and ?G* were estimated from the DTG curves. The antibacterial evaluation of the pyridoxine and their complexes were also performed against some gram positive, negative bacteria as well as fungi.

  18. ATP increases within the lumen of the endoplasmic reticulum upon intracellular Ca2+ release.

    PubMed

    Vishnu, Neelanjan; Jadoon Khan, Muhammad; Karsten, Felix; Groschner, Lukas N; Waldeck-Weiermair, Markus; Rost, Rene; Hallström, Seth; Imamura, Hiromi; Graier, Wolfgang F; Malli, Roland

    2014-02-01

    Multiple functions of the endoplasmic reticulum (ER) essentially depend on ATP within this organelle. However, little is known about ER ATP dynamics and the regulation of ER ATP import. Here we describe real-time recordings of ER ATP fluxes in single cells using an ER-targeted, genetically encoded ATP sensor. In vitro experiments prove that the ATP sensor is both Ca(2+) and redox insensitive, which makes it possible to monitor Ca(2+)-coupled ER ATP dynamics specifically. The approach uncovers a cell type-specific regulation of ER ATP homeostasis in different cell types. Moreover, we show that intracellular Ca(2+) release is coupled to an increase of ATP within the ER. The Ca(2+)-coupled ER ATP increase is independent of the mode of Ca(2+) mobilization and controlled by the rate of ATP biosynthesis. Furthermore, the energy stress sensor, AMP-activated protein kinase, is essential for the ATP increase that occurs in response to Ca(2+) depletion of the organelle. Our data highlight a novel Ca(2+)-controlled process that supplies the ER with additional energy upon cell stimulation. PMID:24307679

  19. Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride

    E-print Network

    Zulfiqar Ahmad

    Inhibition of the ATPase activity of Escherichia coli ATP synthase by magnesium fluoride Zulfiqar activity of Escherichia coli ATP synthase by magnesium fluoride (MgFx) was studied. Wild-type F1-ATPase synthesis mechanism; Magnesium fluoride; ATPase inhibition; Transition state analog 1. Introduction ATP

  20. Beagle as a HOL4 external ATP method Thibault Gauthier1

    E-print Network

    Kaliszyk, Cezary

    Beagle as a HOL4 external ATP method Thibault Gauthier1 , Cezary Kaliszyk1 , Chantal Keller2 for using Beagle as an external ATP for discharging HOL4 goals. We implement a translation of the higher derived by the ATP in HOL4. Our translation combines the characteristics of existing successful

  1. Kinetic Characterization of Myosin Head Fragments with Long-Lived Myosin,ATP States

    E-print Network

    Manstein, Dietmar J.

    Kinetic Characterization of Myosin Head Fragments with Long-Lived Myosin,ATP States A. L. Friedman to characterize the ATPase cycles of the mutant proteins. While the mutations cause some changes in mantATP [2(3)-O-(N-methylanthraniloyl)-ATP] and mantADP binding, the most dramatic effect is on the hydrolysis

  2. ADENOSINE TRIPHOSPHATE (ATP) AND DEOXYRIBONUCLEIC ACID (DNA) CONTENT OF MARINE MICROALGAE AND BACTERIA WITH

    E-print Network

    Qiu, Bo

    ADENOSINE TRIPHOSPHATE (ATP) AND DEOXYRIBONUCLEIC ACID (DNA) CONTENT OF MARINE MICROALGAE the relationship between DNA and ATP content of marine bacteria and microalgae. This relationship was used. Laboratory-derived DNA:ATP ratios ranged from 8.5 to 33 (wt:wt) for cultures of marine microalgae, and from

  3. Unique Functional Properties of a Sensory Neuronal P2X ATP-Gated Channel from Zebrafish

    E-print Network

    Séguéla, Philippe

    Unique Functional Properties of a Sensory Neuronal P2X ATP-Gated Channel from Zebrafish E´ric Boue the structural and functional characterization of an ionotropic P2X ATP receptor from the lower vertebrate in homomeric form, ATP-gated zP2X3 chan- nels evoked a unique nonselective cationic current with faster rise

  4. Mechanisms underlying postjunctional synergism between responses of the vas deferens to noradrenaline and ATP

    E-print Network

    Burnstock, Geoffrey

    to noradrenaline and ATP Neil C.E. Smith, Geoffrey Burnstock* Autonomic Neuroscience Institute, Royal Free of postjunctional synergism between adenosine 5V-triphosphate (ATP) and noradrenaline were studied in isolated guinea pig vas deferens. Whereas prior exposure to ATP had no significant effect on noradrenaline

  5. Thermal activation and ATP dependence of the cytoskeleton remodeling dynamics R. Sunyer,1,2

    E-print Network

    Ritort, Felix

    Thermal activation and ATP dependence of the cytoskeleton remodeling dynamics R. Sunyer,1,2 F that uses hydrolyzable sources of free energy such as adenosine triphosphate ATP to remodel its internal measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first

  6. Structural Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption

    E-print Network

    Lee, Jooyoung

    Structural Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption of Intersubunit-like structures. Surprisingly, one of the two bound C-WHDs is forced to detach upon ATP-medi- ated engagement on the linker restrict cell growth. Thus ATP-dependent transient disruption of the MukB-MukF interaction, which

  7. Brief Communication High temperature pulses decrease indirect chilling injury and elevate ATP levels

    E-print Network

    Lee Jr., Richard E.

    Brief Communication High temperature pulses decrease indirect chilling injury and elevate ATP: Received 20 December 2009 Accepted 8 March 2010 Available online 15 March 2010 Keywords: ATP Energy supply by determining survival rates and ATP levels for flies that had undergone continuous long-term exposure at 0 °C

  8. Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled

    E-print Network

    Lang, Matthew

    Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine Marie ATP-powered proteases for protein- quality control and regulation. In the ClpXP protease, Clp with ClpXP. INTRODUCTION In all organisms, AAA+ family molecular machines harness the energy of ATP binding

  9. Direct Photoaffinity Labeling of Kir6.2 P]ATP-[ ]4-Azidoanilide

    E-print Network

    Tucker, Stephen J.

    Direct Photoaffinity Labeling of Kir6.2 by [ -32 P]ATP-[ ]4-Azidoanilide Kouichi Tanabe,* Stephen J Received April 28, 2000 ATP-sensitive potassium (KATP) channels are under complex regulation by intracellular ATP and ADP. The potentiatory effect of MgADP is conferred by the sul- fonylurea receptor subunit

  10. ATP-c-S shifts the operating point of outer hair cell transduction towards scala tympani

    E-print Network

    Salt, Alec N.

    ATP-c-S shifts the operating point of outer hair cell transduction towards scala tympani Richard P November 2004; accepted 16 February 2005 Available online 22 March 2005 Abstract ATP receptor agonists (DPOAE). Some of the effects on DPOAEs are consistent with the hypothesis that ATP affects mechano

  11. 15 CFR 295.11 - Technical and educational services for ATP recipients.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ATP recipients. 295.11 Section 295.11 Commerce and Foreign Trade Regulations Relating to Commerce and... PROGRAMS ADVANCED TECHNOLOGY PROGRAM General § 295.11 Technical and educational services for ATP recipients... National Institute of Standards and Technology. (c) From time to time, ATP may conduct public workshops...

  12. 7 CFR 3300.88 - Fees for U.S. ATP certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Fees for U.S. ATP certificates. 3300.88 Section 3300... EQUIPMENT TO BE USED FOR SUCH CARRIAGE (ATP); INSPECTION, TESTING, AND CERTIFICATION OF SPECIAL EQUIPMENT Other Provisions § 3300.88 Fees for U.S. ATP certificates. The fee schedule for issuance of U.S....

  13. Quantification of the electrochemical proton gradient and activation of ATP synthase in leaves

    E-print Network

    Quantification of the electrochemical proton gradient and activation of ATP synthase in leaves Available online 12 April 2008 Keywords: ATP synthase Electrochemical proton gradient Membrane potential We of the ATP synthase (Junge, W., Rumberg, B. and Schröder, H., Eur. J. Biochem. 14 (1970) 575

  14. 7 CFR 3300.88 - Fees for U.S. ATP certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Fees for U.S. ATP certificates. 3300.88 Section 3300... EQUIPMENT TO BE USED FOR SUCH CARRIAGE (ATP); INSPECTION, TESTING, AND CERTIFICATION OF SPECIAL EQUIPMENT Other Provisions § 3300.88 Fees for U.S. ATP certificates. The fee schedule for issuance of U.S....

  15. Glial Cell Inhibition of Neurons by Release of ATP Eric A. Newman

    E-print Network

    Newman, Eric A.

    Glial Cell Inhibition of Neurons by Release of ATP Eric A. Newman Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455 ATP is released by neurons and functions as a neurotransmitter and modulator in the CNS. Here I show that ATP released from glial cells can also serve

  16. Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles

    E-print Network

    Pennsylvania, University of

    Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles RUTH Matthews. Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. J a pool of readily releasable synaptic vesicles that undergo rapid calcium-dependent release. ATP

  17. 7 CFR 3300.88 - Fees for U.S. ATP certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Fees for U.S. ATP certificates. 3300.88 Section 3300... EQUIPMENT TO BE USED FOR SUCH CARRIAGE (ATP); INSPECTION, TESTING, AND CERTIFICATION OF SPECIAL EQUIPMENT Other Provisions § 3300.88 Fees for U.S. ATP certificates. The fee schedule for issuance of U.S....

  18. 7 CFR 3300.88 - Fees for U.S. ATP certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Fees for U.S. ATP certificates. 3300.88 Section 3300... EQUIPMENT TO BE USED FOR SUCH CARRIAGE (ATP); INSPECTION, TESTING, AND CERTIFICATION OF SPECIAL EQUIPMENT Other Provisions § 3300.88 Fees for U.S. ATP certificates. The fee schedule for issuance of U.S....

  19. Journal of Theoretical Biology 243 (2006) 575586 A simplified model for mitochondrial ATP production

    E-print Network

    2006-01-01

    Journal of Theoretical Biology 243 (2006) 575­586 A simplified model for mitochondrial ATP of the adenosine triphosphate (ATP) synthesized during glucose metabolism is produced in the mitochondria through this gradient through the ATP synthase complex provide the energy to phosphor- ylate adenosine diphosphate (ADP

  20. Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus)

    E-print Network

    Montgomerie, Bob

    Motility, ATP levels and metabolic enzyme activity of sperm from bluegill (Lepomis macrochirus studied the relations among sperm motility, ATP levels, and metabolic enzyme activity in parental and sneaker bluegill. In both reproductive tactics, sperm swimming speed and ATP levels declined in parallel

  1. 7 CFR 3300.88 - Fees for U.S. ATP certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Fees for U.S. ATP certificates. 3300.88 Section 3300... EQUIPMENT TO BE USED FOR SUCH CARRIAGE (ATP); INSPECTION, TESTING, AND CERTIFICATION OF SPECIAL EQUIPMENT Other Provisions § 3300.88 Fees for U.S. ATP certificates. The fee schedule for issuance of U.S....

  2. UNCORRECTEDPROOF 2 Met23Lys mutation in subunit gamma of FOF1-ATP synthase from

    E-print Network

    Junge, Wolfgang

    UNCORRECTEDPROOF 1 2 Met23Lys mutation in subunit gamma of FOF1-ATP synthase from 3 Rhodobacter capsulatus impairs the activation of ATP 4 hydrolysis by protonmotive force 5 Boris A. Feniouk a,, Alberto 18 July 2007; accepted 19 July 2007 11 Abstract 12 H+ -FOF1-ATP synthase couples proton flow through

  3. 15 CFR 295.11 - Technical and educational services for ATP recipients.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ATP recipients. 295.11 Section 295.11 Commerce and Foreign Trade Regulations Relating to Commerce and... PROGRAMS ADVANCED TECHNOLOGY PROGRAM General § 295.11 Technical and educational services for ATP recipients... National Institute of Standards and Technology. (c) From time to time, ATP may conduct public workshops...

  4. HOL(y)Hammer: Online ATP Service for HOL Light Cezary Kaliszyk and Josef Urban

    E-print Network

    Kaliszyk, Cezary

    HOL(y)Hammer: Online ATP Service for HOL Light Cezary Kaliszyk and Josef Urban Abstract. HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance

  5. FEBS Letters 358 (1995) 14~144 FEBS 15027 ATP synthase: activating versus catalytic proton transfer

    E-print Network

    Junge, Wolfgang

    1995-01-01

    - 49069 Osnabriick, Germany Received 25 November 1994 Abstract ATP synthase (F-ATPase) of chloroplasts-ATPases of chloroplasts, mitochondria and eubacteria synthesize ATP at the expense of protonmotive force. Proton- motive force not only drives ATP synthesis but also activates these enzymes [1-5], In the chloroplast enzyme

  6. Biophysical Journal Volume 85 August 2003 695706 695 The Unbinding of ATP from F1-ATPase

    E-print Network

    Oster, George

    , chloroplasts and bacteria. ATP synthase consists of two motors: a membrane-spanning portion, F0, and a solubleBiophysical Journal Volume 85 August 2003 695­706 695 The Unbinding of ATP from F1-ATPase Iris molecular dynamics, we study the unbinding of ATP in F1-ATPase from its tight binding state to its weak

  7. Nonequilibrium Self-Assembly of a Filament Coupled to ATP/GTP Padinhateeri Ranjith,

    E-print Network

    Lacoste, David

    Nonequilibrium Self-Assembly of a Filament Coupled to ATP/GTP Hydrolysis Padinhateeri Ranjith filaments or microtubules taking into account insertion, removal, and ATP/GTP hydrolysis of subunits needed for the ATP/GTP cap to disappear as well as the time needed for the filament to reach a length

  8. ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune Sensor,

    E-print Network

    Myong, Sua

    ATP Hydrolysis Enhances RNA Recognition and Antiviral Signal Transduction by the Innate Immune receptor required for innate antiviral signaling. Results: LGP2 uses ATP hydrolysis to diversify RNA infec- tion and initiate antiviral signal transduction cascades. The ATP hydrolysis activity of LGP2

  9. Polarized ATP distribution in urothelial mucosal and serosal space is differentially regulated by stretch and ectonucleotidases.

    PubMed

    Yu, Weiqun

    2015-11-15

    Purinergic signaling is a major pathway in regulating bladder function, and mechanical force stimulates urothelial ATP release, which plays an important role in bladder mechanotransduction. Although urothelial ATP release was first reported almost 20 years ago, the way in which release is regulated by mechanical force, and the presence of ATP-converting enzymes in regulating the availability of released ATP is still not well understood. Using a set of custom-designed Ussing chambers with the ability to manipulate mechanical forces applied on the urothelial tissue, we have demonstrated that it is stretch and not hydrostatic pressure that induces urothelial ATP release. The experiments reveal that urothelial ATP release is tightly controlled by stretch speed, magnitude, and direction. We have further shown that stretch-induced urothelial ATP release is insensitive to temperature (4°C). Interestingly, stretch-induced ATP release shows polarized distribution, with the ATP concentration in mucosal chamber (nanomolar level) about 10 times higher than the ATP concentration in serosal chamber (subnanomolar level). Furthermore, we have consistently observed differential ATP lifetime kinetics in the mucosal and serosal chambers, which is consistent with our immunofluorescent localization data, showing that ATP-converting enzymes ENTPD3 and alkaline phosphatase are expressed on urothelial basal surface, but not on the apical membrane. In summary, our data indicate that urothelial ATP release is finely regulated by stretch speed, magnitude, and direction, and extracellular ATP signaling is likely to be differentially regulated by ectonucleotidase, which results in temporally and spatially distinct ATP kinetics in response to mechanical stretch. PMID:26336160

  10. TCDD decreases ATP levels and increases reactive oxygen production through changes in mitochondrial F F{sub 1}-ATP synthase and ubiquinone

    SciTech Connect

    Shertzer, Howard G. . E-mail: shertzhg@ucmail.uc.edu; Genter, Mary Beth; Shen, Dongxiao; Nebert, Daniel W.; Chen, Ying; Dalton, Timothy P.

    2006-12-15

    Mitochondria generate ATP and participate in signal transduction and cellular pathology and/or cell death. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) decreases hepatic ATP levels and generates mitochondrial oxidative DNA damage, which is exacerbated by increasing mitochondrial glutathione redox state and by inner membrane hyperpolarization. This study identifies mitochondrial targets of TCDD that initiate and sustain reactive oxygen production and decreased ATP levels. One week after treating mice with TCDD, liver ubiquinone (Q) levels were significantly decreased, while rates of succinoxidase and Q-cytochrome c oxidoreductase activities were increased. However, the expected increase in Q reduction state following TCDD treatment did not occur; instead, Q was more oxidized. These results could be explained by an ATP synthase defect, a premise supported by the unusual finding that TCDD lowers ATP/O ratios without concomitant changes in respiratory control ratios. Such results suggest either a futile cycle in ATP synthesis, or hydrolysis of newly synthesized ATP prior to release. The TCDD-mediated decrease in Q, concomitant with an increase in respiration, increases complex 3 redox cycling. This acts in concert with glutathione to increase membrane potential and reactive oxygen production. The proposed defect in ATP synthase explains both the greater respiratory rates and the lower tissue ATP levels.

  11. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.

    2011-03-01

    ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, ?a( HO)n2+ ( n ? 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.

  12. Students' Interdisciplinary Reasoning about "High-Energy Bonds" and ATP

    E-print Network

    Dreyfus, Benjamin W; Sawtelle, Vashti; Svoboda, Julia; Turpen, Chandra; Redish, Edward F

    2012-01-01

    Students' sometimes contradictory ideas about ATP (adenosine triphosphate) and the nature of chemical bonds have been studied in the biology and chemistry education literatures, but these topics are rarely part of the introductory physics curriculum. We present qualitative data from an introductory physics course for undergraduate biology majors that seeks to build greater interdisciplinary coherence and therefore includes these topics. In these data, students grapple with the apparent contradiction between the energy released when the phosphate bond in ATP is broken and the idea that an energy input is required to break a bond. We see that students' perceptions of how each scientific discipline bounds the system of interest can influence how they justify their reasoning about a topic that crosses disciplines. This has consequences for a vision of interdisciplinary education that respects disciplinary perspectives while bringing them into interaction in ways that demonstrate consistency amongst the perspectiv...

  13. ATP binding to a multisubunit enzyme: statistical thermodynamics analysis

    E-print Network

    Zhang, Yunxin

    2012-01-01

    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical thermodynamics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provided a new way to understand biophysical processes by statistical thermodynamics analysis.

  14. ATP binding to a multisubunit enzyme: statistical thermodynamics analysis

    E-print Network

    Yunxin Zhang

    2012-03-22

    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical thermodynamics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provided a new way to understand biophysical processes by statistical thermodynamics analysis.

  15. Hydrolysis of nucleoside triphosphates other than ATP by nitrogenase.

    PubMed

    Ryle, M J; Seefeldt, L C

    2000-03-01

    The hydrolysis of ATP to ADP and P(i) is an integral part of all substrate reduction reactions catalyzed by nitrogenase. In this work, evidence is presented that nitrogenases isolated from Azotobacter vinelandii and Clostridium pasteurianum can hydrolyze MgGTP, MgITP, and MgUTP to their respective nucleoside diphosphates at rates comparable to those measured for MgATP hydrolysis. The reactions were dependent on the presence of both the iron (Fe) protein and the molybdenum-iron (MoFe) protein. The oxidation state of nitrogenase was found to greatly influence the nucleotide hydrolysis rates. MgATP hydrolysis rates were 20 times higher under dithionite reducing conditions (approximately 4,000 nmol of MgADP formed per min/mg of Fe protein) as compared with indigo disulfonate oxidizing conditions (200 nmol of MgADP formed per min/mg of Fe protein). In contrast, MgGTP, MgITP, and MgUTP hydrolysis rates were significantly higher under oxidizing conditions (1,400-2,000 nmol of MgNDP formed per min/mg of Fe protein) as compared with reducing conditions (80-230 nmol of MgNDP formed per min/mg of Fe protein). The K(m) values for MgATP, MgGTP, MgUTP, and MgITP hydrolysis were found to be similar (330-540 microM) for both the reduced and oxidized states of nitrogenase. Incubation of Fe and MoFe proteins with each of the MgNTP molecules and AlF(4)(-) resulted in the formation of non-dissociating protein-protein complexes, presumably with trapped AlF(4)(-) x MgNDP. The implications of these results in understanding how nucleotide hydrolysis is coupled to substrate reduction in nitrogenase are discussed. PMID:10692415

  16. ATP as a mediator of macula densa cell signalling.

    PubMed

    Bell, P Darwin; Komlosi, Peter; Zhang, Zhi-Ren

    2009-12-01

    Within each nephro-vascular unit, the tubule returns to the vicinity of its own glomerulus. At this site, there are specialised tubular cells, the macula densa cells, which sense changes in tubular fluid composition and transmit information to the glomerular arterioles resulting in alterations in glomerular filtration rate and blood flow. Work over the last few years has characterised the mechanisms that lead to the detection of changes in luminal sodium chloride and osmolality by the macula densa cells. These cells are true "sensor cells" since intracellular ion concentrations and membrane potential reflect the level of luminal sodium chloride concentration. An unresolved question has been the nature of the signalling molecule(s) released by the macula densa cells. Currently, there is evidence that macula densa cells produce nitric oxide via neuronal nitric oxide synthase (nNOS) and prostaglandin E(2) (PGE(2)) through cyclooxygenase 2 (COX 2)-microsomal prostaglandin E synthase (mPGES). However, both of these signalling molecules play a role in modulating or regulating the macula-tubuloglomerular feedback system. Direct macula densa signalling appears to involve the release of ATP across the basolateral membrane through a maxi-anion channel in response to an increase in luminal sodium chloride concentration. ATP that is released by macula densa cells may directly activate P2 receptors on adjacent mesangial cells and afferent arteriolar smooth muscle cells, or the ATP may be converted to adenosine. However, the critical step in signalling would appear to be the regulated release of ATP across the basolateral membrane of macula densa cells. PMID:19330465

  17. Protons, the thylakoid membrane, and the chloroplast ATP synthase

    SciTech Connect

    Junge, W. )

    1989-01-01

    According to the chemiosmotic theory, proton pumps and ATP synthases are coupled by lateral proton flow through aqueous phases. Three long-standing challenges to this concept were examined in the light of experiments carried out with thylakoids: (1) Nearest neighbor interaction between pumps and ATP synthases. Considering the large distances between photosystem II and CFoCF1, in stacked thylakoids this is a priori absent. (2) Enhanced proton diffusion along the surface of the membrane. This could not be substantiated for the outer side of the thylakoid membrane. Even for the interface between pure lipid and water, two laboratories have reported the absence of enhanced diffusion. (3) Localized proton ducts in the membrane. Intramembrane domains that can transiently trap protons do exist in thylakoid membranes, but because of their limited storage capacity for protons, they probably do not matter for photophosphorylation under continuous light. Seemingly in favor of localized proton ducts is the failure of a supposedly permeant buffer to enhance the onset lag of photophosphorylation. However, it was found that failure of some buffers and the ability of others in this respect were correlated with their failure/ability to quench pH transients in the thylakoid lumen, as predicted by the chemiosmotic theory. It was shown that the chemiosmotic concept is a fair approximation, even for narrow aqueous phases, as in stacked thylakoids. These are approximately isopotential, and protons are taken in by the ATP synthase straight from the lumen. The molecular mechanism by which F0F1 ATPases couple proton flow to ATP synthesis is still unknown. The threefold structural symmetry of the headpiece that, probably, finds a corollary in the channel portion of these enzymes appeals to the common wisdom that structural symmetry causes functional symmetry.

  18. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals. PMID:26592037

  19. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    PubMed Central

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-01-01

    The Vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here, we present a 3.6 Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high affinity and five low affinity binding sites in vitro, consistent with conformational asymmetry induced upon ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring-structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly. PMID:26632262

  20. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly.

    PubMed

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G; Weissenhorn, Winfried; Renesto, Patricia

    2015-01-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly. PMID:26632262

  1. Light Effect on Water Viscosity: Implication for ATP Biosynthesis

    PubMed Central

    Sommer, Andrei P.; Haddad, Mike Kh.; Fecht, Hans-Jörg

    2015-01-01

    Previous work assumed that ATP synthase, the smallest known rotary motor in nature, operates at 100% efficiency. Calculations which arrive to this result assume that the water viscosity inside mitochondria is constant and corresponds to that of bulk water. In our opinion this assumption is not satisfactory for two reasons: (1) There is evidence that the water in mitochondria prevails to 100% as interfacial water. (2) Laboratory experiments which explore the properties of interfacial water suggest viscosities which exceed those of bulk water, specifically at hydrophilic interfaces. Here, we wish to suggest a physicochemical mechanism which assumes intramitochondrial water viscosity gradients and consistently explains two cellular responses: The decrease and increase in ATP synthesis in response to reactive oxygen species and non-destructive levels of near-infrared (NIR) laser light, respectively. The mechanism is derived from the results of a new experimental method, which combines the technique of nanoindentation with the modulation of interfacial water layers by laser irradiation. Results, including the elucidation of the principle of light-induced ATP production, are expected to have broad implications in all fields of medicine. PMID:26154113

  2. Light Effect on Water Viscosity: Implication for ATP Biosynthesis

    NASA Astrophysics Data System (ADS)

    Sommer, Andrei P.; Haddad, Mike Kh.; Fecht, Hans-Jörg

    2015-07-01

    Previous work assumed that ATP synthase, the smallest known rotary motor in nature, operates at 100% efficiency. Calculations which arrive to this result assume that the water viscosity inside mitochondria is constant and corresponds to that of bulk water. In our opinion this assumption is not satisfactory for two reasons: (1) There is evidence that the water in mitochondria prevails to 100% as interfacial water. (2) Laboratory experiments which explore the properties of interfacial water suggest viscosities which exceed those of bulk water, specifically at hydrophilic interfaces. Here, we wish to suggest a physicochemical mechanism which assumes intramitochondrial water viscosity gradients and consistently explains two cellular responses: The decrease and increase in ATP synthesis in response to reactive oxygen species and non-destructive levels of near-infrared (NIR) laser light, respectively. The mechanism is derived from the results of a new experimental method, which combines the technique of nanoindentation with the modulation of interfacial water layers by laser irradiation. Results, including the elucidation of the principle of light-induced ATP production, are expected to have broad implications in all fields of medicine.

  3. Overview of photo-induced therapy for ATP production

    NASA Astrophysics Data System (ADS)

    Abdalla, Mohamed; Nagy, A.; Ye, W. N.; Mussivand, T.

    2012-10-01

    The purpose of this report is to provide a review of the effects of low-power photo-induced therapy using lasers of different device parameters such as intensity, wavelength, lasing mechanism (i.e., pulsed or continuous) on the production of Adenosine triphosphate (ATP) in mammalian cells. This is a very important research topic as it is suggested in literature that there might be a relationship between the ATP levels and specific diseases. It has been shown that the ATP production was enhanced at wavelengths ranging between 600 nm and 1000 nm (also known as the optical window), in particular at 600nm, 632.8nm, 635nm, 650nm, and 904nm. However, certain experiments showed that the effectiveness of the photo-induced therapy was also dependent on the dosage and the duration of the supplied light. We present the research conclusions drawn from the experiments reported within the last decade, and provide a list of potential medical treatment(s) for patients using visible and near infrared (NIR) light.

  4. Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein

    PubMed Central

    O’Mara, Megan L.; Mark, Alan E.

    2014-01-01

    ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations. PMID:24632881

  5. Selective and ATP-driven transport of ions across supported membranes into nanoporous carriers using gramicidin A and ATP synthase.

    PubMed

    Oliynyk, Vitaliy; Mille, Christian; Ng, Jovice B S; von Ballmoos, Christoph; Corkery, Robert W; Bergström, Lennart

    2013-02-28

    We report a robust and versatile membrane protein based system for selective uptake and release of ions from nanoporous particles sealed with ion-tight lipid bilayers of various compositions that is driven by the addition of ATP or a chemical potential gradient. We have successfully incorporated both a passive ion channel-type peptide (gramicidin A) and a more complex primary sodium ion transporter (ATP synthase) into the supported lipid bilayers on solid nanoporous silica particles. Protein-mediated controlled release/uptake of sodium ions across the ion-tight lipid bilayer seal from or into the nanoporous silica carrier was imaged in real time using a confocal laser scanning microscope and the intensity changes were quantified. ATP-driven transport of sodium ions across the supported lipid bilayer against a chemical gradient was demonstrated. The possibility of designing durable carriers with tight lipid membranes, containing membrane proteins for selective ion uptake and release, offers new possibilities for functional studies of single or cascading membrane protein systems and could also be used as biomimetic microreactors for controlled synthesis of inorganic multicomponent materials. PMID:23321853

  6. The a subunit of the A1AO ATP synthase of Methanosarcina mazei Gö1 contains two conserved arginine residues that are crucial for ATP synthesis.

    PubMed

    Gloger, Carolin; Born, Anna-Katharina; Antosch, Martin; Müller, Volker

    2015-01-01

    Like the evolutionary related F1FO ATP synthases and V1VO ATPases, the A1AO ATP synthases from archaea are multisubunit, membrane-bound transport machines that couple ion flow to the synthesis of ATP. Although the subunit composition is known for at least two species, nothing is known so far with respect to the function of individual subunits or amino acid residues. To pave the road for a functional analysis of A1AO ATP synthases, we have cloned the entire operon from Methanosarcina mazei into an expression vector and produced the enzyme in Escherichia coli. Inverted membrane vesicles of the recombinants catalyzed ATP synthesis driven by NADH oxidation as well as artificial driving forces. [Formula: see text] as well as ?pH were used as driving forces which is consistent with the inhibition of NADH-driven ATP synthesis by protonophores. Exchange of the conserved glutamate in subunit c led to a complete loss of ATP synthesis, proving that this residue is essential for H+ translocation. Exchange of two conserved arginine residues in subunit a has different effects on ATP synthesis. The role of these residues in ion translocation is discussed. PMID:25724672

  7. It is now generally accepted that ATP can act as a fast excitatory neurotransmitter at the autonomic neuromuscular

    E-print Network

    Burnstock, Geoffrey

    It is now generally accepted that ATP can act as a fast excitatory neurotransmitter a class of ligand-gated cation channels, the P2X receptors. ATP also plays a role in presynaptic North & Barnard, 1997). Thus, P2X1 and P2X× receptors are activated by á,â_methyleneATP (áâ_MeATP

  8. Neuron, Vol. 40, 971982, December 4, 2003, Copyright 2003 by Cell Press ATP Released by Astrocytes Mediates

    E-print Network

    Newman, Eric A.

    Neuron, Vol. 40, 971­982, December 4, 2003, Copyright 2003 by Cell Press ATP Released by Astrocytes Mediates Glutamatergic Activity-Dependent Heterosynaptic Suppression ATP release and synaptic modulation by exogenous ATP have been widely reported, the endogenous source of ATP responsible for synaptic modulation

  9. Time-resolved Fourier Transform Infrared Spectroscopy of the Nucleotide-binding Domain from the ATP-binding

    E-print Network

    Gerwert, Klaus

    Time-resolved Fourier Transform Infrared Spectroscopy of the Nucleotide-binding Domain from the ATP-binding Cassette Transporter MsbA ATP HYDROLYSIS IS THE RATE-LIMITING STEP IN THE CATALYTIC CYCLE*S Received, D-44780 Bochum, Germany Background: The dynamics of coupling of ATP hydrolysis with transport in ATP

  10. Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human astrocytes

    E-print Network

    Newman, Eric A.

    Colocalization of ATP release sites and ecto-ATPase activity at the extracellular surface of human ATP Release from Astrocytes Key Words: Extracellular nucleotides, ATP release, astrocytes, P2302680200 #12;2 SUMMARY Extracellular ATP and other nucleotides function as autocrine and paracrine

  11. Dual functions of the nucleus-encoded factor TDA1 in trapping and translation activation of atpA transcripts

    E-print Network

    is specifically required for translation of the chloroplast atpA transcript that encodes subunit a of ATP synthase-acting factors targeted to the C. reinhardtii chloroplast. Interestingly, a proportion of the untranslated atp in the chloroplast of C. reinhardtii. Keywords: nucleo-chloroplast interactions, ATP synthase, translation regulation

  12. CELL REGULATION, Vol. 2, 851-859, October 1991 An ATP-binding membrane protein is required for

    E-print Network

    Walter, Peter

    , ATP is required for protein import into chloroplasts (Grossman et aL, 1980; Flugge and Hinz, 1986CELL REGULATION, Vol. 2, 851-859, October 1991 An ATP-binding membrane protein is required microsomal vesicles with a photoactivatable ana- logue of ATP, 8-N2ATP. This treatment resufted

  13. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.

    PubMed

    Miki, Haruna; Zhou, Zhen; Li, Min; Hwang, Tzyh-Chang; Bompadre, Silvia G

    2010-06-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and DeltaF508. Previously we found that the ATP analog N(6)-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by approximately 7-fold. Here we show that 2'-deoxy-ATP (dATP), but not 3'-deoxy-ATP, increases the activity of G551D-CFTR by approximately 8-fold. We custom synthesized N(6)-(2-phenylethyl)-2'-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 +/- 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of DeltaF508-CFTR by increasing its activity by 19.5 +/- 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with DeltaF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable. PMID:20406820

  14. Potentiation of Disease-associated Cystic Fibrosis Transmembrane Conductance Regulator Mutants by Hydrolyzable ATP Analogs*

    PubMed Central

    Miki, Haruna; Zhou, Zhen; Li, Min; Hwang, Tzyh-Chang; Bompadre, Silvia G.

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and ?F508. Previously we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by ?7-fold. Here we show that 2?-deoxy-ATP (dATP), but not 3?-deoxy-ATP, increases the activity of G551D-CFTR by ?8-fold. We custom synthesized N6-(2-phenylethyl)-2?-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 ± 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of ?F508-CFTR by increasing its activity by 19.5 ± 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with ?F508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable. PMID:20406820

  15. Fo-driven Rotation in the ATP Synthase Direction against the Force of F1 ATPase in the FoF1 ATP Synthase.

    PubMed

    Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D

    2015-04-24

    Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065

  16. How Reliable Are ATP Bioluminescence Meters in Assessing Decontamination of Environmental Surfaces in Healthcare Settings?

    PubMed Central

    Omidbakhsh, Navid; Ahmadpour, Faraz; Kenny, Nicole

    2014-01-01

    Background Meters based on adenosine triphosphate (ATP) bioluminescence measurements in relative light units (RLU) are often used to rapidly assess the level of cleanliness of environmental surfaces in healthcare and other settings. Can such ATP measurements be adversely affected by factors such as soil and cleaner-disinfectant chemistry? Objective This study tested a number of leading ATP meters for their sensitivity, linearity of the measurements, correlation of the readings to the actual microbial contamination, and the potential disinfectant chemicals’ interference in their readings. Methods First, solutions of pure ATP in various concentrations were used to construct a standard curve and determine linearity and sensitivity. Serial dilutions of a broth culture of Staphylococcus aureus, as a representative nosocomial pathogen, were then used to determine if a given meter’s ATP readings correlated with the actual CFUs. Next, various types of disinfectant chemistries were tested for their potential to interfere with the standard ATP readings. Results All four ATP meters tested herein demonstrated acceptable linearity and repeatability in their readings. However, there were significant differences in their sensitivity to detect the levels of viable microorganisms on experimentally contaminated surfaces. Further, most disinfectant chemistries tested here quenched the ATP readings variably in different ATP meters evaluated. Conclusions Apart from their limited sensitivity in detecting low levels of microbial contamination, the ATP meters tested were also prone to interference by different disinfectant chemistries. PMID:24940751

  17. Glucose Triggers ATP Secretion from Bacteria in a Growth-Phase-Dependent Manner

    PubMed Central

    Hironaka, Ippei; Iwase, Tadayuki; Sugimoto, Shinya; Okuda, Ken-ichi; Tajima, Akiko; Yanaga, Katsuhiko

    2013-01-01

    ATP modulates immune cell functions, and ATP derived from gut commensal bacteria promotes the differentiation of T helper 17 (Th17) cells in the intestinal lamina propria. We recently reported that Enterococcus gallinarum, isolated from mice and humans, secretes ATP. We have since found and characterized several ATP-secreting bacteria. Of the tested enterococci, Enterococcus mundtii secreted the greatest amount of ATP (>2 ?M/108 cells) after overnight culture. Glucose, not amino acids and vitamins, was essential for ATP secretion from E. mundtii. Analyses of energy-deprived cells demonstrated that glycolysis is the most important pathway for bacterial ATP secretion. Furthermore, exponential-phase E. mundtii and Enterococcus faecalis cells secrete ATP more efficiently than stationary-phase cells. Other bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus, also secrete ATP in exponential but not stationary phase. These results suggest that various gut bacteria, including commensals and pathogens, might secrete ATP at any growth phase and modulate immune cell function. PMID:23354720

  18. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    PubMed Central

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  19. Rho Signaling Regulates Pannexin 1-mediated ATP Release from Airway Epithelia*

    PubMed Central

    Seminario-Vidal, Lucia; Okada, Seiko F.; Sesma, Juliana I.; Kreda, Silvia M.; van Heusden, Catharina A.; Zhu, Yunxiang; Jones, Lisa C.; O'Neal, Wanda K.; Penuela, Silvia; Laird, Dale W.; Boucher, Richard C.; Lazarowski, Eduardo R.

    2011-01-01

    ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia. PMID:21606493

  20. Conformational transitions of subunit epsilon in ATP synthase from thermophilic Bacillus PS3.

    PubMed

    Feniouk, Boris A; Kato-Yamada, Yasuyuki; Yoshida, Masasuke; Suzuki, Toshiharu

    2010-02-01

    Subunit epsilon of bacterial and chloroplast F(O)F(1)-ATP synthase is responsible for inhibition of ATPase activity. In Bacillus PS3 enzyme, subunit epsilon can adopt two conformations. In the "extended", inhibitory conformation, its two C-terminal alpha-helices are stretched along subunit gamma. In the "contracted", noninhibitory conformation, these helices form a hairpin. The transition of subunit epsilon from an extended to a contracted state was studied in ATP synthase incorporated in Bacillus PS3 membranes at 59 degrees C. Fluorescence energy resonance transfer between fluorophores introduced in the C-terminus of subunit epsilon and in the N-terminus of subunit gamma was used to follow the conformational transition in real time. It was found that ATP induced the conformational transition from the extended to the contracted state (half-maximum transition extent at 140 microM ATP). ADP could neither prevent nor reverse the ATP-induced conformational change, but it did slow it down. Acid residues in the DELSEED region of subunit beta were found to stabilize the extended conformation of epsilon. Binding of ATP directly to epsilon was not essential for the ATP-induced conformational change. The ATP concentration necessary for the half-maximal transition (140 microM) suggests that subunit epsilon probably adopts the extended state and strongly inhibits ATP hydrolysis only when the intracellular ATP level drops significantly below the normal value. PMID:20141757

  1. Modeling the effects of hypoxia on ATP turnover in exercising muscle

    NASA Technical Reports Server (NTRS)

    Arthur, P. G.; Hogan, M. C.; Bebout, D. E.; Wagner, P. D.; Hochachka, P. W.

    1992-01-01

    Most models of metabolic control concentrate on the regulation of ATP production and largely ignore the regulation of ATP demand. We describe a model, based on the results of Hogan et al. (J. Appl. Physiol. 73: 728-736, 1992), that incorporates the effects of ATP demand. The model is developed from the premise that a unique set of intracellular conditions can be measured at each level of ATP turnover and that this relationship is best described by energetic state. Current concepts suggest that cells are capable of maintaining oxygen consumption in the face of declines in the concentration of oxygen through compensatory changes in cellular metabolites. We show that these compensatory changes can cause significant declines in ATP demand and result in a decline in oxygen consumption and ATP turnover. Furthermore we find that hypoxia does not directly affect the rate of anaerobic ATP synthesis and associated lactate production. Rather, lactate production appears to be related to energetic state, whatever the PO2. The model is used to describe the interaction between ATP demand and ATP supply in determining final ATP turnover.

  2. Adenosine-5'-Triphosphate (ATP) Protects Mice against Bacterial Infection by Activation of the NLRP3 Inflammasome

    PubMed Central

    Yan, Chao; Gao, Qian; Li, Sheng-An; Liu, Jie; Zhou, Kaifeng; Guo, Xiaolong; Lee, Wenhui; Zhang, Yun

    2013-01-01

    It has been established that Adenosine-5'-triphosphate (ATP) can activate the NLRP3 inflammasome. However, the physiological effect of extracellular ATP on NLRP3 inflammasome activation has not yet been investigated. In the present study, we found that ATP was indeed released during bacterial infection. By using a murine peritonitis model, we also found that ATP promotes the fight against bacterial infection in mice. ATP induced the secretion of IL-1? and chemokines by murine bone marrow-derived macrophages in vitro. Furthermore, the intraperitoneal injection of ATP elevated the levels of IL-1? and chemokines in the mouse peritoneal lavage. Neutrophils were rapidly recruited to the peritoneum after ATP injection. In addition, the effects on cytokine and chemokine secretion and neutrophil recruitment were markedly attenuated by the pre-administration of the caspase-1 inhibitor Ac-YVAD-cho. Ac-YVAD-cho also significantly attenuated the protective effect of ATP against bacterial infection. In the present study, we demonstrated a protective role for ATP during bacterial infection and this effect was related to NLRP3 inflammasome activation. Together, these results suggest a role for ATP in initiating the immune response in hosts suffering from infections. PMID:23717478

  3. Bacterial RTX Toxins Allow Acute ATP Release from Human Erythrocytes Directly through the Toxin Pore*

    PubMed Central

    Skals, Marianne; Bjaelde, Randi G.; Reinholdt, Jesper; Poulsen, Knud; Vad, Brian S.; Otzen, Daniel E.; Leipziger, Jens; Praetorius, Helle A.

    2014-01-01

    ATP is as an extracellular signaling molecule able to amplify the cell lysis inflicted by certain bacterial toxins including the two RTX toxins ?-hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans. Inhibition of P2X receptors completely blocks the RTX toxin-induced hemolysis over a larger concentration range. It is, however, at present not known how the ATP that provides the amplification is released from the attacked cells. Here we show that both HlyA and LtxA trigger acute release of ATP from human erythrocytes that preceded and were not caused by cell lysis. This early ATP release did not occur via previously described ATP-release pathways in the erythrocyte. Both HlyA and LtxA were capable of triggering ATP release in the presence of the pannexin 1 blockers carbenoxolone and probenecid, and the HlyA-induced ATP release was found to be similar in erythrocytes from pannexin 1 wild type and knock-out mice. Moreover, the voltage-dependent anion channel antagonist TRO19622 had no effect on ATP release by either of the toxins. Finally, we showed that both HlyA and LtxA were able to release ATP from ATP-loaded lipid (1-palmitoyl-2-oleoyl-phosphatidylcholine) vesicles devoid of any erythrocyte channels or transporters. Again we were able to show that this happened in a non-lytic fashion, using calcein-containing vesicles as controls. These data show that both toxins incorporate into lipid vesicles and allow ATP to be released. We suggest that both toxins cause acute ATP release by letting ATP pass the toxin pores in both human erythrocytes and artificial membranes. PMID:24860098

  4. Orientational Changes of Crossbridges During Single Turnover of ATP

    PubMed Central

    Borejdo, J.; Akopova, I.

    2003-01-01

    Muscle contraction results from rotation of actin-bound myosin crossbridges. Crossbridges consist of the globular N-terminal catalytic domain and the ?-helical C-terminal regulatory domain containing the essential and regulatory light chains. The essential light chain exists in two isoforms, of which the larger one has a 41-amino acid extension piece added at the N-terminus. The catalytic domain is responsible for binding to actin and for setting the stage for the main force-generating event, which is a “swing” of the regulatory domain. We measured the kinetics of the swing associated with the turnover of a single molecule of ATP. Muscle was labeled at the regulatory domain by replacing native essential or regulatory light chain with fluorescent adducts. The rotations were measured by the anisotropy of fluorescence originating from ?400 crossbridges residing in a small volume defined by a confocal aperture of a microscope. The crossbridges were synchronized by rapid photogeneration of a stoichiometric amount of ATP. The rotations reflected dissociation from thin filaments followed by a slow reattachment. The dissociation was the same for each light chain (halftime ?120 ms) but the rate of reattachment depended on the type of light chain. The halftimes were 920 ± 50 ms and 660 ± 100 ms for isoforms 1 and 3 of the essential light chain, respectively. The reason that the lifetimes were so long was creation of a small amount of ATP, enough only for a single turnover of crossbridges. A model was constructed that quantitized this effect. After accounting for the slowdown, the halftimes of dissociation and attachment were 34 and 200 ms, respectively. PMID:12668452

  5. Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2.

    PubMed

    John, Scott A; Weiss, James N; Xie, Lai-Hua; Ribalet, Bernard

    2003-10-01

    In the ATP-dependent K+ (KATP) channel pore-forming protein Kir6.2, mutation of three positively charged residues, R50, K185 and R201, impairs the ability of ATP to close the channel. The mutations do not change the channel open probability (Po) in the absence of ATP, supporting the involvement of these residues in ATP binding. We recently proposed that at least two of these positively charged residues, K185 and R201, interact with ATP phosphate groups to cause channel closure: the beta phosphate group of ATP interacts with K185 to initiate closure, while the alpha phosphate interacts with R201 to stabilize the channel's closed state. In the present study we replaced these three positive residues with residues of different charge, size and hydropathy. For K185 and R201, we found that charge, more than any other property, controls the interaction of ATP with Kir6.2. At these positions, replacement with another positive residue had minor effects on ATP sensitivity. In contrast, replacement of K185 with a negative residue (K185D/E) decreased ATP sensitivity much more than neutral substitutions, suggesting that an electrostatic interaction between the beta phosphate group of ATP and K185 destabilizes the open state of the channel. At R201, replacement with a negative charge (R201E) had multiple effects, decreasing ATP sensitivity and preventing full channel closure at high concentrations. In contrast, the R50E mutation had a modest effect on ATP sensitivity, and only residues such as proline and glycine that affect protein structure caused major decreases in ATP sensitivity at the R50 position. Based on these results and the recently published structure of Kir3.1 cytoplasmic domain, we propose a scheme where binding of the beta phosphate group of ATP to K185 induces a motion of the surrounding region, which destabilizes the open state, favouring closure of the M2 gate. Binding of the alpha phosphate group of ATP to R201 then stabilizes the closed state. R50 on the N-terminus controls ATP binding by facilitating the interaction of the beta phosphate group of ATP with K185 to destabilize the open state. PMID:12860923

  6. The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes

    PubMed Central

    2013-01-01

    Introduction Extracellular ATP (eATP) is released by articular chondrocytes under physiological and pathological conditions. High eATP levels cause pathologic calcification, damage cartilage, and mediate pain. We recently showed that stable over-expression of the progressive ankylosis gene product, ANK, increased chondrocyte eATP levels, but the mechanisms of this effect remained unexplored. The purpose of this work was to further investigate mechanisms of eATP efflux in primary articular chondrocytes and to better define the role of ANK in this process. Methods We measured eATP levels using a bioluminescence-based assay in adult porcine articular chondrocyte media with or without a 10 minute exposure to hypotonic stress. siRNAs for known ATP membrane transporters and pharmacologic inhibitors of ATP egress pathways were used to identify participants involved in chondrocyte eATP release. Results eATP levels increased after exposure to hypotonic media in a calcium-dependent manner in monolayer and 3-dimensional agarose gel cultures (p < 0.001). A potent transient receptor potential vanilloid 4 (TRPV4) agonist mimicked the effects of hypotonic media. ANK siRNA suppressed basal (p < 0.01) and hypotonically-stressed (p < 0.001) ATP levels. This effect was not mediated by altered extracellular pyrophosphate (ePPi) levels, and was mimicked by the ANK inhibitor, probenecid (p < 0.001). The P2X7/4 receptor inhibitor Brilliant Blue G also suppressed eATP efflux induced by hypotonic media (p < 0.001), while ivermectin, a P2X4 receptor stimulant, increased eATP levels (p < 0.001). Pharmacologic inhibitors of hemichannels, maxianion channels and other volume-sensitive eATP efflux pathways did not suppress eATP levels. Conclusions These findings implicate ANK and P2X7/4 receptors in chondrocyte eATP efflux. Understanding the mechanisms of eATP efflux may result in novel therapies for calcium crystal arthritis and osteoarthritis. PMID:24286344

  7. Nucleotide sequence of the Rhodospirillum rubrum atp operon.

    PubMed Central

    Falk, G; Hampe, A; Walker, J E

    1985-01-01

    The nucleotide sequence was determined of a 8775-base-pair region of DNA cloned from the photosynthetic non-sulphur bacterium Rhodospirillum rubrum. It contains a cluster of five genes encoding F1-ATPase subunits. The genes are arranged in the same order as F1 genes in the Escherichia coli unc operon. However, as in the related organism Rhodopseudomonas blastica, neither genes for components of F0, the membrane sector of ATP synthase, nor a homologue of the E. coli uncI gene are associated with this locus, as they are in E. coli. Images Fig. 2. PMID:2861810

  8. Terrestrial evolution of polymerization of amino acids - Heat to ATP

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1981-01-01

    Sets of amino acids containing sufficient trifunctional monomer are thermally polymerized at temperatures such as 65 deg; the amino acids order themselves. Various polymers have diverse catalytic activities. The polymers aggregate, in aqueous solution, to cell-like structures having those activities plus emergent properties, e.g. proliferatability. Polyamino acids containing sufficient lysine catalyze conversion of free amino acids, by ATP, to small peptides and a high molecular weight fraction. The lysine-rich proteinoid is active in solution, within suspensions of cell-like particles, or in other particles composed of lysine-rich proteinoid and homopolyribonucleotide. Selectivities are observed. An archaic polyamino acid prelude to coded protein synthesis is indicated.

  9. ATP consumption of eukaryotic flagella measured at a single-cell level

    E-print Network

    Chen, Daniel T N; Fraden, Seth; Nicastro, Daniela; Dogic, Zvonimir

    2015-01-01

    The motility of cilia and flagella is driven by thousands of dynein motors that hydrolyze adenosine triphosphate (ATP). Despite decades of genetic, biochemical, structural and biophysical studies, some aspects of ciliary motility remain elusive, such as the regulation of beating patterns and the energetic efficiency of these nanomachines. Here, we introduce an experimental method to measure ATP consumption of actively beating axonemes on a single-cell level. We encapsulated individual sea urchin sperm with demembranated flagellum inside water-in-oil emulsion droplets and measured the axonemes ATP consumption by monitoring fluorescence intensity of a fluorophore-coupled reporter system for ATP turnover in the droplet. Concomitant phase contrast imaging allowed us to extract a linear dependence between the ATP consumption rate and the flagellar beating frequency, with ~2.3e5 ATP molecules consumed per beat of a demembranated flagellum. Increasing the viscosity of the aqueous medium led to modified beating wavef...

  10. Structure guided simulations illuminate the mechanism of ATP transport through VDAC1

    PubMed Central

    Choudhary, O.P.; Paz, A.; Adelman, J.L.; Colletier, J.P.; Abramson, J.; Grabe, M.

    2014-01-01

    The voltage-dependent anion channel (VDAC) mediates metabolite and ion flow across the outer mitochondrial membrane of all eukaryotic cells. The open channel passes millions of ATP molecules per second, while the closed state exhibits no detectable ATP flux. High-resolution structures of VDAC1 revealed a 19-stranded ?-barrel with an ?-helix partially occupying the central pore. To understand ATP permeation through VDAC, we solved the crystal structure of mouse VDAC1 (mVDAC1) in the presence of ATP, revealing a low-affinity binding site. Guided by these coordinates, we initiated hundreds of molecular dynamics (MD) simulations to construct a Markov State Model (MSM) of ATP permeation. These simulations indicate that ATP flows through VDAC using multiple pathways, consistent with our structural data and experimentally determined physiological rates. PMID:24908397

  11. Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron–glia signaling

    PubMed Central

    Fields, R. Douglas

    2011-01-01

    Studies on the release of ATP from neurons began with the earliest investigations of quantal neurotransmitter release in the 1950s, but in contrast to ATP release from other cells, studies of ATP release from neurons have been narrowly constrained to one mechanism, vesicular release. This is a consequence of the prominence of synaptic transmission in neuronal communication, but nonvesicular mechanisms for ATP release from neurons are likely to have a broader range of functions than synaptic release. Investigations of activity-dependent communication between axons and myelinating glia have stimulated a search for mechanisms that could release ATP from axons and other nonsynaptic regions in response to action potential firing. This has identified volume-activated anion channels as an important mechanism in activity-dependent ATP release from axons, and renewed interest in micromechanical changes in axons that accompany action potential firing. PMID:21320624

  12. SLC17A9 Protein Functions as a Lysosomal ATP Transporter and Regulates Cell Viability*

    PubMed Central

    Cao, Qi; Zhao, Kexin; Zhong, Xi Zoë; Zou, Yuanjie; Yu, Haichuan; Huang, Peng; Xu, Tian-Le; Dong, Xian-Ping

    2014-01-01

    Lysosomes contain abundant ATP, which is released through lysosomal exocytosis following exposure to various stimuli. However, the molecular mechanisms underlying lysosomal ATP accumulation remain unknown. The vesicular nucleotide transporter, also known as solute carrier family 17 member 9 (SLC17A9), has been shown to function in ATP transport across secretory vesicles/granules membrane in adrenal chromaffin cells, T cells, and pancreatic cells. Here, using mammalian cell lines, we report that SLC17A9 is highly enriched in lysosomes and functions as an ATP transporter in those organelles. SLC17A9 deficiency reduced lysosome ATP accumulation and compromised lysosome function, resulting in cell death. Our data suggest that SLC17A9 activity mediates lysosomal ATP accumulation and plays an important role in lysosomal physiology and cell viability. PMID:24962569

  13. Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system.

    PubMed Central

    Ciechanover, A; Heller, H; Katz-Etzion, R; Hershko, A

    1981-01-01

    It had been shown previously that the heat-stable polypeptide of the ATP-dependent proteolytic system of reticulocytes, designated APF-1, forms covalent conjugates with protein substrates in an ATP-requiring process. We now describe an enzyme that carries out the activation by ATP of the polypeptide with pyrophosphate displacement. The formation of AMP-polypeptide and transfer of the polypeptide to a secondary acceptor are suggested by an APF-1 requirement for ATP-PPi and ATP-AMP exchange reactions, respectively. With radiolabeled polypeptide, an ATP-dependent labeling of the enzyme was shown to be by a linkage that is acid stable but is labile to treatment with mild alkali, hydroxylamine, borohydride, or mercuric salts. It therefore appears that the AMP-polypeptide undergoes attack by an -SH group of the enzyme to form a thiolester. PMID:6262770

  14. Synergistic effect of ATP for RuvA–RuvB–Holliday junction DNA complex formation

    PubMed Central

    Iwasa, Takuma; Han, Yong-Woon; Hiramatsu, Ryo; Yokota, Hiroaki; Nakao, Kimiko; Yokokawa, Ryuji; Ono, Teruo; Harada, Yoshie

    2015-01-01

    The Escherichia coli RuvB hexameric ring motor proteins, together with RuvAs, promote branch migration of Holliday junction DNA. Zero mode waveguides (ZMWs) constitute of nanosized holes and enable the visualization of a single fluorescent molecule under micromolar order of the molecules, which is applicable to characterize the formation of RuvA–RuvB–Holliday junction DNA complex. In this study, we used ZMWs and counted the number of RuvBs binding to RuvA–Holliday junction DNA complex. Our data demonstrated that different nucleotide analogs increased the amount of Cy5-RuvBs binding to RuvA–Holliday junction DNA complex in the following order: no nucleotide, ADP, ATP?S, and mixture of ADP and ATP?S. These results suggest that not only ATP binding to RuvB but also ATP hydrolysis by RuvB facilitates a stable RuvA–RuvB–Holliday junction DNA complex formation. PMID:26658024

  15. Application of ATP measurements to the microbiological evaluation of a petroleum reservoir

    SciTech Connect

    Jones, P.M.

    1981-06-01

    The objective of the work reported in this document was to determine whether the bioluminescent luciferin/luciferase based adenosine triphosphate (ATP) assay could be used as a rapid field tests for determining the presence and numbers of microorganisms in oil field fluids. The ATP-photometric technique employed is based on the ATP-mediated bioluminescent oxidation of firefly luciferin. Light production is stoichiometrically related to ATP concentration; ATP concentration is related to numbers of living organisms present in a sample. Samples used in this study comprised reservoir fluids collected from several Southern California oilfields. Based on experimental evidence, it was concluded that the ATP assay could be profitably applied to Microbially Enhanced Oil Recovery (MEOR) process monitoring and control. The theoretical basis for the assay, field-usage methodologies, and fundamentals of data interpretation are presented to make the document usable as a field manual.

  16. Vitro packaging of bacteriophage T7 DNA requires ATP. [Escherichia Coli

    SciTech Connect

    Masker, W.E.

    1982-07-01

    Removal of nucleoside triphosphates from extracts prepared from bacteriophage T7-infected Escherichia coli results in a stringent requirement for added ATP to form infective phage particles by in vitro packaging of bacteriophage T7 DNA. Optimal packaging efficiency was achieved at a concentration of about 1.25 mM. Other nucleoside triphosphates could be substituted for ATP, but none of the common nucleoside triphosphates was as effective as ATP in promoting in vitro encapsulation.

  17. Modulation of K channels in dialyzed squid axons. ATP-mediated phosphorylation

    PubMed Central

    1989-01-01

    In squid axons, internally applied ATP potentiates the magnitude of the potassium conductance and slows down its activation kinetics. This effect was characterized using internally dialyzed axons under voltage- clamp conditions. Both amplitude potentiation and kinetic slow-down effects are very selective towards ATP, other nucleotides like GTP and ITP are ineffective in millimolar concentrations. The current potentiation Km for ATP is near 10 microM with no further effects for concentrations greater than 100 microM. ATP effect is most likely produced via a phosphorylative reaction because Mg ion is an obligatory requirement and nonhydrolyzable ATP analogues are without effect. In the presence of ATP, the K current presents more delay, resembling a Cole-Moore effect due to local hyperpolarization of the channel. ATP effect induces a 10-20 mV shift in both activation and inactivation parameters towards more depolarized potentials. As a consequence of this shift, conductance-voltage curves with and without ATP cross at approximately -40 mV. This result is consistent with the hyperpolarization observed with ATP depletion, which is reversed by ATP addition. At potentials around the resting value, addition of ATP removes almost completely K current slow inactivation. It is suggested that a change in the amount of the slow inactivation is responsible for the differences in current amplitude with and without ATP, possibly as a consequence of the additional negative charge carried by the phosphate group. However, a modification of the local potential is not enough to explain completely the differences under the two conditions. PMID:2769224

  18. ATP requirement for chloroplast protein import is set by the Km for ATP hydrolysis of stromal Hsp70 in Physcomitrella patens.

    PubMed

    Liu, Li; McNeilage, Robert T; Shi, Lan-Xin; Theg, Steven M

    2014-03-01

    The 70-kD family of heat shock proteins (Hsp70s) is involved in a number of seemingly disparate cellular functions, including folding of nascent proteins, breakup of misfolded protein aggregates, and translocation of proteins across membranes. They act through the binding and release of substrate proteins, accompanied by hydrolysis of ATP. Chloroplast stromal Hsp70 plays a crucial role in the import of proteins into plastids. Mutations of an ATP binding domain Thr were previously reported to result in an increase in the Km for ATP and a decrease in the enzyme's kcat. To ask which chloroplast stromal chaperone, Hsp70 or Hsp93, both of which are ATPases, dominates the energetics of the motor responsible for protein import, we made transgenic moss (Physcomitrella patens) harboring the Km-altering mutation in the essential stromal Hsp70-2 and measured the effect on the amount of ATP required for protein import into chloroplasts. Here, we report that increasing the Km for ATP hydrolysis of Hsp70 translated into an increased Km for ATP usage by chloroplasts for protein import. This thus directly demonstrates that the ATP-derived energy long known to be required for chloroplast protein import is delivered via the Hsp70 chaperones and that the chaperone's ATPase activity dominates the energetics of the reaction. PMID:24596240

  19. MiR-34a is Involved in the Decrease of ATP Contents Induced by Resistin Through Target on ATP5S in HepG2 Cells.

    PubMed

    Wen, Fengyun; Li, Bin; Huang, Chunyan; Wei, Zhiguo; Zhou, Yingying; Liu, Jianyu; Zhang, Haiwei

    2015-12-01

    Resistin is associated with metabolic syndrome and deciphering its developmental and molecular mechanisms may help the development of new treatments. MiRNAs serve as negative regulators in many physiological and pathological processes. Here, miRNA microarrays were used to detect differences in expression between resistin-treated and control mice, and results showed miR-34a to be upregulated by resistin. The purpose of this study was to determine whether miR-34a played a role in resistin-induced decrease of ATP contents. Transient transfection of miR-34a mimics was used to overexpress miR-34a and quantitative RT-PCR was used to detect its expression. Western blot analysis was used to determine the rate of expression at the protein level. ATP content was measured using an ATP assay kit. The target gene of miR-34a was analyzed using bioinformatics and confirmed with dual-luciferase report system. MiR-34a was upregulated by resistin in HepG2 cells, and overexpression of miR-34a was found to diminish ATP levels significantly. This study is the first to show that ATP5S is one of the target genes of miR-34a. Resistin diminishes ATP content through the targeting of ATP5S mRNA 3'UTR by miR-34a. PMID:26385595

  20. A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms.

    PubMed

    Woehrer, Sophie L; Aronica, Lucia; Suhren, Jan H; Busch, Clara Jana-Lui; Noto, Tomoko; Mochizuki, Kazufumi

    2015-02-12

    The loading of small interfering RNAs (siRNAs) and microRNAs into Argonaute proteins is enhanced by Hsp90 and ATP in diverse eukaryotes. However, whether this loading also occurs independently of Hsp90 and ATP remains unclear. We show that the Tetrahymena Hsp90 co-chaperone Coi12p promotes siRNA loading into the Argonaute protein Twi1p in both ATP-dependent and ATP-independent manners in vitro. The ATP-dependent activity requires Hsp90 and the tetratricopeptide repeat (TPR) domain of Coi12p, whereas these factors are dispensable for the ATP-independent activity. Both activities facilitate siRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important to specifically sort the 26- to 32-nt siRNAs to Twi1p. Although Coi12p lacking its TPR domain does not bind to Hsp90, it can partially restore the siRNA loading and DNA elimination defects of COI12 knockout cells, suggesting that Hsp90- and ATP-independent loading of siRNA occurs in vivo and plays a physiological role in Tetrahymena. PMID:25588944

  1. A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms

    PubMed Central

    Woehrer, Sophie L; Aronica, Lucia; Suhren, Jan H; Busch, Clara Jana-Lui; Noto, Tomoko; Mochizuki, Kazufumi

    2015-01-01

    The loading of small interfering RNAs (siRNAs) and microRNAs into Argonaute proteins is enhanced by Hsp90 and ATP in diverse eukaryotes. However, whether this loading also occurs independently of Hsp90 and ATP remains unclear. We show that the Tetrahymena Hsp90 co-chaperone Coi12p promotes siRNA loading into the Argonaute protein Twi1p in both ATP-dependent and ATP-independent manners in vitro. The ATP-dependent activity requires Hsp90 and the tetratricopeptide repeat (TPR) domain of Coi12p, whereas these factors are dispensable for the ATP-independent activity. Both activities facilitate siRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important to specifically sort the 26- to 32-nt siRNAs to Twi1p. Although Coi12p lacking its TPR domain does not bind to Hsp90, it can partially restore the siRNA loading and DNA elimination defects of COI12 knockout cells, suggesting that Hsp90- and ATP-independent loading of siRNA occurs in vivo and plays a physiological role in Tetrahymena. PMID:25588944

  2. Mechanisms of ATP release and signalling in the blood vessel wall

    PubMed Central

    Lohman, Alexander W.; Billaud, Marie; Isakson, Brant E.

    2012-01-01

    The nucleotide adenosine 5?-triphosphate (ATP) has classically been considered the cell's primary energy currency. Importantly, a novel role for ATP as an extracellular autocrine and/or paracrine signalling molecule has evolved over the past century and extensive work has been conducted to characterize the ATP-sensitive purinergic receptors expressed on almost all cell types in the body. Extracellular ATP elicits potent effects on vascular cells to regulate blood vessel tone but can also be involved in vascular pathologies such as atherosclerosis. While the effects of purinergic signalling in the vasculature have been well documented, the mechanism(s) mediating the regulated release of ATP from cells in the blood vessel wall and circulation are now a key target of investigation. The aim of this review is to examine the current proposed mechanisms of ATP release from vascular cells, with a special emphasis on the transporters and channels involved in ATP release from vascular smooth muscle cells, endothelial cells, circulating red blood cells, and perivascular sympathetic nerves, including vesicular exocytosis, plasma membrane F1/F0-ATP synthase, ATP-binding cassette (ABC) transporters, connexin hemichannels, and pannexin channels. PMID:22678409

  3. Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes.

    PubMed

    Liu, Hong-Tao; Sabirov, Ravshan Z; Okada, Yasunobu

    2008-06-01

    ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 muM. The OGD-induced ATP release was inhibited by Gd(3+) and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl(-) channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X(7) receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd(3+) and arachidonic acid. The channel was found to be permeable to ATP(4-) with a permeability ratio of P(ATP)/P(Cl) = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions. PMID:18368522

  4. Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans.

    PubMed

    Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W V; Sivaraman, J

    2015-11-01

    ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ?20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083

  5. Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants

    PubMed Central

    Tanaka, Kiwamu; Choi, Jeongmin; Cao, Yangrong; Stacey, Gary

    2014-01-01

    As sessile organisms, plants have evolved effective mechanisms to protect themselves from environmental stresses. Damaged (i.e., wounded) plants recognize a variety of endogenous molecules as danger signals, referred to as damage-associated molecular patterns (DAMPs). ATP is among the molecules that are released by cell damage, and recent evidence suggests that ATP can serve as a DAMP. Although little studied in plants, extracellular ATP is well known for its signaling roles in animals, including acting as a DAMP during the inflammatory response and wound healing. If ATP acts outside the cell, then it is reasonable to expect that it is recognized by a plasma membrane-localized receptor. Recently, DORN1, a lectin receptor kinase, was shown to recognize extracellular ATP in Arabidopsis. DORN1 is the founding member of a new purinoceptor subfamily, P2K (P2 receptor kinase), which is plant-specific. P2K1 (DORN1) is required for ATP-induced cellular responses (e.g., cytosolic Ca2+ elevation, MAPK phosphorylation, and gene expression). Genetic analysis of loss-of-function mutants and overexpression lines showed that P2K1 participates in the plant wound response, consistent with the role of ATP as a DAMP. In this review, we summarize past research on the roles and mechanisms of extracellular ATP signaling in plants, and discuss the direction of future research on extracellular ATP as a DAMP signal. PMID:25232361

  6. Quantitative requirement for ATP for active transport in isolated renal cells

    SciTech Connect

    Tessitore, N.; Sakhrani, L.M.; Massry, S.G.

    1986-07-01

    We investigated the quantitative relationship between cellular ATP concentration and Na+-K+-ATPase activity as measured by ouabain-sensitive 86Rb influx in rabbit proximal renal cells. Cellular ATP was reduced in a stepwise manner by rotenone (10(-7) to 10(-5) M) and was increased by 10 mM adenosine. During these maneuvers, ouabain-sensitive 86Rb influx was linearly related to cellular ATP and did not saturate up to 9.9 mM ATP. In contrast, Na+-K+-ATPase activity in membranes prepared from these cells saturated at 2.0 mM ATP at various sodium (10-100 mM) and potassium (4-100 mM) concentrations. Sodium-dependent phosphate uptake and alpha-methylglucoside (alpha-MG) uptake were both inhibited to a similar degree when cellular ATP was reduced. We conclude that 1) the ATP requirement for saturation of Na+-K+-ATPase is higher in intact renal cells than in the membranes, and 2) the uptake of phosphate and alpha-MG are similarly influenced by reduction in ATP. This effect of ATP on phosphate and AMG uptake is most likely an indirect one and is secondary to changes in the sodium gradient across the cell.

  7. BPA Definitions

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    The Bonneville Power Administration`s definition of terms are documented here. The terms primarily focus on transmission, generation and distribution, but also cover BPA services and responsibilities.

  8. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  9. Mechanosensitive ATP release maintains proper mucus hydration of airways.

    PubMed

    Button, Brian; Okada, Seiko F; Frederick, Charles Brandon; Thelin, William R; Boucher, Richard C

    2013-06-11

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  10. A fast ATP method based on integral chopper

    NASA Astrophysics Data System (ADS)

    Chen, Wen-jian; Duan, Yuan-yuan; Ma, Shi-wei; Guo, Jun-chao

    2015-02-01

    Detecting angle between target and optical axis in Q-APD is an effective way of fast ATP. It is the key point in this method to acquire the ratio of some parameters. In this paper, a novel method of achieving division of analog electric signal using integral chopper is proposed. This can avoid the problem of high speed acquisition faced in the digital processing solution, that is, MHz level sampling frequency should be used in microsecond level signal. After the target is detected by using Q-APD, the four-channel signals generated by target are amplified by the emitter follower. Then using sample hold and sum difference calculation, background signal and offset signals in azimuth and elevation are generated. Because of using the integral chopper, integration time of offset signal to capacitance is controlled by the background signal, and the output value is just the ratio of the background signal and the offset signal. This value which has is independent of intensity of incident light, represents the angle between the target and optical axis. The optical axis can be driven by servo system based on the angle, therefore realizing the fast ATP.

  11. Cdc123, a Cell Cycle Regulator Needed for eIF2 Assembly, Is an ATP-Grasp Protein with Unique Features.

    PubMed

    Panvert, Michel; Dubiez, Etienne; Arnold, Lea; Perez, Javier; Mechulam, Yves; Seufert, Wolfgang; Schmitt, Emmanuelle

    2015-09-01

    Eukaryotic initiation factor 2 (eIF2), a heterotrimeric guanosine triphosphatase, has a central role in protein biosynthesis by supplying methionylated initiator tRNA to the ribosomal translation initiation complex and by serving as a target for translational control in response to stress. Recent work identified a novel step indispensable for eIF2 function: assembly of eIF2 from its three subunits by the cell proliferation protein Cdc123. We report the first crystal structure of a Cdc123 representative, that from Schizosaccharomyces pombe, both isolated and bound to domain III of Saccharomyces cerevisiae eIF2?. The structures show that Cdc123 resembles enzymes of the ATP-grasp family. Indeed, Cdc123 binds ATP-Mg(2+), and conserved residues contacting ATP-Mg(2+) are essential for Cdc123 to support eIF2 assembly and cell viability. A docking of eIF2?? onto Cdc123, combined with genetic and biochemical experiments, allows us to propose a model explaining how Cdc123 participates in the biogenesis of eIF2 through facilitating assembly of eIF2? to eIF2?. PMID:26211610

  12. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake.

    PubMed

    Komlosi, Peter; Peti-Peterdi, Janos; Fuson, Amanda L; Fintha, Attila; Rosivall, Laszlo; Bell, Phillip Darwin

    2004-06-01

    One component of the macula densa (MD) tubuloglomerular feedback (TGF) signaling pathway may involve basolateral release of ATP through a maxi-anion channel. Release of ATP has previously been studied during a maximal luminal NaCl concentration ([NaCl](L)) stimulus (20-150 mmol/l). Whether MD ATP release occurs during changes in [NaCl](L) within the physiological range (20-60 mmol/l) has not been examined. Also, because TGF is known to be enhanced by low dietary salt intake, we examined the pattern of MD ATP release from salt-restricted rabbits. Fluorescence microscopy, with fura 2-loaded cultured mouse mesangial cells as biosensors, was used to assess ATP release from the isolated, perfused thick ascending limb containing the MD segment. The mesangial biosensor cells, which contain purinergic receptors and elevate intracellular Ca(2+) concentration ([Ca(2+)](i)) on ATP binding, were placed adjacent to the MD basolateral membrane. Elevations in [NaCl](L) between 0 and 80 mmol/l, in 20-mmol/l increments, caused stepwise increases in [Ca(2+)](i), with the highest increase at [NaCl](L) of approximately 60 mmol/l. Luminal furosemide at 10(-4) mol/l blocked ATP release, which suggests that the efflux of ATP required MD Na-2Cl-K cotransport. A low-salt diet for 1 wk increased the magnitude of [NaCl](L)-dependent elevations in biosensor [Ca(2+)](i) by twofold, whereas high-salt intake had no effect. In summary, ATP release occurs over the same range of [NaCl](L) (20-60 mmol/l) previously reported for TGF responses, and, similar to TGF, ATP release was enhanced by dietary salt restriction. Thus these two findings are consistent with the role of MD ATP release as a signaling component of the TGF pathway. PMID:14749255

  13. The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Escherichia coli

    PubMed Central

    Steigmiller, Stefan; Turina, Paola; Gräber, Peter

    2008-01-01

    The H+/ATP ratio is an important parameter for the energy balance of all cells and for the coupling mechanism between proton transport and ATP synthesis. A straightforward interpretation of rotational catalysis predicts that the H+/ATP coincides with the ratio of the c-subunits to ?-subunits, implying that, for the chloroplast and Escherichia coli ATPsynthases, numbers of 4.7 and 3.3 are expected. Here, the energetics described by the chemiosmotic theory was used to determine the H+/ATP ratio for the two enzymes. The isolated complexes were reconstituted into liposomes, and parallel measurements were performed under identical conditions. The internal phase of the liposomes was equilibrated with the acidic medium during reconstitution, allowing to measure the internal pH with a glass electrode. An acid–base transition was carried out and the initial rates of ATP synthesis or ATP hydrolysis were measured with luciferin/luciferase as a function of ?pH at constant Q = [ATP]/([ADP][Pi]). From the shift of the equilibrium ?pH as a function of Q the standard Gibbs free energy for phosphorylation, ?Gp0?; and the H+/ATP ratio were determined. It resulted ?Gp0? = 38 ± 3 kJ·mol?1 and H+/ATP = 4.0 ± 0.2 for the chloroplast and H+/ATP = 4.0 ± 0.3 for the E. coli enzyme, indicating that the thermodynamic H+/ATP ratio is the same for both enzymes and that it is different from the subunit stoichiometric ratio. PMID:18316723

  14. Urinary ATP May Be a Dynamic Biomarker of Detrusor Overactivity in Women with Overactive Bladder Syndrome

    PubMed Central

    Oliveira, Olga; Ferreira, Sónia; Reis, Maria Júlia; Oliveira, José Carlos; Correia-de-Sá, Paulo

    2013-01-01

    Background Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB) release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. Methods Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min) were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF) by ELISA. Results The urinary content of ATP, but not of NGF, normalized to patients’ urine creatinine levels (ATP/Cr) or urinary volume (ATP.Vol) were significantly (P<0.05) higher in OAB women with detrusor overactivity (n?=?34) than in healthy controls (n?=?30). Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. Conclusion A high area under the receiver operator characteristics (ROC) curve (0.741; 95% CI 0.62–0.86; P<0.001) is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome. PMID:23741373

  15. Ca2+ responses to ATP via purinoceptors in the early embryonic chick retina.

    PubMed Central

    Sugioka, M; Fukuda, Y; Yamashita, M

    1996-01-01

    1. The action of adenosine triphosphate on cytoplasmic Ca2+ concentration ([Ca2+]i) was studied in the retinal cell of early embryonic chicks with fura-2 fluorescence measurements. The fluorescence was measured from the whole neural retina dissected from chick embryos at embryonic day three (E3). 2. Bath application of ATP (> or = 30 microM; EC50, 128 microM) raised [Ca2+]i by the release of Ca2+ from intracellular Ca2+ stores, since the Ca2+ response to ATP occurred even in a Ca(2+)-free medium. 3. The Ca2+ response to ATP was mediated by P2U purinoceptors. An agonist for P2U purinoceptors, uridine triphosphate (UTP), evoked Ca2+ rises more potently (> or = 3 microM; EC50, 24 microM) than ATP. Agonists for P2X purinoceptors, alpha, beta-methylene ATP and beta, gamma-methylene ATP, or an agonist for P2Y purinoceptors, 2-methylthio ATP (500 microM each), caused no Ca2+ response. Suramin (100 microM) and Reactive Blue 2 (50 microM) almost completely blocked the Ca2+, responses to 500 microM ATP and 200 microM UTP. 4. The developmental profile of the Ca2+ response to ATP was studied from E3 to E13. The Ca2+ response to ATP was largest at E3, drastically declined towards E8 and decreased further until E11-13. 5. These results suggest that the Ca2+ mobilization by ATP via P2U purinoceptors is characteristic of early embryonic retinal cells. PMID:8799905

  16. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction.

    PubMed

    Zhao, Guochao; Shi, Jianxin; Liang, Wanqi; Xue, Feiyang; Luo, Qian; Zhu, Lu; Qu, Guorun; Chen, Mingjiao; Schreiber, Lukas; Zhang, Dabing

    2015-11-01

    Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development. PMID:26392263

  17. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction1[OPEN

    PubMed Central

    Zhao, Guochao; Shi, Jianxin; Liang, Wanqi; Xue, Feiyang; Luo, Qian; Zhu, Lu; Qu, Guorun; Chen, Mingjiao; Schreiber, Lukas; Zhang, Dabing

    2015-01-01

    Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development. PMID:26392263

  18. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.

    PubMed

    Seino, S; Iwanaga, T; Nagashima, K; Miki, T

    2000-03-01

    The regulation of insulin secretion from pancreatic beta-cells depends critically on the activities of their plasma membrane ion channels. ATP-sensitive K+ channels (K(ATP) channels) are present in many cells and regulate a variety of cellular functions by coupling cell metabolism with membrane potential. The activity of the K(ATP) channels in pancreatic beta-cells is regulated by changes in the ATP and ADP concentrations (ATP/ADP ratio) caused by glucose metabolism. Thus, the K(ATP) channels are the ATP and ADP sensors in the regulation of glucose-induced insulin secretion. K(ATP) channels are also the target of sulfonylureas, which are widely used in the treatment of type 2 diabetes. Molecular cloning of the two subunits of the pancreatic beta-cell K(ATP) channel, Kir6.2 (an inward rectifier K+ channel member) and SUR1 (a receptor for sulfonylureas), has provided great insight into its structure and function. Kir6.2 subunits form the K+ ion-permeable pore and primarily confer inhibition of the channels by ATP, while SUR1 subunits confer activation of the channels by MgADP and K+ channel openers, such as diazoxide, as well as inhibition by sulfonylureas. The SUR1 subunits also enhance the sensitivity of the channels to ATP. To determine the physiological roles of K(ATP) channels directly, we have generated two kinds of genetically engineered mice: mice expressing a dominant-negative form of Kir6.2 specifically in the pancreatic beta-cells (Kir6.2G132S Tg mice) and mice lacking Kir6.2 (Kir6.2 knockout mice). Studies of these mice elucidated various roles of the K(ATP) channels in endocrine pancreatic function: 1) the K(ATP) channels are the major determinant of the resting membrane potential of pancreatic beta-cells, 2) both glucose- and sulfonylurea-induced membrane depolarization of beta-cells require closure of the K(ATP) channels, 3) both glucose- and sulfonylurea-induced rises in intracellular calcium concentration in beta-cells require closure of the K(ATP) channels, 4) both glucose- and sulfonylurea-induced insulin secretions are mediated principally by the K(ATP) channel-dependent pathway, 5) the K(ATP) channels are important for beta-cell survival and architecture of the islets, 6) the K(ATP) channels are important in the differentiation of islet cells, and 7) the K(ATP) channels in glucose-responsive cells generally participate in coupling glucose sensing with cell excitability. Interestingly, despite the severe defect in glucose-induced insulin secretion, Kir6.2 knockout mice show only a very mild impairment in glucose tolerance. However, when the knockout mice become obese with age, they develop fasting hyperglycemia and glucose intolerance, while neither fasting hyperglycemia nor glucose intolerance is evident in the aged knockout mice without obesity, suggesting that both the genetic defect in glucose-induced insulin secretion and the acquired insulin resistance due to environmental factors are necessary to develop diabetes in Kir6.2 knockout mice. Thus, Kir6.2G132S Tg mice and Kir6.2 knockout mice provide a model of type 2 diabetes and clarify the various roles of K(ATP) channels in endocrine pancreatic function. PMID:10868950

  19. Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis.

    PubMed Central

    Hershko, A; Ciechanover, A; Heller, H; Haas, A L; Rose, I A

    1980-01-01

    The heat-stable polypeptide ATP-dependent proteolysis factor 1 (APF-1) of the reticulocyte proteolytic system forms covalent compounds with proteins in an ATP-requiring reaction. APF-1 and lysozyme, a good substrate for ATP-dependent proteolysis, form multiple conjugates, as was shown by comigration of label from each upon gel electrophoresis. Multiple bands were also seen with other substrates of the ATP-dependent proteolytic system, such as globin or alpha-lactalbumin. Analysis of the ratio of APF-1 to lysozyme radioactivities and of the molecular weights of the bands indicated that they consist of increasing numbers of the APF-1 polypeptide bound to one molecule of lysozyme. The covalent linkage is probably of an isopeptide nature, because it is stable to hydroxylamine and alkali, and polylysine is able to give conjugates of APF-1. Removal of ATP after formation of the 125I-labeled APF-1 conjugates with endogenous proteins caused the regeneration of APF-1, indicating presence of an amidase. This reaction is thought to compete with proteases that may act on APF-1-protein conjugates, especially those containing several APF-1 ligands. A sequence of reactions in which the linkage of APF-1 to the substrate is followed by the proteolytic breakdown of the substrate is proposed to explain the role of ATP. Images PMID:6990414

  20. Determination of the ATP Affinity of the Sarcoplasmic Reticulum Ca(2+)-ATPase by Competitive Inhibition of [?-(32)P]TNP-8N3-ATP Photolabeling.

    PubMed

    Clausen, Johannes D; McIntosh, David B; Woolley, David G; Andersen, Jens Peter

    2016-01-01

    The photoactivation of aryl azides is commonly employed as a means to covalently attach cross-linking and labeling reagents to proteins, facilitated by the high reactivity of the resultant aryl nitrenes with amino groups present in the protein side chains. We have developed a simple and reliable assay for the determination of the ATP binding affinity of native or recombinant sarcoplasmic reticulum Ca(2+)-ATPase, taking advantage of the specific photolabeling of Lys(492) in the Ca(2+)-ATPase by [?-(32)P]2',3'-O-(2,4,6-trinitrophenyl)-8-azido-adenosine 5'-triphosphate ([?-(32)P]TNP-8N3-ATP) and the competitive inhibition by ATP of the photolabeling reaction. The method allows determination of the ATP affinity of Ca(2+)-ATPase mutants expressed in mammalian cell culture in amounts too minute for conventional equilibrium binding studies. Here, we describe the synthesis and purification of the [?-(32)P]TNP-8N3-ATP photolabel, as well as its application in ATP affinity measurements. PMID:26695037

  1. Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin.

    PubMed

    Hu, Chia-Wei; Hsu, Chia-Lang; Wang, Yu-Chao; Ishihama, Yasushi; Ku, Wei-Chi; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-12-01

    Citreoviridin, one of toxic mycotoxins derived from fungal species, can suppress lung cancer cell growth by inhibiting the activity of ectopic ATP synthase, but has limited effect on normal cells. However, the mechanism of citreoviridin triggering dynamic molecular responses in cancer cells remains unclear. Here, we performed temporal phosphoproteomics to elucidate the dynamic changes after citreoviridin treatment in cells and xenograft model. We identified a total of 829 phosphoproteins and demonstrated that citreoviridin treatment affects protein folding, cell cycle, and cytoskeleton function. Furthermore, response network constructed by mathematical modeling shows the relationship between the phosphorylated heat shock protein 90 ? and mitogen-activated protein kinase signaling pathway. This work describes that citreoviridin suppresses cancer cell growth and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling by site-specific dephosphorylation of HSP90AB1 on Serine 255 and provides perspectives in cancer therapeutic strategies. PMID:26503892

  2. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  3. ATP-dependent chromatin remodeling in T cells

    PubMed Central

    Wurster, Andrea L.; Pazin, Michael J.

    2012-01-01

    One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. In this review, first we briefly present biochemical/cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI), to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes, during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding. PMID:21999456

  4. PROTECTED VETERAN DEFINITIONS TITLE DEFINITION

    E-print Network

    Capecchi, Mario R.

    PROTECTED VETERAN DEFINITIONS TITLE DEFINITION Veteran of the Vietnam Era Veteran of the U because of a service connected disability. "Vietnam era veteran" also includes any veteran of the U and May 7, 1975. Special Disabled Veteran Veteran who served on active duty in the U.S. military ground

  5. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria

    E-print Network

    McFadden, Geoff

    Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria of the parasite life cycle. We knocked out the mitochondrial ATP synthase subunit gene in the rodent malaria

  6. Characterisation of an ATP diphosphohydrolase (Apyrase, EC 3.6.1.5) activity in Trichomonas vaginalis

    E-print Network

    Eizirik, Eduardo

    kinase, did not inhibit the enzyme activity. The enzyme has apparent Km (Michaelis Constant) values of 49 to the activity of a group of ecto- enzymes, the ectonucleotidases, which includes ecto-ATP diphosphohydrolaseCharacterisation of an ATP diphosphohydrolase (Apyrase, EC 3.6.1.5) activity in Trichomonas

  7. Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique

    NASA Astrophysics Data System (ADS)

    Geer, M. Ariel; Fitzgerald, Michael C.

    2015-11-01

    The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.

  8. A novel sensitive and selective ligation-based ATP assay using a molecular beacon

    E-print Network

    Tan, Weihong

    A novel sensitive and selective ligation-based ATP assay using a molecular beacon Changbei Ma a molecular beacon, T4 DNA ligase and two short oligonucleotides. In the presence of ATP, the T4 DNA ligase catalyzes the ligation reaction and the ligation product restores the fluorescence of the molecular beacon

  9. Structure and Mechanism of Soybean ATP Sulfurylase and the Committed Step in Plant Sulfur Assimilation*

    PubMed Central

    Herrmann, Jonathan; Ravilious, Geoffrey E.; McKinney, Samuel E.; Westfall, Corey S.; Lee, Soon Goo; Baraniecka, Patrycja; Giovannetti, Marco; Kopriva, Stanislav; Krishnan, Hari B.; Jez, Joseph M.

    2014-01-01

    Enzymes of the sulfur assimilation pathway are potential targets for improving nutrient content and environmental stress responses in plants. The committed step in this pathway is catalyzed by ATP sulfurylase, which synthesizes adenosine 5?-phosphosulfate (APS) from sulfate and ATP. To better understand the molecular basis of this energetically unfavorable reaction, the x-ray crystal structure of ATP sulfurylase isoform 1 from soybean (Glycine max ATP sulfurylase) in complex with APS was determined. This structure revealed several highly conserved substrate-binding motifs in the active site and a distinct dimerization interface compared with other ATP sulfurylases but was similar to mammalian 3?-phosphoadenosine 5?-phosphosulfate synthetase. Steady-state kinetic analysis of 20 G. max ATP sulfurylase point mutants suggests a reaction mechanism in which nucleophilic attack by sulfate on the ?-phosphate of ATP involves transition state stabilization by Arg-248, Asn-249, His-255, and Arg-349. The structure and kinetic analysis suggest that ATP sulfurylase overcomes the energetic barrier of APS synthesis by distorting nucleotide structure and identifies critical residues for catalysis. Mutations that alter sulfate assimilation in Arabidopsis were mapped to the structure, which provides a molecular basis for understanding their effects on the sulfur assimilation pathway. PMID:24584934

  10. Supporting Information Selective ATP-competitive inhibitors of TOR suppress rapamycin insensitive

    E-print Network

    Sabatini, David M.

    Supporting Information Selective ATP-competitive inhibitors of TOR suppress rapamycin insensitive. Yeast strain SH121 and SH121 harboring pRS314[HA TOR2] plasmid were obtained from Yoshinori Ohsumi,000rpm for 1 min. One µl of supernatant was used as a template for PCR. The ATP pocket region in TOR1

  11. Specific requirement for ATP at an early step of in vitro transcription of human mitochondrial DNA

    SciTech Connect

    Narasimhan, N.; Attardi, G.

    1987-06-01

    The ATP concentrations allowing transcription of heavy- and light-strand of human mtDNA in a HeLa cell mitochrondrial lysate were found to cover a broad range, with a maximum around 2.5 mM, and with reproducible differences in the ATP response curves for the two transcription events. Direct measurements showed that nonspecific ATP degradation during the assay did not account for the high ATP requirement. 5'-Adenylyl imidodiphosphate (p(NH)ppA), an ATP analog with a nonhydrolyzable ..beta..-..gamma.. bond, was unable to substitute for ATP in supporting mtDNA transcription but greatly stimulated this transcription in the presence of a low concentration of exogenous APT, measured with (/sup 32/P)-labeled nucleotides. Evidence was obtained indicating that p(NH)ppA did not support an early event in mtDNA transcription (formation of preinitiation complex or initiation), whereas this analog could substitute effectively for ATP in the subsequent elongation steps. These results pointed to a specific requirement for ATP at an early step of the transcription process.

  12. Overexpression of ATP Sulfurylase in Indian Mustard Leads to Increased Selenate Uptake, Reduction, and Tolerance1

    E-print Network

    Overexpression of ATP Sulfurylase in Indian Mustard Leads to Increased Selenate Uptake, Reduction, New Brunswick, New Jersey 08901 (Y.C., T.L.) In earlier studies, the assimilation of selenate in shoots but not roots of selenate-supplied mature ATP-sulfurylase- overexpressing (APS) plants. The APS

  13. Three-Dimensional Structures Reveal Multiple ADP/ATP Binding Modes

    SciTech Connect

    C Simmons; C Magee; D Smith; L Lauman; J Chaput; J Allen

    2011-12-31

    The creation of synthetic enzymes with predefined functions represents a major challenge in future synthetic biology applications. Here, we describe six structures of de novo proteins that have been determined using protein crystallography to address how simple enzymes perform catalysis. Three structures are of a protein, DX, selected for its stability and ability to tightly bind ATP. Despite the addition of ATP to the crystallization conditions, the presence of a bound but distorted ATP was found only under excess ATP conditions, with ADP being present under equimolar conditions or when crystallized for a prolonged period of time. A bound ADP cofactor was evident when Asp was substituted for Val at residue 65, but ATP in a linear configuration is present when Phe was substituted for Tyr at residue 43. These new structures complement previously determined structures of DX and the protein with the Phe 43 to Tyr substitution [Simmons, C. R., et al. (2009) ACS Chem. Biol. 4, 649-658] and together demonstrate the multiple ADP/ATP binding modes from which a model emerges in which the DX protein binds ATP in a configuration that represents a transitional state for the catalysis of ATP to ADP through a slow, metal-free reaction capable of multiple turnovers. This unusual observation suggests that design-free methods can be used to generate novel protein scaffolds that are tailor-made for catalysis.

  14. Autism Post-Mortem Neuroinformatic Resource: The Autism Tissue Program (ATP) Informatics Portal

    ERIC Educational Resources Information Center

    Brimacombe, Michael B.; Pickett, Richard; Pickett, Jane

    2007-01-01

    The Autism Tissue Program (ATP) was established to oversee and manage brain donations related to neurological research in autism. The ATP Informatics Portal (www.atpportal.org) is an integrated data access system based on Oracle technology, developed to provide access for researchers to information on this rare tissue resource. It also permits…

  15. A lipid switch unlocks Parkinson's disease-associated ATP13A2.

    PubMed

    Holemans, Tine; Sørensen, Danny Mollerup; van Veen, Sarah; Martin, Shaun; Hermans, Diane; Kemmer, Gerdi Christine; Van den Haute, Chris; Baekelandt, Veerle; Günther Pomorski, Thomas; Agostinis, Patrizia; Wuytack, Frank; Palmgren, Michael; Eggermont, Jan; Vangheluwe, Peter

    2015-07-21

    ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor-Rakeb syndrome and Parkinson's disease (PD), providing protection against ?-synuclein, Mn(2+), and Zn(2+) toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce ?-synuclein toxicity or mitochondrial stress in PD or related disorders. PMID:26134396

  16. On the Mg(2+) binding site of the ? subunit from bacterial F-type ATP synthases.

    PubMed

    Krah, Alexander; Takada, Shoji

    2015-10-01

    F-type ATP synthases, central energy conversion machines of the cell synthesize adenosine triphosphate (ATP) using an electrochemical gradient across the membrane and, reversely, can also hydrolyze ATP to pump ions across the membrane, depending on cellular conditions such as ATP concentration. To prevent wasteful ATP hydrolysis, mammalian and bacterial ATP synthases possess different regulatory mechanisms. In bacteria, a low ATP concentration induces a conformational change in the ? subunit from the down- to up-states, which inhibits ATP hydrolysis. Moreover, the conformational change of the ? subunit depends on Mg(2+) concentration in some bacteria such as Bacillus subtilis, but not in others. This diversity makes the ? subunit a potential target for antibiotics. Here, performing molecular dynamics simulations, we identify the Mg(2+) binding site in the ? subunit from B. subtilis as E59 and E86. The free energy analysis shows that the first-sphere bi-dentate coordination of the Mg(2+) ion by the two glutamates is the most stable state. In comparison, we also clarify the reason for the absence of Mg(2+) dependency in the ? subunit from thermophilic Bacillus PS3, despite the high homology to that from B. subtilis. Sequence alignment suggests that this Mg(2+) binding motif is present in the ? subunits of some pathogenic bacteria. In addition we discuss strategies to stabilize an isolated ? subunit carrying the Mg(2+) binding motif by site directed mutagenesis, which also can be used to crystallize Mg(2+) dependent ? subunits in future. PMID:26028301

  17. ATP: A Coherent View for School Advanced Level Studies in Biology.

    ERIC Educational Resources Information Center

    Gayford, Chris

    1986-01-01

    Discusses how instruction of biological concepts as ATP cellular energetics is related to fundamental physical science understandings. Reviews areas of common misconceptions and confusions. Summarizes results of a study which investigated students' knowledge and perception of difficulty associated with the topic of energy and ATP. (ML)

  18. ATP as a biomarker of viable microorganisms in clean-room facilities

    NASA Technical Reports Server (NTRS)

    Venkateswaran, Kasthuri; Hattori, Noriaki; La Duc, Myron T.; Kern, Roger

    2003-01-01

    A new firefly luciferase bioluminescence assay method that differentiates free extracellular ATP (dead cells, etc.) from intracellular ATP (viable microbes) was used to determine the viable microbial cleanliness of various clean-room facilities. For comparison, samples were taken from both clean-rooms, where the air was filtered to remove particles >0.5 microm, and ordinary rooms with unfiltered air. The intracellular ATP was determined after enzymatically degrading the sample's free ATP. Also for comparison, cultivable microbial populations were counted on nutrient-rich trypticase soy agar (TSA) plates. Both the cultivable and ATP-based determinations indicate that the microbial burden was lower in clean-room facilities than in ordinary rooms. However, there was no direct correlation between the two sets of measurements because the two assays measured very different populations. A large fraction of the samples yielded no colony formers on TSA, but were positive for intracellular ATP. Subsequently, genomic DNA was isolated directly from selected samples and 16S rDNA fragments were cloned and sequenced, identifying nearest neighbors, many of which are known to be noncultivable in the media employed. It was concluded that viable microbial contamination can be reliably monitored by measurement of intracellular ATP, and that this method may be considered superior to cultivable colony counts due to its speed and its ability to report the presence of viable but noncultivable organisms. When the detection of nonviable microbes is of interest, the ATP assay can be supplemented with DNA analysis.

  19. Dual control of vascular tone and remodelling by ATP released from nerves and endothelial cells

    E-print Network

    Burnstock, Geoffrey

    in response to changes in blood flow (shear stress) and hypoxia. Both ATP and its breakdown product, adenosine ­ noradrenaline, NGF ­ nerve growth fac- tor, NO ­ nitric oxide, PDGF ­ platelet-derived growth factor, SHR reflex' activity dilates some vessels [28]. ATP released from endothelial cells during changes in blood

  20. Mitochondria regulate neutrophil activation by generating ATP for autocrine purinergic signaling.

    PubMed

    Bao, Yi; Ledderose, Carola; Seier, Thomas; Graf, Amelie F; Brix, Bianca; Chong, Eritza; Junger, Wolfgang G

    2014-09-26

    Polymorphonuclear neutrophils (PMNs) form the first line of defense against invading microorganisms. We have shown previously that ATP release and autocrine purinergic signaling via P2Y2 receptors are essential for PMN activation. Here we show that mitochondria provide the ATP that initiates PMN activation. Stimulation of formyl peptide receptors increases the mitochondrial membrane potential (??m) and triggers a rapid burst of ATP release from PMNs. This burst of ATP release can be blocked by inhibitors of mitochondrial ATP production and requires an initial formyl peptide receptor-induced Ca(2+) signal that triggers mitochondrial activation. The burst of ATP release generated by the mitochondria fuels a first phase of purinergic signaling that boosts Ca(2+) signaling, amplifies mitochondrial ATP production, and initiates functional PMN responses. Cells then switch to glycolytic ATP production, which fuels a second round of purinergic signaling that sustains Ca(2+) signaling via P2X receptor-mediated Ca(2+) influx and maintains functional PMN responses such as oxidative burst, degranulation, and phagocytosis. PMID:25104353

  1. Effects of pyridoxine-pyrrolidon-carboxylate on hepatic and cerebral ATP levels in ethanol treated rats.

    PubMed

    Felicioli, R; Saracchi, I; Flagiello, A M; Bartoli, C

    1980-06-01

    ATP levels were measured in the liver and brain of rats acutely intoxicated with ethanol. The pretreatment of the animals with pyridoxine-pyrrolidon carboxylate (Metadoxine) prevented the marked fall in ATP concentration caused by ethanol in both organs. PMID:7192694

  2. ORIGINAL ARTICLE An in vivo model of melanoma: treatment with ATP

    E-print Network

    Burnstock, Geoffrey

    -triphosphate (ATP). The tumour volume and animal weight were measured over the course of the experiment 50% by 7 weeks in treated mice. Weight loss in untreated animals was prevented by ATP. Histological, urgently needed. Interactions between the nervous system and epidermal melanocytes have been suspected

  3. Synergistic binding of glucose and aluminium ATP to hexokinase from Saccharomyces cerevisiae.

    PubMed

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-08-10

    The binding of glucose, AlATP and AlADP to the monomeric and dimeric forms of the native yeast hexokinase PII isoenzyme and to the proteolytically modified SII monomeric form was monitored at pH 6.7 by the concomitant quenching of intrinsic protein fluorescence. No fluorescence changes were observed when free enzyme was mixed with AlATP at concentrations up to 7500 microM. In the presence of saturating concentrations of glucose, the maximal quenching of fluorescence induced by AlATP was between 1.5 and 3.5% depending on species, and the average value of [L]0.5, the concentration of ligand at half-saturation, over all monomeric species was 0.9 +/- 0.4 microM. The presence of saturating concentrations of AlATP diminished [L]0.5 for glucose binding by between 260- and 670-fold for hexokinase PII and SII monomers, respectively (dependent on the ionic strength), and by almost 4000-fold for PII dimer. The data demonstrate extremely strong synergistic interactions in the binding of glucose and AlATP to yeast hexokinase, arising as a consequence of conformational changes in the free enzyme induced by glucose and in enzyme-glucose complex induced by AlATP. The synergistic interactions of glucose and AlATP are related to their kinetic synergism and to the ability of AlATP to act as a powerful inhibitor of the hexokinase reaction. PMID:3042027

  4. Submembrane ATP and Ca2+ kinetics in ?-cells: unexpected signaling for glucagon secretion.

    PubMed

    Li, Jia; Yu, Qian; Ahooghalandari, Parvin; Gribble, Fiona M; Reimann, Frank; Tengholm, Anders; Gylfe, Erik

    2015-08-01

    Cytoplasmic ATP and Ca(2+) are implicated in current models of glucose's control of glucagon and insulin secretion from pancreatic ?- and ?-cells, respectively, but little is known about ATP and its relation to Ca(2+) in ?-cells. We therefore expressed the fluorescent ATP biosensor Perceval in mouse pancreatic islets and loaded them with a Ca(2+) indicator. With total internal reflection fluorescence microscopy, we recorded subplasma membrane concentrations of Ca(2+) and ATP ([Ca(2+)]pm; [ATP]pm) in superficial ?- and ?-cells of intact islets and related signaling to glucagon and insulin secretion by immunoassay. Consistent with ATP's controlling glucagon and insulin secretion during hypo- and hyperglycemia, respectively, the dose-response relationship for glucose-induced [ATP]pm generation was left shifted in ?-cells compared to ?-cells. Both cell types showed [Ca(2+)]pm and [ATP]pm oscillations in opposite phase, probably reflecting energy-consuming Ca(2+) transport. Although pulsatile insulin and glucagon release are in opposite phase, [Ca(2+)]pm synchronized in the same phase between ?- and ?-cells. This paradox can be explained by the overriding of Ca(2+) stimulation by paracrine inhibition, because somatostatin receptor blockade potently stimulated glucagon release with little effect on Ca(2+). The data indicate that an ?-cell-intrinsic mechanism controls glucagon in hypoglycemia and that paracrine factors shape pulsatile secretion in hyperglycemia. PMID:25911612

  5. ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio)

    E-print Network

    Eizirik, Eduardo

    ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio) Eduardo Pacheco Rico1 , Mario membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for ATP and ADP. The presence of a NTPDase in brain membranes of zebrafish may be important for the modulation of nucleotide

  6. Millisecond kinetics of ATP synthesis driven by externally imposed electrochemical potentials in chloroplasts

    SciTech Connect

    Horner, R.D.; Moudrianakis, E.N.

    1985-05-25

    The authors have used rapid mixing and quenching techniques to measure the initial ATP synthesis rates and the duration of the ATP synthetic capacity derived from artificially imposed proton gradients and valinomycin-mediated K+ diffusion potentials in chloroplasts. The initial rate of ATP synthesis driven by a K+ diffusion potential was 10-fold slower than that driven by an acid-base transition of equivalent electrochemical potential. Total yields of ATP resulting from a K+ concentration shift were only slightly affected by the absence of Cl-, indicating that Cl- permeability does not significantly reduce the K+ diffusion potential. The ATP synthetic capacity decayed with a half-life of 0.2 s in the case of a K+ diffusion potential and a half-life of 1.0 s in the case of an acid-base shift. In both cases, ATP, added at the time of the pH or (KCl) shift, slowed the decay of the ATP synthesis rates, indicating that the coupling factor controls a channel for proton efflux, as proposed earlier. Because the proton gradient has a longer half-life than the K+ diffusion potential, when combinations of the two are employed to drive ATP synthesis, the proton gradient will make a larger contribution to the initial rate and total yield than that predicted from a strictly linear proportionality of the initial magnitudes of the two gradients.

  7. FEBS 19145 FEBS Letters 414 (1997) 485^91 ATP synthase: a tentative structural model

    E-print Network

    Junge, Wolfgang

    1997-01-01

    , mitochondria, and chloroplasts is under contention. The elements for proton transport and for the ATPFEBS 19145 FEBS Letters 414 (1997) 485^91 Hypothesis ATP synthase: a tentative structural model Received 11 June 1997; revised version received 25 June 1997 Abstract Adenosine triphosphate (ATP) synthase

  8. Intracellular ATP Decrease Mediates NLRP3 Inflammasome Activation upon Nigericin and Crystal Stimulation.

    PubMed

    Nomura, Johji; So, Alexander; Tamura, Mizuho; Busso, Nathalie

    2015-12-15

    Activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome initiates an inflammatory response, which is associated with host defense against pathogens and the progression of chronic inflammatory diseases such as gout and atherosclerosis. The NLRP3 inflammasome mediates caspase-1 activation and subsequent IL-1? processing in response to various stimuli, including extracellular ATP, although the roles of intracellular ATP (iATP) in NLRP3 activation remain unclear. In this study, we found that in activated macrophages artificial reduction of iATP by 2-deoxyglucose, a glycolysis inhibitor, caused mitochondrial membrane depolarization, leading to IL-1? secretion via NLRP3 and caspase-1 activation. Additionally, the NLRP3 activators nigericin and monosodium urate crystals lowered iATP through K(+)- and Ca(2+)-mediated mitochondrial dysfunction, suggesting a feedback loop between iATP loss and lowering of mitochondrial membrane potential. These results demonstrate the fundamental roles of iATP in the maintenance of mitochondrial function and regulation of IL-1? secretion, and they suggest that maintenance of the intracellular ATP pools could be a strategy for countering NLRP3-mediated inflammation. PMID:26546608

  9. Physiological Studies on Pea Tendrils. II. The Role of Light and ATP in Contact Coiling

    PubMed Central

    Jaffe, M. J.; Galston, A. W.

    1966-01-01

    Excised pea (Pisum sativum L.) tendrils incubated in the light coil more than those incubated in the dark. This light effect, which displays spectral responses characteristic of chlorophyll-mediated mechanisms, is increased by at least 8 hours of prior dark incubation of plants from which the tendrils were derived. Considerable evidence indicates a major role of ATP in coiling. For example, inhibitors of ATP production decrease contact coiling. Exogenous ATP increases curvature in the dark, whereas exogenous adenosine, AMP and ADP are practically without effect. The ATP effect can be reversed by the addition of sucrose to the bathing solution. Tendrils of plants placed in the dark overnight have lower ATP levels than those held in the light. One half hour after stimulation, the endogenous ATP level of tendrils on plants kept in the light decreased fourfold. In the same period, the endogenous inorganic phosphate level increased markedly, indicating high adenosine triphosphatase activity. Curvature is proportional to the logarithm of the molarity of applied ATP between 10?4 and 10?2m, whereas elongation responds only to the higher dosages. It is inferred that endogenous ATP is involved as an energy source in coiling, especially in the initial phase, which involves contraction of the tendril. The existence of a higher plant analog of actomyosin, suggested by others, is supported. PMID:16656378

  10. Cation Transport Coupled to ATP Hydrolysis by the (Na, K)-ATPase: An Integrated, Animated Model

    ERIC Educational Resources Information Center

    Leone, Francisco A.; Furriel, Rosa P. M.; McNamara, John C.; Horisberger, Jean D.; Borin, Ivana A.

    2010-01-01

    An Adobe[R] animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na[superscript +] and K[superscript +] translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P[subscript 2c]-type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also…

  11. ATP Hydrolysis in Water -A Density Functional Study J. Akola and R. O. Jones*

    E-print Network

    ATP Hydrolysis in Water - A Density Functional Study J. Akola and R. O. Jones* Institut fu¨r Festko-dependent hydrolysis reaction. Two paths for ATP hydrolysis in water with Mg2+ are studied here using the density) in the triphosphate tail of the molecule as an energy-rich bond that releases energy upon hydrolysis due

  12. Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament Padinhateeri Ranjith,

    E-print Network

    Lacoste, David

    Role of ATP-Hydrolysis in the Dynamics of a Single Actin Filament Padinhateeri Ranjith, * Kirone, and ATP hydrolysis of subunits either according to the vectorial mechanism or to the random mechanism. In a previous work, we developed a model for a single actin or microtubule filament where hydrolysis occurred

  13. A SPECTROPHOTOMETRIC ASSAY TO MEASURE RUBISCO ACTIVASE ACTIVATION ACTIVITY UNDER VARYING ATP:ADP RATIOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ratio of ATP to ADP in the stroma is an important regulatory mechanism for controlling the activation state of Rubisco via Rubisco activase (activase). Understanding the response of activase to a varying ATP:ADP ratio should reveal insights into the regulation of photosynthesis. However, the cur...

  14. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance.

    PubMed

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may link proton transfer to ring compliance. PMID:26331255

  15. Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana.

    PubMed

    Bohrer, Anne-Sophie; Yoshimoto, Naoko; Sekiguchi, Ai; Rykulski, Nicholas; Saito, Kazuki; Takahashi, Hideki

    2014-01-01

    Plants assimilate inorganic sulfate into sulfur-containing vital metabolites. ATP sulfurylase (ATPS) is the enzyme catalyzing the key entry step of the sulfate assimilation pathway in both plastids and cytosol in plants. Arabidopsis thaliana has four ATPS genes (ATPS1, -2, -3, and -4) encoding ATPS pre-proteins containing N-terminal transit peptide sequences for plastid targeting, however, the genetic identity of the cytosolic ATPS has remained unverified. Here we show that Arabidopsis ATPS2 dually encodes plastidic and cytosolic ATPS isoforms, differentiating their subcellular localizations by initiating translation at AUG(Met1) to produce plastid-targeted ATPS2 pre-proteins or at AUG(Met52) or AUG(Met58) within the transit peptide to have ATPS2 stay in cytosol. Translational initiation of ATPS2 at AUG(Met52) or AUG(Met58) was verified by expressing a tandem-fused synthetic gene, ATPS2 (5'UTR-His12) :Renilla luciferase:ATPS2 (Ile13-Val77) :firefly luciferase, under a single constitutively active CaMV 35S promoter in Arabidopsis protoplasts and examining the activities of two different luciferases translated in-frame with split N-terminal portions of ATPS2. Introducing missense mutations at AUG(Met52) and AUG(Met58) significantly reduced the firefly luciferase activity, while AUG(Met52) was a relatively preferred site for the alternative translational initiation. The activity of luciferase fusion protein starting at AUG(Met52) or AUG(Met58) was not modulated by changes in sulfate conditions. The dual localizations of ATPS2 in plastids and cytosol were further evidenced by expression of ATPS2-GFP fusion proteins in Arabidopsis protoplasts and transgenic lines, while they were also under control of tissue-specific ATPS2 promoter activity found predominantly in leaf epidermal cells, guard cells, vascular tissues and roots. PMID:25601874

  16. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+

    NASA Technical Reports Server (NTRS)

    Michailova, Anushka; Saucerman, Jeffrey; Belik, Mary Ellen; McCulloch, Andrew D.

    2005-01-01

    Changes in cytosolic free Mg(2+) and adenosine nucleotide phosphates affect cardiac excitability and contractility. To investigate how modulation by Mg(2+), ATP, and ADP of K(ATP) and L-type Ca(2+) channels influences excitation-contraction coupling, we incorporated equations for intracellular ATP and MgADP regulation of the K(ATP) current and MgATP regulation of the L-type Ca(2+) current in an ionic-metabolic model of the canine ventricular myocyte. The new model: 1), quantitatively reproduces a dose-response relationship for the effects of changes in ATP on K(ATP) current, 2), simulates effects of ADP in modulating ATP sensitivity of K(ATP) channel, 3), predicts activation of Ca(2+) current during rapid increase in MgATP, and 4), demonstrates that decreased ATP/ADP ratio with normal total Mg(2+) or increased free Mg(2+) with normal ATP and ADP activate K(ATP) current, shorten action potential, and alter ionic currents and intracellular Ca(2+) signals. The model predictions are in agreement with experimental data measured under normal and a variety of pathological conditions.

  17. ATP release mechanisms of endothelial cell-mediated stimulus-dependent hyperalgesia

    PubMed Central

    Joseph, Elizabeth K.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Endothelin-1 acts on endothelial cells to enhance mechanical stimulation-induced release of ATP, which in turn can act on sensory neurons innervating blood vessels to contribute to vascular pain, a phenomenon we have referred to as stimulus-dependent hyperalgesia (SDH). In the present study we evaluated the role of the major classes of ATP release mechanisms to SDH: vesicular exocytosis, plasma membrane associated ATP synthase, ATP-Binding Cassette (ABC) transporters, and ion channels. Inhibitors of vesicular exocytosis (i.e., monensin, brefeldin A and bafilomycin), plasma membrane associated ATPase (i.e., oligomycin and pigment epithelium-derived factor-derived peptide 34-mer) and connexin ion channels (carbenoxolone and flufenamic acid), but not ABC transporters (i.e., dipyridamole, nicardipine or CFTRinh-172) attenuated stimulus-dependent hyperalgesia. These studies support a role of ATP in SDH, and suggest novel targets for the treatment of vascular pain syndromes. PMID:24793242

  18. ROLE OF ATP IN REGULATING RENAL MICROVASCULAR FUNCTION AND IN HYPERTENSION

    PubMed Central

    Guan, Zhengrong; Inscho, Edward W.

    2011-01-01

    Adenosine triphosphate (ATP) is an essential energy substrate for cellular metabolism but it can also influence many biological processes when released into the extracellular milieu. Research has established that extracellular ATP acts as an autocrine/paracrine factor that regulates many physiological functions. Alternatively, excessive extracellular ATP levels contribute to pathophysiological processes such as inflammation, cell proliferation and apoptosis, and atherosclerosis. Renal P2 receptors are widely distributed throughout glomeruli, vasculature and tubular segments, and participate in controlling renal vascular resistance, mediating renal autoregulation, and regulating tubular transport function. This review will focus on the role of ATP-P2 receptor signaling in regulating renal microvascular function and autoregulation, recent advances on the role of ATP-P2 signaling in hypertension-associated renal vascular injury, and emerging new directions. PMID:21768526

  19. Interdependence of ATP signalling and pannexin channels; the servant was really the master all along?

    PubMed

    Jackson, Michael F

    2015-12-15

    Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors. PMID:26613946

  20. Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation.

    PubMed

    Malyan, A N

    2013-12-01

    ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed. PMID:24490737

  1. Light-harvesting chlorophyll pigments enable mammalian mitochondria to capture photonic energy and produce ATP.

    PubMed

    Xu, Chen; Zhang, Junhua; Mihai, Doina M; Washington, Ilyas

    2014-01-15

    Sunlight is the most abundant energy source on this planet. However, the ability to convert sunlight into biological energy in the form of adenosine-5'-triphosphate (ATP) is thought to be limited to chlorophyll-containing chloroplasts in photosynthetic organisms. Here we show that mammalian mitochondria can also capture light and synthesize ATP when mixed with a light-capturing metabolite of chlorophyll. The same metabolite fed to the worm Caenorhabditis elegans leads to increase in ATP synthesis upon light exposure, along with an increase in life span. We further demonstrate the same potential to convert light into energy exists in mammals, as chlorophyll metabolites accumulate in mice, rats and swine when fed a chlorophyll-rich diet. Results suggest chlorophyll type molecules modulate mitochondrial ATP by catalyzing the reduction of coenzyme Q, a slow step in mitochondrial ATP synthesis. We propose that through consumption of plant chlorophyll pigments, animals, too, are able to derive energy directly from sunlight. PMID:24198392

  2. I. Preliminaries II. Some definitions of noncommutative residues

    E-print Network

    Grubb, Gerd

    I. Preliminaries II. Some definitions of noncommutative residues III. Occurrence as invariants IV. Hadamard finite-part integrals V. C0 for cases with boundary VI. Sectorial projections New residue, 2008 Gerd Grubb Copenhagen University New residue definitions arising from zeta values for boundary #12

  3. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I

    PubMed Central

    Gupta, Yogesh K.; Chan, Siu-Hong; Xu, Shuang-yong; Aggarwal, Aneel K.

    2015-01-01

    Type III R–M enzymes were identified >40 years ago and yet there is no structural information on these multisubunit enzymes. Here we report the structure of a Type III R–M system, consisting of the entire EcoP15I complex (Mod2Res1) bound to DNA. The structure suggests how ATP hydrolysis is coupled to long-range diffusion of a helicase on DNA, and how a dimeric methyltransferase functions to methylate only one of the two DNA strands. We show that the EcoP15I motor domains are specifically adapted to bind double-stranded DNA and to facilitate DNA sliding via a novel ‘Pin' domain. We also uncover unexpected ‘division of labour', where one Mod subunit recognizes DNA, while the other Mod subunit methylates the target adenine—a mechanism that may extend to adenine N6 RNA methylation in mammalian cells. Together the structure sheds new light on the mechanisms of both helicases and methyltransferases in DNA and RNA metabolism. PMID:26067164

  4. Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I

    NASA Astrophysics Data System (ADS)

    Gupta, Yogesh K.; Chan, Siu-Hong; Xu, Shuang-Yong; Aggarwal, Aneel K.

    2015-06-01

    Type III R-M enzymes were identified >40 years ago and yet there is no structural information on these multisubunit enzymes. Here we report the structure of a Type III R-M system, consisting of the entire EcoP15I complex (Mod2Res1) bound to DNA. The structure suggests how ATP hydrolysis is coupled to long-range diffusion of a helicase on DNA, and how a dimeric methyltransferase functions to methylate only one of the two DNA strands. We show that the EcoP15I motor domains are specifically adapted to bind double-stranded DNA and to facilitate DNA sliding via a novel `Pin' domain. We also uncover unexpected `division of labour', where one Mod subunit recognizes DNA, while the other Mod subunit methylates the target adenine--a mechanism that may extend to adenine N6 RNA methylation in mammalian cells. Together the structure sheds new light on the mechanisms of both helicases and methyltransferases in DNA and RNA metabolism.

  5. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    PubMed

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits ? (non-catalytic) and ? (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5?M. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active ?3?3? complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-?3?3? complex interaction. Whereas the ?3?3? complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. PMID:25681694

  6. Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel

    PubMed Central

    Bowles, Elizabeth A.; Richards, Jennifer P.; Krantic, Medina; Davis, Katie L.; Dietrich, Kristine A.; Stephenson, Alan H.; Ellsworth, Mary L.; Sprague, Randy S.

    2012-01-01

    Erythrocytes have been implicated as controllers of vascular caliber by virtue of their ability to release the vasodilator ATP in response to local physiological and pharmacological stimuli. The regulated release of ATP from erythrocytes requires activation of a signaling pathway involving G proteins (Gi or Gs), adenylyl cyclase, protein kinase A, and the cystic fibrosis transmembrane conductance regulator as well as a final conduit through which this highly charged anion exits the cell. Although pannexin 1 has been shown to be the final conduit for ATP release from human erythrocytes in response to reduced oxygen tension, it does not participate in transport of ATP following stimulation of the prostacyclin (IP) receptor in these cells, which suggests that an additional protein must be involved. Using antibodies directed against voltage-dependent anion channel (VDAC)1, we confirm that this protein is present in human erythrocyte membranes. To address the role of VDAC in ATP release, two structurally dissimilar VDAC inhibitors, Bcl-xL BH44–23 and TRO19622, were used. In response to the IP receptor agonists, iloprost and UT-15C, ATP release was inhibited by both VDAC inhibitors although neither iloprost-induced cAMP accumulation nor total intracellular ATP concentration were altered. Together, these findings support the hypothesis that VDAC is the ATP conduit in the IP receptor-mediated signaling pathway in human erythrocytes. In addition, neither the pannexin inhibitor carbenoxolone nor Bcl-xL BH44–23 attenuated ATP release in response to incubation of erythrocytes with the ?-adrenergic receptor agonist isoproterenol, suggesting the presence of yet another channel for ATP release from human erythrocytes. PMID:22159995

  7. Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors

    SciTech Connect

    Gikas, P.; Livingston, A.G. . Dept. of Chemical Engineering)

    1993-12-01

    This work describes investigations into the viability of cells growing on 3,4-dichloroaniline (34DCA). Two bio-reactors are employed for microbial growth, a continuous stirred tank (CST) bioreactor with a 2-L working volume, and a three-phase air lift (TPAL) bioreactor with a 3-L working volume. Experiments have been performed at several dilution rates between 0.027 and 0.115 h[sup [minus]1] in the CST bioreactor and between 0.111 and 0.500h[sup [minus]1] in the TPAL bioreactor. The specific ATP concentration was calculated at each dilution rate in the suspended biomass in both bioreactors as well as in the immobilized biomass in the TPAL bioreactor. The cultures were inspected under an electron microscope to monitor compositional changes. Results from the CST bioreactor showed that the biomass-specific ATP concentration increases from 0.44 to 1.86 mg ATP g[sup [minus]1] dry weight (dw) as dilution rate increases from 0.027 to 0.115 h[sup [minus]1]. At this upper dilution rate the cells were washed out. The specific ATP concentration reached a limiting average value of 1.73 mg ATP g[sup [minus]1] dw, which is assumed to be the quantity of ATP in 100% viable biomass, In the TPAL bioreactor, the ATP level increased with dilution rat in both the immobilized and suspended biomass. The specific ATP concentration in the immobilized biomass increased from approximately 0.051 mg ATP g[sup [minus]1] dw at dilution rates between 0.111 and 0.200 h[sup [minus]1] to approximately 0.119 mg ATP g[sup [minus]1] dw at dilution rates between 0.300 and 0.500 h[sup [minus]1].

  8. Lack of Direct Cytotoxicity of Extracellular ATP against Hepatocytes: Role in the Mechanism of Acetaminophen Hepatotoxicity

    PubMed Central

    Xie, Yuchao; Woolbright, Benjamin L.; Kos, Milan; McGill, Mitchell R.; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Jaeschke, Hartmut

    2015-01-01

    Background Acetaminophen (APAP) hepatotoxicity is a major cause of acute liver failure in many countries. Mechanistic studies in mice and humans have implicated formation of a reactive metabolite, mitochondrial dysfunction and oxidant stress as critical events in the pathophysiology of APAP-induced liver cell death. It was recently suggested that ATP released from necrotic cells can directly cause cell death in mouse hepatocytes and in a hepatoma cell line (HepG2). Aim To assess if ATP can directly cause cell toxicity in hepatocytes and evaluate their relevance in the human system. Methods Primary mouse hepatocytes, human HepG2 cells, the metabolically competent human HepaRG cell line and freshly isolated primary human hepatocytes were exposed to 10-100 ?M ATP or AT?P in the presence or absence of 5-10 mM APAP for 9-24 h. Results ATP or AT?P was unable to directly cause cell toxicity in all 4 types of hepatocytes. In addition, ATP did not enhance APAP-induced cell death observed in primary mouse or human hepatocytes, or in HepaRG cells as measured by LDH release and by propidium iodide staining in primary mouse hepatocytes. Furthermore, addition of ATP did not cause mitochondrial dysfunction or enhance APAP-induced mitochondrial dysfunction in primary murine hepatocytes, although ATP did cause cell death in murine RAW macrophages. Conclusions It is unlikely that ATP released from necrotic cells can significantly affect cell death in human or mouse liver during APAP hepatotoxicity. Relevance for Patients Understanding the mechanisms of APAP-induced cell injury is critical for identifying novel therapeutic targets to prevent liver injury and acute liver failure in APAP overdose patients. PMID:26722668

  9. Enhanced Postischemic Functional Recovery in CYP2J2 Transgenic Hearts Involves Mitochondrial ATP-Sensitive K

    E-print Network

    Hammock, Bruce D.

    Enhanced Postischemic Functional Recovery in CYP2J2 Transgenic Hearts Involves Mitochondrial ATP the improved postischemic LVDP recovery in CYP2J2 Tr hearts. Perfusion with the ATP-sensitive K channel (KATP

  10. A stable ATP binding to the nucleotide binding domain is important for reliable gating cycle in an ABC transporter CFTR.

    PubMed

    Shimizu, Hiroyasu; Yu, Ying-Chun; Kono, Koichi; Kubota, Takahiro; Yasui, Masato; Li, Min; Hwang, Tzyh-Chang; Sohma, Yoshiro

    2010-09-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, a member of ABC transporter superfamily, gates following ATP-dependent conformational changes of the nucleotide binding domains (NBD). Reflecting the hundreds of milliseconds duration of the channel open state corresponding to the dimerization of two NBDs, macroscopic WT-CFTR currents usually showed a fast, single exponential relaxation upon removal of cytoplasmic ATP. Mutations of tyrosine1219, a residue critical for ATP binding in second NBD (NBD2), induced a significant slow phase in the current relaxation, suggesting that weakening ATP binding affinity at NBD2 increases the probability of the stable open state. The slow phase was effectively diminished by a higher affinity ATP analogue. These data suggest that a stable binding of ATP to NBD2 is required for normal CFTR gating cycle, andthat the instability of ATP binding frequently halts the gating cycle in the open state presumably through a failure of ATP hydrolysis at NBD2. PMID:20628841

  11. NEM modication prevents high-anity ATP binding to the rst nucleotide binding fold of the sulphonylurea receptor, SUR1

    E-print Network

    Tucker, Stephen J.

    NEM modi¢cation prevents high-a¤nity ATP binding to the ¢rst nucleotide binding fold, UK Received 7 July 1999; received in revised form 11 August 1999 Abstract Pancreatic LL-cell ATP WWM 8-azido- [KK-32 P]ATP or 8-azido-[QQ-32 P]ATP was inhibited by NEM with Ki of 1.8 WWM and 2.4 WWM

  12. SUPERSTARS III: K-2.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Education, Raleigh.

    SUPERSTARS III is a K-8 program designed as an enrichment opportunity for self-directed learners in mathematics. The basic purpose of SUPERSTARS III is to provide the extra challenge that self-motivated students need in mathematics and to do so in a structured, long-term program that does not impinge on the normal classroom routine or the…

  13. LABORATORY III POTENTIAL ENERGY

    E-print Network

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  14. Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex

    E-print Network

    Jones, Alan M.

    Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G: Arabidopsis ATP Heterotrimeric G-protein Touch desensitization a b s t r a c t Amongst the many stimuli a heterotrimeric G-protein. Obstacle avoidance may utilize a touch-induced release of ATP to the extracellular

  15. ATP-sensitive potassium (KATP) channels are found in pancreatic _cells, cardiac, smooth and skeletal muscles, and

    E-print Network

    Tucker, Stephen J.

    ATP-sensitive potassium (KATP) channels are found in pancreatic â_cells, cardiac, smooth ATP and ADP bind to cause channel inhibition. SUR is a regulatory subunit that modulates the channel gating properties, enhances the apparent ATP sensitivity and acts as the target for sulphonylurea drugs

  16. Sensitivity Analysis of the ATP Protocol Karthikeyan Sundaresan, V. Anantharaman, H.-Y. Hsieh and R. Sivakumar

    E-print Network

    Sivakumar, Raghupathy

    Sensitivity Analysis of the ATP Protocol Parameters Karthikeyan Sundaresan, V. Anantharaman, H-tested the parameters involved in the design of the ATP protocol. The analysis was performed using the NS2 simulator and 15 flows. Each of the flows was an ATP flow with FTP serving as the application generating traffic

  17. Cryo-EM Structure of a Group II Chaperonin in the Prehydrolysis ATP-Bound State Leading to Lid Closure

    E-print Network

    Baker, David

    Cryo-EM Structure of a Group II Chaperonin in the Prehydrolysis ATP-Bound State Leading to Lid University, Stanford, CA 94305, USA SUMMARY Chaperonins are large ATP-driven molecular machines that mediate chamber. Here we report the structure of an archaeal group II chaperonin in its prehydrolysis ATP

  18. ATP-sensitive potassium (KATP) channels are found in pancreatic _cells, heart, smooth and skeletal muscle and

    E-print Network

    Tucker, Stephen J.

    ATP-sensitive potassium (KATP) channels are found in pancreatic â_cells, heart, smooth and skeletal al. 1997). Kir6.2 serves as an ATP-sensitive pore while SUR is a regulatory subunit that modulates the channel gating properties, enhances the apparent ATP sensitivity and acts as the target for sulphonylurea

  19. F1-ATPase, the C-terminal End of Subunit Is Not Required for ATP Hydrolysis-driven Rotation*

    E-print Network

    Junge, Wolfgang

    F1-ATPase, the C-terminal End of Subunit Is Not Required for ATP Hydrolysis-driven Rotation, 49076 Osnabru¨ck, Germany ATP hydrolysis by the isolated F1-ATPase drives the rotation of the central coli F1-ATPase). The ATP hydrolysis activity of a load- free ensemble of F1 with 12 residues deleted

  20. A Two-site Kinetic Mechanism for ATP Binding and Hydrolysis by E. coli Rep Helicase Dimer Bound to a

    E-print Network

    Lohman, Timothy M.

    A Two-site Kinetic Mechanism for ATP Binding and Hydrolysis by E. coli Rep Helicase Dimer Bound that are coupled to ATP binding and hydrolysis. We have investi- gated the kinetic mechanism of ATP binding and hydrolysis by a proposed intermediate in Rep-catalyzed DNA unwinding, the Rep ``P2S'' dimer (formed

  1. 7 CFR 1944.506 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... income, computed in accordance with 7 CFR part 3550, subpart B, does not exceed the maximum low-income... distributing any gains or profits to its members. (f) Rural area. The definition in 7 CFR part 3550 applies. (g...; (ii) Monitoring payment of taxes and insurance; (iii) Home maintenance and managment; and (iv)...

  2. 7 CFR 1944.506 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... income, computed in accordance with 7 CFR part 3550, subpart B, does not exceed the maximum low-income... distributing any gains or profits to its members. (f) Rural area. The definition in 7 CFR part 3550 applies. (g...; (ii) Monitoring payment of taxes and insurance; (iii) Home maintenance and managment; and (iv)...

  3. 17 CFR 41.43 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... considered a customer of the security futures intermediary absent the partnership relationship; and (iii) Any... T means Regulation T promulgated by the Board of Governors of the Federal Reserve System, 12 CFR... Customer Accounts and Margin Requirements § 41.43 Definitions. (a) For purposes of this Regulation...

  4. 17 CFR 41.43 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... considered a customer of the security futures intermediary absent the partnership relationship; and (iii) Any... T means Regulation T promulgated by the Board of Governors of the Federal Reserve System, 12 CFR... Customer Accounts and Margin Requirements § 41.43 Definitions. (a) For purposes of this Regulation...

  5. 17 CFR 41.43 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... considered a customer of the security futures intermediary absent the partnership relationship; and (iii) Any... T means Regulation T promulgated by the Board of Governors of the Federal Reserve System, 12 CFR... Customer Accounts and Margin Requirements § 41.43 Definitions. (a) For purposes of this Regulation...

  6. 45 CFR 160.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and Privacy Act, as amended, 20 U.S.C. 1232g; (ii) Records described at 20 U.S.C. 1232g(a)(4)(B)(iv..., performance, or operations; or (iii) Delineation of procedures; or (2) With respect to the privacy of..., the following definitions apply to this subchapter: Act means the Social Security Act. ANSI stands...

  7. 5 CFR 892.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...5 U.S.C. 8901. Open Season means the period of time...following year. For additional open seasons authorized by OPM, the effective...adoption, acquiring a foster child that meets the definition in...employee to provide coverage for a child; (iii) Last dependent...

  8. 5 CFR 892.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...5 U.S.C. 8901. Open Season means the period of time...following year. For additional open seasons authorized by OPM, the effective...adoption, acquiring a foster child that meets the definition in...employee to provide coverage for a child; (iii) Last dependent...

  9. 5 CFR 892.101 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...5 U.S.C. 8901. Open Season means the period of time...following year. For additional open seasons authorized by OPM, the effective...adoption, acquiring a foster child that meets the definition in...employee to provide coverage for a child; (iii) Last dependent...

  10. 5 CFR 892.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...5 U.S.C. 8901. Open Season means the period of time...following year. For additional open seasons authorized by OPM, the effective...adoption, acquiring a foster child that meets the definition in...employee to provide coverage for a child; (iii) Last dependent...

  11. 12 CFR 711.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 7 2013-01-01 2013-01-01 false Definitions. 711.2 Section 711.2 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 701.14(b)(2), or...

  12. 21 CFR 814.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PREMARKET APPROVAL OF MEDICAL DEVICES General § 814.3 Definitions. Link to an amendment published at 79 FR... a medical device. (e) PMA means any premarket approval application for a class III medical...

  13. 12 CFR 212.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Definitions. 212.2 Section 212.2 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 225.71(c); (iv)...

  14. 12 CFR 212.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Definitions. 212.2 Section 212.2 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 225.71(c); (iv)...

  15. 12 CFR 711.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Definitions. 711.2 Section 711.2 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 701.14(b)(2), or...

  16. 12 CFR 711.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 7 2014-01-01 2014-01-01 false Definitions. 711.2 Section 711.2 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 701.14(b)(2), or...

  17. 12 CFR 26.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Definitions. 26.2 Section 26.2 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MANAGEMENT OFFICIAL INTERLOCKS § 26.2... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 5.51(c)(3); (iv)...

  18. 12 CFR 26.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Definitions. 26.2 Section 26.2 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MANAGEMENT OFFICIAL INTERLOCKS § 26.2... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 5.51(c)(3); (iv)...

  19. 12 CFR 26.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Definitions. 26.2 Section 26.2 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY MANAGEMENT OFFICIAL INTERLOCKS § 26.2... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 5.51(c)(3); (iv)...

  20. 12 CFR 212.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Definitions. 212.2 Section 212.2 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 225.71(c); (iv)...

  1. 12 CFR 711.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Definitions. 711.2 Section 711.2 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS MANAGEMENT OFFICIAL... million or more; (iii) A senior executive officer as that term is defined in 12 CFR 701.14(b)(2), or...

  2. 43 CFR 29.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: Interior Office of the Secretary of the Interior TRANS-ALASKA PIPELINE LIABILITY FUND § 29.1 Definitions. As used in this part: (a) Act means the Trans-Alaska Pipeline Authorization Act, title II of Public... directors or similar body, or (iii) Contract or other agreement with other stockholders, or (iv)...

  3. 43 CFR 29.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Lands: Interior Office of the Secretary of the Interior TRANS-ALASKA PIPELINE LIABILITY FUND § 29.1 Definitions. As used in this part: (a) Act means the Trans-Alaska Pipeline Authorization Act, title II of...) Representation on a board of directors or similar body, or (iii) Contract or other agreement with...

  4. 43 CFR 29.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Lands: Interior Office of the Secretary of the Interior TRANS-ALASKA PIPELINE LIABILITY FUND § 29.1 Definitions. As used in this part: (a) Act means the Trans-Alaska Pipeline Authorization Act, title II of...) Representation on a board of directors or similar body, or (iii) Contract or other agreement with...

  5. Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1? and ATP Gradient

    PubMed Central

    Laupheimer, Michael; Skorska, Anna; Große, Jana; Tiedemann, Gudrun; Steinhoff, Gustav; David, Robert; Lux, Cornelia A.

    2014-01-01

    Both stem cell chemokine stromal cell-derived factor-1? (SDF-1?) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes. PMID:25610653

  6. Prokineticin 2 facilitates mechanical allodynia induced by ?,?-methylene ATP in rats.

    PubMed

    Ren, Cuixia; Qiu, Chun-Yu; Gan, Xiong; Liu, Ting-Ting; Qu, Zu-Wei; Rao, Zhiguo; Hu, Wang-Ping

    2015-11-15

    Prokineticin 2 (PK2), a new chemokine, causes mechanical hypersensitivity in the rat hind paw, but little is known about the molecular mechanism. Here, we have found that ionotropic P2X receptor is essential to mechanical allodynia induced by PK2. First, intraplantar injection of high dose (3 or 10pmol) of PK2 significantly increased paw withdrawal response frequency (%) to innocuous mechanical stimuli (mechanical allodynia). And the mechanical allodynia induced by PK2 was prevented by co-administration of TNP-ATP, a selective P2X receptor antagonist. Second, although low dose (0.3 or 1pmol) of PK2 itself did not produce an allodynic response, it significantly facilitated the mechanical allodynia evoked by intraplantar injection of ?,?-methylene ATP (?,?-meATP). Third, PK2 concentration-dependently potentiated ?,?-meATP-activated currents in rat dorsal root ganglion (DRG) neurons. Finally, PK2 receptors and intracellular signal transduction were involved in PK2 potentiation of ?,?-meATP-induced mechanical allodynia and ?,?-meATP-activated currents, since the potentiation were blocked by PK2 receptor antagonist PKRA and selective PKC inhibitor GF 109203X. These results suggested that PK2 facilitated mechanical allodynia induced by ?,?-meATP through a mechanism involved in sensitization of cutaneous P2X receptors expressed by nociceptive nerve endings. PMID:26435025

  7. Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1? and ATP Gradient.

    PubMed

    Laupheimer, Michael; Skorska, Anna; Große, Jana; Tiedemann, Gudrun; Steinhoff, Gustav; David, Robert; Lux, Cornelia A

    2014-01-01

    Both stem cell chemokine stromal cell-derived factor-1? (SDF-1?) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes. PMID:25610653

  8. P2X7 receptors and Fyn kinase mediate ATP-induced oligodendrocyte progenitor cell migration.

    PubMed

    Feng, Ji-Feng; Gao, Xiao-Fei; Pu, Ying-Yan; Burnstock, Geoffrey; Xiang, Zhenghua; He, Cheng

    2015-09-01

    Recruitment of oligodendrocyte precursor cells (OPCs) to the lesions is the most important event for remyelination after central nervous system (CNS) injury or in demyelinating diseases. However, the underlying molecular mechanism is not fully understood. In the present study, we found high concentrations of ATP could increase the number of migrating OPCs in vitro, while after pretreatment with oxidized ATP (a P2X7 receptor antagonist), the promotive effect was attenuated. The promotive effect of 2'(3')-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) (a P2X7 receptor agonist) was more potent than ATP. After incubation with BzATP, the activity of Fyn, one member of the Src family of kinases, was enhanced. Moreover, the interaction between P2X7 and Fyn was identified by co-immunoprecipitation. After blocking the activity of Fyn or down-regulating the expression of Fyn, the migration of OPCs induced by BzATP was inhibited. These data indicate that P2X7 receptors/Fyn may mediate ATP-induced OPC migration under pathological conditions. PMID:26099359

  9. Tension Force-Induced ATP Promotes Osteogenesis Through P2X7 Receptor in Osteoblasts

    PubMed Central

    Kariya, Taro; Tanabe, Natsuko; Shionome, Chieko; Manaka, Soichiro; Kawato, Takayuki; Zhao, Ning; Maeno, Masao; Suzuki, Naoto; Shimizu, Noriyoshi

    2015-01-01

    Orthodontic tooth movement induces alveolar bone resorption and formation by mechanical stimuli. Force exerted on the traction side promotes bone formation. Adenosine triphosphate (ATP) is one of the key mediators that respond to bone cells by mechanical stimuli. However, the effect of tension force (TF)-induced ATP on osteogenesis is inadequately understood. Accordingly, we investigated the effect of TF on ATP production and osteogenesis in MC3T3-E1 cells. Cells were incubated in the presence or absence of P2X7 receptor antagonist A438079, and then stimulated with or without cyclic TF (6% or 18%) for a maximum of 24?h using Flexercell Strain Unit 3000. TF significantly increased extracellular ATP release compared to control. Six percent TF had maximum effect on ATP release compared to 18% TF and control. Six percent TF induced the expression of Runx2 and Osterix. Six percent TF also increased the expression of extracellular matrix proteins (ECMPs), ALP activity, and the calcium content in ECM. A438079 blocked the stimulatory effect of 6% TF on the expression of Runx2, Osterix and ECMPs, ALP activity, and calcium content in ECM. This study indicated that TF-induced extracellular ATP is released in osteoblasts, suggesting that TF-induced ATP promotes osteogenesis by autocrine action through P2X7 receptor in osteoblasts. J. Cell. Biochem. 116: 12–21, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc. PMID:24905552

  10. A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia.

    PubMed Central

    Boutry, M; Chua, N H

    1985-01-01

    The beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia is encoded by two nuclear genes, atp2-1 and atp2-2, which are both expressed. The complete nucleotide sequence of atp2-1 has been determined. It contains eight introns ranging from 88 to 1453 bp. The last intron contains a putative insertion element (Inp), of 812 bp bordered by 35-bp inverted repeats which share an 11-bp homology with Agrobacterium tumefaciens T-DNA borders. Sequences homologous to Inp are present in multiple copies in the N. plumbaginifolia and the N. tabacum genome but not in more distant species. The atp2-1 encoded polypeptide is highly homologous to beta subunits from other ATP synthases but it contains an extension at the N terminus which is probably involved in mitochondrial targeting. A sequence homology between exon 4 of atp2-1 and exon 1 of the human ras genes suggests a common ancestral origin for these exons. Images Fig. 3. Fig. 4. Fig. 5. PMID:2866954

  11. A Kinetic Assay of Mitochondrial ATP-ADP Exchange Rate in Permeabilized Cells

    PubMed Central

    Kawamata, Hibiki; Starkov, Anatoly A; Manfredi, Giovanni; Chinopoulos, Christos

    2010-01-01

    We have previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by a Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In this manuscript we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides, such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity and myosin ATPase activity. Here we report that addition of BeF3? and Na3VO4 to media containing digitonin-permeabilized cells inhibit all ATP-ADP utilizing reactions, except the ANT-mediated mitochondrial ATP-ADP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase, due to its sensitivity to BeF3? and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler, and expressed as a function of citrate synthase activity per total amount of protein. PMID:20691655

  12. Modulation of Root Skewing in Arabidopsis by Apyrases and Extracellular ATP.

    PubMed

    Yang, Xingyan; Wang, Bochu; Farris, Ben; Clark, Greg; Roux, Stanley J

    2015-11-01

    When plant primary roots grow along a tilted surface that is impenetrable, they can undergo a slanted deviation from the direction of gravity called skewing. Skewing is induced by touch stimuli which the roots experience as they grow along the surface. Touch stimuli also induce the release of extracellular ATP (eATP) into the plant's extracellular matrix, and two apyrases (NTPDases) in Arabidopsis, APY1 and APY2, can help regulate the concentration of eATP. The primary roots of seedlings overexpressing APY1 show less skewing than wild-type plants. Plants suppressed in their expression of APY1 show more skewing than wild-type plants. Correspondingly, chemical inhibition of apyrase activity increased skewing in mutants and wild-type roots. Exogenous application of ATP or ATP?S also increased skewing in wild-type roots, which could be blocked by co-incubation with a purinergic receptor antagonist. These results suggest a model in which gradients of eATP set up by differential touch stimuli along roots help direct skewing in roots growing along an impenetrable surface. PMID:26412783

  13. Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Staphylococcus aureus.

    PubMed

    Caillet, Stéphane; Ursachi, Laura; Shareck, François; Lacroix, Monique

    2009-01-01

    The study was carried out to evaluate the effects of gamma-irradiation alone or in combination with oregano essential oil on murein composition of Staphylococcus aureus and on the intracellular and extracellular concentration of ATP. The bacterial strain was treated with 3 irradiation doses: 1.2 kGy to induce cell damage, 2.9 kGy to obtain a viable but nonculturable state, and 3.5 kGy to cause cell death. Oregano essential oil was used at 0.010% and 0.013% (w/v), which is the minimum inhibitory concentration (MIC). All treatments had a significant effect (P < or = 0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant (P < or = 0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation. Also, irradiation alone of S. aureus induced a significant decrease (P < or = 0.05) of the internal ATP and a significant increase (P < or = 0.05) of the external ATP. However, no significant difference (P > 0.05) was observed in ATP concentrations between different radiation doses. Transmission electron microscopic observation revealed that oregano oil and irradiation have an effect on cell wall structure. PMID:20492121

  14. Diamide decreases deformability of rabbit erythrocytes and attenuates low oxygen tension-induced ATP release.

    PubMed

    Sridharan, Meera; Sprague, Randy S; Adderley, Shaquria P; Bowles, Elizabeth A; Ellsworth, Mary L; Stephenson, Alan H

    2010-09-01

    Exposure of erythrocytes to reduced oxygen (O(2)) tension activates the heterotrimeric G-protein Gi, resulting in the accumulation of cyclic AMP (cAMP) and release of ATP. The mechanism by which exposure of erythrocytes to reduced O(2) tension activates Gi is not known. Here we investigate the hypothesis that, in rabbit erythrocytes, ATP release in response to exposure to reduced O(2) tension is linked to erythrocyte membrane deformability. If this hypothesis is correct, then decreasing the deformability of the erythrocyte membrane should decrease the release of ATP in response to reduced O(2) tension. We report that treating erythrocytes with diamide, a compound that decreases erythrocyte deformability, inhibits low O(2) tension-induced ATP release. Treating erythrocytes with diamide does not, however, interfere with cAMP accumulation or ATP release in response to a direct activator of Gi (mastoparan 7) or in response to receptor-mediated activation of Gs (the prostacyclin analog, iloprost). These results demonstrate that diamide (100 micromol/L) does not directly inhibit the signaling pathways for ATP release from rabbit erythrocytes and support the hypothesis that low O(2) tension-induced ATP release from these cells is linked to membrane deformability. PMID:20682601

  15. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation.

    PubMed

    Hwang, Tzyh-Chang; Sheppard, David N

    2009-05-15

    The cystic fibrosis transmembrane conductance regulator (CFTR) plays a fundamental role in fluid and electrolyte transport across epithelial tissues. Based on its structure, function and regulation, CFTR is an ATP-binding cassette (ABC) transporter. These transporters are assembled from two membrane-spanning domains (MSDs) and two nucleotide-binding domains (NBDs). In the vast majority of ABC transporters, the NBDs form a common engine that utilises the energy of ATP hydrolysis to pump a wide spectrum of substrates through diverse transmembrane pathways formed by the MSDs. By contrast, in CFTR the MSDs form a pathway for passive anion flow that is gated by cycles of ATP binding and hydrolysis by the NBDs. Here, we consider how the interaction of ATP with two ATP-binding sites, formed by the NBDs, powers conformational changes in CFTR structure to gate the channel pore. We explore how conserved sequences from both NBDs form ATP-binding sites at the interface of an NBD dimer and highlight the distinct roles that each binding site plays during the gating cycle. Knowledge of how ATP gates the CFTR Cl- channel is critical for understanding CFTR's physiological role, its malfunction in disease and the mechanism of action of small molecules that modulate CFTR channel gating. PMID:19332488

  16. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    SciTech Connect

    Shin, Youn Ho; Lee, Seo Jin; Jung, Junyang

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer ATP-treated sciatic explants shows the decreased expression of p75NGFR. Black-Right-Pointing-Pointer Extracellular ATP inhibits the expression of phospho-ERK1/2. Black-Right-Pointing-Pointer Lysosomal exocytosis is involved in Schwann cell dedifferentiation. Black-Right-Pointing-Pointer Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  17. ATP release and autocrine signaling through P2X4 receptors regulate ?? T cell activation

    PubMed Central

    Manohar, Monali; Hirsh, Mark I.; Chen, Yu; Woehrle, Tobias; Karande, Anjali A.; Junger, Wolfgang G.

    2012-01-01

    Purinergic signaling plays a key role in a variety of physiological functions, including regulation of immune responses. Conventional ?? T cells release ATP upon TCR cross-linking; ATP binds to purinergic receptors expressed by these cells and triggers T cell activation in an autocrine and paracrine manner. Here, we studied whether similar purinergic signaling pathways also operate in the “unconventional” ?? T lymphocytes. We observed that ?? T cells purified from peripheral human blood rapidly release ATP upon in vitro stimulation with anti-CD3/CD28-coated beads or IPP. Pretreatment of ?? T cells with 10panx-1, CBX, or Bf A reversed the stimulation-induced increase in extracellular ATP concentration, indicating that panx-1, connexin hemichannels, and vesicular exocytosis contribute to the controlled release of cellular ATP. Blockade of ATP release with 10panx-1 inhibited Ca2+ signaling in response to TCR stimulation. qPCR revealed that ?? T cells predominantly express purinergic receptor subtypes A2a, P2X1, P2X4, P2X7, and P2Y11. We found that pharmacological inhibition of P2X4 receptors with TNP-ATP inhibited transcriptional up-regulation of TNF-? and IFN-? in ?? T cells stimulated with anti-CD3/CD28-coated beads or IPP. Our data thus indicate that purinergic signaling via P2X4 receptors plays an important role in orchestrating the functional response of circulating human ?? T cells. PMID:22753954

  18. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 ?M) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10??M ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. PMID:24022572

  19. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  20. Homocysteine induces cardiac hypertrophy by up-regulating ATP7a expression

    PubMed Central

    Cao, Zhanwei; Zhang, Yanzhou; Sun, Tongwen; Zhang, Shuguang; Yu, Weiya; Zhu, Jie

    2015-01-01

    Aims: The aim of the study is to investigate the molecular mechanism by which homocysteine (Hcy) induces cardiac hypertrophy. Methods: Primary cardiomyocytes were obtained from baby Sprague-Dawley rats within 3 days after birth. Flow cytometry was used to measure cell sizes. Quantitative real-time polymerase chain reaction was performed to measure the expression of ?-myosin heavy chain and atrial natriuretic peptide genes. Western blotting assay was employed to determine ATP7a protein expression. Cytochrome C oxidase (COX) activity test was used to evaluate the activity of COX. Atomic absorption spectroscopy was performed to determine copper content. siRNAs were used to target-silence the expression of ATP7a. Results: Hcy induced cardiac hypertrophy and increased the expression of cardiac hypertrophy-related genes. ATP7a was a key factor in cardiac hypertrophy induced by Hcy. Reduced ATP7a expression inhibited cardiac hypertrophy induced by Hcy. Elevated ATP7a expression induced by Hcy inhibited COX activity. Enhanced ATP7a expression inhibited COX activity by lowering intracellular copper content. Conclusions: Hcy elevates ATP7a protein expression, reduces copper content, and lowers COX activity, finally leading to cardiac hypertrophy. PMID:26722473

  1. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction.

    PubMed

    Kringelbach, Tina M; Aslan, Derya; Novak, Ivana; Ellegaard, Maria; Syberg, Susanne; Andersen, Christina K B; Kristiansen, Kim A; Vang, Ole; Schwarz, Peter; Jørgensen, Niklas R

    2015-12-01

    Osteocytes are considered the primary mechanosensors of bone, but the signaling pathways they apply in mechanotransduction are still incompletely investigated and characterized. A growing body of data strongly indicates that P2 receptor signaling among osteoblasts and osteoclasts has regulatory effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and respond to even low concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic signaling as an early signaling pathway in osteocyte mechanotransduction. PMID:26327582

  2. ATP release and contraction mediated by different P2-receptor subtypes in guinea-pig ileal smooth muscle

    PubMed Central

    Matsuo, Katsuichi; Katsuragi, Takeshi; Fujiki, Sono; Sato, Chiemi; Furukawa, Tatsuo

    1997-01-01

    The present study was addressed to clarify the subtypes of P2-purinoceptor involved in ATP release and contraction evoked by ?,?-methylene ATP (?,?-mATP) and other P2-agonists in guinea-pig ileum.?,?-mATP 100??M produced a transient and steep contraction followed by ATP release from tissue segments. These maximum responses appeared with different time-courses and their ED50 values were 5 and 25??M, respectively. The maximum release of ATP by ?,?-mATP was markedly reduced by 250??M suramin, 30??M pyridoxal-phosphate-6-azophenyl-2?,5?-disulphonic acid (PPADS) and 30??M reactive blue 2 (RB-2), P2-receptor antagonists. However, the contractile response was inhibited by suramin, tetrodotoxin and atropine, but not by PPADS and RB-2.Although the contraction caused by ?,?-mATP was strongly diminished by Ca2+-removal and nifedipine, and also by tetrodotoxin and atropine at 0.3??M, the release of ATP was virtually unaffected by these procedures.UTP, ?,?-methylene ATP (?,?-mATP) and ADP at 100??M elicited a moderate release of ATP. The release caused by UTP was virtually unaffected by RB-2. However, these P2-agonists failed to elicit a contraction of the segment.The potency order of all the agonists tested for the release of ATP was ?,?-mATP>UTP>?,?-mATP>ADP.In superfusion experiments with cultured smooth muscle cells from the ileum, ?,?-mATP (100??M) enhanced the release of ATP 5 fold above the basal value. This evoked release was inhibited by RB-2.These findings suggest that ATP release and contraction induced by P2-agonists such as ?,?-mATP in the guinea-pig ileum result mainly from stimulation of different P2-purinoceptors, P2Y-like purinoceptors on the smooth muscles and, probably, P2X-purinoceptors on cholinergic nerve terminals, respectively. However, the ATP release may also be mediated, in part, by P2U-receptors, because UTP caused RB-2-insensitive ATP release. PMID:9283712

  3. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    SciTech Connect

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ring motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may link proton transfer to ring compliance.

  4. The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance

    DOE PAGESBeta

    Pandini, Alessandro; Kleinjung, Jens; Taylor, Willie R.; Junge, Wolfgang; Khan, Shahid

    2015-09-01

    The proton-driven ATP synthase (FOF1) is comprised of two rotary, stepping motors (FO and F1) coupled by an elastic power transmission. The elastic compliance resides in the rotor module that includes the membrane-embedded FO c-ring. Proton transport by FO is firmly coupled to the rotation of the c-ring relative to other FO subunits (ab2). It drives ATP synthesis. We used a computational method to investigate the contribution of the c-ring to the total elastic compliance. We performed principal component analysis of conformational ensembles built using distance constraints from the bovine mitochondrial c-ring x-ray structure. Angular rotary twist, the dominant ringmore »motion, was estimated to show that the c-ring accounted in part for the measured compliance. Ring rotation was entrained to rotation of the external helix within each hairpin-shaped c-subunit in the ring. Ensembles of monomer and dimers extracted from complete c-rings showed that the coupling between collective ring and the individual subunit motions was independent of the size of the c-ring, which varies between organisms. Molecular determinants were identified by covariance analysis of residue coevolution and structural-alphabet-based local dynamics correlations. The residue coevolution gave a readout of subunit architecture. The dynamic couplings revealed that the hinge for both ring and subunit helix rotations was constructed from the proton-binding site and the adjacent glycine motif (IB-GGGG) in the midmembrane plane. IB-GGGG motifs were linked by long-range couplings across the ring, while intrasubunit couplings connected the motif to the conserved cytoplasmic loop and adjacent segments. The correlation with principal collective motions shows that the couplings underlie both ring rotary and bending motions. Noncontact couplings between IB-GGGG motifs matched the coevolution signal as well as contact couplings. The residue coevolution reflects the physiological importance of the dynamics that may link proton transfer to ring compliance.« less

  5. Defining the Role of ATP Hydrolysis in Mitotic Segregation of Bacterial Plasmids

    PubMed Central

    Ah-Seng, Yoan; Rech, Jérôme; Lane, David; Bouet, Jean-Yves

    2013-01-01

    Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability. PMID:24367270

  6. ATP release and Ca2+ signalling by human bronchial epithelial cells following Alternaria aeroallergen exposure

    PubMed Central

    O'Grady, Scott M; Patil, Nandadavi; Melkamu, Tamene; Maniak, Peter J; Lancto, Cheryl; Kita, Hirohito

    2013-01-01

    Exposure of human bronchial epithelial (HBE) cells from normal and asthmatic subjects to extracts from Alternaria alternata evoked a rapid and sustained release of ATP with greater efficacy observed in epithelial cells from asthmatic patients. Previously, Alternaria allergens were shown to produce a sustained increase in intracellular Ca2+ concentration ([Ca2+]i) that was dependent on the coordinated activation of specific purinergic receptor (P2Y2 and P2X7) subtypes. In the present study, pretreatment with a cell-permeable Ca2+-chelating compound (BAPTA-AM) significantly inhibited ATP release, indicating dependency on [Ca2+]i. Alternaria-evoked ATP release exhibited a greater peak response and a slightly lower EC50 value in cells obtained from asthmatic donors compared to normal control cells. Furthermore, the maximum increase in [Ca2+]i resulting from Alternaria treatment was greater in cells from asthmatic patients compared to normal subjects. The vesicle transport inhibitor brefeldin A and BAPTA-AM significantly blocked Alternaria-stimulated incorporation of fluorescent lipid (FM1-43)-labelled vesicles into the plasma membrane and ATP release. In addition, inhibiting uptake of ATP into exocytotic vesicles with bafilomycin also reduced ATP release comparable to the effects of brefeldin A and BAPTA-AM. These results indicate that an important mechanism for Alternaria-induced ATP release is Ca2+ dependent and involves exocytosis of ATP. Serine and cysteine protease inhibitors also reduced Alternaria-induced ATP release; however, the sustained increase in [Ca2+]i typically observed following Alternaria exposure appeared to be independent of protease-activated receptor (PAR2) stimulation. PMID:23858006

  7. Extracellular ATP activates MAPK and ROS signaling during injury response in the fungus Trichoderma atroviride

    PubMed Central

    Medina-Castellanos, Elizabeth; Esquivel-Naranjo, Edgardo U.; Heil, Martin; Herrera-Estrella, Alfredo

    2014-01-01

    The response to mechanical damage is crucial for the survival of multicellular organisms, enabling their adaptation to hostile environments. Trichoderma atroviride, a filamentous fungus of great importance in the biological control of plant diseases, responds to mechanical damage by activating regenerative processes and asexual reproduction (conidiation). During this response, reactive oxygen species (ROS) are produced by the NADPH oxidase complex. To understand the underlying early signaling events, we evaluated molecules such as extracellular ATP (eATP) and Ca2+ that are known to trigger wound-induced responses in plants and animals. Concretely, we investigated the activation of mitogen-activated protein kinase (MAPK) pathways by eATP, Ca2+, and ROS. Indeed, application of exogenous ATP and Ca2+ triggered conidiation. Furthermore, eATP promoted the Nox1-dependent production of ROS and activated a MAPK pathway. Mutants in the MAPK-encoding genes tmk1 and tmk3 were affected in wound-induced conidiation, and phosphorylation of both Tmk1 and Tmk3 was triggered by eATP. We conclude that in this fungus, eATP acts as a damage-associated molecular pattern (DAMP). Our data indicate the existence of an eATP receptor and suggest that in fungi, eATP triggers pathways that converge to regulate asexual reproduction genes that are required for injury-induced conidiation. By contrast, Ca2+ is more likely to act as a downstream second messenger. The early steps of mechanical damage response in T. atroviride share conserved elements with those known from plants and animals. PMID:25484887

  8. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium

    PubMed Central

    Nemutlu, Emirhan; Gupta, Anu; Zhang, Song; Viqar, Maria; Holmuhamedov, Ekhson; Terzic, Andre; Jahangir, Arshad; Dzeja, Petras

    2015-01-01

    Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], ?-ATP[18O], ?-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/?-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed ?-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium. PMID:26378442

  9. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.

    PubMed

    Pham, Toan; Loiselle, Denis; Power, Amelia; Hickey, Anthony J R

    2014-09-15

    As ~80% of diabetic patients die from heart failure, an understanding of diabetic cardiomyopathy is crucial. Mitochondria occupy 35-40% of the mammalian cardiomyocyte volume and supply 95% of the heart's ATP, and diabetic heart mitochondria show impaired structure, arrangement, and function. We predict that bioenergetic inefficiencies are present in diabetic heart mitochondria; therefore, we explored mitochondrial proton and electron handling by linking oxygen flux to steady-state ATP synthesis, reactive oxygen species (ROS) production, and mitochondrial membrane potential (??) within rat heart tissues. Sprague-Dawley rats were injected with streptozotocin (STZ, 55 mg/kg) to induce type 1 diabetes or an equivalent volume of saline (control, n = 12) and fed standard rat chow for 8 wk. By coupling high-resolution respirometers with purpose-built fluorometers, we followed Magnesium Green (ATP synthesis), Amplex UltraRed (ROS production), and safranin-O (??). Relative to control rats, the mass-specific respiration of STZ-diabetic hearts was depressed in oxidative phosphorylation (OXPHOS) states. Steady-state ATP synthesis capacity was almost one-third lower in STZ-diabetic heart, which, relative to oxygen flux, equates to an estimated 12% depression in OXPHOS efficiency. However, with anoxic transition, STZ-diabetic and control heart tissues showed similar ATP hydrolysis capacities through reversal of the F1F0-ATP synthase. STZ-diabetic cardiac mitochondria also produced more net ROS relative to oxygen flux (ROS/O) in OXPHOS. While ?? did not differ between groups, the time to develop ?? with the onset of OXPHOS was protracted in STZ-diabetic mitochondria. ROS/O is higher in lifelike OXPHOS states, and potential delays in the time to develop ?? may delay ATP synthesis with interbeat fluctuations in ADP concentrations. Whereas diabetic cardiac mitochondria produce less ATP in normoxia, they consume as much ATP in anoxic infarct-like states. PMID:24920675

  10. H+/ATP stoichiometry for the gastric (K+ + H+)-ATPase

    SciTech Connect

    Reenstra, W.W.; Forte, J.G.

    1981-01-01

    The initial rate of ATP-dependent proton uptake by hog gastric vesicles was measured at pH's between 6.1 and 6.9 by measuring the loss of protons from the external space with a glass electrode. The apparent rates of proton loss were corrected for scalar proton production due to ATP hydrolysis. For vesicles in 150 mM KCl and pH 6.1, corrected rates of proton uptake and ATP hydrolysis were 639 +/- 84 and 619 +/- 65 nmol/min x mg protein, respectively, giving an H+/ATP ratio of 1.03 +/- .07. Furthermore, at all pH's tested the ratio of the rate of proton uptake to the rate of ATP hydrolysis was not significantly different than 1.0. No proton uptake (less than 10 nmol/min x mg protein) was exhibited by vesicles in 159 mM NaCl at pH 6.1 despite ATP hydrolysis of 187 +/- 46 nmol/min x mg (nonproductive hydrolysis). Comparison of the rates of proton transport and ATP hydrolysis in various mixture of KCl and NaCl showed that the H+/ATP stoichiometries were not significantly different than 1.0 at all concentrations of K+ greater than 10 mM. This fact suggests that the nonproductive rate is vanishingly small at these concentrations, implying that the measured H+/ATP stoichiometry is equal to the enzymatic stoichiometry. This result shows that the isolated gastric (K+ + H+)-ATPase is thermodynamically capable of forming the observed proton gradient of the stomach.

  11. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    SciTech Connect

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T.

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  12. Catalytic and regulatory effects of light intensity on chloroplast ATP synthase

    SciTech Connect

    Stroop, S.D.; Boyer, P.D.

    1987-03-10

    The incorporation of water oxygens into ATP made by photophosphorylation is known to be increased markedly when either Pi or ADP concentration is lowered. The present studies show a similar increase in oxygen exchange when light intensity is lowered even with ample ADP and Pi present. The number of reversals of bound ATP formation prior to release increases about 1 to about 27 in the presence of dithiothreitol and to 5 in its absence. The equilibrium of the bound reactants still favors ATP at low light intensity, as shown by measurement of the amount of bound ATP rapidly labeled from (/sup 32/P)Pi during steady-state photophosphorylation. Changes observed in the interconversion rate in the absence of added thiol are likely involved in the regulation of the dark ATPase activity in the chloroplast. The interconversion rate of bound ATP to bound ADP and Pi in the presence of thiol is about the same at low and high light intensities. This rate of bound ATP formation is not sufficient, however, to account for the maximum rate of photophosphorylation. Thus, when adequate protonmotive force is present, the rate of conversion of bound ADP and Pi to bound ATP, and possibly that of bound ATP to bound ADP and Pi, must be increased, with proton translocation being completed only when bound ATP is present to be released. These observations are consistent with the predictions of the binding change mechanism with sequential participation of catalytic sites and are accommodated by a simplified general scheme for the binding change mechanism that is presented here.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. In vivo ATP production during free-flow and ischaemic muscle contractions in humans

    PubMed Central

    Lanza, Ian R; Wigmore, Danielle M; Befroy, Douglas E; Kent-Braun, Jane A

    2006-01-01

    The aim of this study was to determine how ATP synthesis and contractility in vivo are altered by ischaemia in working human skeletal muscle. The hypotheses were: (1) glycolytic flux would be higher during ischaemic (ISC) compared to free-flow (FF) muscle contractions, in compensation for reduced oxidative ATP synthesis, and (2) ischaemic muscle fatigue would be related to the accumulation of inhibitory metabolic by-products rather than to the phosphorylation potential ([ATP]/[ADP][Pi]) of the muscle. Twelve healthy adults (6 men, 6 women) performed six intermittent maximal isometric contractions of the ankle dorsiflexors (12 s contract, 12 s relax), once with intact blood flow and once with local ischaemia by thigh cuff inflation to 220 Torr. Intracellular phosphorous metabolites and pH were measured non-invasively with magnetic resonance spectroscopy, and rates of ATP synthesis through oxidative phosphorylation, anaerobic glycolysis, and the creatine kinase reaction were determined. The force–time integral declined more during ISC (66 ± 3% initial) than FF (75 ± 2% initial, P = 0.002), indicating greater fatigue in ISC. [ATP] was preserved in both protocols, indicating matching of ATP production and use under both conditions. Glycolytic flux (mm s?1) was similar during FF and ISC (P = 0.16). Total ATP synthesis rate was lower during ISC, despite adjustment for the greater muscle fatigue in this condition (P < 0.001). Fatigue was linearly associated with diprotonated inorganic phosphate (FF r = 0.94 ± 0.01, ISC r = 0.92 ± 0.02), but not phosphorylation potential. These data provide novel evidence that ATP supply and demand in vivo are balanced in human skeletal muscle during ischaemic work, not through higher glycolytic flux, but rather through increased metabolic economy and decreased rates of ATP consumption as fatigue ensues. PMID:16945975

  14. Effects of sulphuric compounds on the ATP content of the peat moss Sphagnum fuscum

    SciTech Connect

    Aulio, K.

    1984-01-01

    Luminometric determination of ATP in the photosynthetic tissues of the peat moss Sphagnum fuscum proved to be a suitable technique in studying the effects of bisulphite and sulphate on the metabolism of the mosses. The method has the advantage that it is rapid and easy to perform, and that the results are reliable and equal with those obtained by using other techniques. Bisulphite (HSO/sub 3//sup -/) caused marked reductions in the ATP contents at the 1 mM level, and the 5 mM level was clearly detrimental to the energy metabolism of the mosses. In contrast, sulphate (SO/sub 4//sup 2 -/) increased the ATP contents markedly.

  15. ATP-conducting maxi-anion channel: a new player in stress-sensory transduction.

    PubMed

    Sabirov, Ravshan Z; Okada, Yasunobu

    2004-02-01

    The regulated release of ATP is a fundamental process in cell-to-cell signaling. The electrogenic translocation of ATP via an anion channel has been suggested as one possible mechanism of the release. In this review, we survey possible candidate channels for this pathway. The maxi-anion channel characterized by an exceedingly large unitary conductance has been a stray channel with regard to its function. A newly discovered property, its ATP conductivity and its activation in response to stress signals, indicates that this channel has a central role in stress-sensory transduction for cell volume regulation and tubuloglomerular feedback. PMID:15040843

  16. Use of ATP analogs to inhibit HIV-1 transcription.

    PubMed

    Narayanan, Aarthi; Sampey, Gavin; Van Duyne, Rachel; Guendel, Irene; Kehn-Hall, Kylene; Roman, Jessica; Currer, Robert; Galons, Hervé; Oumata, Nassima; Joseph, Benoît; Meijer, Laurent; Caputi, Massimo; Nekhai, Sergei; Kashanchi, Fatah

    2012-10-10

    Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of AIDS. Chronic persistent infection is an important reason for the presence of "latent cell populations" even after Anti-Retroviral Therapy (ART). We have analyzed the effect of ATP analogs in inhibiting cdk9/T1 complex in infected cells. A third generation drug named CR8#13 is an effective inhibitor of Tat activated transcription. Following drug treatment, we observed a decreased loading of cdk9 onto the HIV-1 DNA. We found multiple novel cdk9/T1 complexes present in infected and uninfected cells with one complex being unique to infected cells. This complex is sensitive to CR8#13 in kinase assays. Treatment of PBMC with CR8#13 does not kill infected cells as compared to Flavopiridol. Interestingly, there is a difference in sensitivity of various clades to these analogs. Collectively, these results point to targeting novel complexes for inhibition of cellular proteins that are unique to infected cells. PMID:22771113

  17. Use of ATP analogs to inhibit HIV-1 transcription

    PubMed Central

    Narayanan, Aarthi; Sampey, Gavin; Van Duyne, Rachel; Guendel, Irene; Kehn-Hall, Kylene; Roman, Jessica; Currer, Robert; Galons, Hervé; Oumata, Nassima; Joseph, Benoît; Meijer, Laurent; Caputi, Massimo; Nekhai, Sergei; Kashanchi, Fatah

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of AIDS. Chronic persistent infection is an important reason for the presence of “latent cell populations” even after Anti Retroviral Therapy (ART). We have analyzed the effect of ATP analogs in inhibiting cdk9/T1 complex in infected cells. A third generation drug named CR8#13 is an effective inhibitor of Tat activated transcription. Following drug treatment, we observed a decreased loading of cdk9 onto the HIV-1 DNA. We found multiple novel cdk9/T1 complexes present in infected and uninfected cells with one complex being unique to infected cells. This complex is sensitive to CR8#13 in kinase assays. Treatment of PBMC with CR8#13 does not kill infected cells as compared to Flavopiridol. Interestingly, there is a difference in sensitivity of various clades to these analogs. Collectively, these results point to targeting novel complexes for inhibition of cellular proteins that are unique to infected cells. PMID:22771113

  18. An ATP System for Deep-Space Optical Communication

    NASA Technical Reports Server (NTRS)

    Lee, Shinhak; Irtuzm Gerardi; Alexander, James

    2008-01-01

    An acquisition, tracking, and pointing (ATP) system is proposed for aiming an optical-communications downlink laser beam from deep space. In providing for a direction reference, the concept exploits the mature technology of star trackers to eliminate the need for a costly and potentially hazardous laser beacon. The system would include one optical and two inertial sensors, each contributing primarily to a different portion of the frequency spectrum of the pointing signal: a star tracker (<10 Hz), a gyroscope (<50 Hz), and a precise fluid-rotor inertial angular-displacement sensor (sometimes called, simply, "angle sensor") for the frequency range >50 Hz. The outputs of these sensors would be combined in an iterative averaging process to obtain high-bandwidth, high-accuracy pointing knowledge. The accuracy of pointing knowledge obtainable by use of the system was estimated on the basis of an 8-cm-diameter telescope and known parameters of commercially available star trackers and inertial sensors: The single-axis pointing-knowledge error was found to be characterized by a standard deviation of 150 nanoradians - below the maximum value (between 200 and 300 nanoradians) likely to be tolerable in deep-space optical communications.

  19. 75 FR 25294 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-High Definition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... published a notice in the Federal Register pursuant to Section 6(b) of the Act on March 10, 2008 (73 FR... published in the Federal Register pursuant to Section 6(b) of the Act on October 21, 2008 (73 FR 62542... Definition Metrology and Process-2 Micron Manufacturing Under ATP Award No. 70NANB77041 Notice is...

  20. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase

    PubMed Central

    Sturm, Angelika; Mollard, Vanessa; Cozijnsen, Anton; Goodman, Christopher D.; McFadden, Geoffrey I.

    2015-01-01

    Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase ? subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the ? subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the ? subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the ? subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase ? subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control. PMID:25831536

  1. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase.

    PubMed

    Sturm, Angelika; Mollard, Vanessa; Cozijnsen, Anton; Goodman, Christopher D; McFadden, Geoffrey I

    2015-08-18

    Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase ? subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the ? subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the ? subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the ? subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase ? subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control. PMID:25831536

  2. WAIS-III and WMS-III performance in chronic Lyme disease.

    PubMed

    Keilp, John G; Corbera, Kathy; Slavov, Iordan; Taylor, Michael J; Sackeim, Harold A; Fallon, Brian A

    2006-01-01

    There is controversy regarding the nature and degree of intellectual and memory deficits in chronic Lyme disease. In this study, 81 participants with rigorously diagnosed chronic Lyme disease were administered the newest revisions of the Wechsler Adult Intelligence Scale (WAIS-III) and Wechsler Memory Scale (WMS-III), and compared to 39 nonpatients. On the WAIS-III, Lyme disease participants had poorer Full Scale and Performance IQ's. At the subtest level, differences were restricted to Information and the Processing Speed subtests. On the WMS-III, Lyme disease participants performed more poorly on Auditory Immediate, Immediate, Auditory Delayed, Auditory Recognition Delayed, and General Memory indices. Among WMS-III subtests, however, differences were restricted to Logical Memory (immediate and delayed) and Family Pictures (delayed only), a Visual Memory subtest. Discriminant analyses suggest deficits in chronic Lyme are best characterized as a combination of memory difficulty and diminished processing speed. Deficits were modest, between one-third and two-thirds of a standard deviation, consistent with earlier studies. Depression severity had a weak relationship to processing speed, but little other association to test performance. Deficits in chronic Lyme disease are consistent with a subtle neuropathological process affecting multiple performance tasks, although further work is needed to definitively rule out nonspecific illness effects. PMID:16433951

  3. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders.

    PubMed

    Aiyar, Raeka S; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St Onge, Robert P; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  4. Laboratory procedures manual for the firefly luciferase assay for adenosine triphosphate (ATP)

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Curtis, C. A.; Knust, E. A.; Nibley, D. A.; Vance, R. B.

    1975-01-01

    A manual on the procedures and instruments developed for the adenosine triphosphate (ATP) luciferase assay is presented. Data cover, laboratory maintenance, maintenance of bacterial cultures, bacteria measurement, reagents, luciferase procedures, and determination of microbal susceptibility to antibiotics.

  5. Mitochondrial protein sorting as a therapeutic target for ATP synthase disorders

    PubMed Central

    Aiyar, Raeka S.; Bohnert, Maria; Duvezin-Caubet, Stéphane; Voisset, Cécile; Gagneur, Julien; Fritsch, Emilie S.; Couplan, Elodie; von der Malsburg, Karina; Funaya, Charlotta; Soubigou, Flavie; Courtin, Florence; Suresh, Sundari; Kucharczyk, Roza; Evrard, Justine; Antony, Claude; St.Onge, Robert P.; Blondel, Marc; di Rago, Jean-Paul; van der Laan, Martin; Steinmetz, Lars M.

    2014-01-01

    Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and applied genomic and biochemical techniques to identify pathways of interest. Here we demonstrate that modulating the sorting of nuclear-encoded proteins into mitochondria, mediated by the TIM23 complex, proves therapeutic in both yeast and patient-derived cells exhibiting ATP synthase deficiency. Targeting TIM23-dependent protein sorting improves an array of phenotypes associated with ATP synthase disorders, including biogenesis and activity of the oxidative phosphorylation machinery. Our study establishes mitochondrial protein sorting as an intervention point for ATP synthase disorders, and because of the central role of this pathway in mitochondrial biogenesis, it holds broad value for the treatment of mitochondrial diseases. PMID:25519239

  6. Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine

    E-print Network

    Aubin-Tam, Marie-Eve

    All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates ...

  7. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  8. The Role of MeH73 in Actin Polymerization and ATP Hydrolysis

    E-print Network

    73A-actin exchanged ATP at an increased rate, and was less stable than yeast-expressed wild to generate movements in muscle and non-muscle cells. In this process, myo- sin is believed to be the central

  9. FIREFLY LUCIFERASE ATP ASSAY DEVELOPMENT FOR MONITORING BACTERIAL CONCENTRATIONS IN WATER SUPPLIES

    EPA Science Inventory

    This research program was initiated to develop a rapid, automatable system for measuring total viable microorganisms in potable drinking water supplies using the firefly luciferase ATP assay. The assay was adapted to an automatable flow system that provided comparable sensitivity...

  10. Intermediate Phenotypes of ATP1A3 Mutations: Phenotype–Genotype Correlations

    PubMed Central

    Termsarasab, Pichet; Yang, Amy C.; Frucht, Steven J.

    2015-01-01

    Background ATP1A3-related disorders include rapid-onset dystonia–parkinsonism (RDP or DYT12), alternating hemiplegia of childhood (AHC), and CAPOS syndrome (Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, and Sensorineural hearing loss). Case Report We report two cases with intermediate forms between RDP and AHC. Patient 1 initially presented with the AHC phenotype, but the RDP phenotype emerged at age 14 years. The second patient presented with levodopa-responsive paroxysmal oculogyria, a finding never before reported in ATP1A3-related disorders. Genetic testing confirmed heterozygous changes in the ATP1A3 gene in both patients, one of them novel. Discussion Intermediate phenotypes of RDP and AHC support the concept that these two disorders are part of a spectrum. We add our cases to the phenotype–genotype correlations of ATP1A3-related disorders. PMID:26417536

  11. ORIGINAL ARTICLE ATP release from the human ureter on distension and P2X3

    E-print Network

    Burnstock, Geoffrey

    . Sections of ureter were stained using antibodies against P2X3 and capsaicin receptors (TRPV1). [ATP] rose TRPV1 transient receptor potential vanilloid 1 Introduction Pain due to a calculus causing an acute

  12. Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence

    E-print Network

    Steinhoff, Heinz-Jürgen

    Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction. Uncoupled proton leakage (slip) has only been observed in chloroplast enzyme at unphysiologically low nucleotide concentration. We investigated the properties of proton slip in chromatophores (sub

  13. Investigation of the binding mechanism of the ATP-metal complex in flavokinase from rat small intestine

    SciTech Connect

    Nakano, H.; McCormick, D.B. )

    1991-03-11

    Transfer of the {gamma}-phosphoryl group of ATP to riboflavin is catalyzed by flavokinase, which prefers Zn{sup 2+}, and is an important reaction in the biosynthesis of the flavocoenzyme, FMN. To study the mechanism of ATP binding, adenosine 5{prime}-O-(2-thiotriphosphate) (ATP{beta}S) and adenosine 5{prime}-O-(3-thiotriphosphate) (ATP{gamma}S) were used. E.F. Jaffe and M. Cohn established that these is a diastereoisomeric preference for ATP{beta}S with some kinases, depending upon whether Mg{sup 2+} or Cd{sup 2+} is used. Additional studies have clarified the stereospecificity for one or the other of the diastereoisomers. Relative activities with 0.1 mM Zn{sup 2+} for 1 mM of the thiophosphate analogs of ATP with flavokinase were 60% for the Sp isomer of ATP{beta}S, 312% for the Rp isomer of ATP{beta}S and 14% for ATP{gamma}S, each compared to ATP taken as 100%. As with some other kinases, flavokinase has stereospecificity for the Sp isomer of ATP{beta}S in the presence of Cd{sup 2+}, and for the Rp isomer of ATP{beta}S in the presence of Mg{sup 2+}. These latter data suggest that flavokinase uses the {lambda}-{beta},{gamma}-ATP{center dot}metal complex as the co-substrate with riboflavin unlike the Zn{sup 2+}-preferring pyridoxal kinase that uses the {Delta}-{beta},{gamma}-ATP{center dot}metal complex.

  14. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa.

    PubMed

    Torres-Fuentes, Jorge L; Rios, Mariana; Moreno, Ricardo D

    2015-12-01

    The acrosome reaction (AR) is the exocytosis of the acrosomal vesicle in response to different physiological and non-physiological stimuli. Particularly in mammals, the AR is needed for sperm to fuse with the oocyte plasma membrane, and it occurs only in capacitated sperm. Previous evidence in the literature indicates that extracellular ATP induces the AR in capacitated human and bovine spermatozoa, but its receptor has not yet been identified. The aim of this work was to define a putative ATP receptor in rat spermatozoa using pharmacological and biochemical approaches. We found that ATP induced the AR only in capacitated rat spermatozoa, which was inhibited in the presence of two general inhibitors of ATP receptors (P2 receptors), Suramin, and oxidized ATP (oATP), and one inhibitor of P2X receptor (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid [PPADS]). In addition, the AR induced by ATP in capacitated rat spermatozoa was inhibited by brilliant blue-G (BB-G) and 17-?-oestradiol, two blockers of P2X7 receptors. Moreover, the ATP analog 2'(3')-O-(4-benzoylbenzoyl) ATP (BzATP) was almost 500 times more potent than ATP to induce the AR, which agrees with the pharmacology of a P2X7 receptor. Here, we show the presence of P2X7 receptor by Western blot and its localization in the tail and acrosome by indirect immunofluorescence. Finally, we quantify the presence of ATP in the rat oviduct during the estrous cycle. We found that the ATP concentration within the lumen of the oviduct is similar to those required to induce acrosome reaction, which agree with its role during in vivo fertilization. Therefore, our results strongly suggest that ATP induces the AR in capacitated rat spermatozoa through a P2X7 receptor, which may be functional during in vivo fertilization. PMID:25989529

  15. Interaction of ATP with a Small Heat Shock Protein from Mycobacterium leprae: Effect on Its Structure and Function

    PubMed Central

    Nandi, Sandip Kumar; Chakraborty, Ayon; Panda, Alok Kumar; Sinha Ray, Sougata; Kar, Rajiv Kumar; Bhunia, Anirban; Biswas, Ashis

    2015-01-01

    Adenosine-5’-triphosphate (ATP) is an important phosphate metabolite abundantly found in Mycobacterium leprae bacilli. This pathogen does not derive ATP from its host but has its own mechanism for the generation of ATP. Interestingly, this molecule as well as several antigenic proteins act as bio-markers for the detection of leprosy. One such bio-marker is the 18 kDa antigen. This 18 kDa antigen is a small heat shock protein (HSP18) whose molecular chaperone function is believed to help in the growth and survival of the pathogen. But, no evidences of interaction of ATP with HSP18 and its effect on the structure and chaperone function of HSP18 are available in the literature. Here, we report for the first time evidences of “HSP18-ATP” interaction and its consequences on the structure and chaperone function of HSP18. TNP-ATP binding experiment and surface plasmon resonance measurement showed that HSP18 interacts with ATP with a sub-micromolar binding affinity. Comparative sequence alignment between M. leprae HSP18 and ?B-crystallin identified the sequence 49KADSLDIDIE58 of HSP18 as the Walker-B ATP binding motif. Molecular docking studies revealed that ?4-?8 groove/strands as an ATP interactive region in M. leprae HSP18. ATP perturbs the tertiary structure of HSP18 mildly and makes it less susceptible towards tryptic cleavage. ATP triggers exposure of additional hydrophobic patches at the surface of HSP18 and induces more stability against chemical and thermal denaturation. In vitro aggregation and thermal inactivation assays clearly revealed that ATP enhances the chaperone function of HSP18. Our studies also revealed that the alteration in the chaperone function of HSP18 is reversible and is independent of ATP hydrolysis. As the availability and binding of ATP to HSP18 regulates its chaperone function, this functional inflection may play an important role in the survival of M. leprae in hosts. PMID:25811190

  16. Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand

    PubMed Central

    Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E.; Spurgeon, Harold A.; Sollott, Steven J.; Lakatta, Edward G.

    2011-01-01

    Rationale In sinoatrial node cells (SANC), Ca2+ activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca2+ cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca2+ oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca2+ to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Objective Since a negative feedback mechanism links ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca2+-cAMP/PKA dependent; and (2) due to its feed–forward nature, a decrease in flux through the Ca2+-cAMP/PKA signaling axis will reduce the basal ATP production rate. Methods and Results O2 consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca2+-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r2=0.96), and reduced O2 consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca2+ flux reduced the ATP level. Conclusions Feed-forward basal Ca2+-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca2+-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes. PMID:21835182

  17. Trinitrophenyl-ATP blocks colonic Cl- channels in planar phospholipid bilayers. Evidence for two nucleotide binding sites

    PubMed Central

    1993-01-01

    Outwardly rectifying 30-50-pS Cl- channels mediate cell volume regulation and transepithelial transport. Several recent reports indicate that rectifying Cl- channels are blocked after addition of ATP to the extracellular bath (Alton, E. W. F. W., S. D. Manning, P. J. Schlatter, D. M. Geddes, and A. J. Williams. 1991. Journal of Physiology. 443:137-159; Paulmichl, M., Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D. Clapham. 1992. Nature. 356:238-241). Therefore, we decided to conduct a more detailed study of the ATP binding site using a higher affinity probe. We tested the ATP derivative, 2',3',O-(2,4,6- trinitrocyclohexadienylidene) adenosine 5'-triphosphate (TNP-ATP), which has a high affinity for certain nucleotide binding sites. Here we report that TNP-ATP blocked colonic Cl- channels when added to either bath and that blockade was consistent with the closed-open-blocked kinetic model. The TNP-ATP concentration required for a 50% decrease in open probability was 0.27 microM from the extracellular (cis) side and 20 microM from the cytoplasmic (trans) side. Comparison of the off rate constants revealed that TNP-ATP remained bound 28 times longer when added to the extracellular side compared with the cytoplasmic side. We performed competition studies to determine if TNP-ATP binds to the same sites as ATP. Addition of ATP to the same bath containing TNP-ATP reduced channel amplitude and increased the time the channel spent in the open and fast-blocked states (i.e., burst duration). This is the result expected if TNP-ATP and ATP compete for block, presumably by binding to common sites. In contrast, addition of ATP to the bath opposite to the side containing TNP-ATP reduced amplitude but did not alter burst duration. This is the result expected if opposite-sided TNP- ATP and ATP bind to different sites. In summary, we have identified an ATP derivative that has a nearly 10-fold higher affinity for reconstituted rectifying colonic Cl- channels than any previously reported blocker (Singh, A. K., G. B. Afink, C. J. Venglarik, R. Wang, and R. J. Bridges. 1991. American Journal of Physiology. 260 [Cell Physiology. 30]:C51-C63). Thus, TNP-ATP should be useful in future studies of ion channel nucleotide binding sites and possibly in preliminary steps of ion channel protein purification. In addition, we have obtained good evidence that there are at least two nucleotide binding sites located on opposite sides of the colonic Cl- channel and that occupancy of either site produces a blocked state. PMID:8389396

  18. External ATP triggers Ca2+ signals suited for synchronization of pancreatic beta-cells.

    PubMed

    Grapengiesser, E; Dansk, H; Hellman, B

    2005-04-01

    External ATP is supposed to trigger short-lived increases (transients) of cytoplasmic Ca2+ important for entraining insulin-secreting beta-cells into a common rhythm. To get insight into this process, rises of the cytoplasmic Ca2+ concentration ([Ca2+]i) induced by external ATP were compared with those obtained with acetylcholine, another neurotransmitter with stimulatory effects on the inositol trisphosphate (IP3) production. A ratiometric fura-2 technique was used for measuring [Ca2+]i in individual beta-cells and small aggregates isolated from ob/ob mouse islets and superfused with a medium containing methoxyverapamil. ATP and acetylcholine induced temporary rises of [Ca2+]I from a basal level manifested as solitary transients (<20 s) and bumps (> or =20 s) superimposed or not with transients. Addition of ATP (1-100 microM) usually triggered transients whereas acetylcholine induced bumps lacking superimposed transients. After the initial rise there was a steady-state elevation of [Ca2+]i in beta-cells exposed to acetylcholine but not to ATP. Similar differences were seen comparing the responses of rat beta-cells to 100 microM ATP and acetylcholine. Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump (with 50 microM cyclopiazonic acid) prevented both the ATP-induced rise of [Ca2+]i and the spontaneous firing of transients. Similar effects were seen after activation of protein kinase C (10 nM phorbol-12-myristate-13-acetate), whereas an inhibitor of this enzyme (2 microM bisindolylmaleimide) promoted the generation of transients. The results indicate that ATP fulfils the demands for a coordinator of the secretory activity of beta-cells by generating distinct [Ca2+]i transients without sustained elevation of basal [Ca2+]i. PMID:15817828

  19. Quencher-free molecular aptamer beacons (QF-MABs) for detection of ATP.

    PubMed

    Park, Jung Woo; Park, Yoojin; Kim, Byeang Hyean

    2015-10-15

    We have constructed a simple and efficient system-based on quencher-free molecular aptamer beacons (QF-MABs)-for probing ATP. In the absence of ATP, the fluorescence of a pyrene fluorophore on the loop position (15 nucleotides from the 5' end) of the optimal QF-MAB was quenched by the neighboring nucleobases; in its presence, fluorescence was recovered, due to a conformational change in the secondary structure of the QF-MAB. PMID:26320623

  20. ATP synthase superassemblies in animals and plants: two or more are better.

    PubMed

    Seelert, Holger; Dencher, Norbert A

    2011-09-01

    ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions have to be considered. As discussed in this review, ATP synthases form various supramolecular structures. These include dimers and homooligomeric species. But also interactions with other proteins, particularly those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced. On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and elucidation of specific protein-protein interactions. On the other hand, native electrophoresis and other techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists. Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP synthase in different organisms. PMID:21679683

  1. EFFECTS OF A SERIES OF TRIORGANOTINS ON ATP LEVELS IN HUMAN NATURAL KILLER CELLS

    PubMed Central

    Holloway, Laurin N.; Pannell, Keith H.; Whalen, Margaret M.

    2008-01-01

    Natural killer (NK) cells are our initial immune defense against viral infections and cancer development. Thus, agents that are able to interfere with their function increase the risk of cancer and/or infection. A series of triorganotins, (trimethyltin (TMT), dimethylphenyltin (DMPT), methyldiphenyltin (MDPT), and triphenyltin (TPT)) have been shown to decrease the lytic function of human NK cells. TPT and MDPT were much more effective than DMPT or TMT at reducing lytic function. This study investigates the role that decreased ATP levels may play in decreases in the lytic function of NK cells induced by these OTs. A 24 h exposure to as high as 10 ?M TMT caused no decrease in ATP levels even though this level of TMT caused a greater than 75% loss of lytic function. TPT at 200 nM caused a decrease in ATP levels of about 20% while decreasing lytic function by greater than 85%. There was no association between ATP levels and lytic function for any of the compounds when NK cells were exposed for 1h or 24 h. However, after a 48 h exposure to both DMPT and TPT decreased lytic function was associated with decreased ATP levels. There was an association between decreased lytic function and decreased ATP levels after a 6 day exposure to each of the four compounds. These studies indicate that the loss of lytic function seen after 1 h and 24 h exposures to this series of organotins cannot be accounted for by decreases in ATP. However, after longer exposures loss of lytic function may be in part be attributable to inadequate ATP levels. PMID:19122738

  2. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation

    PubMed Central

    Ungureanu, Daniela; Grisouard, Jean; Skoda, Radek C.; Hubbard, Stevan R.; Silvennoinen, Olli

    2015-01-01

    Pseudokinases lack conserved motifs typically required for kinase activity. Nearly half of pseudokinases bind ATP, but only few retain phosphotransfer activity, leaving the functional role of nucleotide binding in most cases unknown. Janus kinases (JAKs) are nonreceptor tyrosine kinases with a tandem pseudokinase–kinase domain configuration, where the pseudokinase domain (JAK homology 2, JH2) has important regulatory functions and harbors mutations underlying hematological and immunological diseases. JH2 of JAK1, JAK2, and TYK2 all bind ATP, but the significance of this is unclear. We characterize the role of nucleotide binding in normal and pathogenic JAK signaling using comprehensive structure-based mutagenesis. Disruption of JH2 ATP binding in wild-type JAK2 has only minor effects, and in the presence of type I cytokine receptors, the mutations do not affect JAK2 activation. However, JH2 mutants devoid of ATP binding ameliorate the hyperactivation of JAK2 V617F. Disrupting ATP binding in JH2 also inhibits the hyperactivity of other pathogenic JAK2 mutants, as well as of JAK1 V658F, and prevents induction of erythrocytosis in a JAK2 V617F myeloproliferative neoplasm mouse model. Molecular dynamic simulations and thermal-shift analysis indicate that ATP binding stabilizes JH2, with a pronounced effect on the C helix region, which plays a critical role in pathogenic activation of JAK2. Taken together, our results suggest that ATP binding to JH2 serves a structural role in JAKs, which is required for aberrant activity of pathogenic JAK mutants. The inhibitory effect of abrogating JH2 ATP binding in pathogenic JAK mutants may warrant novel therapeutic approaches. PMID:25825724

  3. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells.

    PubMed

    Takada, Naoto; Takatsu, Hiroyuki; Miyano, Rie; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-11-01

    Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells. PMID:26420878

  4. Intravascular ATP and the regulation of blood flow and oxygen delivery in humans.

    PubMed

    Crecelius, Anne R; Kirby, Brett S; Dinenno, Frank A

    2015-01-01

    Regulation of vascular tone is a complex response that integrates multiple signals that allow for blood flow and oxygen supply to match oxygen demand appropriately. Here, we discuss the potential role of intravascular adenosine triphosphate (ATP) as a primary factor in these responses and put forth the hypothesis that deficient ATP release contributes to impairments in vascular control exhibited in aged and diseased populations. PMID:25390296

  5. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats

    PubMed Central

    Gregory, Nicholas S.; Whitley, Phillip E.; Sluka, Kathleen A.

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (?,?-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and ?,?-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4?m), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. ?,? me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception. PMID:26378796

  6. Role of ATP-sensitive K+ channels in cardiac arrhythmias.

    PubMed

    Nakaya, Haruaki

    2014-05-01

    The sarcolemmal adenosine triphosphate (ATP)-sensitive K(+) (sarcKATP) channel in the heart is a hetero-octamer comprising the pore-forming subunit Kir6.2 and the regulatory subunit sulfonylurea receptor SUR2A. By functional analysis of genetically engineered mice lacking sarcKATP channels, the pathophysiological roles of the K(+) channel in the heart have been extensively evaluated. Although mitochondrial KATP (mitoKATP) channel is proposed to be an important effector for the protection of ischemic myocardium and the inhibition of ischemia/reperfusion-induced ventricular arrhythmias, the molecular identity of mitoKATP channel has not been established. Although selective sarcKATP-channel blockers can prevent ischemia/reperfusion-induced ventricular arrhythmias by inhibiting the action potential shortening in the acute phase, the drugs may aggravate the ischemic damages due to intracellular Ca(2+) overload. The sarcKATP channel is also mandatory for optimal adaptation to hemodynamic stress such as sympathetic activation. Dysfunction of mutated sarcKATP channels in atrial cells may lead to electrical instability and atrial fibrillation. Recently, it has been proposed that the gain-of-function mutation of cardiac Kir6.1 channel can be a pathogenic substrate for J wave syndromes, a cause of idiopathic ventricular fibrillation as early repolarization syndrome or Brugada syndrome, whereas loss of function of the channel mutations can underlie sudden infant death syndrome. However, precise role of Kir6.1 channels in cardiac cells remains to be defined and further study may be needed to clarify the role of Kir6.1 channel in the heart. PMID:24367007

  7. Role of ATP binding and hydrolysis in assembly of MacAB-TolC macrolide transporter.

    PubMed

    Lu, Shuo; Zgurskaya, Helen I

    2012-12-01

    MacB is a founding member of the Macrolide Exporter family of transporters belonging to the ATP-Binding Cassette superfamily. These proteins are broadly represented in genomes of both Gram-positive and Gram-negative bacteria and are implicated in virulence and protection against antibiotics and peptide toxins. MacB transporter functions together with MacA, a periplasmic membrane fusion protein, which stimulates MacB ATPase. In Gram-negative bacteria, MacA is believed to couple ATP hydrolysis to transport of substrates across the outer membrane through a TolC-like channel. In this study, we report a real-time analysis of concurrent ATP hydrolysis and assembly of MacAB-TolC complex. MacB binds nucleotides with a low millimolar affinity and fast on- and off-rates. In contrast, MacA-MacB complex is formed with a nanomolar affinity, which further increases in the presence of ATP. Our results strongly suggest that association between MacA and MacB is stimulated by ATP binding to MacB but remains unchanged during ATP hydrolysis cycle. We also found that the large periplasmic loop of MacB plays the major role in coupling reactions separated in two different membranes. This loop is required for MacA-dependent stimulation of MacB ATPase and at the same time, contributes to recruitment of TolC into a trans-envelope complex. PMID:23057817

  8. ATP consumption of eukaryotic flagella measured at a single-cell level

    E-print Network

    Daniel T. N. Chen; Michael Heymann; Seth Fraden; Daniela Nicastro; Zvonimir Dogic

    2015-11-05

    The motility of cilia and flagella is driven by thousands of dynein motors that hydrolyze adenosine triphosphate (ATP). Despite decades of genetic, biochemical, structural and biophysical studies, some aspects of ciliary motility remain elusive, such as the regulation of beating patterns and the energetic efficiency of these nanomachines. Here, we introduce an experimental method to measure ATP consumption of actively beating axonemes on a single-cell level. We encapsulated individual sea urchin sperm with demembranated flagellum inside water-in-oil emulsion droplets and measured the axonemes ATP consumption by monitoring fluorescence intensity of a fluorophore-coupled reporter system for ATP turnover in the droplet. Concomitant phase contrast imaging allowed us to extract a linear dependence between the ATP consumption rate and the flagellar beating frequency, with ~2.3e5 ATP molecules consumed per beat of a demembranated flagellum. Increasing the viscosity of the aqueous medium led to modified beating waveforms of the axonemes and to higher energy consumption per beat cycle. Our single-cell experimental platform provides both new insights into the beating mechanism of flagella and a powerful tool for future studies.

  9. ATP-driven Rad50 conformations regulate DNA tethering, end resection, and ATM checkpoint signaling

    PubMed Central

    Deshpande, Rajashree A; Williams, Gareth J; Limbo, Oliver; Williams, R Scott; Kuhnlein, Jeff; Lee, Ji-Hoon; Classen, Scott; Guenther, Grant; Russell, Paul; Tainer, John A; Paull, Tanya T

    2014-01-01

    The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced ‘closed’ conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5? strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks. PMID:24493214

  10. Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wu, Xin; Pei, Yuwei; Chen, Peng; Ma, Xueqin; Cui, Yiping

    2014-06-01

    A liposome-Ag nanohybrid has been demonstrated as a SERS traceable intracellular drug nanocarrier. Liposomes have been introduced for their special qualities in drug delivery systems. In essence, 4-aminothiophenol (4ATP) tagged Ag nanoparticles (Ag@4ATP) were adsorbed onto the surfaces of liposomes via electrostatic interactions, in which 4ATP was used as a SERS reporter. In such a nanohybrid, the locations of the carrier can be tracked by SERS signals while those of the drugs can be monitored through their fluorescence, allowing the simultaneous investigation of the intracellular distribution of both the carriers and the drugs. Our experimental results suggest that the reported liposomal system has substantial potential for intracellular drug delivery.A liposome-Ag nanohybrid has been demonstrated as a SERS traceable intracellular drug nanocarrier. Liposomes have been introduced for their special qualities in drug delivery systems. In essence, 4-aminothiophenol (4ATP) tagged Ag nanoparticles (Ag@4ATP) were adsorbed onto the surfaces of liposomes via electrostatic interactions, in which 4ATP was used as a SERS reporter. In such a nanohybrid, the locations of the carrier can be tracked by SERS signals while those of the drugs can be monitored through their fluorescence, allowing the simultaneous investigation of the intracellular distribution of both the carriers and the drugs. Our experimental results suggest that the reported liposomal system has substantial potential for intracellular drug delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00557k

  11. Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1

    PubMed Central

    Kellner, Julian N.; Reinstein, Jochen; Meinhart, Anton

    2015-01-01

    RNA helicases of the DEAD-box protein family form the largest group of helicases. The human DEAD-box protein 1 (DDX1) plays an important role in tRNA and mRNA processing, is involved in tumor progression and is also hijacked by several virus families such as HIV-1 for replication and nuclear export. Although important in many cellular processes, the mechanism of DDX1?s enzymatic function is unknown. We have performed equilibrium titrations and transient kinetics to determine affinities for nucleotides and RNA. We find an exceptional tight binding of DDX1 to adenosine diphosphate (ADP), one of the strongest affinities observed for DEAD-box helicases. ADP binds tighter by three orders of magnitude when compared to adenosine triphosphate (ATP), arresting the enzyme in a potential dead-end ADP conformation under physiological conditions. We thus suggest that a nucleotide exchange factor leads to DDX1 recycling. Furthermore, we find a strong cooperativity in binding of RNA and ATP to DDX1 that is also reflected in ATP hydrolysis. We present a model in which either ATP or RNA binding alone can partially shift the equilibrium from an ‘open’ to a ‘closed’-state; this shift appears to be not further pronounced substantially even in the presence of both RNA and ATP as the low rate of ATP hydrolysis does not change. PMID:25690890

  12. ATP consumption of eukaryotic flagella measured at a single-cell level

    E-print Network

    Daniel T. N. Chen; Michael Heymann; Seth Fraden; Daniela Nicastro; Zvonimir Dogic

    2015-12-21

    The motility of cilia and flagella is driven by thousands of dynein motors that hydrolyze adenosine triphosphate (ATP). Despite decades of genetic, biochemical, structural and biophysical studies, some aspects of ciliary motility remain elusive, such as the regulation of beating patterns and the energetic efficiency of these nanomachines. Here, we introduce an experimental method to measure ATP consumption of actively beating axonemes on a single-cell level. We encapsulated individual sea urchin sperm with demembranated flagellum inside water-in-oil emulsion droplets and measured the axonemes ATP consumption by monitoring fluorescence intensity of a fluorophore-coupled reporter system for ATP turnover in the droplet. Concomitant phase contrast imaging allowed us to extract a linear dependence between the ATP consumption rate and the flagellar beating frequency, with ~2.3e5 ATP molecules consumed per beat of a demembranated flagellum. Increasing the viscosity of the aqueous medium led to modified beating waveforms of the axonemes and to higher energy consumption per beat cycle. Our single-cell experimental platform provides both new insights into the beating mechanism of flagella and a powerful tool for future studies.

  13. Crystallographic structure of the turbine C-ring from spinach chloroplast F-ATP synthase

    PubMed Central

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A.; Grüber, Gerhard

    2014-01-01

    In eukaryotic and prokaryotic cells, F-ATP synthases provide energy through the synthesis of ATP. The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b’ and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a=144.420, b=99.295, c=123.51 Å, and ?=104.34° and diffracted to 4.5 Å resolution. Each c-ring contains 14 monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å and an inner ring width of 40 Å. PMID:24521269

  14. LMO4 mRNA stability is regulated by extracellular ATP in F11 cells

    SciTech Connect

    Chen, Hsiao-Huei . E-mail: hchen@uottawa.ca; Xu, Jin; Safarpour, Farzaneh; Stewart, Alexandre F.R.

    2007-05-25

    LIM only domain protein 4 (LMO4) interacts with many signaling and transcription factors to regulate cellular proliferation, differentiation and plasticity. In Drosophila, mutations in the 3' untranslated region (UTR) of the homologue dLMO cause a gain of function by increasing mRNA stability. LMO4 3'UTR contains several AU-rich elements (ARE) and is highly conserved among vertebrates, suggesting that RNA destabilizing mechanisms are evolutionarily conserved. Here, we found that extracellular ATP stabilized LMO4 mRNA in F11 cells. The LMO4 3'UTR added to a luciferase reporter markedly reduced reporter activity under basal conditions, but increased activity with ATP treatment. Two ARE motifs were characterized in the LMO4 3'UTR. ATP increased binding of HuD protein to ARE1. ARE1 conferred ATP and HuD-dependent mRNA stabilization. In contrast, sequences flanking ARE2 bound CUGBP1 and ATP destabilized this complex. Thus, our results suggest that ATP modulates recruitment of RNA-binding proteins to the 3'UTR to stabilize LMO4 mRNA.

  15. Effect of gamma radiation and oregano essential oil on murein and ATP concentration of Listeria monocytogenes.

    PubMed

    Caillet, Stéphane; Lacroix, Monique

    2006-12-01

    The effects of gamma radiation and of oregano essential oil alone or in combination with radiation on murein composition of Listeria monocytogenes and on the intracellular and extracellular concentration of ATP were evaluated. The bacterial strain was treated with two radiation doses, 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death. Oregano essential oil was used at 0.020 and 0.025% (wt/vol), which is the MIC. All treatments had a significant effect (P < or = 0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant correlation (P < or = 0.05) between the reduction of intracellular ATP and increase in extracellular ATP, following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease (P < or = 0.05) of the internal ATP without affecting the external ATP. Transmission electron microscopic observation revealed that oregano oil and irradiation have an effect on cell wall structure. PMID:17186665

  16. Alteration of copper physiology in mice overexpressing the human Menkes protein ATP7A.

    PubMed

    Ke, Bi-Xia; Llanos, Roxana M; Wright, Magali; Deal, Yolanda; Mercer, Julian F B

    2006-05-01

    The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively). PMID:16397091

  17. Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current.

    PubMed

    Ferrero, J M; Sáiz, J; Ferrero, J M; Thakor, N V

    1996-08-01

    The role of the ATP-sensitive K+ current (IK-ATP) and its contribution to electrophysiological changes that occur during metabolic impairment in cardiac ventricular myocytes is still being discussed. The aim of this work was to quantitatively study this issue by using computer modeling. A model of IK-ATP is formulated and incorporated into the Luo-Rudy ionic model of the ventricular action potential. Action potentials under different degrees of activation of IK-ATP are simulated. Our results show that in normal ionic concentrations, only approximately 0.6% of the KATP channels, when open, should account for a 50% reduction in action potential duration. However, increased levels of intracellular Mg2+ counteract this shortening. Under conditions of high [K+]0, such as those found in early ischemia, the activation of only approximately 0.4% of the KATP channels could account for a 50% reduction in action potential duration. Thus, our results suggest that opening of IK-ATP channels should play a significant role in action potential shortening during hypoxic/ischemic episodes, with the fraction of open channels involved being very low ( < 1%). However, the results of the model suggest that activation of IK-ATP alone does not quantitatively account for the observed K+ efflux in metabolically impaired cardiac myocytes. Mechanisms other than KATP channel activation should be responsible for a significant part of the K+ efflux measured in hypoxic/ischemic situations. PMID:8755997

  18. Origin Licensing Requires ATP Binding and Hydrolysis by the MCM Replicative Helicase

    PubMed Central

    Coster, Gideon; Frigola, Jordi; Beuron, Fabienne; Morris, Edward P.; Diffley, John F.X.

    2014-01-01

    Summary Loading of the six related Minichromosome Maintenance (MCM) proteins as head-to-head double hexamers during DNA replication origin licensing is crucial for ensuring once-per-cell-cycle DNA replication in eukaryotic cells. Assembly of these prereplicative complexes (pre-RCs) requires the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ORC, Cdc6, and MCM are members of the AAA+ family of ATPases, and pre-RC assembly requires ATP hydrolysis. Here we show that ORC and Cdc6 mutants defective in ATP hydrolysis are competent for origin licensing. However, ATP hydrolysis by Cdc6 is required to release nonproductive licensing intermediates. We show that ATP binding stabilizes the wild-type MCM hexamer. Moreover, by analyzing MCM containing mutant subunits, we show that ATP binding and hydrolysis by MCM are required for Cdt1 release and double hexamer formation. This work alters our view of how ATP is used by licensing factors to assemble pre-RCs. PMID:25087873

  19. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood

    PubMed Central

    Heinzen, Erin L.; Swoboda, Kathryn J.; Hitomi, Yuki; Gurrieri, Fiorella; Nicole, Sophie; de Vries, Boukje; Tiziano, F. Danilo; Fontaine, Bertrand; Walley, Nicole M.; Heavin, Sinéad; Panagiotakaki, Eleni; Fiori, Stefania; Abiusi, Emanuela; Di Pietro, Lorena; Sweney, Matthew T.; Newcomb, Tara M.; Viollet, Louis; Huff, Chad; Jorde, Lynn B.; Reyna, Sandra P.; Murphy, Kelley J.; Shianna, Kevin V.; Gumbs, Curtis E.; Little, Latasha; Silver, Kenneth; Ptác?ek, Louis J.; Haan, Joost; Ferrari, Michel D.; Bye, Ann M.; Herkes, Geoffrey K.; Whitelaw, Charlotte M.; Webb, David; Lynch, Bryan J.; Uldall, Peter; King, Mary D.; Scheffer, Ingrid E.; Neri, Giovanni; Arzimanoglou, Alexis; van den Maagdenberg, Arn M.J.M.; Sisodiya, Sanjay M.; Mikati, Mohamad A.; Goldstein, David B.; Nicole, Sophie; Gurrieri, Fiorella; Neri, Giovanni; de Vries, Boukje; Koelewijn, Stephany; Kamphorst, Jessica; Geilenkirchen, Marije; Pelzer, Nadine; Laan, Laura; Haan, Joost; Ferrari, Michel; van den Maagdenberg, Arn; Zucca, Claudio; Bassi, Maria Teresa; Franchini, Filippo; Vavassori, Rosaria; Giannotta, Melania; Gobbi, Giuseppe; Granata, Tiziana; Nardocci, Nardo; De Grandis, Elisa; Veneselli, Edvige; Stagnaro, Michela; Gurrieri, Fiorella; Neri, Giovanni; Vigevano, Federico; Panagiotakaki, Eleni; Oechsler, Claudia; Arzimanoglou, Alexis; Nicole, Sophie; Giannotta, Melania; Gobbi, Giuseppe; Ninan, Miriam; Neville, Brian; Ebinger, Friedrich; Fons, Carmen; Campistol, Jaume; Kemlink, David; Nevsimalova, Sona; Laan, Laura; Peeters-Scholte, Cacha; van den Maagdenberg, Arn; Casaer, Paul; Casari, Giorgio; Sange, Guenter; Spiel, Georg; Boneschi, Filippo Martinelli; Zucca, Claudio; Bassi, Maria Teresa; Schyns, Tsveta; Crawley, Francis; Poncelin, Dominique; Vavassori, Rosaria

    2012-01-01

    Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurologic manifestations. AHC is usually a sporadic disorder with unknown etiology. Using exome sequencing of seven patients with AHC, and their unaffected parents, we identified de novo nonsynonymous mutations in ATP1A3 in all seven AHC patients. Subsequent sequence analysis of ATP1A3 in 98 additional patients revealed that 78% of AHC cases have a likely causal ATP1A3 mutation, including one inherited mutation in a familial case of AHC. Remarkably, six ATP1A3 mutations explain the majority of patients, including one observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset-dystonia-parkinsonism, AHC-causing mutations revealed consistent reductions in ATPase activity without effects on protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC, and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in this gene. PMID:22842232

  20. The Drosophila melanogaster Phospholipid Flippase dATP8B Is Required for Odorant Receptor Function

    PubMed Central

    Liu, Yu-Chi; Pearce, Michelle W.; Honda, Takahiro; Johnson, Travis K.; Charlu, Sandhya; Sharma, Kavita R.; Imad, Mays; Burke, Richard E.; Zinsmaier, Konrad E.; Ray, Anandasankar; Dahanukar, Anupama; de Bruyne, Marien; Warr, Coral G.

    2014-01-01

    The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins. PMID:24651716

  1. ATP Consumption of Eukaryotic Flagella Measured at a Single-Cell Level.

    PubMed

    Chen, Daniel T N; Heymann, Michael; Fraden, Seth; Nicastro, Daniela; Dogic, Zvonimir

    2015-12-15

    The motility of cilia and flagella is driven by thousands of dynein motors that hydrolyze adenosine triphosphate (ATP). Despite decades of genetic, biochemical, structural, and biophysical studies, some aspects of ciliary motility remain elusive, such as the regulation of beating patterns and the energetic efficiency of these nanomachines. In this study, we introduce an experimental method to measure ATP consumption of actively beating axonemes on a single-cell level. We encapsulated individual sea urchin sperm with demembranated flagellum inside water-in-oil emulsion droplets and measured the axoneme's ATP consumption by monitoring fluorescence intensity of a fluorophore-coupled reporter system for ATP turnover in the droplet. Concomitant phase contrast imaging allowed us to extract a linear dependence between the ATP consumption rate and the flagellar beating frequency, with ?2.3 × 10(5) ATP molecules consumed per beat of a demembranated flagellum. Increasing the viscosity of the aqueous medium led to modified beating waveforms of the axonemes and to higher energy consumption per beat cycle. Our single-cell experimental platform provides both new insights, to our knowledge, into the beating mechanism of flagella and a powerful tool for future studies. PMID:26682814

  2. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis

    PubMed Central

    Minamino, Tohru; Morimoto, Yusuke V.; Kinoshita, Miki; Aldridge, Phillip D.; Namba, Keiichi

    2014-01-01

    For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI6FliJ complex is structurally similar to the ?3?3? complex of FOF1-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI6FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly. PMID:25531309

  3. Effect of ATP Binding and Hydrolysis on Dynamics of Canine Parvovirus NS1? †

    PubMed Central

    Niskanen, Einari A.; Ihalainen, Teemu O.; Kalliolinna, Olli; Häkkinen, Milla M.; Vihinen-Ranta, Maija

    2010-01-01

    The replication protein NS1 is essential for genome replication and protein production in parvoviral infection. Many of its functions, including recognition and site-specific nicking of the viral genome, helicase activity, and transactivation of the viral capsid promoter, are dependent on ATP. An ATP-binding pocket resides in the middle of the modular NS1 protein in a superfamily 3 helicase domain. Here we have identified key ATP-binding amino acid residues in canine parvovirus (CPV) NS1 protein and mutated amino acids from the conserved A motif (K406), B motif (E444 and E445), and positively charged region (R508 and R510). All mutations prevented the formation of infectious viruses. When provided in trans, all except the R508A mutation reduced infectivity in a dominant-negative manner, possibly by hindering genome replication. These results suggest that the conserved R510 residue, but not R508, is the arginine finger sensory element of CPV NS1. Moreover, fluorescence recovery after photobleaching (FRAP), complemented by computer simulations, was used to assess the binding properties of mutated fluorescent fusion proteins. These experiments identified ATP-dependent and -independent binding modes for NS1 in living cells. Only the K406M mutant had a single binding site, which was concluded to indicate ATP-independent binding. Furthermore, our data suggest that DNA binding of NS1 is dependent on its ability to both bind and hydrolyze ATP. PMID:20219935

  4. Rapid Granulation Tissue Regeneration by Intracellular ATP Delivery-A Comparison with Regranex

    PubMed Central

    Howard, Jeffrey D.; Sarojini, Harshini; Wan, Rong; Chien, Sufan

    2014-01-01

    This study tests a new intracellular ATP delivery technique for tissue regeneration and compares its efficacy with that of Regranex. Twenty-seven adult New Zealand white rabbits each underwent minimally invasive surgery to render one ear ischemic. Eight wounds were then created: four on the ischemic and four on the normal ear. Two wounds on one side of each ear were treated with Mg-ATP encapsulated lipid vesicles (ATP-vesicles) while the two wounds on the other side were treated with Regranex. Wound healing time was shorter when ATP-vesicles were used. The most striking finding was that new tissue growth started to appear in less than 1 day when ATP-vesicles were used. The growth continued and covered the wound area within a few days, without the formation of a provisional matrix. Regranex-treated wounds did not have this growth pattern. In wounds treated by ATP-vesicles, histologic studies revealed extremely rich macrophage accumulation, along with active proliferating cell nuclear antigen (PCNA) and positive BrdU staining, indicating in situ macrophage proliferation. Human macrophage culture suggested direct collagen production. These results support an entirely new healing process, which seems to have combined the conventional hemostasis, inflammation, and proliferation phases into a single one, thereby eliminating the lag time usually seen during healing process. PMID:24637626

  5. ATP as a multi-target danger signal in the brain

    PubMed Central

    Rodrigues, Ricardo J.; Tomé, Angelo R.; Cunha, Rodrigo A.

    2015-01-01

    ATP is released in an activity-dependent manner from different cell types in the brain, fulfilling different roles as a neurotransmitter, neuromodulator, in astrocyte-to-neuron communication, propagating astrocytic responses and formatting microglia responses. This involves the activation of different ATP P2 receptors (P2R) as well as adenosine receptors upon extracellular ATP catabolism by ecto-nucleotidases. Notably, brain noxious stimuli trigger a sustained increase of extracellular ATP, which plays a key role as danger signal in the brain. This involves a combined action of extracellular ATP in different cell types, namely increasing the susceptibility of neurons to damage, promoting astrogliosis and recruiting and formatting microglia to mount neuroinflammatory responses. Such actions involve the activation of different receptors, as heralded by neuroprotective effects resulting from blockade mainly of P2X7R, P2Y1R and adenosine A2A receptors (A2AR), which hierarchy, cooperation and/or redundancy is still not resolved. These pleiotropic functions of ATP as a danger signal in brain damage prompt a therapeutic interest to multi-target different purinergic receptors to provide maximal opportunities for neuroprotection. PMID:25972780

  6. Crystallographic structure of the turbine c-ring from spinach chloroplast F-ATP synthase.

    PubMed

    Balakrishna, Asha Manikkoth; Seelert, Holger; Marx, Sven-Hendric; Dencher, Norbert A; Grüber, Gerhard

    2014-02-13

    In eukaryotic- and prokaryotic cells F-ATP synthases provide energy through the synthesis of adenosine triphosphate (ATP). The chloroplast F-ATP synthase (CF1FO-ATP synthase) of plants is integrated into the thylakoid membrane via its FO-domain subunits a, b, b' and c. Subunit c with a stoichiometry of 14 and subunit a form the gate for H+-pumping, enabling the coupling of electrochemical energy with ATP synthesis in the F1 sector. Here we report the crystallization and structure determination of the c14-ring of subunit c of the CF1FO-ATP synthase from spinach chloroplasts. The crystals belonged to space group C2, with unit-cell parameters a = 144.420, b = 99.295, c = 123.51 Å, and ? = 104.34º and diffracted to 4.5 Å resolution. Each c-ring contains fourteen monomers in the asymmetric unit. The length of the c-ring is 60.32 Å, with an outer ring diameter 52.30 Å, and an inner ring width of 40 Å. PMID:24521269

  7. Photosynthetic regeneration of ATP using a strain of thermophilic blue-green algae

    SciTech Connect

    Sawa, Y.; Kanayama, K.; Ochiai, H.

    1982-02-01

    Photosynthetic ATP accumulation was shown in the presence of exogenous ADP plus ortho-phosphate on illumination to the intact cells of a strain of thermophilic blue-green algae isolated from Matsue hot springs, Mastigocladus sp. Kinetic studies of various effectors on the ATP accumulation proved that the ATP synthesis depends mainly on the cyclic photophosphorylation system around photosystem I (PS-I) in the algal cells. The temperature and pH optima for the accumulation were found at 45 degrees C and pH 7.5. Maximum yield was obtained with light intensity higher than 15 mW/squared cm. Borate ion exerted pronounced enhancement on the ATP synthesis. With a continuous reactor at a flow rate of 1 ml/hour at 45 degrees C and pH 7.5, efficient photoconversion of ADP (2mM, at substrate reservoir) to ATP (1mM, at product outlet) has been maintained for a period of 2.5 days, though the efficiency has decreased in a further 2-day period to the level of 0.5 mM ATP/9.5 h of residence time. (Refs. 24).

  8. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    NASA Astrophysics Data System (ADS)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  9. CO2/HCO3?- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In ? cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  10. ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles

    PubMed Central

    Walentek, Peter; Hagenlocher, Cathrin; Beyer, Tina; Müller, Christina; Feistel, Kerstin; Schweickert, Axel; Harland, Richard M.; Blum, Martin

    2015-01-01

    During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/?-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516–527.) and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015)) of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/?-catenin signaling regulate foxj1 throughout Xenopus development. Here we analyzed whether foxj1 expression was also ATP4a-dependent in other ciliated tissues of the developing Xenopus embryo and tadpole. We found that in the floor plate of the neural tube ATP4a-dependent canonical Wnt signaling was required for foxj1 expression, downstream of or in parallel to Hedgehog signaling. In the developing tadpole brain, ATP4-function was a prerequisite for the establishment of cerebrospinal fluid flow. Furthermore, we describe foxj1 expression and the presence of multiciliated cells in the developing tadpole gastrointestinal tract. Our work argues for a general requirement of ATP4-dependent Wnt/?-catenin signaling for foxj1 expression and motile ciliogenesis throughout Xenopus development. PMID:26217756

  11. The sided action of Na+ and of K+ on reconstituted shark (Na+ + K+)-ATPase engaged in Na+-Na+ exchange accompanied by ATP hydrolysis. I. The ATP activation curve.

    PubMed

    Cornelius, F; Skou, J C

    1987-11-13

    The ATP hydrolysis dependent Na+-Na+ exchange of reconstituted shark (Na+ + K+)-ATPase is electrogenic with a transport stoichiometry as for the Na+-K+ exchange, suggesting that translocation of extracellular Na+ is taking place via the same route as extracellular K+. The preparation thus offers an opportunity to compare the sided action of Na+ and K+ on the affinity for ATP in a reaction in which the intermediary steps in the overall reaction seems to be the same without and with K+. With Na+ but no K+ on the two sides of the enzyme, the ATP-activation curve is hyperbolic and the affinity for ATP is high. Extracellular K+ in concentrations of 50 microM (the lowest tested) and up gives biphasic ATP activation curves, with both a high- and a low-affinity component for ATP. Cytoplasmic K+ also gives biphasic ATP-activation curves, however, only when the K+ concentration is 50 mM or higher (Na+ + K+ = 130 mM). The different ATP-activation curves are explained from the Albers-Post scheme, in which there is an ATP-dependent and an ATP-independent deocclusion of E2(Na2+) and E2(K2+), respectively, and in which the dephosphorylation of E2-P is rate limiting in the presence of Na+ (but no K+) extracellular, whereas in the presence of extracellular K+ it is the deocclusion of E2(K2+) which is rate limiting. PMID:2822120

  12. The Involvement of Hydrogen-producing and ATP-dependent NADPH-consuming Pathways in Setting the Redox Poise in the

    E-print Network

    The Involvement of Hydrogen-producing and ATP-dependent NADPH-consuming Pathways in Setting pathways. Conclusion: The two mains pathways are the ATP-dependent CO2 fixation pathway and the ATP either by the light-induced synthe- sis of ATP, which promotes the consumption of reducing equiv- alents

  13. Storage and Release of ATP from Astrocytes in Culture* Received for publication, September 16, 2002, and in revised form, October 22, 2002

    E-print Network

    Newman, Eric A.

    Storage and Release of ATP from Astrocytes in Culture* Received for publication, September 16, 2002, 20129 Milano, Italy ATP is released from astrocytes and is involved in the propagation of calcium waves among them. Neuronal ATP secretion is quantal and calcium-dependent, but it has been suggested that ATP

  14. Pre-Steady-State Analysis of ATP Hydrolysis by Saccharomyces cereVisiae DNA Topoisomerase II. 2. Kinetic Mechanism for the Sequential Hydrolysis of Two

    E-print Network

    Lewis, Timothy

    Pre-Steady-State Analysis of ATP Hydrolysis by Saccharomyces cereVisiae DNA Topoisomerase II. 2. Kinetic Mechanism for the Sequential Hydrolysis of Two ATP Timothy T. Harkins,,| Timothy J. Lewis) sequential ATP hydrolysis or (2) simultaneous hydrolysis of both ATP. Here, we present results

  15. Growth retardation of Escherichia coli by artificial increase of intracellular ATP.

    PubMed

    Na, Yoon-Ah; Lee, Joo-Young; Bang, Weon-Jeong; Lee, Hyo Jung; Choi, Su-In; Kwon, Soon-Kyeong; Jung, Kwang-Hwan; Kim, Jihyun F; Kim, Pil

    2015-06-01

    Overexpression of phosphoenolpyruvate carboxykinase (PCK) was reported to cause the harboring of higher intracellular ATP concentration in Escherichia coli, accompanied with a slower growth rate. For systematic determination of the relationship between the artificial increase of ATP and growth retardation, PCKWT enzyme was directly evolved in vitro and further overexpressed. The evolved PCK67 showed a 60% greater catalytic efficiency than that of PCKWT. Consequently, the PCK67-overexpressing E. coli showed the highest ATP concentration at the log phase of 1.45 ?mol/gcell, with the slowest growth rate of 0.66 h(-1), while the PCKWT-overexpressing cells displayed 1.00 ?mol/gcell ATP concentration with the growth rate of 0.84 h(-1) and the control had 0.28 ?mol/gcell with 1.03 h(-1). To find a plausible reason, PCK-overexpressing cells in a steady state during chemostat growth were applied to monitor intracellular reactive oxygen species (ROS). Higher amount of intracellular ROS were observed as the ATP levels increased. To confirm the hypothesis of slower growth rate without perturbation of the carbon flux by PCK-overexpression, phototrophic Gloeobacter rhodopsin (GR) was expressed. The GR-expressing strain under illumination harbored 81% more ATP concentration along with 82% higher ROS, with a 54% slower maximum growth rate than the control, while both the GR-expressing strain under dark and dicarboxylate transporter (a control membrane protein)-expressing strain showed a lower ATP and increased ROS, and slower growth rate. Regardless of carbon flux changes, the artificial ATP increase was related to the ROS increase and it was reciprocally correlated to the maximum growth rate. To verify that the accumulated intracellular ROS were responsible for the growth retardation, glutathione was added to the medium to reduce the ROS. As a result, the growth retardation was restored by the addition of 0.1 mM glutathione. Anaerobic culture even enabled the artificial ATP-increased E. coli to grow faster than control. Collectively, it was concluded that artificial ATP increases inhibit the growth of E. coli due to the overproduction of ROS. PMID:25838237

  16. ATP Synthase and the Actions of Inhibitors Utilized To Study Its Roles in Human Health, Disease, and Other Scientific Areas

    PubMed Central

    Hong, Sangjin; Pedersen, Peter L.

    2008-01-01

    Summary: ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and Pi, the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology. PMID:19052322

  17. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    PubMed Central

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  18. Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis-induced efflux of ATP from rat skeletal muscle

    PubMed Central

    Tu, Jie; Le, Gengyun; Ballard, Heather J

    2010-01-01

    The present study was performed to investigate the effect of acidosis on the efflux of ATP from skeletal muscle. Infusion of lactic acid to the perfused hindlimb muscles of anaesthetised rats produced dose-dependent decreases in pH and increases in the interstitial ATP of extensor digitorum longus (EDL) muscle: 10 mm lactic acid reduced the venous pH from 7.22 ± 0.04 to 6.97 ± 0.02 and increased interstitial ATP from 38 ± 8 to 67 ± 11 nm. The increase in interstitial ATP was well-correlated with the decrease in pH (r2 = 0.93; P < 0.05). Blockade of cellular uptake of lactic acid using ?-cyano-hydroxycinnamic acid abolished the lactic acid-induced ATP release, whilst infusion of sodium lactate failed to depress pH or increase interstitial ATP, suggesting that intracellular pH depression, rather than lactate, stimulated the ATP efflux. Incubation of cultured skeletal myoblasts with 10 mm lactic acid significantly increased the accumulation of ATP in the bathing medium from 0.46 ± 0.06 to 0.76 ± 0.08 ?m, confirming the skeletal muscle cells as the source of the released ATP. Acidosis-induced ATP efflux from the perfused muscle was abolished by CFTRinh-172, a specific inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), or glibenclamide, an inhibitor of both KATP channels and CFTR, but it was not affected by atractyloside, an inhibitor of the mitochondrial ATP transporter. Silencing of the CFTR gene using an siRNA abolished the acidosis-induced increase in ATP release from cultured myoblasts. CFTR expression on skeletal muscle cells was confirmed using immunostaining in the intact muscle and Western blotting in the cultured cells. These data suggest that depression of the intracellular pH of skeletal muscle cells stimulates ATP efflux, and that CFTR plays an important role in the release mechanism. PMID:20819945

  19. A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP Synthase

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Hochstein, Lawrence I.

    1989-01-01

    A purified ATPase associated with membranes from Halobacterium saccharovorum was compared with the F sub 1 moiety from the Escherichia coli ATP Synthase. The halobacterial enzyme was composed of two major (I and II) and two minor subunits (III and IV), whose molecular masses were 87 kDa, 60 kDa, 29 kDa, and 20 kDa, respectively. The isoelectric points of these subunits ranged from 4.1 to 4.8, which in the case of the subunits I and II was consistent with the presence of an excess of acidic amino acids (20 to 22 Mol percent). Peptide mapping of sodium dodecylsulfate-denatured subunits I and II showed no relationship between the primary structures of the individual halobacterial subunits or similarities to the subunits of the F sub 1 ATPase (EC 3.6.1.34) from E. coli. Trypsin inactivation of the halobacterial ATPase was accompanied by the partial degradation of the major subunits. This observation, taken in conjunction with molecular masses of the subunits and the native enzyme, was consistent with the previously proposed stoichiometry of 2:2:1:1. These results suggest that H. saccharovorum, and possibly, Halobacteria in general, possess an ATPase which is unlike the ubiquitous F sub o F sub 1 - ATP Synthase.

  20. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition

    PubMed Central

    Kiss, Gergely; Konrad, Csaba; Pour-Ghaz, Issa; Mansour, Josef J.; Németh, Beáta; Starkov, Anatoly A.; Adam-Vizi, Vera; Chinopoulos, Christos

    2014-01-01

    Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the ?-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD+ supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD+ pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD+ derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.—Kiss, G., Konrad, C., Pour-Ghaz, I., Mansour, J. J., Németh, B., Starkov, A. A., Adam-Vizi, V., Chinopoulos, C. Mitochondrial diaphorases as NAD+ donors to segments of the citric acid cycle that support substrate-level phosphorylation yielding ATP during respiratory inhibition. PMID:24391134