Science.gov

Sample records for atpap15 enhances phosphorus

  1. Enhanced diffusion of phosphorus at grain boundaries

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1982-01-01

    Enhanced diffusion of phosphorus at grain boundaries in cast polycrystalline photovoltaic materials (Wacker, HEM, and Semix) was studied. It was found that the enhancements for the three materials were the same, indicating that the properties of boundaries are similar, even though they were grown by different techniques. In addition, it was observed that grain boundaries capable of enhancing the diffusion always have strong recombination activities. Both phenomena could be related to dangling bonds existing at the boundaries. The present study gives the first evidence that incoherent second order twins of 111/115-plane type are diffusion-active.

  2. Polyhydroxyalkanoates form potentially a key aspect of aerobic phosphorus uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew Amis; Liu, Yan-Hua

    2002-08-01

    Eighteen anaerobic/aerobic batch experiments were conducted with a variety of volatile fatty acids (VFAs) on a sequencing batch reactor (SBR) population displaying enhanced biological phosphorus removal (EBPR). A statistically significant (P < 0.01 for all variables) correlation between aerobic phosphorus uptake and polyhydroxyalkanoates (PHAs) quantity and form was observed. The results suggest that poly-3-hydroxy-butyrate (3HB) results in significantly higher aerobic phosphorus (P) uptake per unit mmoles as carbon (mmoles-C) than poly-3-hydroxy-valerate (3HV). The results showed that acetic and isovaleric acids resulted in higher P removals (relative to propionic and valeric acids) during EBPR batch experiments not because of higher PHAs quantity, but largely because the predominant type was 3HB rather than 3HV. In contrast propionic and valeric acids resulted in 3HV, and showed much lower aerobic P uptake per unit PHAs. PMID:12230192

  3. Microbial endemism: does phosphorus limitation enhance speciation?

    PubMed

    Souza, Valeria; Eguiarte, Luis E; Siefert, Janet; Elser, James J

    2008-07-01

    There is increasing evidence for the existence of unique ecosystems that are dominated by locally adapted microbiota which harbour distinct lineages and biological capabilities, much like the macrobiota of Darwin's Galapagos Islands. As a primary example of such a system, we highlight key discoveries from the Cuatro Ciénegas basin in Mexico. We argue that high microbial endemism requires a combination of geographical isolation, long-term continuity and mechanisms for reducing the intensity of horizontal gene transfer (HGT). We also propose that strong phosphorus limitation has an important role in microbial diversification by reducing the intensity of HGT. PMID:18521074

  4. Enhanced biological phosphorus removal employing EDTA disodium

    SciTech Connect

    Bojinova, D.; Velkova, R.

    1996-12-31

    The biological phosphorus removal is a promising alternative to the conventional chemical technologies for processing of phosphate raw materials. The object of this study was the effect of EDTA disodium on the biotreatment of tunisian phosphorite with the strain of Aspergillus niger. The incubation was carried out in two nutritive mediums, with different phosphate content. The experimental results showed that the additives of EDTA disodium in the nutritive medium increased the rate of extraction of P{sub 2}O{sub 5} and shortened significantly the time for biological leaching. 5 refs., 3 figs., 2 tabs.

  5. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  6. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal. PMID:24122666

  7. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. PMID:27003794

  8. Enhanced biological phosphorus removal with different carbon sources.

    PubMed

    Shen, Nan; Zhou, Yan

    2016-06-01

    Enhanced biological phosphorus removal (EBPR) process is one of the most economical and sustainable methods for phosphorus removal from wastewater. However, the performance of EBPR can be affected by available carbon sources types in the wastewater that may induce different functional microbial communities in the process. Glycogen accumulating organisms (GAOs) and polyphosphate accumulating organisms (PAOs) are commonly found by coexisting in the EBPR process. Predominance of GAO population may lead to EBPR failure due to the competition on carbon source with PAO without contributing phosphorus removal. Carbon sources indeed play an important role in alteration of PAOs and GAOs in EBPR processes. Various types of carbon sources have been investigated for EBPR performance. Certain carbon sources tend to enrich specific groups of GAOs and/or PAOs. This review summarizes the types of carbon sources applied in EBPR systems and highlights the roles of these carbon sources in PAO and GAO competition. Both single (e.g., acetate, propionate, glucose, ethanol, and amino acid) and complex carbon sources (e.g., yeast extract, peptone, and mixed carbon sources) are discussed in this review. Meanwhile, the environmental friendly and economical carbon sources that are derived from waste materials, such as crude glycerol and wasted sludge, are also discussed and compared. PMID:27087523

  9. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    PubMed

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. PMID:26144019

  10. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.

    PubMed

    Wu, Di; Ekama, George A; Wang, Hai-Guang; Wei, Li; Lu, Hui; Chui, Ho-Kwong; Liu, Wen-Tso; Brdjanovic, Damir; van Loosdrecht, Mark C M; Chen, Guang-Hao

    2014-02-01

    Hong Kong has practiced seawater toilet flushing since 1958, saving 750,000 m(3) of freshwater every day. A high sulfate-to-COD ratio (>1.25 mg SO4(2-)/mg COD) in the saline sewage resulting from this practice has enabled us to develop the Sulfate reduction, Autotrophic denitrification and Nitrification Integrated (SANI(®)) process with minimal sludge production and oxygen demand. Recently, the SANI(®) process has been expanded to include Enhanced Biological Phosphorus Removal (EBPR) in an alternating anaerobic/limited-oxygen (LOS-EBPR) aerobic sequencing batch reactor (SBR). This paper presents further development - an anaerobic/anoxic denitrifying sulfur cycle-associated EBPR, named as DS-EBPR, bioprocess in an alternating anaerobic/anoxic SBR for simultaneous removal of organics, nitrogen and phosphorus. The 211 day SBR operation confirmed the sulfur cycle-associated biological phosphorus uptake utilizing nitrate as electron acceptor. This new bioprocess cannot only reduce operation time but also enhance volumetric loading of SBR compared with the LOS-EBPR. The DS-EBPR process performed well at high temperatures of 30 °C and a high salinity of 20% seawater. A synergistic relationship may exist between sulfur cycle and biological phosphorus removal as the optimal ratio of P-release to SO4(2-)-reduction is close to 1.0 mg P/mg S. There were no conventional PAOs in the sludge. PMID:24342048

  11. Phosphorus mobilizing consortium Mammoth P(™) enhances plant growth.

    PubMed

    Baas, Peter; Bell, Colin; Mancini, Lauren M; Lee, Melanie N; Conant, Richard T; Wallenstein, Matthew D

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity. PMID:27326379

  12. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    PubMed Central

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  13. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    PubMed

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

  14. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  15. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus

    NASA Astrophysics Data System (ADS)

    Martin, Patrick; Dyhrman, Sonya T.; Lomas, Michael W.; Poulton, Nicole J.; Van Mooy, Benjamin A. S.

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles.

  16. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus.

    PubMed

    Martin, Patrick; Dyhrman, Sonya T; Lomas, Michael W; Poulton, Nicole J; Van Mooy, Benjamin A S

    2014-06-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles. PMID:24753593

  17. Accumulation and enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low phosphorus

    PubMed Central

    Martin, Patrick; Dyhrman, Sonya T.; Lomas, Michael W.; Poulton, Nicole J.; Van Mooy, Benjamin A. S.

    2014-01-01

    Phytoplankton alter their biochemical composition according to nutrient availability, such that their bulk elemental composition varies across oceanic provinces. However, the links between plankton biochemical composition and variation in biogeochemical cycling of nutrients remain largely unknown. In a survey of phytoplankton phosphorus stress in the western North Atlantic, we found that phytoplankton in the phosphorus-depleted subtropical Sargasso Sea were enriched in the biochemical polyphosphate (polyP) compared with nutrient-rich temperate waters, contradicting the canonical oceanographic view of polyP as a luxury phosphorus storage molecule. The enrichment in polyP coincided with enhanced alkaline phosphatase activity and substitution of sulfolipids for phospholipids, which are both indicators of phosphorus stress. Further, polyP appeared to be liberated preferentially over bulk phosphorus from sinking particles in the Sargasso Sea, thereby retaining phosphorus in shallow waters. Thus, polyP cycling may form a feedback loop that attenuates the export of phosphorus when it becomes scarce, contributes bioavailable P for primary production, and supports the export of carbon and nitrogen via sinking particles. PMID:24753593

  18. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across

  19. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters

    SciTech Connect

    Ingall, E.; Jahnki, R.

    1994-06-01

    Phosphorus regeneration and burial fluxes determined from in situ benthic flux chamber and solid phase measurements at sites on the Californian continental margin, Peruvian continental slope, North Carolina continental slope, and from the Santa Monica basin, California are reported. Comparison of these sites indicates that O{sub 2}-depleted bottomwaters enhance P regeneration from sediments, diminishing overall phosphorus burial efficiency. Based on these observations, a positive feedback, linking ocean anoxia, enhanced benthic phosphorus regeneration, and marine productivity is proposed. On shorter timescales, these results also suggest that O{sub 2} depletion in coastal regions caused by eutrophication may enhance P regeneration from sediments, thereby providing additional P necessary for increased biological productivity. 42 refs., 2 figs., 2 tabs.

  20. Duplicate and Conquer: Multiple Homologs of PHOSPHORUS-STARVATION TOLERANCE1 Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils1[C][W][OPEN

    PubMed Central

    Hufnagel, Barbara; de Sousa, Sylvia M.; Assis, Lidianne; Guimaraes, Claudia T.; Leiser, Willmar; Azevedo, Gabriel C.; Negri, Barbara; Larson, Brandon G.; Shaff, Jon E.; Pastina, Maria Marta; Barros, Beatriz A.; Weltzien, Eva; Rattunde, Henry Frederick W.; Viana, Joao H.; Clark, Randy T.; Falcão, Alexandre; Gazaffi, Rodrigo; Garcia, Antonio Augusto F.; Schaffert, Robert E.; Kochian, Leon V.; Magalhaes, Jurandir V.

    2014-01-01

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil. PMID:25189534

  1. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process. PMID:25735007

  2. Optimisation of sludge line management to enhance phosphorus recovery in WWTP.

    PubMed

    Marti, N; Ferrer, J; Seco, A; Bouzas, A

    2008-11-01

    The management of the sludge treatment line can be optimized to reduce uncontrolled phosphorus precipitation in the anaerobic digester and to enhance phosphorus recovery in WWTP. In this paper, four operational strategies, which are based on the handling of the prefermented primary sludge and the secondary sludge from an EBPR process, have been tested in a pilot plant. The separated or mixed sludge thickening, the use of a stirred contact tank and the elutriation of the thickened sludge are the main strategies studied. Both the reduction of phosphorus precipitation in the digester and the supernatant suitability for a struvite crystallization process were assessed in each configuration. The mixed sludge thickening combined with a high flowrate elutriation stream reduced the phosphorus precipitation in the digester by 46%, with respect to the separate sludge thickening configuration (common practice in WWTP). Moreover, in this configuration, 68% of the soluble phosphorus in the system is available for a possible phosphorus recovery process by crystallization (not studied in this work). However, a high Ca/P molar ratio was detected in the resultant supernatant which is pointed out as a problem for the efficiency of struvite crystallization. PMID:18786693

  3. Fouling of enhanced biological phosphorus removal-membrane bioreactors by humic-like substances.

    PubMed

    Poorasgari, Eskandar; König, Katja; Fojan, Peter; Keiding, Kristian; Christensen, Morten Lykkegaard

    2014-12-01

    Fouling by free extracellular polymeric substances was studied in an enhanced biological phosphorus removal-membrane bioreactor. It was demonstrated that the free extracellular polymeric substances, primarily consisting of humic-like substances, were adsorbed to the membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant. Infrared analyses indicated the presence of the humic-like substances on the membrane's active surface after filtration of the free extracellular polymeric substances suspension. Scanning electron microscopy showed the presence of a gel layer on the membrane surface after filtration of the free extracellular polymeric substances suspension. The gel layer caused a significant decline in water flux. This layer was not entirely removed by a backwashing, and the membrane's water flux could not be re-established. The membrane used in the enhanced biological phosphorus removal-membrane bioreactor plant showed infrared spectra similar to that fouled by the free extracellular polymeric substances suspension in the laboratory. Thus, the results of this study show the importance of humic-like substances in irreversible fouling of enhanced biological phosphorus removal-membrane bioreactor systems. PMID:25014564

  4. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed. PMID:24984512

  5. Enhanced visible light photocatalytic property of red phosphorus via surface roughening

    SciTech Connect

    Li, Weibing; Yue, Jiguang; Hua, Fangxia; Feng, Chang; Bu, Yuyu; Chen, Zhuoyuan

    2015-10-15

    Highlights: • Photocatalytic RhB degradation of red phosphorus was studied for the first time. • Surface rough can increase the photocatalysis reaction active sites. • Surface rough red phosphorus possesses high photocatalytic performance. • Surface rough red phosphorus has high industrial application value. - Abstract: Red phosphorus with rough surface (SRP) was prepared by catalyst-assisted hydrothermal synthesis using Co{sup 2+} catalyst. The photocatalytic Rhodamine B (RhB) degradation of red phosphorus (RP) and SRP was studied for the first time in this work. Rough surface can enhance the dye adsorption ability of RP. About 75% RhB was absorbed by SRP after 30-min adsorption in 100 ml RhB solution with concentration of 10 mg l{sup −1} in dark. After only 10 min of illumination by visible light, more than 95% RhB was degraded, indicating that SRP has a great application potential in the area of photocatalysis. The photocatalytic RhB degradation properties of RP are much weaker than those of SRP. The increase of the number of the active sites for the photocatalytic reactions, the electron mobility and the lifetime of the photogenerated electrons cause the significant improvement of the photocatalytic performance of SRP based on the experimental results obtained.

  6. Enhancing combined biological nitrogen and phosphorus removal from wastewater by applying mechanically disintegrated excess sludge.

    PubMed

    Zubrowska-Sudol, Monika; Walczak, Justyna

    2015-06-01

    The goal of the study was to evaluate the possibility of applying disintegrated excess sludge as a source of organic carbon to enhance biological nitrogen and phosphorus removal. The experiment, performed in a sequencing batch reactor, consisted of two two-month series, without and with applying mechanically disintegrated excess sludge, respectively. The effects on carbon, nitrogen and phosphorus removal were observed. It was shown that the method allows enhancement of combined nitrogen and phosphorus removal. After using disintegrated sludge, denitrification effectiveness increased from 49.2 ± 6.8% to 76.2 ± 2.3%, which resulted in a decline in the NOx-N concentration in the effluent from the SBR by an average of 21.4 mg NOx-N/L. Effectiveness of biological phosphorus removal increased from 28.1 ± 11.3% to 96.2 ± 2.5%, thus resulting in a drop in the [Formula: see text] concentration in the effluent by, on average, 6.05 mg PO4(3-)-P/L. The application of disintegrated sludge did not deteriorate effluent quality in terms of COD and NH4(+)-N. The concentration of NH4(+)-N in both series averaged 0.16 ± 0.11 mg NH4(+)-N/L, and the concentration of COD was 15.36 ± 3.54 mg O2/L. PMID:25776916

  7. Enhanced phosphorus flux from overlying water to sediment in a bioelectrochemical system.

    PubMed

    Yang, Qinzheng; Zhao, Huazhang; Zhao, Nannan; Ni, Jinren; Gu, Xuejing

    2016-09-01

    This report proposed a novel technique for the regulation of phosphorus flux based on a bioelectrochemical system. In the simulated water system, a simple in situ sediment microbial fuel cell (SMFC) was constructed. SMFC voltage was increased with time until it was 0.23V. The redox potential of the sediment was increased from -220mV to -178mV during the process. Phosphorus concentration in the water system was decreased from 0.1mg/L to 0.01mg/L, compared with 0.09mg/L in the control. The installation of a SMFC produced an external current and internal circuit, which promoted the transfer of phosphate in overlying water to the sediment, enhanced the microbial oxidation of Fe(2+), and increased the formation of stable phosphorus in sediment. In conclusion, phosphorus flux from the overlying water to sediment was enhanced by SMFC, which has the potential to be used for eutrophication control of water bodies. PMID:27240233

  8. Phosphorus Retention by Stormwater Detention Areas: Estimation, Enhancement, and Economics

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Hodges, A.

    2015-12-01

    Stormwater detention areas (SDAs) are considered an important best management practice (BMP) both in agricultural and urban areas. In sub-tropical Florida where sandy soils and shallow water table make the nutrient leaching losses from agricultural areas inevitable, the SDAs are relied upon as a last point of treatment. Field-measured water and phosphorus (P) fluxes from an agricultural SDA showed that contrary to generally held view, the SDA was a source of P for the first year (retention efficiency = -12%). For the next year, the SDA served as a sink (54%). The source function of the SDA was a combined effect of high rainfall, dilution of agricultural drainage with rainfall from a tropical storm, and legacy-based soil P saturation. Volume reduction was the main reason for P retention because of no remaining P sorption capacity in the soil in most of the SDA area. Although a net sink of P for Year 2, an event-wise analysis showed the SDA to be a source of P for three out of seven outflow events in Year 2 indicating P release from soil. Because surface P treatment efficiency during both years was either less than or approximately the same as surface water retention efficiency, volume reduction and not sorption or biological assimilation controlled P retention. Hydraulic (e.g. increased storage), managerial (biomass harvesting) and chemical (alum treatment) modifications were evaluated by using a stormwater treatment model and field data. The model was successfully field-verified using well accepted performance measures (e.g. Nash-Sutcliffe efficiency). Maximum additional P retention was shown to be achieved by biomass harvesting (>100%) followed by chemical treatment (71%), and increased spillage level (29%). Economic feasibility of the aforementioned modifications and development of a payment for environmental services (PES) program was identified through a cost-benefit analysis for maintaining these SDAs as sink of P in the long-term.

  9. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.

    PubMed

    Jin, Ying; Hu, Zhenhu; Wen, Zhiyou

    2009-08-01

    Anaerobic digestion and struvite precipitation are two effective ways of treating dairy manure for recovering biogas and phosphorus. Anaerobic digestion of dairy manure is commonly limited by slow fiber degradation, while struvite precipitation is limited by the availability of orthophosphate. The aim of this work is to study the possibility of using microwave-based thermochemical pretreatment to simultaneously enhance manure anaerobic digestibility (through fiber degradation) and struvite precipitation (through phosphorus solubilization). Microwave heating combined with different chemicals (NaOH, CaO, H(2)SO(4), or HCl) enhanced solubilization of manure and degradation of glucan/xylan in dairy manure. However, sulfuric acid-based pretreatment resulted in a low anaerobic digestibility, probably due to the sulfur inhibition and Maillard side reaction. The pretreatments released 20-40% soluble phosphorus and 9-14% ammonium. However, CaO-based pretreatment resulted in lower orthophosphate releases and struvite precipitation efficiency as calcium interferes with phosphate to form calcium phosphate. Collectively, microwave heating combined with NaOH or HCl led to a high anaerobic digestibility and phosphorus recovery. Using these two chemicals, the performance of microwave- and conventional-heating in thermochemical pretreatment was further compared. The microwave heating resulted in a better performance in terms of COD solubilization, glucan/xylan reduction, phosphorus solubilization and anaerobic digestibility. Lastly, temperature and heating time used in microwave treatment were optimized. The optimal values of temperature and heating time were 147 degrees C and 25.3 min for methane production, and 135 degrees C and 26 min for orthophosphate release, respectively. PMID:19555991

  10. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity

    SciTech Connect

    Zhang, Ligang; Chen, Xiufang; Guan, Jing; Jiang, Yijun; Hou, Tonggang; Mu, Xindong

    2013-09-01

    Graphical abstract: - Highlights: • P-doped g-C{sub 3}N{sub 4} has been prepared by a one-pot green synthetic approach. • The incorporation of P resulted in favorable textural and electronic properties. • Doping with P enhanced the visible-light photocatalytic activity of g-C{sub 3}N{sub 4}. • A postannealing treatment further enhanced the activity of P-doped g-C{sub 3}N{sub 4}. • Photogenerated holes were the main species responsible for the activity. - Abstract: Phosphorus-doped carbon nitride materials were prepared by a one-pot green synthetic approach using dicyandiamide monomer and a phosphorus containing ionic liquid as precursors. The as-prepared materials were subjected to several characterizations and investigated as metal-free photocatalysts for the degradation of organic pollutants (dyes like Rhodamine B, Methyl orange) in aqueous solution under visible light. Results revealed that phosphorus-doped carbon nitride have a higher photocatalytic activity for decomposing Rhodamine B and Methyl orange in aqueous solution than undoped g-C{sub 3}N{sub 4}, which was attributed to the favorable textural, optical and electronic properties caused by doping with phosphorus heteroatoms into carbon nitride host. A facile postannealing treatment further improved the activity of the photocatalytic system, due to the higher surface area and smaller structural size in the postcalcined catalysts. The phosphorus-doped carbon nitride showed high visible-light photocatalytic activity, making them promising materials for a wide range of potential applications in photochemistry.

  11. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes.

    PubMed

    Sun, Jie; Zheng, Guangyuan; Lee, Hyun-Wook; Liu, Nian; Wang, Haotian; Yao, Hongbin; Yang, Wensheng; Cui, Yi

    2014-08-13

    High specific capacity battery electrode materials have attracted great research attention. Phosphorus as a low-cost abundant material has a high theoretical specific capacity of 2596 mAh/g with most of its capacity at the discharge potential range of 0.4-1.2 V, suitable as anodes. Although numerous research progress have shown other high capacity anodes such as Si, Ge, Sn, and SnO2, there are only a few studies on phosphorus anodes despite its high theoretical capacity. Successful applications of phosphorus anodes have been impeded by rapid capacity fading, mainly caused by large volume change (around 300%) upon lithiation and thus loss of electrical contact. Using the conducting allotrope of phosphorus, "black phosphorus" as starting materials, here we fabricated composites of black phosphorus nanoparticle-graphite by mechanochemical reaction in a high energy mechanical milling process. This process produces phosphorus-carbon bonds, which are stable during lithium insertion/extraction, maintaining excellent electrical connection between phosphorus and carbon. We demonstrated high initial discharge capacity of 2786 mAh·g(-1) at 0.2 C and an excellent cycle life of 100 cycles with 80% capacity retention. High specific discharge capacities are maintained at fast C rates (2270, 1750, 1500, and 1240 mAh·g(-1) at C/5, 1, 2, and 4.5 C, respectively). PMID:25019417

  12. Enhancing phosphorus recovery by a new internal recycle seeding MAP reactor.

    PubMed

    Liu, Zhigang; Zhao, Qingliang; Lee, Duu-Jong; Yang, Nan

    2008-09-01

    Phosphorus is a depleting resource that needs recovery from wastewater streams. The magnesium ammonium phosphate (MAP) crystallization process could simultaneously recover ammonium nitrogen and phosphorus at equal molar basis to yield slow-release MAP fertilizer. However, the present MAP processes are not efficient in recovering phosphorus at low P concentrations. This work presented and tested the performance of a newly proposed MAP reactor, the internal recycle seeding reactor (IRSR) that comprised of a reaction zone and a settling zone connecting with an internal recirculation loop. Owing to the enhanced secondary nucleation rates of MAP crystals in reaction zone under controlled circumstance, the proposed IRSR recovered 78% of phosphorus from wastewater at a low level of 21.7 mg-PL(-1). The optimal operation parameters for the IRSR were investigated with synthetic wastewater and determined as that the Mg/PO(4)(3-)-P molar ratio was 1.3-1.5:1, THRT was up to or longer than 1.14 h, the seed concentration of reaction zone was 0.40-1.0 gL(-1). Further needs for the proposed IRSR strategies were also discussed. PMID:18187321

  13. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Li, Wei; Wang, Xiaoguang; Liu, Lifeng

    2016-09-01

    Hematite (i.e., α-Fe2O3) nanorod photoanodes passivated with a phosphorus overlayer have been fabricated by decomposing sodium hypophosphite (NaH2PO2) at a low temperature over the hematite nanorod surface. Extensive scanning electron microscopy, transmission electron microscopy, x-ray diffractometry and UV–vis spectroscopy characterizations confirm that conformal deposition of an amorphous phosphorus overlayer does not change the crystal structure, morphology, and optical absorption properties of hematite photoanodes. X-ray photoelectron spectroscopy reveals that phosphorus in the deposited overlayer exists in an oxidized state. Comprehensive steady-state polarization, transient photocurrent response, and impedance spectroscopy measurements as well as Mott–Schottky analysis manifest that the phosphorus overlayer is able to effectively passivate surface states and suppress electron–hole recombination, substantially enhancing the photocurrent for water oxidation. Combining the phosphorization treatment with two-step thermal activation, a photocurrent density of 1.1 mA cm‑2 is achieved at 1.23 V versus reversible hydrogen electrode under illumination of 100 mW cm‑2, ca 55 times higher than that of the non-activated pristine hematite photoanode measured under the same conditions. The simple and fast phosphorization strategy we present here can be readily applied to passivate surfaces of other semiconductor photoelectrodes to improve their photoelectrochemical performance.

  14. Duplicate and conquer: multiple homologs of phosphorus-starvation tolerance 1 enhance phosphorus acquisition and sorghum performance on low-P soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice protein kinase, OsPSTOL1, was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum performance und...

  15. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration.

    PubMed

    Arnaldos, Marina; Pagilla, Krishna

    2010-10-01

    Plants aiming to achieve very low effluent nutrient levels (<3 mg N/L for N, and <0.1 mg P/L for P) need to consider removal of effluent fractions hitherto not taken into account. Two of these fractions are dissolved organic nitrogen (DON) and dissolved non-reactive phosphorus (DNRP) (mainly composed of organic phosphorus). In this research, enhanced coagulation using alum (at doses commonly employed in tertiary phosphorus removal) followed by microfiltration (using 0.22 μm pore size filters) was investigated for simultaneous effluent DON and dissolved phosphorus (DP) fractions removal. At an approximate dose of 3.2 mg Al(III)/L, corresponding to 1.5 Al(III)/initial DON-N and 3.8 Al(III)/initial DP-P molar ratios, maximum simultaneous removal of DON and DP was achieved (69% for DON and 72% for DP). At this dose, residual DON and DP concentrations were found to be 0.3 mg N/L and 0.25 mg P/L, respectively. Analysis of the trends of removal revealed that the DNRP removal pattern was similar to that commonly reported for dissolved reactive phosphorus. Since this study involved intensive analytical work, a secondary objective was to develop a simple and accurate measurement protocol for determining dissolved N and P species at very low levels in wastewater effluents. The protocol developed in this study, involving simultaneous digestion for DON and DNRP species, was found to be very reliable and accurate based on the results. PMID:20643469

  16. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes.

    PubMed

    Lv, Xiao-Mei; Shao, Ming-Fei; Li, Chao-Lin; Li, Ji; Gao, Xin-Lei; Sun, Fei-Yun

    2014-09-17

    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge. PMID:24964811

  17. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process.

    PubMed

    Li, Wen-Wei; Zhang, Hai-Ling; Sheng, Guo-Ping; Yu, Han-Qing

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) process is known to mainly rely on the ability of phosphorus-accumulating organisms to take up, transform and store excess amount of phosphorus (P) inside the cells. However, recent studies have revealed considerable accumulation of P also in the extracellular polymeric substances (EPS) of sludge, implying a non-negligible role of EPS in P removal by EBPR sludge. However, the contribution of EPS to P uptake and the forms of accumulated extracellular P vary substantially in different studies, and the underlying mechanism of P transformation and transportation in EPS remains poorly understood. This review provides a new recognition into the P removal process in EBPR system by incorporating the role of EPS. It overviews on the characteristics of P accumulation in EPS, explores the mechanism of P transformation and transportation in EBPR sludge and EPS, summarizes the main influential factors for the P-accumulation properties of EPS, and discusses the remaining knowledge gaps and needed future efforts that may lead to better understanding and use of such an EPS role for maximizing P recovery from wastewater. PMID:26143588

  18. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  19. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  20. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  1. Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping

    NASA Astrophysics Data System (ADS)

    Du, Yuchen; Yang, Lingming; Zhou, Hong; Ye, Peide D.

    2016-04-01

    In this letter, a new approach to chemically dope black phosphorus (BP) is presented, which significantly enhances the device performance of BP field-effect transistors for an initial period of 18 h, before degrading to previously reported levels. By applying 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), low ON-state resistance of 3.2 ohm.mm and high field-effect mobility of 229 cm2/Vs are achieved with a record high drain current of 532 mA/mm at a moderate channel length of 1.5 {\\mu}m.

  2. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement

    PubMed Central

    Sun, Yi; Brauckmann, Ole; Nixdorf, Donald R.; Kentgens, Arno; Garwood, Michael; Idiyatullin, Djaudat; Heerschap, Arend

    2016-01-01

    Three-dimensional phosphorus MR images (31P MRI) of teeth are obtained at a nominal resolution of 0.5 mm in less than 15 minutes using acquisition pulse sequences sensitive to ultra-short transversal relaxation times. The images directly reflect the spatially resolved phosphorus content of mineral tissue in dentin and enamel; they show a lack of signal from pulp tissue and reduced signal from de-mineralized carious lesions. We demonstrate for the first time that the signal in 31P MR images of mineralized tissue is enhanced by a 1H-31P nuclear Overhauser effect (NOE). Using teeth as a model for imaging mineralized human tissue, graded differences in signal enhancement are observed that correlate well with known mineral content. From solid-state NMR experiments we conclude that the NOE is facilitated by spin diffusion and that the NOE difference can be assigned to a higher water content and a different micro-structure of dentin. Thus, a novel method for imaging mineral content without ionizing radiation is proposed. This method has potential use in the assessment of de-mineralization states in humans, such as caries of teeth and osteoporosis of bones. PMID:27498919

  3. Imaging human teeth by phosphorus magnetic resonance with nuclear Overhauser enhancement.

    PubMed

    Sun, Yi; Brauckmann, Ole; Nixdorf, Donald R; Kentgens, Arno; Garwood, Michael; Idiyatullin, Djaudat; Heerschap, Arend

    2016-01-01

    Three-dimensional phosphorus MR images ((31)P MRI) of teeth are obtained at a nominal resolution of 0.5 mm in less than 15 minutes using acquisition pulse sequences sensitive to ultra-short transversal relaxation times. The images directly reflect the spatially resolved phosphorus content of mineral tissue in dentin and enamel; they show a lack of signal from pulp tissue and reduced signal from de-mineralized carious lesions. We demonstrate for the first time that the signal in (31)P MR images of mineralized tissue is enhanced by a (1)H-(31)P nuclear Overhauser effect (NOE). Using teeth as a model for imaging mineralized human tissue, graded differences in signal enhancement are observed that correlate well with known mineral content. From solid-state NMR experiments we conclude that the NOE is facilitated by spin diffusion and that the NOE difference can be assigned to a higher water content and a different micro-structure of dentin. Thus, a novel method for imaging mineral content without ionizing radiation is proposed. This method has potential use in the assessment of de-mineralization states in humans, such as caries of teeth and osteoporosis of bones. PMID:27498919

  4. Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation

    NASA Astrophysics Data System (ADS)

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-01

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability.

  5. Enhanced stability of black phosphorus field-effect transistors with SiO₂ passivation.

    PubMed

    Wan, Bensong; Yang, Bingchao; Wang, Yue; Zhang, Junying; Zeng, Zhongming; Liu, Zhongyuan; Wang, Wenhong

    2015-10-30

    Few-layer black phosphorus (BP) has attracted much attention due to its high mobility and suitable band gap for potential applic5ations in optoelectronics and flexible devices. However, its instability under ambient conditions limits its practical applications. Our investigations indicate that by passivation of the mechanically exfoliated BP flakes with a SiO2 layer, the fabricated BP field-effect transistors (FETs) exhibit greatly enhanced environmental stability. Compared to the unpassivated BP devices, which show a fast drop of on/off current ratio by a factor of 10 after one week of ambient exposure, the SiO2-passivated BP devices display a high retained on/off current ratio of over 600 after one week of exposure, just a little lower than the initial value of 810. Our investigations provide an effective route to passivate the few-layer BPs for enhancement of their environmental stability. PMID:26436439

  6. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    PubMed Central

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria using standard extraction protocols was identified, which would not have been identified without the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter', a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all bacteria by qFISH, but the depth of sequencing enabled detailed insight into their microdiversity in the full-scale plant. Only 15% of the reads matching Accumulibacter had a high similarity (>95%) to the sequenced Accumulibacter clade IIA strain UW-1 genome, indicating the presence of some microdiversity. The differences in gene complement between the Accumulibacter clades were limited to genes for extracellular polymeric substances and phage-related genes, suggesting a selective pressure from phages on the Accumulibacter diversity. PMID:22170425

  7. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    PubMed

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis. PMID:18751532

  8. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    PubMed

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  9. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems.

    PubMed

    Lawson, Christopher E; Strachan, Blake J; Hanson, Niels W; Hahn, Aria S; Hall, Eric R; Rabinowitz, Barry; Mavinic, Donald S; Ramey, William D; Hallam, Steven J

    2015-12-01

    Enhanced biological phosphorus removal (EBPR) relies on diverse but specialized microbial communities to mediate the cycling and ultimate removal of phosphorus from municipal wastewaters. However, little is known about microbial activity and dynamics in relation to process fluctuations in EBPR ecosystems. Here, we monitored temporal changes in microbial community structure and potential activity across each bioreactor zone in a pilot-scale EBPR treatment plant by examining the ratio of small subunit ribosomal RNA (SSU rRNA) to SSU rRNA gene (rDNA) over a 120 day study period. Although the majority of operational taxonomic units (OTUs) in the EBPR ecosystem were rare, many maintained high potential activities based on SSU rRNA : rDNA ratios, suggesting that rare OTUs contribute substantially to protein synthesis potential in EBPR ecosystems. Few significant differences in OTU abundance and activity were observed between bioreactor redox zones, although differences in temporal activity were observed among phylogenetically cohesive OTUs. Moreover, observed temporal activity patterns could not be explained by measured process parameters, suggesting that other ecological drivers, such as grazing or viral lysis, modulated community interactions. Taken together, these results point towards complex interactions selected for within the EBPR ecosystem and highlight a previously unrecognized functional potential among low abundance microorganisms in engineered ecosystems. PMID:25857222

  10. Understanding the role of extracellular polymeric substances in an enhanced biological phosphorus removal granular sludge system.

    PubMed

    Wang, Randeng; Peng, Yongzhen; Cheng, Zhanli; Ren, Nanqi

    2014-10-01

    The role of extracellular polymeric substances (EPS) in the enhanced biological phosphorus removal (EBPR) process was investigated in a P-accumulating granular sludge system by analyzing the distribution and transfer of P, K(+), Mg(2+) and Ca(2+) in the sludge phase, EPS, and the bulk liquid. In the sludge phase, about 30% P, 44.7% K(+), 27.7% Mg(2+), 28% Ca(2+) accumulated in the EPS at the end of aeration. The rate of P, K(+), Mg(2+) and Ca(2+) released from the EPS matrix into the bulk liquid in the anaerobic phase was faster than the rate they were adsorbed from the bulk liquid into the EPS in the aerobic phase. P, K(+), Mg(2+) and Ca(2+) were retained in EPS before transferring into the phosphorus accumulating organisms (PAOs). These results suggest that EPS play a critical role in facilitating the accumulation and transfer of P, K(+), Ca(2+) and Mg(2+) between PAO cells and bulk liquid. PMID:25063972

  11. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    PubMed

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". PMID:23317522

  12. Metabolic versatility in full-scale wastewater treatment plants performing enhanced biological phosphorus removal.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2013-12-01

    This study analysed the enhanced biological phosphorus removal (EBPR) microbial community and metabolic performance of five full-scale EBPR systems by using fluorescence in situ hybridisation combined with off-line batch tests fed with acetate under anaerobic-aerobic conditions. The phosphorus accumulating organisms (PAOs) in all systems were stable and showed little variability between each plant, while glycogen accumulating organisms (GAOs) were present in two of the plants. The metabolic activity of each sludge showed the frequent involvement of the anaerobic tricarboxylic acid cycle (TCA) in PAO metabolism for the anaerobic generation of reducing equivalents, in addition to the more frequently reported glycolysis pathway. Metabolic variability in the use of the two pathways was also observed, between different systems and in the same system over time. The metabolic dynamics was linked to the availability of glycogen, where a higher utilisation of the glycolysis pathway was observed in the two systems employing side-stream hydrolysis, and the TCA cycle was more active in the A(2)O systems. Full-scale plants that showed higher glycolysis activity also exhibited superior P removal performance, suggesting that promotion of the glycolysis pathway over the TCA cycle could be beneficial towards the optimisation of EBPR systems. PMID:24210547

  13. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.

    PubMed

    Chu, Fei-Fei; Chu, Pei-Na; Cai, Pei-Jie; Li, Wen-Wei; Lam, Paul K S; Zeng, Raymond J

    2013-04-01

    To investigate the role of phosphorus in lipid production under nitrogen starvation conditions, five types of media possessing different nitrogen and phosphorus concentrations or their combination were prepared to culture Chlorella vulgaris. It was found that biomass production under nitrogen deficient condition with sufficient phosphorus supply was similar to that of the control (with sufficient nutrition), resulting in a maximum lipid productivity of 58.39 mg/L/day. Meanwhile, 31P NMR showed that phosphorus in the medium was transformed and accumulated as polyphosphate in cells. The uptake rate of phosphorus in cells was 3.8 times higher than the uptake rate of the control. This study demonstrates that phosphorus plays an important role in lipid production of C. vulgaris under nitrogen deficient conditions and implies a potential to combine phosphorus removal from wastewater with biodiesel production via microalgae. PMID:23517904

  14. Microbiological study of bacteriophage induction in the presence of chemical stress factors in enhanced biological phosphorus removal (EBPR).

    PubMed

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S; Goel, Ramesh

    2015-09-15

    Polyphosphate accumulating organisms (PAOs) are responsible for carrying the enhanced biological phosphorus removal (EBPR). Although the EBPR process is well studied, the failure of EBPR performance at both laboratory and full-scale plants has revealed a lack of knowledge about the ecological and microbiological aspects of EBPR processes. Bacteriophages are viruses that infect bacteria as their sole host. Bacteriophage infection of polyphosphate accumulating organisms (PAOs) has not been considered as a main contributor to biological phosphorus removal upsets. This study examined the effects of different stress factors on the dynamics of bacteriophages and the corresponding effects on the phosphorus removal performance in a lab-scale EBPR system. The results showed that copper (heavy metal), cyanide (toxic chemical), and ciprofloxacin (antibiotic), as three different anthropogenic stress factors, can induce phages integrated onto bacterial genomes (i.e. prophages) in an enriched EBPR sequencing batch reactor, resulting in a decrease in the polyphosphate kinase gene ppk1 clades copy number, phosphorus accumulation capacity, and phosphorus removal performance. This study opens opportunities for further research on the effects of bacteriophages in nutrient cycles both in controlled systems such as wastewater treatment plants and natural ecosystems. PMID:26024959

  15. Effect of Sludge Type on Enhanced Biological Phosphorus Removal in Sequencing Batch Reactors

    NASA Astrophysics Data System (ADS)

    Li, Xing; Gao, Dawen; Zhang, Baihui

    2010-11-01

    Aerobic granulation technology has become a novel biotechnology for wastewater treatment. However, the study of distinct properties and characteristics of phosphorus removal between granules and flocculent sludge are still sparse in EBPR. Two SBRs were concurrently operated to investigate the different phosphorus removal characteristics between granules (R1) and flocculate sludge (R2). Results indicated that R2 had a faster progress for enriching phosphorus-accumulating organisms compared with R1, and the phosphorus removal reached the steady state after 40 days in R1 but only 30 days in R2. The moisture content of granules (85.63%) was smaller than that (91.36%) in R2, and the granules had a higher removal efficiency of NH4+-N. However, flocculent sludge could release and take up more phosphorus. The special phosphorus release rate (SPRR) and special phosphorus uptake rate (SPUR) were 8.818 mg/gVSSṡh and 9.921 mg/gVSSṡh in R2 which were consistently larger than that (0.999 mg/gVSSṡh and 0.754 mg/gVSSṡh) in R1. The results of DGGE of PCR-amplified 16SrDNA fragments revealed that the diversity and the amount of phosphorus accumulating microbial of bacteria in flocculent sludge were much more than that in the granules. It can be concluded that the flocculent sludge showed a better phosphorus removal.

  16. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.

    PubMed

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2015-09-01

    Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organic phytate. To reduce bacterial P uptake we used filter-sterilized Hoagland medium containing siderophores or phytase produced by PG12 or PG6 to grow tomato plants supplied with FePO4 or phytate. To confirm that siderophores were responsible for P release, we compared the mutants of siderophore-producing bacterium Pseudomonas fluorescens Pf5 (PchA) impaired in siderophore production with the wild type and test strains. After 7d of growth, mutant PchA solubilized 10-times less P than strain PG12, which increased tomato root biomass by 1.7 times. For phytate solubilization by PG6, tomato shoot biomass increased by 44% than control bacterium Pseudomonas chlororaphis. P solubilization by ARB from P. vittata may be useful in enhancing plant growth and nutrition in other crop plants. PMID:25880602

  17. Effects of transgenic soybean on growth and phosphorus acquisition in mixed culture system.

    PubMed

    Xie, Jianna; Zhou, Jia; Wang, Xiurong; Liao, Hong

    2015-05-01

    Transgenic soybean plants overexpressing the Arabidopsis purple acid phosphatase gene AtPAP15 (OXp) or the soybean expansin gene GmEXPB2 (OXe) can improve phosphorous (P) efficiency in pure culture by increasing Apase secretion or changing root morphology. In this study, soybean-soybean mixed cultures were employed to illuminate P acquisition among plants in mixed stands of transgenic and wild-type soybean. Our results showed that transgenic soybean plants were much more competitive, and had greater growth and P uptake than wild-type soybean in mixed culture in both low P calcareous and acid soils. Furthermore, OXe plants had an advantage in calcareous soils when mixed with OXp, whereas the latter performed much better in acid soils. In soybean-maize mixed culture, transgenic soybean had no impact on maize growth compared to controls in both acid and calcareous soils with different P conditions. As for soybean in mixed culture, OXp plants had no significant advantages regardless of P availability or soil type, while P efficiency improved in OXe in calcareous soils compared to controls. These results imply that physiological traits could be easily affected by the mixed maize. Transgenic soybean plants with enhanced root traits had more competitive advantages than those with improved root physiology in mixed culture. PMID:25048220

  18. Monitoring intracellular polyphosphate accumulation in enhanced biological phosphorus removal systems by quantitative image analysis.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Carvalheira, Mónica; Cunha, Jorge R; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2014-01-01

    A rapid methodology for intracellular storage polyphosphate (poly-P) identification and monitoring in enhanced biological phosphorus removal (EBPR) systems is proposed based on quantitative image analysis (QIA). In EBPR systems, 4',6-diamidino-2-phenylindole (DAPI) is usually combined with fluorescence in situ hybridization to evaluate the microbial community. The proposed monitoring technique is based on a QIA procedure specifically developed for determining poly-P inclusions within a biomass suspension using solely DAPI by epifluorescence microscopy. Due to contradictory literature regarding DAPI concentrations used for poly-P detection, the present work assessed the optimal DAPI concentration for samples acquired at the end of the EBPR aerobic stage when the accumulation occurred. Digital images were then acquired and processed by means of image processing and analysis. A correlation was found between average poly-P intensity values and the analytical determination. The proposed methodology can be seen as a promising alternative procedure for quantifying intracellular poly-P accumulation in a faster and less labour-intensive way. PMID:24901627

  19. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    PubMed

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs. PMID:26524149

  20. Enhanced regeneration of phosphorus during formation of the most recent eastern Mediterranean sapropel (S1)

    NASA Astrophysics Data System (ADS)

    Slomp, Caroline P.; Thomson, John; de Lange, Gert J.

    2002-04-01

    Phosphorus regeneration and burial fluxes during and after formation of the most recent sapropel S1 were determined for two deep-basin, low-sedimentation sites in the eastern Mediterranean Sea. Organic C/P ratios and burial fluxes indicate enhanced regeneration of P relative to C during deposition of sapropel S1. This is largely due to the enhanced release of P from organic matter during sulfate reduction. Release of P from Fe-bound P also increased, but this was only a relatively minor source of dissolved P. Pore-water HPO 42- concentrations remained too low for carbonate fluorapatite formation. An increased burial of biogenic Ca-P (i.e., fish debris) was observed for one site. Estimated benthic fluxes of P during sapropel formation were elevated relative to the present day (˜900 to 2800 vs. ˜70 to 120 μmol m -2 yr -1). The present-day sedimentary P cycle in the deep-basin sediments is characterized by two major zones of reaction: (1) the zone near the sediment-water interface where substantial release of HPO 42- from organic matter takes place, and (2) the oxidation front at the top of the S1 where upward-diffusing HPO 42- from below the sapropel is sorbed to Fe-oxides. The efficiency of aerobic organisms in retaining P is reflected in the low organic C/P ratios in the oxidized part of the sapropel. Burial efficiencies for reactive P were significantly lower during S1 times compared with the present day (˜7 to 15% vs. 64 to 77%). Budget calculations for the eastern Mediterranean Sea demonstrate that the weakening of the antiestuarine circulation and the enhanced regeneration of P both contributed to a significant increase in deep-water HPO 42- concentrations during sapropel S1 times. Provided that sufficient vertical mixing occurred, enhanced regeneration of P at the seafloor may have played a key role in maintaining increased productivity during sapropel S1 formation.

  1. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor.

    PubMed

    Sayi-Ucar, N; Sarioglu, M; Insel, G; Cokgor, E U; Orhon, D; van Loosdrecht, M C M

    2015-11-01

    The study involved experimental observation and performance evaluation of a membrane bioreactor system treating municipal wastewater for nutrient removal for a period 500 days, emphasizing the impact of high temperature on enhanced biological phosphorus removal (EBPR). The MBR system was operated at relatively high temperatures (24-41 °C). During the operational period, the total phosphorus (TP) removal gradually increased from 50% up to 95% while the temperature descended from 41 to 24 °C. At high temperatures, anaerobic volatile fatty acid (VFA) uptake occurred with low phosphorus release implying the competition of glycogen accumulating organisms (GAOs) with polyphosphate accumulating organisms (PAOs). Low dissolved oxygen conditions associated with high wastewater temperatures did not appreciable affected nitrification but enhanced nitrogen removal. Dissolved oxygen levels around 1.0 mgO2/L in membrane tank provided additional denitrification capacity of 6-7 mgN/L by activating simultaneous nitrification and denitrification. As a result, nearly complete removal of nitrogen could be achieved in the MBR system, generating a permeate with no appreciable nitrogen content. The gross membrane flux was 43 LMH corresponding to the specific permeability (K) of 413 LMH/bar at 39 °C in the MBR tank. The specific permeability increased by the factor of 43% at 39 °C compared to that of 25 °C during long-term operation. PMID:26204227

  2. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-09-01

    In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81. PMID:27295254

  3. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-07-01

    The startup and long term operation of enhanced biological phosphorus removal (EBPR) in a continuous-flow reactor (CFR) with granules were investigated in this study. Through reducing the settling time from 9min to 3min gradually, the startup of EBPR in a CFR with granules was successfully realized in 16days. Under continuous-flow operation, the granules with good phosphorus and COD removal performance were stably operated for more than 6months. And the granules were characterized with particle size of around 960μm, loose structure and good settling ability. During the startup phase, polysaccharides (PS) was secreted excessively by microorganisms to resist the influence from the variation of operational mode. Results of relative quantitative PCR indicated that granules dominated by polyphosphate-accumulating organisms (PAOs) were easier accumulated in the CFR because more excellent settling ability was needed in the system. PMID:27085149

  4. Metabolic modelling of full-scale enhanced biological phosphorus removal sludge.

    PubMed

    Lanham, Ana B; Oehmen, Adrian; Saunders, Aaron M; Carvalho, Gilda; Nielsen, Per H; Reis, Maria A M

    2014-12-01

    This study investigates, for the first time, the application of metabolic models incorporating polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) towards describing the biochemical transformations of full-scale enhanced biological phosphorus removal (EBPR) activated sludge from wastewater treatment plants (WWTPs). For this purpose, it was required to modify previous metabolic models applied to lab-scale systems by incorporating the anaerobic utilisation of the TCA cycle and the aerobic maintenance processes based on sequential utilisation of polyhydroxyalkanoates, followed by glycogen and polyphosphate. The abundance of the PAO and GAO populations quantified by fluorescence in situ hybridisation served as the initial conditions of each biomass fraction, whereby the models were able to describe accurately the experimental data. The kinetic rates were found to change among the four different WWTPs studied or even in the same plant during different seasons, either suggesting the presence of additional PAO or GAO organisms, or varying microbial activities for the same organisms. Nevertheless, these variations in kinetic rates were largely found to be proportional to the difference in acetate uptake rate, suggesting a viable means of calibrating the metabolic model. The application of the metabolic model to full-scale sludge also revealed that different Accumulibacter clades likely possess different acetate uptake mechanisms, as a correlation was observed between the energetic requirement for acetate transport across the cell membrane with the diversity of Accumulibacter present. Using the model as a predictive tool, it was shown that lower acetate concentrations in the feed as well as longer aerobic retention times favour the dominance of the TCA metabolism over glycolysis, which could explain why the anaerobic TCA pathway seems to be more relevant in full-scale WWTPs than in lab-scale systems. PMID:25222332

  5. First-principles study of hydrogen-enhanced phosphorus diffusion in silicon

    NASA Astrophysics Data System (ADS)

    The Anh, Le; Tien Cuong, Nguyen; Lam, Pham Tien; Manoharan, Muruganathan; Mizuta, Hiroshi; Matsumura, Hideki; Otsuka, Nobuo; Hieu Chi, Dam

    2016-01-01

    We present a first-principles study on the interstitial-mediated diffusion process of neutral phosphorus (P) atoms in a silicon crystal with the presence of mono-atomic hydrogen (H). By relaxing initial Si structures containing a P atom and an H atom, we derived four low-energy P-H-Si defect complexes whose formation energies are significantly lower than those of P-Si defect complexes. These four defect complexes are classified into two groups. In group A, an H atom is located near a Si atom, whereas in group B, an H atom is close to a P atom. We found that the H atom pairs with P or Si atom and changes the nature bonding between P and Si atoms from out-of-phase conjugation to in-phase conjugation. This fact results in the lower formation energies compare to the cases without H atom. For the migration of defect complexes, we have found that P-H-Si defect complexes can migrate with low barrier energies if an H atom sticks to either P or Si atom. Group B complexes can migrate from one lattice site to another with an H atom staying close to a P atom. Group A complexes cannot migrate from one lattice site to another without a transfer of an H atom from one Si atom to another Si atom. A change in the structure of defect complexes between groups A and B during the migration results in a transfer of an H atom between P and Si atoms. The results for diffusion of group B complexes show that the presence of mono-atomic H significantly reduces the activation energy of P diffusion in a Si crystal, which is considered as a summation of formation energy and migration barrier energy, leading to the enhancement of diffusion of P atoms at low temperatures, which has been suggested by recent experimental studies.

  6. Heterogeneity of intracellular polymer storage states in enhanced biological phosphorus removal (EBPR)--observation and modeling.

    PubMed

    Bucci, Vanni; Majed, Nehreen; Hellweger, Ferdi L; Gu, April Z

    2012-03-20

    A number of agent-based models (ABMs) for biological wastewater treatment processes have been developed, but their skill in predicting heterogeneity of intracellular storage states has not been tested against observations due to the lack of analytical methods for measuring single-cell intracellular properties. Further, several mechanisms can produce and maintain heterogeneity (e.g., different histories, uneven division) and their relative importance has not been explored. This article presents an ABM for the enhanced biological phosphorus removal (EBPR) treatment process that resolves heterogeneity in three intracellular polymer storage compounds (i.e., polyphosphate, polyhydroxybutyrate, and glycogen) in three functional microbial populations (i.e., polyphosphate-accumulating, glycogen-accumulating, and ordinary heterotrophic organisms). Model predicted distributions were compared to those based on single-cell estimates obtained using a Raman microscopy method for a laboratory-scale sequencing batch reactor (SBR) system. The model can reproduce many features of the observed heterogeneity. Two methods for introducing heterogeneity were evaluated. First, biological variability in individual cell behavior was simulated by randomizing model parameters (e.g., maximum acetate uptake rate) at division. This method produced the best fit to the data. An optimization algorithm was used to determine the best variability (i.e., coefficient of variance) for each parameter, which suggests large variability in acetate uptake. Second, biological variability in individual cell states was simulated by randomizing state variables (e.g., internal nutrient) at division, which was not able to maintain heterogeneity because the memory in the internal states is too short. These results demonstrate the ability of ABM to predict heterogeneity and provide insights into the factors that contribute to it. Comparison of the ABM with an equivalent population-level model illustrates the effect

  7. Contrast of volatile fatty acid driven and inorganic acid or base driven phosphorus release and uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew A

    2012-04-01

    Addition of an inorganic acid or base was detrimental to net phosphorus removals in short-term batch experiments, suggesting there might be system upset when pH changes. In contrast, addition of volatile fatty acids (VFAs) increased anaerobic phosphorus release and aerobic phosphorus uptake while maintaining or improving net phosphorus removals. The effect of pH change differed if the acid or base added was inorganic versus organic. Volatile fatty acids that resulted in poly-3-hydroxy-butyrate rather than poly-3-hydroxy-valerate resulted in greater net phosphorus removals, and this corresponded to differences in consumption of reducing equivalents. Acetic acid resulted in improved net phosphorus removal compared to sodium acetate, suggesting that acid forms of VFAs might be superior as supplemental VFAs. It is hypothesized that anaerobic phosphorus release following addition of inorganic acid is primarily a result of phosphorus and proton (H+) symport (excretion from the cell) for pH homeostasis, whereas addition of VFAs results in phosphorus and H+ release to maintain the proton motive force. PMID:22834218

  8. Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater.

    PubMed

    Zhou, Yunan; Xing, Xin-Hui; Liu, Zehua; Cui, Liwen; Yu, Anfeng; Feng, Quan; Yang, Haijun

    2008-05-01

    Phosphorus removal from wastewater is of great importance. In the present study, ferric chloride was selected as the coagulant, and tannic acid (TA), a natural polymer, as the coagulant aid to develop an effective coagulation process with the emphasis of phosphorus recovery from different types of wastewater. The results showed that TA can accelerate the settling speed by forming flocs with large size, reduce the residual Fe(III) to eliminate the yellow color caused by Fe(III), and slightly increase the phosphorus removal efficiency. The precipitate formed by TA-aided coagulation showed the advantage of releasing phosphorus faster than ferric phosphate, indicating the possibility of phosphorus recovery from wastewater as slow release fertilizer. To further understand the structural characteristics of the precipitate, analytical techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry were employed. The analytical results indicated that TA-Fe-P complex was formed during the coagulation/flocculation processes. Solid phase in the precipitate consisted of TA-Fe-P complex, Fe-TA complex and/or ferric hydroxyphosphate. PMID:18395769

  9. "Candidatus Propionivibrio aalborgensis": A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants.

    PubMed

    Albertsen, Mads; McIlroy, Simon J; Stokholm-Bjerregaard, Mikkel; Karst, Søren M; Nielsen, Per H

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial "Candidatus Accumulibacter phosphatis" (Accumulibacter) and the model GAO being the gammaproteobacterial "Candidatus Competibacter phosphatis". Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  10. “Candidatus Propionivibrio aalborgensis”: A Novel Glycogen Accumulating Organism Abundant in Full-Scale Enhanced Biological Phosphorus Removal Plants

    PubMed Central

    Albertsen, Mads; McIlroy, Simon J.; Stokholm-Bjerregaard, Mikkel; Karst, Søren M.; Nielsen, Per H.

    2016-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used to remove phosphorus from wastewater. The process relies on polyphosphate accumulating organisms (PAOs) that are able to take up phosphorus in excess of what is needed for growth, whereby phosphorus can be removed from the wastewater by wasting the biomass. However, glycogen accumulating organisms (GAOs) may reduce the EBPR efficiency as they compete for substrates with PAOs, but do not store excessive amounts of polyphosphate. PAOs and GAOs are thought to be phylogenetically unrelated, with the model PAO being the betaproteobacterial “Candidatus Accumulibacter phosphatis” (Accumulibacter) and the model GAO being the gammaproteobacterial “Candidatus Competibacter phosphatis”. Here, we report the discovery of a GAO from the genus Propionivibrio, which is closely related to Accumulibacter. Propionivibrio sp. are targeted by the canonical fluorescence in situ hybridization probes used to target Accumulibacter (PAOmix), but do not store excessive amounts of polyphosphate in situ. A laboratory scale reactor, operated to enrich for PAOs, surprisingly contained co-dominant populations of Propionivibrio and Accumulibacter. Metagenomic sequencing of multiple time-points enabled recovery of near complete population genomes from both genera. Annotation of the Propionivibrio genome confirmed their potential for the GAO phenotype and a basic metabolic model is proposed for their metabolism in the EBPR environment. Using newly designed fluorescence in situ hybridization (FISH) probes, analyses of full-scale EBPR plants revealed that Propionivibrio is a common member of the community, constituting up to 3% of the biovolume. To avoid overestimation of Accumulibacter abundance in situ, we recommend the use of the FISH probe PAO651 instead of the commonly applied PAOmix probe set. PMID:27458436

  11. Enhanced adsorption and regeneration with lignocellulose-based phosphorus removal media using molecular coating nanotechnology.

    PubMed

    Kim, Juyoung; Mann, Justin D; Kwon, Soonjo

    2006-01-01

    The removal of phosphorus in point and non-point-source pollution has become one of the leading problems in water quality since the beginning of the 21st century. Several natural, domestic, and industrial treatment systems already exist, but with very limited efficiencies and serious procedural defects. Lignocellulose-based Anion Removal Media (LAM) was developed in association with iron nanocoating technology as means of phosphorus adsorption from various concentrations of contaminated water. Results revealed that trivalent iron coated lignocellulose pellets can be used to effectively remove phosphorus contaminants from point and non-point-source polluted water. Removal capacities of pelletized cotton media surpass existing materials for phosphorus removal by at least 22 times, while remaining both efficient and cost effective. The materials were also investigated for regeneration, yielding high removal capacities even after the fifth regeneration. Treatment methodology and outlines are proposed, and procedural mechanisms are explored in this study. An economic evaluation of this technology is also assessed for a practical application of LAM to point/non-point-source polluted water. PMID:16401573

  12. Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation.

    PubMed

    Zhang, Yuanjian; Mori, Toshiyuki; Ye, Jinhua; Antonietti, Markus

    2010-05-12

    As a new kind of polymeric semiconductors, graphitic carbon nitride (g-C(3)N(4)) and its incompletely condensed precursors are stable up to 550 degrees C in air and have shown promising photovoltaic applications. However, for practical applications, their efficiency, limited e.g. by band gap absorption, needs further improvement. Here we report a "structural doping" strategy, in which phosphorus heteroatoms were doped into g-C(3)N(4) via carbon sites by polycondensation of the mixture of the carbon nitride precursors and phosphorus source (specifically from 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid). Most of the structural features of g-C(3)N(4) were well retained after doping, but electronic features had been seriously altered, which provided not only a much better electrical (dark) conductivity up to 4 orders of magnitude but also an improvement in photocurrent generation by a factor of up to 5. In addition to being active layers in solar cells, such phosphorus-containing scaffolds and materials are also interesting for polymeric batteries as well as for catalysis and as catalytic supports. PMID:20397632

  13. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    PubMed

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater. PMID:26937943

  14. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation.

    PubMed

    Li, Miao; Wu, Yue-Jin; Yu, Zeng-Liang; Sheng, Guo-Ping; Yu, Han-Qing

    2009-03-01

    Ipomoea aquatica with low-energy N+ ion implantation was used for the removal of both nitrogen and phosphorus from the eutrophic Chaohu Lake, China. The biomass growth, nitrate reductase and peroxidase activities of the implanted I. aquatica were found to be higher than those of I. aquatica without ion implantation. Higher NO3-N and PO4-P removal efficiencies were obtained for the I. aquatica irradiation at 25 keV, 3.9 x 10(16) N+ ions/cm(2) and 20 keV 5.2 x 10(16) N+ ions/cm(2), respectively (p < 0.05). Moreover, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those of the controls. I. aquatica with ion implantation was directly responsible for 51-68% N removal and 54-71% P removal in the three experiments. The results further confirm that the ion implantation could enhance the growth potential of I. aquatica in real eutrophic water and increase its nutrient removal efficiency. Thus, the low-energy ion implantation for aquatic plants could be considered as an approach for in situ phytoremediation and bioremediation of eutrophic waters. PMID:19147171

  15. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution.

    PubMed

    Guo, Shien; Deng, Zhaopeng; Li, Mingxia; Jiang, Baojiang; Tian, Chungui; Pan, Qingjiang; Fu, Honggang

    2016-01-26

    Phosphorus-doped hexagonal tubular carbon nitride (P-TCN) with the layered stacking structure was obtained from a hexagonal rod-like single crystal supramolecular precursor (monoclinic, C2/m). The production process of P-TCN involves two steps: 1) the precursor was prepared by self-assembly of melamine with cyanuric acid from in situ hydrolysis of melamine under phosphorous acid-assisted hydrothermal conditions; 2) the pyrolysis was initiated at the center of precursor under heating, thus giving the hexagonal P-TCN. The tubular structure favors the enhancement of light scattering and active sites. Meanwhile, the introduction of phosphorus leads to a narrow band gap and increased electric conductivity. Thus, the P-TCN exhibited a high hydrogen evolution rate of 67 μmol h(-1) (0.1 g catalyst, λ >420 nm) in the presence of sacrificial agents, and an apparent quantum efficiency of 5.68 % at 420 nm, which is better than most of bulk g-C3 N4 reported. PMID:26692105

  16. Assessment of crude glycerol for Enhanced Biological Phosphorus Removal: Stability and role of long chain fatty acids.

    PubMed

    Tayà, Carlota; Guerrero, Javier; Suárez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan Antonio

    2015-12-01

    Enhanced Biological Phosphorus Removal (EBPR) of urban wastewaters is usually limited by the available carbon source required by Polyphosphate Accumulating Organisms (PAO). External carbon sources as volatile fatty acids (VFA) or other pure organic compounds have been tested at lab scale demonstrating its ability to enhance PAO activity, but the application of this strategy at full-scale WWTPs is not cost-effective. The utilization of industrial by-products with some of these organic compounds provides lower cost, but it has the possible drawback of having inhibitory or toxic compounds to PAO. This study is focused on the utilization of crude glycerol, the industrial by-product generated in the biodiesel production, as a possible carbon source to enhance EBPR in carbon-limited urban wastewaters. Crude glycerol has non-negligible content of other organic compounds as methanol, salts, VFA and long chain fatty acids (LCFA). VFA and methanol have been demonstrated to enhance PAO activity, but there is no previous study about the effect of LCFA on PAO. This work presents the operation of an EBPR SBR system using crude glycerol as sole carbon source, studying also its long-term stability. The effect of LCFA is evaluated at short and long-term operation, demonstrating for the first time EBPR activity with LCFA as sole carbon source and its long-term failure due to the increased hydrophobicity of the sludge. PMID:26092200

  17. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.

    PubMed

    Yu, Shenjing; Sun, Peide; Zheng, Wei; Chen, Lujun; Zheng, Xiongliu; Han, Jingyi; Yan, Tao

    2014-11-01

    In this study, the effect of varied COD loading (200, 400, 500, 600 and 800 mg L(-1)) on stability and recoverability of granule-based enhanced biological phosphorus removal (EBPR) system was investigated during continuously 53-d operation. Results showed that COD loading higher than 500 mg L(-1) could obviously deteriorate the granular EBPR system and result in sludge bulking with filamentous bacteria. High COD loading also changed the transformation patterns of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process of polyphosphate-accumulating organisms (PAOs) and inhibited the EPS secretion, which completely destroyed the stability and integrality of granules. Results of FISH indicated that glycogen-accumulating organisms (GAOs) and other microorganisms had a competitive advantage over PAOs with higher COD loading. The community composition and EBPR performance were recovered irreversibly in long time operation when COD loading was higher than 500 mg L(-1). PMID:25189512

  18. Effect of sludge retention time on continuous-flow system with enhanced biological phosphorus removal granules at different COD loading.

    PubMed

    Li, Dong; Lv, Yufeng; Zeng, Huiping; Zhang, Jie

    2016-11-01

    The effect of sludge retention time (SRT) on the continuous-flow system with enhanced biological phosphorus removal (EBPR) granules at different COD loading was investigated during the operation of more than 220days. And the results showed that when the system operated at long SRT (30days) and low COD loading (200mg·L(-1)), it could maintain excellent performance. However, long SRT and high COD loading (300mg·L(-1)) deteriorated the settling ability of granules and the performance of system and resulted in the overgrowth of filamentous bacteria. Meanwhile, the transformation of poly-β-hydroxyalkanoates (PHAs) and glycogen in metabolism process was inhibited. Moreover, the results of pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading and long SRT. The PAOs specious of Candidatus_Accumlibater and system performance increased obviously when the SRT was reduced to 20days at high COD loading. PMID:27472749

  19. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal.

    SciTech Connect

    Wilmes, P; Andersson, Anders F.; Lefsrud, Mark G; Wexler, Margaret; Shah, Manesh B; Zhang, B; Hettich, Robert {Bob} L; Bond, P. L.; Verberkmoes, Nathan C; Banfield, Jillian F.

    2008-01-01

    Enhanced biological phosphorus removal (EBPR) selects for polyphosphate accumulating organisms to achieve phosphate removal from wastewater. We used highresolution community proteomics to identify key metabolic pathways in "Candidatus Accumulibacter phosphatis"-mediated EBPR and to evaluate the contributions of co- 5 existing strains within the dominant population. Results highlight the importance of denitrification, fatty acid cycling and the glyoxylate bypass in EBPR. Despite overall strong similarity in protein profiles under anaerobic and aerobic conditions, fatty acid degradation proteins were more abundant during the anaerobic phase. By comprehensive genome-wide alignment of orthologous proteins, we uncovered strong 10 functional partitioning for enzyme variants involved in both core-metabolism and EBPR-specific pathways among the dominant strains. These findings emphasize the importance of genetic diversity in maintaining the stable performance of EBPR systems and demonstrate the power of integrated cultivation-independent genomics and proteomics for analysis of complex biotechnological systems.

  20. The potential role of 'Candidatus Microthrix parvicella' in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants.

    PubMed

    Wang, Juan; Qi, Rong; Liu, Miaomiao; Li, Qian; Bao, Haipeng; Li, Yaming; Wang, Shen; Tandoi, Valter; Yang, Min

    2014-01-01

    We investigated the bacterial community compositions and phosphorus removal performance under sludge bulking and non-bulking conditions in two biological wastewater treatment systems (conventional A²/O (anaerobic/anoxic/aerobic) and inverted A²/O (anoxic/anaerobic/aerobic) processes) receiving the same raw wastewater. Sludge bulking resulted in significant shift in bacterial compositions from Proteobacteria dominance to Actinobacteria dominance, characterized by the significant presence of filamentous 'Candidatus Microthrix parvicella'. Quantitative real-time polymerase chain reaction (PCR) analysis revealed that the relative abundance of 'Candidatus Accumulibacter phosphatis', a key polyphosphate-accumulating organism responsible for phosphorus removal, with respect to 16s rRNA genes of total bacteria was 0.8 and 0.7%, respectively, for the conventional and inverted A²/O systems when sludge bulking occurred, which increased to 8.2 and 12.3% during the non-bulking period. However, the total phosphorus removal performance during the bulking period (2-week average: 97 ± 1 and 96 ± 1%, respectively) was not adversely affected comparable to that during the non-bulking period (2-week average: 96 ± 1 and 96 ± 1%, respectively). Neisser staining revealed the presence of large polyphosphate granules in 'Candidatus Microthrix parvicella', suggesting that this microbial group might have been responsible for phosphorus removal during the sludge bulking period when 'Candidatus Accumulibacter phosphatis' was excluded from the systems. PMID:25051486

  1. Analysis of poly-β-hydroxyalkonates (PHA) during the enhanced biological phosphorus removal process using FTIR spectroscopy.

    PubMed

    Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing

    2014-06-01

    Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge. PMID:25358156

  2. Arbuscular Mycorrhizal Fungi Promote the Growth of Ceratocarpus arenarius (Chenopodiaceae) with No Enhancement of Phosphorus Nutrition

    PubMed Central

    Bai, Dengsha; Chen, Yinglong; Feng, Gu

    2012-01-01

    The mycorrhizal status of plants in the Chenopodiaceae is not well studied with a few controversial reports. This study examined arbuscular mycorrhizal (AM) colonization and growth response of Ceratocarpus arenarius in the field and a greenhouse inoculation trial. The colonization rate of AM fungi in C. arenarius in in-growth field cores was low (around 15%). Vesicles and intraradical hyphae were present during all growth stages, but no arbuscules were observed. Sequencing analysis of the large ribosomal rDNA subunit detected four culturable Glomus species, G. intraradices, G. mosseae, G. etunicatum and G. microaggregatum together with eight unculturable species belong to the Glomeromycota in the root system of C. arenarius collected from the field. These results establish the mycotrophic status of C. arenarius. Both in the field and in the greenhouse inoculation trial, the growth of C. arenarius was stimulated by the indigenous AM fungal community and the inoculated AM fungal isolates, respectively, but the P uptake and concentration of the mycorrhizal plants did not increase significantly over the controls in both experiments. Furthermore, the AM fungi significantly increased seed production. Our results suggest that an alternative reciprocal benefit to carbon-phosphorus trade-off between AM fungi and the chenopod plant might exist in the extremely arid environment. PMID:22957011

  3. Phosphorus-doped tin oxides/carbon nanofibers webs as lithium-ion battery anodes with enhanced reversible capacity

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Teng, Donghua; Li, Ting; Yu, Yunhua; Shao, Xiaohong; Yang, Xiaoping

    2014-12-01

    Phosphorus-doped tin oxides/carbon nanofibers (P-SnOx/CNFs) composite materials are prepared via electrospinning of a mixed solution composed of polyacrylonitrile (PAN), N,N-dimethyl formamide (DMF), tin tetrachloride, ethylene glycol and phosphoric acid as well as subsequent thermal treatments. The P-SnOx/CNFs samples with tunable P-doping contents are directly used as anodes for lithium-ion batteries without any binders and conductors, exhibiting enhanced reversible capacities and cycling stabilities in comparison with pristine undoped SnOx/CNFs (0P-SnOx/CNFs). In a controlled experiment, the 0.25P-SnOx/CNFs anode with the atomic ratio of P:Sn = 0.25:1 shows the highest specific reversible capacity of 676 mA h g-1 at 200 mA g-1 after 100 cycles. Even at a higher current density of 2000 mA g-1, it still maintains a superior specific reversible capacity of 288 mA h g-1. The improved electrochemical performances are attributed to the P-doping effects such as inducement of a stable structural protection for tin particles, and enhancement of lithium ion diffusion coefficient and electron kinetics of electrode materials.

  4. Role of extracellular polymeric substances in enhancement of phosphorus release from waste activated sludge by rhamnolipid addition.

    PubMed

    He, Zhang-Wei; Liu, Wen-Zong; Wang, Ling; Yang, Chun-Xue; Guo, Ze-Chong; Zhou, Ai-Juan; Liu, Jian-Yong; Wang, Ai-Jie

    2016-02-01

    This study investigated the role of extracellular polymeric substances (EPSs) in enhanced performance of phosphorus (P) release from waste activated sludge (WAS) by adding rhamnolipid (RL). Results showed that compared to WAS without pretreatment, the released PO4(3-)-P increased with RL addition from 0 to 0.2 g/gTSS (total suspended solid), and increased by 208% under the optimal condition (0.1 g RL/g TSS and 72-h fermentation time). The cumulative PO4(3-)-P was better fitted with pseudo-first-order kinetic model. Moreover, the contents of metal ions increased in liquid but decreased in EPSs linearly with RL addition increasing, and WAS solubilizations were positively correlated with the released metal ions. The enhanced total dissolved P mainly came from cells and others (69.39%, 2.27-fold higher than that from EPSs), and PO4(3-)-P was the main species in both liquid and loosely bound EPSs, but organic P should be non-negligible in tightly bound EPSs. PMID:26700759

  5. Manure and nitrogen application enhances soil phosphorus mobility in calcareous soil in greenhouses.

    PubMed

    Yan, Zhengjuan; Chen, Shuo; Li, Junliang; Alva, Ashok; Chen, Qing

    2016-10-01

    Over many years, high phosphorus (P) loading for intensive vegetable cropping in greenhouses of North China has contributed to excessive P accumulation, resulting in environmental risk. In this study, the influences of manure and nitrogen (N) application on the transformation and transport of soil P were investigated after nine years in a greenhouse tomato double cropping system (winter-spring and autumn-winter seasons). High loading of manure significantly increased the soil inorganic P (Pi), inositol hexakisphosphate (IHP), mobile P and P saturation ratio (PSR, >0.7 in 0-30 cm depth soil; PSR was estimated from P/(Fe + Al) in an oxalate extract of the soil). The high rate of N fertilizer application to the studied calcareous soil with heavy loading of manure increased the following: (i) mobile organic P (Po) and Pi fractions, as evidenced by the decrease in the ratio of monoesters to diesters and the proportion of stable Pi (i.e., HCl-Pi) in total P (Pt) in 0-30 cm depth soil; (ii) relative distribution of Po in the subsoil layer; and (iii) P leaching to soil depths below 90 cm and the proportion of Po in Pt in the leachate. More acidic soil due to excessive N application increased P mobility and leaching. The increase in Ox-Al (oxalate-extractable Al) and the proportion of microbe-associated Po related to N application at soil depths of 0-30 cm suggested decrease in the net Po mineralization, which may contribute to downward transport of Po in the soil profile. PMID:27300290

  6. Phosphorus Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Phosphorus Share this page: Was this page helpful? Also ... else I should know? How is it used? Phosphorus tests are most often ordered along with other ...

  7. Effects of injection of acetic acid and propionic acid for total phosphorus removal at high temperature in enhanced biological phosphorus removal process.

    PubMed

    Ki, C Y; Kwon, K H; Kim, S W; Min, K S; Lee, T U; Park, D J

    2014-01-01

    In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent). PMID:24845316

  8. Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi.

    PubMed

    Raliya, Ramesh; Tarafdar, Jagadish Chandra; Biswas, Pratim

    2016-04-27

    Phosphorus (P) is a limiting factor to plant growth and productivity in almost half of the world's arable soil, and its uptake in plants is often constrained because of its low solubility in the soil. To avoid repeated and large quantity application of rock phosphate as a P fertilizer and enhance the availability of native P acquisition by the plant root surface, in this study a biosynthesized ZnO nanoparticle was used. Zn acts as a cofactor for P-solubilizing enzymes such as phosphatase and phytase, and nano ZnO increased their activity between 84 and 108%. The level of resultant P uptake in mung bean increased by 10.8%. In addition, biosynthesized ZnO also improves plant phenology such as stem height, root volume, and biochemical indicators such as leaf protein and chlorophyll contents. In the rhizosphere, increased chlorophyll content and root volume attract microbial populations that maintain soil biological health. ICP-MS results showed ZnO nanoparticles were distributed in all plant parts, including seeds. However, the concentration of Zn was within the limit of the dietary recommendation. To the best of our knowledge, this is the first holistic study focusing on native P mobilization using ZnO nanoparticles in the life cycle of mung bean plants. PMID:27054413

  9. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration.

    PubMed

    Vera, I; Araya, F; Andrés, E; Sáez, K; Vidal, G

    2014-08-01

    Phosphorus (P) contained in sewage maybe removed by mesocosm-scale constructed wetlands (MCW), although removal efficiency is only between 20% and 60%. P removal can be enhanced by increasing wetland adsorption capacity using special media, like natural zeolite, operating under aerobic conditions (oxidation-reduction potential (ORP) above +300 mV). The objective of this study was to evaluate P removal in sewage treated by MCW with artificial aeration and natural zeolite as support medium for the plants. The study compared two parallel lines of MCW: gravel and zeolite. Each line consisted in two MCW in series, where the first MCW of each line has artificial aeration. Additionally, four aeration strategies were evaluated. During the operation, the following parameters were measured in each MCW: pH, temperature, dissolved oxygen and ORP. Phosphate (PO4(-3) - P) and chemical oxygen demand (COD), five-day biological oxygen demand (BOD5), total suspended solids (TSS) and ammonium. (NH4(+) - N) were evaluated in influents and effluents. Plant growth (biomass) and proximate analysis for P content into Schoenoplectus californicus were also performed. The results showed that PO4(-3) - P removal efficiency was 70% in the zeolite medium, presenting significant differences (p < .05) with the results obtained by the gravel medium. Additionally, aeration was found to have a significant effect (p < .05) only in the gravel medium with an increase in up to 30% for PO43 - P removal. Thus, S. californicus contributed to 10-20% of P removal efficiency. PMID:24956754

  10. Anaerobic phosphate release from activated sludge with enhanced biological phosphorus removal. A possible mechanism of intracellular pH control

    SciTech Connect

    Bond, P.L.; Keller, J.; Blackall, L.L.

    1999-06-05

    The biochemical mechanisms of the wastewater treatment process known as enhanced biological phosphorus removal (EBPR) are presently described in a metabolic model. The authors investigated details of the EBPR model to determine the nature of the anaerobic phosphate release and how this may be metabolically associated with polyhydroxyalkanoate (PHA) formation. Iodoacetate, an inhibitor of glycolysis, was found to inhibit the anaerobic formation of PHA and phosphate release, supporting the pathways proposed in the EBPR metabolic model. In the metabolic model, it is proposed that polyphosphate degradation provides energy for the microorganisms in anaerobic regions of these treatment systems. Other investigations have shown that anaerobic phosphate release depends on the extracellular pH. The authors observed that when the intracellular pH of EBPR sludge was raised, substantial anaerobic phosphate release was caused without volatile fatty acid (VFA) uptake. Acidification of the sludge inhibited anaerobic phosphate release even in the presence of VFA. from these observations, the authors postulate that an additional possible role of anaerobic polyphosphate degradation in EBPR is for intracellular pH control. Intracellular pH control may be a metabolic feature of EBPR, not previously considered, that could have some use in the control and optimization of EBPR.

  11. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge.

    PubMed

    Zhou, Yan; Pijuan, Maite; Zeng, Raymond J; Yuan, Zhiguo

    2008-11-15

    Nitrite has generally been recognized as an inhibitor of N2O reduction during denitrification. This inhibitory effect is investigated under various pH conditions using a denitrifying-enhanced biological phosphorus removal (EBPR) sludge. The degree of inhibition was observed to correlate much more strongly with the free nitrous acid (FNA) concentration than with the nitrite concentration, suggesting that FNA, rather than nitrite, is likely the true inhibitor on N2O reduction. Fifty percent inhibition was observed at an FNA concentration of 0.0007-0.001 mg HNO2-N/L (equivalent to approximately 3-4 mg NO2(-) -N/L at pH 7), while complete inhibition occurred when the FNA concentration was greater than 0.004 mg HNO2-N/L. The results also suggest that the inhibition on N2O reduction was not due to the electron competition between N2O and NO2- reductases. The inhibition was found to be reversible, with the rate of recovery independent of the duration of the inhibition, but dependent on the concentration of FNAthe biomass was exposed to during the inhibition period. A higher FNA concentration caused slower recovery. PMID:19068803

  12. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.

    PubMed

    Tu, Yunjie; Schuler, Andrew J

    2013-04-16

    Glycogen-accumulating organisms (GAOs) are thought to compete with polyphosphate-accumulating organisms (PAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment systems. A laboratory sequencing batch reactor (SBR) was operated for one year to test the hypothesis that PAOs have a competitive advantage at low acetate concentrations, with a focus on low pH conditions previously shown to favor GAOs. PAOs dominated the system under conventional SBR operation with rapid acetate addition (producing high in-reactor concentrations) and pH values of 7.4-8.4. GAOs dominated when the pH was decreased (6.4-7.0). Decreasing the acetate addition rate led to very low reactor acetate concentrations, and PAOs recovered, supporting the study hypothesis. When the acetate feed rate was increased, EBPR failed again. Dominant PAOs and GAOs were Candidatus Accumulibacter phosphatis and Defluviicoccus Cluster 2, respectively, according to fluorescent in situ hybridization and 454 pyrosequencing. Surprisingly, GAOs were not the immediate causes of PAO failures, based on functional and population measurements. Pyrosequencing results suggested Dechloromonas and Tetrasphaera spp. may have also been PAOs, and additional potential GAOs were also identified. Full-scale systems typically have lower in-reactor acetate concentrations than laboratory SBRs, and so, previous laboratory studies may have overestimated the practical importance of GAOs as causes of EBPR failure. PMID:23477409

  13. Investigation into cyclic utilization of carbon source in an advanced sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER) wastewater treatment process.

    PubMed

    Yan, Peng; Ji, Fang-Ying; Wang, Jing; Chen, You-Peng; Shen, Yu; Fang, Fang; Guo, Jin-Song

    2015-01-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously reduce sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The ability to recover organic substance from excess sludge to enhance nutrient removal (especially nitrogen) and its performance as a C-source were evaluated in this study. The chemical oxygen demand/total nitrogen (COD/TN) and volatile fatty acids/total phosphorus (VFA/TP) ratios for the supernatant of the alkaline-treated sludge were 3.1 times and 2.7 times those of the influent, respectively. The biodegradability of the supernatant was much better than that of the influent. The system COD was increased by 91 mg/L, and nitrogen removal was improved by 19.6% (the removal rate for TN reached 80.4%) after the return of the alkaline-treated sludge as an internal C-source. The C-source recovered from the excess sludge was successfully used to enhance nitrogen removal. The internal C-source contributed 24.1% of the total C-source, and the cyclic utilization of the system C-source was achieved by recirculation of alkaline-treated sludge in the sludge reduction, inorganic solids separation, phosphorus recovery (SIPER) process. PMID:26524455

  14. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs. PMID:19470091

  15. Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon

    NASA Astrophysics Data System (ADS)

    Cai, Feiyang; Dong, Yuanwei; Tan, Yew Heng; Tan, Chuan Seng; (Maggie Xia, Guangrui

    2015-10-01

    Si-Ge interdiffusion with different P doping configurations was investigated. Significant interdiffusion happened when the Ge layers were doped with P in high 1018 cm-3 range, which resulted in a SiGe alloy region thicker than 150 nm after defect annealing cycles. With high P doped Ge, Si-Ge interdiffusivity is enhanced by 10-20 times in the xGe > 0.7 region compared with the control sample without P doping. We attribute this phenomenon to the much faster P transport towards the Ge seeding layers from the Ge side during the Ge layer growth, which increases the negatively charged vacancy concentrations and thus the interdiffusivity due to the Fermi effect in Si-Ge interdiffusion. This work is relevant to Ge-on-Si type device design, especially Ge-on-Si lasers.

  16. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review.

    PubMed

    Wilfert, Philipp; Kumar, Prashanth Suresh; Korving, Leon; Witkamp, Geert-Jan; van Loosdrecht, Mark C M

    2015-08-18

    The addition of iron is a convenient way for removing phosphorus from wastewater, but this is often considered to limit phosphorus recovery. Struvite precipitation is currently used to recover phosphorus, and this approach has attracted much interest. However, it requires the use of enhanced biological phosphorus removal (EBPR). EBPR is not yet widely applied and the recovery potential is low. Other phosphorus recovery methods, including sludge application to agricultural land or recovering phosphorus from sludge ash, also have limitations. Energy-producing wastewater treatment plants increasingly rely on phosphorus removal using iron, but the problem (as in current processes) is the subsequent recovery of phosphorus from the iron. In contrast, phosphorus is efficiently mobilized from iron by natural processes in sediments and soils. Iron-phosphorus chemistry is diverse, and many parameters influence the binding and release of phosphorus, including redox conditions, pH, presence of organic substances, and particle morphology. We suggest that the current poor understanding of iron and phosphorus chemistry in wastewater systems is preventing processes being developed to recover phosphorus from iron-phosphorus rich wastes like municipal wastewater sludge. Parameters that affect phosphorus recovery are reviewed here, and methods are suggested for manipulating iron-phosphorus chemistry in wastewater treatment processes to allow phosphorus to be recovered. PMID:25950504

  17. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure.

    PubMed

    Mackey, Katherine R M; Roberts, Kathryn; Lomas, Michael W; Saito, Mak A; Post, Anton F; Paytan, Adina

    2012-10-01

    Atmospheric P solubility affects the amount of P available for phytoplankton in the surface ocean, yet our understanding of the timing and extent of atmospheric P solubility is based on short-term leaching experiments where conditions may differ substantially from the surface ocean. We conducted longer- term dissolution experiments of atmospheric aerosols in filtered seawater, and found up to 9-fold greater dissolution of P after 72 h compared to instantaneous leaching. Samples rich in anthropogenic materials released dissolved inorganic P (DIP) faster than mineral dust. To gauge the effect of biota on the fate of atmospheric P, we conducted field incubations with aerosol samples collected in the Sargasso Sea and Red Sea. In the Sargasso Sea phytoplankton were not P limited, and biological activity enhanced DIP release from aerosols, and aerosols induced biological mineralization of dissolved organic P in seawater, leading to DIP accumulation. However, in the Red Sea where phytoplankton were colimited by P and N, soluble P was rapidly consumed by phytoplankton following aerosol enrichment. Our results suggest that atmospheric P dissolution could continue over multiple days once reaching the surface ocean, and that previous estimates of atmospheric P deposition may underestimate the contribution from this source. PMID:22574853

  18. Performance and metabolic aspects of a novel enhanced biological phosphorus removal system with intermittent feeding and alternate aeration.

    PubMed

    Melidis, Paraschos; Kapagiannidis, Anastasios G; Ntougias, Spyridon; Davididou, Konstantina; Aivasidis, Alexander

    2014-01-01

    A novel enhanced biological phosphorus removal (EBPR) system, which combined the intermittent feeding design with an anaerobic selector, was examined using on-line oxidation reduction potential (ORP), nitrate and ammonium probes. Two experimental periods were investigated: the aerobic and anoxic phases were set at 40 and 20 minutes respectively for period I, and set at 30 and 30 minutes for period II. Chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and P removal were measured as high as 87%, 96% and 93% respectively, while total Kjeldahl nitrogen (TKN) and NH4(+) removal averaged 85% and 91%. Two specific denitrification rates (SDNRs), which corresponded to the consumption of the readily biodegradable and slowly biodegradable COD, were determined. SDNR-1 and SDNR-2 during period I were 0.235 and 0.059 g N g(-1) volatile suspended solids (VSS) d(-1) respectively, while the respective rates during period II were 0.105 and 0.042 g N g(-1) VSS d(-1). The specific nitrate formation and ammonium oxidizing rates were 0.076 and 0.064 g N g(-1) VSS d(-1) for period I and 0.065 and 0.081 g N g(-1) VSS d(-1) for period II respectively. The specific P release rates were 2.79 and 4.02 mg P g(-1) VSS h(-1) during period I and II, while the respective anoxic/aerobic uptake rates were 0.42 and 0.55 mg P g(-1) VSS h(-1). This is the first report on an EBPR scheme using the intermittent feeding strategy. PMID:24759519

  19. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants.

    PubMed

    Kong, Yunhong; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2004-09-01

    The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants. PMID:15345424

  20. Dynamics of Microbial Community Structure of and Enhanced Biological Phosphorus Removal by Aerobic Granules Cultivated on Propionate or Acetate▿

    PubMed Central

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-01-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafter, an exponential increase in enhanced biological phosphorus removal (EBPR) activity was observed in the propionate granules, but a linear and erratic increase was detected in the acetate ones. Besides Accumulibacter and Competibacter, other bacterial populations found in both granules were associated with Chloroflexus and Acidovorax. The EBPR activity in the propionate granules was high and stable, whereas EBPR in the acetate granules was erratic throughout the study and suffered from a deterioration period that could be readily reversed by inducing hydrolysis of polyphosphate in presumably saturated Accumulibacter cells. Using a new ppk1 gene-based dual terminal-restriction fragment length polymorphism (T-RFLP) approach revealed that Accumulibacter diversity was highest in the floccular sludge inoculum but that when granules were formed, propionate readily favored the dominance of Accumulibacter type IIA. In contrast, acetate granules exhibited transient shifts between type I and type II before the granules were dominated by Accumulibacter type IIA. However, ppk1 gene sequences from acetate granules clustered separately from those of propionate granules. Our data indicate that the mere presence of Accumulibacter is not enough to have consistently high EBPR but that the type of Accumulibacter determines the robustness of the phosphate removal process. PMID:21926195

  1. Future directions for agricultural phosphorus research

    SciTech Connect

    Sikora, F.J.

    1992-03-01

    Future Directions for Agricultural Phosphorus Research is a collection of papers presented at a workshop in Muscle Shoals, Alabama, on July 18 and 19, 1990. The objective of the workshop was to gather representatives of academia, government, and industry to discuss and debate research needs with phosphorus in agriculture, ranging from basic to applied research. The enclosed papers present information on current knowledge in the areas of (1) identifying phosphorus solid phases in soil, (ii) enhanced phosphorus bioavailability through microbial activity, (iii) phosphorus rock quality, (iv) environmental issues regarding phosphorus in agriculture, (v) predicting phosphorus bioavailability in soil, and (vi) fertilizer management effects on phosphorus availability. Within each paper, the authors suggest future research needs in their area. With the discussion of current knowledge and future research needs, this publication was designed to benefit organizations formulating and developing research plans concerning phosphorus in agricultural systems.

  2. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-05-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V‑1s‑1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering.

  3. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric

    PubMed Central

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm2V−1s−1 coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  4. Interface Engineering for the Enhancement of Carrier Transport in Black Phosphorus Transistor with Ultra-Thin High-k Gate Dielectric.

    PubMed

    Ling, Zhi-Peng; Zhu, Jun-Tao; Liu, Xinke; Ang, Kah-Wee

    2016-01-01

    Black phosphorus (BP) is the most stable allotrope of phosphorus which exhibits strong in-plane anisotropic charge transport. Discovering its interface properties between BP and high-k gate dielectric is fundamentally important for enhancing the carrier mobility and electrostatics control. Here, we investigate the impact of interface engineering on the transport properties of BP transistors with an ultra-thin hafnium-dioxide (HfO2) gate dielectric of ~3.4 nm. A high hole mobility of ~536 cm(2)V(-1)s(-1) coupled with a near ideal subthreshold swing (SS) of ~66 mV/dec were simultaneously achieved at room temperature by improving the BP/HfO2 interface quality through thermal treatment. This is attributed to the passivation of phosphorus dangling bonds by hafnium (Hf) adatoms which produces a more chemically stable interface, as evidenced by the significant reduction in interface states density. Additionally, we found that an excessively high thermal treatment temperature (beyond 200 °C) could detrimentally modify the BP crystal structure, which results in channel resistance and mobility degradation due to charge-impurities scattering and lattice displacement. This study contributes to an insight for the development of high performance BP-based transistors through interface engineering. PMID:27222074

  5. Enhanced phosphorus removal from wastewater by growing deep-sea bacterium combined with basic oxygen furnace slag.

    PubMed

    Zhou, Weizhi; Huang, Zhaosong; Sun, Cuiping; Zhao, Haixia; Zhang, Yuzhong

    2016-08-01

    As one solid waste with potential for phosphorus removal, application of slags in water treatment merits attention. But it was inhibited greatly by alkaline solution (pH>9.5) and cemented clogging generated. To give one solution, phosphorus removal was investigated by combining deep-sea bacterium Alteromonas 522-1 and basic oxygen furnace slag (BOFS). Results showed that by the combination, not only higher phosphorous removal efficiency (>90%) but also neutral solution pH of 7.8-8.0 were achieved at wide ranges of initial solution pH value of 5.0-9.0, phosphorus concentration of 5-30mg/L, salinity of 0.5-3.5%, and temperature of 15-35°C. Moreover, sedimentary property was also improved with lower amount of sludge production and alleviated BOFS cementation with increased porosity and enlarged particle size. These results provided a promising strategy for the phosphorus recovery with slags in large-scale wastewater treatment. PMID:27179297

  6. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  7. Enhancement of nitrogen and phosphorus removal from eutrophic water by economic plant annual ryegrass (Lolium multiflorum) with ion implantation.

    PubMed

    Li, Miao; Sheng, Guo-ping; Wu, Yue-jin; Yu, Zeng-liang; Bañuelos, Gary S; Yu, Han-qing

    2014-01-01

    Severe eutrophication of surface water has been a major problem of increasing environmental concern worldwide. In the present study, economic plant annual ryegrass (Lolium multiflorum) was grown in floating mats as an economic plant-based treatment system to evaluate its potential after ion implantation for removing nutrients in simulated eutrophic water. The specific weight growth rate of L. multiflorum with ion implantation was significantly greater than that of the control, and the peroxidase, nitrate reductase, and acid phosphatase activities of the irradiated L. multiflorum were found to be greater than those plants without ion implantation. Higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies were obtained for the L. multiflorum irradiated with 25 keV 5.2 × 10(16) N(+) ions/cm(2) and 30 keV 4.16 × 10(16) N(+) ions/cm(2), respectively (p < 0.05). Furthermore, the nitrogen and phosphorus contents in the plant biomass with ion implantation were also greater than those in the control and were positively correlated with TN and TP supplied. L. multiflorum itself was directly responsible for 39-49 and 47-58 % of the overall N and P removal in the experiment, respectively. The research results suggested that ion implantation could become a promising approach for increasing phytoremediation efficiency of nutrients from eutrophic water by L. multiflorum. PMID:24809498

  8. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation

    NASA Astrophysics Data System (ADS)

    Tessin, Allyson; Sheldon, Nathan D.; Hendy, Ingrid; Chappaz, Anthony

    2016-09-01

    The sedimentary record of the Coniacian-Santonian Oceanic Anoxic Event 3 (OAE 3) in the North American Western Interior Seaway is characterized by a prolonged period of enhanced organic carbon (OC) burial. This study investigates the role of Fe in enhancing organic matter preservation and maintaining elevated primary productivity to sustain black shale deposition within the Coniacian-Santonian-aged Niobrara Formation in the USGS #1 Portland core. Iron speciation results indicate the development of a reactive Fe limitation coeval with reduced bioturbation and increased organic matter preservation, suggesting that decreased sulfide buffering by reactive Fe may have promoted enhanced organic matter preservation at the onset of OAE 3. An Fe limitation would also provide a feedback mechanism to sustain elevated primary productivity through enhanced phosphorus recycling. Additionally our results demonstrate inconsistencies between Fe-based and trace metal redox reconstructions. Iron indices from the Portland core indicate a single stepwise change, whereas the trace metal redox proxies indicate fluctuating redox conditions during and after OAE 3. Using Fe speciation to reconstruct past redox conditions may be complicated by a number of factors, including Fe sequestration in diagenetic carbonate phases and efficient sedimentary pyrite formation in a system with limited Fe supply and high levels of export production.

  9. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  10. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    PubMed

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  11. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding

    PubMed Central

    Rose, T. J.; Impa, S. M.; Rose, M. T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S. E.; Wissuwa, M.

    2013-01-01

    Background Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. Scope This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. Conclusions Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars. PMID:23071218

  12. Influence of nitrite accumulation on "Candidatus Accumulibacter" population structure and enhanced biological phosphorus removal from municipal wastewater.

    PubMed

    Zeng, Wei; Li, Boxiao; Wang, Xiangdong; Bai, Xinlong; Peng, Yongzhen

    2016-02-01

    A modified University of Cape Town (MUCT) process was used to treat real municipal wastewater with low carbon to nitrogen ratio (C/N). To our knowledge, this is the first study where the influence of nitrite accumulation on "Candidatus Accumulibacter" clade-level population structure was investigated during nitritation establishment and destruction. Real time quantitative PCR assays were conducted using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. Abundances of total "Candidatus Accumulibacter", the relative distributions and population structure of the five "Candidatus Accumulibacter" clades were characterized. Under complete nitrification, clade I using nitrate as electron acceptor was below 5% of total "Candidatus Accumulibacter". When the reactor was transformed into nitritation, clade I gradually disappeared. Clade IID using nitrite as electron acceptor for denitrifying phosphorus (P) removal was always the dominant "Candidatus Accumulibacter" throughout the operational period. This clade was above 90% on average in total "Candidatus Accumulibacter", even up to nearly 100%, which was associated with good performance of denitrifying P removal via nitrite pathway. The nitrite concentrations affected the abundance of clade IID. The P removal was mainly completed by anoxic P uptake of about 88%. The P removal efficiency clearly had a positive correlation with the nitrite accumulation ratio. Under nitritation, the P removal efficiency was 30% higher than that under complete nitrification, suggesting that nitrite was appropriate as electron acceptor for denitrifying P removal when treating carbon-limited wastewater. PMID:26439519

  13. DESIGN MANUAL: PHOSPHORUS REMOVAL

    EPA Science Inventory

    This manual summarizes process design information for the best developed methods for removing phosphorus from wastewater. his manual discusses several proven phosphorus removal methods, including phosphorus removal obtainable through biological activity as well as chemical precip...

  14. Phosphatase Hydrolysis of Soil Organic Phosphorus Fractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant available inorganic phosphorus (Pi) is usually limited in highly weathered Ultisols. The high Fe, Al, and Mn contents in these soils enhance Pi retention and fixation. The metals are also known to form complexes with organic phosphorus (Po) compounds. Hydrolysis of Po compounds is needed for P...

  15. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.

    PubMed

    Yaghi, Nader; Hartikainen, Helinä

    2013-11-01

    Phosphorus (P) loading from non-point or point sources increases the eutrophication risk of natural waters. The functioning of constructed wetlands (CWs) used as natural water treatment systems can be improved by means of additional materials adsorbing soluble P. In this study, light expanded clay aggregates (LECA) and LECA coated with aluminum (Al) oxide (Al-LECA) or iron (Fe) oxide (Fe-LECA) were tested for their efficiency as P sorbents in the pH range 3-8. The oxide coatings duplicated the actual sorption capacity calculated from the sorption isotherms at the P concentration in the equilibrium solution of 20 μg L(-1), assumed to be the allowable P level in purified water. In the oxide-coated LECAs the sorption was fast and followed both the first- and second-order Lagergren kinetic models, suggesting that the formation of a binuclear surface complex was feasible. In LECA, sorption was markedly slower and followed the first-order kinetic model, indicating that retention occurred through a monodentate attachment. These findings were in harmony with the degree of P saturation (DPS) of the sorbent surfaces at the highest P addition level (200 μg L(-1)), DPS being decisively higher for LECA than for the oxide-coated sorbents. Accordingly, at higher pH values the competition by hydroxyl ions diminished the sorption in LECA relatively more than that in the coated sorbents. In agreement with the acidity of Al(3+) being 100 times lower than that of Fe(3+), at elevated pH the sorption by Al-LECA proved to be less reversible than that by Fe-LECA. The results provide evidence that in CWs Al-coated sorbents are superior to Fe-coated ones that are also redox-sensitive and may lose their sorption properties in anoxic conditions. PMID:23866174

  16. A comparison of bacterial populations in enhanced biological phosphorus removal processes using membrane filtration or gravity sedimentation for solids-liquid separation.

    PubMed

    Hall, Eric R; Monti, Alessandro; Mohn, William W

    2010-05-01

    In an earlier phase of this study, we compared the performances of pilot scale treatment systems operated in either a conventional enhanced biological phosphorus removal (CEBPR) mode, or a membrane enhanced biological phosphorus removal (MEBPR) mode. In the present investigation, we characterized the bacterial community populations in these processes during parallel operation with the same municipal wastewater feed. The objectives of the study were (1) to assess the similarity of the bacterial communities supported in the two systems over time, (2) to determine if distinct bacterial populations are associated with the MEBPR and CEBPR processes, and (3) to relate the dynamics of the community composition to changes in treatment process configuration and to treatment process performance. The characteristics of the bacterial populations were first investigated with ribosomal intergenic spacer analysis, or RISA. To further understand the bacterial population dynamics, important RISA phylotypes were isolated and identified through 16S RNA gene sequencing. The parallel MEBPR and CEBPR systems developed bacterial communities that were distinct. The CEBPR community appeared to exhibit greater diversity, and this may have been the primary reason why the CEBPR treatment train demonstrated superior functional stability relative to the MEBPR counterpart. Moreover, the more diverse bacterial population apparent in the CEBPR system was observed to be more dynamic than that of the MEBPR process. Several RISA bands were found to be characteristic of either the membrane or conventional biological system. In particular, the MEBPR configuration appeared to be selective for the slow-growing organism Magnospira bakii and for the foam-associated Microthrix parvicella and Gordonia sp., while gravity separation led to the washout of M. parvicella. In both pilot trains, sequence analysis confirmed the presence of EBPR-related organisms such as Accumulibacter phosphatis. The survey of the

  17. Phosphorus removal and N₂O production in anaerobic/anoxic denitrifying phosphorus removal process: long-term impact of influent phosphorus concentration.

    PubMed

    Wang, Zhen; Meng, Yuan; Fan, Ting; Du, Yuneng; Tang, Jie; Fan, Shisuo

    2015-03-01

    This study was conducted to investigate the long-term impact of influent phosphorus concentration on denitrifying phosphorus removal and N2O production during denitrifying phosphorous removal process. The results showed that, denitrifying phosphate accumulating organisms (DPAOs) could become dominant populations quickly in anaerobic/anoxic SBR by providing optimum cultivating conditions, and the reactor performed well for denitrifying phosphorus removal. The influent phosphorus concentration significantly affected anaerobic poly-β-hydroxyalkanoates (PHA) synthesis, denitrifying phosphorus removal, and N2O production during the denitrifying phosphorus removal process. As the influent phosphorus concentration was more than 20 mg L(-1), the activity of DPAOs began to be inhibited due to the transformation of the available carbon source type. Meanwhile, N2O production was inhibited with the mitigation of anoxic NO2(-)-N accumulation. Adoption of a modified feeding could enhance denitrifying phosphorus removal and inhibit N2O production during denitrifying phosphorous removal processes. PMID:25541320

  18. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions

    PubMed Central

    Yang, Haibing; Zhang, Xiao; Gaxiola, Roberto A.; Xu, Guohua; Peer, Wendy Ann; Murphy, Angus S.

    2014-01-01

    Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils. PMID:24723407

  19. Estimation of phosphorus flux in rivers during flooding.

    PubMed

    Chen, Yen-Chang; Liu, Jih-Hung; Kuo, Jan-Tai; Lin, Cheng-Fang

    2013-07-01

    Reservoirs in Taiwan are inundated with nutrients that result in algal growth, and thus also reservoir eutrophication. Controlling the phosphorus load has always been the most crucial issue for maintaining reservoir water quality. Numerous agricultural activities, especially the production of tea in riparian areas, are conducted in watersheds in Taiwan. Nutrients from such activities, including phosphorus, are typically flushed into rivers during flooding, when over 90% of the yearly total amount of phosphorous enters reservoirs. Excessive or enhanced soil erosion from rainstorms can dramatically increase the river sediment load and the amount of particulate phosphorus flushed into rivers. When flow rates are high, particulate phosphorus is the dominant form of phosphorus, but sediment and discharge measurements are difficult during flooding, which makes estimating phosphorus flux in rivers difficult. This study determines total amounts of phosphorus transport by measuring flood discharge and phosphorous levels during flooding. Changes in particulate phosphorus, dissolved phosphorus, and their adsorption behavior during a 24-h period are analyzed owing to the fact that the time for particulate phosphorus adsorption and desorption approaching equilibrium is about 16 h. Erosion of the reservoir watershed was caused by adsorption and desorption of suspended solids in the river, a process which can be summarily described using the Lagmuir isotherm. A method for estimating the phosphorus flux in the Daiyujay Creek during Typhoon Bilis in 2006 is presented in this study. Both sediment and phosphorus are affected by the drastic discharge during flooding. Water quality data were collected during two flood events, flood in June 9, 2006 and Typhoon Bilis, to show the concentrations of suspended solids and total phosphorus during floods are much higher than normal stages. Therefore, the drastic changes of total phosphorus, particulate phosphorus, and dissolved phosphorus in

  20. The role of poly-hydroxy-alkanoate form in determining the response of enhanced biological phosphorus removal biomass to volatile fatty acids.

    PubMed

    Liu, Yan-Hua; Geiger, Cherie; Randall, Andrew Amis

    2002-01-01

    Anaerobic-aerobic batch experiments indicated that poly-hydroxy-alkanoate (PHA) form was important in determining the net phosphorus removal resulting from different volatile fatty acids (VFAs). Poly-3-hydroxy-butyrate (3HB) content was found to correlate fairly well with higher observed aerobic phosphorus uptake per unit PHA carbon degraded. Poly-3-hydroxy-valerate (3HV) correlated with lower aerobic phosphorus uptakes per unit PHA carbon degraded. These experiments, conducted with synthetic wastewater, imply that VFA speciation might have a significant effect on aerobic phosphorus uptakes and net phosphorus removal. In addition, the model parameter fP.UPT (Barker and Dold, 1997) could vary with the proportion of acetic to propionic acid received (i.e., the acetic/propionic acid ratio may be an important parameter for these systems). Carbohydrate data implied that the lower aerobic phosphorus uptake resulting from 3HV might have been caused by a greater fraction of PHA carbon shunting to carbohydrate biosynthesis during aerobiosis. PMID:11995868

  1. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus

    NASA Astrophysics Data System (ADS)

    Hu, Shaozheng; Ma, Lin; You, Jiguang; Li, Fayun; Fan, Zhiping; Lu, Guang; Liu, Dan; Gui, Jianzhou

    2014-08-01

    Preparation of Fe and P co-doped g-C3N4 was described, using dicyandiamide monomer, ferric nitrate, and diammonium hydrogen phosphate as precursor. X-ray diffraction (XRD), N2 adsorption, UV-vis spectroscopy, Fourier transform infrared spectra (FT-IR), photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and photocurrent measurement were used to characterize the prepared catalysts. The results indicated that the addition of dopants inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, decreased the band gap energy, and restrained the recombination of photogenerated electrons and holes. Fe and P co-doped g-C3N4 exhibited much higher Rhodamine B (RhB) photodegradation rate and H2 production ability than that of single doped and neat g-C3N4 catalysts. The possible mechanism and doping sites of P and Fe were proposed.

  2. Supplemental Escherichia coli phytase and strontium enhance bone strength of young pigs fed a phosphorus-adequate diet.

    PubMed

    Pagano, Angela R; Yasuda, Koji; Roneker, Karl R; Crenshaw, Thomas D; Lei, Xin Gen

    2007-07-01

    Young pigs represent an excellent model of youth to assess potentials of dietary factors for improving bone structure and function. We conducted 2 experiments to determine whether adding microbial phytase (2,000 U/kg, OptiPhos, JBS United) and Sr (50 mg/kg, SrCO3 Alfa Aesar) into a P-adequate diet further improved bone strength of young pigs. In Expt. 1, 24 gilts (8.6 +/- 0.1 kg body wt) were divided into 2 groups (n = 12), and fed a corn-soybean-meal basal diet (BD, 0.33% available P) or BD + phytase for 6 wk. In Expt. 2, 32 pigs (11.4 +/- 0.2 kg) were divided into 4 groups (n = 8), and fed BD, BD + phytase, BD + Sr, or BD + phytase and Sr for 5 wk. Both supplemental phytase and Sr enhanced (P < 0.05) breaking strengths (11-20%), mineral content (6-15%), and mineral density (6-11%) of metatarsals and femurs. Supplemental phytase also resulted in larger total bone areas (P < 0.05) and a larger cross-sectional area of femur (P = 0.06). Concentrations of Sr were elevated 4-fold (P < 0.001) in both bones by Sr, and moderately increased (P = 0.05-0.07) in metatarsal by phytase. In conclusion, supplemental phytase at 2000 U/kg of P-adequate diets enhanced bone mechanical function of weanling pigs by modulating both geometrical and chemical properties of bone. The similar benefit of supplemental Sr was mainly due to an effect on bone chemical properties. PMID:17585033

  3. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity.

    PubMed

    Choi, Chang Hyuck; Park, Sung Hyeon; Woo, Seong Ihl

    2012-08-28

    N-doped carbon, a promising alternative to Pt catalyst for oxygen reduction reactions (ORRs) in acidic media, is modified in order to increase its catalytic activity through the additional doping of B and P at the carbon growth step. This additional doping alters the electrical, physical, and morphological properties of the carbon. The B-doping reinforces the sp(2)-structure of graphite and increases the portion of pyridinic-N sites in the carbon lattice, whereas P-doping enhances the charge delocalization of the carbon atoms and produces carbon structures with many edge sites. These electrical and physical alternations of the N-doped carbon are more favorable for the reduction of the oxygen on the carbon surface. Compared with N-doped carbon, B,N-doped or P,N-doped carbon shows 1.2 or 2.1 times higher ORR activity at 0.6 V (vs RHE) in acidic media. The most active catalyst in the reaction is the ternary-doped carbon (B,P,N-doped carbon), which records -6.0 mA/mg of mass activity at 0.6 V (vs RHE), and it is 2.3 times higher than that of the N-doped carbon. These results imply that the binary or ternary doping of B and P with N into carbon induces remarkable performance enhancements, and the charge delocalization of the carbon atoms or number of edge sites of the carbon is a significant factor in deciding the oxygen reduction activity in carbon-based catalysts. PMID:22769428

  4. Detection of Phosphorus, Sulphur, and Zinc in the Carbon-enhanced Metal-poor Star BD+44 493

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.; Placco, Vinicius M.; Beers, Timothy C.

    2016-06-01

    The carbon-enhanced metal-poor star BD+44°493 ([Fe/H] = ‑3.9) has been proposed as a candidate second-generation star enriched by metals from a single Pop III star. We report the first detections of P and S and the second detection of Zn in any extremely metal-poor carbon-enhanced star, using new spectra of BD+44°493 collected by the Cosmic Origins Spectrograph on the Hubble Space Telescope. We derive [P/Fe] = ‑0.34 ± 0.21, [S/Fe] = +0.07 ± 0.41, and [Zn/Fe] = ‑0.10 ± 0.24. We increase by 10-fold the number of Si i lines detected in BD+44°493, yielding [Si/Fe] = +0.15 ± 0.22. The [S/Fe] and [Zn/Fe] ratios exclude the hypothesis that the abundance pattern in BD+44°493 results from depletion of refractory elements onto dust grains. Comparison with zero-metallicity supernova (SN) models suggests that the stellar progenitor that enriched BD+44°493 was massive and ejected much less than 0.07 M ⊙ of 56Ni, characteristic of a faint SN. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555. These observations are associated with program GO-14231.

  5. Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants.

    PubMed

    Kong, Yunhong; Xia, Yun; Nielsen, Jeppe L; Nielsen, Per H

    2006-03-01

    The presence of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) plants can seriously deteriorate the biological P-removal by out-competing the polyphosphate-accumulating organisms (PAOs). In this study, uncultured putative GAOs (the GB group, belonging to the Gammaproteobacteria) were investigated in detail in 12 full-scale EBPR plants. Fluorescence in situ hybridization (FISH) revealed that the biovolume of the GB bacteria constituted 2-6% of total bacterial biovolume. At least six different subgroups of the GB bacteria were found, and the number of dominant subgroups present in each plant varied between one and five. Ecophysiological investigations using microautoradiography in combination with FISH showed that, under aerobic or anaerobic conditions, all subgroups of the GB bacteria could take up acetate, pyruvate, propionate and some amino acids, while some subgroups in addition could take up formate and thymidine. Glucose, ethanol, butyrate and several other organic substrates were not taken up. Glycolysis was essential for the anaerobic uptake of organic substrates. Polyhydroxyalkanoates (PHA) but not polyphosphate (polyP) granules were detected in all GB bacterial cells. Polyhydroxyalkanoate formation after anaerobic uptake of acetate was confirmed by measuring the increase in fluorescence intensity of PHA granules inside GB bacterial cells after Nile blue staining. One GB subgroup was possibly able to denitrify, and several others were able to reduce nitrate to nitrite. PAOs were also enumerated by FISH in the same treatment plants. Rhodocyclus-related PAOs and Actinobacteria-related PAOs constituted up to 7% and 29% of total bacterial biovolume respectively. Rhodocyclus-related PAOs always coexisted with the GB bacteria and showed many physiological similarities. Factors of importance for the competition between the three groups of important bacteria in EBPR plants are discussed. PMID:16478454

  6. Phosphorus: Riverine system transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transport and transformation of phosphorus (P) in riverine systems fundamentally affects the outcome of watershed mitigation strategies aimed at curbing downstream eutrophication. Phosphorus transport and transformations in streams and rivers are mediated by physical (sediment deposition and res...

  7. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  8. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  9. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level.

    PubMed

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-01

    This work uncovers an important feature of the forward osmosis membrane bioreactor (FOMBR) process: the decoupling of contaminants retention time (CRT) and hydraulic retention time (HRT). Based on this concept, the capability of the hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) in achieving high through-put treatment of municipal wastewater with enhanced phosphorus recovery was explored. High removal of TOC and NH4(+)-N (90% and 99%, respectively) was achieved with HRTs down to 47min, with the treatment capacity increased by an order of magnitude. Reduced HRT did not affect phosphorus removal and recovery. As a result, the phosphorus recovery capacity was also increased by the same order. Reduced HRT resulted in increased system loading rates and thus elevated concentrations of mixed liquor suspended solids and increased membrane fouling. 454-pyrosequecing suggested the thriving of Bacteroidetes and Proteobacteria (especially Sphingobacteriales Flavobacteriales and Thiothrix members), as well as the community succession and dynamics of ammonium oxidizing and nitrite oxidizing bacteria. PMID:27498011

  10. Management of natural and added dietary phosphorus burden in kidney disease.

    PubMed

    Cupisti, Adamasco; Kalantar-Zadeh, Kamyar

    2013-03-01

    Phosphorus retention occurs from higher dietary phosphorus intake relative to its renal excretion or dialysis removal. In the gastrointestinal tract the naturally existing organic phosphorus is only partially (∼60%) absorbable; however, this absorption varies widely and is lower for plant-based phosphorus including phytate (<40%) and higher for foods enhanced with inorganic phosphorus-containing preservatives (>80%). The latter phosphorus often remains unrecognized by patients and health care professionals, even though it is widely used in contemporary diets, in particular, low-cost foods. In a nonenhanced mixed diet, digestible phosphorus correlates closely with total protein content, making protein-rich foods a main source of natural phosphorus. Phosphorus burden is limited more appropriately in predialysis patients who are on a low-protein diet (∼0.6 g/kg/d), whereas dialysis patients who require higher protein intake (∼1.2 g/kg/d) are subject to a higher dietary phosphorus load. An effective and patient-friendly approach to reduce phosphorus intake without depriving patients of adequate proteins is to educate patients to avoid foods with high phosphorus relative to protein such as egg yolk and those with high amounts of phosphorus-based preservatives such as certain soft drinks and enhanced cheese and meat. Phosphorus rich foods should be prepared by boiling, which reduces phosphorus as well as sodium and potassium content, or by other types of cooking-induced demineralization. The dose of phosphorus-binding therapy should be adjusted separately for the amount and absorbability of phosphorus in each meal. Dietician counseling to address the emerging aspects of dietary phosphorus management is instrumental for achieving a reduction of phosphorus load. PMID:23465504

  11. Phosphorus poisoning in waterfowl

    USGS Publications Warehouse

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V., Jr.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  12. Biogeochemistry: The fate of phosphorus

    NASA Astrophysics Data System (ADS)

    Némery, Julien; Garnier, Josette

    2016-05-01

    Phosphorus is essential for food production, but it is also a key cause of eutrophication. Estimates of phosphorus flux for the past 40-70 years reveal that large river basins can experience phases of phosphorus accumulation and depletion.

  13. Effects of phosphorus, silicon and sulphur on microstructural evolution in austenitic stainless steels during electron irradiation

    NASA Astrophysics Data System (ADS)

    Fukuya, K.; Nakahigashi, S.; Ozaki, S.; Shima, S.

    1991-03-01

    Fe-18Cr-9Ni-1.5Mn austenitic alloys containing phosphorus, silicon and sulphur were irradiated by 1 MeV electrons at 573-773 K. Phosphorus increased the intersitial loop nucleation and decreased the void swelling by increasing void number density and suppressing void growth. Silicon had a similar effect to phosphorus but its effect was weaker than phosphorus. Sulphur enhanced void swelling through increasing the void density. Nickel enrichment at grain boundaries was suppressed only in the alloy containing phosphorus. These phosphorus effects may be explained by a strong interaction with interstitials resulting in a high density of sinks for point defects.

  14. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  15. Phosphorus in diet

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002424.htm Phosphorus in diet To use the sharing features on this page, please enable ... the body make ATP, a molecule the body uses to store energy. Phosphorus works with the B vitamins. It also helps ...

  16. PHOSPHORUS RECOVERY FROM SEWAGE

    EPA Science Inventory

    Phosphorus is a growth limiting nutrient that is mined from rock ore, refined, used in fertilizers, and discharged to the environment through municipal sewage. The impacts of phosphorus discharge include severe eutrophication of fresh water bodies. The future sustainable use of...

  17. Phosphorus recovery from wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an important macro-nutrient essential for all living organisms and phosphate rock is the main raw material for all inorganic P fertilizers. It is expected that there will be a P peak and resulting P fertilizer shortage in near future. In general, phosphorus use efficiency is low a...

  18. Black Phosphorus Terahertz Photodetectors.

    PubMed

    Viti, Leonardo; Hu, Jin; Coquillat, Dominique; Knap, Wojciech; Tredicucci, Alessandro; Politano, Antonio; Vitiello, Miriam Serena

    2015-10-01

    The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described. PMID:26270791

  19. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Ma, Ruguang; Candelaria, Stephanie L.; Wang, Jiacheng; Liu, Qian; Uchaker, Evan; Li, Pengxi; Chen, Yongfang; Cao, Guozhong

    2016-05-01

    Phosphorus (P)/sulfur (S) co-doped porous carbon derived from resorcinol and furaldehyde are synthesized through one-step sol-gel processing with the addition of phosphorus pentasulfide as P and S source followed with freeze-drying and pyrolysis in nitrogen. The P/S co-doping strategy facilitates the pore size widening both in micropore and mesopore regions, together with the positive effect on the degree of graphitization of porous carbon through elimination of amorphous carbon through the formation and evaporation of carbon disulfide. As an electrode for supercapacitor application, P/S co-doped porous carbon demonstrates 43.5% improvement on specific capacitance of the single electrode compared to pristine porous carbon in organic electrolyte at a current of 0.5 mA due to the P-induced pseudocapacitive reactions. As for electrocatalytic use, promoted electrocatalytic activity and high resistance to crossover effects of oxygen reduction reaction (ORR) in alkaline media are observed after the introduction of P and S into porous carbon. After air activation, the specific capacitance of the single electrode of sample PS-pC reaches up to 103.5 F g-1 and an improved oxygen reduction current density.

  20. Fixed film phosphorus removal--flexible enough?

    PubMed

    Rogalla, F; Johnson, T L; McQuarrie, J

    2006-01-01

    While biological phosphorus removal (BPR) has been practised for 30 years, up to recently it has been restricted mainly to activated sludge processes, with the corresponding need for large basin volumes. Yet, research with biofilm reactors showed that the principle of alternate anaerobic and aerated conditions was applicable to fixed bacteria by changing the conditions in time rather than in space. Attached growth enhanced biological phosphorus removal (EBPR) systems are attractive because of their compactness and capability to retain high biomass levels. However, the phosphorus extraction depends on backwashes to enhance the phosphorus-rich attached biomass, and correct control of unsteady effluent quality created by frequently modified process conditions. Accordingly, EBPR remains a challenging task in terms of combining nitrogen and phosphorus removal using attached growth systems. Nevertheless, a combination of activated sludge and biofilm carriers, in the integrated fixed-film activated sludge system, provides treatment opportunities not readily available using suspended growth systems. Current practice is only at the beginning of exploiting the full potential of this combination, but the first full-scale results show that compact tankage and low nutrient results based on biological principles are possible. PMID:16889243

  1. Impact of fish farming on the distribution of phosphorus in sediments in the middle Adriatic area.

    PubMed

    Matijević, Slavica; Kuspilić, Grozdan; Kljaković-Gaspić, Zorana; Bogner, Danijela

    2008-03-01

    During the last decade, intensive fish farming developed along the central Croatian coast, creating a need to study and evaluate its potential influence on unaffected sites. We considered phosphorus as an indicator of the influence of fish farming and investigated the distribution of phosphorus forms in sediment from several fish farms and marine areas of different trophic status in the middle Adriatic. Analyses of samples were performed with modified SEDEX techniques. Our results indicated that authigenic apatite phosphorus showed no significant differences among the investigated stations, while organic phosphorus concentrations reflected the trophic status of the station area. Below-cage sediment was characterized by enhanced fish debris phosphorus and low detrital apatite phosphorus concentrations, while sediment from an anthropogenically influenced bay showed the highest values of iron bound phosphorus species. Among the different P fractions, fish debris phosphorus proved to be the most sensitive indicator of the influence of fish farming on marine sediment. PMID:18187162

  2. Phosphorus cycling in the Early Aptian

    NASA Astrophysics Data System (ADS)

    Oakes, R.; Dittrich, M.; Wortmann, U. G.

    2012-12-01

    depending on deposition conditions. We find that during the anoxic event Ca-P preservation is enhanced, a trend which is not mirrored by an increase in total phosphorus concentration. This suggests that the formation of authigenic apatite via sink switching may have been enhanced during OAE1a. This agrees with the findings of a modern field and lab based study which proposes that more P is fixed than regenerated under anoxic conditions but contradicts earlier studies which suggest that more P will be refluxed from sediments under anoxic bottom-water conditions.

  3. BIOLOGICAL PHOSPHORUS REMOVAL

    EPA Science Inventory

    Three proprietary biological phosphorus removal processes are reviewed. The paper presents the description and development status of these technologies. The paper is a summary of the emerging technology assessment report published by U.S. Environmental Protection Agency in 1984. ...

  4. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  5. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    PubMed

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future. PMID:22889679

  6. Phosphorus in prebiotic chemistry

    PubMed Central

    Schwartz, Alan W

    2006-01-01

    The prebiotic synthesis of phosphorus-containing compounds—such as nucleotides and polynucleotides—would require both a geologically plausible source of the element and pathways for its incorporation into chemical systems on the primitive Earth. The mineral apatite, which is the only significant source of phosphate on Earth, has long been thought to be problematical in this respect due to its low solubility and reactivity. However, in the last decade or so, at least two pathways have been demonstrated which would circumvent these perceived problems. In addition, recent results would seem to suggest an additional, extraterrestrial source of reactive phosphorus. It appears that the ‘phosphorus problem’ is no longer the stumbling block which it was once thought to be. PMID:17008215

  7. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  8. Species of phosphorus in the extracellular polymeric substances of EBPR sludge.

    PubMed

    Zhang, Hai-Ling; Fang, Wei; Wang, Yong-Peng; Sheng, Guo-Ping; Xia, Cheng-Wang; Zeng, Raymond J; Yu, Han-Qing

    2013-08-01

    In this study, the species of extracellular phosphorus and their transformation during extracellular polymeric substances (EPS) extraction were explored by using (31)P nuclear magnetic resonance spectroscopy. Results show that the extraction methods had a substantial influence on the phosphorus species in the extracted EPS. Cation exchange resin method was more appropriate for extracting EPS from the enhanced biological phosphorus removal (EBPR) sludge. Orthophosphate, pyrophosphate and polyphosphate were the main species of phosphorus found to be present in the EPS, which together accounted for about 6.6-10.5% of the total phosphorus in the EBPR sludge. The high percentage of extracellular phosphorus and their diverse species might reveal a new insight into the characteristics of the phosphorus in EPS in EBPR system. PMID:23751808

  9. Fractionation of Soil Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the qualitative and quantitative information provided by soil phosphorus (P) fractionation methods is important for addressing agronomic and water quality problems, as well as evaluating P biogeochemistry in extreme environments. This chapter provides a schematic overview of and ...

  10. Endangered plants persist under phosphorus limitation.

    PubMed

    Wassen, Martin J; Venterink, Harry Olde; Lapshina, Elena D; Tanneberger, Franziska

    2005-09-22

    Nitrogen enrichment is widely thought to be responsible for the loss of plant species from temperate terrestrial ecosystems. This view is based on field surveys and controlled experiments showing that species richness correlates negatively with high productivity and nitrogen enrichment. However, as the type of nutrient limitation has never been examined on a large geographical scale the causality of these relationships is uncertain. We investigated species richness in herbaceous terrestrial ecosystems, sampled along a transect through temperate Eurasia that represented a gradient of declining levels of atmospheric nitrogen deposition--from approximately 50 kg ha(-1) yr(-1) in western Europe to natural background values of less than 5 kg ha(-1) yr(-1) in Siberia. Here we show that many more endangered plant species persist under phosphorus-limited than under nitrogen-limited conditions, and we conclude that enhanced phosphorus is more likely to be the cause of species loss than nitrogen enrichment. Our results highlight the need for a better understanding of the mechanisms of phosphorus enrichment, and for a stronger focus on conservation management to reduce phosphorus availability. PMID:16177790

  11. [Phosphorus removal characteristics by aerobic granules in normal molasses wastewater after anaerobic treatment].

    PubMed

    Wang, Shuo; Yu, Shui-Li; Shi, Wen-Xin; Bao, Rui-Ling; Yi, Xue-Song; Li, Jian-Zheng

    2012-04-01

    COD decreased obviously in normal molasses wastewater after anaerobic treatment, however, concentrations of nitrogen and phosphorus were still higher in the effluent which seriously damaged the ecological balance. In this study, aerobic granules cultivated in sequencing batch airlift reactor (SBAR) were carried out for treating the effluent; phosphorus removal processes and characteristics were discussed as well. The mean diameter of aerobic granules cultivated by multiple carbon sources (acetate, propionate and butyrate) was 1.7 mm. The average phosphorus removal efficiency was 90.9% and the level of phosphorus in effluent was only 1.3 mg x L(-1); TP released per COD consumed was 0.571 and the specific rate of TP released was 5.73 mg x (g x h)(-1). NO3(-) -N usage of phosphorus accumulating organisms (PAOs) improved during denitrifying process because the concentration of propionate and butyrate increased in multiple carbon sources which means the phosphorus uptake efficiency increased when per NO3(-) -N consumed. Phosphorus content represented a stronger correlation with magnesium, calcium and ferrum contents in aerobic granules and their extracellular polymeric substances (EPS), the phosphorus adsorption by EPS could enhance phosphorus removal. 61.9% of phosphorus accumulating organisms were denitrifying phosphorus accumulating organisms in aerobic granules and TP uptake per NO3(-) -N consumed was 1.14 which was higher than that of aerobic granules only cultivated by acetate. PMID:22724155

  12. Plasma-Assisted Synthesis of High-Mobility Atomically Layered Violet Phosphorus.

    PubMed

    Tsai, Hsu-Sheng; Lai, Chih-Chung; Hsiao, Ching-Hung; Medina, Henry; Su, Teng-Yu; Ouyang, Hao; Chen, Tai-Hsiang; Liang, Jenq-Horng; Chueh, Yu-Lun

    2015-07-01

    Two-dimensional layered materials such as graphene, transition metal dichalcogenides, and black phosphorus have demonstrated outstanding properties due to electron confinement as the thickness is reduced to atomic scale. Among the phosphorus allotropes, black phosphorus, and violet phosphorus possess layer structure with the potential to be scaled down to atomically thin film. For the first time, the plasma-assisted synthesis of atomically layered violet phosphorus has been achieved. Material characterization supports the formation of violet phosphorus/InN over InP substrate where the layer structure of violet phosphorus is clearly observed. The identification of the crystal structure and lattice constant ratifies the formation of violet phosphorus indeed. The critical concept of this synthesis method is the selective reaction induced by different variations of Gibbs free energy (ΔG) of reactions. Besides, the Hall mobility of the violet phosphorus on the InP substrate greatly increases over the theoretical values of InP bulk material without much reduction in the carrier concentration, suggesting that the mobility enhancement results from the violet phosphorus layers. Furthermore, this study demonstrates a low-cost technique with high compatibility to synthesize the high-mobility atomically layered violet phosphorus and open the space for the study of the fundamental properties of this intriguing material as a new member of the fast growing family of 2D crystals. PMID:26070035

  13. Phosphorus removal using nanofiltration membranes.

    PubMed

    Leo, C P; Chai, W K; Mohammad, A W; Qi, Y; Hoedley, A F A; Chai, S P

    2011-01-01

    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus. PMID:22053475

  14. Implications of phosphorus redox geochemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew

    2015-04-01

    Phosphorus is the limiting nutrient in many environments. Until recently, redox changes to phosphorus speciation have been confined to the realm of chemical laboratories as phosphorus was considered to be synonymous with phosphate in the natural environment. The few known phosphorus species with a reduced redox state, such as phosphine gas, were considered novelties. Recent work has revealed a surprising role for low redox state organophosphorus compounds -- the phosphonates -- in biogeochemistry. Additionally, phosphite and hypophosphite (the lower oxyanions of phosphorus) have been identified from natural sources, and microbial genomics suggests these compounds may be ubiquitous in nature. Recent work from our laboratory suggests that reduced phosphorus compounds such as phosphite and hypophosphite may be ubiquitous (Pasek et al. 2014). If so, then these species maybe important in the global phosphorus biogeochemical cycle, and could influence global phosphorus sustainability. Additionally, these compounds could have been relevant on the early earth environment, priming the earth with reactive phosphorus for prebiotic chemistry. Reference: Pasek, M. A., Sampson, J. M., & Atlas, Z. (2014). Redox chemistry in the phosphorus biogeochemical cycle. Proceedings of the National Academy of Sciences, 111(43), 15468-15473.

  15. The problem with phosphorus

    NASA Astrophysics Data System (ADS)

    Froelich, Phillip N.

    Phosphorus is King of the aquatic plant kingdom.1 Without it there would be no growth, no reproduction, and thus no life.2 This simple principle has been concealed from a generation of aquatic scientists seduced by the powers of the Queen Consort, Nitrogen.3If Phosphorus is King and Nitrogen is Queen, then a naive observer4 of the Chess Queen, then a naive observer4 of the Chess Game of Life might prematurely conclude, after watching the moves unfolding on the board, that the Queen is all powerful and controls the game. She can move both diagonally and laterally across the board5 and travels long distances in one jump.6 Clones can be created from thin air on the back row.7 She literally dances over the board and controls the tempo of the game.8 A game without a dominant Queen is rare.9

  16. Multiple phosphorus chemical sites in heavily phosphorus-doped diamond

    SciTech Connect

    Okazaki, Hiroyuki; Yoshida, Rikiya; Muro, Takayuki; Nakamura, Tetsuya; Hirai, Masaaki; Kato, Hiromitsu; Yamasaki, Satoshi; Takano, Yoshihiko; Ishii, Satoshi; Oguchi, Tamio

    2011-02-21

    We have performed high-resolution core level photoemission spectroscopy on a heavily phosphorus (P)-doped diamond film in order to elucidate the chemical sites of doped-phosphorus atoms in diamond. P 2p core level study shows two bulk components, providing spectroscopic evidence for multiple chemical sites of doped-phosphorus atoms. This indicates that only a part of doped-phosphorus atoms contribute to the formation of carriers. From a comparison with band calculations, possible origins for the chemical sites are discussed.

  17. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    NASA Astrophysics Data System (ADS)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  18. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    PubMed Central

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera. PMID:26983801

  19. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR)

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-03-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10–50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera.

  20. Effects of carbon-to-sulfur (C/S) ratio and nitrate (N) dosage on Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorus Removal (DS-EBPR).

    PubMed

    Yu, Mei; Lu, Hui; Wu, Di; Zhao, Qing; Meng, Fangang; Wang, Yudan; Hao, Xiaodi; Chen, Guang-Hao

    2016-01-01

    In this study, the Denitrifying Sulfur cycle-associated Enhanced Biological Phosphorous Removal (DS-EBPR) with 20 mg P/L/d of the volumetric P removal rate was successfully achieved in a Sequencing Batch Reactor (SBR). The effects of carbon-to-sulfur (C/S) mass ratio and nitrate (N) dosage were investigated through two batch tests to reveal the role of wastewater compositions in DS-EBPR performance. The optimal specific P release and uptake rates (0.4 and 2.4 mg P/g VSS/h, respectively) were achieved at C/S/P/N mass ratio of 150/200/20/20, and poly-S is supplied as a potential electron and energy storage. The nitrate dosage in a range of 10-50 mg N/L had no significant influence on P uptake rates (2.1 ~ 2.4 mg P/g VSS/h), but significantly affected the storage of inclusion poly-S, the poly-S oxidation rate was increased about 16% while dosing nitrate from 20 to 30 mg N/L. It implies that nitrate is denitrified in the P uptake phase, and excess nitrate is further consumed by poly-S. Moreover, the microbial analysis showed that the functional bacteria should mostly belong to denitrifying bacteria or Unclassified genera. PMID:26983801

  1. Mechanical strain effects on black phosphorus nanoresonators.

    PubMed

    Wang, Cui-Xia; Zhang, Chao; Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2016-01-14

    We perform classical molecular dynamics simulations to investigate the effects of mechanical strain on single-layer black phosphorus nanoresonators at different temperatures. We find that the resonant frequency is highly anisotropic in black phosphorus due to its intrinsic puckered configuration, and that the quality factor in the armchair direction is higher than in the zigzag direction at room temperature. The quality factors are also found to be intrinsically larger than those in graphene and MoS2 nanoresonators. The quality factors can be increased by more than a factor of two by applying tensile strain, with uniaxial strain in the armchair direction being the most effective. However, there is an upper bound for the quality factor increase due to nonlinear effects at large strains, after which the quality factor decreases. The tension induced nonlinear effect is stronger along the zigzag direction, resulting in a smaller maximum strain for quality factor enhancement. PMID:26649476

  2. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological time scales

    NASA Astrophysics Data System (ADS)

    Buendíia, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2013-12-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  3. Decline of phosphorus, copper, and zinc in anaerobic lagoon columns receiving pretreated influent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a 15-month meso-scale column study, we evaluated the effect of manure pretreatment on reduction of total suspended solids (TSS), total phosphorus (TP), soluble reactive phosphorus (SRP), copper (Cu) and zinc (Zn) in swine lagoons using (i) enhanced solid–liquid separation with polymer (SS) and (i...

  4. Effects of Simulated Climate Conditions on Phosphorus Cycling in an Annual Grassland

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Defforey, D.; Paytan, A.

    2012-12-01

    The Jasper Ridge Global Change Experiment is a long-term study of the effects of simulated climate change conditions on an annual grassland. The different treatments consist of elevated atmospheric CO2 levels, enhanced nitrate deposition, as well as higher temperatures and precipitation rates. The above ground vegetation from each plot is harvested and separated by species, with the dominant species being selected for analysis. The aim of this study is to investigate the effects of different climate conditions on the phosphorus content and phosphorus cycling in terrestrial plants. Phosphorus content in grass samples is determined using the colorimetric reaction (soluble reactive phosphorus content), as well as combustion and acid digestion (total phosphorus content). Since phosphorus only has one stable isotope, the δ18O signature in phosphate is used as a proxy to investigate phosphorus cycling in this ecosystem. These three tools will be combined and evaluated as indicators for phosphorus limitation in each respective treatment site and provide a better understanding of phosphorus cycling in annual grasslands and the potential effects of climate change on phosphorus cycling.

  5. [Effects of soil phosphorus level on morphological and photosynthetic characteristics of Ageratina adenophora and chromolaena odorata].

    PubMed

    Wang, Manlia; Feng, Yulong; Li, Xin

    2006-04-01

    In this paper, a comparative study was made on the growth, morphology, biomass allocation, and photosynthesis of two invasive plant species Ageratina adenophora and Chromolaena odorata under five soil phosphorus levels, aimed to know how the test plant species acclimate to the changes of soil phosphorus level, evaluate which plant traits were associated with the invasiveness of the two species, and know whether the increased level of soil phosphorus could facilitate their invasion. The results showed that the two species had considerable phenotypic plasticity and ? phosphorus acclimation ability. At low phosphorus levels, their root mass ratio increased, which could enhance the nutrient capture ability, while at high phosphorus levels, their specific leaf area, maximum net photosynthetic rate, light saturation point, and chlorophyll and carotenoid contents per unit area were high, and the assimilative capacity and area increased, which could facilitate their carbon gain. A. adenophora had higher phosphorus acclimation ability than C. odorata. With the increase of phosphorous level, the relative growth rate, total biomass, branch number, leaf area index, and maximum net photosynthetic rate of the two species increased significantly, and most of the parameters were not decreased significantly under over-optimal phosphorus level. The two species could grow better under high phosphorus levels which were usually excessive and/or harmful for most native species, and enhanced soil phosphorus level might promote their invasion. At high phosphorus levels, the two invasive plant species might shade out native species through increasing their plant height, branch number, and leaf area index. The two species could maintain relatively high growth rate under high phosphorus levels in dry season when native plant species almost stopped growing. The ability that the invasive plant species could temporally use natural resources which native plant species could not use was also

  6. Preparation of high purity phosphorus

    DOEpatents

    Rupp, Arthur F.; Woo, David V.

    1981-01-01

    High purity phosphorus and phosphorus compounds are prepared by first reacting H.sub.3 PO.sub.4 with a lead compound such as PbO to form Pb.sub.3 (PO.sub.4).sub.2. The Pb.sub.3 (PO.sub.4).sub.2 is reduced with H.sub.2 at a temperature sufficient to form gaseous phosphorus which can be recovered as a high purity phosphorus product. Phosphorus compounds can be easily prepared by reacting the phosphorus product with gaseous reactants. For example, the phosphorus product is reacted with gaseous Cl.sub.2 to form PCl.sub.5. PCl.sub.5 is reduced to PCl.sub.3 by contacting it in the gaseous phase with solid elemental phosphorus. POCl.sub.3 can be prepared by contacting PCl.sub.5 in the gaseous phase with solid P.sub.2 O.sub.5. The general process is particularly suitable for the preparation of radiophosphorus compounds.

  7. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.

    PubMed

    Guo, Gang; Wu, Di; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Wang, Haiguang; Chen, Guanghao

    2016-05-15

    A sulfur conversion-associated Enhanced Biological Phosphorus (P) Removal (EBPR) system is being developed to cater for the increasing needs to treat saline/brackish wastewater resulting from seawater intrusion into groundwater and sewers and frequent use of sulfate coagulants during drinking water treatment, as well as to meet the demand for eutrophication control in warm climate regions. However, the major functional bacteria and metabolism in this emerging biological nutrient removal system are still poorly understood. This study was thus designed to explore the functional microbes and metabolism in this new EBPR system by manipulating the deterioration, failure and restoration of a lab-scale system. This was achieved by changing the mixed liquor suspended solids (MLSS) concentration to monitor and evaluate the relationships among sulfur conversion (including sulfate reduction and sulfate production), P removal, variation in microbial community structures, and stoichiometric parameters. The results show that the stable Denitrifying Sulfur conversion-associated EBPR (DS-EBPR) system was enriched by sulfate-reducing bacteria (SRB) and sulfide-oxidizing bacteria (SOB). These bacteria synergistically participated in this new EBPR process, thereby inducing an appropriate level of sulfur conversion crucial for achieving a stable DS-EBPR performance, i.e. maintaining sulfur conversion intensity at 15-40 mg S/L, corresponding to an optimal sludge concentration of 6.5 g/L. This range of sulfur conversion favors microbial community competition and various energy flows from internal polymers (i.e. polysulfide or elemental sulfur (poly-S(2-)/S(0)) and poly-β-hydroxyalkanoates (PHA)) for P removal. If this range was exceeded, the system might deteriorate or even fail due to enrichment of glycogen-accumulating organisms (GAOs). Four methods of restoring the failed system were investigated: increasing the sludge concentration, lowering the salinity or doubling the COD

  8. Total Value of Phosphorus Recovery.

    PubMed

    Mayer, Brooke K; Baker, Lawrence A; Boyer, Treavor H; Drechsel, Pay; Gifford, Mac; Hanjra, Munir A; Parameswaran, Prathap; Stoltzfus, Jared; Westerhoff, Paul; Rittmann, Bruce E

    2016-07-01

    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies. PMID:27214029

  9. [Bone and Nutrition. Bone and phosphorus intake].

    PubMed

    Arai, Hidekazu; Sakuma, Masae

    2015-07-01

    Phosphorus is necessary for bone mineralization. Although adequate phosphorus intake is essential for skeletal mineralization, it is reported that excessive phosphorus intake can induce deleterious effect on bone. Recently, since the Japanese diet has been westernized, phosphorus intake by the meat and dairy products has increased. Furthermore, along with the development of processed foods, excessive intake of inorganic phosphorus from food additives has become a problem. An adverse effect on parathyroid hormone (PTH) secretion from high phosphorus intake was seen only when calcium intake was inadequate. Dietary calcium to phosphorus ratio can be considered as one of the indicators that can predict the health of the bone. PMID:26119308

  10. Phosphorus removal mechanisms at the Yellow River Sweetwater Creek Water Reclamation Facility, Gwinnett County, Georgia. Master's thesis

    SciTech Connect

    Borowy, J.T.

    1994-01-01

    This research investigated the capabilities of the Yellow River Sweetwater Creek Water Reclamation Facility in Gwinnett County, GA. to remove phosphorus biologically. Phosphorus levels and removal locations were analyzed in plant operational units (sampling events), while in reactor experiments (pilot studies), waste was subjected to various conditions to promote-biological phosphorus release and uptake. Analysis of plant conditions at the time of experimentation indicates that one-half of the plant phosphorus removal is accomplished biologically through incorporation of phosphorus in microbial cells during growth. It does not appear, however, that enhanced biological phosphorus removal (BPR) is possible due to wastestream characteristics and/or microbial population. It was noted that the basic anaerobic-aerobic sequence associated with enhanced BPR appears to be occurring with the secondary clarifier sludge blanket and return to compartment A of the nitrification basin.

  11. Prebiotic phosphorus chemistry reconsidered

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E. (Principal Investigator)

    1997-01-01

    The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.

  12. Phosphorus as a critical macronutrient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is required for plant growth and development but its availability is frequently limiting. Plants have evolved numerous adaptive mechanisms for acclimation to P-deficiency. These mechanisms involve activation of metabolic, molecular, developmental, and regulatory processes which modify...

  13. Black Phosphorus Optoelectronics and Electronics

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian

    Black phosphorus recently emerged as a promising new 2D material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. It serendipitously bridges the zero-gap graphene and the relatively large-bandgap transition metal dichalcogenides such as molybdenum disulfide (MoS2) . In this talk, I will first cover the basic properties of few-layer and thin-film black phosphorus, followed by a discussion of recent observation of highly anisotropic robust excitons in monolayer black phosphorus. Finally I will present a few potential applications of black phosphorus such as radio-frequency transistors and wideband photodetectors. We acknowledge support from the Office of Naval Research, the Air Force Office of Scientific Research, the National Science Foundation and Yale University.

  14. APFIM characterization of a high phosphorus Russian RPV weld

    NASA Astrophysics Data System (ADS)

    Miller, M. K.; Russell, K. F.

    1996-03-01

    A microstructural characterization of a high phosphorus (0.035 wt% P) weld from the pressure vessel of a Russian VVER nuclear reactor has been performed. The microstructure of these steels consists of intragranular and intergranular vanadium carbonitride precipitates of average composition 51.3 ± 0.9 at% V, 18.8 ± 0.7 at% C, 22.1 ± 0.7 at% N, 4.9 ± 0.4 at% Cr, 2.4 ± 0.3 at% Mo, 0.36 ± 0.05 at% Fe, 0.07 ± 0.05 at% B and 0.03 ± 0.03 at% P. The lath and grain boundaries were also coated with a thin film of molybdenum carbonitride precipitates. The phosphorus coverage at the boundaries in the unirradiated material was ˜ 13% of a monolayer in agreement with predictions from the McLean model of equilibrium segregation. After neutron irradiation to a fluence of 1.15 × 10 20 n cm -2, the phosphorus coverage had increased significantly to up to ˜ 60% of a monolayer. This result indicates that neutron irradiation significantly enhanced the phosphorus segregation process. Phosphorus and copper clusters were also observed in the matrix of the neutron-irradiated material.

  15. Reexamining the Phosphorus-Protein Dilemma: Does Phosphorus Restriction Compromise Protein Status?

    PubMed

    St-Jules, David E; Woolf, Kathleen; Pompeii, Mary Lou; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann

    2016-05-01

    Dietary phosphorus restriction is recommended to help control hyperphosphatemia in hemodialysis patients, but many high-phosphorus foods are important sources of protein. In this review, we examine whether restricting dietary phosphorus compromises protein status in hemodialysis patients. Although dietary phosphorus and protein are highly correlated, phosphorus intakes can range up to 600 mg/day for a given energy and protein intake level. Furthermore, the collinearity of phosphorus and protein may be biased because the phosphorus burden of food depends on: (1) the presence of phosphate additives, (2) food preparation method, and (3) bioavailability of phosphorus, which are often unaccounted for in nutrition assessments. Ultimately, we argue that clinically relevant reductions in phosphorus intake can be made without limiting protein intake by avoiding phosphate additives in processed foods, using wet cooking methods such as boiling, and if needed, substituting high-phosphorus foods for nutritionally equivalent foods that are lower in bioavailable phosphorus. PMID:26873260

  16. Semiconducting layered blue phosphorus: a computational study.

    PubMed

    Zhu, Zhen; Tománek, David

    2014-05-01

    We investigate a previously unknown phase of phosphorus that shares its layered structure and high stability with the black phosphorus allotrope. We find the in-plane hexagonal structure and bulk layer stacking of this structure, which we call "blue phosphorus," to be related to graphite. Unlike graphite and black phosphorus, blue phosphorus displays a wide fundamental band gap. Still, it should exfoliate easily to form quasi-two-dimensional structures suitable for electronic applications. We study a likely transformation pathway from black to blue phosphorus and discuss possible ways to synthesize the new structure. PMID:24836265

  17. A Substance Flow Model for Global Phosphorus

    NASA Astrophysics Data System (ADS)

    Vaccari, D. A.

    2015-12-01

    A system-based substance flow model (SFM) for phosphorus is developed based on the global phosphorus substance flow analysis (SFA) of Cordell et al (2009). The model is based strictly on mass balance considerations. It predicts the sensitivity of phosphorus consumption to various interventions intended to conserve reserves, as well as interactions among these efforts, allowing a comparison of their impacts on phosphorus demand. The interventions include control of phosphorus losses from soil erosion, food production and food waste, or phosphorus recycling such as from animal manure or human waste.

  18. Active slag filters: rapid assessment of phosphorus removal efficiency from effluent as a function of retention time.

    PubMed

    Shilton, Andy; Chen, Leon; Elemetri, Ibrahim; Pratt, Chris; Pratt, Steven

    2013-01-01

    There is increasing pressure to upgrade effluent ponds for phosphorus removal. Active slag filters offer a solution, but design information is limited. Hydraulic retention time (HRT) is a key factor in filter design because it controls filter treatment efficiency as well the filter substrate lifespan. This paper reports on a rapid method of continual looping of effluent through a filter column to obtain a relationship between HRT and phosphorus removal efficiency. Phosphorus removal declined logarithmically with respect to retention time. While the mechanisms that yield this relationship involve complex mass transfer and adsorption of phosphorus to Fe oxyhydroxide sites, in general terms, the adsorption rate is proportional to the adsorbate effluent concentration. Waste stabilization pond effluent treated by the slag achieved phosphorus removal efficiencies over 90% at extended HRTs greater than 70 hours, while 80% removal was obtainable in 30 hours. Higher phosphorus removal was achieved for slag treating real effluent compared with synthetic phosphate solution. This can be explained by: (1) different starting phosphorus concentrations in the synthetic phosphate solution and real effluent; and (2) the presence of constituents in real effluent that can enhance phosphorus removal, such as oxidized iron compounds, cations, algae and humic complexes. This new technique, which proved capable of replicating treatment efficiencies obtained from long-term column studies, offers rapid assessment of phosphorus removal efficiency as a function of retention time and thus will enable design engineers to size active filters on the basis of achieving the required phosphorus removal standards. PMID:23530330

  19. Evaporation Behavior of Phosphorus from Metallurgical Grade Silicon via Calcium-Based Slag Treatment and Hydrochloric Acid Leaching

    NASA Astrophysics Data System (ADS)

    Huang, Liuqing; Lai, Huixian; Lu, Chenghao; Fang, Ming; Ma, Wenhui; Xing, Pengfei; Luo, Xuetao; Li, Jintang

    2016-01-01

    Phosphorus removal from metallurgical grade silicon by CaO-SiO2-CaCl2 slag treatment, HCl leaching, and vacuum refining was investigated. The effect of different compositions of slag was evaluated. The calcium concentration in slag-treated silicon increased with increasing CaO/SiO2 mass ratio of slag, decreasing the evaporation efficiency of phosphorus in molten silicon. The total phosphorus removal efficiency changed from 93.0% to 98.3% when the slag-treated silicon was treated with HCl before vacuum refining. The final concentration of phosphorus in silicon was 0.43 ppmw. This is because phosphorus was removed from metallurgical-grade silicon as follows: Phosphorus reacts with slag at the silicon/slag interface and forms Ca3(PO4)2 and Ca3P2, most of which diffuse from the interface to the slag phase. The remaining Ca3(PO4)2 and Ca3P2 reduce the phosphorus removal efficiency by altering the activity coefficient of phosphorus in molten silicon. HCl leaching enhanced the phosphorus removal efficiency by removing the remaining Ca3(PO4)2 and Ca3P2. Therefore, the mass transfer of phosphorus from metallurgical-grade silicon was accelerated.

  20. Phosphorus Flamethrower: A Demonstration Using Red and White Allotropes of Phosphorus

    ERIC Educational Resources Information Center

    Golden, Melissa L.; Person, Eric C.; Bejar, Miriam; Golden, Donnie R.; Powell, Jonathan M.

    2010-01-01

    A demonstration was created to display the unique behavior of a familiar element, phosphorus, and to make chemistry more accessible to the introductory student. The common allotropes of phosphorus and their reactivity are discussed. In this demonstration, the white allotrope of phosphorus is synthesized from the red phosphorus obtained from a…

  1. Economic feasibility study for phosphorus recovery processes.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón; Garrido-Baserba, Manel

    2011-06-01

    Phosphorus recovery from wastewater has become a necessity for sustainable development because phosphorus is a non-renewable essential resource, and its discharge into the environment causes serious negative impacts. There are no economic incentives for the implementation of phosphorus recovery technologies because the selling price of rock phosphate is lower than phosphorus recovered from sewage. The methodologies used to determine the feasibility of such projects are usually focused on internal costs without considering environmental externalities. This article shows a methodology to assess the economic feasibility of wastewater phosphorus recovery projects that takes into account internal and external impacts. The shadow price of phosphorus is estimated using the directional distance function to measure the environmental benefits obtained by preventing the discharge of phosphorus into the environment. The economic feasibility analysis taking into account the environmental benefits shows that the phosphorus recovery is viable not only from sustainable development but also from an economic point of view. PMID:21809783

  2. Fire-Resistant Polyimides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J.

    1986-01-01

    Limiting oxygen index increased. Copolyimide with a group containing phosphorus synthesized from 1-2,4-diaminobenzene, m-phenylenediamine, and tetracarboxylic dianhydride. Copolymer more fire resistant than corresponding polyimide without phosphorus.

  3. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  4. Edge phonons in black phosphorus.

    PubMed

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  5. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  6. Cholestatic presentation of yellow phosphorus poisoning.

    PubMed

    Lakshmi, C P; Goel, Amit; Basu, Debdatta

    2014-01-01

    Yellow phosphorus, a component of certain pesticide pastes and fireworks, is well known to cause hepatotoxicity. Poisoning with yellow phosphorus classically manifests with acute hepatitis leading to acute liver failure which may need liver transplantation. We present a case of yellow phosphorus poisoning in which a patient presented with florid clinical features of cholestasis highlighting the fact that cholestasis can rarely be a presenting feature of yellow phosphorus hepatotoxicity. PMID:24554916

  7. Phosphorus Accumulating Organisms and Biogeochemical Hotspots

    NASA Astrophysics Data System (ADS)

    Archibald, J.; Walter, M. T.

    2008-12-01

    Despite extensive research, many of the processes that control phosphorus (P) movement from agricultural fields to streams and lakes are not well understood. This limits our ability to develop management strategies that will mediate P contamination of freshwater ecosystems and subsequent eutrophication. Recent advances in molecular microbiology have prompted a paradigm shift in wastewater treatment that recognizes and exploits the ways specific microbial processes influence P solubility. Central to this enhanced biological phosphorus removal in wastewater treatment plants is a relatively recently discovered microorganism, Candidatus accumulibacter, which takes-up P and stores it internally as polyphosphate under alternating aerobic and anaerobic conditions. Within the past few months we have discovered this organism in the natural environment and its role in P biogeochemistry is unclear. We speculate that it may function similarly in variable source areas, which experience cycles of saturation and desaturation, as it does in the anaerobic- aerobic cycles in a wastewater treatment plant. If so, there may be potential opportunities to realize similarly new perspectives and advancements in the watershed context as have been seen in wastewater technologies. Here we present some of our preliminary findings.

  8. Modifying the Kentucky phosphorus index using published phosphorus loss data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phosphorus index (PI) is a field-scale assessment tool developed to identify fields most vulnerable to P loss. The USDA NRCS recently revised its 590 Nutrient Management Standard and Title 190 National Instruction requiring that all NRCS-approved PI tools meet certain criteria. A recent study e...

  9. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate s...

  10. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  11. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  12. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  13. 40 CFR 422.20 - Applicability; description of the phosphorus consuming subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus consuming subcategory. 422.20 Section 422.20 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Consuming Subcategory § 422.20 Applicability; description of the phosphorus consuming subcategory... manufacture of phosphoric acid, phosphorus pentoxide, phosphorus pentasulfide, phosphorus trichloride,...

  14. Speciation of phosphorus in Lake Dang of Ngaoundere-Cameroon.

    PubMed

    Bertrand, Noumi Guy; Marie, Sieliechi Joseph; Fidèle, Fabane; Jean-Marie, Dangwang Dikdim

    2015-02-01

    In this study, we investigated the nature of phosphate phase present in sediment of Lake Dang. The phosphate speciation was determined by sequential extraction method. The concentration of phosphate in solution was measured by the ammonium molybdate method with ascorbic acid as the reducing agent. Water and sediment (surface and bottom) were sampled at eight points around the lake by taking into account activities around the lake during dry and rainy seasons. The results showed five forms of phosphorus presents in the sediments. The rank order obtained was Res-P < P-L < P-OM < P-Ca < P-Fe with the prevalence of inorganic phosphorus (P-L + P-Ca + P-Fe) than organic phase. The average phosphorus (P) content was 133, 86, and 52 μg g(-1) for the surface layer (A, 0-5 cm), medium layer (B, 5-10 cm), and bottom layer (C, 10-15 cm), respectively. This P-content depletion with depth can be explained mainly by oxygen depletion with depth which enhance P desorption. Except P-L form, the P contents were higher in rainy season compared to the dry season. The results of principal component analysis indicate that inorganic phosphorus (P-L + P-Ca + P-Fe) were linked and were provided mainly by car-washing. It appears clearly that phosphorus content vary significantly during the seasons. These results showed also that the amount of (P-Fe) is higher than the others whatever the season. This P form is easily labile and bioavailable which suggest that it can unfortunately enhance greatly the eutrophication of Lake Dang. PMID:25233918

  15. Few-layer black phosphorus nanoparticles.

    PubMed

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated. PMID:26691583

  16. MEASUREMENT OF PHOSPHORUS IN WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is an essential nutrient for growth and development of algae and other aquatic plants. However, P can cause water pollution if sufficient concentration (25 to 100 µg total P L-1, eutrophic condition) is present in water. Eutrophication (nutrient-rich condition) can significantly incre...

  17. Black phosphorus nonvolatile transistor memory.

    PubMed

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-28

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (10(4) s), and cyclic endurance (1000 cycles). PMID:27074903

  18. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  19. Major Minerals - Calcium, Magnesium, Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calcium, magnesium and phosphorus are essential elements critically important for the function of the musculoskeletal system, including the formation and transduction of energy and the maintenance of healthy bone. The major calcium concern for physically active healthy middle-aged adults is to consu...

  20. Clinical Disorders of Phosphorus Metabolism

    PubMed Central

    Yu, George C.; Lee, David B. N.

    1987-01-01

    Deranged phosphorus metabolism is commonly encountered in clinical medicine. Disturbances in phosphate intake, excretion and transcellular shift account for the abnormal serum levels. As a result of the essential role played by phosphate in intracellular metabolism, the clinical manifestations of hypophosphatemia and hyperphosphatemia are extensive. An understanding of the pathophysiology of various phosphate disorders is helpful in guiding therapeutic decisions. Images PMID:3321712

  1. GROUNDWATER POLLUTION BY PHOSPHORUS FERTILIZERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a primary nutrient necessary for plant growth. When soil P level is below what is needed for plant needs, P is supplied to the soil by the addition of P fertilizer or organic residuals (i.e., manure). Because of P fertilizer use in the past few decades or application of manure, a g...

  2. Enzymatic hydrolysis of organic phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orthophosphate-releasing enzymatic hydrolysis is an alternative means for characterizing organic phosphorus (Po) in animal manure. The approach is not only simple and fast, but can also provide information difficult to obtain by other methods. Currently, commercially available phosphatases are mainl...

  3. Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus.

    PubMed

    Wu, Jing; Koon, Gavin Kok Wai; Xiang, Du; Han, Cheng; Toh, Chee Tat; Kulkarni, Eeshan S; Verzhbitskiy, Ivan; Carvalho, Alexandra; Rodin, Aleksandr S; Koenig, Steven P; Eda, Goki; Chen, Wei; Neto, A H Castro; Özyilmaz, Barbaros

    2015-08-25

    Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10(13) Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10(4) A W(-1) by applying a source-drain bias (VSD) of 3 V, which is the highest ever measured in any 2D material and 10(7) times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature. PMID:26207324

  4. Struvite precipitation and phosphorus removal using magnesium sacrificial anode.

    PubMed

    Kruk, Damian J; Elektorowicz, Maria; Oleszkiewicz, Jan A

    2014-04-01

    Struvite precipitation using magnesium sacrificial anode as the only source of magnesium is presented. High-purity magnesium alloy cast anode was found to be very effective in recovery of high-quality struvite from water solutions and from supernatant of fermented waste activated sludge from a wastewater treatment plant that does not practice enhanced biological phosphorus removal. Struvite purity was strongly dependent on the pH and the electric current density. Optimum pH of the 24 mM phosphorus and 46 mM ammonia solution (1:1.9 P:N ratio) was in the broad range between 7.5 and 9.3, with struvite purity exceeding 90%. Increasing the current density resulted in elevated struvite purity. No upper limits were observed in the studied current range of 0.05-0.2 A. Phosphorus removal rate was proportional to the current density and comparable for tests with water solutions and with the supernatant from fermented sludge. The highest P-removal rate achieved was 4.0 mg PO4-P cm(-2) h(-1) at electric current density of 45 A m(-2). Initial substrate concentrations affected the rate of phosphorus removal. The precipitated struvite accumulated in bulk liquid with significant portions attached to the anode surface from which regular detachment occurred. PMID:24387911

  5. The application of soil amendments benefits to the reduction of phosphorus depletion and the growth of cabbage and corn.

    PubMed

    Liu, Wei; Ji, Hongli; Kerr, Philip; Wu, Yonghong; Fang, Yanming

    2015-11-01

    The loss of phosphorus from agricultural intensive areas can cause ecological problems such as eutrophication in downstream surface waters. Therefore, the purpose of this study is to control the phosphorus loss using environmentally benign soil amendments, viz, ferrous sulfate (FES), aluminum sulfate (ALS), and polyacrylamide (PAM). The phosphorus concentration changes in soil and leaching solution, the morphological index of plant (including stem and root), and root activity and quality (represented by chlorophyll and soluble sugar) at different growth stages of cabbage (Brassica oleracea L. var. capitata L.) were monitored in a pilot experiment. Phosphorus contents in soil and runoff were also investigated in field experiments cultivated with corn (Zea mays L.). The results show that the application of these amendments improved the phosphorus uptake by cabbage and corn, resulting in the enhanced morphologies of root and stem as well as the root activity at the early and middle stages of cabbage growth. The soil total phosphorus and available phosphorus in soils treated with FES, ALS, and PAM declined, resulting in lower concentrations of phosphorus in the leachate and the soil runoff. During the use of the soil amendments, the cabbage quality measures, determined as chlorophyll and soluble sugar in leaves, were not significantly different from those in the control. It is suggested that the application of these soil amendments is safe for cabbage production under single season cropping conditions, and the use of these three amendments is a promising measure to reduce phosphorus loss in intensive agricultural areas. PMID:26092358

  6. Lake restoration by hypolimnetic Ca(OH)2 treatment: impact on phosphorus sedimentation and release from sediment.

    PubMed

    Dittrich, Maria; Gabriel, Oliver; Rutzen, Christian; Koschel, Rainer

    2011-03-15

    A whole-lake hypolimnetic Ca(OH)(2) addition, that induced calcium carbonate precipitation, combined with deep water aeration has been applied to eutrophic Lake Luzin, Germany during 1996-1998. In this study we investigated the dynamic of phosphorus and its binding forms in seston and sediment before and during the treatment. The sedimentation rates of phosphorus increased within three years of induced calcite precipitation. The phosphorus binding forms shifted to the calcite-bound phosphorus in the settling matter. The increase of calcite-bound P in the settling material did not coincide with the maximum induced CaCO(3)-precipitation caused by the hypolimnetic addition of Ca(OH)(2). An impact of chemicals additions and pH on phosphorus binding forms in seston and surface sediments has been studied in laboratory experiments with sediment core incubations and slurry experiments. Laboratory studies showed that the lowest phosphorus flux from sediment was related to the experiment with pH=7 in overlaying water adjusted with Ca(OH)(2). The adjusting of pH with Ca(OH)(2) leads to a lower P flux of 2.3 mg Pm(-2)d(-1), while the highest P-flux is attributed to the experiment with the pH which was adjusted with NaOH. Phosphorus fraction which reflects phosphorus binding on carbonates in surface sediments increased within one year of treatment, enhancing the phosphorus retention capacity of sediments. PMID:21292312

  7. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  8. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets.

    PubMed

    Erande, Manisha B; Pawar, Mahendra S; Late, Dattatray J

    2016-05-11

    Recent investigations on two-dimensional black phosphorus material mainly highlight work on few atomic layers and multilayers. It is still unknown if the black phosphorus atomically thin sheet is an ideal structure for the enhanced gas-solid interactions due to its large surface area. To further investigate this concern, we have synthesized few atomic layer thick nanosheets of black phosphorus using an electrochemical exfoliation method. The surface morphology and thickness of the nanosheet were identified using AFM, TEM, and Raman spectroscopy. The black phosphorus nanosheet thick film device was used for the gas sensing application with exposure to different humidites. Further, the few layer black phosphorus nanosheet based transistor shows good mobility and on/off ratio. The UV light irradiation on the black phosphorus nanosheet shows good response time. The overall results show that the few layer thick film of black phosphorus nanosheets sample exhibits creditable sensitivity and better recovery time to be used in humidity sensor and photodetector applications. PMID:27096546

  9. Effects of Simulated Climate Conditions on Phosphorus Cycling in an Annual Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Mellett, T.; Paytan, A.; Defforey, D.; Roberts, K.

    2014-12-01

    The Jasper Ridge Global Change Experiment is a long-term study of the effects of simulated climate change conditions on an annual grassland ecosystem. The different treatments consist of elevated atmospheric CO2 levels, enhanced nitrate deposition, as well as higher temperatures and precipitation rates. A representative portion of the above ground vegetation from each plot is harvested. The aim of this study is to investigate the effects of different climate conditions on the phosphorus content and phosphorus cycling in terrestrial plants. Since phosphorus only has one stable isotope, the δ18O signature in phosphate is used as a proxy to investigate phosphorus cycling. Although this technique has been successful in determining phosphorous cycling in aquatic systems, only a few studies have used this approach for terrestrial ecosystems. We analyzed the δ18O of the most abundant grass from each of the plots and treatments. The δ18O values of each sample are compared to elemental budgets of carbon, nitrogen, and phosphorous for correlation as well as soil enzyme activities. and the combination of measures are assessed as indicators for phosphorus limitation in each respective treatment site and provide a better understanding of phosphorus cycling in annual grasslands and the potential effects of climate change on phosphorus cycling.

  10. Interactions between Microcystis aeruginosa and coexisting amoxicillin contaminant at different phosphorus levels.

    PubMed

    Liu, Ying; Chen, Shi; Chen, Xiao; Zhang, Jian; Gao, Baoyu

    2015-10-30

    Microcystis aeruginosa was cultured with 0.05-5 mg L(-1) of phosphorus and exposed to 200-500 ng L(-1) of amoxicillin for seven days. Amoxicillin presented no significant effect (p>0.05) on the growth of M. aeruginosa at phosphorus levels of 0.05 and 0.2 mg L(-1), but stimulated algal growth as a hormesis effect at phosphorus levels of 1 and 5 mg L(-1). Phosphorus and amoxicillin affected the contents of chlorophyll-a, adenosine triphosphate (ATP) and malondialdehyde, the expression of psbA and rbcL, as well as the activities of adenosinetriphosphatase and glutathione S-transferase in similar manners, but regulated the production and release of microcystins and the activities of superoxide dismutase and peroxidase in different ways. Increased photosynthesis activity was related with the ATP consumption for the stress response to amoxicillin, and the stress response was enhanced as the phosphorus concentration increased. The biodegradation of amoxicillin by M. aeruginosa increased from 11.5% to 28.2% as the phosphorus concentration increased. Coexisting amoxicillin aggravated M. aeruginosa pollution by increasing cell density and concentration of microcystins, while M. aeruginosa alleviated amoxicillin pollution via biodegradation. The interactions between M. aeruginosa and amoxicillin were significantly regulated by phosphorus (p<0.05) and led to a complicated situation of combined pollution. PMID:25956638

  11. The impact of introduced round gobies (Neogobius melanostomus) on phosphorus cycling in central Lake Erie

    USGS Publications Warehouse

    Bunnell, D.B.; Johnson, T.B.; Knight, C.T.

    2005-01-01

    We used an individual-based bioenergetic model to simulate the phosphorus flux of the round goby (Neogobius melanostomus) population in central Lake Erie during 1995-2002. Estimates of round goby diet composition, growth rates, and population abundance were derived from field sampling. As an abundant introduced fish, we predicted that round gobies would influence phosphorus cycling both directly, through excretion, and indirectly, through consumption of dreissenid mussels, whose high mass-specific phosphorus excretion enhances recycling. In 1999, when age-1+ round gobies reached peak abundance near 350 million (2.4 kg??ha-1), annual phosphorus excretion was estimated at 7 t (1.4 ?? 10-3 mg P??m-2??day -1). From an ecosystem perspective, however, round gobies excreted only 0.4% of the phosphorus needed by the benthic community for primary production. Indirectly, round gobies consumed <0.2% of dreissenid population biomass, indicating that round gobies did not reduce nutrient availability by consuming dreissenids. Compared with previous studies that have revealed introduced species to influence phosphorus cycling, round gobies likely did not attain a sufficiently high biomass density to influence phosphorus cycling in Lake Erie. ?? 2005 NRC Canada.

  12. Phosphorus budgets and riverine phosphorus export in northwestern Ohio watersheds.

    PubMed

    Baker, David B; Richards, R Peter

    2002-01-01

    Phosphorus (P) budgets for large watersheds are often used to predict trends in riverine P export. To test such predictions, we calculated annual P budgets for 1975-1995 for soils of the Maumee and Sandusky watersheds of northwestern Ohio and compared them with riverine P export from these watersheds. Phosphorus inputs to the soils include fertilizers, manure, rainfall, and sludge while outputs include crop removal and nonpoint-source export via rivers. Annual P inputs decreased due to reductions in fertilizer and manure inputs. Annual outputs increased due to increasing crop yields. Net P accumulation decreased from peak values of 13.4 and 9.5 kg P ha(-1) yr(-1) to 3.7 and 2.6 kg P ha(-1) yr(-1) for the Maumee and Sandusky watersheds, respectively. Thus, P budget analysis suggests that riverine P export should have increased throughout the study period, with smaller increases during more recent years. However, detailed water quality studies show that riverine export of total phosphorus (TP) has decreased by 25 to 40% and soluble reactive phosphorus (SRP) by 60 to 89%, both due primarily to decreases from nonpoint sources. We suggest that these decreases are associated with farmers' adoption of practices that minimize transport of recently applied P fertilizer and of sediments via surface runoff, coupled with changes in winter weather conditions. In comparison with most Midwestern watersheds, rivers draining these watersheds have high unit area yields of TP, low unit area yields of SRP, and high ratios of nonpoint source- to point source-derived P. PMID:11837450

  13. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  14. Black phosphorus nonvolatile transistor memory

    NASA Astrophysics Data System (ADS)

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-01

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles).We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02078j

  15. Phosphorus doping a semiconductor particle

    DOEpatents

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  16. Phosphorus and Water Quality Paradox

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2008-12-01

    Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.

  17. Ultra-Long Crystalline Red Phosphorus Nanowires from Amorphous Red Phosphorus Thin Films.

    PubMed

    Smith, Joshua B; Hagaman, Daniel; DiGuiseppi, David; Schweitzer-Stenner, Reinhard; Ji, Hai-Feng

    2016-09-19

    Heating red phosphorus in sealed ampoules in the presence of a Sn/SnI4 catalyst mixture has provided bulk black phosphorus at much lower pressures than those required for allotropic conversion by anvil cells. Herein we report the growth of ultra-long 1D red phosphorus nanowires (>1 mm) selectively onto a wafer substrate from red phosphorus powder and a thin film of red phosphorus in the present of a Sn/SnI4 catalyst. Raman spectra and X-ray diffraction characterization suggested the formation of crystalline red phosphorus nanowires. FET devices constructed with the red phosphorus nanowires displayed a typical I-V curve similar to that of black phosphorus and a similar mobility reaching 300 cm(2)  V(-1)  s with an Ion /Ioff ratio approaching 10(2) . A significant response to infrared light was observed from the FET device. PMID:27553637

  18. Negative compressibility in graphene-terminated black phosphorus heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Yingying; Chen, Xiaolong; Wu, Zefei; Xu, Shuigang; Han, Tianyi; Lin, Jiangxiazi; Skinner, Brian; Cai, Yuan; He, Yuheng; Cheng, Chun; Wang, Ning

    2016-01-01

    Negative compressibility is a many-body effect wherein strong correlations give rise to an enhanced gate capacitance in two-dimensional (2D) electronic systems. We observe capacitance enhancement in a newly emerged 2D layered material, atomically thin black phosphorus (BP). The encapsulation of BP by hexagonal boron nitride sheets with few-layer graphene as a terminal ensures ultraclean heterostructure interfaces, allowing us to observe negative compressibility at low hole carrier concentrations. We explain the negative compressibility based on the Coulomb correlation among in-plane charges and their image charges in a gate electrode in the framework of Debye screening.

  19. Luxury uptake of phosphorus changes the accumulation of starch and lipid in Chlorella sp. under nitrogen depletion.

    PubMed

    Zhu, Shunni; Wang, Yajie; Xu, Jin; Shang, Changhua; Wang, Zhongming; Xu, Jingliang; Yuan, Zhenhong

    2015-12-01

    The aim of this research was to study the effect of phosphorus supply on starch and lipid production under nitrogen starvation using Chlorella sp. as a model. High phosphate level had marginal effect on cell density but increased biomass growth. Massive phosphorus was assimilated quickly and mainly stored in the form of polyphosphate. The algal cells ceased phosphorus uptake when intracellular phosphorus reached a certain level. 5mM phosphate in the culture rendered a 16.7% decrease of starch synthesis and a 22.4% increase of lipid synthesis relative to low phosphate (0.17 mM). It is plausible that phosphate can regulate carbon partitioning between starch and lipid synthesis pathway by influencing ADP-glucose pyrophosphorylase activity. Moreover, high phosphate concentration enhanced the abundance of oleic acid, improving oil quality for biodiesel production. It is a promising cultivation strategy by integration of phosphorus removal from wastewater with biodiesel production for this alga. PMID:26386419

  20. Phosphorus nutrition in Proteaceae and beyond.

    PubMed

    Lambers, H; Finnegan, P M; Jost, R; Plaxton, W C; Shane, M W; Stitt, M

    2015-01-01

    Proteaceae in southwestern Australia have evolved on some of the most phosphorus-impoverished soils in the world. They exhibit a range of traits that allow them to both acquire and utilize phosphorus highly efficiently. This is in stark contrast with many model plants such as Arabidopsis thaliana and crop species, which evolved on soils where nitrogen is the major limiting nutrient. When exposed to low phosphorus availability, these plants typically exhibit phosphorus-starvation responses, whereas Proteaceae do not. This Review explores the traits that account for the very high efficiency of acquisition and use of phosphorus in Proteaceae, and explores which of these traits are promising for improving the phosphorus efficiency of crop plants. PMID:27250542

  1. Serum phosphorus adds to value of serum parathyroid hormone for assessment of bone turnover in renal osteodystrophy.

    PubMed

    Gentry, Jimmy; Webb, Jonathan; Davenport, Daniel; Malluche, Hartmut H

    2016-07-01

    It is well-established that parathyroid hormone (PTH) correlates with the level of bone turnover in patients with chronic kidney disease stage 5D (CKD-5D). Hyperphosphatemia is a well-established complication of end-stage renal disease and is usually attributed to dietary intake. This study evaluates the relationship between serum phosphorus levels and bone turnover in patients with CKD-5D. 93 patients with CKD-5D from the Kentucky Bone Registry who had sequentially undergone anterior iliac bone biopsies were reviewed. Undecalcified bone sections were qualitatively assessed for turnover and placed into a group with low turnover and a group with non-low (normal/high) turnover. Results of PTH and phosphorus concentrations in blood drawn at the time of biopsies were compared between the groups. PTH and phosphorus levels were significantly higher in the non-low turnover group compared to the low turnover group. Cutoff levels for PTH and phosphorus were tested for predictive power of bone turnover. Both PTH and phosphorus correlated with turnover. Adding serum phosphorus to serum PTH enhanced predictive power of PTH for low turnover. The vast majority of patients with serum phosphorus levels ≥ 6.0 mg/dL had non-low turnover, while the majority of those with low turnover had phosphorus values < 6.0 mg/dL. Classification and regression-tree analysis showed that elevated serum phosphorus (> 6.2 mg/dL) in patients with PTH < 440 pg/mL was helpful in diagnosing nonlow turnover in this range of PTH. In patients with PTH ranges of 440 - 814 pg/mL, serum phosphorus levels > 4.55 mg/dL ruled out low turnover bone disease. This suggests that not only dietary intake but also bone affects serum phosphorus levels. PMID:27191663

  2. Assessing long term impact of phosphorus fertilization on phosphorus loadings using AnnAGNPS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricu...

  3. Impact of phosphorus control measures on in-river phosphorus retention associated with point source pollution

    NASA Astrophysics Data System (ADS)

    Demars, B. O. L.; Harper, D. M.; Pitt, J.-A.; Slaughter, R.

    2005-01-01

    In-river phosphorus retention alters the quantity and timings of phosphorus delivery to downstream aquatic systems. Many intensive studies of in-river phosphorus retention have been carried out but generally on a short time scale (2-4 years). In this paper, monthly water quality data, collected by the Environment Agency of England and Wales over 12 years (1990-2001), were used to model daily phosphorus fluxes and monthly in-river phosphorus retention in the lowland calcareous River Wensum, Norfolk, UK. The effectiveness of phosphorus stripping at two major sewage treatment works was quantified over different hydrological conditions. The model explained 78% and 88% of the observed variance before and after phosphorus control, respectively. During relatively dry years, there was no net export of phosphorus from the catchment. High retention of phosphorus occurred, particularly during the summer months, which was not compensated for, by subsequent higher flow events. The critical discharge (Q) above which net remobilisation would occur, was only reached during few, high flow events Q25-Q13. Phosphorus removal from the effluent at two major STWs (Sewage Treatment Works) reduced the phosphorus catchment mass balance variability by 20-24% under the Q99-Q1. range of flow conditions. Although the absorbing capacity of the catchment against human impact was remarkable, further phosphorus remedial strategies will be necessary to prevent downstream risks of eutrophication occuring independently of the unpredictable variability in weather conditions.

  4. Assessing Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the different phosphorus fertilization rates on phosphorus losses, the US...

  5. Energy and phosphorus recovery from black water.

    PubMed

    de Graaff, M S; Temmink, H; Zeeman, G; Buisman, C J N

    2011-01-01

    Source-separated black water (BW) (toilet water) containing 38% of the organic material and 68% of the phosphorus in the total household waste (water) stream including kitchen waste, is a potential source for energy and phosphorus recovery. The energy recovered, in the form of electricity and heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. The phosphorus balance of an upflow anaerobic sludge blanket reactor treating concentrated BW showed a phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial phosphorus fertiliser production in the world. The remaining part of the phosphorus ended up in the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a phosphorus-enriched organic fertiliser, provided that it is safe regarding heavy metals, pathogens and micro-pollutants. PMID:22049776

  6. Phosphorus: Tips for People with Chronic Kidney Disease (CKD)

    MedlinePlus

    Phosphorus Tips for People with Chronic Kidney Disease (CKD) National Kidney Disease Education Program What Is Phosphorus? Phosphorus is a mineral that helps keep your bones healthy. It also helps ...

  7. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    SciTech Connect

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi

    2014-12-08

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  8. Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.

    PubMed

    Vigiak, O; Rattray, D; McInnes, J; Newham, L T H; Roberts, A M

    2012-11-15

    Phosphorus pollution severely impairs the water quality of rivers in Australia and worldwide. Conceptual models have proved useful to assess management impact on phosphorus loads, particularly in data-sparse environments. This paper develops and evaluates the coupling of a point-scale model (HowLeaky2008) to a catchment scale model (CatchMODS) to enhance modelling of farm management impacts on in-stream phosphorus loads. The model was tested in two adjacent catchments in northern Victoria (Avon-Richardson and Avoca), Australia. After calibration of the in-stream attenuation parameter against measurements at gauging stations, the model simulated specific annual phosphorus loads across the catchments well (Nash-Sutcliffe model efficiency of 0.52 in the Avon-Richardson and 0.83 for the Avoca catchment). Phosphorus loads at both catchment outlets under current conditions were estimated at 7 t y(-1) and were dominated by field exports. Changes to farm management practices, i.e. the use of perennial pastures in grazing systems and zero-tillage in cropping systems were estimated to reduce phosphorus load by 31% in the Avon-Richardson catchment and 19% in the Avoca catchment, relative to current practices (annual pasture and minimum tillage). The model afforded a major improvement in conceptual modelling by explicit simulation of the impacts of soil and climatic conditions on field-scale exports and by placing them in the context of landscape processes. PMID:22796756

  9. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Hu, J.; Hetland, R.

    2012-11-01

    The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited in marine waters, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7-yr simulation (2001-2007) compare well with several sources of observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but slightly enhanced fluxes west of Atchafalaya Bay. Simulations with altered river phosphate concentrations (±50%) show that significant variation in the spatial extent of phosphorus limitation (±40% in July) results from changes in phosphate load.

  10. Simulating the effects of phosphorus limitation in the Mississippi and Atchafalaya River plumes

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Hu, J.; Hetland, R.

    2012-05-01

    The continental shelf of the northern Gulf of Mexico receives high dissolved inorganic nitrogen and phosphorus loads from the Mississippi and Atchafalaya rivers. The nutrient load results in high primary production in the river plumes and contributes to the development of hypoxia on the Texas-Louisiana shelf in summer. While phytoplankton growth is considered to be typically nitrogen-limited, phosphorus limitation has been observed in this region during periods of peak river discharge in spring and early summer. Here we investigate the presence, spatio-temporal distribution and implications of phosphorus limitation in the plume region using a circulation model of the northern Gulf of Mexico coupled to a multi-nutrient ecosystem model. Results from a 7 yr simulation (2001-2007) compare well with available observations and suggest that phosphorus limitation develops every year between the Mississippi and Atchafalaya deltas. Model simulations show that phosphorus limitation results in a delay and westward shift of a fraction of river-stimulated primary production. The consequence is a reduced flux of particulate organic matter to the sediment near the Mississippi delta, but enhanced fluxes westward in the Atchafalaya and far-field regions. Two discharge scenarios with altered river phosphate concentrations (±50 %) reveal a significant variation (±40 % in July) in the spatial extent of phosphorus limitation with changes in phosphate load.

  11. Growth of Escherichia coli Coexpressing Phosphotriesterase and Glycerophosphodiester Phosphodiesterase, Using Paraoxon as the Sole Phosphorus Source

    PubMed Central

    McLoughlin, Sean Yu; Jackson, Colin; Liu, Jian-Wei; Ollis, David L.

    2004-01-01

    Phosphotriesterases catalyze the hydrolytic detoxification of phosphotriester pesticides and chemical warfare nerve agents with various efficiencies. The directed evolution of phosphotriesterases to enhance the breakdown of poor substrates is desirable for the purposes of bioremediation. A limiting factor in the identification of phosphotriesterase mutants with increased activity is the ability to effectively screen large mutant libraries. To this end, we have investigated the possibility of coupling phosphotriesterase activity to cell growth by using methyl paraoxon as the sole phosphorus source. The catabolism of paraoxon to phosphate would occur via the stepwise enzymatic hydrolysis of paraoxon to dimethyl phosphate, methyl phosphate, and then phosphate. The Escherichia coli strain DH10B expressing the phosphotriesterase from Agrobacterium radiobacter P230 (OpdA) is unable to grow when paraoxon is used as the sole phosphorus source. Enterobacter aerogenes is an organism capable of growing when dimethyl phosphate is the sole phosphorus source. The enzyme responsible for hydrolyzing dimethyl phosphate has been previously characterized as a nonspecific phosphohydrolase. We isolated and characterized the genes encoding the phosphohydrolase operon. The operon was identified from a shotgun clone that enabled E. coli to grow when dimethyl phosphate is the sole phosphorus source. E. coli coexpressing the phosphohydrolase and OpdA grew when paraoxon was the sole phosphorus source. By constructing a short degradative pathway, we have enabled E. coli to use phosphotriesters as a sole source of phosphorus. PMID:14711669

  12. Large improvement of phosphorus incorporation efficiency in n-type chemical vapor deposition of diamond

    NASA Astrophysics Data System (ADS)

    Ohtani, Ryota; Yamamoto, Takashi; Janssens, Stoffel D.; Yamasaki, Satoshi; Koizumi, Satoshi

    2014-12-01

    Microwave plasma enhanced chemical vapor deposition is a promising way to generate n-type, e.g., phosphorus-doped, diamond layers for the fabrication of electronic components, which can operate at extreme conditions. However, a deeper understanding of the doping process is lacking and low phosphorus incorporation efficiencies are generally observed. In this work, it is shown that systematically changing the internal design of a non-commercial chemical vapor deposition chamber, used to grow diamond layers, leads to a large increase of the phosphorus doping efficiency in diamond, produced in this device, without compromising its electronic properties. Compared to the initial reactor design, the doping efficiency is about 100 times higher, reaching 10%, and for a very broad doping range, the doping efficiency remains highly constant. It is hypothesized that redesigning the deposition chamber generates a higher flow of active phosphorus species towards the substrate, thereby increasing phosphorus incorporation in diamond and reducing deposition of phosphorus species at reactor walls, which additionally reduces undesirable memory effects.

  13. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Val, Klump J.; Edgington, D.N.; Sager, P.E.; Robertson, D.M.

    1997-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus (700 metric tons (t)??year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg??cm-2??year-1 with an average of 20 mg??cm-2 year-1. The phosphorus content of these sediments varies from 70 ??mol??g-1. Deposition is highly focused, with ???0% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  14. Sedimentary phosphorus cycling and a phosphorus mass balance for the Green Bay (Lake Michigan) ecosystem

    USGS Publications Warehouse

    Klump, J.V.; Edgington, D. N.; Sager, P.E.; Robertson, D.M.

    2011-01-01

    The tributaries of Green Bay have long been recognized as major sources of phosphorus in the Lake Michigan basin. The status of Green Bay as a sink or source of phosphorus for Lake Michigan proper has been less well defined. The bay receives nearly 70% of its annual load of phosphorus ( 700 metric tons (t) · year-1) from a single source: the Fox River. Most of this phosphorus is deposited in sediments accumulating at rates that reach 160 mg · cm-2 · year-1 with an average of 20 mg · cm-2 · year-1. The phosphorus content of these sediments varies from <5 to >70 µmol · g-1. Deposition is highly focused, with ~70% of the total sediment accumulation and at least 80% of the phosphorus burial occurring within 20% of the surface area of the bay. Diagenetic and stoichiometric models of phosphorus cycling imply that >80% of the phosphorus deposited is permanently buried. External phosphorus loading to the bay is combined with sediment fluxes of phophorus to arrive at a simple phosphorus budget. Green Bay acts as an efficient nutrient trap, with the sediments retaining an estimated 70-90% of the external phosphorus inputs before flowing into Lake Michigan.

  15. Phosphorus diffusion in polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Losee, D. L.; Lavine, J. P.; Trabka, E. A.; Lee, S.-T.; Jarman, C. M.

    1984-02-01

    The diffusion of phosphorus in crystallized amorphous Si layers was studied with secondary-ion mass spectroscopy. A two-dimensional diffusion model is used to find effective grain (Dg) and grain-boundary (Dgb) diffusion coefficients. This simplified model leads to Dgb ≤ 10Dg, which is significantly lower than what has been deduced from conventional, larger grained polysilicon. Our result is consistent with specific-gravity measurements, which found a significantly lower ``mass defect'' for layers deposited amorphous and subsequently crystallized as compared to initially polycrystalline layers.

  16. Phosphorus Moieties Make Polymers Less Flammable

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1992-01-01

    Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.

  17. The Pennsylvania Phosphorus Index, Version 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased attention on phosphorus based management due to water quality concerns has prompted federal and state governments to generate guidelines for phosphorus management on certain agricultural operations. Pennsylvania’s Nutrient Management Program (Act 38 of 2005), the Concentrated Animal Feedin...

  18. Phosphorus Availability Coefficients from Various Organic Sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine Phosphorus Availability Coefficients (PACs) for a variety of organic phosphorus (P) sources, and to examine the relationship between PACs measured in simulated rainfall runoff and alternative soil incubations. PAC is an important parameter in the P-Ind...

  19. Sustainable use of phosphorus: a finite resource.

    PubMed

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. PMID:23769630

  20. Removal of phosphorus by peritoneal dialysis.

    PubMed

    Delmez, J A

    1993-01-01

    Substantial evidence exists that peritoneal dialysis, as currently practiced, cannot alone remove adequate amounts of phosphorus in well-nourished patients. Current efforts should address the possibility of developing improved nontoxic oral phosphorus binders and/or different compositions of dialysate fluid. PMID:8399639

  1. The management of phosphorus in poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter provides an important source of plant nutrients including nitrogen, phosphorus, potassium, calcium, magnesium and sulphur. The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P...

  2. Balance sheet for phosphorus in the UK.

    PubMed

    Bowman, J C

    A balance sheet for the inputs, uses and outputs of phosphorus in the UK economy has been drawn up. The major import is fertilizer, amounting to about 200 kt P per year. After fertilizers, the other imports (in kt P) are in animal feeds (63), detergents (38) and human food (14). The major outputs are sewage (50), animal excreta (26) and refuse (21); soil losses are about 20 kt. The flowpaths for phosphorus through humans, animals and plants are described. The discrepancy of about 210 kt P/yr is explained by the fact that the amount of phosphorus in the soil increases each year by almost as much as the amount of fertilizer phosphorus added. In view of UK dependence on this imported resource it is suggested that priority is given to work which might eventually have some practical application in preventing or reversing the immobilization of phosphorus in the soil. PMID:249678

  3. Humidity Effects and Anisotropic Etching During Exfoliated Black Phosphorus Degradation

    NASA Astrophysics Data System (ADS)

    Favron, Alexandre; Moraille, Patricia; Gaufres, Etienne; Roorda, Tycho; Levesque, Pierre L.; Leonelli, Richard; Martel, Richard

    Black phosphorus, a lamellar structure similar to graphene, is a high mobility semiconductor having a tunable optical band gap from 0.3 eV up to ~2 eV with decreasing layer thickness. Our previous study has highlighted a fast photo-oxidation in ambient conditions when black phosphorus is exfoliated as thin layers. The kinetics of this degradation is also enhanced by quantum confinement effects and faster for the thinnest layers, which represents an important hurdle to prepare few layers. Here we further investigate the role of water in the process by following the reaction kinetics in different humidity using fast AFM imaging. We report on important changes of wettability of thin layers at room temperature depending on the degradation stages and layer thickness. For a given level of humidity at equilibrium, we observe the formation of water droplets. Those droplets form preferentially on defects sites and cracks and then grow on the thicker parts of the flake to finally accumulate on to the thinnest regions. This sequence of water droplet growth faster from thick to thin layers is interpreted as being due to a lowering of surface tension with decreasing layer thickness. In a second study, the oxidation kinetics of layers completely immersed in water reveal an anisotropic oxidation process with preferential etching in specific orientations of the crystal. This study will be discussed in the context of a reactivity of black phosphorus that appears both anisotropic and thickness-dependent.

  4. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.

    PubMed

    Braak, Etienne; Auby, Sarah; Piveteau, Simon; Guilayn, Felipe; Daumer, Marie-Line

    2016-01-01

    Phosphorus (P) recycling as mineral fertilizer from wastewater activated sludge (WAS) depends on the amount that can be dissolved and separated from the organic matter before the final crystallization step. The aim of the biological phosphorus dissolution potential (BPDP) test developed here was to assess the maximum amount of P that could be biologically released from WAS prior that the liquid phase enters the recovery process. It was first developed for sludge combining enhanced biological phosphorus removal and iron chloride. Because carbohydrates are known to induce acidification during the first stage of anaerobic digestion, sucrose was used as a co-substrate. Best results were obtained after 24-48 h, without inoculum, with a sugar/sludge ratio of 0.5 gCOD/gVS and under strict anaerobic conditions. Up to 75% of the total phosphorus in sludge from a wastewater treatment plant combining enhanced biological phosphorus removal and iron chloride phosphorus removal could be dissolved. Finally, the test was applied to assess BPDP from different sludge using alum compounds for P removal. No dissolution was observed when alum polychloride was used and less than 20% when alum sulphate was used. In all the cases, comparison to chemical acidification showed that the biological process was a major contributor to P dissolution. The possibility to crystallize struvite was discussed from the composition of the liquids obtained. The BPDP will be used not only to assess the potential for phosphorus recycling from sludge, but also to study the influence of the co-substrates available for anaerobic digestion of sludge. PMID:26786893

  5. Using 31P-NMR to investigate dynamics of soil phosphorus compounds in the Rothamsted Long Term Experiments

    NASA Astrophysics Data System (ADS)

    Blackwell, Martin; Turner, Ben; Granger, Steve; Hooper, Tony; Darch, Tegan; Hawkins, Jane; Yuan, Huimin; McGrath, Steve

    2015-04-01

    The technique of 31P-NMR spectroscopy has done more to advance the knowledge of phosphorus forms (especially organic phosphorus) in environmental samples than any other method. The technique has advanced such that specific compounds can be identified where previously only broad categories such as orthophosphate monoesters and diesters were distinguishable. The Soil Archive and Long Term Experiments at Rothamsted Research, UK, potentially provides an unequalled opportunity to use this technique to observe changes in soil phosphorus compounds with time and under different treatments, thereby enhancing our understanding of phosphorus cycling and use by plants. Some of the earliest work using this technique on soils was carried out by Hawkes et al. in 1984 and this used soils from two of the oldest Rothamsted Long Term Experiments, namely Highfield and Park Grass. Here we revisit the samples studied in this early work and reanalyse them using current methodology to demonstrate how the 31P-NMR technique has advanced. We also present results from a study on the phosphorus chemistry in soils along the Hoosfield acid strip (Rothamsted, UK), where a pH gradient from 3.7 to 7.8 occurs in a single soil with little variation in total phosphorus (mean ± standard deviation 399 ± 27 mg P kg-1). Soil pH was found to be an important factor in determining the proportion of phosphomonoesters and phosphodiesters in the soil organic phosphorus, although total organic phosphorus concentrations were a relatively consistent proportion of the total soil phosphorus (36 ± 2%) irrespective of soil pH. Key words. 31P-NMR, soil organic phosphorus, long term experiments, Hoosfield acid strip

  6. Impact of phosphorus control measures on in-river phosphorus retention associated with point source pollution

    NASA Astrophysics Data System (ADS)

    Demars, B. O. L.; Harper, D. M.; Pitt, J.-A.; Slaughter, R.

    2005-06-01

    In-river phosphorus retention alters the quantity and timings of phosphorus delivery to downstream aquatic systems. Many intensive studies of in-river phosphorus retention have been carried out but generally on a short time scale (2-4 years). In this paper, monthly water quality data, collected by the Environment Agency of England and Wales over 12 years (1990-2001), were used to model daily phosphorus fluxes and monthly in-river phosphorus retention in the lowland calcareous River Wensum, Norfolk, UK. The calibrated model explained 79% and 89% of the observed variance before and after phosphorus control, respectively. A split test revealed that predicted TP loads were in good agreement with observed TP loads (r2=0.85), although TP loads were underestimated under high flow conditions. During relatively dry years, there was no net export of phosphorus from the catchment. High retention of phosphorus occurred, particularly during the summer months, which was not compensated for, by subsequent higher flow events. This was despite a relatively modest critical discharge (Q) above which net remobilisation occur. Phosphorus removal from the effluent at two major STWs (Sewage Treatment Works) reduced phosphorus retention but not the remobilisation. This may indicate that the presence of impoundments and weirs, or overbank flows may have more control on the phosphorus dynamics under high flow conditions. Further phosphorus remedial strategies will be necessary to prevent downstream risks of eutrophication occurring independently of the unpredictable variability in weather conditions. More research is also needed to quantify the impact of the weir and overbank flows on phosphorus dynamics.

  7. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    NASA Astrophysics Data System (ADS)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  8. Contribution of particulate phosphorus to runoff phosphorus bioavailability.

    PubMed

    Uusitalo, Risto; Turtola, Eila; Puustinen, Markku; Paasonen-Kivekäs, Maija; Uusi-Kämppä, Jaana

    2003-01-01

    Runoff P associated with eroded soil is partly solubilized in receiving waters and contributes to eutrophication, but the significance of particulate phosphorus (PP) in the eutrophying P load is debatable. We assessed losses of bioavailable P fractions in field runoff from fine-textured soils (Cryaquepts). Surface runoff at four sites and drain-flow at two of them was sampled. In addition to dissolved molybdate-reactive phosphorus (DRP) losses, two estimates of bioavailable PP losses were made: (i) desorbable PP, assessed by anion exchange resin-extraction (AER-PP) and (ii) redox-sensitive PP, assessed by extraction with bicarbonate and dithionite (BD-PP). Annual losses of BD-PP and AER-PP were derived from the relationships (R2 = 0.77-0.96) between PP and these P forms. Losses of BD-PP in surface runoff (94-1340 g ha(-1)) were typically threefold to fivefold those of DRP (29-510 kg ha(-1)) or AER-PP (13-270 g ha(-1)). Where monitored, drainflow P losses were substantial, at one of the sites even far greater than those via the surface pathway. Typical runoff DRP concentration at the site with the highest Olsen-P status (69-82 mg kg(-1)) was about 10-fold that at the site with the lowest Olsen P (31-45 mg kg(-1)), whereas the difference in AER-PP per mass unit of sediment was only threefold, and that of BD-PP 2.5-fold. Bioavailable P losses were greatly influenced by PP runoff, especially so on soils with a moderate P status that produced runoff with a relatively low DRP concentration. PMID:14674522

  9. Metagenomic analysis of phosphorus removing sludgecommunities

    SciTech Connect

    Garcia Martin, Hector; Ivanova, Natalia; Kunin, Victor; Warnecke,Falk; Barry, Kerrie; McHardy, Alice C.; Yeates, Christine; He, Shaomei; Salamov, Asaf; Szeto, Ernest; Dalin, Eileen; Putnam, Nik; Shapiro, HarrisJ.; Pangilinan, Jasmyn L.; Rigoutsos, Isidore; Kyrpides, Nikos C.; Blackall, Linda Louise; McMahon, Katherine D.; Hugenholtz, Philip

    2006-02-01

    Enhanced Biological Phosphorus Removal (EBPR) is not wellunderstood at the metabolic level despite being one of the best-studiedmicrobially-mediated industrial processes due to its ecological andeconomic relevance. Here we present a metagenomic analysis of twolab-scale EBPR sludges dominated by the uncultured bacterium, "CandidatusAccumulibacter phosphatis." This analysis resolves several controversiesin EBPR metabolic models and provides hypotheses explaining the dominanceof A. phosphatis in this habitat, its lifestyle outside EBPR and probablecultivation requirements. Comparison of the same species from differentEBPR sludges highlights recent evolutionary dynamics in the A. phosphatisgenome that could be linked to mechanisms for environmental adaptation.In spite of an apparent lack of phylogenetic overlap in the flankingcommunities of the two sludges studied, common functional themes werefound, at least one of them complementary to the inferred metabolism ofthe dominant organism. The present study provides a much-needed blueprintfor a systems-level understanding of EBPR and illustrates thatmetagenomics enables detailed, often novel, insights into evenwell-studied biological systems.

  10. MEETING PHOSPHORUS REQUIREMENTS OF RUMINANTS IN AN ENVIRONMENTALLY RESPONSIBLE WAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus entering lakes and streams from agricultural activity is a major stimulant to algae growth. The livestock industry, through soil application of manure, is a significant contributor of this phosphorus. One way to reduce phosphorus content of manure is to feed phosphorus to meet the anima...

  11. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  12. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  13. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  14. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Phosphorus (inorganic) test system. 862.1580... Systems § 862.1580 Phosphorus (inorganic) test system. (a) Identification. A phosphorus (inorganic) test system is a device intended to measure inorganic phosphorus in serum, plasma, and urine. Measurements...

  15. Emerging technology for utilizing phosphorus sludge

    SciTech Connect

    Barber, J.C.

    1995-12-31

    This paper outlines a program at the Tennessee Valley Authority plant in Muscle Shoals, Alabama, to recycle phosphorus sludge produced by phosphate smelting. The recovery of phossy water and elemental phosphorus is addressed, as well as the recycle of inorganic solids from precipitator dust. Two processes for phossy water recycle were developed, which included separating phosphorus sludge from phossy water, waste clarification, and fluorine concentration control. The phossy water was used to make orthophosphate suspension fertilizer. For the recovery of elemental phosphorus, centrifuging and distillation were investigated. Centrifuging recovered 80 percent of the phosphorus in the sludge, but was difficult to operate and emitted toxic fumes. The pilot plant still did not completely volatilize the phosphorus, but was an improvement over other industry stills. A patented process for recycling precipitator dust is briefly described. It is estimated that the waste processing and recovery program will have a value of approximately $100 million, including the value of elemental phosphorus and the recovery of 93 acres of land.

  16. The phosphorus mass balance: identifying 'hotspots' in the food system as a roadmap to phosphorus security.

    PubMed

    Cordell, Dana; Neset, Tina-Simone Schmid; Prior, Timothy

    2012-12-01

    Phosphorus is a critical element on which all life depends. Global crop production depends on fertilisers derived from phosphate rock to maintain high crop yields. Population increase, changing dietary preferences towards more meat and dairy products, and the continuing intensification of global agriculture supporting this expansion will place increasing pressure on an uncertain, but finite supply of high-quality phosphate rock. Growing concern about phosphorus scarcity and security, coupled with the environmental impact of phosphorus pollution, has encouraged an increase in research exploring how phosphorus is used and lost in the food system-from mine to field to fork. An assessment of recent phosphorus flows analyses at different geographical scales identifies the key phosphorus 'hotspots', for example within the mining, agriculture or food processing sectors, where efficiency and reuse can be substantially improved through biotechnological approaches coupled with policy changes. PMID:22503084

  17. Particulate and dissolved phosphorus chemical separation and phosphorus release from treated dairy manure.

    PubMed

    Dao, Thanh H; Daniel, Tommy C

    2002-01-01

    In confined animal feeding operations, liquid manure systems present special handling and storage challenges because of the large volume of diluted wastes. Water treatment polymers and mineral phosphorus (P) immobilizing chemicals [AI2(SO4)3 x 18H2O, FeCl3-6H2O, and Class C fly ash] were used to determine particulate and dissolved reactive phosphorus (DRP) reduction mechanisms in high total suspended solid (TSS) dairy manure and the P release from treated manure and amended soils. Co-application exceeded the aggregation level achieved with individual manure amendments and resulted in 80 and 90% reduction in metal salt and polymer rates, respectively. At marginally effective polymer rates between 0.01 and 0.25 g L(-1), maximal aggregation was attained in combination with 1 and 10 g L(-1) of aluminum sulfate (3 and 30 mmol Al3+ L(-1)) and iron chloride (3.7 and 37 mmol Fe3+ L(-1)) in 30 g L(-1) (TSS30) and 100 g L(-1) TSS (TSS100) suspensions, respectively. Fly ash induced particulate destabilization at rates > or = 50 g L(-1) and reduced solution-phase DRP at all rates > or = 1 g L(-1) by 52 and 71% in TSS30 and TSS100 suspensions, respectively. Aluminum and Fe salts also lowered DRP at rates < or = 10 g L(-1) and higher concentrations redispersed particulates and increased DRP due to increased suspension acidity and electrical conductivity. The DRP release from treated manure solids and a Typic Paleudult amended with treated manure was reduced, although the amendments increased Mehlich 3-extractable P. Therefore, the synergism of flocculant types allowed input reduction in aggregation aid chemicals, enhancing particulate and dissolved P separation and immobilization in high TSS liquid manure. PMID:12175060

  18. Weak Localization in few layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Gillgren, Nathaniel; Shi, Yanmeng; Espiritu, Timothy; Watanabe, Kenji; Taniguchi, Takahashi; Lau, Chun Ning (Jeanie)

    Few-layer black phosphorus has recently attracted interest from the scientific community due to its high mobility, tunable band gap, and large anisotropy. Recent experiments have demonstrated that black phosphorus provides a promising candidate to explore the physics of 2D semiconductors. In this study we explore the magnetotransport of few-layer black phosphorus-boron nitride hetereostructure devices at low magnetic fields. Weak localization is observed at low temperatures. We extract the dephasing length and measure its dependence on temperature, carrier density and electric field.

  19. Comparative performance of A2/O and a novel membrane-bioreactor-based process for biological nitrogen and phosphorus removal.

    PubMed

    Kim, MinGu; Nakhla, George

    2010-01-01

    The comparison between a novel membrane bioreactor (MBR) system and a conventional anaerobic-anoxic-aerobic (A2/O) system was conducted using synthetic wastewater (SWW) and municipal wastewater (MWW). Each system was operated at an overall hydraulic retention time of 8 hours and solids retention time of 10 days. The MBR exhibited better overall system performance than the A2/O system, in terms of phosphorus removal. Nitrogen removal efficiencies were close in the two systems at 73 to 74% in both runs, while phosphorus removal efficiencies were 96 and 74% (SWW run) and 80 and 75% (MWW run), for the MBR and A2/O, respectively. Effluent soluble chemical oxygen demand (COD) was less than 15 mg/L in the two systems during both runs. Phosphorus uptake by denitrifying phosphate-accumulating organisms accounted for 49% of the total uptake in the MBR compared with 33% in the A2/O during the SWW run. The dynamic test clearly showed that the MBR had better denitrification capacity than the A2/O system. The MWW run indicated that MBR ferments particulate COD better than A2/ O. The effect of the intermediate clarifier on MBR phosphorus removal was significant, with phosphorus uptake of 0.16 g/d in the SWW run and phosphorus release of 0.08 g/d in the MWW run, thus enhancing thetotal phosphorus removal in both cases. PMID:20112540

  20. Phosphorus Compounds in Translocating Phloem

    PubMed Central

    Bieleski, R. L.

    1969-01-01

    Phosphate-32P was introduced into a turnip leaf, and 3 hr later, the vascular bundles were stripped from the petiole and their phosphate ester pattern was studied. The pattern did not alter along their length and was like that of other tissues. Pumpkin leaves were painted with phosphate-32P; and later, the petioles were cut, the sieve tube exudates were collected and their phosphate ester patterns were studied. Exudates collected after 10 min had a high proportion of their 32P present in Pi and nucleoside triphosphates, while exudates collected after long translocation times (4-22 hr) had a lower proportion in these, and a higher proportion in hexose monophosphates and UDP glucose. In general, the ester patterns were like those of other tissues. The results indicate that sieve tubes are metabolically active, and that Pi is the primary form in which phosphorus moves in the phloem. Images PMID:16657091

  1. Phytoextraction of excess soil phosphorus.

    PubMed

    Sharma, Nilesh C; Starnes, Daniel L; Sahi, Shivendra V

    2007-03-01

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. PMID:16904249

  2. Black phosphorus for future devices

    NASA Astrophysics Data System (ADS)

    Meunier, Vincent

    Black phosphorus (or ``phosphorene'' at the monolayer limit) has attracted significant attention as an emerging 2D material due to its unique properties compared with well-explored graphene and transition metal dichalcogenides such as MoS2 and WSe2. In bulk form, this monoelemental layered structure is a highly anisotropic semiconductor with a bandgap of 0.3 eV which presents marked distinctions in optical and electronic properties depending on crystalline directions. In addition, black phosphorus possesses a high carrier mobility, making it promising for applications in high frequency electronics. A large number of characterization studies have been performed to understand the intrinsic properties of BP. Here I wil present a number of investigations where first-principles modelling was combined with scanning tunneling microscopy (STM), Raman spectroscopy, and transmission electron microscopy (TEM) to assist in the design of phosphorene-based devices. . I will provide an overview of these studies and position them in the context of the very active research devoted to this material. In particular, I will show how low-frequency Raman spectra provide a unique handle on the physics of multilayered systems and how BP's structural anisotropy weaves its way to its unusual polarization dependent Raman signature. Finally, I will show recent progress where nanopores, nanobridges, and nanogaps have been sculpted directly from a few-layer BP sample using a TEM, and indicate the potential use of these results on the creation of phosphorene-based nanoelectronics. I wil conclude this talk with a critical look at the issues of phosphorene stability under ambient conditions. Collaborators on this research include: Liangbo Liang, Bobby G. Sumpter, Alex Puretzky, Minghu Pan, (Oak Ridge National Laboratory), Marija Drndic (University of Pennsylvania), Mildred Dresselhaus, Xi-Ling, Shengxi Huang (Massachusetts Institute of Technology).

  3. Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options.

    PubMed

    Cordell, D; Rosemarin, A; Schröder, J J; Smit, A L

    2011-08-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution. PMID:21414650

  4. Effect of previous fertilization on phosphorus adsorption. Measurement of surface phosphorus by isotopic exchange

    SciTech Connect

    Lopez, S.C.; Barbaro, N.O.; De Tramontini, S.R. )

    1990-09-01

    Adsorption properties of a soil with previous additions of different phosphate fertilizers were characterized by means of the Langmuir isotherm. The best correlation with the Langmuir isotherm was obtained for low added-phosphorus concentration and for conditions of different amounts of initial soil phosphorus treatment. The phosphorus initially present in each soil sample was evaluated by isotopic exchange. (The use of different isotopic methodologies is discussed.) Carrier-free {sup 32}P was added to a soil-solution system in adsorption equilibrium after soil agitation with increasing phosphorus concentration solutions for 5 days; this allowed measurement of the adsorbed phosphorus that remained exchangeable phosphorus and equilibrium phosphorus concentration was found. The surface exchangeable phosphorus concentration at 0.3 ppm was used to estimate initial surface soil phosphorus. Taking these corrections into account, the authors found adsorption maximum and the bonding energy constant were similar in spite of the amount and kind of previous fertilizer addition. However, the behavior of superphosphate seemed to be modified in the presence of rock phosphate, especially in relation to exchange ability.

  5. Epitaxial Growth of Single Layer Blue Phosphorus: A New Phase of Two-Dimensional Phosphorus.

    PubMed

    Zhang, Jia Lin; Zhao, Songtao; Han, Cheng; Wang, Zhunzhun; Zhong, Shu; Sun, Shuo; Guo, Rui; Zhou, Xiong; Gu, Cheng Ding; Yuan, Kai Di; Li, Zhenyu; Chen, Wei

    2016-08-10

    Blue phosphorus, a previously unknown phase of phosphorus, has been recently predicted by theoretical calculations and shares its layered structure and high stability with black phosphorus, a rapidly rising two-dimensional material. Here, we report a molecular beam epitaxial growth of single layer blue phosphorus on Au(111) by using black phosphorus as precursor, through the combination of in situ low temperature scanning tunneling microscopy and density functional theory calculation. The structure of the as-grown single layer blue phosphorus on Au(111) is explained with a (4 × 4) blue phosphorus unit cell coinciding with a (5 × 5) Au(111) unit cell, and this is verified by the theoretical calculations. The electronic bandgap of single layer blue phosphorus on Au(111) is determined to be 1.10 eV by scanning tunneling spectroscopy measurement. The realization of epitaxial growth of large-scale and high quality atomic-layered blue phosphorus can enable the rapid development of novel electronic and optoelectronic devices based on this emerging two-dimensional material. PMID:27359041

  6. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    PubMed Central

    2012-01-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070

  7. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    NASA Astrophysics Data System (ADS)

    Lotfi, Derbali; Hatem, Ezzaouia

    2012-07-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current-voltage ( I- V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I- V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells.

  8. The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro.

    PubMed

    Ward, Brian C; Webster, Thomas Jay

    2006-06-01

    To date, long-term functions of osteoblasts leading to calcium and phosphorus mineral deposition on nanometals have not been determined. Nanometals are metals with constituent metal particles and/or surface features less than 100 nm in at least one dimension. For this reason, the objective of this in vitro study was to determine the amount of calcium and phosphorus mineral formation on microphase compared to nanophase Ti, Ti6Al4V, and CoCrMo cultured with and without osteoblasts (bone-forming cells). The results of this study provided the first evidence of significantly greater calcium and phosphorus deposition by osteoblasts and precipitation from culture media without osteoblasts on nanophase compared to respective microphase Ti6Al4V and CoCrMo after 21 days; the greatest calcium and phosphorus mineral deposition occurred on nanophase CoCrMo while the greatest calcium and phosphorus mineral precipitation without osteoblasts occurred on nanophase Ti6Al4V. No differences were found for any type of Ti: wrought, microphase, or nanophase. Moreover, increased calcium and phosphorus mineral content correlated to greater amounts of underlying aluminum content on Ti6Al4V surfaces. Since, compared to microphase Ti6Al4V, nanophase Ti6Al4V contained a higher amount of aluminum at the surface (due to greater surface area), this may provide a reason for enhanced calcium and phosphorus mineral content on nanophase Ti6Al4V. Regardless of the mechanism, this study continues to support the further investigation of nanometals for improved orthopedic applications. PMID:16476478

  9. Method of removing phosphorus impurities from yellowcake

    SciTech Connect

    Brown, R.A.; Winkley, D.C.

    1983-04-05

    PhospHorus impurities are removed from yellowcake by dissolving it in hydrochloric or sulfuric acid to a U/sub 3/O/sub 88/ assay of at least 150 g/l at a pH of 2; precipitating uranium peroxide W hydrogen peroxide while keeping the pH between 2.2 and 2.6 and recovering the uranium peroxide from the phosphorus impurities remaining in solution.

  10. Recovery of phosphorus from dairy manure: a pilot-scale study.

    PubMed

    Zhang, Hui; Lo, Victor K; Thompson, James R; Koch, Frederic A; Liao, Ping H; Lobanov, Sergey; Mavinic, Donald S; Atwater, James W

    2015-01-01

    Phosphorus was recovered from dairy manure via a microwave-enhanced advanced oxidation process (MW/H2O2-AOP) followed by struvite crystallization in a pilot-scale continuous flow operation. Soluble phosphorus in dairy manure increased by over 50% after the MW/H2O2-AOP, and the settleability of suspended solids was greatly improved. More than 50% of clear supernatant was obtained after microwave treatment, and the maximum volume of supernatant was obtained at a hydrogen peroxide dosage of 0.3% and pH 3.5. By adding oxalic acid into the supernatant, about 90% of calcium was removed, while more than 90% of magnesium was retained. As a result, the resulting solution was well suited for struvite crystallization. Nearly 95% of phosphorus in the treated supernatant was removed and recovered as struvite. PMID:25420588

  11. A novel control strategy for efficient biological phosphorus removal with carbon-limited wastewaters.

    PubMed

    Guerrero, Javier; Guisasola, Albert; Baeza, Juan A

    2014-01-01

    This work shows the development and the in silico evaluation of a novel control strategy aiming at successful biological phosphorus removal in a wastewater treatment plant operating in an A(2)/O configuration with carbon-limited influent. The principle of this novel approach is that the phosphorus in the effluent can be controlled with the nitrate setpoint in the anoxic reactor as manipulated variable. The theoretical background behind this control strategy is that reducing nitrate entrance to the anoxic reactor would result in more organic matter available for biological phosphorus removal. Thus, phosphorus removal would be enhanced at the expense of increasing nitrate in the effluent (but always below legal limits). The work shows the control development, tuning and performance in comparison to open-loop conditions and to two other conventional control strategies for phosphorus removal based on organic matter and metal addition. It is shown that the novel proposed strategy achieves positive nutrient removal results with similar operational costs to the other control strategies and open-loop operation. PMID:25116500

  12. A nested phosphorus and proton coil array for brain magnetic resonance imaging and spectroscopy.

    PubMed

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2016-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7T. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4cm nominal isotropic resolution in 15min (2.3cm actual resolution), while additionally enabling 1mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer's and Parkinson's diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  13. High performance of nitrogen and phosphorus removal in an electrolysis-integrated biofilter.

    PubMed

    Gao, Y; Xie, Y W; Zhang, Q; Yu, Y X; Yang, L Y

    2016-01-01

    A novel electrolysis-integrated biofilter system was developed in this study to evaluate the intensified removal of nitrogen and phosphorus from contaminated water. Two laboratory-scale biofilter systems were established, one with electrolysis (E-BF) and one without electrolysis (BF) as control. The dynamics of intensified nitrogen and phosphorus removal and the changes of inflow and outflow water qualities were also evaluated. The total nitrogen (TN) removal rate was 94.4% in our newly developed E-BF, but only 74.7% in the control BF. Ammonium removal rate was up to 95% in biofilters with or without electrolysis integration with an influent ammonium concentration of 40 mg/L, and the accumulation of nitrate and nitrite was much lower in the effluent of E-BF than that of BF. Thus electrolysis plays an important role in TN removal especially the nitrate and nitrite removal. Phosphorus removal was significantly enhanced, exceeding 90% in E-BF by chemical precipitation, physical adsorption, and flocculation of phosphorus because of the in situ formation of ferric ions by the anodizing of sacrificial iron anodes. Results from this study indicate that the electrolysis integrated biofilter is a promising solution for intensified nitrogen and phosphorus removal. PMID:27508376

  14. Assessing phosphorus reduction efforts in the Everglades

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    Years of agricultural and urban runoff have resulted in too much phosphorus in northern regions of the Florida Everglades. To deal with this problem, very large constructed wetlands, known as Stormwater Treatment Areas (STAs), have been built to strip phosphorus from runoff before the water enters protected Everglades areas. The more than $1 billion STA project currently relies on large areas (cells) of submerged aquatic vegetation (SAV) to absorb phosphorus as the final stage of treatment. To evaluate how well the treatment cells are functioning, as well as the potential lower limits of treatment, it is essential to have an accurate picture of the inflows, outflows, and background phosphorus levels. Juston and DeBusk made long-term measurements in one of the SAV cells. They found that after total phosphorous levels in the cells reached about 15 micrograms per liter, no more phosphorus removal occurred. They also analyzed inflow and outflow data from the cell and inferred background phosphorus concentrations for eight additional SAV cells. Background concentrations averaged around 16 micrograms per liter. (Water Resources Research, doi:10.1029/2010WR009294, 2011)

  15. Soil test phosphorus and cumulative phosphorus budgets in fertilized grassland.

    PubMed

    Messiga, Aimé Jean; Ziadi, Noura; Jouany, Claire; Virkajärvi, Perttu; Suomela, Raija; Sinaj, Sokrat; Bélanger, Gilles; Stroia, Ciprian; Morel, Christian

    2015-03-01

    We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water. PMID:25681982

  16. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions.

    PubMed

    Vitousek, Peter M; Porder, Stephen; Houlton, Benjamin Z; Chadwick, Oliver A

    2010-01-01

    Nutrient limitation to primary productivity and other biological processes is widespread in terrestrial ecosystems, and nitrogen (N) and phosphorus (P) are the most common limiting elements, both individually and in combination. Mechanisms that drive P limitation, and their interactions with the N cycle, have received less attention than mechanisms causing N limitation. We identify and discuss six mechanisms that could drive P limitation in terrestrial ecosystems. The best known of these is depletion-driven limitation, in which accumulated P losses during long-term soil and ecosystem development contribute to what Walker and Syers termed a "terminal steady state" of profound P depletion and limitation. The other mechanisms are soil barriers that prevent access to P; transactional limitation, in which weathering of P-containing minerals does not keep pace with the supply of other resources; low-P parent materials; P sinks; and anthropogenic changes that increase the supply of other resources (often N) relative to P. We distinguish proximate nutrient limitation (which occurs where additions of a nutrient stimulate biological processes, especially productivity) from ultimate nutrient limitation (where additions of a nutrient can transform ecosystems). Of the mechanisms that drive P limitation, we suggest that depletion, soil barriers, and low-P parent material often cause ultimate limitation because they control the ecosystem mass balance of P. Similarly, demand-independent losses and constraints to N fixation can control the ecosystem-level mass balance of N and cause it to be an ultimate limiting nutrient. PMID:20349827

  17. Phosphorus speciation by coupled HPLC-ICPMS: low level determination of reduced phosphorus in natural materials

    NASA Astrophysics Data System (ADS)

    Atlas, Zachary; Pasek, Matthew; Sampson, Jacqueline

    2015-04-01

    Phosphorus is a geologically important minor element in the Earth's crust commonly found as relatively insoluble apatite. This constraint causes phosphorus to be a key limiting nutrient in biologic processes. Despite this, phosphorus plays a direct role in the formation of DNA, RNA and other cellular materials. Recent works suggest that since reduced phosphorus is considerably more soluble than oxidized phosphorus that it was integrally involved in the development of life on the early Earth and may continue to play a role in biologic productivity to this day. This work examines a new method for quantification and identification of reduced phosphorus as well as applications to the speciation of organo-phosphates separated by coupled HPLC - ICP-MS. We show that reduced phosphorus species (P1+, P3+ and P5+) are cleanly separated in the HPLC and coupled with the ICPMS reaction cell, using oxygen as a reaction gas to effectively convert elemental P to P-O. Analysis at M/Z= 47 producing lower background and flatter baseline chromatography than analyses performed at M/Z = 31. Results suggest very low detection limits (0.05 μM) for P species analyzed as P-O. Additionally we show that this technique has potential to speciate at least 5 other forms of phosphorus compounds. We verified the efficacy of method on numerous materials including leached Archean rocks, suburban retention pond waters, blood and urine samples and most samples show small but detectible levels of reduced phosphorus and or organo-phaospates. This finding in nearly all substances analyzed supports the assumption that the redox processing of phosphorus has played a significant role throughout the history of the Earth and it's presence in the present environment is nearly ubiquitous with the reduced oxidation state phosphorus compounds, phosphite and hypophosphite, potentially acting as significant constituents in the anaerobic environment.

  18. Monitoring of phosphorus in Danish surface waters 1990-2012: Trends in phosphorus loading and phosphorus concentrations in streams, lakes and estuaries

    NASA Astrophysics Data System (ADS)

    Windolf, Jørgen; Kronvang, Brian; Carstensen, Jacob; Larsen, Søren E.; Bøgestrand, Jens; Trolle, Dennis

    2014-05-01

    For more than 20 years an integrated, standardized monitoring programme of Danish surface waters has provided information on status and trends in the phosphorus loading and phosphorus concentrations of Danish waters. Although the land-based phosphorus loading of Danish coastal waters has been reduced by 60For several decades the excess loading of phosphorus from diffuse sources and sewage outlets contributed significantly to the eutrophication of surface waters, and this is still the case. Measures taken to combat this eutrophication have included among others improved sewage treatment, diversion of sewage outlets from lakes and reduction of the phosphorus surplus on agricultural land. The overall effects of the measures taken to reduce the phosphorus loading and thereby improve the water quality will be presented for 15 Danish lakes and 10 estuaries and for 160 Danish streams draining catchments with varying anthropogenic impacts. The generally reduced phosphorus loading has led to a decrease in phosphorus concentrations in Danish lakes and estuaries due to the direct - long-term - link between phosphorus loading and phosphorus concentrations in lakes and estuaries. Special focus will be given to the development since 1990 in phosphorus concentrations in 31 streams draining farmed catchments with no significant sewage outlets and the potential factors influencing trends and variations. In 14 of these streams there has been a significant reduction in phosphorus concentrations since 1990, and for all the streams a general reduction of 17

  19. Evaluation of Phosphorus Source Coefficients as Predictors of Runoff Phosphorus Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to determine Phosphorus Source Coefficients (PSC) for organic phosphorus (P) sources, and to examine the relationship between PSCs and P concentrations measured in simulated rainfall runoff. The PSC is an important parameter in the P Site Index (PSI). An incubatio...

  20. The renaissance of black phosphorus

    NASA Astrophysics Data System (ADS)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-04-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  1. The renaissance of black phosphorus

    PubMed Central

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-01-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field. PMID:25820173

  2. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    SciTech Connect

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.

  3. Nitrogen, phosphorus, carbon and population.

    PubMed

    Gilland, Bernard

    2015-01-01

    Population growth makes food production increase necessary; economic growth increases demand for animal products and livestock feed. As further increase of the cropland area is ecologically undesirable, it is necessary to increase crop yields; this requires, inter alia, more nitrogen and phosphorus fertiliser despite the environmental problems which this will exacerbate. It is probable that a satisfactory food supply and an environmentally benign agriculture worldwide cannot be achieved without reducing population to approximately three billion. The reduction could be achieved by 2200 if the total fertility rate--currently 2.5--declined to 1.5 as a world average by 2050, and remained at that level until 2200, but the probability of such a global fertility trajectory is close to zero. It will also be necessary to replace fossil energy by nuclear and renewable energy in order to stabilise atmospheric carbon dioxide concentration, but the phase-out cannot be completed until the 22nd century, when the atmospheric concentration will be approximately 50% above the 2015 level of 400 ppm. PMID:26790176

  4. Assessing Phosphorus Loading in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2011-12-01

    Hari K. Pant Lehman College of the City University of New York, Department of Environmental, Geographic and Geological Sciences, 250 Bedford Park Boulevard West, Bronx, NY 10468; hari.pant@lehman.cuny.edu Depending on ecosystem's resilience, hydro-climatic changes brought upon by global climate change may cause nonlinear and/or irreversible changes in phosphorus (P) dynamic, and instigate P enrichment in freshwater wetlands. Thus, the studies of the influence of expected global climate change and its impacts on P stability in wetlands are in critical need to help manage, or increase the resilience of freshwater wetland ecosystems against undesirable changes. The objectives of this study were to assess P sorption in sediments, and help to estimate potential internal loading of P to the water column from the sediments. Sediment samples were collected from freshwater wetlands that are located within Pelham Bay Park, Bronx, New York. Although P sorption maxima (Smax) of the sediments were high in general (up to 1667 mg kg-1), the equilibrium P concentrations (EPC0) were also fairly high (0.09 -0.24 mg L-1), indicating substantial amounts of P may remain available for biological uptake in the water columns. High percentages of hysteretic P (>96%), as indicated by P retained values (Pr), along with a significant correlation between Smax and oxalate-extractable Fe (r = 0.89), suggest that changes in sediment/water chemistry such as redox status/acidity could cause massive P release to the water columns.

  5. The renaissance of black phosphorus.

    PubMed

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S

    2015-04-14

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field. PMID:25820173

  6. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    NASA Astrophysics Data System (ADS)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  7. [Intravenous drop of calcium gluconate for phosphorus burns].

    PubMed

    Hu, A J

    1993-07-01

    20 patients with phosphor burn (TBSA 2%-75%) were cured by i.v. drop of calcium gluconate combined with other therapies including eschar conservation. Our experimental data showed that dogs with burn by spreading 85% phosphoric acid and napalm locally increased the level of plasma phosphorus and pathological damages to the heart, lung, kidney and etc were similar to those previously reported phosphorus burns. Intravenous drop of calcium gluconate after phosphate burn reduced the level of plasma phosphorus to normal rapidly and lessened the visceral damages. We consider that i.v. drop of calcium gluconate can accelerate the elimination of phosphorus, and prevent phosphorus poisoning after phosphorus burns. PMID:8313772

  8. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  9. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  10. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  11. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  12. 40 CFR 422.10 - Applicability; description of the phosphorus production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphorus production subcategory. 422.10 Section 422.10 Protection of Environment ENVIRONMENTAL PROTECTION... Phosphorus Production Subcategory § 422.10 Applicability; description of the phosphorus production... production of phosphorus and ferrophosphorus by smelting of phosphate ore....

  13. Supporting phosphorus management in Austria: Potential, priorities and limitations.

    PubMed

    Zoboli, Ottavia; Zessner, Matthias; Rechberger, Helmut

    2016-09-15

    Protecting water bodies from eutrophication, ensuring long-term food security and shifting to a circular economy represent compelling objectives to phosphorus management strategies. This study determines how and to which extent the management of phosphorus in Austria can be optimized. A detailed national model, obtained for the year 2013 through Material Flow Analysis, represents the reference situation. Applicability and limitations are discussed for a range of actions aimed at reducing consumption, increasing recycling, and lowering emissions. The potential contribution of each field of action is quantified and compared using three indicators: Import dependency, Consumption of fossil-P fertilizers and Emissions to water bodies. Further, the uncertainty of this assessment is characterized and priorities for the upgrade of data collection are identified. Moreover, all the potential gains discussed in the article are applied to the reference situation to generate an ideal target model. The results show that in Austria a large scope for phosphorus stewardship exists. Strategies based exclusively either on recycling or on the decline of P consumption hold a similar potential to reduce import dependency by 50% each. An enhanced P recycling from meat and bone meal, sewage sludge and compost could replace the current use of fossil-P fertilizers by 70%. The target model, i.e. the maximum that could be achieved taking into account trade-offs between different actions, is characterized by an extremely low import dependency of 0.23kgPcap(-1)y(-1) (2.2kgPcap(-1)y(-1) in 2013), by a 28% decline of emissions to water bodies and by null consumption of fossil-P fertilizers. This case study shows the added value of using Material Flow Analysis as a basis to design sound management strategies. The systemic approach inherent to it allows performing a proper comparative assessment of different actions, identifying priorities, and visualizing a target model. PMID:27177138

  14. The Adequacy of Phosphorus Binder Prescriptions Among American Hemodialysis Patients

    PubMed Central

    Huml, Anne M.; Sullivan, Catherine M.; Leon, Janeen B.; Sehgal, Ashwini R.

    2013-01-01

    Because hemodialysis treatment has a limited ability to remove phosphorus, dialysis patients must restrict dietary phosphorus intake and use phosphorus binding medication. Among patients with restricted dietary phosphorus intake (1000 mg/d), phosphorus binders must bind about 250 mg of excess phosphorus per day and among patients with more typical phosphorus intake (1500 mg/d), binders must bind about 750 mg per day. To determine the phosphorus binding capacity of binder prescriptions among American hemodialysis patients, we undertook a cross-sectional study of a random sample of in-center chronic hemodialysis patients. We obtained data for one randomly selected patient from 244 facilities nationwide. About one-third of patients had hyperphosphatemia (serum phosphorus level > 5.5 mg/dL). Among the 224 patients prescribed binders, the mean phosphorus binding capacity was 256 mg/d (SD 143). 59% of prescriptions had insufficient binding capacity for restricted dietary phosphorus intake, and 100% had insufficient binding capacity for typical dietary phosphorus intake. Patients using two binders had a higher binding capacity than patients using one binder (451 vs. 236 mg/d, p <0.001). A majority of binder prescriptions have insufficient binding capacity to maintain phosphorus balance. Use of two binders results in higher binder capacity. Further work is needed to understand the impact of binder prescriptions on mineral balance and metabolism and to determine the value of substantially increasing binder prescriptions. PMID:23013171

  15. Metabolic Adaptations of White Lupin Roots and Shoots under Phosphorus Deficiency

    PubMed Central

    Müller, Julia; Gödde, Victoria; Niehaus, Karsten; Zörb, Christian

    2015-01-01

    White lupin (Lupinus albus L.) is highly adapted to phosphorus-diminished soils. P-deficient white lupin plants modify their root architecture and physiology to acquire sparingly available soil phosphorus. We employed gas chromatography–mass spectrometry (GC-MS) for metabolic profiling of P-deficient white lupins, to investigate biochemical pathways involved in the P-acquiring strategy. After 14 days of P-deficiency, plants showed reduced levels of fructose, glucose, and sucrose in shoots. Phosphorylated metabolites such as glucose-6-phosphate, fructose-6-phosphate, myo-inositol-phosphate and glycerol-3-phosphate were reduced in both shoots and roots. After 22 days of P-deficiency, no effect on shoot or root sugar metabolite levels was found, but the levels of phosphorylated metabolites were further reduced. Organic acids, amino acids and several shikimate pathway products showed enhanced levels in 22-day-old P-deficient roots and shoots. These results indicate that P-deficient white lupins adapt their carbohydrate partitioning between shoot and root in order to supply their growing root system as an early response to P-deficiency. Organic acids are released into the rhizosphere to mobilize phosphorus from soil particles. A longer period of P-deficiency leads to scavenging of Pi from P-containing metabolites and reduced protein anabolism, but enhanced formation of secondary metabolites. The latter can serve as stress protection molecules or actively acquire phosphorus from the soil. PMID:26635840

  16. A leaf phosphorus assay for seedlings of Acacia mangium.

    PubMed

    Sun, J S; Simpson, R J; Sands, R

    1992-10-01

    Concentrations of extractable and total phosphorus in leaves, stem, root and nodules of 12-week-old seedlings of two provenances of Acacia mangium Willd. were analyzed to identify the fraction of phosphorus and the plant part most suitable for predicting the phosphorus nutritional status of the seedlings.For both provenances, concentrations of extractable phosphorus were more sensitive to changes in soil phosphorus status and varied less among different plant parts than concentrations of total phosphorus. Concentrations of extractable phosphorus in the youngest fully expanded leaf (Leaf 3 from the apex) and the next two older leaves correlated closely with seedling dry mass and may be used to assess the phosphorus nutritional status of Acacia mangium seedlings. PMID:14969954

  17. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake

    PubMed Central

    Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  18. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study.

    PubMed Central

    Sheikh, M S; Maguire, J A; Emmett, M; Santa Ana, C A; Nicar, M J; Schiller, L R; Fordtran, J S

    1989-01-01

    Antacids used to decrease phosphorus absorption in patients with renal failure may be toxic. To find more efficient or less toxic binders, a three-part study was conducted. First, theoretical calculations showed that phosphorus binding occurs in the following order of avidity: Al3+ greater than H+ greater than Ca2+ greater than Mg2+. In the presence of acid (as in the stomach), aluminum can therefore bind phosphorus better than calcium or magnesium. Second, in vitro studies showed that the time required to reach equilibrium varied from 10 min to 3 wk among different compounds, depending upon solubility in acid and neutral solutions. Third, the relative order of effectiveness of binders in vivo was accurately predicted from theoretical and in vitro results; specifically, calcium acetate and aluminum carbonate gel were superior to calcium carbonate or calcium citrate in inhibiting dietary phosphorus absorption in normal subjects. We concluded that: (a) inhibition of phosphorus absorption by binders involves a complex interplay between chemical reactions and ion transport processes in the stomach and small intestine; (b) theoretical and in vitro studies can identify potentially better in vivo phosphorus binders; and (c) calcium acetate, not previously used for medical purposes, is approximately as efficient as aluminum carbonate gel and more efficient as a phosphorus binder than other currently used calcium salts. PMID:2910921

  19. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake.

    PubMed

    Caione, Gustavo; Prado, Renato de Mello; Campos, Cid Naudi Silva; Rosatto Moda, Leandro; de Lima Vasconcelos, Ricardo; Pizauro Júnior, João Martins

    2015-01-01

    We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha(-1) of P2O5) in the presence or absence of filter cake (7.5 t ha(-1), dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. PMID:26078993

  20. Speciation of phosphorus in the sediments of Lake Bini (Ngaoundere-Cameroon).

    PubMed

    Sieliechi, Joseph Marie; Dangwang Dikdim, Jean-Marie; Noumi, Guy Bertrand

    2014-08-01

    In this study, spatial and seasonal variations of phosphorus fractions in Lake Bini sediments were evaluated using a sequential extraction method. The sampling of water and sediments (surface and coring) was carried out at seven sites around the lake during the dry season and the rainy season. The results showed that phosphorus is mainly in the inorganic form (L-P+Ca-P+Fe-P) in the sediments whatever the season may be. The rank order of phosphorus extracts obtained was Fe-P>Ca-P>OM-P>L-P>Res-P. The maximum values of phosphorus (sum of each fraction) were obtained in the rainy season at the sites D6 (298.12 +/- 12.37 microg P/g) and D4 (244.93 +/- 11.06 microg P/g) located beside water source 2 and farmland 2, respectively. The average values of the phosphorus content vary from 05.29 +/- 1.05 microg P/g to 102.58 +/- 4.62 microg P/g for the upper layer (0-5 cm depth); 04.67 +/- 0.66 microg P/g to 70.06 +/- 2.82 microg P/g for the medium layer (5-10 cm depth) and finally 04.63 +/- 0.98 microg P/g to 55.24 +/- 5.17 microg P/g for the deep layer (10-15 cm depth). The results of principal component analysis showed that processes which enhance Ca-P and Fe-P accumulation are probably related to the same factor and the origin of P depends on the source of pollution. The nature of the season plays a significant role in the geochemical composition of the sediments in phosphorus and on the eutrophication level of Lake Bini. PMID:24956776

  1. Electric field effect in ultrathin black phosphorus

    SciTech Connect

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  2. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  3. Observations of interstellar chlorine and phosphorus

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D. G.

    1978-01-01

    Copernicus observations of interstellar Cl I, Cl II, and P II UV lines toward 10 stars are reported. Column densities are estimated for each species, and upper limits are computed for HCl column densities. Derivation of the gas-phase abundances of chlorine and phosphorus indicates that the averages of both the chlorine and the phosphorus logarithmic abundances relative to hydrogen are between 5.0 and 5.1. It is suggested that interstellar chlorine may be depleted by about a factor of 3 relative to the solar abundance and that interstellar phosphorus is depleted by a factor of 2 to 3. The results are shown to support the prediction that chlorine is ionized in regions containing primarily atomic oxygen and is neutral in regions where there is a significant amount of molecular hydrogen. The photoionization rate of neutral chlorine toward 15 Mon is estimated, and it is concluded that most chlorine is contained within the gas phase.

  4. Selective myelosuppression following yellow phosphorus ingestion.

    PubMed

    Basheer, Aneesh; Mookkappan, Sudhagar; Padhi, Somanath; Iqbal, Nayyar

    2015-01-01

    Toxicity from accidental and intentional ingestion of yellow phosphorus, ubiquitously present in fireworks and rodenticides, has recently become more frequent. Gastrointestinal, renal, neurologic, and cardiovascular manifestations are common, with mortality of 23 per cent to 73 per cent. Reports of haematological abnormalities are rare. We report only the second case of severe neutropenia secondary to selective myelosuppression in a 14-year-old girl following intentional ingestion of yellow phosphorus. Leucocyte counts recovered spontaneously without further complications. Our case indicates that, besides hepatic and renal function monitoring, physicians should meticulously monitor blood counts in such cases for early detection of marrow suppression. Further studies are required to elucidate the complex mechanisms and significance of this unusual toxicity of yellow phosphorus. PMID:25848404

  5. Phosphorus removal in emergent free surface wetlands.

    PubMed

    Kadlec, Robert H

    2005-01-01

    Constructed and natural wetlands are capable of absorbing new phosphorus loadings, and, in appropriate circumstances, can provide a low-cost alternative to chemical and biological treatment. Phosphorus interacts strongly with wetland soils and biota, which provide both short-term and sustainable long-term storage of this nutrient. Soil sorption may provide initial removal, but this partly reversible storage eventually becomes saturated. Uptake by biota, including bacteria, algae, and duckweed, as well as macrophytes, forms an initial removal mechanism. Cycling through growth, death, and decomposition returns most of the biotic uptake, but an important residual contributes to long-term accretion in newly formed sediments and soils. Despite the apparent complexity of these several removal mechanisms, data analysis shows that relatively simple equations can describe the sustainable processes. Previous global first order removal rates characterize the sustainable removal, but do not incorporate any biotic features. This article reviews the relevant processes and summarizes quantitative data on wetland phosphorus removal. PMID:15921283

  6. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP)

    NASA Astrophysics Data System (ADS)

    Lomas, M. W.; Burke, A. L.; Lomas, D. A.; Bell, D. W.; Shen, C.; Dyhrman, S. T.; Ammerman, J. W.

    2010-02-01

    Inorganic phosphorus (SRP) concentrations in the subtropical North Atlantic are some of the lowest in the global ocean and have been hypothesized to constrain primary production. Based upon data from several transect cruises in this region, it has been hypothesized that dissolved organic phosphorus (DOP) supports a significant fraction of primary production in the subtropical North Atlantic. In this study, a time-series of phosphorus biogeochemistry is presented for the Bermuda Atlantic Time-series Study site, including rates of phosphorus export. Most parameters have a seasonal pattern, although year-over-year variability in the seasonal pattern is substantial, likely due to differences in external forcing. Suspended particulate phosphorus exhibits a seasonal maximum during the spring bloom, despite the absence of a seasonal peak in SRP. However, DOP concentrations are at an annual maximum prior to the winter/spring bloom and decline over the course of the spring bloom while whole community alkaline phosphatase activities are highest. As a result of DOP bioavailability, the growth of particles during the spring bloom occurs in Redfield proportions, though particles exported from the euphotic zone show rapid and significant remineralization of phosphorus within the first 50 m below the euphotic zone. Based upon DOP data from transect cruises in this region, the southward cross gyral flux of DOP is estimated to support ~25% of annual primary production and ~100% of phosphorus export. These estimates are consistent with other research in the subtropical North Atlantic and reinforce the hypothesis that while the subtropics may be phosphorus stressed (a physiological response to low inorganic phosphorus), utilization of the DOP pool allows production and accumulation of microbial biomass at Redfield proportions.

  7. Effect of humic substances on phosphorus removal by struvite precipitation.

    PubMed

    Zhou, Zhen; Hu, Dalong; Ren, Weichao; Zhao, Yuzeng; Jiang, Lu-Man; Wang, Luochun

    2015-12-01

    Humic substances (HS) are a major fraction of dissolved organic matters in wastewater. The effect of HS on phosphorus removal by struvite precipitation was investigated using synthetic wastewater under different initial pH values, Mg/P molar ratios and HS concentrations. The composition, morphology and thermal properties of harvested precipitates were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and thermo-gravimetric analysis (TGA), respectively. It showed that inhibition effect of HS reached its maximum value of 48.9% at pH 8.0, and decreased to below 10% at pH>9.0. The increase of Mg/P ratio enhanced phosphorus removal efficiency, and thus reduced the influence of HS on struvite precipitation. At pH 9.0, the inhibitory effect of initial HS concentration matched the modified Monod model with half maximum inhibition concentration of 356mgL(-1), and 29% HS was removed in conjunction with struvite crystallisation. XRD analysis revealed that the crystal form of struvite precipitates was changed in the presence of HS. The morphology of harvested struvite was transformed from prismatic to pyramid owing to the coprecipitation of HS on crystal surface. TGA results revealed that the presence of HS could compromise struvite purity. PMID:26151483

  8. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  9. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    PubMed

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  10. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    PubMed Central

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  11. Effects of white phosphorus on mallard reproduction

    USGS Publications Warehouse

    Vann, S.I.; Sparling, D.W.; Ottinger, M.A.

    2000-01-01

    Extensive waterfowl mortality involving thousands of ducks, geese, and swans has occurred annually at Eagle River Flats, Alaska since at least 1982. The primary agent for this mortality has been identified as white phosphorus. Although acute and subacute lethality have been described, sublethal effects are less well known. This study reports on the effects of white phosphorus on reproductive function in the mallard (Anas platyrhynchos) in captivity. Fertility, hatching success, teratogenicity, and egg laying frequency were examined in 70 adult female mallards who received up to 7 daily doses of 0, 0.5, 1.0, and 2.0 mg/kg of white phosphorus. Measurements of fertility and hatchability were reduced by the white phosphorus. Teratogenic effects were observed in embryos from hens dosed at all treatment levels. Egg laying frequency was reduced even at the lowest treatment level; treated hens required a greater number of days to lay a clutch of 12 eggs than control hens. After two doses at 2.0 mg/kg, all females stopped laying completely for a minimum of 10 days and laying frequency was depressed for at least 45 days. Fertility of 10 adult male mallards dosed with 1.0 mg/kg of white phosphorus did not differ from 10 controls, but plasma testosterone levels were significantly (p < 0.05) reduced in the treated males 1 day after dosing ended. These results provide evidence that productivity of free-ranging mallards may be impaired if they are exposed to white phosphorus at typical field levels.

  12. Phosphorus index as a phosphorus awareness tool: documented phosphorus use reduction in New York state.

    PubMed

    Ketterings, Quirine M; Czymmek, Karl J

    2012-01-01

    In 1999, New York introduced its concentrated animal feeding operation (CAFO) permit followed, in 2001, by release of the New York phosphorus index (NY-PI) and establishment of a statewide on-farm research partnership. State policy requires that the Natural Resources Conservation Service's 590 nutrient management standard, and therefore the NY-PI, be implemented on all CAFO farms as well as animal feeding operations (AFOs) receiving state or federal cost share funds for manure storage and other related practices. Since the introduction of the NY-PI, P fertilizer sales (farm use) declined from 14,470 Mg in 2001 (8.6 kg P ha) to 7,376 Mg in 2009 (5.0 kg P ha). Cost of fertilizer was not a significant covariate for the reduction in P use over time. Certified nutrient management planners were surveyed in 2011 to evaluate their perceptions of drivers for changes in P use. In addition, whole farm P balances were recorded for 54 New York dairy farms. The survey data illustrate key ingredients for success: (i) statewide awareness of environmental challenges through both regulations and extension programming; (ii) science-based, user-friendly tools that allow for farm-specific responses to the challenges; (iii) risk assessment of management alternatives through on-farm research; (iv) enforcement of regulations; and (v) existence of economically feasible alternatives. Whole farm balances showed a reduction in P surplus of 44%, averaged across farms, whereas milk production increased, further illustrating the willingness and economic potential to make changes that improve production efficiency and reduce risk of nutrient loss to the environment. PMID:23128734

  13. New phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Hsu, M.-T.; Parker, J. A.

    1984-01-01

    Phosphorus-based flame retardants have been effectively used in a wide variety of polymeric materials. Such additives, however, may either influence the decomposition reaction in polymers or lack durability due to a tendency to be leached out by solvents. Attention is given to the synthesis, characterization, thermal stability and degradation mechanisms of bisimide resins, and an evaluation is conducted of the flammability and mechanical properties of graphite cloth-reinforced laminates fabricated from one of the six phosphorus-containing bisimide resins considered.

  14. Incommensurate Structure of Phosphorus Phase IV

    SciTech Connect

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa; Akahama, Yuichi; Kawamura, Haruki; Ohishi, Yasuo

    2007-04-27

    There are six known phases for phosphorus at room temperature under high pressure. Only the structure of phase IV, which exists from 107 GPa to 137 GPa, remains unsolved. We performed a powder x-ray diffraction experiment and a Rietveld analysis and successfully determined its structure to be an incommensurately modulated structure by only 1 site of atomic position. High-pressure phases of halogens and chalcogens have previously been shown to have a similar modulated structure; however, phosphorus phase IV is different from them and was shown to be the third case.

  15. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  16. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  17. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for...

  18. INTERNAL PHOSPHORUS LOADING IN A SHALLOW EUTROPHIC LAKE (JOURNAL VERSION)

    EPA Science Inventory

    Internal loading of phosphorus has been implicated as a major eutrophication factor in Long Lake, WA. As a result of such loading, summer total phosphorus concentrations approach or exceed 100 micrograms P/l. Most of the summer loading of phosphorus is thought to have been releas...

  19. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  20. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  1. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  2. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50... phosphorus in water. (a) Tanks shall be designed and tested for a head equivalent to the design lading of phosphorus and its water blanket extended to 8 feet above the tank top. In addition, tank design...

  3. Soil phosphorus dynamics under sprinkler and furrow irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furrow irrigation detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus movement, producers can convert from furrow to sprinkler irrigation. We completed research on soil phosphorus dynamics in furrow versus sprin...

  4. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems.

    PubMed

    Schönbrunner, Iris M; Preiner, Stefan; Hein, Thomas

    2012-08-15

    One of the consequences of human impacts on floodplains is a change in sedimentation leading to enhanced floodplain aggradation. Thus, accumulated sediments rich in nutrients might interfere with floodplain restoration. In this study we investigated the phosphorus release behavior of sediments from shallow backwaters of an isolated floodplain of the Danube River situated east of the city of Vienna with the aim to understand the effects of changes in dry/wet cycles on established floodplain sediments. In the light of restoration plans aiming at increased surface water exchange with the river main channel, the response of sediments to frequent alternations between desiccation and inundation periods is a key issue as changes of sediment properties are expected to affect phosphorus release. In order to determine the effect of changing hydrological conditions on internal phosphorus loading, we exposed sediments to different dry/wet treatments in a laboratory experiment. Total phosphorus (TP) release from sediments into the water column increased with increasing duration of dry periods prior to re-wetting. Partial correlation analysis showed significant positive correlations between ΔTP and ΔNH(4)(+) as well as between ΔTP and ΔFe(3+) concentrations (Δ refers to the difference between the final and initial concentration during the wetting period), indicating that enhanced mineralization rates leading to a concomitant release of NH(4)(+) and TP and the reduction of iron hydroxides leading to a concomitant release of Fe(3+) and TP are the mechanisms responsible for the rise in TP. Repeated drying and wetting resulted in elevated phosphorus release. This effect was more pronounced when drying periods led to an 80% reduction in water content, indicating that the degree of drying is a major determinant controlling phosphorus release upon re-wetting. The reconnection of isolated floodplains will favor fluctuating hydrologic conditions and is therefore expected to

  5. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems

    PubMed Central

    Schönbrunner, Iris M.; Preiner, Stefan; Hein, Thomas

    2012-01-01

    One of the consequences of human impacts on floodplains is a change in sedimentation leading to enhanced floodplain aggradation. Thus, accumulated sediments rich in nutrients might interfere with floodplain restoration. In this study we investigated the phosphorus release behavior of sediments from shallow backwaters of an isolated floodplain of the Danube River situated east of the city of Vienna with the aim to understand the effects of changes in dry/wet cycles on established floodplain sediments. In the light of restoration plans aiming at increased surface water exchange with the river main channel, the response of sediments to frequent alternations between desiccation and inundation periods is a key issue as changes of sediment properties are expected to affect phosphorus release. In order to determine the effect of changing hydrological conditions on internal phosphorus loading, we exposed sediments to different dry/wet treatments in a laboratory experiment. Total phosphorus (TP) release from sediments into the water column increased with increasing duration of dry periods prior to re-wetting. Partial correlation analysis showed significant positive correlations between ΔTP and ΔNH4+ as well as between ΔTP and ΔFe3 + concentrations (Δ refers to the difference between the final and initial concentration during the wetting period), indicating that enhanced mineralization rates leading to a concomitant release of NH4+ and TP and the reduction of iron hydroxides leading to a concomitant release of Fe3 + and TP are the mechanisms responsible for the rise in TP. Repeated drying and wetting resulted in elevated phosphorus release. This effect was more pronounced when drying periods led to an 80% reduction in water content, indicating that the degree of drying is a major determinant controlling phosphorus release upon re-wetting. The reconnection of isolated floodplains will favor fluctuating hydrologic conditions and is therefore expected to initially lead

  6. Effects of carbon on phosphorus diffusion in SiGe:C and the implications on phosphorus diffusion mechanisms

    SciTech Connect

    Lin, Yiheng; Xia, Guangrui; Yasuda, Hiroshi; Wise, Rick; Schiekofer, Manfred; Benna, Bernhard

    2014-10-14

    The use of carbon (C) in SiGe base layers is an important approach to control the base layer dopant phosphorus (P) diffusion and thus enhance PNP heterojunction bipolar transistor (HBT) performance. This work quantitatively investigated the carbon impacts on P diffusion in Si₀.₈₂Ge₀.₁₈:C and Si:C under rapid thermal anneal conditions. The carbon molar fraction is up to 0.32%. The results showed that the carbon retardation effect on P diffusion is less effective for Si₀.₈₂Ge₀.₁₈:C than for Si:C. In Si₀.₈₂Ge₀.₁₈:C, there is an optimum carbon content at around 0.05% to 0.1%, beyond which more carbon incorporation does not retard P diffusion any more. This behavior is different from the P diffusion behavior in Si:C and the B in Si:C and low Ge SiGe:C, which can be explained by the decreased interstitial-mediated diffusion fraction f{sub I}{sup P,SiGe} to 95% as Ge content increases to 18%. Empirical models were established to calculate the time-averaged point defect concentrations and effective diffusivities as a function of carbon and was shown to agree with previous studies on boron, phosphorus, arsenic and antimony diffusion with carbon.

  7. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Phosphorus Reduction Efforts in the Florida Everglades

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2009-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the CERP. Specifically, GPM measurements could augment in situ precipitation data that are used to model agricultural phosphorus discharged into the Everglades. This solution benefits society by aiding water resource managers in identifying effective phosphorus reduction scenarios and thereby returning the Everglades to a more natural state. This solution supports the Water Management, Coastal Management, and Ecological Forecasting National Applications.

  8. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    SciTech Connect

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  9. Pressure-induced crystallization of amorphous red phosphorus

    NASA Astrophysics Data System (ADS)

    Rissi, Erin N.; Soignard, Emmanuel; McKiernan, Keri A.; Benmore, Chris. J.; Yarger, Jeffery L.

    2012-03-01

    Structural transitions in amorphous red phosphorus were studied at ambient temperature and pressures up to 12 GPa. Amorphous (red) phosphorus was observed to transform into crystalline black phosphorus at 7.5 ± 0.5 GPa using diamond anvil cell Raman spectroscopy, x-ray diffraction and a direct equation of state (EoS) measurement. The transition was found to be irreversible and the material recovered upon pressure cycling to 10 to 12 GPa was crystalline orthorhombic black phosphorus. A third order Birch-Murnaghan EoS was fit to the data and a bulk modulus (B0) of 11.2 GPa was measured for amorphous red phosphorus.

  10. Phosphorus Retention Models for Tennessee Valley Authority Reservoirs

    NASA Astrophysics Data System (ADS)

    Higgins, John M.; Kim, Byung R.

    1981-06-01

    Data for the 18 largest Tennessee Valley Authority (TVA) reservoirs are compared with previously developed models for predicting steady state phosphorus concentrations in lakes. A plug flow model is presented for lakes and reservoirs which have significant longitudinal variation in phosphorus concentration. The results indicate that phosphorus sedimentation and retention coefficients developed for natural lakes are not directly applicable to TVA reservoirs. The apparent settling velocity of phosphorus in TVA reservoirs was substantially higher than previously reported values for natural lakes. Application of the plug flow model to Cherokee Reservoir showed good agreement with measured in-lake phosphorus concentrations.

  11. The management of phosphorus in poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential for phosphorus (P) surplus at the farm scale can increase when farming systems change from cropping to intensive poultry and animal production, as P inputs become dominated by animal feed rather than fertilizer. Cost-effective and innovative solutions are needed to expand the range of ...

  12. Modeling Phosphorus in the Environment Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a key component of fertilizer inputs in plant agriculture and a critical ingredient of diets in animal nutrition. Elevated levels of environmental P and nitrogen have often resulted in algal blooms and accelerated eutrophication of lakes and streams, and degrade fragile ecosystems...

  13. Phosphorus recovery and reuse from waste streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  14. Fire-Resistant Polyamides Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.; Mikroyannidis, John A.

    1988-01-01

    Flammability and weight loss reduced. Fire-resistant polymers obtained from 1-{(dialkoxyphosphonyl) methyl}-2, 4- and -2, 6-diaminobenzenes by reaction with acyl or diacyl halides of higher functionality. Incorporation of compounds containing phosphorus into certain polymers shown previously to increase fire retardance. Discovery adds new class of polyamides to group of such polymers.

  15. Nanotubes based on monolayer blue phosphorus

    NASA Astrophysics Data System (ADS)

    Montes, E.; Schwingenschlögl, U.

    2016-07-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  16. Photostability of thin exfoliated black phosphorus

    NASA Astrophysics Data System (ADS)

    Favron, Alexandre; Francoeur, Sébastien; Leonelli, Richard; Martel, Richard

    2014-03-01

    In its bulk form, black phosphorus has a direct gap of about 0.3 eV. Because of its lamellar structure, similar to that of graphite, black phosphorus can be exfoliated down to a single monolayer. The interesting properties is the possible tuning of the energy gap in the Near-IR using control of the layer thickness, which is of great interesting to develop sensors and other Near-IR optoelectronic devices. Preliminary studies on thin exfoliated layers revealed a fast photo-induced oxidation of black phosphorus, in room condition with an excitation higher than 1.8 eV. Using Raman spectroscopy as a probe of the quality and integrity of exfoliated layers, we present in this talk the results of a dynamical study of the photo-oxidation process at room temperature in a controlled atmosphere with the presence of the oxygen-water redox couple. A photo-induced charge transfer from black phosphorus to the redox couple is found to be responsible of the fast deterioration of the structure. Finally, we present Raman and Photoluminescence results on un-oxidized thin-layers measured at low temperature using different passivation schemes.

  17. EFFECT OF PHOSPHORUS TREATMENT ON LEAD MINERALOGY

    EPA Science Inventory

    Remediation of Pb-contaminated soils by amendments of phosphate may prove to be a viable way of sequestering Pb in the natural environment. Test plots of Pb-contaminated soil near Joplin, MO were treated with a variety of phosphorus-based amendments to observe the influence of co...

  18. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  19. Prospects for phosphorus recovery from poultry litter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land disposal of poultry litter is an environmental concern in regions with intense poultry production because there is not enough land for crop utilization of its nutrients, especially phosphorus (P). This situation promotes soil P surplus and potential pollution of water resources. Although poultr...

  20. Oxidation of black phosphorus from the side

    NASA Astrophysics Data System (ADS)

    Borunda, Mario; Barraza, Salvador

    Two-dimensional black phosphorus, a recently discovered two-dimensional semiconductor material, has promising properties of interest in physics and materials science. We have performed density functional theory calculations at the early stages of the oxidation process from its side, and contrasted these results with oxidation processes happening at the top exposed surface.

  1. BIOLOGICAL PHOSPHORUS REMOVAL: A TECHNOLOGY EVALUATION

    EPA Science Inventory

    A study of alternative biological phosphorus (bio-P) removal processes was undertaken to evaluate their effectiveness and reliability. Thirty such facilities were identified in the United States and Canada. Four plants were selected for detailed study. The PhoStrip process is use...

  2. Removal of phosphorus from livestock effluents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) accumulation in soils and water quality deterioration are often associated to land application of liquid manure from nearby confined livestock facilities. A treatment process was developed for removal of P from the liquid manure prior to land application. The new process consists of t...

  3. Lake Erie phosphorus loading and Cladophora updates

    EPA Science Inventory

    The presentation will focus on updates or progress being made on each Phosphorus Loadings and Cladophora for Lake Erie. The format will give a brief summary of data, findings, and results that were used by the Great Lakes Water Quality Agreement (GLWQA) Annex 4 Nutrients Modeli...

  4. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  5. Correlation between substrate bias, growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Liu, Aiping; Zhu, Jiaqi; Han, Jiecai; Wu, Huaping; Jia, Zechun

    2007-09-01

    We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films.

  6. Phosphorus diffusions for gettering-induced improvement of lifetime in various silicon materials

    SciTech Connect

    Gee, J.M.

    1991-01-01

    Solar-grade silicon frequently contains large quantities of defects and impurities that can significantly degrade the excess-carrier lifetime through introduction of recombination sites. The impurities frequently include metals as well as high concentrations of high carbon and/or oxygen. Defects and impurities can also degrade the electrical properties of solar cells fabricated in solar-grade silicon by causing shunt currents or excess junction current. Fabrication of acceptable solar cells from such materials requires processes that are tolerant of, or that can even improve impure and defective material. Phosphorus diffusion is a well-known technique for gettering of impurities in silicon. The effect of phosphorus diffusion on the excess-carrier lifetime in various silicon materials was investigated. The optimum phosphorus diffusion schedule and enhancement of lifetime was found to be material specific, with substantial (5-fold) increases found for some materials. Possible reasons for the variability of phosphorus gettering with different materials is discussed. 11 refs., 6 figs., 3 tabs.

  7. Phosphorus removal coupled to bioenergy production by three cyanobacterial isolates in a biofilm dynamic growth system.

    PubMed

    Gismondi, Alessandra; Pippo, Francesca Di; Bruno, Laura; Antonaroli, Simonetta; Congestri, Roberta

    2016-09-01

    In the present study a closed incubator, designed for biofilm growth on artificial substrata, was used to grow three isolates of biofilm-forming heterocytous cyanobacteria using an artificial wastewater secondary effluent as the culture medium. We evaluated biofilm efficiency in removing phosphorus, by simulating biofilm-based tertiary wastewater treatment and coupled this process with biodiesel production from the developed biomass. The three strains were able to grow in the synthetic medium and remove phosphorus in percentages, between 6 and 43%, which varied between strains and also among each strain according to the biofilm growth phase. Calothrix sp. biofilm turned out to be a good candidate for tertiary treatment, showing phosphorus reducing capacity (during the exponential biofilm growth) at the regulatory level for the treated effluent water being discharged into natural water systems. Besides phosphorus removal, the three cyanobacterial biofilms produced high quality lipids, whose profile showed promising chemical stability and combustion behavior. Further integration of the proposed processes could include the integration of oil extracted from these cyanobacterial biofilms with microalgal oil known for high monounsaturated fatty acids content, in order to enhance biodiesel cold flow characteristics. PMID:26939844

  8. Possible complication regarding phosphorus removal with a continuous flow biofilm system: diffusion limitation.

    PubMed

    Falkentoft, C M; Arnz, P; Henze, M; Mosbaek, H; Müller, E; Wilderer, P A; Harremoës, P

    2001-01-01

    Diffusion limitation of phosphate possibly constitutes a serious problem regarding the use of a biofilm reactor for enhanced biological phosphorus removal. A lab-scale reactor for simultaneous removal of phosphorus and nitrate was operated in a continuous alternating mode of operation. For a steady-state operation with excess amounts of carbon source (acetate) during the anaerobic phase, the same amount of phosphate was released during the anaerobic phase as was taken up during the anoxic phase. The measured phosphorus content of the biomass that detached during backwash after an anoxic phase was low, 2.4 +/- 0.4% (equal to 24 +/- 4 mg P/g TS). A simplified computer model indicated the reason to be phosphate diffusion limitation and the model revealed a delicate balance between the obtainable phosphorus contents of the biomass and operating parameters, such as backwash interval, biofilm thickness after backwash, and phase lengths. The aspect of diffusion is considered of crucial importance when evaluating the performance of a biofilter for phosphate removal. PMID:11400109

  9. Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater.

    PubMed

    Gouider, Mbarka; Mlaik, Najwa; Feki, Mongi; Sayadi, Sami

    2011-08-01

    The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively. PMID:21905410

  10. Quantifying phosphorus and light effects in stream algae

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J

    2009-01-01

    Simultaneous gradients of phosphorus and light were applied in experimental streams to develop quantitative relationships between these two important abiotic variables and the growth and composition of benthic microalgae. Algal biovolume and whole-stream metabolism responded hyperbolically to phosphorus enrichment, increasing approximately two-fold over the 5-300 g L-1 range of experimental phosphorus concentrations. The saturation threshold for phosphorus effects occurred at 25 g L-1 of soluble reactive phosphorus (SRP). Light effects were much stronger than those of phosphorus, resulting in a nearly ten-fold increase in algal biovolume over the 10-400 mol photons m-2 s-1 range of experimental irradiances. Biovolume accrual was light-saturated at 100 mol photons m-2 s-1 (5 mol photons m-2 d-1). Light effects were diminished by low phosphorus concentrations, and phosphorus effects were diminished by low irradiances, but evidence of simultaneous limitation by both phosphorus and light at subsaturating irradiances was weak. Contrary to the light:nutrient hypothesis, algal phosphorus content was not significantly affected by light, even in the lowest SRP treatments. However, algal nitrogen content increased substantially at lower irradiances, and it was very highly correlated with algal chlorophyll a content. Phosphorus enrichment in streams is likely to have its largest effect at concentrations <25 g L-1 SRP, but the effect of enrichment is probably minimized when streambed irradiances are kept below 2 mol photons m-2 d-1 by riparian shading or turbidity

  11. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  12. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    PubMed Central

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  13. Impact of Fish Farming on Phosphorus in Reservoir Sediments

    NASA Astrophysics Data System (ADS)

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-11-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation.

  14. Impact of Fish Farming on Phosphorus in Reservoir Sediments.

    PubMed

    Jia, Binyang; Tang, Ya; Tian, Liyan; Franz, Leander; Alewell, Christine; Huang, Jen-How

    2015-01-01

    Fish farming has seriously influenced the aquatic environment in Sancha reservoir in SW China since 1985 and has been strongly restricted since 2005. Thus, phosphorus speciation in a sediment core dated between 1945 and 2010 at cm-resolution and in surface sediments from Sancha reservoir may allow us track how fish farming impacts phosphorus dynamics in lake sediments. Fish farming shifts the major binding forms of phosphorus in sediments from organic to residual phosphorus, which mostly originated from fish feed. Sorption to metal oxides and association with organic matters are important mechanisms for phosphorus immobilisation with low fish farming activities, whereas calcium-bound phosphorous had an essential contribution to sediment phosphorus increases under intensive fish framing. Notwithstanding the shifting, the aforementioned phosphorus fractions are usually inert in the lake environment, therefore changing phosphorus mobility little. The use of fish feed and water-purification reagents, the most important additives for fish farming, introduce not only phosphorus but also large amounts of sand-sized minerals such as quartz into the lake, to which phosphorus weakly sorbs. The sand-sized minerals as additional sorbents increase the pool of easily mobilisable phosphorus in sediments, which will slow down the recovery of reservoir water due to its rapid re-mobilisation. PMID:26577441

  15. Electroless Nickel Phosphorus Plating on AZ31

    NASA Astrophysics Data System (ADS)

    Shartal, Kh. M.; Kipouros, G. J.

    2009-04-01

    One of the major drawbacks to using magnesium parts in automotive applications is poor corrosion resistance, which can be improved with a nickel-boron coating placed on a nickel-phosphorus coating, which, in turn, is placed on a phosphate-permanganate conversion-coating layer produced on the magnesium alloy AZ31. This work reports on the determination of the optimum kinetic parameters for producing a coherent nickel-phosphorus coating using an electroless-procedure phosphate-permanganate conversion-coating layer and for studying the effects of the experimental variables of the electroless plating process on the phosphorus content, surface morphology, and structure of the electroless nickel-phosphorus (EN-P) coatings produced. Measurements of the plating rate as a function of experimental variables such as the compositions of the plating bath constituents, temperature, and pH were implemented using the weight-gain method; the phosphorus content of the EN-P coatings was measured using energy-dispersive spectroscopy (EDS) analysis. The surface morphology of the coating was examined using a scanning electron microscope (SEM); X-ray diffraction (XRD) was used to characterize the structure of each coating. An empirical rate law was determined for EN-P plating on a phosphate-permanganate conversion coating. It is found that the deposition rate of the EN-P coating increases by increasing the deposition temperature, the concentration of free nickel ions, and the concentration of hypophosphite ions in the plating bath. In addition, the deposition rate decreases by increasing both the plating bath pH and the concentration of citric acid in the plating bath.

  16. Innovative Method for Separating Phosphorus and Iron from High-Phosphorus Oolitic Hematite by Iron Nugget Process

    NASA Astrophysics Data System (ADS)

    Han, Hongliang; Duan, Dongping; Wang, Xing; Chen, Siming

    2014-10-01

    This study puts forward a new method to separate phosphorus and iron from high-phosphorus oolitic hematite through iron nuggets process. Firstly, the physical, chemical, and microscopic characteristics of high-phosphorus oolitic hematite are investigated. Then, the reaction mechanisms of high-phosphorus hematite together with feasibility to separating phosphorus and iron by iron nugget process are discussed. Meanwhile, the experiments of high-phosphorus hematite used in rotary hearth furnace iron nugget processes are studied as well. The results indicate that the iron nugget process is a feasible and efficient method for iron and phosphorus separation of high-phosphorus oolitic hematite. The phosphorus content in iron nuggets is relatively low. Through the optimization of process parameters, the lowest of phosphorus in iron nuggets is 0.22 pct, the dephosphorization rate is above 86 pct, and the recovery of Fe is above 85 pct by the iron nugget process. This study aims to provide a theoretical and technical basis for economical and rational use of high-phosphorus oolitic hematite.

  17. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria-A Step to Phosphorus Security in Agriculture.

    PubMed

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  18. Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria—A Step to Phosphorus Security in Agriculture

    PubMed Central

    Mukherjee, Chandan; Chowdhury, Rajojit; Ray, Krishna

    2015-01-01

    Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50–100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale. PMID:26733966

  19. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City.

    PubMed

    Metson, Geneviève S; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world's main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region's "phosphorus footprint" - the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident's annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  20. Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City

    PubMed Central

    Metson, Geneviève S.; Cordell, Dana; Ridoutt, Brad

    2016-01-01

    Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world’s main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus from farms and cities have caused widespread water pollution. As one of the major factors contributing to increased phosphorus demand, dietary choices can play a key role in changing our resource consumption pathway. Importantly, the effects of dietary choices on phosphorus management are twofold: First, dietary choices affect a person or region’s “phosphorus footprint” – the magnitude of mined phosphate required to meet food demand. Second, dietary choices affect the magnitude of phosphorus content in human excreta and hence the recycling- and pollution-potential of phosphorus in sanitation systems. When considering options and impacts of interventions at the city scale (e.g., potential for recycling), dietary changes may be undervalued as a solution toward phosphorus sustainability. For example, in an average Australian city, a vegetable-based diet could marginally increase phosphorus in human excreta (an 8% increase). However, such a shift could simultaneously dramatically decrease the mined phosphate required to meet the city resident’s annual food demand by 72%. Taking a multi-scalar perspective is therefore key to fully exploring dietary choices as one of the tools for sustainable phosphorus management. PMID:27617261

  1. A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Dale, Andrew W.; Boyle, Richard A.; Lenton, Timothy M.; Ingall, Ellery D.; Wallmann, Klaus

    2016-09-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated by burrowing, tube-dwelling organisms (bioirrigation). The model is constrained using an empirical database including burial ratios of Corg with respect to organic P (Corg:Porg) and total reactive P (Corg:Preac), burial efficiencies of Corg and Porg, and inorganic carbon-to-phosphorus regeneration ratios. If Porg is preferentially mineralized relative to Corg during aerobic respiration, as many previous studies suggest, then the simulated Porg pool is found to be completely depleted. A modified model that incorporates the redox-dependent microbial synthesis of polyphosphates and Porg (termed the microbial P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from the aerobic sediment layers where mineralization rates are highest, thereby mitigating diffusive PO43- fluxes to the bottom water. They also expand the redox niche where microbial P uptake occurs. The model was applied to a hypothetical shelf setting in the early Paleozoic; a time of the first radiation of benthic fauna. Results show that even shallow bioturbation at that time may have had a significant impact on P burial. Our model provides support for a recent study that proposed that faunal radiation in ocean sediments led to enhanced P burial and, possibly, a stabilization of atmospheric O2 levels. The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments.

  2. Elevated carbon dioxide increases soil nitrogen and phosphorus availability in a phosphorus-limited Eucalyptus woodland.

    PubMed

    Hasegawa, Shun; Macdonald, Catriona A; Power, Sally A

    2016-04-01

    Free-air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)-limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18-month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P-limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (-0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability - particularly for phosphate - in P-limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C-accumulation under future predicted CO2 concentrations. PMID:26546164

  3. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency.

    PubMed

    Sulieman, Saad; Tran, Lam-Son Phan

    2015-10-01

    Legumes have a significant role in effective management of fertilizers and improving soil health in sustainable agriculture. Because of the high phosphorus (P) requirements of N2-fixing nodule, P deficiency represents an important constraint for legume crop production, especially in tropical marginal countries. P deficiency is an important constraint for legume crop production, especially in poor soils present in many tropical degraded areas. Unlike nitrogen, mineral P sources are nonrenewable, and high-grade rock phosphates are expected to be depleted in the near future. Accordingly, developing legume cultivars with effective N2 fixation under P-limited conditions could have a profound significance for improving agricultural sustainability. Legumes have evolved strategies at both morphological and physiological levels to adapt to P deficiency. Molecular mechanisms underlying the adaptive strategies to P deficiency have been elucidated in legumes. These include maintenance of the P-homeostasis in nodules as a main adaptive strategy for rhizobia-legume symbiosis under P deficiency. The stabilization of P levels in the symbiotic tissues can be achieved through several mechanisms, including elevated P allocation to nodules, formation of a strong P sink in nodules, direct P acquisition via nodule surface and P remobilization from organic-P containing substances. The detailed biochemical, physiological and molecular understanding will be essential to the advancement of genetic and molecular approaches for enhancement of legume adaptation to P deficiency. In this review, we evaluate recent progress made to gain further and deeper insights into the physiological, biochemical and molecular reprogramming that legumes use to maintain P-homeostasis in nodules during P scarcity. PMID:26398789

  4. [Effect of intermittent artificial aeration on nitrogen and phosphorus removal in subsurface vertical-flow constructed wetlands].

    PubMed

    Tang, Xian-qiang; Li, Jin-zhong; Li, Xue-Ju; Liu, Xue-gong; Huang, Sui-liang

    2008-04-01

    Shale and T. latifolia were used as subsurface vertical-flow constructed wetland substrate and vegetation for eutrophic Jin River water treatment, and investigate the effect of intermittent aeration on nitrogen and phosphorus removal. In this study, hydraulic loading rate was equal to 800 mm/d, and ratio of air and water was 5:1. During the entire running period, maximal monthly mean ammonia-nitrogen (NH4+ -N), total nitrogen (TN), soluble reactive phosphorus (SRP) and total phosphorus (TP) removal rates were observed in August 2006. In contrast to the non-aerated wetland, aeration enhanced ammonia-nitrogen, total nitrogen, soluble reactive phosphorus and total phosphorus removal: 10.1%, 4.7%, 10.2% and 8.8% for aeration in the middle, and 25.1%, 10.0%, 7.7% and 7.4% for aeration at the bottom of the substrate, respectively. However, aeration failed to improve the nitrate-nitrogen removal. During the whole experimental period, monthly mean NO3(-) -N removal rates were much lower for aerated constructed wetlands (regarding aeration in the middle and at the bottom) than those for non-aerated system. After finishing the experiment, aboveground plant biomass (stems and leaves) of T. latifolia was harvested, and its weight and nutrient content (total nitrogen and total phosphorus) were measured. Analysis of aboveground plant biomass indicated that intermittent aeration restrained the increase in biomass but stimulated assimilation of nitrogen and phosphorus into stems and leaves. Additional total nitrogen removal of 11.6 g x m(-2) and 12.6 g x m(-2) by aboveground T. latifolia biomass for intermittent artificial aeration in the middle and at the bottom of the wetland substrate, respectively, was observed. PMID:18637335

  5. Microstructural characterization of superalloy 718 with boron and phosphorus additions

    SciTech Connect

    Horton, J.A.; McKamey, C.G.; Miller, M.K.; Cao, W.D.; Kennedy, R.L.

    1997-06-01

    Boron and phosphorus additions are known to improve the stress rupture properties of IN-718. One possible mechanism to explain this property improvement relies on the boron and phosphorus additions slowing down the growth of {gamma}{double_prime} and {gamma}{prime} precipitates during high temperature service or aging. However, atom probe analysis found no segregation of boron and phosphorus to {gamma}-{gamma}{double_prime} or to {gamma}-{gamma}{prime} interfaces in the alloys with the high boron and high phosphorus levels. No difference in growth rates were found by transmission electron microscopy in the sizes of the {gamma}{double_prime} or {gamma}{prime} in alloys with high phosphorus and high boron as compared to commercial alloys and to alloys with even lower levels of phosphorus and boron. Atom probe analysis further found that much of the phosphorus, boron, and carbon segregated to grain boundaries. Creep curves comparing the alloys with high levels of phosphorus and boron and alloys with low levels of phosphorus and boron show a large difference in strain rate in the first hours of the test. These results suggest that the boron and phosphorus may have a direct effect on dislocation mobility by some pinning mechanism.

  6. Patient education for phosphorus management in chronic kidney disease

    PubMed Central

    Kalantar-Zadeh, Kamyar

    2013-01-01

    Objectives: This review explores the challenges and solutions in educating patients with chronic kidney disease (CKD) to lower serum phosphorus while avoiding protein insufficiency and hypercalcemia. Methods: A literature search including terms “hyperphosphatemia,” “patient education,” “food fatigue,” “hypercalcemia,” and “phosphorus–protein ratio” was undertaken using PubMed. Results: Hyperphosphatemia is a strong predictor of mortality in advanced CKD and is remediated via diet, phosphorus binders, and dialysis. Dietary counseling should encourage the consumption of foods with the least amount of inorganic or absorbable phosphorus, low phosphorus-to-protein ratios, and adequate protein content, and discourage excessive calcium intake in high-risk patients. Emerging educational initiatives include food labeling using a “traffic light” scheme, motivational interviewing techniques, and the Phosphate Education Program – whereby patients no longer have to memorize the phosphorus content of each individual food component, but only a “phosphorus unit” value for a limited number of food groups. Phosphorus binders are associated with a clear survival advantage in CKD patients, overcome the limitations associated with dietary phosphorus restriction, and permit a more flexible approach to achieving normalization of phosphorus levels. Conclusion: Patient education on phosphorus and calcium management can improve concordance and adherence and empower patients to collaborate actively for optimal control of mineral metabolism. PMID:23667310

  7. [Research progress on phosphorus budgets and regulations in reservoirs].

    PubMed

    Shen, Xiao; Li, Xu; Zhang, Wang-shou

    2014-12-01

    Phosphorus is an important limiting factor of water eutrophication. A clear understanding of its budget and regulated method is fundamental for reservoir ecological health. In order to pro- mote systematic research further and improve phosphorus regulation system, the budget balance of reservoir phosphorus and its influencing factors were concluded, as well as conventional regulation and control measures. In general, the main phosphorus sources of reservoirs include upstream input, overland runoff, industrial and domestic wastewater, aquaculture, atmospheric deposition and sediment release. Upstream input is the largest phosphorus source among them. The principal output path of phosphorus is the flood discharge, the emission load of which is mainly influenced by drainage patterns. In addition, biological harvest also can export a fraction of phosphorus. There are some factors affecting the reservoir phosphorus balance, including reservoirs' function, hydrological conditions, physical and chemical properties of water, etc. Therefore, the phosphorus budgets of different reservoirs vary greatly, according to different seasons and regions. In order to reduce the phosphorus loading in reservoirs, some methods are carried out, including constructed wetlands, prefix reservoir, sediment dredging, biomanipulation, etc. Different methods need to be chosen and combined according to different reservoirs' characteristics and water quality management goals. Thus, in the future research, it is reasonable to highlight reservoir ecological characteristics and proceed to a complete and systematic analysis of the inherent complexity of phosphorus budget and its impact factors for the reservoirs' management. Besides, the interaction between phosphorus budget and other nutrients in reservoirs also needs to be conducted. It is fundamental to reduce the reservoirs' phosphorus loading to establish a scientific and improved management system based on those researches. PMID:25876422

  8. Landslide-induced changes in soil phosphorus speciation and availability in Xitou, Central Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsin; Hsiao, Sheng-Che; Huang, Yu-Sheng; Chen, Chiu-Ping; Menyailo, Oleg

    2016-04-01

    Phosphorus is an important nutrient in forest ecosystem. In tropical/subtropical areas, phosphorus is generally limited because of strong soil weathering but its speciation and availability can be changed by disturbances, such as the geological landslide events. In this study, we evaluated the changes in soil P speciation and availability after landslide in a mountainous forest ecosystem in Xitou, central Taiwan. Five soil pedons along a landslide/nonlanslide affected sequence from deep landslide deposit to nonlandslide were collected. The Hedley's sequential extraction procedure and synchrotron-based phosphorus x-ray adsorption near edge structure (XANES) spectroscopy were applied for the surface 0-10 cm and 10-20 cm soils to provide information concerning chemical and structural composition of phosphorus. The results indicated that plant available P (Resin-P + NaHCO3 extract P) and total P were reduced after landslide, from 150 and 500 mg kg-1, respectively, at nonlandsliding sites to 50 and 350 mg kg-1 at landsliding sites. However, the apatite-type P was significantly increased after landslide, from about 70 mg kg-1 at nonlandsliding sites to around 200 mg kg-1 at landsliding sites. Similar trend of enhanced apatite-type P after landslide was also observed in the XANES spectra. The ryegrass pot experiment confirmed that the landsliding soils were less fertile and had less growth rate. However, both nitrogen and phosphorus nutrients were limited at landsliding sites. The results demonstrated that soil P speciation and availability were significantly altered after landslide; these resultant changes are expected to influence functions in forest ecosystems.

  9. Kinetic and isotherms studies of phosphorus adsorption onto natural riparian wetland sediments: linear and non-linear methods.

    PubMed

    Zhang, Liang; Du, Chao; Du, Yun; Xu, Meng; Chen, Shijian; Liu, Hongbin

    2015-06-01

    Riparian wetlands provide critical functions for the improvement of surface water quality and storage of nutrients. Correspondingly, investigation of the adsorption characteristic and capacity of nutrients onto its sediments is benefit for utilizing and protecting the ecosystem services provided by riparian areas. The Langmuir and Freundlich isotherms and pseudo-second-order kinetic model were applied by using both linear least-squares and trial-and-error non-linear regression methods based on the batch experiments data. The results indicated that the transformations of non-linear isotherms to linear forms would affect the determination process significantly, but the non-linear regression method could prevent such errors. Non-linear Langmuir and Freundlich isotherms both fitted well with the phosphorus adsorption process (r (2) > 0.94). Moreover, the influences of temperature and ionic strength on the adsorption of phosphorus onto natural riparian wetland sediments were also studied. Higher temperatures were suitable for phosphorus uptake from aqueous solution using the present riparian wetland sediments. The adsorption capacity increased with the enhancement of ionic strength in agreement with the formation of inner-sphere complexes. The quick adsorption of phosphorus by the sediments mainly occurred within 10 min. The adsorption kinetic was well-fitted by pseudo-second-order kinetic model (r (2) > 0.99). The scanning electron microscopy (SEM) and Fourier transformation infrared (FT-IR) spectra analyses before and after phosphorus adsorption revealed the main adsorption mechanisms in the present system. PMID:26017810

  10. Electron microscopy studies of undoped and phosphorus doped Si:H and Si,C:H films

    SciTech Connect

    Chen, Y.L.; Wang, C.; Lucovsky, G.; Maher, D.M.; Bentley, J.

    1993-12-31

    Microstructure of undoped and phosphorus doped Si:H and Si,C:H films was analyzed by selected-area diffraction, conical dark-field imaging, energy-dispersive x-ray spectroscopy, and electron energy-loss spectroscopy in transmission electron microscopes. Thin films were synthesized by remote plasma-enhanced chemical vapor deposition and characterized in terms of degree of crystallinity. Distribution of phosphorus in Si:H and Si,C:H films, and of carbon in Si,C:H films was evaluated. Results indicate that (i) the microstructure of a film may be two phase, consisting of silicon microcrystallites in an amorphous matrix, (ii) phosphorus doping as well as the presence of carbon influences the degree of crystallinity by reducing the average size and volume fraction of microcrystallites, (iii) the presence of carbon and phosphorus doping completely suppresses the crystalline phase, (iv) phosphorus is distributed at approximately the same concentration in both the crystalline and amorphous phases of diphasic films, and (v) carbon is detected in the amorphous phase of the Si,C:H films.

  11. Simultaneous effective carbon and nitrogen removals and phosphorus recovery in an intermittently aerated membrane bioreactor integrated system

    PubMed Central

    Wang, Yun-Kun; Pan, Xin-Rong; Geng, Yi-Kun; Sheng, Guo-Ping

    2015-01-01

    Recovering nutrients, especially phosphate resource, from wastewater have attracted increasing interest recently. Herein, an intermittently aerated membrane bioreactor (MBR) with a mesh filter was developed for simultaneous chemical oxygen demand (COD), total nitrogen (TN) and phosphorous removal, followed by phosphorus recovery from the phosphorus-rich sludge. This integrated system showed enhanced performances in nitrification and denitrification and phosphorous removal without excess sludge discharged. The removal of COD, TN and total phosphorus (TP) in a modified MBR were averaged at 94.4 ± 2.5%, 94.2 ± 5.7% and 53.3 ± 29.7%, respectively. The removed TP was stored in biomass, and 68.7% of the stored phosphorous in the sludge could be recovered as concentrated phosphate solution with a concentration of phosphate above 350 mg/L. The sludge after phosphorus release could be returned back to the MBR for phosphorus uptake, and 83.8% of its capacity could be recovered. PMID:26541793

  12. In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage.

    PubMed

    Milowska, Katarzyna; Szwed, Aleksandra; Zablocka, Maria; Caminade, Anne-Marie; Majoral, Jean-Pierre; Mignani, Serge; Gabryelak, Teresa; Bryszewska, Maria

    2014-10-20

    We have investigated whether polyamidoamine (PAMAM), phosphorus (pd) and viologen-phosphorus (vpd) dendrimers can prevent damage to embryonic mouse hippocampal cells (mHippoE-18) caused by rotenone, which is used as a pesticide, insecticide, and as a nonselective piscicide, that works by interfering with the electron transport chain in mitochondria. Several basic aspects, such as cell viability, production of reactive oxygen species and changes in mitochondrial transmembrane potential, were analyzed. mHippoE-18 cells were treated with these structurally different dendrimers at 0.1μM. A 1h incubation with dendrimers was followed by the addition of rotenone at 1μM, and a further 24h incubation. PAMAM, phosphorus and viologen-phosphorus dendrimers all increased cell viability (reduced cell death-data need to be compared with untreated controls). A lower level of reactive oxygen species and a favorable effect on mitochondrial system were found with PAMAM and viologen-phosphorus dendrimers. These results indicate reduced toxicity in the presence of dendrimers. PMID:25108046

  13. Peak phosphorus - peak food? The need to close the phosphorus cycle.

    PubMed

    Rhodes, Christopher J

    2013-01-01

    The peak in the world production of phosphorus has been predicted to occur in 2033, based on world reserves of rock phosphate (URR) reckoned at around 24,000 million tonnes (Mt), with around 18,000 Mt remaining. This figure was reckoned-up to 71,000 Mt, by the USGS, in 2012, but a production maximum during the present century is still highly probable. There are complex issues over what the demand will be for phosphorus in the future, as measured against a rising population (from 7 billion to over 9 billion in 2050), and a greater per capita demand for fertiliser to grow more grain, in part to feed animals and meet a rising demand for meat by a human species that is not merely more populous but more affluent. As a counterweight to this, we may expect that greater efficiencies in the use of phosphorus - including recycling from farms and of human and animal waste - will reduce the per capita demand for phosphate rock. The unseen game changer is peak oil, since phosphate is mined and recovered using machinery powered by liquid fuels refined from crude oil. Hence, peak oil and peak phosphorus might appear as conjoined twins. There is no unequivocal case that we can afford to ignore the likelihood of a supply-demand gap for phosphorus occurring sometime this century, and it would be perilous to do so. PMID:23901632

  14. Phosphorus Migration During Direct Reduction of Coal Composite High-Phosphorus Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Xue, Qingguo; Wang, Guang; Zhang, Yuanyuan; Wang, Jingsong

    2016-02-01

    This study investigated the direct reduction process and phosphorus migration features of high-phosphorus iron ores using simulated experiments. Results show that iron oxide was successfully reduced, and a Fe-Si-Al slag formed in carbon-bearing pellets at 1473 K (1200 °C). Fluorapatite then began to decompose into Ca3(PO4)2 and CaF2. As the reaction continued, Ca3(PO4)2 and Fe-Si-Al slag reacted quickly with each other to generate CaAl2Si2O8 and P2, while CaF2 turned into SiF4 gas in the presence of high SiO2. A small amount remained in the slag phase and formed CaAl2Si2O8. Further analysis detailed the migration process of the phosphorus into iron phases, as well as the relationship between carburization and phosphorus absorption in the iron phases. As carbon content in the iron phase increased, the austenite grain boundary melted and formed a large quantity of liquid iron which quickly absorbed the phosphorus. Based on the results of simulation and analysis, this paper proposed a method which reduced the absorption of P by the metallic iron formed and reduced P content in metallic iron during direct reduction.

  15. Low phosphorus tolerance mechanisms: phosphorus recycling and photosynthate partitioning in the tropical forage grass, Brachiaria hybrid cultivar Mulato compared with rice.

    PubMed

    Nanamori, Masahito; Shinano, Takuro; Wasaki, Jun; Yamamura, Takuya; Rao, Idupulapati M; Osaki, Mitsuru

    2004-04-01

    The Brachiaria hybrid cv. Mulato is well adapted to low-fertility acid soils deficient in phosphorus (P). To study the grassy forage's mechanisms for tolerating low P supply, we compared it with rice (Oryza sativa L. cv. Kitaake). We tested by using nutrient solution cultures, and quantified the effects of P deficiency on the enzymatic activities of phosphohydrolases and on carbon metabolism in P-deficient leaves. While P deficiency markedly induced activity of phosphohydrolases in both crops, the ratio of inorganic phosphorus to total P in leaves was greater in Brachiaria hybrid. Phosphorus deficiency in leaves also markedly influenced the partitioning of carbon in both crops. In the Brachiaria hybrid, compared with rice, the smaller proportion of (14)C partitioned into sugars and the larger proportion into amino acids and organic acids in leaves coincided with decreased levels of sucrose and starch. Hence, in P-deficient leaves of the Brachiaria hybrid, triose-P was metabolized into amino acids or organic acids. Results thus indicate that the Brachiaria hybrid, compared with rice, tolerates low P supply to leaves by enhancing sugar catabolism and by inducing the activity of several phosphohydrolases. This apparently causes rapid P turnover and enables the Brachiaria hybrid to use P more efficiently. PMID:15111721

  16. Controlled Sculpture of Black Phosphorus Nanoribbons.

    PubMed

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S; Meunier, Vincent; Drndić, Marija

    2016-06-28

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with great promise for fast functional electronics and optoelectronics. We demonstrate the controlled structural modification of few-layer BP along arbitrary crystal directions with sub-nanometer precision for the formation of few-nanometer-wide armchair and zigzag BP nanoribbons. Nanoribbons are fabricated, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscopy (TEM) and scanning TEM nanosculpting. We predict that the few-nanometer-wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. The demonstration of this procedure is key for the development of BP-based electronics, optoelectronics, thermoelectrics, and other applications in reduced dimensions. PMID:27192448

  17. Phosphorus chemistry in the tidal Hudson River

    SciTech Connect

    Fox, L.E. )

    1991-06-01

    A study of inorganic phosphborus in the tidal Hudson River was performed from Noverber 1988 to October 1989. Results indicate that phosphate concentrations are at or near equilibrium with a suspended solid phase consisting of amorphous ferric phosphate in amorphous ferric hydroxide. Equilibrium was observed over most of the river, over most of the year. Undersaturation was observed regularly below river mile 40 in the month of July. It represented the major deviation from equilibration. Low suspended sediment levels and dilution from sea water are believed to be responsible for undersaturation. Dissolved iron was near equilibrium with amorphous ferric hydroxide except in July. Recognition of the wide range of watersheds where phosphorus equilibrium controls phosphate concentrations suggests that the global, terrestrial flux of biologically available phosphorus may be double current estimates.

  18. Black Phosphorus: Narrow Gap, Wide Applications.

    PubMed

    Castellanos-Gomez, Andres

    2015-11-01

    The recent isolation of atomically thin black phosphorus by mechanical exfoliation of bulk layered crystals has triggered an unprecedented interest, even higher than that raised by the first works on graphene and other two-dimensionals, in the nanoscience and nanotechnology community. In this Perspective, we critically analyze the reasons behind the surge of experimental and theoretical works on this novel two-dimensional material. We believe that the fact that black phosphorus band gap value spans over a wide range of the electromagnetic spectrum (interesting for thermal imaging, thermoelectrics, fiber optics communication, photovoltaics, etc.) that was not covered by any other two-dimensional material isolated to date, its high carrier mobility, its ambipolar field-effect, and its rather unusual in-plane anisotropy drew the attention of the scientific community toward this two-dimensional material. Here, we also review the current advances, the future directions and the challenges in this young research field. PMID:26600394

  19. Determination of phosphorus in cereal lipids.

    PubMed

    Kovacs, M I

    1986-05-01

    The effect of digestion methods on the determination of phosphorus in cereal lipids was reinvestigated. Samples were either digested with sulfuric acid or ashed in a muffle furnace at 600 degrees C. The standard deviation and the coefficient of variation were significantly higher for the acid-digested samples. Ashing gave more reliable results, especially when large amounts of lipid material had to be oxidized. PMID:3728960

  20. Phosphorus accummulation in reed bed treatment filter

    NASA Astrophysics Data System (ADS)

    Karczmarczyk, A.; Baryła, A.

    2009-04-01

    Introduction Constructed wetlands are well known method for alternative wastewater treatment in rural areas in Poland. There are mainly used as a biological treatment step of domestic wastewater. The most popular are subsurface flow constructed wetlands (reed bed systems) with bed filled with site soil (mainly clayey sand or sandy clay). Over 30 such plants with daily flow above 5 m3 per day is operated in Poland. Object and goal of research Many researches have been made on estimation constructed wetlands treatment efficiency, however there are mostly concentrated on inlet outlet concentration compartments. In this study preliminary results of phosphorus accumulation in the bed of horizontal subsurface flow constructed wetland are presented. Monitored plant treats wastewater from 150 inhabitants in the volume of 14 m3 d-1 at average and is under operation from December 1998. The goal of research was to asses the distribution of phosphorus in the wetland bed after 8 years of treatment of domestic wastewater. Obtained results are shown on the background of organic matter (TOC) distribution. The methods applied The bed of the constructed wetland (30 m width and 33 m length) was divided by net of 20 points. In every point two soil samples, one from the depth of 0-10 cm and one from the depth of 20-30 cm, were collected. The samples were analyzed for organic matter and total phosphorus content. Investigation findings The results showed variation of measured indexes on the length and depth of treatment bed. In generally, the highest accumulation occurred near the inlet zone of wetland. The relation is rather clear in case of organic matter, but in case of phosphorus high contents were also observed at the outlet zone of wetland. Higher organic matter concentrations were observed in deeper layer (20-30 cm) than in upper layer (0-10 cm) of the bed.

  1. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction. PMID:26516073

  2. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Gao, Peng; Ren, Duo-zhen

    2014-04-01

    This study focuses on the reduction of phosphorus from high-phosphorus-content oolitic iron ore via coal-based reduction. The distribution behavior of phosphorus (i.e., the phosphorus content and the phosphorus distribution ratio in the metal, slag, and gas phases) during reduction was investigated in detail. Experimental results showed that the distribution behavior of phosphorus was strongly influenced by the reduction temperature, the reduction time, and the C/O molar ratio. A higher temperature and a longer reaction time were more favorable for phosphorus reduction and enrichment in the metal phase. An increase in the C/O ratio improved phosphorus reduction but also hindered the mass transfer of the reduced phosphorus when the C/O ratio exceeded 2.0. According to scanning electron microscopy analysis, the iron ore was transformed from an integral structure to metal and slag fractions during the reduction process. Apatite in the ore was reduced to P, and the reduced P was mainly enriched in the metal phase. These results suggest that the proposed method may enable utilization of high-phosphorus-content oolitic iron ore resources.

  3. The phosphorus cost of agricultural intensification in the tropics.

    PubMed

    Roy, Eric D; Richards, Peter D; Martinelli, Luiz A; Coletta, Luciana Della; Lins, Silvia Rafaela Machado; Vazquez, Felipe Ferraz; Willig, Edwin; Spera, Stephanie A; VanWey, Leah K; Porder, Stephen

    2016-01-01

    Agricultural intensification in the tropics is one way to meet rising global food demand in coming decades(1,2). Although this strategy can potentially spare land from conversion to agriculture(3), it relies on large material inputs. Here we quantify one such material cost, the phosphorus fertilizer required to intensify global crop production atop phosphorus-fixing soils and achieve yields similar to productive temperate agriculture. Phosphorus-fixing soils occur mainly in the tropics, and render added phosphorus less available to crops(4,5). We estimate that intensification of the 8-12% of global croplands overlying phosphorus-fixing soils in 2005 would require 1-4 Tg P yr(-1) to overcome phosphorus fixation, equivalent to 8-25% of global inorganic phosphorus fertilizer consumption that year. This imposed phosphorus 'tax' is in addition to phosphorus added to soils and subsequently harvested in crops, and doubles (2-7 Tg P yr(-1)) for scenarios of cropland extent in 2050(6). Our estimates are informed by local-, state- and national-scale investigations in Brazil, where, more than any other tropical country, low-yielding agriculture has been replaced by intensive production. In the 11 major Brazilian agricultural states, the surplus of added inorganic fertilizer phosphorus retained by soils post harvest is strongly correlated with the fraction of cropland overlying phosphorus-fixing soils (r(2) = 0.84, p < 0.001). Our interviews with 49 farmers in the Brazilian state of Mato Grosso, which produces 8% of the world's soybeans mostly on phosphorus-fixing soils, suggest this phosphorus surplus is required even after three decades of high phosphorus inputs. Our findings in Brazil highlight the need for better understanding of long-term soil phosphorus fixation elsewhere in the tropics. Strategies beyond liming, which is currently widespread in Brazil, are needed to reduce phosphorus retention by phosphorus-fixing soils to better manage the Earth

  4. Redox chemistry in the phosphorus biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-10-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine-PH3-a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C-P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10-20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.

  5. The Cytotoxicity of Layered Black Phosphorus.

    PubMed

    Latiff, Naziah Mohamad; Teo, Wei Zhe; Sofer, Zdenek; Fisher, Adrian C; Pumera, Martin

    2015-09-28

    Black phosphorus (BP), the latest addition to the family of 2D layered materials, has attracted much interest owing to potential optoelectronics, nanoelectronics, and biomedicine applications. Little is known about its toxicity, such as whether it could be as toxic as white phosphorus. In response to the possibility of BP employment into commercial products and biomedical devices, its cytotoxicity to human lung carcinoma epithelial cells (A549) was investigated. Following a 24 h exposure of the cells with different BP concentrations, cell viability assessments were conducted using water-soluble tetrazolium salt (WST-8) and methylthiazolyldiphenyltetrazolium bromide (MTT) assays. The toxicological effects were found to be dose-dependent, with BP reducing cell viabilities to 48% (WST-8) and 34% (MTT) at 50 μg mL(-1) exposure. This toxicity was observed to be generally intermediate between that of graphene oxides and exfoliated transition-metal dichalcogenides (MoS2, WS2, WSe2). The relatively low toxicity paves the way to utilization of black phosphorus. PMID:26291565

  6. Where is the Phosphorus in Cometary Volatiles?

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; de Almeida, Amaury

    2015-08-01

    Phosphorus is a key element in all living organisms but its role in life's origin is not well understood. Phosphorus-bearing compounds have been observed in space, are ubiquitous in meteorites in small quantities, and have been detected as part of the dust component in comets Halley and Wild 2. However, searches for P-bearing species in the gas phase in cometary comae have been unsuccessful. We present results of the first quantitative study of P-bearing molecules in comets to identify likely species containing phosphorus. We found reaction pathways of gas-phase and photolytic chemistry for simple P-bearing molecules likely to be found in comets and important for prebiotic chemistry. We hope to aid future searches for this important element, especially the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko, possibly shedding light on issues of comet formation (time and place) and understanding prebiotic to biotic evolution of life.Acknowledgements: We greatly appreciate support from the NSF Planetary Astronomy Program under Grant No. 0908529 and the Instituto de Astronomia, Geofísica e Ciências Atmosféricas at the University of São Paulo.

  7. Redox chemistry in the phosphorus biogeochemical cycle

    PubMed Central

    Pasek, Matthew A.; Sampson, Jacqueline M.; Atlas, Zachary

    2014-01-01

    The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine—PH3—a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C−P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10–20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis. PMID:25313061

  8. Attaining 2D Black Phosphorus and Investigations into Floating-Electrode Dielectric Barrier Discharge Treatment of Solutions

    NASA Astrophysics Data System (ADS)

    Smith, Joshua Benjamin

    -ray diffraction, transmission electron microscopy, and Raman spectroscopy have confirmed successful growth of 2D black phosphorus from red phosphorus thin films for potential uses in 2D semiconductor applications. Additionally, this work discusses some of the chemistry occurring in solution as a result of nonthermal plasma treatment from a floating-electrode dielectric barrier discharge (FE-DBD) configuration. Nonthermal plasma generation allows for the treatment of heat sensitive materials. This has opened up the field to numerous clinical applications of nonthermal plasma treatment including sterilization and wound healing along with potentials in dentistry, dermatology, and even food industries. FE-DBD plasma treatment of water was found to provide a wide-range antimicrobial solution that remained active following 2 years of aging. This plasma-treated water was found to generate a number of ROS/RNS and the formation of these components was studied and verified with UV/Vis and ESR spectroscopy. Enhanced effects were observed when cell culture medium was plasma treated, suggesting the formation of additional reactive species from the plasma treatment of a variety of biomolecules. It is essential to understand these effects for a number of reasons. The possibility to generate a wide range of antimicrobial solutions from air, water, and basic biomolecules could provide a solution for those bacteria that have developed antibiotic resistances. Simultaneously, information into the reaction mechanisms of this FE-DBD plasma treatment can be investigated. All of the applications mentioned above involve complex networks of basic biomolecules, from skin tissue to bacteria cell walls. This work analyzes the effects of plasma treatment on several biomolecule solutions and simultaneously takes aim at understanding some of the potential mechanisms of plasma treatment. Studies were carried out using NMR and GC/MS. This information was used to investigate the possible targeted areas for FE

  9. Assessment of conservation easements, total phosphorus, and total suspended solids in West Fork Beaver Creek, Minnesota, 1999-2012

    USGS Publications Warehouse

    Christensen, Victoria G.; Kieta, Kristen A.

    2014-01-01

    This study examined conservation easements and their effectiveness at reducing phosphorus and solids transport to streams. The U.S. Geological Survey cooperated with the Minnesota Board of Water and Soil Resources and worked collaboratively with the Hawk Creek Watershed Project to examine the West Fork Beaver Creek Basin in Renville County, which has the largest number of Reinvest In Minnesota land retirement contracts in the State (as of 2013). Among all conservation easement programs, a total of 24,218 acres of agricultural land were retired throughout Renville County, and 2,718 acres were retired in the West Fork Beaver Creek Basin from 1987 through 2012. Total land retirement increased steadily from 1987 until 2000. In 2000, land retirement increased sharply because of the Minnesota River Conservation Reserve Enhancement Program, then leveled off when the program ended in 2002. Streamflow data were collected during 1999 through 2011, and total phosphorus and total suspended solids data were collected during 1999 through 2012. During this period, the highest peak streamflow of 1,320 cubic feet per second was in March 2010. Total phosphorus and total suspended solids are constituents that tend to increase with increases in streamflow. Annual flow-weighted mean total-phosphorus concentrations ranged from 0.140 to 0.759 milligrams per liter, and annual flow-weighted mean total suspended solids concentrations ranged from 21.3 to 217 milligrams per liter. Annual flow-weighted mean total phosphorus and total suspended solids concentrations decreased steadily during the first 4 years of water-quality sample collection. A downward trend in flow-weighted mean total-phosphorus concentrations was significant from 1999 through 2008; however, flow-weighted total-phosphorus concentrations increased substantially in 2009, and the total phosphorus trend was no longer significant. The high annual flow-weighted mean concentrations for total phosphorus and total suspended solids

  10. Closing the Phosphorus Loop by Recovering Phosphorus From Waste Streams With Layered Double Hydroxide Nanocomposites and Converting the Product into an Efficient Fertilizer

    NASA Astrophysics Data System (ADS)

    Yan, H.; Shih, K.

    2015-12-01

    Phosphorus (P) recovery has been frequently discussed in recent decades due to the uncertain availability and uneven distribution of global phosphate rock reserves. Sorption technology is increasingly considered as a reliable, efficient and environmentally friendly P removal method from aqueous solution. In this study, a series of Mg-Al-based layered double hydroxide nanocomposites and their corresponding calcined products were fabricated and applied as phosphate adsorbents. The prepared samples were with average size at ~50 nm and self-assembled into larger particles in irregular shapes. The results of batch adsorption experiments demonstrated that calcination significantly enhanced the adsorption ability of LDHs for phosphorus, and the maximum adsorption capacity of calcined Mg-Al-LDH was as high as 100.7 mg-P/g. Furthermore, incorporation of Zr4+ and La3+ into LDH materials increases the sorption selectivity as well as sorption amount of phosphorus in LDHs, which was confirmed by experiments operated in synthetic human urine. For the first time ammonia (NH4OH) and potassium hydroxide (KOH) solutions were employed to desorb the P-loaded LDH. Identification of solids derived from two eluting solutions showed that struvite (MgNH4PO4•6H2O, MAP) was precipitated in ammonia solution while most phosphate was desorbed into liquid phase in KOH system without crystallization of potassium struvite (MgKPO4•6H2O) due to its higher solubility. Quantitative X-ray diffraction technique was used to determine struvite contents in obtained solids and the results revealed that ~ 30% of adsorbed P was transferred into struvite form in the sample extracted by 0.5M NH4OH. Leaching tests suggested that the phosphorus releasing kinetics of ammonia treated LDH was comparable to that of pure struvite product, indicating that postsorption Mg-Al-LDH desorbed with ammonia could serve as a slow-releasing fertilizer in agriculture (see Figure 1).

  11. Impact of sulfate and chloride on sediment phosphorus release in the Yangtze Estuary Reservoir, China.

    PubMed

    Jin, Xiaodan; He, Yiliang; Zhang, Bo; Hassan, Younas; George, Kirumba

    2013-01-01

    The impact of sulfate (SO4(2-)) and chloride (Cl(-)) on phosphorus (P) release from sediment in the drinking water reservoir of Yangtze River Estuary was studied systematically. A significant correlation between sodium (Na(+)), Cl(-), SO4(2-) and total P was found, suggesting that P was directly or indirectly associated with these ions. SO4(2-) and Cl(-) were important factors that had an impact on P release from the sediment. The results showed that both sulfate and chloride enhanced phosphorus release from sediment. In the sulfate treatment, the decrease of organic phosphorus (OP) suggested that the mineralization of OP enhanced P release from sediment. Phosphonate was the main factor affecting the P release under sulfate condition. In chloride treatment, the sediment composition of iron (Fe), aluminum (Al), calcium (Ca) and magnesium (Mg) increased. The P fractions of Fe/Al-P, Ca-P and OP in sediment also increased. However, the increase of P was unstable after chloride treatment and was easy to release under disturbance. In this study, it was observed that sulfate and chloride could increase the risk of eutrophication in the Yangtze River Estuary drinking water reservoir. PMID:23579829

  12. Phosphorus, a key to life on the primitive earth

    NASA Technical Reports Server (NTRS)

    Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.

    1977-01-01

    The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.

  13. Pigs expressing salivary phytase produce low-phosphorus manure.

    PubMed

    Golovan, S P; Meidinger, R G; Ajakaiye, A; Cottrill, M; Wiederkehr, M Z; Barney, D J; Plante, C; Pollard, J W; Fan, M Z; Hayes, M A; Laursen, J; Hjorth, J P; Hacker, R R; Phillips, J P; Forsberg, C W

    2001-08-01

    To address the problem of manure-based environmental pollution in the pork industry, we have developed the phytase transgenic pig. The saliva of these pigs contains the enzyme phytase, which allows the pigs to digest the phosphorus in phytate, the most abundant source of phosphorus in the pig diet. Without this enzyme, phytate phosphorus passes undigested into manure to become the single most important manure pollutant of pork production. We show here that salivary phytase provides essentially complete digestion of dietary phytate phosphorus, relieves the requirement for inorganic phosphate supplements, and reduces fecal phosphorus output by up to 75%. These pigs offer a unique biological approach to the management of phosphorus nutrition and environmental pollution in the pork industry. PMID:11479566

  14. Benthic phosphorus regeneration in the Potomac River Estuary

    USGS Publications Warehouse

    Callender, E.

    1982-01-01

    The flux of dissolved reactive phosphate from Potomac riverine and estuarine sediments is controlled by processes occurring at the water-sediment interface and within surficial sediment. In situ benthic fluxes (0.1 to 2.0 mmoles m-2 day-1) are generally five to ten times higher than calculated diffusive fluxes (0.020 to 0.30 mmoles m-2 day-1). The discrepancy between the two flux estimates is greatest in the transition zone (river mile 50 to 70) and is attributd to macrofaunal irrigation. Both in situ and diffusive fluxes of dissolved reactive phosphate from Potomac tidal river sediments are low while those from anoxic lower estuarine sediments are high. The net accumulation rate of phosphorus in benthic sediment exhibits an inverse pattern. Thus a large fraction of phosphorus is retained by Potomac tidal river sediments, which contain a surficial oxidized layer and oligochaete worms tolerant of low oxygen conditions, and a large fraction of phosphorus is released from anoxic lower estuary sediments. Tidal river sediment pore waters are in equilibrium with amorphous Fe (OH)3 while lower estuary pore waters are significantly undersaturated with respect to this phase. Benthic regeneration of dissolved reactive phosphorus is sufficient to supply all the phosphorus requirements for net primary production in the lower tidal river and transition-zone waters of the Potomac River Estuary. Benthic regeneration supplies approximately 25% as much phosphorus as inputs from sewage treatment plants and 10% of all phosphorus inputs to the tidal Potomac River. When all available point source phosphorus data are put into a steady-state conservation of mass model and reasonable coefficients for uptake of dissolved phosphorus, remineralization of particulate phosphorus, and sedimentation of particulate phosphorus are used in the model, a reasonably accurate simulation of dissolved and particulate phosphorus in the water column is obtained for the summer of 1980. ?? 1982 Dr W. Junk

  15. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  16. Phosphorus in Hawaiian kikuyugrass pastures and potential phosphorus release to water.

    PubMed

    Mathews, B W; Carpenter, J R; Sollenberger, L E; Tsang, S

    2005-01-01

    Pasture systems in Hawaii are based primarily on kikuyugrass (Pennisetum clandestinum Hochst. ex Chiov.). Relationships among kikuyugrass P concentration, animal P requirements, and various soil P determinations are needed to help identify source areas for implementing pasture management strategies to limit P loss via overland flow. A total of 51 rotationally stocked kikuyugrass pastures (>20 yr old) with contrasting soil chemical properties were sampled. A satisfactory predictive relationship between modified-Truog (MT)-extractable phosphorus (P(MT)) and dissolved (<0.45-mum pore diameter), molybdate-reactive phosphorus (DRP) desorbed from soil in a water extract (DRP(WE)) was found when 0- to 4-cm-depth data for the soil orders with medium to high DRP(WE) (two Mollisols and an Inceptisol) were pooled separately from those with low DRP(WE) (five Andisols, three Ultisols, and an Oxisol). The oxalate phosphorus saturation index (PSI(ox)) procedure was the best predictor of DRP(WE) across soil orders when oxalate-extractable molybdate-reactive phosphorus (RP(ox)) was used to calculate PSI(ox) (PSI(ox)RP) rather than when total oxalate-extractable phosphorus (TP(ox)) was used (PSI(ox)TP). There was little DRP(WE) until PSI(ox)RP exceeded 6% or PSI(ox)TP exceeded 8%. A more empirical dilute-acid phosphorus saturation index (PSI(MT)) was also calculated using P(MT) and MT-extractable iron (Fe(MT)) and aluminum (Al(MT)). The PSI(MT) procedure showed some utility in predicting DRP(WE), was positively related to the PSI(ox) procedures, and can be more readily performed in agronomic soil testing laboratories than PSI(ox). The present research suggests that while Hawaiian kikuyugrass pastures tend to be sufficient to high in forage P, potential soil P release to water only appeared to be a possible environmental concern for the Mollisol and Inceptisol sites. PMID:15942040

  17. Understanding soil phosphorus systems from emergent phosphorus behaviour in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Ockenden, Mary; Beven, Keith; Collins, Adrian; Evans, Bob; Falloon, Pete; Hiscock, Kevin; Hollaway, Michael; Kahana, Ron; Macleod, Kit; Ross, Kirsty; Wearing, Catherine; Withers, Paul; Zhou, Jian; Benskin, Clare; Burke, Sean; EdenDTC Team; Haygarth, Phil

    2015-04-01

    Knowledge of soil phosphorus (P) sources and pathways is essential for predicting P transfers to water in the future, when drivers of P biogeochemistry may change under climate and land use change. However, the understanding of high frequency phosphorus dynamics has been limited by data of insufficient temporal resolution. This study shows how observing the patterns shown by headwater catchment systems can help to improve understanding of soil system science. The study describes analysis of 15 minute resolution data of rainfall and river discharge, and 30 minute resolution data of total phosphorus (TP) and total reactive phosphorus (TRP) concentrations from a sub-basin of the River Eden catchment, Cumbria, UK, collected by the Defra Demonstration Test Catchment Programme. The analysis focussed on extreme events and event sequences, which are predicted to occur more frequently under a changing climate, such as periods of drying followed by heavy rainfall. Events were classified according to exceedance of discharge and P concentration thresholds (Type 1 = high discharge, low TP; Type 2 = high discharge, high TP; Type 3 = low discharge, high TP). More than 75% of the TP load was transported during the 5% of the time with highest river discharge, with more than 69% of the TP load transferred in Type 2 events (< 4% in Type 1 events). High phosphorus concentrations in the river were also recorded during rainfall events following a dry period, when there was little response in discharge (Type 3, which accounted for less than 2% of total load). A lag of around one hour between peak TP and peak TRP concentrations indicated different pathways, with TP influenced by quickly mobilised sources, such as a readily available soil P pool, and fast pathways. In contrast, TRP showed a slower response indicating the presence of slower sub-surface pathways. Improved understanding of these processes will help in understanding the importance and availability of soil P pools in order to

  18. Resource recovery from wastewater: application of meta-omics to phosphorus and carbon management.

    PubMed

    Sales, Christopher M; Lee, Patrick K H

    2015-06-01

    A growing trend at wastewater treatment plants is the recovery of resources and energy from wastewater. Enhanced biological phosphorus removal and anaerobic digestion are two established biotechnology approaches for the recovery of phosphorus and carbon, respectively. Meta-omics approaches (meta-genomics, transcriptomics, proteomics, and metabolomics) are providing novel biological insights into these complex biological systems. In particular, genome-centric metagenomics analyses are revealing the function and physiology of individual community members. Querying transcripts, proteins and metabolites are emerging techniques that can inform the cellular responses under different conditions. Overall, meta-omics approaches are shedding light into complex microbial communities once regarded as 'blackboxes', but challenges remain to integrate information from meta-omics into engineering design and operation guidelines. PMID:25827118

  19. Effect of Nitrogen Additives on Flame Retardant Action of Tributyl Phosphate: Phosphorus – Nitrogen Synergism

    SciTech Connect

    Gaan, Sabyasachi; Sun, Gang; Hutches, Katherine; Engelhard, Mark H.

    2008-01-01

    The effect of nitrogen additives like urea, guanidine carbonate and melamine formaldehyde on the flame retardant efficacy of tributyl phosphate (TBP) has been investigated. From the LOI tests on treated cotton it is clear that the nitrogen additives have synergistic action. Estimation of activation energy of decomposition of treated cotton indicated that nitrogen additives enhance the thermal stability during the burning process. SEM pictures of chars formed after LOI test showed the formation of protective polymeric coating on the surface. The surface of chars formed were evaluated using FTIR-ATR and XPS analysis which showed that the coating was composed of Phosphorus-Nitrogen-Oxygen containing species. Formation of this coating during the burning process could lead to the synergistic interaction of phosphorus and nitrogen. Based on the experimental data we have further proposed several reaction mechanisms which could contribute to synergistic action and formation of protective coating on the surface of char.

  20. Method of removing and detoxifying a phosphorus-based substance

    DOEpatents

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  1. NMR and mass spectrometry of phosphorus in wetlands

    USGS Publications Warehouse

    El-Rifai, H.; Heerboth, M.; Gedris, T.E.; Newman, S.; Orem, W.; Cooper, W.T.

    2008-01-01

    There is at present little information on the long-term stability of phosphorus sequestered in wetlands. Phosphorus sequestered during high loading periods may be relatively unstable and easily remobilized following changes in nutrient status or hydrological regime, but the chemical forms of sequestered phosphorus that do remobilize are largely unknown at this time. A lack of suitable analytical techniques has contributed to this dearth of knowledge regarding the stability of soil organic phosphorus. We analysed phosphorus in soils from the 'head' of Rescue Strand tree island and an adjacent marsh in the Florida Everglades by 31P nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Tree islands are important areas of biodiversity within the Everglades and offer a unique opportunity to study phosphorus sequestration because they are exposed to large phosphorus loads and appear to be natural nutrient sinks. The 31P NMR profiling of extracts from surface and sediment samples in the tree island indicates that phosphorus input to Rescue Strand tree island soils is mostly in the form of inorganic ortho-phosphate and is either refractory when deposited or rapidly recycled by the native vegetation into a stable phosphorus pool largely resistant to re-utilization by plants or microbes. Mass spectrometry revealed the presence of inositol hexakisphosphate, a common organic monophosphate ester not previously observed in Everglades' soils. ?? 2008 The Authors.

  2. Determination of phosphorus in hypereutectic aluminium-silicon alloys.

    PubMed

    Mukai, K

    1972-04-01

    A reproducible method is described for determination of small amounts of phosphorus (from 0.0005% to 0.02%) in hypereutectic aluminium-silicon complex alloys. The method permits the separate determination of phosphorus in acid-soluble and acid-insoluble fractions. Phosphomolybdate is extracted with n-butanol-chloroform solvent mixture and back-extracted with a btannous chloride reducing solution. The phosphorus content of a sample cut into small pieces decreases during storage; loss of phosphorus is negligible on acid dissolution under oxidizing conditions. PMID:18961077

  3. Determination of phosphorus in natural waters: A historical review.

    PubMed

    Worsfold, Paul; McKelvie, Ian; Monbet, Phil

    2016-04-28

    The aim of this paper is to introduce a virtual special issue that reviews the development of analytical approaches to the determination of phosphorus species in natural waters. The focus is on sampling and sample treatment, analytical methods and quality assurance of the data. The export of phosphorus from anthropogenic activities (from diffuse and point sources) can result in increased primary production and eutrophication, and potentially the seasonal development of toxic algal blooms, which can significantly impact on water quality. Therefore the quantification of phosphorus species in natural waters provides important baseline data for studying aquatic phosphorus biogeochemistry, assessing ecosystem health and monitoring compliance with legislation. PMID:27046205

  4. Water quality criteria for white phosphorus: Final report. [Contains glossary

    SciTech Connect

    Davidson, K.A.; Hovatter, P.S.; Sigmon, C.F.

    1987-08-01

    Data obtained from a review of the literature concerning the environmental fate and aquatic and mammalian toxicity of white phosphorus are presented to derive Water Quality Criteria for the protection of humans and aquatic organisms and their uses. Laboratory and field studies indicate that white phosphorus is quite toxic to aquatic organisms, with fish being more sensitive than macroinvertebrates. Bioaccumulation is rapid and extensive, with the greatest uptake in the liver and muscle of fish and the hepatopancreas of lobster; however, depuration occurs within 7 days postexposure. Other toxic effects to aquatic organisms include cardiovascular and histological changes. Field studies indicate that effluents containing white phosphorus adversely affect receiving aquatic systems by decreasing diversity and increasing mortality of select species. Acute exposure to white phosphorus causes similar effects in laboratory animals and humans. In the absence of medical treatment, the estimated minimal lethal dose of white phosphorus in humans is 100 mg (1.4 mg/kg). Following ingestion, organs damaged by white phosphorus are the gastrointestinal tract, liver, kidney, brain, and cardiovascular system. Chronic and subchronic exposure of laboratory animals to white phosphorus by oral or subcutaneous routes results in reduced growth, reduced survival at high does, increased survival at low doses, and bone pathology. Humans chronically exposed to white phosphorus in the occupational environment develop a specific lesion (different from that observed in laboratory animals) called phosphorus necrosis of the jawbone or ''phossy jaw.'' 139 refs., 1 fig., 18 tabs.

  5. Phosphorus removal from domestic wastewater by Echinodorus cordifolius L.

    PubMed

    Torit, Jirawan; Siangdung, Wipawan; Thiravetyan, Paitip

    2012-01-01

    This study was to use the plants to remove phosphorus from domestic wastewater which contained high phosphorus concentration. Six higher plant species such as Crinum asiaticum L., Echinodorus cordifolius L., Spathiphyllum clevelandii Schott, Rhizophora apiculata Blume, Thalia dealbata J.fraser., Heliconia psittacorum L.f. were screened for phosphorus removal. Plants were grown in the domestic wastewater and the remaining phosphorus-phosphate concentration in the systems was determined. The results indicated that among studied plants, Echinodorus cordifolius L. was the best for phosphorus removal. Using this plant will improve the quality of domestic wastewater which contained excess phosphorus concentration and induced eutrophication. The relationship between the plants, microorganisms, and soil in the system were also investigated. In this system, adsorption by soil was the major role for phosphorus removal (71%), followed by E. cordifolius (16%), microorganisms in domestic wastewater (7%), and microorganisms in soil (6%). These results indicated the ability of E. cordifolius to remove phosphorus which was superior to that of the microorganisms in the system. Moreover, the rapid phosphorus removal was concomitant to the growth, photosynthesis activity and biomass of E. cordifolius grown in domestic wastewater. The C:N:P ratio of E. cordifolius tissue in the system indicated that elements were taken up from the wastewater. From these results, the suitability of E. cordifolius for domestic wastewater treatment was confirmed. PMID:22416873

  6. The composition, dynamics, and ecological significance of soil organic phosphorus

    NASA Astrophysics Data System (ADS)

    Turner, B. L.

    2011-12-01

    Studies of plant nutrition often consider only inorganic phosphate to be biologically available, yet organic phosphorus is abundant in soils and its turnover can account for the majority of the phosphorus taken up by natural vegetation. Soil organic phosphorus occurs in a variety of chemical forms, including phosphomonoesters, phosphodiesters, phosphonates, and organic polyphosphates, which can be determined conveniently by alkaline extraction and solution phosphorus-31 nuclear magnetic resonance spectroscopy. The inositol phosphates are of particular interest, because they are widespread in soils, yet only one of the four stereoisomers of inositol hexakisphosphate present in soils has been detected elsewhere in the environment. The mobility and bioavailability of the various organic phosphorus compounds differs depending on factors such as their interaction with metal oxide surfaces, which leads to a disparity between the forms of organic phosphorus entering the soil and the composition of the stable soil organic phosphorus pool. During long-term pedogenesis, organic phosphorus accumulates in the early nitrogen-limited stages of ecosystem development, but then declines as phosphorus-limitation strengthens in old soils. At the same time, the composition of the organic phosphorus varies; for example, the inositol phosphates decline to become a small proportion of the total organic phosphorus in old soils, presumably indicating their potential availability under conditions of strong phosphorus limitation. Plants have evolved a variety of mechanisms to acquire phosphorus from organic compounds, including the synthesis of phosphatase enzymes and the secretion of organic anions. Phosphatase activity is linked strongly to soil organic phosphorus concentrations, as indicated by broad surveys of tropical forest soils, fertilization experiments, and patterns observed during long-term ecosystem development. Organic anion secretion is often linked to inorganic phosphate

  7. Phosphorus biogeochemistry in alpine ecosystems of the Northern Caucasus

    NASA Astrophysics Data System (ADS)

    Makarov, Mikhail; Vaganov, Ivan

    2010-05-01

    The study of phosphorus biogeochemistry in an alpine landscape of the Northern Caucasus has been spent in the Teberda Biosphere Reserve on the experimental plot with total area of 3.9 ha (150 m wide, 260 m long, altitude differences 100 m) and on the plots of long-term experiment on studying of nutrients application influence on alpine ecosystems located in the eastern slope of Mt. Malaya Khatipara. Results of studying of phosphorus concentrations and store in alpine soils and plant phytomass indicated differences for diverse alpine ecosystems along geochemical gradient. Although biological accumulation of phosphorus in the upper part of soil profiles was general characteristic of all ecosystems, it is shown that geochemical redistribution of phosphorus from eluvial to accumulative parts of a landscape is the main thing in the course of phosphorus and its labile compounds accumulation in soils of the alpine communities of accumulative habitats. In turn, biological accumulation of phosphorus in soils of different alpine ecosystems redistributes an element in a soil profile with different intensity depending on capacity of biological cycle. The biological factor causes also prevalence of organic compounds among of phosphorus migrating forms in modern soils and in a landscape. As inorganic (0.01-0.02 mg/L) as organic (up to 0.17 mg/L) phosphorus leaching in the eluvial soils was from 2 to 5 times lower compared with soils of accumulative positions in a landscape. Soil phosphorus fractionation on organic and inorganic compounds of different geochemical mobility and biological availability indicated differences of phosphorus state for diverse alpine ecosystems along the experimental plot. The minor proportion of 0.5 M NaHCO3 (pH 8.5) extractable labile organic and inorganic phosphates was general characteristic of all studied soils, although especially low proportion of labile phosphorus compounds was typical for lichen heath soil, while soils of snow-bed communities

  8. Ascorbic acid, calcium, phosphorus and magnesium intake variations: effects on calcium, phosphorus and magnesium utilization by human adults

    SciTech Connect

    Kies, C.; Brennan, M.A.; Parks, S.K.; Stauffer, D.J.; Wang, H.Y.; Young, S.F.; Fox, H.M.

    1986-03-01

    The objective of the study was to determine the effects of feeding two levels of ascorbic acid, calcium, phosphorus, magnesium and ascorbic acid on the apparent utilization of calcium, phosphorus and magnesium by healthy, human adult subjects. During 4 randomly-arranged experimental periods of 7 days each, a laboratory-controlled diet alone or with supplements of ascorbic acid, dicalcium phosphate or magnesium oxide was fed to the 18 subjects. Results indicated that ascorbic acid supplementation tended to reduce urinary phosphorus loss and to slightly increase fecal phosphorus loss so that overall phosphorus balances became more positive. Conversely, under these conditions, urinary calcium losses were little affected but fecal calcium losses were increased resulting in an overall decrease in calcium balance with ascorbic acid supplementation. Ascorbic acid supplementation resulted in decreased urine and fecal losses of magnesium and more positive magnesium balances. Magnesium supplementation resulted in more positive calcium and phosphorus balances as did calcium phosphate supplementation on magnesium balance.

  9. [Impacts of Sediment Disturbance on the Distribution of Suspended Particle Size and Phosphorus].

    PubMed

    Guo, Jun-rui; Li, Da-peng; Liu, Yan-jian

    2016-04-15

    To clarify the influence of the sediments disturbance on the particle size distribution of suspended solids, and the influence of particle distribution on the forms of dissolved phosphorous in the overlaying water, the sediments and overlying water from Meiliang Bay, Taihu Lake, were used to conduct the indoor simulation experiments to investigate the particle size of suspended solids according to the Ubbelobde particle size criteria and the distribution of phosphorus compounds in the overlying water under the disturbance circumstances. The results indicated that the average proportions of small (0-10 microm), middle (10-20 microm) and large (> or = 20 microm) diameter particles presented different trends of increasing, decreasing and staying stable, respectively. It indicated the possible transformation of particle size of suspended solids from small-middle diameter to large diameter. In addition, the data of DTP/TP and DIP/TP showed a periodical variation with the corresponding periodical variety of particle diameter in suspended solids, while ns obvious variety of DTP and DIP was observed. It suggested that disturbance enhanced the ability of phosphorus immobilization by suspended solids. On the other band, the percentages of DTP in TP and DIP in TP were 19% and 13% under the disturbance, respectively, and they were obviously lower than those (DTP/TP, 80% and DIP/TP, 69% ) in the control. It indicated that tbs transformation of particle size of suspended solids from small-middle diameter to large diameter due to disturbance was in favor of tbe adsorption and sedimentation of dissolved phosphorus. Accordingly, the formation of particle phosphorus was enhanced. Therefore, it delayed the development of eutrophication in the water body. PMID:27548964

  10. Numerical Simulation of Phosphorus Removal from Silicon by Induction Vacuum Refining

    NASA Astrophysics Data System (ADS)

    Zheng, Songsheng; Engh, Thorvald Abel; Tangstad, Merete; Luo, Xue-Tao

    2011-08-01

    Phosphorus can be expected to evaporate preferentially from silicon melt by induction vacuum refining (IVR). In the present study, on the assumption of phosphorus evaporating from silicon melt as gas species P and P 2, a numerical model of phosphorus removal from silicon by IVR was developed. The factors affecting phosphorus removal in decreasing order are temperature, chamber pressure, geometry of silicon melt, holding time, and original phosphorus concentration. Calculated phosphorus removal shows good agreement with the present experimental data.

  11. [Modelling nitrogen and phosphorus transfer in Potamogeton malaianus Miq. decompostion].

    PubMed

    Han, Hong-Juan; Zhai, Shui-Jing; Hu, Wei-Ping

    2010-06-01

    Potamogeton malaianus Miq. is one of the dominant species of submerged aquatic vegetations in Lake Taihu, China. The decomposition of its debris and metabolic detritus is an important part of nutrients cycling in the lake water. Nitrogen and phosphorus transfer model in P. malaianus Miq. decomposition has been set up based on an indoor P. malaianus Miq. decomposition experiment to quantitatively characterize the decomposition process. It mainly focuses on the dissolving process of inorganic nitrogen and phosphorus in P. malaianus Miq., the degradation process of its organic nitrogen and phosphorus, and the boundary's adsorbing process of nitrogen and phosphorus in water. There are eight state variables in the model, including inorganic and organic nitrogen in P. malaianus Miq., inorganic and organic phosphorus in P. malaianus Miq., total nitrogen and total phosphorus in water, and nitrogen and phosphorus adsorbed on container boundary. The model calibration showed a good accordance with the observed results of P. malaianus Miq. decomposition experiment. The dissolve rates of inorganic nitrogen and phosphorus in P. malaianus Miq. are 0.04 d(-1) and 0.06 d(-1) respectively. And the decompose rates of these two state variables are 0.005 25 d(-1) and 0.010 44 d(-1) respectively. Model outputs show that 6.7% nitrogen and 35.8% phosphorus can release from P. malaianus Miq. in the former 5 days. Phosphorus release is prior to nitrogen due to the bigger inorganic/organic ratio of phosphorus than that of nitrogen in P. malaianus Miq., Decomposition of P. malaianus Miq. could be affected by water temperature, and the affection is slight when water temperature is lower according to the model. The model also showed that P. malaianus Miq. decomposition process has influences on water quality in the former days, which can be eliminated by adsorbing process later. PMID:20698260

  12. Influence of soil phosphorus and manure on phosphorus leaching in Swedish topsoils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Sweden, subsurface transport of phosphorus (P) represents the primary pathway of concern to surface water quality. While strong relationships have been consistently observed between P in surface runoff and soil test P, there have been mixed findings linking P in leachate with soil test P. To expl...

  13. Effect of land application of phosphorus-saturated gypsum on soil phosphorus in a laboratory incubation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural drainage ditches can deliver high loads of phosphorus (P) to surface water. Installation of filter structures containing P sorbing materials (PSMs), including gypsum, is an emerging practice that has shown promise to reduce these P loads. The objective of this study was to evaluate what...

  14. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    PubMed

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. PMID:26113414

  15. Mineralizable phosphorus, nitrogen, and carbon relationships in dairy manure at various carbon-to-phosphorus ratios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal manure contains all major elements required for plant and microorganisms’ uptake and assimilation for growth, namely, phosphorus (P), nitrogen, and carbon. Information about interactions between transformations of nutrients and the turnover of P forms in dairy manure, is essential to accurat...

  16. WHAT CONTROLS WATER SOLUBLE PHOSPHORUS IN BROILER LITTER: AVAILABLE PHOSPHORUS, PHYTASE OR CALCIUM?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soluble phosphorus (P) in litter and manure is important from an environmental perspective as it is related to potential off site P losses following land application. The effects of amending dietary P, calcium (Ca), and phytase on manure and litter P excretion in broilers were investigated. A 3 x 3 ...

  17. Estimating Phosphorus Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source pollution of fresh waters by phosphorus (P) is a concern because it contributes to accelerated eutrophication. Qualitative P Indexes that estimate the risk of field-scale P loss have been developed in the USA and Europe. However, given the state of the science concerning agricultura...

  18. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated ten soils from six states in United States to determine the relationship between potentiometric titration derived soil surface charge and Phosphorus-31 (P) nuclear magnetic resonance (NMR) speciation with the concentration of water-extractable P (WEP). The surface charge value at the...

  19. Process for improving phosphorus-vanadium oxide and phosphorus-vanadium-co-metal oxide catalysts

    SciTech Connect

    Edwards, R.C.

    1987-10-20

    A process is described for the improvement of a vanadium-phosphorus-oxygen catalyst having a phosphorus to vanadium atomic ratio of about 2:1 to about 0.8:1 which catalyst is present on a catalyst bed having a portion therof containing an initial exotherm of reaction. The catalyst is suitable for use in the manufacture of maleic anhydride from a feed gas stream comprising C/sub 4/ hydrocarbons, benzene, or butane which process comprises: applying to the catalyst bed, simultaneously with introduction of the feed gas stream thereon, water and a phosphorus compound in an amount sufficient to initiate (a) deactivation of the portion of the catalyst containing the initial exotherm, and (b) formation of a new exotherm downstream in the catalyst bed from the initial exotherm, and thereafter reducing or discontinuing application of the phosphorus compound at a point in time when the initial exotherm portion of the catalyst bed is still undergoing deactivation, thereby allowing the partially deactivated exotherm portion to reactivate by producing a more isothermal catalyst bed.

  20. Measuring Water-Extractable Phosphorus in Manures to Predict Phosphorus Concentrations in Runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water-extractable phosphorus (WEP) in manures can influence the risk of P losses in runoff when manures are land applied. There is some uncertainty about how WEP in manures should be determined. Information on the effects of manure sample handling before analysis on WEP values and appropriate manu...

  1. Effect of Microwave Treatment Upon Processing Oolitic High Phosphorus Iron Ore for Phosphorus Removal

    NASA Astrophysics Data System (ADS)

    Tang, Hui-Qing; Liu, Wei-Di; Zhang, Huan-Yu; Guo, Zhan-Cheng

    2014-10-01

    Influence of microwave treatment on the previously proposed phosphorus removal process of oolitic high phosphorus iron ore (gaseous reduction followed by melting separation) has been studied. Microwave treatment was carried out using a high-temperature microwave reactor (Model: MS-WH). Untreated ore fines and microwaved ore fines were then characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). Thereafter, experiments on the proposed phosphorus removal process were conducted to examine the effect of microwave treatment. Results show that microwave treatment could change the microstructure of the ore fines and has an intensification effect on its gaseous reduction by reducing gas internal resistance, increasing chemical reaction rate and postponing the occurrence of sintering. Results of gaseous reduction tests using tubular furnace indicate both microwave treatment and high reduction temperature high as 1273 K (1000 °C) are needed to totally break down the dense oolite and metallization rate of the ore fines treated using microwave power of 450 W could reach 90 pct under 1273 K (1000 °C) and for 2 hours. Results of melting separation tests of the reduced ore fines with a metallization rate of 90 pct show that, in addition to the melting conditions in our previous studies, introducing 3 pct Na2CO3 to the highly reduced ore fines is necessary, and metal recovery rate and phosphorus content of metal could reach 83 pct and 0.31 mass pct, respectively.

  2. MODIFICATION OF PHOSPHORUS EXPORT FROM A CATCHMENT BY FLUVIAL SEDIMENT PHOSPHORUS INPUTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) export from agricultural watersheds can accelerate freshwater eutrophication. Landscape-based remedial measures can reduce edge-of-field P losses. However stream channel hydraulics and fluvial sediment properties can modify the forms and amounts of P exported by the time it reaches th...

  3. Regionalized levels of soil phosphorus and phosphorus saturation in beef cattle pastures with and without grazing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available soil phosphorus (P) in various agro-ecosystems is regulated by climate, soil type, vegetation, and management practices. Available soil P in bahiagrass beef cattle pastures were compared with rhizoma peanut pastures and bermudagrass pastures. For each location, the pain plot was represente...

  4. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton

    PubMed Central

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-01-01

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition. PMID:26179843

  5. The mitochondrial malate dehydrogenase 1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton.

    PubMed

    Wang, Zhi-An; Li, Qing; Ge, Xiao-Yang; Yang, Chun-Lin; Luo, Xiao-Li; Zhang, An-Hong; Xiao, Juan-Li; Tian, Ying-Chuan; Xia, Gui-Xian; Chen, Xiao-Ying; Li, Fu-Guang; Wu, Jia-He

    2015-01-01

    Cotton, an important commercial crop, is cultivated for its natural fibers, and requires an adequate supply of soil nutrients, including phosphorus, for its growth. Soil phosporus exists primarily in insoluble forms. We isolated a mitochondrial malate dehydrogenase (MDH) gene, designated as GhmMDH1, from Gossypium hirsutum L. to assess its effect in enhancing P availability and absorption. An enzyme kinetic assay showed that the recombinant GhmMDH1 possesses the capacity to catalyze the interconversion of oxaloacetate and malate. The malate contents in the roots, leaves and root exudates was significantly higher in GhmMDH1-overexpressing plants and lower in knockdown plants compared with the wild-type control. Knockdown of GhmMDH1 gene resulted in increased respiration rate and reduced biomass whilst overexpression of GhmMDH1 gave rise to decreased respiration rate and higher biomass in the transgenic plants. When cultured in medium containing only insoluble phosphorus, Al-phosphorus, Fe-phosphorus, or Ca-phosphorus, GhmMDH1-overexpressing plants produced significantly longer roots and had a higher biomass and P content than WT plants, however, knockdown plants showed the opposite results for these traits. Collectively, our results show that GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton, owing to its functions in leaf respiration and P acquisition. PMID:26179843

  6. STELLA software as a tool for modelling phosphorus removal in a constructed wetland employing dewatered alum sludge as main substrate.

    PubMed

    Kumar, J L G; Wang, Z Y; Zhao, Y Q; Babatunde, A O; Zhao, X H; Jørgensen, S E

    2011-01-01

    A dynamic simulation model was developed for the removal of soluble reactive phosphorus (SRP) from the vertical flow constructed wetlands (VFCW) using a dynamic software program called STELLA (structural thinking, experiential learning laboratory with animation) 9.1.3 to aid in simulating the environmental nature and succession of relationship between interdependent components and processes in the VFCW system. In particular, the VFCW employed dewatered alum sludge as its main substrate to enhance phosphorus (P) immobilization. Although computer modelling of P in treatment wetland has been well studied especially in recent years, there is still a need to develop simple and realistic models that can be used for investigating the dynamics of SRP in VFCWs. The state variables included in the model are dissolved phosphorus (DISP), plant phosphorus (PLAP), detritus phosphorus (DETP), plant biomass (PLBI) and adsorbed phosphorus (ADSP). The major P transformation processes considered in this study were adsorption, plant and microbial uptake and decomposition. The forcing functions which were considered in the model are temperature, radiation, volume of wastewater, P concentration, contact time, flow rate and the adsorbent (i.e., alum sludge). The model results revealed that up to 72% of the SRP can be removed through adsorption process whereas the uptake by plants is about 20% and the remaining processes such as microbial P utilization and decomposition, accounted for 7% SRP removal based on the mass balance calculations. The results obtained indicate that the model can be used to simulate outflow SRP concentration, and it can also be used to estimate the amount of P removed by individual processes in the VFCW using alum-sludge as a substrate. PMID:21644152

  7. Excitons in atomically thin black phosphorus

    NASA Astrophysics Data System (ADS)

    Surrente, A.; Mitioglu, A. A.; Galkowski, K.; Tabis, W.; Maude, D. K.; Plochocka, P.

    2016-03-01

    Raman scattering and photoluminescence spectroscopy are used to investigate the optical properties of single layer black phosphorus obtained by mechanical exfoliation of bulk crystals under an argon atmosphere. The Raman spectroscopy, performed in situ on the same flake as the photoluminescence measurements, demonstrates the single layer character of the investigated samples. The emission spectra, dominated by excitonic effects, display the expected in-plane anisotropy. The emission energy depends on the type of substrate on which the flake is placed due to the different dielectric screening. Finally, the blueshift of the emission with increasing temperature is well described using a two-oscillator model for the temperature dependence of the band gap.

  8. Determination of soil organic phosphorus exchange sensitivity

    NASA Astrophysics Data System (ADS)

    Shand, Charles; Wendler, Renate; Lumsdon, David; Cooper, Pat; George, Timothy; Brown, Lawrie; Giles, Courtney; Stutter, Marc; Menezes-Blackburn, Daniel; Zhang, Hao; Wearing, Catherine; Haygarth, Philip; Blackwell, Martin; Darch, Tegan

    2015-04-01

    Soils contain both organic and inorganic phosphorus (P) species in varying proportions. Studies have shown that many soils contain substantial amounts of inositol hexaphosphate (IHP) and there is much interest worldwide in developing strategies to make some use of this recalcitrant resource for plant growth to reduce P fertilizer inputs. Little is known about the preference of ion exchange processes in the solubilisation of organic vs inorganic P forms in soils, an important first step in making P forms bioavailable. Although they do not possess biotic functions, resins provides a simple means to deplete P forms in soil allowing investigation of exchange selectivity between inorganic and organic P forms. The aim of our work was to determine new understanding of exchange selectivity in soils and provide insight into potential depletion and plant uptake of soil phosphorus, with emphasis on organic forms such as IHP. For our study we used a Cambisol sampled from an agricultural area (Tayport) near Dundee in Scotland. The soil had a high Olsen (0.5 M sodium bicarbonate at pH 8.5) extractable P status (84 mg P/kg) and P-31 nuclear magnetic resonance analysis of its NaOH/EDTA extract showed it contained a substantial proportion of IHP (21 % of total extractable P). For resin extraction we used anion exchange resin sheets (4.17 cm each side) in bicarbonate form to minimise pH related solubilisation effects. We used 3.5 g of soil in 75 ml of water and added 1, 2 or 3 resin squares. After equilibration the resin squares were removed and replaced with fresh resin squares a further 3 times. Phosphorus was recovered from the resin sheets by elution with 0.25 M sulphuric acid and analysed by inductively coupled plasma spectroscopy to determine total P, and colorimetrically with malachite green to determine inorganic P with the remainder assigned to organic P. The data showed that the resin preferentially removed inorganic P and even after four sequential extractions little or

  9. Molecular phosphorus ion source for semiconductor technology

    SciTech Connect

    Gushenets V. I.; Hershcovitch A.; Bugaev, A.S.; Oks, E.M.; Kulevoy, T.V.

    2012-02-15

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800 C. Thus, one of the main conditions for producing maximum P{sub 4}{sup +} fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800 C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P{sub 4}{sup +} ion beam current greater than 30% of the total beam current.

  10. Disorders Involving Calcium, Phosphorus, and Magnesium

    PubMed Central

    Moe, Sharon M.

    2008-01-01

    Abnormalities of calcium, phosphorus and magnesium homeostasis are common, and collectively are called disorders of mineral metabolism. Normal homeostatic regulation maintains serum levels, intracellular levels, and optimal mineral content in bone. This regulation occurs at three major target organs, the intestine, kidney and bone, principally via the complex integration of two hormones, parathyroid hormone and vitamin D. An understanding of normal physiology is necessary to accurately diagnose and treat disorders of mineral metabolism and will be briefly reviewed before discussing the differential diagnosis and treatment of specific disorders. PMID:18486714

  11. Elastic properties of suspended black phosphorus nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Ying; Li, Yang; Zhan, Zhao-Yao; Li, Tie; Zhen, Liang; Xu, Cheng-Yan

    2016-01-01

    The mechanical properties of black phosphorus (BP) nanosheets suspended over circular holes were measured by an atomic force microscope nanoindentation method. The continuum mechanic model was introduced to calculate the elastic modulus and pretension of BP nanosheets with thicknesses ranging from 14.3 to 34 nm. Elastic modulus of BP nanosheets declines with thickness, and the maximum value is 276 ± 32.4 GPa. Besides, the effective strain of BP ranges from 8 to 17% with a breaking strength of 25 GPa. Our results show that BP nanosheets serve as a promising candidate for flexible electronic applications.

  12. Assessing the Long Term Impact of Phosphorus Fertilization on Phosphorus Loadings Using AnnAGNPS

    PubMed Central

    Yuan, Yongping; Bingner, Ronald L.; Locke, Martin A.; Stafford, Jim; Theurer, Fred D.

    2011-01-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a “critical point” may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the “critical point” where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines. PMID:21776225

  13. Assessing the long term impact of phosphorus fertilization on phosphorus loadings using AnnAGNPS.

    PubMed

    Yuan, Yongping; Bingner, Ronald L; Locke, Martin A; Stafford, Jim; Theurer, Fred D

    2011-06-01

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss and evaluate the effects of different phosphorus fertilization rates on phosphorus losses, the USDA Annualized AGricultural Non-Point Source (AnnAGNPS) pollutant loading model was applied to the Ohio Upper Auglaize watershed, located in the southern portion of the Maumee River Basin. In this study, the AnnAGNPS model was calibrated using USGS monitored data; and then the effects of different phosphorus fertilization rates on phosphorus loadings were assessed. It was found that P loadings increase as fertilization rate increases, and long term higher P application would lead to much higher P loadings to the watershed outlet. The P loadings to the watershed outlet have a dramatic change after some time with higher P application rate. This dramatic change of P loading to the watershed outlet indicates that a "critical point" may exist in the soil at which soil P loss to water changes dramatically. Simulations with different initial soil P contents showed that the higher the initial soil P content is, the less time it takes to reach the "critical point" where P loadings to the watershed outlet increases dramatically. More research needs to be done to understand the processes involved in the transfer of P between the various stable, active and labile states in the soil to ensure that the model simulations are accurate. This finding may be useful in setting up future P application and management guidelines. PMID:21776225

  14. Response of Louisiana ratoon sugarcane to phosphorus fertilizer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of phosphorus fertilizer on sugarcane (interspecific hybrids of Saccharum Spp. cv. 'LCP 85-384') yield components and soil properties were evaluated at seven locations in Louisiana. Five rates of phosphorus fertilizer (0 - 84 kg P2O5 ha-1) were applied to first-, second- and third-ratoo...

  15. Modeling biogeochemical processes of phosphorus for global food supply.

    PubMed

    Dumas, Marion; Frossard, Emmanuel; Scholz, Roland W

    2011-08-01

    Harvests of crops, their trade and consumption, soil erosion, fertilization and recycling of organic waste generate fluxes of phosphorus in and out of the soil that continuously change the worldwide spatial distribution of total phosphorus in arable soils. Furthermore, due to variability in the properties of the virgin soils and the different histories of agricultural practices, on a planetary scale, the distribution of total soil phosphorus is very heterogeneous. There are two key relationships that determine how this distribution and its change over time affect crop yields. One is the relationship between total soil phosphorus and bioavailable soil phosphorus and the second is the relationship between bioavailable soil phosphorus and yields. Both of these depend on environmental variables such as soil properties and climate. We propose a model in which these relationships are described probabilistically and integrated with the dynamic feedbacks of P cycling in the human ecosystem. The model we propose is a first step towards evaluating the large-scale effects of different nutrient management scenarios. One application of particular interest is to evaluate the vulnerability of different regions to an increased scarcity in P mineral fertilizers. Another is to evaluate different regions' deficiency in total soil phosphorus compared with the level at which they could sustain their maximum potential yield without external mineral inputs of phosphorus but solely by recycling organic matter to close the nutrient cycle. PMID:21463882

  16. Solubility of manure phosphorus characterized by selective and sequential extractions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increasing awareness of the severity of the problem of phosphorus (P) derived from agricultural production moving off-farm and threatening water quality has led to the search for methods to characterize the forms and potential solubilities of phosphorus in food animal manures and manure products...

  17. Managing phosphorus for water quality protection - 10 principles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accelerated eutrophication of aquatic systems has primarily been the concern of developed nations where it represents the most pervasive impairment of surface water bodies. Managing phosphorus for water quality protection requires prudent tempering of agronomic emphases to build soil phosphorus,...

  18. The chemistry of phosphorus in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Thorne, L. R.; Anicich, V. G.; Prasad, S. S.; Huntress, W. T., Jr.

    1984-01-01

    Laboratory experiments show that the ion-molecule chemistry of phosphorus is significantly different from that of nitrogen in dense interstellar clouds. The PH3 molecule is not readily formed by gas-phase, ion-molecule reactions in these regions. Laboratory results used in a simple kinetic model indicate that the most abundant molecule containing phosphorus in dense clouds is PO.

  19. Do invasive mussels restrict offshore phosphorus transport in Lake Huron?

    PubMed

    Cha, Yoonkyung; Stow, Craig A; Nalepa, Thomas F; Reckhow, Kenneth H

    2011-09-01

    Dreissenid mussels were first documented in the Laurentian Great Lakes in the late 1980s. Zebra mussels (Dreissena polymorpha) spread quickly into shallow, hard-substrate areas; quagga mussels (Dreissena rostriformis bugensis) spread more slowly and are currently colonizing deep, offshore areas. These mussels occur at high densities, filter large water volumes while feeding on suspended materials, and deposit particulate waste on the lake bottom. This filtering activity has been hypothesized to sequester tributary phosphorus in nearshore regions reducing offshore primary productivity. We used a mass balance model to estimate the phosphorus sedimentation rate in Saginaw Bay, a shallow embayment of Lake Huron, before and after the mussel invasion. Our results indicate that the proportion of tributary phosphorus retained in Saginaw Bay increased from approximately 46-70% when dreissenids appeared, reducing phosphorus export to the main body of Lake Huron. The combined effects of increased phosphorus retention and decreased phosphorus loading have caused an approximate 60% decrease in phosphorus export from Saginaw Bay to Lake Huron. Our results support the hypothesis that the ongoing decline of preyfish and secondary producers including diporeia (Diporeia spp.) in Lake Huron is a bottom-up phenomenon associated with decreased phosphorus availability in the offshore to support primary production. PMID:21812427

  20. Phosphorus recovery from pig manure solids prior to land application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land disposal of pig manure is an environmental concern due to an imbalance of the nitrogen to phosphorus (N:P) ratio for crop production, leading to excess phosphorus (P) in soils and potential risks of water pollution. A process called “quick wash” was investigated for its feasibility to extract ...

  1. 21 CFR 862.1580 - Phosphorus (inorganic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Phosphorus (inorganic) test system. 862.1580 Section 862.1580 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1580 Phosphorus (inorganic)...

  2. Chemical behavior of different species of phosphorus in coagulation.

    PubMed

    Park, Taejun; Ampunan, Vanvimol; Lee, Sanghyup; Chung, Eunhyea

    2016-02-01

    Phosphorus is one of the elements that have a significant impact on such environmental problems as eutrophication or algal bloom. Phosphorus compounds in water can be hydrolyzed to orthophosphate that is the only form of phosphorus that algae can assimilate. In this study, phosphorus removal in terms of orthophosphate and total phosphorus from wastewater was studied using alum or ferric ions as coagulants. It was observed that alum shows higher phosphorus removal efficiency than ferric ions in the same mole ratio concentrations. The proportion of orthophosphate among total phosphorus did not change significantly during coagulation process when the coagulant concentration is low. However, the proportion becomes gradually decreased as the coagulant concentration increases. Not only the electrolyte concentration difference in solution, but the characteristics of orthophosphate and polyphosphate such as reactivity and ionic size might also cause the differences in the removal rate. Orthophosphate that has greater reactivity than other phosphorus species would be involved in chemical reactions dominantly when large amounts of coagulants are applied. However, the effect of reactivity was diminished due to the large ionic size of polyphosphate and low concentration of electrolyte in low coagulant concentration during the coagulation process. PMID:26598995

  3. Reducing watershed scale phosphorus export through integrated management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus losses from golf course have been documented and are comparable to losses from agriculture and urban areas. Integrated management practices are required to address the problem. An integrated management approach using filter socks and limiting the amount of phosphorus applied to the golf c...

  4. Anthropogenic phosphorus flow analysis of Hefei City, China.

    PubMed

    Li, Sisi; Yuan, Zengwei; Bi, Jun; Wu, Huijun

    2010-11-01

    The substance flow analysis (SFA) method was employed to examine phosphorus flow and its connection to water pollution in the city of Hefei, China, in 2008. As human activity is the driving force of phosphorus flux from the environment to the economy, the study provides a conceptual framework for analyzing an anthropogenic phosphorus cycle that includes four stages: extraction, fabrication and manufacturing, use, and waste management. Estimates of phosphorus flow were based on existing data as well as field research, expert advice, local accounting systems, and literature. The total phosphorus input into Hefei in 2008 reached 7810 tons, mainly as phosphate ore, chemical fertilizer, pesticides, crops and animal products. Approximately 33% of the total phosphorus input left the area, and nearly 20% of that amount was discharged as waste to surface water. Effluent containing excessive fertilizer from farming operations plays an important role in phosphorus overloads onto surface water; the other major emission source is sewage discharge. We also provide suggestions for reducing phosphorus emissions, for example reducing fertilizer use, recycling farming residues, and changing human consumption patterns. PMID:20863550

  5. [Mapping and cloning of low phosphorus tolerance genes in soybeans].

    PubMed

    Dan, Zhang; Haina, Song; Hao, Cheng; Deyue, Yu

    2015-04-01

    Soybean is a major source of edible oil and phytoprotein. Low phosphorus available in soil is an important factor limiting the current soybean production. Effective ways to solve the problem include identification of germplasms and genes tolerant to low-phosphorus stress, and cultivation of soybean varieties with high phosphorus efficiency. Recently many researches have been carrying out investigations to map and clone genes related to phosphorus efficiency in soybeans. However, due to the complexity of the soybean genome and little knowledge of functional genes, it has been difficult to understand the mechanism of soybean tolerance to low phosphorus. Although quantitative trait locus (QTL) mapping related to low phosphorus tolerance has made some progress, it remains elusive to obtain accurate candidate genes for molecular breeding applications, due to the limited accuracy of QTL. Even for the cloned soybean low phosphorus tolerance genes, the molecular mechanisms are largely unknown, further limiting the application to breeding. In this review, we summarize the progresses on mapping, cloning and functional characterization of soybean low phosphorus tolerance genes. PMID:25881699

  6. Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater.

    PubMed

    Bradford-Hartke, Zenah; Lane, Joe; Lant, Paul; Leslie, Gregory

    2015-07-21

    The environmental benefits and burdens of phosphorus recovery in four centralized and two decentralized municipal wastewater systems were compared using life cycle assessment (LCA). In centralized systems, phosphorus recovered as struvite from the solids dewatering liquid resulted in an environmental benefit except for the terrestrial ecotoxicity and freshwater eutrophication impact categories, with power and chemical use offset by operational savings and avoided fertilizer production. Chemical-based phosphorus recovery, however, generally required more resources than were offset by avoided fertilizers, resulting in a net environmental burden. In decentralized systems, phosphorus recovery via urine source separation reduced the global warming and ozone depletion potentials but increased terrestrial ecotoxicity and salinization potentials due to application of untreated urine to land. Overall, mineral depletion and eutrophication are well-documented arguments for phosphorus recovery; however, phosphorus recovery does not necessarily present a net environmental benefit. While avoided fertilizer production does reduce potential impacts, phosphorus recovery does not necessarily offset the resources consumed in the process. LCA results indicate that selection of an appropriate phosphorus recovery method should consider both local conditions and other environmental impacts, including global warming, ozone depletion, toxicity, and salinization, in addition to eutrophication and mineral depletion impacts. PMID:26121005

  7. Soil phosphorus availability differences between sprinkler and furrow irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water flowing in irrigation furrows detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus transport, producers in south-central Idaho have been converting from furrow to sprinkler irrigation. We completed research...

  8. Phosphorus Removal By Silage Corn In Southern Idaho

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn silage is the predominant crop in Idaho used for recovering phosphorus (P) that has accumulated in soils from dairy manure applications. However, little is known about how much phosphorus and other nutrients are being recovered under Idaho conditions. The objective of the study is to estimate p...

  9. 46 CFR 151.50-50 - Elemental phosphorus in water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Elemental phosphorus in water. 151.50-50 Section 151.50-50 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-50 Elemental phosphorus in water. (a) Tanks shall be designed...

  10. Low Phytic Acid Barley Responses to Phosphorus Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  11. Validation of a quantitative phosphorus loss assessment tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasture Phosphorus Management Plus (PPM Plus) is a tool that allows nutrient management and conservation planners to evaluate phosphorus loss from agricultural fields. This tool is a modified version of the widely used Soil and Water Assessment Tool (SWAT) model with a vastly simplified interface. ...

  12. Removal of vegetative clippings reduces dissolved phosphorus loss in runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus-containing sediment entering surface water may degrade water quality and promote eutrophication. Grass is sometimes planted as a vegetated filter strip buffer along vulnerable receiving water to trap sediment and reduce the severity of phosphorus nutrient loading. However, eutrophicatio...

  13. Approaches and Challenges to Engineering Seed Phytate and Total Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    About 75% of seed total phosphorus (P) is found in a single compound, phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate or InsP6). Phytic acid is not efficiently utilized by monogastric animals (poultry, swine, fish), which creates phosphorus management and environmental impact problems in anim...

  14. 76 FR 38592 - Phosphorus Water Quality Standards for Florida Everglades

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...EPA is proposing a rule that would identify provisions of Florida's Water Quality Standards for Phosphorus in the Everglades Protection Area (Phosphorus Rule) and Florida's Amended Everglades Forever Act (EFA) that EPA has disapproved and that therefore are not applicable water quality standards for purposes of the Clean Water Act. EPA is proposing today's rule following EPA's disapproval of......

  15. Production of fluid fertilizer from phosphorus furnace waste stream

    SciTech Connect

    Barber, J. C.

    1985-04-30

    Processes and compositions of matter are disclosed for the production of liquid fertilizers wherein wastewater from a phosphorus smelting furnace is incorporated in liquid fertilizer processes. The wastewater replaces water evaporated and the wastewater dissolves fertilizer salts. A serious water pollution problem is avoided when wastewater is incorporated in liquid fertilizers. The invention discloses a process for making orthophosphate suspension fertilizer wherein impure phosphoric acid is neutralized in the condensing system, water from the condensing system is bled off, and a suspending clay is added to produce orthophosphate suspension fertilizer. In this process, phosphorus sludge made at phosphorus furnaces is used to produce suspension fertilizer, and wastewater from phosphate smelting furnaces is recovered. New compositions of matter are disclosed. A process is disclosed for making phosphoric acid with low impurities content wherein phosphorus sludge is burned to make impure orthophosphoric acid and the impure acid is recycled to an agglomerating step in a process for making elemental phosphorus.

  16. Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus.

    PubMed

    Liu, Zizhuo; Aydin, Koray

    2016-06-01

    Plasmonic materials provide electric-field localization and light confinement at subwavelength scales due to strong light-matter interaction around resonance frequencies. Graphene has been recently studied as an atomically thin plasmonic material for infrared and terahertz wavelengths. Here, we theoretically investigate localized surface plasmon resonances (LSPR) in a monolayer, nanostructured black phosphorus (BP). Using finite-difference time-domain simulations, we demonstrate LSPRs at mid-infrared and far-infrared wavelength regime in BP nanoribbon and nanopatch arrays. Because of strong anisotropic in-plane properties of black phosphorus emerging from its puckered crystal structure, black phosphorus nanostructures provide polarization dependent, anisotropic plasmonic response. Electromagnetic simulations reveal that monolayer black phosphorus nanostructures can strongly confine infrared radiation in an atomically thin material. Black phosphorus can find use as a highly anisotropic plasmonic devices. PMID:27152653

  17. Phosphorus in the fulvate fraction of soil organic matter

    NASA Astrophysics Data System (ADS)

    Makarov, M. I.; Leoshkina, N. A.

    2009-03-01

    The concentration of phosphorus in preparations of fulvic acids separated from soils according to a modified IHSS method varies from 0.03 to 0.23%; it is considerably lower than the concentration of phosphorus in preparations of humic acids (0.15-1.54%). A predominant part (>90%) of phosphorus-containing compounds in the fulvates is not sorbed on the polymethylmethacrylic resin Supelite DAX-8 used for the isolation of fulvic acids. These compounds are highly hydrophilic, and their sorption on the polystyrene-divinylbenzene resin XAD-4 used for the isolation of nonspecific organic compounds with a lower molecular weight and higher hydrophily does not exceed 20%. The results of the study attest to the quantitative indefiniteness of the notion of “phosphorus of fulvic acids” and cause doubt upon a hypothesis about an important role of fulvic acids in the migration of phosphorus compounds in soils and landscapes.

  18. Quantitation of phosphorus excretion in sheep by compartmental analysis

    SciTech Connect

    Schneider, K.M.; Boston, R.C.; Leaver, D.D.

    1987-04-01

    The control of phosphorus excretion in sheep has been examined by constructing a kinetic model that contains a mechanistic set of connections between blood and gastrointestinal tract. The model was developed using experimental data from chaff-fed sheep and gives an accurate description of the absorption and excretion of /sup 32/P phosphorus in feces and urine of the ruminating sheep. These results indicated the main control site for phosphorus excretion in the ruminating sheep was the gastrointestinal tract, whereas for the non-ruminating sheep fed the liquid diet, control was exerted by the kidney. A critical factor in the induction of adaptation of phosphorus reabsorption by the kidney was the reduction in salivation, and since this response occurred independently of marked changes in the delivery of phosphorus to the kidney, a humoral factor may be involved in this communication between salivary gland and kidney.

  19. Soil phosphorus and the ecology of lowland tropical forests

    NASA Astrophysics Data System (ADS)

    Turner, Ben

    2016-04-01

    In this presentation I will explore the extent to which phosphorus influences the productivity, diversity, and distribution of plant species in tropical forests. I will highlight the range of soils that occur in tropical forests and will argue that pedogenesis and associated phosphorus depletion is a primary driver of forest diversity over long timescales. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined predominantly as a function of dry season intensity and soil phosphorus availability, and will suggest potential mechanistic explanations for this pattern in relation to phosphorus acquisition. Finally, I will present observational and experimental evidence from Panama to show how phosphorus, nitrogen, and potassium, limit plant productivity and microbial communities on strongly-weathered soils in the lowland tropics.

  20. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies.

    PubMed

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G J; Chen, X H; Shan, Jie; Feng, Philip X-L

    2015-01-21

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ∼100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ∼200 nm down to ∼20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus. PMID:25385657

  1. Denuded Zone Formation in Germanium Codoped Heavily Phosphorus-Doped Czochralski Silicon

    NASA Astrophysics Data System (ADS)

    Lin, Li-Xia; Chen, Jia-He; Wu, Peng; Zeng, Yu-Heng; Ma, Xiang-Yang; Yang, De-Ren

    2011-03-01

    The formation of a denuded zone (DZ) by conventional furnace annealing (CFA) and rapid thermal annealing (RTA) based denudation processing is investigated and the gettering of copper (Cu) atoms in germanium co-doped heavily phosphorus-doped Czochralski (GHPCZ) silicon wafers is evaluated. It is suggested that both a good quality defect-free DZ with a suitable width in the sub-surface area and a high density bulk micro-defect (BMD) region could be formed in heavily phosphorus-doped Czochralski (HPCZ) silicon and GHPCZ silicon wafers. This is ascribed to the formation of phosphorus-vacancy (P-V) related complexes and germanium-vacancy (GeV) related complexes. Compared with HPCZ silicon, the DZ width is wider in the GHPCZ silicon sample with CFA-based denudation processing but narrower in the one with two-step RTA pretreatments. These phenomena are ascribed to the enhancing effect of germanium on oxygen out-diffusion movement and oxygen precipitate nucleation, respectively. Furthermore, fairly clean DZs near the surface remain in both the HPCZ and GHPCZ silicon wafers after Cu in-diffusion, except for the HPCZ silicon wafer which underwent denudation processing with a CFA pretreatment, suggesting that germanium doping could improve the gettering of Cu contamination.

  2. Grown-in precipitates in heavily phosphorus-doped Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Yuheng; Ma, Xiangyang; Chen, Jiahe; Song, Weijie; Wang, Weiyan; Gong, Longfei; Tian, Daxi; Yang, Deren

    2012-02-01

    Through comparing the oxygen precipitation in the heavily and lightly phosphorus (P)-doped Czochralski silicon (CZ Si) specimens subjected to the simulated cooling processes of silicon ingot, we researched the influences of heavily P doping on grown-in precipitates by preferential etching and transmission electron microscopy (TEM). It was found that grown-in precipitates were more significant in heavily P-doped CZ Si than in lightly one. Most grown-in precipitates in heavily P-doped CZ Si were generated at (800-600) °C. The significant grown-in oxygen precipitates in the heavily P-doped CZ Si would change the density and morphology of oxygen precipitation. TEM examination revealed that the grown-in precipitates in heavily P-doped CZ Si were amorphous oxygen precipitates composed of tiny precipitates in essential. Although more or less phosphorus may be incorporated in the grown-in precipitates, however, phosphorus cannot be detected so far. We further confirmed that extending annealing at 550 °C produced significant silicon phosphide (SiP) precipitation in heavily P-doped CZ Si. Summarily, enhancement of grown-in oxygen precipitates was attributed to SiP precipitation and high-concentration vacancy, tentatively. Nonetheless, further investigation on the essential of grown-in precipitates in heavily P-doped CZ Si is worthy.

  3. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean.

    PubMed

    Ezzat, Leïla; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine

    2016-01-01

    During the 20(th) century, seawater temperatures have significantly increased, leading to profound alterations in biogeochemical cycles and ecosystem processes. Elevated temperatures have also caused massive bleaching (symbiont/pigment loss) of autotrophic symbioses, such as in coral-dinoflagellate association. As symbionts provide most nutrients to the host, their expulsion during bleaching induces host starvation. However, with the exception of carbon, the nutritional impact of bleaching on corals is still unknown, due to the poorly understood requirements in inorganic nutrients during stress. We therefore assessed the uptake rates of nitrogen and phosphate by five coral species maintained under normal and thermal stress conditions. Our results showed that nitrogen acquisition rates were significantly reduced during thermal stress, while phosphorus uptake rates were significantly increased in most species, suggesting a key role of this nutrient. Additional experiments showed that during thermal stress, phosphorus was required to maintain symbiont density and photosynthetic rates, as well as to enhance the translocation and retention of carbon within the host tissue. These findings shed new light on the interactions existing between corals and inorganic nutrients during thermal stress, and highlight the importance of phosphorus for symbiont health. PMID:27531136

  4. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean

    PubMed Central

    Ezzat, Leïla; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine

    2016-01-01

    During the 20th century, seawater temperatures have significantly increased, leading to profound alterations in biogeochemical cycles and ecosystem processes. Elevated temperatures have also caused massive bleaching (symbiont/pigment loss) of autotrophic symbioses, such as in coral-dinoflagellate association. As symbionts provide most nutrients to the host, their expulsion during bleaching induces host starvation. However, with the exception of carbon, the nutritional impact of bleaching on corals is still unknown, due to the poorly understood requirements in inorganic nutrients during stress. We therefore assessed the uptake rates of nitrogen and phosphate by five coral species maintained under normal and thermal stress conditions. Our results showed that nitrogen acquisition rates were significantly reduced during thermal stress, while phosphorus uptake rates were significantly increased in most species, suggesting a key role of this nutrient. Additional experiments showed that during thermal stress, phosphorus was required to maintain symbiont density and photosynthetic rates, as well as to enhance the translocation and retention of carbon within the host tissue. These findings shed new light on the interactions existing between corals and inorganic nutrients during thermal stress, and highlight the importance of phosphorus for symbiont health. PMID:27531136

  5. Phosphorus Utilization and Characterization of Excreta From Swine Fed Diets Containing A Variety of Cereal Grains Balanced For Total Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intrinsic phytase in swine feeds may alter phytate utilization and solubility of excreted phosphorus. Therefore, the objective of this experiment was to quantify changes in fecal phosphorus composition from swine fed various cereal grains with a range of phytate concentrations and endogenous phytase...

  6. Briquetting of coke fines for phosphorus production

    SciTech Connect

    Shpaizer, E.E.; Klimova, L.K.; Mel'nik, A.P.; Egorov, A.A.

    1988-07-20

    Large amounts of coke wastes have accumulated in phosphorus factories. For use as a carbonaceous reducing agent in phosphorus production this waste material should be agglomerated to the required size with satisfactory strength, with minimal consumption of energy and materials. The dependence of briquet strength on a number of important physicochemical factors is described by an equation obtained by least-squares computer analysis of experimental data. Addition of finely ground quartzite to the mixture raises the thermal stability of the briquets. The activation energy and order of overall interaction of phosphoric acid and the ash components of coke, E = 24.8 kJ/mole and n = 0.98, were found by the method of nonisothermal kinetics. Their results show that the reactions leading to increase of briquet strength occur at temperatures from 520 to 670 K, i.e., below the ignition point of coke. Therefore the briquets may be heat-treated in an oxidizing medium; this greatly simplifies the practical process of agglomeration of coke fines.

  7. Hydrogeomorphic controls on phosphorus retention in streams

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Stanley, Emily H.; Harbor, Jon M.

    2003-06-01

    We compared the relative influences of biochemical uptake processes and dynamic hydrology and geomorphology (hydrogeomorphology) on molybdate reactive phosphorus (MRP) retention within a stream. MRP concentrations were measured upstream and downstream of a 4.5-km reach undergoing dynamic channel adjustment in response to downstream dam removal. Geomorphic adjustments following removal produced measurable changes in velocity and depth, and decreases in MRP retention. Paired upstream and downstream measurements of MRP concentration were used to compute three retention metrics: uptake rate, mass transfer coefficient, and uptake length, which were used as model parameters. Modeling results showed that changes in channel morphology alone following dam removal could result in an approximate 40% increase in downstream MRP concentrations compared with conditions with the dam in place. However, empirical and modeling results indicate that hydrogeomorphology can control nutrient retention on the reach scale only when uptake processes are either sufficiently great or when uptake rates have limited variability. Review of published phosphorus retention values revealed greater variability in biochemical uptake rates than in hydrogeomorphology. Thus uptake rates should exert a stronger control on reach-scale MRP retention than changing channel morphology or hydrology. These results suggest that maintaining or restoring channel conditions that are conducive to biochemical uptake are of greater priority than restoration of hydrologic or geomorphic conditions alone.

  8. Controlled Sculpture of Black Phosphorus Nanoribbons

    DOE PAGESBeta

    Masih Das, Paul; Danda, Gopinath; Cupo, Andrew; Parkin, William M.; Liang, Liangbo; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred S.; Meunier, Vincent; et al

    2016-05-18

    Black phosphorus (BP) is a highly anisotropic allotrope of phosphorus with high promise for fast functional electronics and optoelectronics. We demonstrate that high-resolution and controlled structural modification of few-layer BP along arbitrary crystal direction can be achieved with nanometer-scale precision on a few-minute timescales leading to the formation of sub-nm wide armchair and zigzag BP nanoribbons. The nanoribbons are assembled, along with nanopores and nanogaps, using a combination of mechanical-liquid exfoliation and in situ transmission electron microscope (TEM) and scanning TEM nanosculpting. Here we report time-dependent structural properties of the one-dimensional systems under electron irradiation and probe their oxidation propertiesmore » with electron energy-loss spectroscopy (EELS). Finally, we demonstrate the use of STEM to controllably narrow and thin the nanoribbons until they break into nanogaps. The observations are rationalized using density functional theory for transition state calculations and electronic band-structure evolution for the various stages of the narrowing procedure. In particular, we predict that the sub- and few-nm wide BP nanoribbons realized experimentally possess clear one-dimensional quantum confinement, even when the systems are made up of a few layers. We find the demonstration of this procedure is key for the development of BP-based electronic, optoelectronic, thermoelectric, and other applications in reduced dimensions.« less

  9. Electron shuttling in phosphorus donor qubit systems

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Gamble, John King; Nielsen, Erik; Muller, Richard P.; Witzel, Wayne M.; Montano, Ines; Carroll, Malcolm S.

    2014-03-01

    Phosphorus donors in silicon are a promising qubit architecture, due in large part to their long nuclear coherence times and the recent development of atomically precise fabrication methods. Here, we investigate issues related to implementing qubits with phosphorus donors in silicon, employing an effective mass theory that non-phenomenologically takes into account inter-valley coupling. We estimate the significant sources of decoherence and control errors in this system to compute the fidelity of primitive gates and gate timescales. We include the effects of valley repopulation during the process of shuttling an electron between a donor and nearby interface or between neighboring donors, evaluating the control requirements for ensuring adiabaticity with respect to the valley sector. This work was supported in part by the LDRD program at Sandia National Labs, a multi-program laboratory managed and operated by Sandia Corp, a wholly owned subsidiary of Lockheed Martin Corp, for the U.S. DOE NNSA under contract DE-AC04-94AL85000.

  10. Response of Nodularia spumigena to pCO2 - Part 3: Turnover of phosphorus compounds

    NASA Astrophysics Data System (ADS)

    Unger, J.; Endres, S.; Wannicke, N.; Engel, A.; Voss, M.; Nausch, G.; Nausch, M.

    2013-03-01

    Diazotrophic cyanobacteria form extensive summer blooms in the Baltic Sea driving the surrounding surface waters into phosphate limitation. One of the main bloom-forming species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the extracellular enzyme alkaline phosphatase whose activity also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilisation of DOP and its compounds (e.g., ATP) by N. spumigena during growth under different CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus (P). Cell growth, the phosphorus pool, and four DOP compounds (ATP, DNA, RNA, and phospholipids) were determined in three setups with different CO2 concentrations (average 341 μatm, 399 μatm, and 508 μatm) during a 15-day batch experiment. The results showed stimulated growth of N. spumigena and a rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments. DOP uptake was enhanced by a factor of 1.32 at 399 μatm and of 2.25 at 508 μatm compared to the lowest CO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of total DOP were not characterised but comprised the most utilised fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase with a preference at high pCO2. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations which is accompanied by increasing utilisation of DOP as an alternative P source.

  11. Response of Nodularia spumigena to pCO2 - Part 3: Turnover of phosphorus compounds

    NASA Astrophysics Data System (ADS)

    Unger, J.; Endres, S.; Wannicke, N.; Engel, A.; Voss, M.; Nausch, G.; Nausch, M.

    2012-10-01

    Diazotrophic cyanobacteria often form extensive summer blooms in the Baltic Sea driving their environment into phosphate limitation. One of the main species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the exoenzyme alkaline phosphatase that also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilization of DOP and its compounds (e.g. ATP) by N. spumigena during growth under varying CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus. Cell growth, phosphorus pool fractions, and four DOP-compounds (ATP, DNA, RNA, and phospholipids) were determined in three set-ups with different CO2 concentrations (341, 399, and 508 μatm) during a 15-day batch experiment. The results showed rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments while DOP utilization increased with elevated pCO2, in parallel with the growth stimulation of N. spumigena. During the growth phase, DOP uptake was enhanced by a factor of 1.32 at 399 μatm and of 2.25 at 508 μatm compared to the lowest pCO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of the DOP were not characterized but comprised the most highly utilized fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase, especially in response to the medium and high pCO2 treatment. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations that is accompanied by increasing utilization of DOP as an alternative P source.

  12. Evidence for production and lateral transport of dissolved organic phosphorus in the eastern subtropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Reynolds, Sarah; Mahaffey, Claire; Roussenov, Vassil; Williams, Richard G.

    2014-08-01

    The concentration of phosphate and dissolved organic phosphorus (DOP) is chronically low and limits phytoplankton growth in the subtropical North Atlantic relative to other ocean basins. Transport of phosphate and DOP from the productive flanks of the gyre to its interior has been hypothesized as an important phosphorus supply pathway. During a cruise in the eastern Atlantic in spring 2011, the rates of phosphate uptake, alkaline phosphatase activity (APA), and DOP production were measured in the northwest African shelf region, subtropics, and tropics. Rates of DOP production were sixfold higher in the shelf region (43 ± 41 nM d-1) relative to the subtropics (6.9 ± 4.4 nM d-1). In contrast, APA was threefold higher in the subtropics (8.0 ± 7.3 nM d-1), indicative of enhanced DOP utilization, relative to the shelf region (2.6 ± 2.1 nM d-1). Hence, observations suggest net production of DOP in the shelf region and either net consumption of DOP or a near balance in DOP production and consumption in the gyre interior. Eddy-permitting model experiments demonstrate that (i) DOP accounts for over half the total phosphorus in surface waters, (ii) DOP is transported westward from the shelf region by a combination of gyre and eddy circulations, and (iii) advected DOP supports up to 70% of the particle export over much of the subtropical gyre. Our combined observational and modeling study supports the view that the horizontal transport of DOP from the shelf region is an important mechanism supplying phosphorus to the surface subtropical North Atlantic.

  13. Identifying increased inputs of terrestrial phosphorus to sediments of the southwestern Everglades and Florida Bay

    NASA Astrophysics Data System (ADS)

    Kang, Woo-Jun; Trefry, John H.

    2013-09-01

    Increased inputs of terrestrial phosphorus are a key factor in enhanced coastal eutrophication. Yet, precise determination of increases in terrestrial phosphorus in the sedimentary record is complicated by a variety of post-depositional processes. A method that takes these complications into consideration and produces a better record is needed. In this study, spatial and temporal patterns of terrestrial total phosphorus (TP) were determined for both pre-development (1900-1920s) and post-development (>1990s) sediments from the southwestern (SW) Everglades and Florida Bay. A two-component model for sediment sources [(Al + TOC) and CaCO3], coupled with the TOC/TOP ratios for TOP sources, was used to identify sediments containing mainly terrestrial TP. A strong spatial and temporal relationship between terrestrial TP and (Al + TOC) in pre- and post-development sediments from the more terrestrial sites suggests that aluminosilicates and organic matter play major roles in delivering terrestrial TP to area sediments. Terrestrial TP has been the predominant source of phosphorus to the sediments at the mouth of Shark River Slough (SRS), the west coast of the SW Everglades and western Florida Bay over the past century. Anthropogenic inputs of terrestrial TP, based on an enrichment factor calculated using [Terrestrial TP/(Al + TOC)] for pre- and post-development sediments, showed a 2- to 3-fold increase for sediments from the west coast of the SW Everglades and northwestern Florida Bay during the past century. In contrast, no such increases were found for the mouth of SRS. These findings suggest that anthropogenic inputs of terrestrial TP were most likely derived from freshwater runoff along the southwest coast of Florida. Our approach and results support and help focus current management efforts for the Everglades-Florida Bay as well as other coastal systems.

  14. Soil Phosphorus Gains and Losses with Afforestation: A Meta-analysis

    NASA Astrophysics Data System (ADS)

    McMahon, D.; Deng, Q.; Xiang, Y.; Yu, C. L.; Hui, D.; Jackson, R. B.

    2015-12-01

    Afforestation, the planting of trees on previously non-forested land, is commonly practiced around the world to provide wood, reduce erosion, and restore degraded agricultural land. Although afforestation has the potential to meet these objectives while increasing carbon uptake, its net impact on the soil depends on environmental conditions and land-use history. Availability of vital plant nutrients, such as phosphorus (P), may be altered by afforestation, but prior work has largely focused on soil carbon, and changes in soil P had not been quantitatively reviewed. We conducted a literature meta-analysis of changes in total and plant-available soil P with afforestation, compiling 49 studies representing 186 independent forest stands on five continents. Over the full dataset, mean concentration of plant-available phosphorus (mg kg-1 soil) increased by 22.7% with afforestation (bootstrapped 95% confidence interval = [15.1%, 30.7%]), while mean concentration of total phosphorus decreased by 13.5% (95% CI = [-18.4%, -8.6%]). These data reflect trends in upper mineral soil horizons, with sampling depths clustered around 20 cm and few studies reporting data below 50 cm. Differences in prior land use partially explain the substantial variation in effect size, with larger increases in available P and smaller decreases in total P when trees were planted on degraded soils. Trends in both available and total P were also enhanced with increasing time since afforestation, suggesting that changes in soil P concentrations are driven by cumulative processes rather than site preparation and planting. Our meta-analysis suggests that 1. afforestation can transform phosphorus into more plant-accessible forms, while potentially depleting total soil stocks of P, and 2. land-use history, more than climate or species planted, determines the effects of afforestation on soils' ability to meet the nutrient needs of vegetation.

  15. The challenge of controlling phosphorus in chronic kidney disease.

    PubMed

    Cannata-Andía, Jorge B; Martin, Kevin J

    2016-04-01

    The pathogenesis and management of chronic kidney disease-mineral bone disorders (CKD-MBD) has experienced major changes, but the control of serum phosphorus at all stages of CKD still seems to be a key factor to improve clinical outcomes. High serum phosphorus is the most important uremia-related, non-traditional risk factor associated with vascular calcification in CKD patients and in the general population. Phosphorus may also be one of the key elements linking vascular calcification with low bone turnover. The main hormones and factors that contribute to the kidney regulation of phosphorus and calcium include parathyroid hormone, FGF-23, klotho and 1,25-dihydroxyvitamin D (1,25(OH)2D). Serum phosphorus did not start rising until CKD 3b in contrast with the earlier changes observed with fibroblast growth factor-23 (FGF-23), Klotho, calcitriol and parathyroid hormone (PTH). Despite FGF-23 and PTH having synergic effects regarding phosphorus removal, they have opposite effects on 1,25(OH)2D3. At the same stages of CKD in which phosphorus retention appears to occur, calcium retention also occurs. As phosphorus accumulation is associated with poor outcomes, an important question without a clear answer is at which level-range should serum phosphorus be maintained at different stages of CKD to improve clinical outcomes. There are four main strategies to manage phosphate homeostasis; phosphorus dietary intake, administration of phosphate binder agents, effective control of hyperparathyroidism and to ensure in the CKD 5D setting, an adequate scheme of dialysis. Despite all the available strategies, and the introduction of new phosphate binder agents in the market, controlling serum phosphorus remains challenging, and hyperphosphatemia continues to be extremely common in CKD 5 patients. Furthermore, despite phosphate binding agents having proved to be effective in reducing serum phosphorus, their ultimate effects on clinical outcomes remain controversial. Thus, we still

  16. Toughening by the addition of phosphorus to a high-strength steel with ultrafine elongated grain structure

    NASA Astrophysics Data System (ADS)

    Jafari, Meysam; Kimura, Yuuji; Tsuzaki, Kaneaki

    2013-02-01

    Phosphorus-doped high-strength steels are typically brittle at room temperature. In contrast to the non-hardening embrittlement of body-centred cubic (bcc) steels which decreases toughness without increasing strength, we observed an increase in toughness of about 20% by adding a large amount (0.053 wt%) of phosphorus (P) to a high-strength bcc steel with an ultrafine elongated ferrite grain structure processed by warm calibre rolling at 500 °C which produced a 91% reduction in area. The enhanced toughness is attributed to P segregation, which causes grain boundaries to become feasible crack propagation paths, thereby enhancing delamination toughening. The 0.053% P steel showed a microstructure and tensile properties similar to those of 0.001% P steel (reference steel).

  17. Genetic improvement for phosphorus efficiency in soybean: a radical approach

    PubMed Central

    Wang, Xiurong; Yan, Xiaolong; Liao, Hong

    2010-01-01

    Background Low phosphorus (P) availability is a major constraint to soybean growth and production. Developing P-efficient soybean varieties that can efficiently utilize native P and added P in the soils would be a sustainable and economical approach to soybean production. Scope This review summarizes the possible mechanisms for P efficiency and genetic strategies to improve P efficiency in soybean with examples from several case studies. It also highlights potential obstacles and depicts future perspectives in ‘root breeding’. Conclusions This review provides new insights into the mechanisms of P efficiency and breeding strategies for this trait in soybean. Root biology is a new frontier of plant biology. Substantial efforts are now focusing on increasing soybean P efficiency through ‘root breeding’. To advance this area, additional collaborations between plant breeders and physiologists, as well as applied and theoretical research are needed to develop more soybean varieties with enhanced P efficiency through root modification, which might contribute to reduced use of P fertilizers, expanding agriculture on low-P soils, and achieving more sustainable agriculture. PMID:20228090

  18. Chemical lake restoration products: sediment stability and phosphorus dynamics.

    PubMed

    Egemose, Sara; Reitzel, Kasper; Andersen, Frede Ø; Flindt, Mogens R

    2010-02-01

    Laboratory experiments with sediments from three shallow Danish lakes were conducted to evaluate the effects of chemical lake restoration products during resuspension. Phosphorus (P) removal, sediment stability, sediment consolidation and color reduction were studied over time. The investigated products were aluminum (Al), Phoslock (a commercial bentonite product coated with lanthanum) and a combination of Al covered with bentonite (Al/Ben). All treatments effectively reduced the P concentration in the water. However, the treatments containing Al reduced the P concentration immediately after resuspension, whereas Phoslock required several days after resuspension to reduce the P concentration. Especially Phoslock, but also Al/Ben, increased the sediment stability threshold by 265% and 101%, respectively, whereas Al had no stabilizing effect. The fresh Al floc was resuspended 5x easier than untreated sediment. The largest consolidation of the sediment occurred with addition of Phoslock, followed by Al/Ben, while Al alone had no effect. Enhanced consolidation may be of importance for macrophyte colonisation of organic sediment. Phoslock improved the light climate moderately by removing color, whereas Al was very effective in removing color. Ben/Al showed intermediate effects on color reduction. These findings are important when decisions are made on restoration method for a specific lake, which may be more or less wind exposed. PMID:20055487

  19. Device performance simulations of multilayer black phosphorus tunneling transistors

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Shi, Qing; Wang, Jian; Guo, Hong

    2015-11-01

    We report a theoretical investigation of ballistic transport in multilayer black phosphorus (BP) tunneling transistors (TFETs) with HfO2 as the gate oxide. First-principles calculations show that monolayer BP can be preserved well on HfO2 (111) surface. For a better device performance, the optimum layer and transport direction at different channel lengths are investigated. It is shown that BP TFETs have larger drain current in the armchair direction (AD) than in the zigzag direction, and the current difference can be several orders of magnitude. On-state current can be enhanced in the BP TFETs using thicker BP film, while the minimal leakage current is increased at the same time. To reduce the leakage current and subthreshold swing in the multilayer BP TFETs, lower source/drain doping concentration and smaller drain voltage should be applied. Compared to monolayer MoS2, MoSe2, and MoTe2 TFETs monolayer BP TFETs in AD can reach larger on-state current at the same Ion/Ioff ratio.

  20. Plant adaptations to severely phosphorus-impoverished soils.

    PubMed

    Lambers, Hans; Martinoia, Enrico; Renton, Michael

    2015-06-01

    Mycorrhizas play a pivotal role in phosphorus (P) acquisition of plant roots, by enhancing the soil volume that can be explored. Non-mycorrhizal plant species typically occur either in relatively fertile soil or on soil with a very low P availability, where there is insufficient P in the soil solution for mycorrhizal hyphae to be effective. Soils with a very low P availability are either old and severely weathered or relatively young with high concentrations of oxides and hydroxides of aluminium and iron that sorb P. In such soils, cluster roots and other specialised roots that release P-mobilising carboxylates are more effective than mycorrhizas. Cluster roots are ephemeral structures that release carboxylates in an exudative burst. The carboxylates mobilise sparingly-available sources of soil P. The relative investment of biomass in cluster roots and the amount of carboxylates that are released during the exudative burst differ between species on severely weathered soils with a low total P concentration and species on young soils with high total P concentrations but low P availability. Taking a modelling approach, we explore how the optimal cluster-root strategy depends on soil characteristics, thus offering insights for plant breeders interested in developing crop plants with optimal cluster-root strategies. PMID:25912783

  1. Gate-Tuned Thermoelectric Power in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Saito, Yu; Iizuka, Takahiko; Koretsune, Takashi; Arita, Ryotaro; Shimizu, Sunao; Iwasa, Yoshihiro

    2016-08-01

    The electric field effect is a useful means of elucidating intrinsic material properties as well as for designing functional devices. The electric-double-layer transistor (EDLT) enables the control of carrier density in a wide range, which is recently proved to be an effective tool for the investigation of thermoelectric properties. Here, we report the gate-tuning of thermoelectric power in a black phosphorus (BP) single crystal flake with the thickness of 40 nm. Using an EDLT configuration, we successfully control the thermoelectric power (S), and find that the S of ion-gated BP reached +510 $\\mu$V/K at 210 K in the hole depleted state, which is much higher than the reported bulk single crystal value of +340 $\\mu$V/K at 300 K. We compared this experimental data with the first-principles-based calculation and found that this enhancement is qualitatively explained by the effective thinning of the conduction channel of the BP flake and non-uniformity of the channel owing to the gate operation in a depletion mode. Our results provide new opportunities for further engineering BP as a thermoelectric material in nanoscale.

  2. Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi.

    PubMed

    Shemi, Adva; Schatz, Daniella; Fredricks, Helen F; Van Mooy, Benjamin A S; Porat, Ziv; Vardi, Assaf

    2016-08-01

    Nutrient availability is an important factor controlling phytoplankton productivity. Phytoplankton contribute c. 50% of the global photosynthesis and possess efficient acclimation mechanisms to cope with nutrient stress. We investigate the cellular response of the bloom-forming coccolithophore Emiliania huxleyi to phosphorus (P) scarcity, which is often a limiting factor in marine ecosystems. We combined mass spectrometry, fluorescence microscopy, transmission electron microscopy (TEM) and gene expression analyses in order to assess diverse cellular features in cells exposed to P limitation and recovery. Early starvation-induced substitution of phospholipids in the cells' membranes with galacto- and betaine lipids. Lipid remodeling was rapid and reversible upon P resupply. The PI3K inhibitor wortmannin reduced phospholipid substitution, suggesting a possible involvement of PI3K- signaling in this process. In addition, P limitation enhanced the formation and acidification of membrane vesicles in the cytoplasm. Intracellular vesicles may facilitate the recycling of cytoplasmic content, which is engulfed in the vesicles and delivered to the main vacuole. Long-term starvation was characterized by a profound increase in cell size and morphological alterations in cellular ultrastructure. This study provides cellular and molecular basis for future ecophysiological assessment of natural E. huxleyi populations in oligotrophic regions. PMID:27111716

  3. Gate-Tuned Thermoelectric Power in Black Phosphorus.

    PubMed

    Saito, Yu; Iizuka, Takahiko; Koretsune, Takashi; Arita, Ryotaro; Shimizu, Sunao; Iwasa, Yoshihiro

    2016-08-10

    The electric field effect is a useful means of elucidating intrinsic material properties as well as for designing functional devices. The electric-double-layer transistor (EDLT) enables the control of carrier density in a wide range, which is recently proved to be an effective tool for the investigation of thermoelectric properties. Here, we report the gate-tuning of thermoelectric power in a black phosphorus (BP) single crystal flake with the thickness of 40 nm. Using an EDLT configuration, we successfully control the thermoelectric power (S) and find that the S of ion-gated BP reached +510 μV/K at 210 K in the hole depleted state, which is much higher than the reported bulk single crystal value of +340 μV/K at 300 K. We compared this experimental data with the first-principles-based calculation and found that this enhancement is qualitatively explained by the effective thinning of the conduction channel of the BP flake and nonuniformity of the channel owing to the gate operation in a depletion mode. Our results provide new opportunities for further engineering BP as a thermoelectric material in nanoscale. PMID:27462825

  4. Reduction of phosphorus diffusion in germanium by fluorine implantation

    SciTech Connect

    El Mubarek, H. A. W.

    2013-12-14

    The control of phosphorus (P) diffusion in germanium (Ge) is essential for the realisation of ultrashallow n-type junctions in Ge. This work reports a detailed study of the effect of fluorine (F) co-implantation on P diffusion in Ge. P and F profiles were characterized by secondary ion mass spectroscopy. The ion implantation damage was investigated using cross sectional transmission electron microscopy. It is shown that F co-implantation reduces the implanted P profile width and reduces both intrinsic and extrinsic P diffusion in Ge. A defect mediated mechanism for the strong influence of F co-implantation on P diffusion in Ge is proposed and invokes the formation of F{sub n}V{sub m} clusters in the F-amorphized Ge layer. A fraction of these F{sub n}V{sub m} clusters decorate the interstitial type end-of-range defects in the re-grown Ge layer and the rest react during re-growth with interstitial germanium atoms diffusing back from the amorphous crystalline interface. The Ge vacancies are then annihilated and mobile interstitial F is released and out diffuses from the surface. This results in a re-grown Ge layer which has a low vacancy concentration and in which the P diffusion rate is reduced. These results open the way to the realization of enhanced Ge n-type devices.

  5. Thermal conductivity of armchair black phosphorus nanotubes: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Liao, Xiangbiao; Xiao, Hang; Chen, Xi

    2016-04-01

    The effects of size, strain, and vacancies on the thermal properties of armchair black phosphorus nanotubes are investigated based on qualitative analysis from molecular dynamics simulations. It is found that thermal conductivity has a remarkable size effect, because of the restricted paths for phonon transport, which is strongly dependent on the diameter and length of the nanotube. Owing to the intensified low-frequency phonons, axial tensile strain can facilitate thermal transport. In contrast, compressive strain weakens thermal transport due to the enhanced phonon scattering around the buckling of the nanotube. In addition, the thermal conductivity is dramatically reduced by single vacancies, particularly those with high defect concentrations.

  6. Thermal conductivity of armchair black phosphorus nanotubes: a molecular dynamics study.

    PubMed

    Hao, Feng; Liao, Xiangbiao; Xiao, Hang; Chen, Xi

    2016-04-15

    The effects of size, strain, and vacancies on the thermal properties of armchair black phosphorus nanotubes are investigated based on qualitative analysis from molecular dynamics simulations. It is found that thermal conductivity has a remarkable size effect, because of the restricted paths for phonon transport, which is strongly dependent on the diameter and length of the nanotube. Owing to the intensified low-frequency phonons, axial tensile strain can facilitate thermal transport. In contrast, compressive strain weakens thermal transport due to the enhanced phonon scattering around the buckling of the nanotube. In addition, the thermal conductivity is dramatically reduced by single vacancies, particularly those with high defect concentrations. PMID:26926780

  7. SUMMARY REVIEW OF HEALTH EFFECTS ASSOCIATED WITH ELEMENTAL AND INORGANIC PHOSPHORUS COMPOUNDS: HEALTH ISSUE ASSESSMENT

    EPA Science Inventory

    Phosphorus is a nonmetallic essential element. lthough phosphorus occurs naturally in the environment, most of the phosphorus in the environment occurs during its manufacture into one of the three allotropic forms (white, red, or black) or into phosphorus compounds and during the...

  8. PHOSPHORUS: single-step on-demand services across multi-domain networks for e-science

    NASA Astrophysics Data System (ADS)

    Figuerola, S.; Ciulli, N.; de Leenheer, M.; Demchenko, Y.; Ziegler, W.; Binczewski, A.

    2007-11-01

    The Phosphorus project focuses on delivering advanced network services to Grid users and applications interconnected by heterogeneous infrastructures. The project is addressing some of the key technical challenges to enable on-demand end-to-end network services across multiple domains. The Phosphorus network concept makes applications aware of their complete Grid resources environment -computational and networking- and its capabilities. Phosphorus enables and tests dynamic adaptive and optimised use of the heterogeneous network infrastructure interconnecting various high-end resources. The project will demonstrate on-demand service delivery across access-independent multi-domain/multi-vendor research network test-beds on a European and worldwide scope. Phosphorus enhances and demonstrates solutions that facilitate vertical and horizontal communication among applications middleware and the network resources across different domains, managed by existing Network Resource Provisioning Systems (NRPS), or domains that integrate a new Grid-GMPLS (G2MPLS) Control Plane, both under a new AAA architecture to support policy based on-demand network resource provisioning. This G2MPLS extends ASON/GMPLS in order to provide part of the functionalities related to the selection, co-allocation and maintenance of both Grid and network resources, by exposing upgraded interfaces at the UNI and E-NNI network reference points -i.e. G.OUNI and G.E-NNI-. The project outcomes are going to be demonstrated in a worldwide test-bed.

  9. Simultaneous nitrification, denitrification and phosphorus removal (SNDPR) in a full-scale water reclamation plant located in warm climate.

    PubMed

    Yang, Qin; Shen, Nan; Lee, Zarraz M-P; Xu, Guangjing; Cao, Yeshi; Kwok, Beehong; Lay, Winson; Liu, Yu; Zhou, Yan

    2016-01-01

    The combination of simultaneous nitrification-denitrification (SND) with enhanced biological phosphorus removal (EBPR) provides a more efficient and economically viable option for nutrient removal from municipal wastewater compared to conventional two-step nitrification-denitrification. This study analyzed the nutrients (N and P) profiles in a full-scale municipal wastewater reclamation plant (WRP) located in the tropical region, in which more than 90% of nitrogen was removed. Interestingly, average SND efficiency in aerobic zones was found to be up to 50%, whereas phosphorus profile displayed a clear cyclic release and uptake pattern with a phosphorus removal efficiency of up to 76%. The capability of sludge to perform SND and EBPR was further confirmed through a series of batch experiments. Microbial analysis revealed the presence of Accumulibacter and Tetrasphaera phosphate accumulating organisms in the plant, while few glycogen accumulating organisms (GAO) was observed. This study showed the significant occurrence of combined SND and EBPR, known as simultaneous nitrification, denitrification and phosphorus removal (SNDPR), in the studied WRP under warm climate. The possible causes behind the observed SNDPR were also discussed. PMID:27438250

  10. Evaluation of a Membrane Biological Reactor for Reclaiming Water, Alkalinity, Salts, Phosphorus, and Protein Contained in a High-Strength Aquacultural Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The capacity of a membrane biological reactor to provide nitrification, denitrification, and enhanced biological phosphorus removal of a high-strength aquaculture backwash flow (control condition), or the same flow amended with 100 mg/L of NO3-N and 3 mg/L of dissolved P (test condition), was assess...

  11. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  12. Preliminary analysis of phosphorus flow in Hue Citadel.

    PubMed

    Anh, T N Q; Harada, H; Fujii, S; Anh, P N; Lieu, P K; Tanaka, S

    2016-01-01

    Characteristics of waste and wastewater management can affect material flows. Our research investigates the management of waste and wastewater in urban areas of developing countries and its effects on phosphorus flow based on a case study in Hue Citadel, Hue, Vietnam. One hundred households were interviewed to gain insight into domestic waste and wastewater management together with secondary data collection. Next, a phosphorus flow model was developed to quantify the phosphorus input and output in the area. The results showed that almost all wastewater generated in Hue Citadel was eventually discharged into water bodies and to the ground/groundwater. This led to most of the phosphorus output flowing into water bodies (41.2 kg P/(ha year)) and ground/groundwater (25.3 kg P/(ha year)). Sewage from the sewer system was the largest source of phosphorus loading into water bodies, while effluent from on-site sanitation systems was responsible for a major portion of phosphorus into the ground/groundwater. This elevated phosphorus loading is a serious issue in considering surface water and groundwater protection. PMID:26744936

  13. Large Ultraviolet Photoresponsivity of Few-layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Kok Wai Koon, Gavin; Xiang, Du; Castro Neto, Antonio H.; Özyilmaz, Barbaros; Centre of Advanced 2D Materials Team

    Black phosphorus has recently gained much attention in the scientific community. Black phosphorus can be seen as a crystal generated by periodic repetition of tetraphosphorus (P4) molecules. It is known that tetraphosphorus P4 can be transformed temporarily to diphosphorus P2 upon ultraviolet (UV) irradiation. Thus, it is expected that the P4 structured black phosphorus also has strong interaction with light especially in the UV range. Here we report on the optoelectronic characteristics of few-layer black phosphorus field effect transistors (FETs) ranging from the UV to the near infrared (NIR). We demonstrate that black phosphorus is an excellent ultraviolet (UV) photodetector with a specific detectivity ~3x1013 Jones. We report also an exceptional photo responsivity of 107 times higher than previously reported values for black phosphorus visible light photodetectors. We attribute such a colossal UV photo responsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for high-efficient UV absorption due to their singularity nature. Large Ultraviolet Photoresponsivity of Few-layer Black Phosphorus.

  14. The dissipation of phosphorus in sewage and sewage effluents.

    PubMed

    Collingwood, R W

    Of the 41 kt of phosphorus reaching the sewage works in England and Wales 15 kt is removed in sewage sludge and the remainder is disposed of to rivers. 60% of the sewage sludge is now used as fertilizer and this proportion will no doubt increase in the future. The total use of sewage sludge, however, represents only about 5% of the current annual usage of artificial phosphorus fertilizer. At present there is no general economic incentive to make better use of the phosphorus in effluents. Phosphorus removal is expensive--about 2--3 pence/m3. If all the sewage effluents in England and Wales were to be so treated the cost would be about 100--150 million pounds annually, that is about 50% of the present costs of sewage treatment. In certain cases, but rarely in the UK, phosphate is removed, not to conserve phosphorus but to minimize the problems it creates in the environment. The phosphorus removed has little value as fertilizer. Alternative methods of using the phosphorus in effluents by the production and harvesting of crops of algae or aquatic plants have so far proved uneconomic. However, these methods need to be reviewed periodically as they may in the future become economically more attractive, especially in warmer climates where plant growth can be maintained throughout the year. PMID:357121

  15. Microbial sequestration of phosphorus in anoxic upwelling sediments

    NASA Astrophysics Data System (ADS)

    Goldhammer, Tobias; Brüchert, Volker; Ferdelman, Timothy G.; Zabel, Matthias

    2010-08-01

    Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits. Bacteria are thought to mediate these processes, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

  16. Nitrate suppresses internal phosphorus loading in an eutrophic lake.

    PubMed

    Hemond, Harold F; Lin, Katherine

    2010-06-01

    The presence of nitrate in the hypolimnion of the eutrophic, dimictic Upper Mystic Lake has been previously shown to suppress the release of arsenic from lake sediments during seasonal anoxia, in large part by oxidizing iron (II) and producing iron oxyhydroxides that sorb inorganic arsenic. Because of the importance of internal phosphorus loading in the phosphorus budget of many eutrophic lakes, the chemical similarities between phosphate and arsenate, and the need to account for internal phosphorus loading as part of many lake restoration strategies, we carried out measurements to determine if the presence of nitrate also suppressed the release of phosphorus from the sediments of this lake during anoxia. Observations showed that this was the case. Arsenic, phosphorus, and iron (II) concentrations were strongly correlated in the water column, as expected, and the depths below which phosphorus and iron concentrations increased relative to epilimnetic values was predicted by the depth at which nitrate concentration approached zero. The results suggest that knowledge of a lake's nitrogen budget may be a useful tool in the design of lake remediation efforts, even though phosphorus is typically the limiting nutrient. PMID:20494392

  17. Black phosphorus saturable absorber for ultrashort pulse generation

    SciTech Connect

    Sotor, J. Sobon, G.; Abramski, K. M.; Macherzynski, W.; Paletko, P.

    2015-08-03

    Low-dimensional materials, due to their unique and versatile properties, are very interesting for numerous applications in electronics and optoelectronics. Recently rediscovered black phosphorus, with a graphite-like layered structure, can be effectively exfoliated up to the single atomic layer called phosphorene. Contrary to graphene, it possesses a direct band gap controllable by the number of stacked atomic layers. For those reasons, black phosphorus is now intensively investigated and can complement or replace graphene in various photonics and electronics applications. Here, we demonstrate that black phosphorus can serve as a broadband saturable absorber and can be used for ultrashort optical pulse generation. The mechanically exfoliated ∼300 nm thick layers of black phosphorus were transferred onto the fiber core, and under pulsed excitation at 1560 nm wavelength, its transmission increases by 4.6%. We have demonstrated that the saturable absorption of black phosphorus is polarization sensitive. The fabricated device was used to mode-lock an Er-doped fiber laser. The generated optical solitons with the 10.2 nm bandwidth and 272 fs duration were centered at 1550 nm. The obtained results unambiguously show that black phosphorus can be effectively used for ultrashort pulse generation with performances similar or even better than currently used graphene or carbon nanotubes. This application of black phosphorus proves its great potential to future practical use in photonics.

  18. Reduction of phosphorus and alkali levels in coking coals

    SciTech Connect

    Hoare, I.C.; Waugh, A.B.

    1995-12-31

    A number of coals, though exhibiting desirable coking properties, can have undesirable levels of alkalis and phosphorus. All the phosphorus in the coal will report to the coke, eventually to the iron and thence to the steel, with adverse effects on its metallurgical properties. Alkalis have damaging effects on the blast furnace operation and can be responsible for loss of heat, loss of production, efficiency loss and reduced furnace life. Buyers of coking coal commonly specify such parameters as phosphorus in coal and alkalis in ash, with penalties and rejection over certain limits. With the introduction of new direct reduction technologies such as COREX and HISMELT, and others such as PCI, it is anticipated that coal producers will have even tighter phosphorus and alkali specifications imposed on their products. Phosphorus is predominantly inorganic in origin occurring in a wide variety of minerals in coal, but its main source is apatite. It can be found mainly in the lower density fractions of the coal and intimately bound, so that conventional physical beneficiation techniques are relatively ineffective. CSIRO has developed a cost effective, selective chemical demineralization treatment, which can be applied to the problem of high alkali, high phosphorus coals. This particular technique makes use of unrefined organic acid, which also has the advantage of being low in cost and environmentally benign. In this paper, the effectiveness of acid demineralization of a number of coals is discussed, within the context of their phosphorus and alkali distributions throughout various size/density fractions.

  19. Relative Contributions of Phosphorus in High Elevation Sierra Nevada Lakes

    NASA Astrophysics Data System (ADS)

    Jensen, L. K.; McIntyre, B. M.; Lyons, R. A.

    2015-12-01

    High elevation lakes of the Sierra Nevada mountain range show signs of eutrophication due to increased phosphorus loading. Phosphorus is a major contributing factor to freshwater lake eutrophication when in excess. Three previously researched sources of phosphorus to high-elevation montane lakes include atmospheric deposition, internal loading from sediments, and excretions from non-native stocked fish. The goal of this research was to isolate the estimated phosphorus contributions from residential shoreline developments and stocked non-native fish. A steady-state phosphorus loading rate model was created to quantify relative phosphorus loading into two lakes in the Eastern Sierra Nevada: Convict and Silver Lake. A conglomerate control lake was created from Eastern Brook Lake in the Eastern Sierra Nevada, Pear Lake in the Southern Sierra Nevada, and Snowflake Lake in Canada. Both Convict and Silver Lakes contain stocked non-native trout species and Silver Lake also has ~25 vacation homes on its eastern shore. Seasonal steady-state total phosphorus concentrations were determined using EPA Method 365.2. Loading rate constants were calculated using loading rates from literature and corresponding concentrations. It was determined that as much as 42% of phosphorous to Silver Lake came from shoreline housing developments, and 24% came from stocked fish depending on the season. Previous studies showed much lower contributions from non-native fish.

  20. Dietary phosphorus requirement of young abalone Haliotis discus Hannai Ino

    NASA Astrophysics Data System (ADS)

    Tan, Bei-Ping; Mai, Kang-Sen; Liufu, Zhi-Guo

    2002-03-01

    An experiment was performed to determine the dietary phosphorus requirement of the young abalone, Haliotis discus hannai. Five semi-purified diets were formulated to provide a series of graded levels of dietary total phosphorus (0.23% 1.98) from monobasic potassium phosphate (KH2P04). The brown alga, Laminaria japonica, was used as a control diet. Similar size abalone were distributed in a single-pass, flow-through system using a completely randomized design with six treatments and three replicates each treatment. The abalone were hand-fed to satiation with appropriate diets in excess, once daily at 17:00. The feeding trial was run for 120-d. Survival rate and soft-body to shell ratio (SB/S) were constantly maintained regardless of dietary treatment. However, the weight gain rate (WGR), daily increment in shell length (DISL), muscle RNA to DNA ratio (RNA/DNA), carcass levels of lipid and protein, soft-body alkaline phosphatase (SBAKP), and phosphorus concentrations of whole body (WB) and soft body (SB) were significantly (ANOVA, P<0.05) affected by the dietary phosphorus level. The dietary phosphorus requirements of the abalone were evaluated from the WGR, DISL, and RNA/DNA ratio respectively, by using second-order polynomial regression analysis. Based on these criteria, about 1.0% 1.2% total dietary phosphorus, i.e. 0.9% 1.1% dietary available phosphorus is recommended for the maximum growth of the abalone.