Science.gov

Sample records for attaining ultra-high energies

  1. Active Galactic Nuclei:. Sources for Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Becker, J. K.; Caramete, L.; Gergely, L.; Mariş, I. C.; Meli, A.; de Souza, V.; Stanev, T.

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

  2. Ultra-high energy probes of classicalization

    SciTech Connect

    Dvali, Gia; Gomez, Cesar E-mail: cesar.gomez@uam.es

    2012-07-01

    Classicalizing theories are characterized by a rapid growth of the scattering cross section. This growth converts these sort of theories in interesting probes for ultra-high energy experiments even at relatively low luminosity, such as cosmic rays or Plasma Wakefield accelerators. The microscopic reason behind this growth is the production of N-particle states, classicalons, that represent self-sustained lumps of soft Bosons. For spin-2 theories this is the quantum portrait of what in the classical limit are known as black holes. We emphasize the importance of this quantum picture which liberates us from the artifacts of the classical geometric limit and allows to scan a much wider landscape of experimentally-interesting quantum theories. We identify a phenomenologically-viable class of spin-2 theories for which the growth of classicalon production cross section can be as efficient as to compete with QCD cross section already at 100TeV energy, signaling production of quantum black holes with graviton occupation number N ∼ 10{sup 4}.

  3. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  4. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Boncioli, D.; di Matteo, A.; Grillo, A. F.; Petrera, S.; Salamida, F.

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  5. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    NASA Astrophysics Data System (ADS)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  6. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ∼ 10{sup −2} eV), thermal effects are important for ultra high energy neutrino sources at z∼>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ∼ 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}−10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ∼ 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10–100.

  7. Ultra-high energy cosmic rays: Setting the stage

    NASA Astrophysics Data System (ADS)

    Sokolsky, P.

    2013-06-01

    The history of ultra-high energy cosmic ray physics is reviewed from the post-war era of arrays such as Volcano Ranch, Haverah Park and Akeno to the development of air-fluorescence and current hybrid arrays. The aim of this paper is to present the background information needed for a better understanding of the current issues in this field that are discussed in much greater depth in the rest of this conference.

  8. Ultra high energy cosmic rays: the highest energy frontier

    NASA Astrophysics Data System (ADS)

    de Mello Neto, João R. T.

    2016-04-01

    Ultra-high energy cosmic rays (UHECRs) are the highest energy messengers of the present universe, with energies up to 1020 eV. Studies of astrophysical particles (nuclei, electrons, neutrinos and photons) at their highest observed energies have implications for fundamental physics as well as astrophysics. The primary particles interact in the atmosphere and generate extensive air showers. Analysis of those showers enables one not only to estimate the energy, direction and most probable mass of the primary cosmic particles, but also to obtain information about the properties of their hadronic interactions at an energy more than one order of magnitude above that accessible with the current highest energy human-made accelerator. In this contribution we will review the state-of-the-art in UHECRs detection. We will present the leading experiments Pierre Auger Observatory and Telescope Array and discuss the cosmic ray energy spectrum, searches for directional anisotropy, studies of mass composition, the determination of the number of shower muons (which is sensitive to the shower hadronic interactions) and the proton-air cross section.

  9. Searching for ultra-high energy cosmic rays with smartphones

    NASA Astrophysics Data System (ADS)

    Whiteson, Daniel; Mulhearn, Michael; Shimmin, Chase; Cranmer, Kyle; Brodie, Kyle; Burns, Dustin

    2016-06-01

    We propose a novel approach for observing cosmic rays at ultra-high energy (>1018 eV) by repurposing the existing network of smartphones as a ground detector array. Extensive air showers generated by cosmic rays produce muons and high-energy photons, which can be detected by the CMOS sensors of smartphone cameras. The small size and low efficiency of each sensor is compensated by the large number of active phones. We show that if user adoption targets are met, such a network will have significant observing power at the highest energies.

  10. Radio detection of ultra-high energy cosmic neutrinos

    SciTech Connect

    Vieregg, Abigail G.

    2015-07-15

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 10{sup 18} eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  11. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect

    Liu Jiali; Tiedt, Douglas

    2013-05-23

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  12. Anomalous Diffraction at Ultra-High Energy for Protein Crystallography

    SciTech Connect

    Jakoncic,J.; Di Michiel, M.; Zhong, Z.; Honkimaki, V.; Jouanneau, Y.; Stojanoff, V.

    2006-01-01

    Single-wavelength anomalous diffraction (SAD), multiwavelength anomalous diffraction (MAD) and single isomorphous replacement with anomalous scattering (SIRAS) phasing at ultra-high X-ray energy, 55 keV, are used successfully to determine a high-quality and high-resolution experimental electronic density map of hen egg-white lysozyme, a model protein. Several combinations, between single- and three-wavelength, with native data were exploited to demonstrate that standard phasing procedures with standard equipment and software can successfully be applied to three-dimensional crystal structure determination of a macromolecule, even at these very short wavelengths. For the first time, a high-quality three-dimensional molecular structure is reported from SAD phasing with ultra-high-energy X-rays. The quality of the crystallographic data and the experimental electron density maps meet current standards. The 2.7% anomalous signal from three Ho atoms, at the Ho K edge, was sufficient to obtain a remarkable electron density and build the first lanthanide structure for HEWL in its entirety.

  13. Ultra high energy electrons powered by pulsar rotation.

    PubMed

    Mahajan, Swadesh; Machabeli, George; Osmanov, Zaza; Chkheidze, Nino

    2013-01-01

    A new mechanism of particle acceleration, driven by the rotational slow down of the Crab pulsar, is explored. The rotation, through the time dependent centrifugal force, can efficiently excite unstable Langmuir waves in the electron-positron (hereafter e(±)) plasma of the star magnetosphere. These waves, then, Landau damp on electrons accelerating them in the process. The net transfer of energy is optimal when the wave growth and the Landau damping times are comparable and are both very short compared to the star rotation time. We show, by detailed calculations, that these are precisely the conditions for the parameters of the Crab pulsar. This highly efficient route for energy transfer allows the electrons in the primary beam to be catapulted to multiple TeV (~ 100 TeV) and even PeV energy domain. It is expected that the proposed mechanism may, unravel the puzzle of the origin of ultra high energy cosmic ray electrons. PMID:23405276

  14. Determining neutrino absorption spectra at ultra-high energies

    SciTech Connect

    Scholten, O; Van Vliet, A R E-mail: A.R.van.Vliet@student.rug.nl

    2008-06-15

    A very efficient method for measuring the flux of ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low energy relic anti-neutrino background through the Z boson resonance. The position of the absorption peak is sensitive to the neutrino mass and the redshift of the source. A new generation of low frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  15. Simulations of ultra-high-energy cosmic rays propagation

    SciTech Connect

    Kalashev, O. E.; Kido, E.

    2015-05-15

    We compare two techniques for simulation of the propagation of ultra-high-energy cosmic rays (UHECR) in intergalactic space: the Monte Carlo approach and a method based on solving transport equations in one dimension. For the former, we adopt the publicly available tool CRPropa and for the latter, we use the code TransportCR, which has been developed by the first author and used in a number of applications, and is made available online with publishing this paper. While the CRPropa code is more universal, the transport equation solver has the advantage of a roughly 100 times higher calculation speed. We conclude that the methods give practically identical results for proton or neutron primaries if some accuracy improvements are introduced to the CRPropa code.

  16. Ultra high energy density and fast discharge nanocomposite capacitors

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Sodano, Henry A.

    2013-04-01

    Nanocomposites containing high dielectric permittivity ceramics embedded in high breakdown strength polymers are currently of considerable interest as a solution for the development of high energy density capacitors. However, the improvement of dielectric permittivity comes at expense of the breakdown strength leading to limit the final energy density. Here, an ultra-high energy density nanocomposite was fabricated based on high aspect ratio barium strontium titanate nanowires. The pyroelectric phase Ba0.2Sr0.8TiO3 was chosen for the nanowires combined with quenched PVDF to fabricate high energy density nanocomposite. The energy density with 7.5% Ba0.2Sr0.8TiO3 nanowires reached 14.86 J/cc at 450 MV/m, which represented a 42.9% increase in comparison to the PVDF with an energy density of 10.4 J/cc at the same electric field. The capacitors have 1138% greater than higher energy density than commercial biaxial oriented polypropylene capacitors (1.2 J/cc at 640). These results demonstrate that the high aspect ratio nanowires can be used to produce nanocomposite capacitors with greater performance than the neat polymers thus providing a novel process for the development of future pulsed-power capacitors.

  17. Ultra-high-energy cosmic rays in a galactic wind and its termination shock

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G.

    1987-01-01

    Results are reported from numerical modeling of the acceleration and transport of ultra-high-energy cosmic rays in a galactic wind and its termination shock. A two-dimensional (azimuthally symmetric) wind and spiral magnetic field, with a spherical termination shock, where the velocity drops suddenly, is assumed. The time-dependent cosmic-ray transport equation, including all major transport effects is solved using an implicit finite-difference scheme. Particles are injected as the shock of low energy, and the subsequent evolution of the distribution function is followed. Iron nuclei are readily accelerated at the shock to energies up to 100 billion GeV, and protons to 10 billion GeV. A major effect aiding the acceleration of these particles is the spiral of the magnetic field carried out by the wind, caused by the rotation of the Galaxy, with the result that the shock is nearly normal over most of its area. Increasing the magnetic field or rotation rate increases the maximum energy attainable. Anisotropies and energy densities of the particles are also discussed. It is concluded that the process is consistent with observations of ultra-high-energy cosmic rays.

  18. Causality, renormalizability and ultra-high energy gravitational scattering

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; Shore, Graham M.

    2016-05-01

    The amplitude { A }(s,t) for ultra-high energy scattering can be found in the leading eikonal approximation by considering propagation in an Aichelburg–Sexl gravitational shockwave background. Loop corrections in the QFT describing the scattered particles are encoded for energies below the Planck scale in an effective action which in general exhibits causality violation and Shapiro time advances. In this paper, we use Penrose limit techniques to calculate the full energy dependence of the scattering phase shift {{{\\Theta }}}{{scat}}(\\hat{s}), where the single variable \\hat{s}={Gs}/{m}2{b}d-2 contains both the CM energy s and impact parameter b, for a range of scalar QFTs in d dimensions with different renormalizability properties. We evaluate the high-energy limit of {{{\\Theta }}}{{scat}}(\\hat{s}) and show in detail how causality is related to the existence of a well-defined UV completion. Similarities with graviton scattering and the corresponding resolution of causality violation in the effective action by string theory are briefly discussed.

  19. "Espresso" Acceleration of Ultra-high-energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Caprioli, Damiano

    2015-10-01

    We propose that ultra-high-energy (UHE) cosmic rays (CRs) above 1018 eV are produced in relativistic jets of powerful active galactic nuclei via an original mechanism, which we dub “espresso” acceleration: “seed” galactic CRs with energies ≲1017 eV that penetrate the jet sideways receive a “one-shot” boost of a factor of ∼Γ2 in energy, where Γ is the Lorentz factor of the relativistic flow. For typical jet parameters, a few percent of the CRs in the host galaxy can undergo this process, and powerful blazars with Γ ≳ 30 may accelerate UHECRs up to more than 1020 eV. The chemical composition of espresso-accelerated UHECRs is determined by that at the Galactic CR knee and is expected to be proton-dominated at 1018 eV and increasingly heavy at higher energies, in agreement with recent observations made at the Pierre Auger Observatory.

  20. Ultra high energy photons and neutrinos with JEM-EUSO

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    Ultra high energy photons and neutrinos are carriers of very important astrophysical information. They may be produced at the sites of cosmic ray acceleration or during the propagation of the cosmic rays in the intergalactic medium. In contrast to charged cosmic rays, photon and neutrino arrival directions point to the production site because they are not deflected by the magnetic fields of the Galaxy or the intergalactic medium. In this work we study the characteristics of the longitudinal development of showers initiated by photons and neutrinos at the highest energies. These studies are relevant for development of techniques for neutrino and photon identification by the JEM-EUSO telescope. In particular, we study the possibility of observing the multi-peak structure of very deep horizontal neutrino showers with JEM-EUSO. We also discuss the possibility to determine the flavor content of the incident neutrino flux by taking advantage of the different characteristics of the longitudinal profiles generated by different type of neutrinos. This is of grate importance for the study of the fundamental properties of neutrinos at the highest energies. Regarding photons, we discuss the detectability of the cosmogenic component by JEM-EUSO and also estimate the expected upper limits on the photon fraction which can be obtained from the future JEM-EUSO data for the case in which there are no photons in the samples.

  1. Heavy quark currents in ultra-high energy neutrino interactions

    NASA Astrophysics Data System (ADS)

    Fiore, R.; Zoller, V. R.

    2012-03-01

    We discuss heavy quark contributions to the neutrino-nucleon total cross section at very high energies, well above the real top production threshold. The top-bottom weak current is found to generate strong left-right asymmetry of neutrino-nucleon interactions. We separate contributions of different helicity states and make use of the κ-factorization to derive simple and practically useful formulas for the left-handed ( F L ) and right-handed ( F R ) components of the conventional structure function 2 xF 3 = F L - F R in terms of the integrated gluon density. We show that F L ≫ F R and, consequently, xF 3 ≈ F T , where F T is the transverse structure function. The conventional structure function F 2 = F S + F T at Q 2 ≪ m {/t 2} appears to be dominated by its scalar (also known as longitudinal) component F S and the hierarchy F S ≫ F L ≫ F R arises naturally. We evaluate the total neutrino-nucleon cross section at ultra-high energies within the color dipole BFKL-formalism.

  2. On the Origin of Ultra High Energy Cosmic Rays

    SciTech Connect

    Fowler, T; Colgate, S; Li, H

    2009-07-01

    Turbulence-driven plasma accelerators produced by magnetized accretion disks around black holes are proposed as the mechanism mainly responsible for observed cosmic ray protons with ultra high energies 10{sup 19}-10{sup 21} eV. The magnetized disk produces a voltage comparable to these cosmic ray energies. Here we present a Poynting model in which this voltage provides all of the energy to create the jet-like structures observed to be ejected from accretion disks, and this voltage also accelerates ions to high energies at the top of the expanding structure. Since the inductive electric field E = -v x B driving expansion has no component parallel to the magnetic field B, ion acceleration requires plasma wave generation - either a coherent wave accelerator as recently proposed, or instability-driven turbulence. We find that turbulence can tap the full inductive voltage as a quasi-steady accelerator, and even higher energies are produced by transient events on this structure. We find that both MHD modes due to the current and ion diffusion due to kinetic instability caused by the non-Maxwellian ion distribution contribute to acceleration. We apply our results to extragalactic giant radiolobes, whose synchrotron emissions serve to calibrate the model, and we discuss extrapolating to other astrophysical structures. Approximate calculations of the cosmic ray intensity and energy spectrum are in rough agreement with data and serve to motivate more extensive MHD and kinetic simulations of turbulence that could provide more accurate cosmic ray and synchrotron spectra to be compared with observations. A distinctive difference from previous models is that the cosmic ray and synchrotron emissions arise from different parts of the magnetic structure, thus providing a signature for the model.

  3. On the Origin of Ultra High Energy Cosmic Rays II

    SciTech Connect

    Fowler, T K; Colgate, S; Li, H; Bulmer, R H; Pino, J

    2011-03-08

    We show that accretion disks around Active Galactic Nuclei (AGNs) could account for the enormous power in observed ultra high energy cosmic rays {approx}10{sup 20} eV (UHEs). In our model, cosmic rays are produced by quasi-steady acceleration of ions in magnetic structures previously proposed to explain jets around Active Galactic Nuclei with supermassive black holes. Steady acceleration requires that an AGN accretion disk act as a dynamo, which we show to follow from a modified Standard Model in which the magnetic torque of the dynamo replaces viscosity as the dominant mechanism accounting for angular momentum conservation during accretion. A black hole of mass M{sub BH} produces a steady dynamo voltage V {proportional_to} {radical}M{sub BH} giving V {approx} 10{sup 20} volts for M{sub BH} {approx} 10{sup 8} solar masses. The voltage V reappears as an inductive electric field at the advancing nose of a dynamo-driven jet, where plasma instability inherent in collisionless runaway acceleration allows ions to be steadily accelerated to energies {approx} V, finally ejected as cosmic rays. Transient events can produce much higher energies. The predicted disk radiation is similar to the Standard Model. Unique predictions concern the remarkable collimation of jets and emissions from the jet/radiolobe structure. Given MBH and the accretion rate, the model makes 7 predictions roughly consistent with data: (1) the jet length; (2) the jet radius; (3) the steady-state cosmic ray energy spectrum; (4) the maximum energy in this spectrum; (5) the UHE cosmic ray intensity on Earth; (6) electron synchrotron wavelengths; and (7) the power in synchrotron radiation. These qualitative successes motivate new computer simulations, experiments and data analysis to provide a quantitative verification of the model.

  4. Anisotropy vs chemical composition at ultra-high energies

    SciTech Connect

    Lemoine, Martin; Waxman, Eli E-mail: eli.waxman@weizmann.ac.il

    2009-11-01

    This paper proposes and discusses a test of the chemical composition of ultra-high energy cosmic rays that relies on the anisotropy patterns measured as a function of energy. In particular, we show that if one records an anisotropy signal produced by heavy nuclei of charge Z above an energy E{sub thr}, one should record an even stronger (possibly much stronger) anisotropy at energies >E{sub thr}/Z due to the proton component that is expected to be associated with the sources of the heavy nuclei. This conclusion remains robust with respect to the parameters characterizing the sources and it does not depend at all on the modelling of astrophysical magnetic fields. As a concrete example, we apply this test to the most recent data of the Pierre Auger Observatory. Assuming that the anisotropy reported above 55 EeV is not a statistical accident, and that no significant anisotropy has been observed at energies ∼<10 EeV, we show that the apparent clustering toward Cen A cannot be attributed to heavy nuclei. Similar conclusions are drawn regarding the apparent excess correlation with nearby active galactic nuclei. We then discuss a robust lower bound to the magnetic luminosity that a source must possess in order to be able to accelerate particles of charge Z up to 100 EeV, L{sub B} ∼> 10{sup 45} Z{sup −2} erg/s. Using this bound in conjunction with the above conclusions, we argue that the current PAO data does not support the model of cosmic ray origin in active radio-quiet or even radio-loud galaxies. Finally, we demonstrate that the apparent clustering in the direction of Cen A can be explained by the contribution of the last few gamma-ray bursts or magnetars in the host galaxy thanks to the scattering of the cosmic rays on the magnetized lobes.

  5. Simulation chain for acoustic ultra-high energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Neff, M.; Anton, G.; Enzenhöfer, A.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R.

    2013-10-01

    Acoustic neutrino detection is a promising approach for large-scale ultra-high energy neutrino detectors in water. In this paper, a Monte Carlo simulation chain for acoustic neutrino detection devices in water is presented. It is designed within the SeaTray/IceTray software framework. Its modular architecture is highly flexible and makes it easy to adapt to different environmental conditions, detector geometries, and hardware. The simulation chain covers the generation of the acoustic pulse produced by a neutrino interaction and the propagation to the sensors within the detector. In this phase of the development, ambient and transient noise models for the Mediterranean Sea and simulations of the data acquisition hardware, similar to the one used in ANTARES/AMADEUS, are implemented. A pre-selection scheme for neutrino-like signals based on matched filtering is employed, as it can be used for on-line filtering. To simulate the whole processing chain for experimental data, signal classification and acoustic source reconstruction algorithms are integrated. In this contribution, an overview of the design and capabilities of the simulation chain will be given, and some applications and preliminary studies will be presented.

  6. Search for ultra high energy cosmic ray anisotropy with Auger

    NASA Astrophysics Data System (ADS)

    Boghrat, Pedram

    2008-09-01

    Although the existence of ultra high energy cosmic rays (UHECR) with energies on the order of 10 20 eV, has been shown by past experiments, the source of these particles is not yet understood. Theoretical models motivate the consideration of nearby active galactic nuclei (AGN) as a source candidate. However, AGN have not been declared as the source unambiguously and alternative hypotheses have also been made claiming radio galaxies are a significant source of UHECR. A third source candidate named Centaurus A (Cen A) is also considered. The focus of this thesis will be to test these hypotheses using the Pierre Auger detector, which observes the air showers generated by the UHECR primary after entering the Earth's atmosphere. The detector utilizes an array of 1600 ground detectors, each consisting of 12 metric tons of water spread over roughly 3000 km 2 . Each tank of water is watched by three 9" photomultipliers that detect Cherenkov radiation emitted by air shower particles passing through the water. The light emitted by atmospheric nitrogen that has been excited by passing air shower particles is also observed in order to obtain a calorimetric measurement of the energy of the UHECR. The first hypothesis that will be tested concerns the possibility that UHECR with energies larger than 57EeV correlate within 3.2° of AGN within 0.018 redshift. Given that the region 3.2° around these AGN covers 23% of the sky, on average 2.3 events out of 10 are expected to correlate within 3.2° of an AGN under the assumption of isotropy. Given only one out of 10 events in an independent data set are found to correlate, this hypothesis is disfavored. The second hypothesis that will be tested claims an excess of UHECR are found within 3.5° of radio galaxies within about 70 Mpc. Given that the region 3.5° around radio galaxies covers 10% of the sky, on average one out of 10 even s are expected to correlate within 3.5° of a radio galaxy, under the assumption that the UHECR are

  7. SimProp: a simulation code for ultra high energy cosmic ray propagation

    SciTech Connect

    Aloisio, R.; Grillo, A.F.; Boncioli, D.; Petrera, S.; Salamida, F. E-mail: denise.boncioli@roma2.infn.it E-mail: petrera@aquila.infn.it

    2012-10-01

    A new Monte Carlo simulation code for the propagation of Ultra High Energy Cosmic Rays is presented. The results of this simulation scheme are tested by comparison with results of another Monte Carlo computation as well as with the results obtained by directly solving the kinetic equation for the propagation of Ultra High Energy Cosmic Rays. A short comparison with the latest flux published by the Pierre Auger collaboration is also presented.

  8. Hadron cross sections at ultra high energies and unitarity bounds on diffraction dissociation

    NASA Technical Reports Server (NTRS)

    Yodh, G. B.; Gaisser, T. K.

    1985-01-01

    It was shown that if unitarity bounds on diffractive cross sections are valid at ultra high energies then diffractive dominance models which ascribe the increase in total hadron-hadron cross sections to diffractive processes only are ruled out. Calculations also show that cosmic ray cross sections derived from air shower experiments at ultra high energies clearly rule out models for hadron-hadron cross sections with nat.log ns energy dependence and favor those with nat.log n(2)s variation.

  9. Ultra-High Energy Neutrino-Nucleon Scattering and Parton Distributions at Small x

    SciTech Connect

    Henley, Ernest M.; Jalilian-Marian, Jamal

    2006-11-17

    The cross section for ultra-high energy neutrino-nucleon scattering is very sensitive to the parton distributions at very small values of Bjorken x (x {<=} 10-4). We numerically investigate the effects of modifying the behavior of the gluon distribution function at very small x in the DGLAP evolution equation. We then use the Color Glass Condensate formalism to calculate the neutrino-nucleon cross section at ultra-high energies and compare the result with those based on modification of DGLAP evolution equation.

  10. Search for ultra-high energy photons using Telescope Array surface detector

    SciTech Connect

    Rubtsov, G. I.; Troitsky, S. V.; Ivanov, D.; Stokes, B. T.; Thomson, G. B.

    2011-09-22

    We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive an upper limit on the absolute flux of primary photons with energies above 10{sup 19} eV.

  11. Ultra high energy events in ECHOS series and primary energy spectrum

    NASA Technical Reports Server (NTRS)

    Capdevielle, J. N.; Iwai, J.; Ogata, T.

    1985-01-01

    The compilation of ultra high energy jets suggests at present the existence of a bump in primary energy spectrum (with the standard concept of high energy collisions). The pseudo-rapidity distribution exhibits some typical anomalies, more than the (P sub t) behavior, which are (may be) the fingerprints of quark gluon plasma transition. The next results of Emulsion Chamber on Supersonic (ECHOS) will be in both cases determinant to confirm those tendancies, as well as an important effort of the cosmic ray community to develop in that sense a flying emulsion chamber experiment.

  12. A new ultra high energy gamma ray telescope at Ohya mine

    NASA Technical Reports Server (NTRS)

    Aoki, T.; Higashi, S.; Kamiya, Y.; Kitamura, T.; Matsuno, S.; Mizutani, K.; Mitsui, K.; Muraki, Y.; Okada, A.; Ohashi, Y.

    1985-01-01

    The search for ultra high energy gamma rays coming from point sources is one of the main experimental aims. A fast air shower timing system was constructed at ICRR for the study of the angular resolution of the system and operated approximately half a year. The characteristics of the surface array of Ohya air shower telescope is described.

  13. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  14. Anisotropies at Ultra High Energies and the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Wolfendale, Arnold

    1999-08-01

    A measure of consistency is appearing in measurements of the anisotropy of arrival directions above 1017 eV and these show a Galactic Plane Enhancement and a S-N excess, to about 3.1018 eV. The implication is that Galactic particles predominate here. At higher energies, where an Extragalactic origin is preferred, a contender for the `sources' is exotic dark matter particles. However, an analysis of the anisotropy at the highest energies, or, rather, the lack of it, makes this interpretation highly unlikely. Instead, `bottom-up' acceleration, in galaxy-systems is preferred; the likely mass mixture of the primaries, above 1018 eV, helps to explain why strong clustering of arrival is not observed.

  15. A hydrophone prototype for ultra high energy neutrino acoustic detection

    NASA Astrophysics Data System (ADS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  16. Testing for uniformity of ultra-high energy cosmic ray arrival directions

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.

    2016-04-01

    Arrival directions of ultra-high energy cosmic rays (UHECRs) exhibit mainly an isotropic distribution with some small deviations in particular energy bins. In this paper, the Yakutsk array data are tested for circular uniformity of arrival directions in right ascension (RA) using two methods appropriate for the energy ranges below and above 1018 eV. No statistically significant deviation from uniformity is found in the arrival directions of cosmic rays (CRs) detected within the observation period 1974-2000.

  17. Origin of the ultra-high-energy cosmic rays

    SciTech Connect

    Schramm, D.N.; Hill, C.T.

    1983-04-01

    The nature of the cosmic-ray spectrum above 10/sup 19/ eV discriminates between possible primary source models in a limited way. The shape of the spectrum, apart from normalization, is universal after a few photomeson interaction lengths. Fundamental processes, those sensitive to physics at e.g. the grand unification scale, are energy efficient and may be necessary to account for the normalization of the spectrum at the GZ cut-off. Very distant cosmological sources of this kind can generate significant structure above 10/sup 19/ eV. Local sources are not required and may even be problematic.

  18. New physics with ultra-high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Marfatia, D.; McKay, D. W.; Weiler, T. J.

    2015-09-01

    Now that PeV neutrinos have been discovered by IceCube, we optimistically entertain the possibility that neutrinos with energy above 100 PeV exist. We evaluate the dependence of event rates of such neutrinos on the neutrino-nucleon cross section at observatories that detect particles, atmospheric fluorescence, or Cherenkov radiation, initiated by neutrino interactions. We consider how (i) a simple scaling of the total standard model neutrino-nucleon cross section, (ii) a new elastic neutral current interaction, and (iii) a new completely inelastic interaction, individually impact event rates.

  19. Evolution of the ultra high energy cosmic ray spectrum by transport equation

    SciTech Connect

    Hill, C.T.; Schramm, D.N.

    1983-04-01

    Ultra-high energy proton primaries interacting with the 3/sup 0/K photon background are treated as a transport phenomenon. Baryon number is explicitly conserved and the evolved spectrum develops a bump at a scale of order 5x10/sup 19/ eV, below the cutoff, due to the pile-up of energy degraded protons. This may correspond in part to the observed ankle structure in the CR spectrum.

  20. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers

    NASA Astrophysics Data System (ADS)

    Chvykov, Vladimir; Nees, John; Krushelnick, Karl

    2014-02-01

    For the new generation of the ultra-high power lasers with tens of PW of output power, kJ-level energies have to be reached. Our modeling, applied to Ti:sapphire amplifiers, demonstrates for the first time, according our knowledge, that Transverse Amplified Spontaneous Emission (TASE) places an additional restriction on storing and extracting energy in larger gain apertures, even stronger than transverse parasitic generation (TPG). Nevertheless, we demonstrate that extracting during pumping (EDP) can significantly reduce parasitic losses due to both TASE and TPG.

  1. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    SciTech Connect

    Liu, Ruo-Yu; Wang, Xiang-Yu; Taylor, Andrew M.; Lemoine, Martin; Waxman, Eli

    2013-10-20

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ∼20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ∼> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  2. Constraining sources of ultra high energy cosmic rays using high energy observations with the Fermi satellite

    SciTech Connect

    Pe'er, Asaf; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2012-03-01

    We analyze the conditions that enable acceleration of particles to ultra-high energies, ∼ 10{sup 20} eV (UHECRs). We show that broad band photon data recently provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV–GeV) photons are produced by Compton scattering of the emitted low energy photons and the cosmic microwave background or extra-galactic background light. The ratio of the luminosities at high and low photon energies can therefore be used as a probe of the physical conditions in the acceleration site. We find that existing data excludes core regions of nearby radio-loud AGN as possible acceleration sites of UHECR protons. However, we show that giant radio lobes are not excluded. We apply our method to Cen A, and show that acceleration of protons to ∼ 10{sup 20} eV can only occur at distances ∼>100 kpc from the core.

  3. Search for ultra-high energy emission from Geminga and five unidentified EGRET sources

    SciTech Connect

    Not Available

    1993-01-01

    Data from the CYGNUS extensive air shower array were searched for continuous ultra-high energy (UHE) gamma radiation from five unidentified EGRET sources and from the Geminga pulsar. No evidence for continuous emission from any of these objects was found. Data in the Geminga source bin were also searched for pulsed emission using the recent EGRET ephemeris (237 ms period). No evidence of a periodic signal was found. The 90% confidence level upper limit on the continuous gamma-ray flux above 80 TeV for Geminga is 7.9 [times] 10[sup [minus]14] cm[sup [minus]2] s[sup [minus]1].

  4. Search for ultra-high energy emission from Geminga and five unidentified EGRET sources

    SciTech Connect

    The CYGNUS Collaboration

    1993-05-01

    Data from the CYGNUS extensive air shower array were searched for continuous ultra-high energy (UHE) gamma radiation from five unidentified EGRET sources and from the Geminga pulsar. No evidence for continuous emission from any of these objects was found. Data in the Geminga source bin were also searched for pulsed emission using the recent EGRET ephemeris (237 ms period). No evidence of a periodic signal was found. The 90% confidence level upper limit on the continuous gamma-ray flux above 80 TeV for Geminga is 7.9 {times} 10{sup {minus}14} cm{sup {minus}2} s{sup {minus}1}.

  5. The Galactic Magnetic Field and Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Urban, Federico R.

    The Galactic Magnetic Field is a peeving and importune screen between Ultra-High Energy Cosmic Rays and us cosmologists, engaged in the combat to unveil their properties and origin, as it deviates their paths towards the Earth in unpredictable ways. I will, in this order: briefly review the available field models on the market; explain a little trick which allows one to obtain cosmic rays deflection variances without even knowing what the (random) GMF model is; and argue that there is a lack of anisotropy in the large scales cosmic rays signal, which the Galactic field can do nothing about.

  6. ORIGIN OF ULTRA-HIGH-ENERGY GALACTIC COSMIC RAYS: THE ISOTROPY PROBLEM

    SciTech Connect

    Pohl, Martin; Eichler, David

    2011-12-01

    We study the propagation of ultra-high-energy cosmic rays (UHECRs) in the Galaxy, concentrating on the energy range below the ankle in the spectrum at 4 EeV. A Monte Carlo method, based on analytical solutions to the time-dependent diffusion problem, is used to account for intermittency by placing sources at random locations. Assuming a source population that scales with baryon mass density or star formation (e.g., long GRB), we derive constraints arising from intermittency and the observational limits on the composition and anisotropy. It is shown that the composition and anisotropy at 10{sup 18} eV are difficult to reproduce and require that either (1) the particle mean free path is much smaller than a gyroradius, implying the escape time is very long, (2) the composition is heavier than suggested by recent Auger data, (3) the ultra-high-energy sub-ankle component is mostly extragalactic, or (4) we are living in a rare lull in the UHECR production, and the current UHECR intensity is far below the Galactic time average. We therefore recommend a strong observational focus on determining the UHECR composition around 10{sup 18} eV.

  7. Visualizing potential energy curves and conformations on ultra high-resolution display walls.

    PubMed

    Kirschner, Karl N; Reith, Dirk; Jato, Oliver; Hinkenjann, André

    2015-11-01

    In this contribution, we examine how visualization on an ultra high-resolution display wall can augment force-field research in the field of molecular modeling. Accurate force fields are essential for producing reliable simulations, and subsequently important for several fields of applications (e.g. rational drug design and biomolecular modeling). We discuss how using HORNET, a recently constructed specific ultra high-resolution tiled display wall, enhances the visual analytics that are necessary for conformational-based interpretation of the raw data from molecular calculations. Simultaneously viewing multiple potential energy graphs and conformation overlays leads to an enhanced way of evaluating force fields and in their optimization. Consequently, we have integrated visual analytics into our existing Wolf2Pack workflow. We applied this workflow component to analyze how major AMBER force fields (Parm14SB, Gaff, Lipid14, Glycam06j) perform at reproducing the quantum mechanics relative energies and geometries of saturated hydrocarbons. Included in this comparison are the 1996 OPLS force field and our newly developed ExTrM force field. While we focus on atomistic force fields the ideas presented herein are generalizable to other research areas, particularly those that involve numerous representations of large data amounts and whose simultaneous visualization enhances the analysis. PMID:26454265

  8. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  9. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  10. Enhancement and suppresion of the neutrino-nucleon total cross section at ultra-high energies

    NASA Astrophysics Data System (ADS)

    Jalilian-Marian, Jamal

    2003-10-01

    We argue that high gluon density effects at small x are important for calculation of ultra-high energy neutrino nucleon cross sections due to the phenomenon of geometric scaling. We calculate the cross section for ν N arrow μ X, including high gluon density effects, using the all twist formalism of McLerran and Venugopalan and show that it can be related to the dipole nucleon cross section measured in DIS experiments. For neutrino energies of E_ν ˜ 10^12 GeV, the geometric scaling region extends all the way up to Q^2 ˜ M^2_W. We show that geometric scaling can lead to an enhancement of neutrino nucleon total cross section by 1-2 orders of magnitude compared to the leading twist cross section and discuss the implications for neutrino observatories. At extremely high energies, gluon saturation effects suppress the neutrino nucleon total cross section and lead to its unitarization.

  11. ULTRA-HIGH-ENERGY COSMIC RAYS FROM CENTAURUS A: JET INTERACTION WITH GASEOUS SHELLS

    SciTech Connect

    Gopal-Krishna; Biermann, Peter L.; De Souza, Vitor; Wiita, Paul J.

    2010-09-10

    Ultra-high-energy cosmic rays (UHECRs), with energies above {approx}6 x 10{sup 19} eV, seem to show a weak correlation with the distribution of matter relatively near to us in the universe. It has earlier been proposed that UHECRs could be accelerated in either the nucleus or the outer lobes of the nearby radio galaxy Cen A. We show that UHECR production at a spatially intermediate location about 15 kpc northeast from the nucleus, where the jet emerging from the nucleus is observed to strike a large star-forming shell of gas, is a plausible alternative. A relativistic jet is capable of accelerating lower energy heavy seed cosmic rays (CRs) to UHECRs on timescales comparable to the time it takes the jet to pierce the large gaseous cloud. In this model, many CRs arising from a starburst, with a composition enhanced in heavy elements near the knee region around PeV, are boosted to ultra-high energies by the relativistic shock of a newly oriented jet. This model matches the overall spectrum shown by the Auger data and also makes a prediction for the chemical composition as a function of particle energy. We thus predict an observable anisotropy in the composition at high energy in the sense that lighter nuclei should preferentially be seen toward the general direction of Cen A. Taking into consideration the magnetic field models for the Galactic disk and a Galactic magnetic wind, this scenario may resolve the discrepancy between HiRes and Auger results concerning the chemical composition of UHECRs.

  12. Searches for ultra-high energy neutrinos at the Pierre Auger observatory

    SciTech Connect

    Alvarez-Muñiz, Jaime

    2015-07-15

    Neutrinos in the sub-EeV energy range and above can be detected and identified with the Surface Detector array of the Pierre Auger Observatory. The identification can be efficiently done for neutrinos of all flavours interacting in the atmosphere, typically above 60° (downward-going), as well as for “Earth-skimming” neutrino interactions in the case of tau neutrinos (upward-going). Three sets of identification criteria were designed to search for downward-going neutrinos in the zenith angle bins 60° − 75° and 75° − 90° as well as for upward-going neutrinos. The three searches have been recently combined, providing, in the absence of candidates in data from 1 January 04 until 31 December 12, a stringent limit to the diffuse flux of ultra-high energy neutrinos.

  13. The MIDAS experiment: A prototype for the microwave emission of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Monasor, M.; Alekotte, I.; Alvarez-Muñiz, J.; Berlin, A.; Bertou, X.; Bodgan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.; de Mello Neto, J. R. T.; Genat, J. F.; Facal San Luis, P.; Mills, E.; Rouille D'Orfeuil, B.; Wayne, S.; Reyes, L. C.; Santos, E. M.; Privitera, P.; Williams, C.; Zas, E.

    2011-06-01

    Recent measurements suggest that extensive air showers initiated by ultra-high energy cosmic rays (UHECR) emit signals in the microwave band of the electromagnetic spectrum caused by the collisions of the free-electrons with the atmospheric neutral molecules in the plasma produced by the passage of the shower. Such emission is isotropic and could allow the detection of air showers with 100% duty cycle and a calorimetric-like energy measurement, a significant improvement over current detection techniques. We have built MIDAS (MIcrowave Detection of Air Showers), a prototype of microwave detector, which consists of a 4.5 m diameter antenna with a cluster of 53 feed-horns in the 4 GHz range. The details of the prototype and first results will be presented.

  14. HERMES: Simulating the propagation of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    De Domenico, Manlio

    2013-08-01

    The study of ultra-high energy cosmic rays (UHECR) at Earth cannot prescind from the study of their propagation in the Universe. In this paper, we present HERMES, the ad hoc Monte Carlo code we have developed for the realistic simulation of UHECR propagation. We discuss the modeling adopted to simulate the cosmology, the magnetic fields, the interactions with relic photons and the production of secondary particles. In order to show the potential applications of HERMES for astroparticle studies, we provide an estimation of the surviving probability of UHE protons, the GZK horizons of nuclei and the all-particle spectrum observed at Earth in different astrophysical scenarios. Finally, we show the expected arrival direction distribution of UHECR produced from nearby candidate sources. A stable version of HERMES will be released in the next future for public use together with libraries of already propagated nuclei to allow the community to perform mass composition and energy spectrum analysis with our simulator.

  15. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  16. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  17. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  18. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGESBeta

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; et al

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  19. Pilot study of ultra-high energy Cosmic rays through their Space - Atmospheric interactions - COSAT

    NASA Astrophysics Data System (ADS)

    Gina Isar, Paula; Nicolae, Doina

    2015-03-01

    One hundred years after the discovery of cosmic rays, the study of charged ultra-high energy cosmic rays remains a vital activity in fundamental physics. While primary cosmic rays could not be measured directly until it was possible to get the detectors high in the atmosphere using balloons or spacecraft, nowadays very energetic cosmic rays are detected indirectly by ground-based experiments measuring their Extensive Air Showers (EAS) induced Cherenkov and fluorescent light, or radio waves. Moreover, all cosmic ray measurements (performed either from space or ground) rely on accurate understandings of atmospheric phenomena. The concept of the COSAT project is the inter-link between Astroparticle Physics, Remote Sensing and Atmospheric Environment, willing to investigate the energetic cosmic rays physical processes using the atmosphere as a detector in order to identify potential scientific niches in the field of space sciences. A short introduction on the current status and perspectives of the national partnership COSAT project will be given.

  20. ANN based Estimation of Ultra High Energy (UHE) Shower Size using Radio Data

    NASA Astrophysics Data System (ADS)

    Sinha, Kalpana Roy; Datta, Pranayee; Sarma, Kandarpa Kumar

    2013-02-01

    Size estimation is a challenging area in the field of Ultra High Energy (UHE) showers where actual measurements are always associated with uncertainty of events and imperfections in detection mechanisms. The subtle variations resulting out of such factors incorporate certain random behaviour in the readings provided by shower detectors for subsequent processing. Field strength recorded by radio detectors may also be affected by this statistical nature. Hence there is a necessity of development of a system which can remain immune to such random behaviour and provide resilient readings to subsequent stages. Here, we propose a system based on Artificial Neural Network (ANN) which accepts radio field strength recorded by radio detectors and provides estimates of shower sizes in the UHE region. The ANN in feed-forward form is trained with a range of shower events with which it can effectively handle the randomness observed in the detector reading due to imperfections in the experimental apparatus and related set-up.

  1. The MIDAS telescope for microwave detection of ultra-high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Amaral Soares, E.; Berlin, A.; Bogdan, M.; Boháčová, M.; Bonifazi, C.; Carvalho, W. R.; de Mello Neto, J. R. T.; Facal San Luis, P.; Genat, J. F.; Hollon, N.; Mills, E.; Monasor, M.; Privitera, P.; Ramos de Castro, A.; Reyes, L. C.; Richardson, M.; Rouille d'Orfeuil, B.; Santos, E. M.; Wayne, S.; Williams, C.; Zas, E.; Zhou, J.

    2013-08-01

    We present the design, implementation and data taking performance of the MIcrowave Detection of Air Showers (MIDAS) experiment, a large field of view imaging telescope designed to detect microwave radiation from extensive air showers induced by ultra-high energy cosmic rays. This novel technique may bring a tenfold increase in detector duty cycle when compared to the standard fluorescence technique based on detection of ultraviolet photons. The MIDAS telescope consists of a 4.5 m diameter dish with a 53-pixel receiver camera, instrumented with feed horns operating in the commercial extended C-Band (3.4-4.2 GHz). A self-trigger capability is implemented in the digital electronics. The main objectives of this first prototype of the MIDAS telescope - to validate the telescope design, and to demonstrate a large detector duty cycle - were successfully accomplished in a dedicated data taking run at the University of Chicago campus prior to installation at the Pierre Auger Observatory.

  2. Ultra high energy cosmic rays and possible signature of black strings

    NASA Astrophysics Data System (ADS)

    dos Anjos, Rita C.; Coimbra-Araújo, Carlos H.; da Rocha, Roldão; de Souza, Vitor

    2016-03-01

    Ultra high energy cosmic rays (UHECRs) probably originate in extreme conditions in which extra dimension effects might be important. In this paper we calculate the correction in black hole accretion mechanisms due to extra dimension effects in the static and rotating cases. A parametrization of the external Kerr horizons in both cases is presented and analysed. We use previous calculations of upper limits on the UHECR flux to set limits on the UHECR production efficiency of nine sources. The upper limit on the UHECR luminosity calculation is based on GeV-TeV gamma-ray measurements. The total luminosity due to the accretion mechanism is compared to the upper limit on UHECRs. The dependence of the UHECR production efficiency upper limit on black hole mass is also presented and discussed.

  3. Status of Goldstone Lunar Ultra-High Energy Neutrino Experiment (GLUE)

    NASA Astrophysics Data System (ADS)

    Gorham, Peter W.; Liewer, Kurt M.; Milincic, Radovan; Naudet, Charles J.; Saltzberg, David; Williams, Dawn

    2003-02-01

    We report on results from 80 hours of livetime with the Goldstone Lunar Ultra-high energy neutrino Experiment (GLUE). The experiment searches for microwave pulses (width <= 10 ns) from the lunar regolith, appearing in coincidence at two large radio telescopes separated by 22 km and linked by optical fiber. Such pulses would arise from subsurface electromagnetic cascades induced by interactions of up-coming ~ 100 EeV neutrinos in the lunar regolith. Triggering on a timing coincidence between the two telescopes significantly reduces the terrestrial interference background, allowing operation at the thermal noise level. No unambiguous candidates are yet seen. We report on limits implied by this non-detection, based on new Monte Carlo estimates of the efficiency.

  4. Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bertaina, M.; Casolino, M.; Dawson, B.; Horvath, P.; Hrabovsky, M.; Jiang, J.; Mandat, D.; Matalon, A.; Matthews, J. N.; Motloch, P.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Takizawa, Y.; Thomas, S. B.; Travnicek, P.; Yamazaki, K.

    2016-02-01

    We present a concept for large-area, low-cost detection of ultra-high energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST), addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report first results of a FAST prototype installed at the Telescope Array site, consisting of a single 200 mm photomultiplier tube at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. The FAST prototype took data for 19 nights, demonstrating remarkable operational stability. We detected laser shots at distances of several kilometers as well as 16 highly significant UHECR shower candidates.

  5. Cosmic Magnetic Fields and Their Influence on Ultra-High Energy Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Sigl, Günter; Miniati, Francesco; Enßlin, Torsten A.

    2004-11-01

    We discuss the influence of large scale cosmic magnetic fields on the propagation of hadronic cosmic rays above 1019 eV based on large scale structure simulations. Our simulations suggest that rather substantial deflection up to several tens of degrees at 1020 eV are possible for nucleon primaries. Further, spectra and composition of cosmic rays from individual sources can depend on magnetic fields surrounding these sources in intrinsically unpredictable ways. This is true even if deflection from such individual sources is small. We conclude that the influence of large scale cosmic magnetic fields on ultra-high energy cosmic ray propagation is currently hard to quantify. We discuss possible reasons for discrepant results of simulations by Dolag et al. which predict deflections of at most a few degrees for nucleons. We finally point out that even in these latter simulations a possible heavy component would in general suffer substantial deflection.

  6. Monocular measurement of the ultra-high energy cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Shah, Priti Dhanesh

    The Telescope Array Project was designed to observe cosmic rays with energies greater than 1018 eV. Its goals are to study the physics of cosmic rays by measuring their anisotropy, composition, and energy spectrum. This work makes a monocular measurement of the ultra high energy cosmic ray spectrum and analyzes the physics produced from that spectrum. The flux of cosmic rays observed on Earth follows a power law over 12 decades in energy and 32 decades in flux. At the highest energies, the spectrum has detailed structure. Studying these features can tell us about the astrophysics of the production and propagation of cosmic rays. First, it can tell us about the sources of cosmic rays such as they capable of producing a power law spectrum and the maximum energy of cosmic rays that they can produce. Second, the acceleration mechanisms that can boost cosmic rays to ultra high energies can be studied. Third, the spectral features themselves can tell us about their possible cause for formation. For example, the ankle feature in the ultra high energy regime can tell us if it is the galactic-extragalactic transition or if it is due to e+e- pair production. Fourth, the energy losses that cosmic rays incur can tell us about their physical interactions during propagation. Studying the physics of the cosmic ray spectrum in the ultra high energy regime with data from the Telescope Array Project is the goal of this analysis. The Telescope Array Project consists of three fluorescence detectors overlooking an array of 507 scintillation surface detectors. Due to their extremely low flux at these energies, cosmic rays can only be observed indirectly via an extensive air shower produced when they collide with the nucleus of an atom in the Earth's atmosphere. These charged secondary particles produce fluorescence light. The array of surface detectors observes the lateral footprint of the extensive air shower when it reaches the ground. The fluorescence detectors observe the

  7. The role and detectability of the charm contribution to ultra high energy neutrino fluxes

    SciTech Connect

    Gandhi, Raj; Samanta, Abhijit; Watanabe, Atsushi E-mail: abhijit@hri.res.in

    2009-09-01

    It is widely believed that charm meson production and decay may play an important role in high energy astrophysical sources of neutrinos, especially those that are baryon-rich, providing an environment conducive to pp interactions. Using slow-jet supernovae (SJS) as an example of such a source, we study the detectability of high-energy neutrinos, paying particular attention to those produced from charmed-mesons. We highlight important distinguishing features in the ultra-high energy neutrino flux which would act as markers for the role of charm in the source. In particular, charm leads to significant event rates at higher energies, after the conventional (π,K) neutrino fluxes fall off. We calculate event rates both for a nearby single source and for diffuse SJS fluxes for an IceCube-like detector. By comparing muon event rates for the conventional and prompt fluxes in different energy bins, we demonstrate the striking energy dependence in the rates induced by the presence of charm. We also show that it leads to an energy dependant flux ratio of shower to muon events, providing an additional important diagnostic tool for the presence of prompt neutrinos. Motivated by the infusion of high energy anti-electron neutrinos into the flux by charm decay, we also study the detectability of the Glashow resonance due to these sources.

  8. Composition of Ultra High Energy Cosmic Rays Observed by Telescope Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Hanlon, William; Telescope Array Collaboration

    2016-03-01

    The energy spectrum of cosmic rays exhibits several important features such as the knee (E ~10 15 . 5 eV), ankle (E ~10 18 . 7 eV), and high energy suppression (E ~10 19 . 8 eV). Cosmic ray chemical composition is the key to understanding their galactic and extragalactic sources as well as the origin of particle production and acceleration mechanisms. Energy dependent chemical composition is a fundamental input for models of cosmic ray sources and interstellar transport which may lead to competing explanations of the observed spectral features. Understanding composition will therefore allow one to distinguish between the different scenarios of cosmic ray origin, a decades old problem in astrophysics. In this talk we will describe measurements of ultra high energy cosmic ray composition performed by Telescope Array (TA) using Xmax measured in extended air showers (EAS) simultaneously observed by the TA surface array and TA fluorescence stations (called hybrid mode). Showers with primary energies above 1018 eV will be considered. We will also discuss improved methods of comparing the measured composition to EAS models.

  9. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  10. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    DOE PAGESBeta

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Meinhardt, Kerry D.; Chang, Hee -Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-11

    Here we demonstrate for the first time that planar Na-NiCl2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl2 batteries operated at 280°C, was obtained for planar Na-NiCl2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl2 batteries operated at anmore » intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less

  11. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-02-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.

  12. Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.

    PubMed

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  13. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density

    PubMed Central

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.

    2016-01-01

    Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635

  14. Search for Ultra High-Energy Neutrinos with AMANDA-II

    SciTech Connect

    IceCube Collaboration; Klein, Spencer; Ackermann, M.

    2007-11-19

    A search for diffuse neutrinos with energies in excess of 10{sup 5} GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 10{sup 7} GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E{sup 2} {Phi}{sub 90%CL} < 2.7 x 10{sup -7} GeV cm{sup -2}s{sup -1} sr{sup -1} valid over the energy range of 2 x 10{sup 5} GeV to 10{sup 9} GeV. A number of models which predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

  15. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.

    PubMed

    Cheng, Qian; Tang, Jie; Ma, Jun; Zhang, Han; Shinya, Norio; Qin, Lu-Chang

    2011-10-21

    We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles. PMID:21887427

  16. Search for Ultra-High-Energy Neutrinos with AMANDA-II

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Auffenberg, J.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Beimforde, M.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; De Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Hasegawa, Y.; Hauschildt, T.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kawai, H.; Kelley, J. L.; Kiryluk, J.; Kislat, F.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Leier, D.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meagher, K.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Olivas, A.; Ono, M.; Patton, S.; Pérez de los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Robbins, W. J.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schultz, O.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Song, C.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Viscomi, V.; Vogt, C.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Waldenmaier, T.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wiedemann, C.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.; IceCube Collaboration

    2008-03-01

    A search for diffuse neutrinos with energies in excess of 105 GeV is conducted with AMANDA-II data recorded between 2000 and 2002. Above 107 GeV, the Earth is essentially opaque to neutrinos. This fact, combined with the limited overburden of the AMANDA-II detector (roughly 1.5 km), concentrates these ultra-high-energy neutrinos at the horizon. The primary background for this analysis is bundles of downgoing, high-energy muons from the interaction of cosmic rays in the atmosphere. No statistically significant excess above the expected background is seen in the data, and an upper limit is set on the diffuse all-flavor neutrino flux of E2Φ90% CL < 2.7 × 10-7 GeV cm-2 s-1 sr-1 valid over the energy range of 2 × 105 to 109 GeV. A number of models that predict neutrino fluxes from active galactic nuclei are excluded at the 90% confidence level.

  17. Optimized trigger for ultra-high-energy cosmic-ray and neutrino observations with the low frequency radio array

    NASA Astrophysics Data System (ADS)

    Singh, K.; Mevius, M.; Scholten, O.; Anderson, J. M.; van Ardenne, A.; Arts, M.; Avruch, M.; Asgekar, A.; Bell, M.; Bennema, P.; Bentum, M.; Bernadi, G.; Best, P.; Boonstra, A.-J.; Bregman, J.; van de Brink, R.; Broekema, C.; Brouw, W.; Brueggen, M.; Buitink, S.; Butcher, H.; van Cappellen, W.; Ciardi, B.; Coolen, A.; Damstra, S.; Dettmar, R.; van Diepen, G.; Dijkstra, K.; Donker, P.; Doorduin, A.; Drost, M.; van Duin, A.; Eisloeffel, J.; Falcke, H.; Garrett, M.; Gerbers, M.; Grießmeier, J.-M.; Grit, T.; Gruppen, P.; Gunst, A.; van Haarlem, M.; Hoeft, M.; Holties, H.; Hörandel, J.; Horneffer, L. A.; Huijgen, A.; James, C.; de Jong, A.; Kant, D.; Kooistra, E.; Koopman, Y.; Koopmans, L.; Kuper, G.; Lambropoulos, P.; van Leeuwen, J.; Loose, M.; Maat, P.; Mallary, C.; McFadden, R.; Meulman, H.; Mol, J.-D.; Morawietz, J.; Mulder, E.; Munk, H.; Nieuwenhuis, L.; Nijboer, R.; Norden, M. J.; Noordam, J.; Overeem, R.; Paas, H.; Pandey, V. N.; Pandey-Pommier, M.; Pizzo, R.; Polatidis, A.; Reich, W.; de Reijer, J.; Renting, A.; Riemers, P.; Roettgering, H.; Romein, J.; Roosjen, J.; Ruiter, M.; Schoenmakers, A.; Schoonderbeek, G.; Sluman, J.; Smirnov, O.; Stappers, B.; Steinmetz, M.; Stiepel, H.; Stuurwold, K.; Tagger, M.; Tang, Y.; Ter Veen, S.; Vermeulen, R.; de Vos, M.; Vogt, C.; van der Wal, E.; Weggemans, H.; Wijnholds, S.; Wise, M.; Wucknitz, O.; Yattawatta, S.; van Zwieten, J.

    2012-02-01

    When an ultra-high energy neutrino or cosmic-ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.

  18. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ~ E-γ with γ~ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ~ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ~ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  19. SEN Ultra-High Energy Implanter (UHE) Developed for Next Generation Image Sensors

    SciTech Connect

    Suetsugu, Noriyuki; Tsukihara, Mitsukuni; Fuse, Genshu; Ueno, Kazuyoshi; Sugitani, Michiro

    2011-01-07

    The UHE is an ultra-high energy implanter developed by SEN Corporation. It was derived from the NV-GSD-HE3 by adding six RF resonators to the beam line. This extends performance so that singly charged boron ions can reach 2 MeV with beam current of 0.75 mA. The maximum energy for triple charged boron is 5 MeV with beam current of 1p{mu}A. For phosphorus ions, the UHE can accelerate doubly charged ions up to 4.4 MeV with beam current of 0.35 mA and quadruply charged ions up to 8 MeV with beam current of 1 p{mu}A. The primary application of the UHE is the image sensor market where it is used to increase the depth of CCD photodiodes into the surface of the wafer and thereby permit higher pixel density for image sensors. The second purpose is to improve productivity for relatively high boron doses at energies around 3 MeV. In order to address certain CCD defects, the system includes a state-of-the-art beam profile controller which allows optimization of implant damage and micro-uniformity. The ULE is currently used in production of high-end CCD's.

  20. SEN Ultra-High Energy Implanter (UHE) Developed for Next Generation Image Sensors

    NASA Astrophysics Data System (ADS)

    Suetsugu, Noriyuki; Tsukihara, Mitsukuni; Fuse, Genshu; Ueno, Kazuyoshi; Sugitani, Michiro

    2011-01-01

    The UHE is an ultra-high energy implanter developed by SEN Corporation. It was derived from the NV-GSD-HE3 by adding six RF resonators to the beam line. This extends performance so that singly charged boron ions can reach 2 MeV with beam current of 0.75 mA. The maximum energy for triple charged boron is 5 MeV with beam current of 1pμA. For phosphorus ions, the UHE can accelerate doubly charged ions up to 4.4 MeV with beam current of 0.35 mA and quadruply charged ions up to 8 MeV with beam current of 1 pμA. The primary application of the UHE is the image sensor market where it is used to increase the depth of CCD photodiodes into the surface of the wafer and thereby permit higher pixel density for image sensors. The second purpose is to improve productivity for relatively high boron doses at energies around 3 MeV. In order to address certain CCD defects, the system includes a state-of-the-art beam profile controller which allows optimization of implant damage and micro-uniformity. The ULE is currently used in production of high-end CCD's.

  1. Ultra-high energy neutrino fluxes as a probe for non-standard physics

    SciTech Connect

    Bhattacharya, Atri; Choubey, Sandhya; Gandhi, Raj; Watanabe, Atsushi E-mail: sandhya@hri.res.in E-mail: watanabe@muse.sc.niigata-u.ac.jp

    2010-09-01

    We examine how light neutrinos coming from distant active galactic nuclei (AGN) and similar high energy sources may be used as tools to probe non-standard physics. In particular we discuss how studying the energy spectra of each neutrino flavour coming from such distant sources and their distortion relative to each other may serve as pointers to exotic physics such as neutrino decay, Lorentz symmetry violation, pseudo-Dirac effects, CP and CPT violation and quantum decoherence. This allows us to probe hitherto unexplored ranges of parameters for the above cases, for example lifetimes in the range 10{sup −3}−10{sup 4} s/eV for the case of neutrino decay. We show that standard neutrino oscillations ensure that the different flavours arrive at the earth with similar shapes even if their flavour spectra at source may differ strongly in both shape and magnitude. As a result, observed differences between the spectra of various flavours at the detector would be signatures of non-standard physics altering neutrino fluxes during propagation rather than those arising during their production at source. Since detection of ultra-high energy (UHE) neutrinos is perhaps imminent, it is possible that such differences in spectral shapes will be tested in neutrino detectors in the near future. To that end, using the IceCube detector as an example, we show how our results translate to observable shower and muon-track event rates.

  2. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  3. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    SciTech Connect

    Robles, A; Drury, O B; Friedrich, S

    2009-08-19

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm{sup 3} Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  4. Magnetic deflections of ultra-high energy cosmic rays from Centaurus A

    NASA Astrophysics Data System (ADS)

    Keivani, Azadeh; Farrar, Glennys R.; Sutherland, Michael

    2015-02-01

    We present the results of a study that simulates trajectories of ultra-high energy cosmic rays from Centaurus A to Earth, for particle rigidities from E / Z = 2 EV to 100 EV, i.e., covering the possibility of primary particles as heavy as Fe nuclei with energies exceeding 50 EeV. The Galactic magnetic field is modeled using the recent work of Jansson and Farrar (JF12) which fitted its parameters to match extragalactic Faraday rotation measures and WMAP7 synchrotron emission maps. We include the random component of the GMF using the JF12 3D model for Brand (r →) and explore the impact of different random realizations, coherence length and other features on cosmic ray deflections. Gross aspects of the arrival direction distribution such as mean deflection and the RMS dispersion depend mainly on rigidity and differ relatively little from one realization to another. However different realizations exhibit non-trivial substructure whose specific features vary considerably from one realization to another, especially for lower rigidities. At the lowest rigidity of 2 EV, the distribution is broad enough that it might be compatible with a scenario in which Cen A is the principle source of all UHECRs. No attempt is made here to formulate a robust test of this possibility, although some challenges to such a scenario are noted.

  5. Full sky harmonic analysis hints at large ultra-high energy cosmic ray deflections

    SciTech Connect

    Tinyakov, P. G. Urban, F. R.

    2015-03-15

    The full-sky multipole coefficients of the ultra-high energy cosmic ray (UHECR) flux have been measured for the first time by the Pierre Auger and Telescope Array collaborations using a joint data set with E > 10 EeV. We calculate these harmonic coefficients in the model where UHECR are protons and sources trace the local matter distribution, and compare our results with observations. We find that the expected power for low multipoles (dipole and quadrupole, in particular) is sytematically higher than in the data: the observed flux is too isotropic. We then investigate to which degree our predictions are influenced by UHECR deflections in the regular Galactic magnetic field. It turns out that the UHECR power spectrum coefficients C{sub l} are quite insensitive to the effects of the Galactic magnetic field, so it is unlikely that the discordance can be reconciled by tuning the Galactic magnetic field model. On the contrary, a sizeable fraction of uniformly distributed flux (representing for instance an admixture of heavy nuclei with considerably larger deflections) can bring simulations and observations to an accord.

  6. The Isotropy Problem of Sub-ankle Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Eichler, David

    2014-01-01

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  7. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    SciTech Connect

    Scholten, O; Bacelar, J; Braun, R; de Bruyn, A G; Falcke, H; Singh, K; Stappers, B; Strom, R G; al Yahyaoui, R

    2010-04-02

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrow band radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  8. Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Buitink, S.; Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A. G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R. G.; Yahyaoui, R. Al

    2010-10-01

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims: By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods: The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results: With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  9. The isotropy problem of sub-ankle ultra high energy cosmic rays

    SciTech Connect

    Kumar, Rahul; Eichler, David

    2014-01-20

    We study the time dependent propagation of sub-ankle ultra high energy cosmic rays (UHECRs) originating from point-like Galactic sources. We show that drift in the Galactic magnetic field (GMF) may play an important role in the propagation of UHECRs and their measured anisotropy, particularly when the transport is anisotropic. To fully account for the discreteness of UHECR sources in space and time, a Monte Carlo method is used to randomly place sources in the Galaxy. The low anisotropy measured by Auger is not generally characteristic of the theoretical models, given that the sources are distributed in proportion to the star formation rate, but it can possibly be understood as (1) intermittency effects due to the discrete nature of the sources or, with extreme parameters, (2) a cancellation of drift current along a current sheet with outward radial diffusive flux. We conclude that it is possible to interpret the Galactic sub-ankle CR flux as being due entirely to intermittent discrete Galactic sources distributed in proportion to star formation, but only with a probability of roughly 35%, of which the spectrum is in accord with observations about 30% of the time. An alternative explanation for the low anisotropy may be that they are mostly extragalactic and/or heavy.

  10. Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Iron Nuclei

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Das, S.; Ryu, D.

    2012-05-01

    We have studied how the intergalactic magnetic field (IGMF) affects the propagation of super-GZK iron nuclei that originate from extragalactic sources within the local GZK sphere. Toward this end, we set up hypothetical sources of ultra-high-energy cosmic-rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects at high density region to represent astronomical objects formed in the large scale structure (LSS).With our model IGMF, the paths of UHE iron nuclei are deflected on average by about 70 degrees, which might indicate a nearly isotropic distribution of arrival directions. However, the separation angle between the arrival directions and the nearest reference object on the LSS is only 6 degrees, which is twice the mean distance to the nearest neighbors among the reference objects. This means that the positional correlation of observed UHE iron events with their true sources would be erased by the IGMF, but the correlation with the LSS itself is to be sustained. We discuss implications of our findings for correlations studies of real UHECR events.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0002433).

  11. Ultra-High Energy Cosmic Rays: Composition, Early Air Shower Interactions, and Xmax Skewness

    NASA Astrophysics Data System (ADS)

    Stapleton, James

    The composition of Ultra-High Energy Cosmic Rays (UHECRs) is still not completely understood, and must be inferred from Extended Air Shower (EAS), particle cascades which they initiate upon entering the atmosphere. The atmospheric depth at which the shower contains the maximum number of particles ( Xmax) is the most composition-sensitive property of the air shower, but its interpretation is hindered by intrinsic statistical fluctuations in EAS development which cause distinct compositions to produce overlapping Xmax distributions as well as our limited knowledge at these energies of hadronic physics which strongly impacts the Xmax distribution's shape. These issues ultimately necessitate a variety of complementary approaches to interpreting UHECR composition from Xmax data. The current work advances these approaches by connecting X max skewness to the uncertainties above. The study of X max has historically focused only on the mean and standard deviation of its distribution, but skewness is shown here to be strongly related to both the statistical fluctuations in EAS development as well as the least-understood hadronic cross-sections in the air shower. This leads into a treatment of the Exponentially-Modified Gaussian (EMG) distribution, whose little-known properties make it very useful for Xmax analysis and for data analysis in general. A powerful method emerges which uses only descriptive statistics in a robust check for energy-dependent changes in UHECR mass or EAS development. The application of these analyses to X max data provides tantalizing clues concerning issues of critical importance, such as the relationship between Xmax and the 'ankle' break in the UHECR energy spectrum, or the inferred properties of the UHECR mass distribution and its strong dependence on hadronic model systematics.

  12. On Ultra-high-energy Cosmic Rays and Their Resultant Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Gavish, Eyal; Eichler, David

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 (L = 1043.5 erg s‑1 in the [0.5–2] KeV band), and BL Lacertae objects (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ-radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ-rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ-radiation and would remain a viable source of UHECRs, provided that they dominate.

  13. Statistical analysis of the correlation between active galactic nuclei and ultra-high energy cosmic rays

    SciTech Connect

    Kim, Hang Bae; Kim, Jihyun E-mail: jihyunkim@hanyang.ac.kr

    2011-03-01

    We develop the statistical methods for comparing two sets of arrival directions of cosmic rays in which the two-dimensional distribution of arrival directions is reduced to the one-dimensional distributions so that the standard one-dimensional Kolmogorov-Smirnov test can be applied. Then we apply them to the analysis of correlation between the ultra-high energy cosmic rays (UHECR) with energies above 5.7 × 10{sup 19} eV, observed by Pierre Auger Observatory (PAO) and Akeno Giant Air Shower Array (AGASA), and the active galactic nuclei (AGN) within the distance 100 Mpc. For statistical test, we set up the simple AGN model for UHECR sources in which a certain fraction of observed UHECR are originated from AGN within a chosen distance, assuming that all AGN have equal UHECR luminosity and smearing angle, and the remaining fraction are from the isotropic background contribution. For the PAO data, our methods exclude not only a hypothesis that the observed UHECR are simply isotropically distributed but also a hypothesis that they are completely originated from the selected AGN. But, the addition of appropriate amount of isotropic component either through the background contribution or through the large smearing effect improves the correlation greatly and makes the AGN hypothesis for UHECR sources a viable one. We also point out that restricting AGN within the distance bin of 40–60 Mpc happens to yield a good correlation without appreciable isotropic component and large smearing effect. For the AGASA data, we don't find any significant correlation with AGN.

  14. Future use of silicon photomultipliers for the fluorescence detection of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Stephan, Maurice; Hebbeker, Thomas; Lauscher, Markus; Meurer, Christine; Niggemann, Tim; Schumacher, Johannes

    2011-10-01

    A sophisticated technique to measure extensive air showers initiated by ultra-high-energy cosmic rays is by means of fluorescence telescopes. Secondary particles of the air shower excite nitrogen molecules of the atmosphere, which emit fluorescence light when they de-excite. Due to their high photon detection efficiency (PDE) silicon photomultipliers (SiPMs) promise to increase the sensitivity of todays fluorescence telescopes which use photomultiplier tubes - for example the fluorescence detector of the Pierre Auger Observatory. On the other hand drawbacks like a small sensitive area, a strong temperature dependency and a high noise rate have to be managed. We present plans for a prototype fluorescence telescope using SiPMs and a special light collecting optical system of Winston cones to increase the sensitive area. In this context we made measurements of the relative PDE of SiPMs depending on the incident angle of light. The results agree with calculations based on the Fresnel equations. Furthermore, measurements of the brightness of the night sky are presented since this photon flux is the main background to the fluorescence signals of the extensive air showers. To compensate the temperature dependency of the SiPM, frontend electronics make use of temperature sensors and microcontrollers to directly adjust the bias-voltage according to the thermal conditions. To reduce the noise rate we study the coincidence of several SiPMs signals triggered by cosmic ray events. By summing up these signals the SiPMs will constitute a single pixel of the fluorescence telescope.

  15. Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

    NASA Astrophysics Data System (ADS)

    Ryu, Dongsu; Das, Santabrata; Kang, Hyesung

    2010-02-01

    We studied how the intergalactic magnetic field (IGMF) affects the propagation of super-Greisen-Zatsepin-Kuz'min (GZK) protons that originate from extragalactic sources within the local GZK sphere. To this end, we set up hypothetical sources of ultra-high-energy cosmic rays (UHECRs), virtual observers, and the magnetized cosmic web in a model universe constructed from cosmological structure formation simulations. We then arranged a set of reference objects mimicking active galactic nuclei (AGNs) in the local universe, with which correlations of simulated UHECR events are analyzed. With our model IGMF, the deflection angle between the arrival direction of super-GZK protons and the sky position of their actual sources is quite large with a mean value of langθrang ~ 15° and a median value of \\tilde{θ}˜ 7°-10°. On the other hand, the separation angle between the arrival direction and the sky position of nearest reference objects is substantially smaller with langSrang ~ 3fdg5-4°, which is similar to the mean angular distance in the sky to nearest neighbors among the reference objects. This is a direct consequence of our model that the sources, observers, reference objects, and the IGMF all trace the matter distribution of the universe. The result implies that extragalactic objects lying closest to the arrival direction of UHECRs are not necessarily their actual sources. With our model for the distribution of reference objects, the fraction of super-GZK proton events, whose closest AGNs are true sources, is less than 1/3. We discussed implications of our findings for correlation studies of real UHECR events.

  16. Anisotropy expectations for ultra-high-energy cosmic rays with future high-statistics experiments

    NASA Astrophysics Data System (ADS)

    Rouillé d'Orfeuil, B.; Allard, D.; Lachaud, C.; Parizot, E.; Blaksley, C.; Nagataki, S.

    2014-07-01

    Context. Ultra-high-energy cosmic rays (UHECRs) have attracted a lot of attention in astroparticle physics and high-energy astrophysics, due to their challengingly high energies, and to their ability to constrain the physical processes and astrophysical parameters in the most energetic sources of the universe. Despite their very large acceptance, current detectors have failed to detect significant anisotropies in their arrival directions, which had been expected to lead to the long-sought identification of their sources. Some indications about the composition of the UHECRs, which may become heavier at the highest energies, have even called into question the possibility that such a goal could be achieved in the foreseeable future. Aims: We investigate the potential value of a new-generation detector, with an exposure increased by one order of magnitude, to overcome the current situation and make notable progress in detecting anisotropies and thus in the study of UHECRs. We take as an example the expected performances of the JEM-EUSO detector, assuming a uniform full-sky coverage with a total exposure of 300 000 km2 sr yr. Methods: We simulated realistic UHECR sky maps for a wide range of possible astrophysical scenarios allowed by the current constraints, taking the energy losses and photo-dissociation of the UHE protons and nuclei into account, as well as their deflections by intervening magnetic fields. These sky maps, built for both the expected statistics of JEM-EUSO and the current Pierre Auger Observatory statistics, as a reference, were analysed from the point of view of their intrinsic anisotropies, using the two-point correlation function. A statistical study of the resulting anisotropies was performed for each astrophysical scenario, varying the UHECR source composition and spectrum and the source density and exploring a set of five hundred independent realizations for each choice of a parameter set. Results: We find that significant anisotropies are

  17. On the Possible Association of Ultra High Energy Cosmic Rays with Nearby Active Galaxies

    SciTech Connect

    Moskalenko, Igor V.; Stawarz, Lukasz; Porter, Troy A.; Cheung, Chi C.

    2008-05-14

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of cosmic rays (CRs) with energies >57 EeV that suggests a correlation with the positions of active galactic nuclei (AGN) located within {approx}75 Mpc. However, this analysis does not take into account AGN morphology. A detailed study of the sample of AGN whose positions correlate with the CR events shows that most of them are classified as Seyfert 2 and low-ionization nuclear emission-line region (LINER) galaxies which do not differ from other local AGN of the same types. Therefore, the claimed correlation between the CR events observed by the Pierre Auger Observatory and local active galaxies should be considered as resulting from a chance coincidence, if the production of the highest energy CRs is not episodic in nature, but operates in a single object on long ({ge} Myr) timescales. Additionally, most of the selected sources do not show significant jet activity, and hence--in the framework of the jet paradigm--there are no reasons for expecting them to accelerate CRs up to the highest energies, {approx}10{sup 20} eV, at all. If the extragalactic magnetic fields and the sources of these CRs are coupled with matter, it is possible that the deflection angle is larger than expected in the case of a uniform source distribution due to effectively larger fields. A future analysis has to take into account AGN morphology and may yield a correlation with a larger deflection angle and/or more distant sources. We further argue that Cen A alone could be associated with at least 4 events due to its large radio extent, and Cen B can be associated with more than 1 event due to its proximity to the Galactic plane and, correspondingly, the stronger Galactic magnetic field the ultra high energy CRs (UHECRs) encounter during propagation. If the UHECRs associated with these events are indeed accelerated by Cen A and Cen B, their deflection angles may provide information on the

  18. [INVESTIGATION OF THE COMBINED DISINFECTANT EFFECT OF ULTRA-HIGH FREQUENCY ENERGY AND SILVER ON WATER IN FLOW].

    PubMed

    Klimarev, S I; Siniak, Yu E

    2015-01-01

    The paper is dedicated to the results of investigating the combined effect of ultra-high frequency (UHF) energy and silver on contaminated water. Silver was used both in the ion form at the minimal concentration of 0.01-0.02 mg/l and solid state, i.e. a silver wire spiral. The purpose was to determine UHF-regimes of the flowing water disinfection process in the presence of silver. PMID:26554133

  19. Astrophysics of Ultra-High Energy Cosmic Rays, Photons, and Neutrinos

    NASA Astrophysics Data System (ADS)

    Mészáros, Peter; Watson, Alan; Waxman, Eli

    2005-05-01

    This miniworkshop concentrates on the astrophysics of GeV to ZeV cosmic rays, photons and neutrinos from active galaxies, gamma ray bursts and other compact or diffuse sources, as well as the transport processes and the physics of acceleration mechanisms that determine their observed fluxes and spectra. SCIENCE and MOTIVATION There are a number of major issues which this workshop is aimed at: * What is the origin of the ultra-high energy(PeV to ZeV) cosmic rays? Independently of whether there are super-GZK events or not, the CR flux levels near 1E20 eV from AGASA and HIRES are within 3 sigma of each other, and there is an intense debate about the possible astrophysical sources. What is the contribution to these from gamma-ray bursts, active galaxies, galactic core sources? Can we reconcile the AGASA and HIRES discrepancies? Can Fermi acceleration explain particles at the GZK limit, and can we test shock acceleration? How strong is the case for alternative astrophysical acceleration mechanisms? What are the implications of Auger's accumulating data, as the array progresses towards completion? What can be learned about intergalactic matter from cosmic ray propagation effects? * What is the origin of GeV-TeV photons from AGN, GRB, SNRs? Are the jets in AGN and GRB hadronic or leptonic? What constraints can be imposed on these from TeV and correlated lower energy spectra and variability? What is the origin of the GeV-TeV emission from pulsars and possibly magnetars(polar cap or outer gap emittors?) Are there smoking gun signatures of Fermi(diffusive) or other, e.g. linear(wakefield, etc) acceleration of leptons? For scattering off magnetic turbulence, reconnection, etc? Is there strong evidence for proton acceleration and hadronic cascades? How realistic is it to detect gamma-ray signatures of the quantum-gravity energy scale, vacuum dispersion, etc., with GLAST, SWIFT, etc? * What is the TeV to EeV neutrino emission of AGN, GRB, micro- quasars and other sources? How

  20. Discrimination of ultra high energy cosmic rays with the extreme universe space observatory

    NASA Astrophysics Data System (ADS)

    Sáez Cano, G.

    2015-02-01

    This thesis is framed in the study of Ultra High Energy Cosmic Rays (UHECRs) by space-based telescopes such as the Extreme Universe Space Observatory (EUSO) that will be place on the International Space Station (ISS). After a brief summary of the main features of UHECRs in chapter 2, a description of the JEM-EUSO experiment has been carried out in chapter 3. In the following chapters, which are focused on my work, it has been studied how different clouds might affect the development of the Extensive Air Shower (EAS) produced in the atmosphere by UHECRs and detected from space. This effect depends not only on the optical depth and on the altitude of the cloud, but also on some properties of the EAS (such as the arrival direction or the primary energy). In chapter 4 we have investigated how the EAS signal looks like depending on the part of the Field of View (FoV) where it is produced, analyzing the difference in the number of detected photons or in the duration of the shower development in the atmosphere. In chapter 5, a trigger efficiency in cloudy conditions, called cloud efficiency, has been calculated considering the maximum development visibility requirement. This is, the maximum of the shower must be visible. We have estimated how the shower geometry and the primary particle energy are modified by the cloud in comparison with the same case in a clear atmosphere. Also, a three dimensional photon propagation module has been developed to include a more complete model of the atmosphere for a deeper shower study. In chapter 6, the two methods to reconstruct the primary energy of the UHECR and the shower maximum of the EAS in a clear atmosphere have been modified to be used in stratus-like clouds: the Cherenkov method, that relies on the determination of the Cherenkov reflected bump on the top of the cloud, and the slant depth method, which relies on the previous geometry reconstruction of the shower.

  1. Concept and Analysis of a Satellite for Space-Based Radio Detection of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Romero-Wolf, Andrew; Gorham, P.; Booth, J.; Chen, P.; Duren, R. M.; Liewer, K.; Nam, J.; Saltzberg, D.; Schoorlemmer, H.; Wissel, S.; Zairfian, P.

    2014-01-01

    We present a concept for on-orbit radio detection of ultra-high energy cosmic rays (UHECRs) that has the potential to provide collection rates of ~100 events per year for energies above 10^20 eV. The synoptic wideband orbiting radio detector (SWORD) mission's high event statistics at these energies combined with the pointing capabilities of a space-borne antenna array could enable charged particle astronomy. The detector concept is based on ANITA's successful detection UHECRs where the geosynchrotron radio signal produced by the extended air shower is reflected off the Earth's surface and detected in flight.

  2. Ultra-high Energy Neutrinos from Gamma-Ray Burst Afterglows Using the Swift-UVOT Data

    NASA Astrophysics Data System (ADS)

    Nir, Guy; Guetta, Dafne; Landsman, Hagar; Behar, Ehud

    2016-02-01

    We consider a sample of 107 gamma-ray bursts (GRBs) for which early ultra-violet emission was measured by Swift and extrapolate the photon intensity to lower energies. Protons accelerated in the GRB jet may interact with such photons to produce charged pions and subsequently ultra high energy neutrinos {\\varepsilon }ν ≥slant {10}16 eV. We use simple energy conversion efficiency arguments to predict the maximal neutrino flux expected from each GRB. We estimate the neutrino detection rate at large area radio based neutrino detectors and conclude that the early afterglow neutrino emission is too weak to be detected even by next generation neutrino observatories.

  3. Simulation of ultra-high energy photon propagation with PRESHOWER 2.0

    NASA Astrophysics Data System (ADS)

    Homola, P.; Engel, R.; Pysz, A.; Wilczyński, H.

    2013-05-01

    In this paper we describe a new release of the PRESHOWER program, a tool for Monte Carlo simulation of propagation of ultra-high energy photons in the magnetic field of the Earth. The PRESHOWER program is designed to calculate magnetic pair production and bremsstrahlung and should be used together with other programs to simulate extensive air showers induced by photons. The main new features of the PRESHOWER code include a much faster algorithm applied in the procedures of simulating the processes of gamma conversion and bremsstrahlung, update of the geomagnetic field model, and a minor correction. The new simulation procedure increases the flexibility of the code so that it can also be applied to other magnetic field configurations such as, for example, encountered in the vicinity of the sun or neutron stars. Program summaryProgram title: PRESHOWER 2.0 Catalog identifier: ADWG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3968 No. of bytes in distributed program, including test data, etc.: 37198 Distribution format: tar.gz Programming language: C, FORTRAN 77. Computer: Intel-Pentium based PC. Operating system: Linux or Unix. RAM:< 100 kB Classification: 1.1. Does the new version supercede the previous version?: Yes Catalog identifier of previous version: ADWG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 173 (2005) 71 Nature of problem: Simulation of a cascade of particles initiated by UHE photon in magnetic field. Solution method: The primary photon is tracked until its conversion into an e+ e- pair. If conversion occurs each individual particle in the resultant preshower is checked for either bremsstrahlung radiation (electrons) or secondary gamma conversion (photons). Reasons for

  4. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    SciTech Connect

    Collaboration: Pierre Auger Collaboration

    2013-05-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than ∼ (0.06−5) × 10{sup −4} Mpc{sup −3} at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range (0.2−7) × 10{sup −4} Mpc{sup −3}, were obtained for sources following the local matter distribution.

  5. Simulation of ultra-high energy photon propagation in the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Homola, P.; Góra, D.; Heck, D.; Klages, H.; PeĶala, J.; Risse, M.; Wilczyńska, B.; Wilczyński, H.

    2005-12-01

    The identification of primary photons or specifying stringent limits on the photon flux is of major importance for understanding the origin of ultra-high energy (UHE) cosmic rays. UHE photons can initiate particle cascades in the geomagnetic field, which leads to significant changes in the subsequent atmospheric shower development. We present a Monte Carlo program allowing detailed studies of conversion and cascading of UHE photons in the geomagnetic field. The program named PRESHOWER can be used both as an independent tool or together with a shower simulation code. With the stand-alone version of the code it is possible to investigate various properties of the particle cascade induced by UHE photons interacting in the Earth's magnetic field before entering the Earth's atmosphere. Combining this program with an extensive air shower simulation code such as CORSIKA offers the possibility of investigating signatures of photon-initiated showers. In particular, features can be studied that help to discern such showers from the ones induced by hadrons. As an illustration, calculations for the conditions of the southern part of the Pierre Auger Observatory are presented. Catalogue identifier:ADWG Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWG Program obtainable: CPC Program Library, Quen's University of Belfast, N. Ireland Computer on which the program has been thoroughly tested:Intel-Pentium based PC Operating system:Linux, DEC-Unix Programming language used:C, FORTRAN 77 Memory required to execute with typical data:<100 kB No. of bits in a word:32 Has the code been vectorized?:no Number of lines in distributed program, including test data, etc.:2567 Number of bytes in distributed program, including test data, etc.:25 690 Distribution format:tar.gz Other procedures used in PRESHOWER:IGRF [N.A. Tsyganenko, National Space Science Data Center, NASA GSFC, Greenbelt, MD 20771, USA, http://nssdc.gsfc.nasa.gov/space/model/magnetos/data-based/geopack.html], bessik

  6. Ultra-high energy cosmic rays: 40 years retrospective of continuous observations at the Yakutsk array: Part 2. Mass composition of cosmic rays at ultra high energies

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor

    2015-08-01

    In the paper, we describe methods for the analysis and present results for the mass composition of cosmic rays, obtained by using these techniques over a large time span. The data were obtained at the Small Cherenkov array over a 20 - year period of continuous observation and 40 - years of observations at the main Yakutsk array. Our experimental data indicate a change in the mass composition in the energy range 1016-1018 eV and is confirmed by independent results obtained by other EAS arrays.

  7. Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight

    NASA Astrophysics Data System (ADS)

    Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.; García-Fernández, D.; Bugaev, V.; Wissel, S. A.; Allison, P.; Alvarez-Muñiz, J.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Carvalho, W. R., Jr.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Gorham, P. W.; Hast, C.; Huege, T.; Heber, C. L.; Hoover, S.; Israel, M. H.; Javaid, A.; Kowalski, J.; Lam, J.; Learned, J. G.; Link, J. T.; Lusczek, E.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Miočinović, P.; Mulrey, K.; Nam, J.; Naudet, C. J.; Ng, J.; Nichol, R. J.; Palladino, K.; Rauch, B. F.; Roberts, J.; Reil, K.; Rotter, B.; Rosen, M.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Urdaneta, D.; Varner, G. S.; Vieregg, A. G.; Walz, D.; Wu, F.; Zas, E.

    2016-04-01

    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ∼36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.

  8. Measurement of the mass composition of ultra-high energy cosmic rays with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Settimo, Mariangela; Pierre Auger Collaboration

    2016-05-01

    The understanding of the nature of ultra-high energy cosmic rays is one of the most intriguing open questions for current and future observatories. With its hybrid design and huge exposure, the Pierre Auger Observatory provides valuable statistical measurements of the chemical composition of cosmic rays with energies above 1017 eV, including the search for neutral primaries such as neutrinos and photons. We report on the most recent results which are based on the accurate measurement of the depth of the shower maximum, Xmax, by the fluorescence telescopes and on the shape of the signals recorded by the water-Cherenkov detectors. The interpretation of these results in terms of mass composition is also discussed related to the hadronic interaction models used to describe the development of air showers.

  9. The JEM-EUSO mission: a space observatory to study the origin of Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Parizot, E.

    2014-11-01

    The Extreme Universe Space Observatory (EUSO) onboard the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) is an innovative space-based mission with the aim of detecting Ultra-High Energy Cosmic Rays (UHECRs) from the ISS, by using the Earth's atmosphere as a calorimeter viewed by a fluorescence telescope. An observatory able to produce an arrival direction map with more than several hundreds events above 5 × 1019 eV would give important information on the origin of the UHECRs and identify structures in the sky map that contain information about the source density and/or distribution. This is likely to lead to an understanding of the acceleration mechanisms with a high potential for producing discoveries in astrophysics and/or fundamental physics. The scientific motivations of the mission as well as the current development status of the instrument and its performance are reviewed.

  10. CRPropa 3—a public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Dundovic, Andrej; Erdmann, Martin; Kampert, Karl-Heinz; Kuempel, Daniel; Müller, Gero; Sigl, Guenter; van Vliet, Arjen; Walz, David; Winchen, Tobias

    2016-05-01

    We present the simulation framework CRPropa version 3 designed for efficient development of astrophysical predictions for ultra-high energy particles. Users can assemble modules of the most relevant propagation effects in galactic and extragalactic space, include their own physics modules with new features, and receive on output primary and secondary cosmic messengers including nuclei, neutrinos and photons. In extension to the propagation physics contained in a previous CRPropa version, the new version facilitates high-performance computing and comprises new physical features such as an interface for galactic propagation using lensing techniques, an improved photonuclear interaction calculation, and propagation in time dependent environments to take into account cosmic evolution effects in anisotropy studies and variable sources. First applications using highlighted features are presented as well.

  11. The Lateral Trigger Probability function for the ultra-high energy cosmic ray showers detected by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /INFN, Naples /Naples U. /Nijmegen U., IMAPP

    2011-01-01

    In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10{sup 17} and 10{sup 19} eV and zenith angles up to 65{sup o}. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.

  12. ANALYTIC APERTURE CALCULATION AND SCALING LAWS FOR RADIO DETECTION OF LUNAR-TARGET ULTRA-HIGH-ENERGY NEUTRINOS

    SciTech Connect

    Gayley, K. G.; Mutel, R. L.; Jaeger, T. R.

    2009-12-01

    We derive analytic expressions and approximate them in closed form, for the effective detection aperture for Cerenkov radio emission from ultra-high-energy neutrinos striking the Moon. The resulting apertures are in good agreement with recent Monte Carlo simulations and support the conclusion of James and Protheroe that neutrino flux upper limits derived from the GLUE search were too low by an order of magnitude. We also use our analytic expressions to derive scaling laws for the aperture as a function of observational and lunar parameters. We find that at low frequencies downward-directed neutrinos always dominate, but at higher frequencies, the contribution from upward-directed neutrinos becomes increasingly important, especially at lower neutrino energies. Detecting neutrinos from Earth near the Greisen-Zatsepin-Kuz'min regime will likely require radio telescope arrays with extremely large collecting area (A{sub e} approx 10{sup 6} m{sup 2}) and hundreds of hours exposure time. Higher-energy neutrinos are most easily detected using lower frequencies. Lunar surface roughness is a decisive factor for obtaining detections at higher frequencies (nuapprox> 300 MHz) and higher energies (E approx> 10{sup 21} eV).

  13. Search for ultra high energy primary photons at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Colalillo, Roberta

    2016-07-01

    The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture in the search for primary photons with energy above 1017 eV over a large portion of the southern sky. Such photons can be detected in principle via the air showers they initiate at such energies, using the complement of Auger Observatory detectors. We discuss the results obtained in diffuse and directional searches for primary photons in the EeV energy range.

  14. An ultra-high-energy-neutrino detector using rock salt and ice as detection media for radar method

    SciTech Connect

    Chiba, Masami; Kamijo, Toshio; Tanikawa, Takahiro; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    We had found radio-wave-reflection effect in rock salt for detection of an ultra-high energy neutrino (UHE{nu}) which is generated in GZK processes in the universe. When an UHE{nu} interacts with rock salt or ice as a detection medium, the energy converts to a thermal energy. Consequently, a temperature gives rise along an UHE{nu} shower at the interaction location. The permittivity arises with respect to the temperature at ionization processes of the UHE{nu} shower which is composed of hadronic and electromagnetic multiplication processes. The irregularity of the refractive index in the medium for radio wave rises to a reflection. The reflection effect with a long attenuation length of radio wave in rock salt and ice would yield a new method to detect UHE{nu}. They could be used for detection media in which the UHE{nu} interacts with. We could find a huge amount of rock salt or ice over 50 Gt in a natural rock salt formation or Antarctic ice sheet. Radio wave transmitted into the medium generated by a radar system could be reflected by the irregularity of the refractive index at the shower. Receiving the reflected radio wave yields information about the UHE{nu}.

  15. Extragalactic radiation and the ultra-high-energy cosmic-ray spectrum

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1989-01-01

    The effect of extragalactic microwave and submillimeter-radiation fields on the ultrahigh-energy cosmic-ray spectrum is reexamined. It is found that the general characteristics of the spectrum can be derived from fairly simple analytical arguments. It is shown that the various spectral features obtained by numerical calculations can be explored by simpler and more general means. This approach is illustrated using a newly derived lifetime-energy relation based on the new submillimeter observations.

  16. Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting

    NASA Astrophysics Data System (ADS)

    Hsu, Tsung-Hsing; Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2015-11-01

    We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10-6 W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible.

  17. Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting

    PubMed Central

    Hsu, Tsung-Hsing; Manakasettharn, Supone; Taylor, J. Ashley; Krupenkin, Tom

    2015-01-01

    We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10−6 W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible. PMID:26567850

  18. Bubbler---A Novel Ultra High Power Density Energy Harvesting Method Based on Reverse Electrowetting

    NASA Astrophysics Data System (ADS)

    Hsu, Tsung-Hsing

    A novel approach to direct conversion of mechanical energy into electrical energy has been proposed and experimentally and theoretically investigated. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse inside a conductive liquid placed in contact with a dielectric-covered electrode. Fast bubble dynamics, used in conjunction with REWOD, can enable extremely high power densities, in excess of 10 kW/m2. The method can be scaled in power from microwatts to tens of watts, and can enable direct coupling to a wide range of mechanical energy sources, which make it particularly attractive for energy harvesting applications. We believe that this approach can enable extraction of useful energy from various non-traditional sources including thermal expansion of buildings, human motion, and vehicle and machinery movement. Also, this makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible.

  19. Model-dependent estimate on the connection between fast radio bursts and ultra high energy cosmic rays

    SciTech Connect

    Li, Xiang; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2014-12-10

    The existence of fast radio bursts (FRBs), a new type of extragalatic transient, has recently been established, and quite a few models have been proposed. In this work, we discuss the possible connection between the FRB sources and ultra high energy (>10{sup 18} eV) cosmic rays. We show that in the blitzar model and the model of merging binary neutron stars, which includes the huge energy release of each FRB central engine together with the rather high rate of FRBs, the accelerated EeV cosmic rays may contribute significantly to the observed ones. In other FRB models, including, for example, the merger of double white dwarfs and the energetic magnetar radio flares, no significant EeV cosmic ray is expected. We also suggest that the mergers of double neutron stars, even if they are irrelevant to FRBs, may play a nonignorable role in producing EeV cosmic ray protons if supramassive neutron stars are formed in a sufficient fraction of mergers and the merger rate is ≳ 10{sup 3} yr{sup –1} Gpc{sup –3}. Such a possibility will be unambiguously tested in the era of gravitational wave astronomy.

  20. Patterns in ultra-high energy cosmic ray arrival directions: a possible footprint of large scale cosmic structures

    SciTech Connect

    Serpico, Pasquale Dario; /Fermilab

    2007-07-01

    The public available data of cosmic ray arrival directions with energies above 4 x 10{sup 19} eV present a broad maximum in the cumulative two-point autocorrelation function around 25 degrees. This has been interpreted as the first imprint of the filamentary pattern of large scale structures (LSS) of matter in the near universe. We analyze this suggestion in light of the clustering properties expected from a catalogue of galaxies of the local universe (redshift z {approx}< 0:06). The data reproduce particularly well the clustering properties of the nearby universe within z {approx}< 0:02. There is no statistically significant cross-correlation between data and structures, although intriguingly the nominal cross-correlation chance probability for displacements within {approx}50 degree drops from O(50%) to O(10%) using the catalogue with a smaller horizon. Our results suggest a relevant role of magnetic fields (possibly extragalactic ones, too) and/or possibly some heavy nuclei fraction in the ultra-high energy cosmic rays.

  1. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  2. Volumetric Heating of Ultra-High Energy Density Relativistic Plasmas by Ultrafast Laser Irradiation of Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge

    2014-10-01

    We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  3. Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining

    SciTech Connect

    Siders, C W; Jovanovic, I; Crane, J; Rushford, M; Lucianetti, A; Barty, C J

    2006-06-23

    The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of apertures, or with

  4. Creation of ultra-high energy density matter using nanostructured targets

    NASA Astrophysics Data System (ADS)

    Tommasini, Riccardo; Park, J.; London, R.; Chen, H.; Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V.; Capeluto, M.; Keiss, D.; Townsend, A.; Rocca, J. J.; Kaymak, V.; Pukhov, A.; Hill, M.

    2015-11-01

    Recent experiments have demonstrated that trapping of 60 femtosecond laser pulses of relativistic intensity deep within ordered nanowire arrays can create a new ultra-hot plasma regime. Here we report on the experiments at the Titan laser at the Lawrence Livermore National Laboratory that aim to scale these results by two orders of magnitude in laser energy. Preliminary analysis of the Titan results show that sub-picosecond laser irradiation of vertically aligned nanostructures of Au, Ag and Ni produces an increase of a factor greater than 1.6 in the suprathermal electron temperatures and an increase by a factor of 3 in the conversion efficiency into continuum x-rays, both with respect to flat targets of the same composition. Kα radiation from nanowire array targets also shows an increase between 3x and 5x over flat targets. The nanowire array targets reflected a 5x smaller fraction of the laser energy, indicating significantly larger absorption of the laser pulse. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, by the Office of Fusion Energy Sciences, U.S Department of Energy, and by the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079.

  5. Energy optimization of a regular macromolecular crystallography beamline for ultra-high-resolution crystallography

    SciTech Connect

    Rosenbaum, Gerd; Ginell, Stephan L.; Chen, Julian C.-H.

    2015-01-01

    In this study, a practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19-ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower- and higher-energy harmonic contamination. A Pd-coated mirror and Al attenuators acted as effective low- and high-bandpass filters. The resulting flux at 30 keV, although significantly lower than with X-ray optics designed and optimized for this energy, allowed for accurate data collection on crystals of the small protein crambin to 0.38 Å resolution.

  6. Energy optimization of a regular macromolecular crystallography beamline for ultra-high-resolution crystallography

    DOE PAGESBeta

    Rosenbaum, Gerd; Ginell, Stephan L.; Chen, Julian C.-H.

    2015-01-01

    In this study, a practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19-ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower- and higher-energy harmonic contamination. A Pd-coated mirror and Al attenuators acted as effective low- and high-bandpass filters. The resulting flux at 30 keV, although significantly lower than with X-ray optics designed and optimized for this energy, allowed for accuratemore » data collection on crystals of the small protein crambin to 0.38 Å resolution.« less

  7. Search for ultra high energy gamma-rays from various sources

    NASA Technical Reports Server (NTRS)

    Dzikowski, T.; Gawin, J.; Korejwo, J.; Grochalska, B.; Wdowczyk, J.

    1985-01-01

    The hypothesis that there exists an excess of showers from the Galactic plane on the level 1 to 2% at energies just above 10 to the 16th power eV is explored. The excess shower from the Galactic plane seems to be very similar in properties to excess showers from the point sources/flat spectrum, deficit of low energy muons. Those facts suggest that the excess from the Galactic plane are probably due to summing up of the contribution from individual point sources. That in turn suggest that those sources are rather numerous.

  8. A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.

    2012-01-01

    Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Veron-Cetty Veron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt-L, 2pt+ and 3pt methods, each giving a different measure of self-clustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structure as ordinary galaxies in the local Universe and if UHECRs are deflected no more than a few degrees, a study of mock maps suggests that these three methods can efficiently respond to the resulting anisotropy with a P-value = 1.0% or smaller with data sets as few as 100 events. Using data taken from January 1, 2004 to July 31, 2010 we examined the 20, 30, ..., 110 highest energy events with a corresponding minimum energy threshold of about 51 EeV. The minimum P-values found were 13.5% using the 2pt-L method, 1.0% using the 2pt+ method and 1.1% using the 3pt method for the highest 100 energy events. In view of the multiple (correlated) scans performed on the data set, these catalog-independent methods do not yield strong evidence of anisotropy in the highest energy cosmic rays.

  9. Energy-Efficient pm-ary signaling for ultra-high-speed optical transport

    NASA Astrophysics Data System (ADS)

    Djordjevic, Ivan B.; Liu, Tao

    2015-01-01

    The future optical transport networks will be affected by limited bandwidth of information infrastructure, high power consumption, and heterogeneity of network segments. As a solution to all these problems, the multidimensional signaling has been proposed recently. In this invited paper, we follow a different strategy. Instead of conventional binary and 2mary signaling (m>=1) we propose to use the nonbinary pm-ary signaling, where p is a prime larger than 2. With pm-ary signaling we can improve the spectral of conventional 2m-ary schemes by log2p times for the same bandwidth occupancy. At the same time the energy efficiency of pm-ary signaling scheme is much better than that of 2m-ary signaling scheme based on binary representation of data. We further study the energy-efficient coded modulation for pm-ary signaling. The energy-efficient signal constellation design for pm-ary signaling is discussed as well. We will demonstrate that with the proposed pm-ary signaling in combination with energy-efficient signal constellation design, spectral-multiplexing, and polarization-division multiplexing, we can achieve beyond 1 Pb/s serial optical transport without a need for introduction of spatial-division multiplexing.

  10. Adventures in Gaseous Positronics - An Ultra-High-Energy-Resolution Cryogenic Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Mike

    2016-05-01

    While positron interactions with matter are important in a variety of contexts, many important experiments have been inhibited due to the difficulties encountered in creating beams with narrow energy spreads. This talk focuses on the development of a pulsed positron beam with a total energy spread of 7 meV FWHM; this represents a factor of five improvement over the previous state-of-the-art. Current positron atomic physics experiments rely on high quality beams from buffer gas traps. Although widely used, the physical phenomena operative in beam formation had not previously been fully investigated, and understanding these processes proved crucial to improving beam quality. Experimental measurements and simulation results of positron cooling and beam formation are discussed, with an emphasis on beam energy resolution. Using these results, a new cryogenic, trap-based beam system was built. Positrons are cooled to 50 K using a CO buffer gas, resulting in beams with total energy spreads as low as 6.9 meV FWHM, sub-microsecond temporal spreads and beam diameters as small as 1 mm. Details of this beam system, as well as new experiments that will be enabled by it, will be discussed. Work supported by NSF Grant PHY-1401794.

  11. Structured block copolymer thin film composites for ultra-high energy density capacitors

    NASA Astrophysics Data System (ADS)

    Samant, Saumil; Hailu, Shimelis; Grabowski, Christopher; Durstock, Michael; Raghavan, Dharmaraj; Karim, Alamgir

    2014-03-01

    Development of high energy density capacitors is essential for future applications like hybrid vehicles and directed energy weaponry. Fundamentally, energy density is governed by product of dielectric permittivity ɛ and breakdown strength Vbd. Hence, improvements in energy density are greatly reliant on improving either ɛ or Vbd or a combination of both. Polymer films are widely used in capacitors due to high Vbd and low loss but they suffer from very low permittivities. Composite dielectrics offer a unique opportunity to combine the high ɛ of inorganic fillers with the high Vbd of a polymer matrix. For enhancement of dielectric properties, it is essential to improve matrix-filler interaction and control the spatial distribution of fillers for which nanostructured block copolymers BCP act as ideal templates. We use Directed Self-assembly of block copolymers to rapidly fabricate highly aligned BCP-TiO2 composite nanostructures in thin films under dynamic thermal gradient field to synergistically combine the high ɛ of functionalized TiO2 and high Vbd of BCP matrix. The results of impact of BCP morphology, processing conditions and concentration of TiO2 on capacitor performance will be reported. U.S. Air Force of Scientific Research under contract FA9550-12-1-0306

  12. A Search for Ultra--High-Energy Gamma-Ray Emission from Five Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Allen, G. E.; Berley, D.; Biller, S.; Burman, R. L.; Cavalli-Sforza, M.; Chang, C. Y.; Chen, M. L.; Chumney, P.; Coyne, D.; Dion, C. L.; Dorfan, D.; Ellsworth, R. W.; Goodman, J. A.; Haines, T. J.; Hoffman, C. M.; Kelley, L.; Klein, S.; Schmidt, D. M.; Schnee, R.; Shoup, A.; Sinnis, C.; Stark, M. J.; Williams, D. A.; Wu, J.-P.; Yang, T.; Yodh, G. B.

    1995-07-01

    The majority of the cosmic rays in our Galaxy with energies in the range of ~1010--1014 eV are thought to be accelerated in supernova remnants (SNRs). Measurements of SNR gamma-ray spectra in this energy region could support or contradict this concept. The Energetic Gamma-Ray Experiment Telescope (EGRET) collaboration has reported six sources of gamma rays above 108 eV whose coordinates are coincident with SNRs. Five of these sources are within the field of view of the CYGNUS extensive air shower detector. A search of the CYGNUS data set reveals no evidence of gamma-ray emission at energies ~1014 eV for these five SNRs. The flux upper limits from the CYGNUS data are compared to the lower energy fluxes measured with the EGRET detector using Drury, Aharonian, & Volk's recent model of gamma-ray production in the shocks of SNRs. The results suggest one or more of the following: (1) the gamma-ray spectra for these five SNRs soften by about 1014 eV, (2) the integral gamma-ray spectra of the SNRs are steeper than about E-1.3, or (3) most of the gamma rays detected with the EGRET instrument for each SNR are not produced in the SNR's shock but are produced at some other site (such as a pulsar).

  13. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  14. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    SciTech Connect

    Chang, Feng-Yin; Chen, Pisin; Lin, Guey-Lin; Noble, Robert; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  15. New detection technologies for ultra-high energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Böser, Sebastian

    2013-06-01

    Even with an accumulated data set from an integrated six years of lifetime from the Auger experiment, no point sources of charged cosmic rays have be identified at the highest energies. Significantly increased apertures such as promised by the JEMEUSO mission will be required to identify these sources from the cosmic ray signatures themselves. However, in employing water-cherenkov surface detectors as well as fluorescence telescopes, Auger has demonstrated the power provided by the hybrid technology approach. New detection technologies thus provide a valuable tool, in particular for the study of systematic effects. Over the past decade, in particular radio detection of cosmic ray air-showers has become a viable future detection technology to enhance and complement existing air-shower experiments. Following the proof-of-principle provided by the Lopes experiment, this technology is now being pursued in all major air-shower detectors. In the MHz regime, the radio signal is dominated by geomagnetic emission from the electrons deflected in the earth magnetic field, with secondary contributions from a global charge excess. As the majority of the energy in the shower is carried by these electron and the radio signal traverses the atmosphere basically unattenuated, this approach not only promises superior energy resolution but may also provide an independent handle on the longitudinal shower development and hence the primary composition. Theoretical signal predictions provided by detailed Monte-Carlo simulations as well as analytic shower parametrizations are in good agreement with measurements provided by the AERA and Codalema experiments. Recent efforts also include studies of the radio emission in the GHz regime, where the ambient noise is significantly reduced, yet the emission mechanism in this regime has not been firmly established yet. As neutrinos are not deflected in the intergalactic magnetic fields, the detection of neutrino-induced cascades in dense media

  16. Symmetric inertial confinement fusion implosions at ultra-high laser energies

    SciTech Connect

    Glenzer, S H; MacGowan, B J; Michel, P; Meezan, N B; Suter, L J; Dixit, S N; Kline, J L; Kyrala, G A; Callahan, D A; Dewald, E L; Divol, L; Dzenitis, E; Edwards, J; Hamza, A V; Haynam, C A; Hinkel, D E; Kalantar, D H; Kilkenny, J D; Landen, O L; Lindle, J D; LePape, S; Moody, J D; Nikroo, A; Parham, T; Schneider, M B; Town, R J; Wegner, P; Widmann, K; Whitman, P; Young, B F; Van Wonterghem, B; Atherton, J E; Moses, E I

    2009-12-03

    The first indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 MJ. 192 simultaneously fired laser beams heat ignition hohlraums to radiation temperatures of 3.3 million Kelvin compressing 1.8-millimeter capsules by the soft x rays produced by the hohlraum. Self-generated plasma-optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum producing symmetric x-ray drive as inferred from capsule self-emission measurements. These experiments indicate conditions suitable for compressing deuterium-tritium filled capsules with the goal to achieve burning fusion plasmas and energy gain in the laboratory.

  17. Symmetric inertial confinement fusion implosions at ultra-high laser energies.

    PubMed

    Glenzer, S H; MacGowan, B J; Michel, P; Meezan, N B; Suter, L J; Dixit, S N; Kline, J L; Kyrala, G A; Bradley, D K; Callahan, D A; Dewald, E L; Divol, L; Dzenitis, E; Edwards, M J; Hamza, A V; Haynam, C A; Hinkel, D E; Kalantar, D H; Kilkenny, J D; Landen, O L; Lindl, J D; LePape, S; Moody, J D; Nikroo, A; Parham, T; Schneider, M B; Town, R P J; Wegner, P; Widmann, K; Whitman, P; Young, B K F; Van Wonterghem, B; Atherton, L J; Moses, E I

    2010-03-01

    Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium-filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory. PMID:20110465

  18. Mass Composition of Cosmic Rays at Ultra High Energies by Yakutsk Data

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor

    2015-08-01

    The paper describes methods for the analysis of cosmic rays mass composition and results for over a large time span. The data were obtained at Small Cherenkov array over 20 year period of continuous observation and 40 - years of observations at the main Yakutsk array. The experimental data indicates changes in the MC in the energy range 1016 - 1018 eV which confirmed by results obtained by other EAS arrays.

  19. Astronomy at ultra-high energies: Results from the CYGNUS experiment

    SciTech Connect

    Alexandreas, D.E.; Allen, R.C.; Biller, S.D.; Dion, G.M.; Lu, X-Q.; Vishwanath, P.R.; Yodh, G.B. ); Berley, D.; Chang, C.Y.; Dingus, B.L.; Goodman, J.A.; Haines, T.J.; Kwok, P.; Stark, M.J.; Talaga, R.L. ); Burman, R.L.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Zhang, W. ); C

    1990-01-01

    The CYGNUS experiment is composed of an air-shower array and muon detectors, located in Los Alamos, NM, and operating at energies above 50 TeV. Recent results include a search for emission from Cygnus X-3 during the radio outbursts of June and July 1989, preliminary results from a search for diffuse emission from the galactic plane, and preliminary results from a search for emission from possible northern hemisphere point sources, both known and unknown. 3 refs., 4 figs.

  20. Demonstration and Performance Monitoring of Foundation Heat Exchangers (FHX) in Ultra-High Energy Efficient Research Homes

    SciTech Connect

    Im, Piljae; Hughes, Patrick; Liu, Xiaobing

    2012-01-01

    The more widespread use of Ground Source Heat Pump (GSHP) systems has been hindered by their high first cost, which is mainly driven by the cost of the drilling and excavation for installation of ground heat exchangers (GHXs). A new foundation heat exchanger (FHX) technology was proposed to reduce first cost by placing the heat exchanger into the excavations made during the course of construction (e.g., the overcut for the basement and/or foundation and run-outs for water supply and the septic field). Since they reduce or eliminate the need for additional drilling or excavation, foundation heat exchangers have the potential to significantly reduce or eliminate the first cost premium associated with GSHPs. Since December 2009, this FHX technology has been demonstrated in two ultra-high energy efficient new research houses in the Tennessee Valley, and the performance data has been closely monitored as well. This paper introduces the FHX technology with the design, construction and demonstration of the FHX and presents performance monitoring results of the FHX after one year of monitoring. The performance monitoring includes hourly maximum and minimum entering water temperature (EWT) in the FHX compared with the typical design range, temperature difference (i.e., T) across the FHX, and hourly heat transfer rate to/from the surrounding soil.

  1. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  2. Magnetized target fusion: An ultra high energy approach in an unexplored parameter space

    NASA Astrophysics Data System (ADS)

    Lindemuth, I. R.

    Magnetized target fusion is a concept that may lead to practical fusion applications in a variety of settings. However, the crucial first step is to demonstrate that it works as advertised. Among the possibilities for doing this is an ultrahigh energy approach to magnetized target fusion, one powered by explosive pulsed power generators that have become available for application to thermonuclear fusion research. In a collaborative effort between Los Alamos and the All-Russian Scientific Institute for Experimental Physics (VNIIEF) a very powerful helical generator with explosive power switching has been used to produce an energetic magnetized plasma. Several diagnostics have been fielded to ascertain the properties of this plasma. We are intensively studying the results of the experiments and calculationally analyzing the performance of this experiment.

  3. Shock Initiation of Hexanitrostilbene at Ultra-high Shock Pressures and Critical Energy Determination

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Maisey, Matthew

    2011-06-01

    Hexanitrostilbene is a secondary explosive with attractive properties for detonator usage, including thermal stability, good safety properties and easy initiability. It is desirable to characterize the shock initiation of detonator explosives to enable optimization of system parameters. HNS is a suitable explosive for use in electrical and optical slapper detonators, where shock pressures generated by the flyer plates used can exceed 30 GPa. This extreme shock regime can be explored by initiating HNS with a variety of flyer thicknesses, from 3 to 25 microns at velocities of several km/s. Thresholds for optical and electrical slapper detonators were evaluated, and Photonic Doppler Velocimetery used to determine the flyer velocity at threshold. The flyer diameters are in excess of the critical diameter for HNS, allowing a one-dimensional treatment of the initiation. Calculated values for pressure and shock duration are used to evaluate the critical energy criteria Pn τ . The calculated value of n is compared to published values and discussed for similar systems. The James Criterion is used to analyze the initiation, with values of Ec and Σc being determined from experimental data, providing a predictive capability to model other configurations such as different flyer thicknesses and materials.

  4. Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Maisey, Matthew Peter; Knowles, Sarah

    2012-03-01

    Hexanitrostilbene (HNS) is a secondary explosive with attractive properties for detonator usage, including thermal stability, good safety properties and easy initiability. It is desirable to characterize the shock initiation of detonator explosives to enable optimization of system parameters. HNS is a suitable explosive for use in electrical and optical slapper detonators, where shock pressures generated by the flyer plates used can exceed 30 GPa. This extreme shock regime can be explored by initiating HNS with a variety of flyer thicknesses, from 3 to 25 microns at velocities of several km/s. Thresholds for optical and electrical slapper detonators were evaluated, and Photonic Doppler Velocimetery used to determine the flyer velocity at threshold. The flyer diameters are in excess of the critical diameter for HNS, allowing a one-dimensional treatment of the initiation. Calculated values for pressure and shock duration are used to evaluate the critical energy criteria P2τ. The James Criterion is used to analyse the initiation, with values of EC and ΣC being determined from experimental data, providing a predictive capability to model other configurations such as different flyer thicknesses and materials.

  5. Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Bellido, J.; Belz, J.; de Souza, V.; Hanlon, W.; Ikeda, D.; Lundquist, J. P.; Sokolskypt, P.; Stroman, T.; Tameda, Y.; Tsunesada, Y.; Unger, M.; Yushkov, A.

    For the first time a proper comparison of the average depth of shower maximum (Xmax) published by the Pierre Auger and Telescope Array Observatories is presented. The Xmax distributions measured by the Pierre Auger Observatory were fit using simulated events initiated by four primaries (proton, helium, nitrogen and iron). The primary abundances which best describe the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD) fluorescence and surface detector array. The simulated events were analyzed by the TA Collaboration using the same procedure as applied to their data. The result is a simulated version of the Auger data as it would be observed by TA. This analysis allows a direct comparison of the evolution of < Xmax > with energy of both data sets. The < Xmax > measured by TA-MD is consistent with a preliminary simulation of the Auger data through the TA detector and the average difference between the two data sets was found to be (2.9 ± 2.7 (stat.) ± 18 (syst.)) g/cm2.

  6. Variable Gamma-Ray Emission Induced by Ultra-high Energy Neutral Beams: Application to 4C +21.35

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.; Murase, Kohta; Takami, Hajime

    2012-08-01

    The flat-spectrum radio quasar 4C +21.35 (PKS 1222+216) displays prominent nuclear infrared emission from ≈1200 K dust. A 70-400 GeV flare with ≈10 minute variations during half an hour of observations was found by the MAGIC telescopes, and GeV variability was observed on sub-day timescales with the Large Area Telescope on Fermi. We examine 4C +21.35, assuming that it is a source of ultra-high energy cosmic rays (UHECRs). UHECR proton acceleration in the inner jet powers a neutral beam of neutrinos, neutrons, and γ-rays from pγ photopion production. The radiative efficiency and production spectra of neutrals formed through photohadronic processes with isotropic external target photons of the broad-line region (BLR) and torus are calculated. Secondary radiations made by this process have a beaming factor vpropδ5 D, where δD is the Doppler factor. The pair-production optical depth for γ-rays and the photopion efficiency for UHECR neutrons as they pass through external isotropic radiation fields are calculated. If target photons come from the BLR and dust torus, large Doppler factors, δD >~ 100, are required to produce rapidly variable secondary radiation with isotropic luminosity >~ 1047 erg s-1 at the pc scale. The γ-ray spectra from leptonic secondaries are calculated from cascades initiated by the UHECR neutron beam at the pc-scale region and fit to the flaring spectrum of 4C +21.35. Detection of >~ 100 TeV neutrinos from 4C +21.35 or other very high energy γ-ray blazars with IceCube or KM3NeT would confirm this scenario.

  7. Mass entrainment and turbulence-driven acceleration of ultra-high energy cosmic rays in Centaurus A

    NASA Astrophysics Data System (ADS)

    Wykes, Sarka; Croston, Judith H.; Hardcastle, Martin J.; Eilek, Jean A.; Biermann, Peter L.; Achterberg, Abraham; Bray, Justin D.; Lazarian, Alex; Haverkorn, Marijke; Protheroe, Ray J.; Bromberg, Omer

    2013-10-01

    Observations of the FR I radio galaxy Centaurus A in radio, X-ray, and gamma-ray bands provide evidence for lepton acceleration up to several TeV and clues about hadron acceleration to tens of EeV. Synthesising the available observational constraints on the physical conditions and particle content in the jets, inner lobes and giant lobes of Centaurus A, we aim to evaluate its feasibility as an ultra-high-energy cosmic-ray source. We apply several methods of determining jet power and affirm the consistency of various power estimates of ~1 × 1043 erg s-1. Employing scaling relations based on previous results for 3C 31, we estimate particle number densities in the jets, encompassing available radio through X-ray observations. Our model is compatible with the jets ingesting ~3 × 1021 g s-1 of matter via external entrainment from hot gas and ~7 × 1022 g s-1 via internal entrainment from jet-contained stars. This leads to an imbalance between the internal lobe pressure available from radiating particles and magnetic field, and our derived external pressure. Based on knowledge of the external environments of other FR I sources, we estimate the thermal pressure in the giant lobes as 1.5 × 10-12 dyn cm-2, from which we deduce a lower limit to the temperature of ~1.6 × 108 K. Using dynamical and buoyancy arguments, we infer ~440-645 Myr and ~560 Myr as the sound-crossing and buoyancy ages of the giant lobes respectively, inconsistent with their spectral ages. We re-investigate the feasibility of particle acceleration via stochastic processes in the lobes, placing new constraints on the energetics and on turbulent input to the lobes. The same "very hot" temperatures that allow self-consistency between the entrainment calculations and the missing pressure also allow stochastic UHECR acceleration models to work.

  8. Blazars as Ultra-high-energy Cosmic-ray Sources: Implications for TeV Gamma-Ray Observations

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-01

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 1019 eV, so >~ 1020 eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the γ-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV γ-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and gsimTeV photons from more distant radio-loud AGNs.

  9. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    SciTech Connect

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  10. Evidence for long-term variability in the ultra high energy photon flux from Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Rannot, R. C.; Rawat, H. S.; Razdan, H.; Sanecha, V. K.; Sapru, M.

    1985-01-01

    A time-correlation analysis of atmospheric Cerenkov pulses by a wide-angle photomultiplier system was previously shown to have present in it a nonrandom component which seemed associated with the Right Ascension (RA) range approx. 20+or-04h. A recent examination of multi-muon events recorded by a photon-decay detector shows a similar time-dependent effect, closely matching the previous results, supporting the suggestion that the effect is of cosmic origin. However, even though Cyg. X-3 lies well inside the region of peak intensity, it does not seem possible to ascribe to it the whole effect, for the implied photon flux appears too large to be reconciled to various gamma-ray measurements of Cyg. X-3. The original data were subjected to a phase-histogram analysis and it as found that only 2.5% of overall recorded data are compatible with a phase-dependent emission from Cyg. X-3. Assuming these events to be gamma rays yields a detected flux of (2.6 + or - 0.3) x 10 to the minus 12th power gamma cm -2s-1 above 5 x 10 to the 14th power eV. Comparing this value with more recent ultra high energy (UHE) photon data from the same source, it is suggested that the available data generally favor a long-term reduction in the Cyg. X-3 inferred luminosity ( 10 to the 13th power eV) by a factor of (1.8 + or - 0.3) per year.

  11. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    NASA Astrophysics Data System (ADS)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  12. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  13. Topics in Particle Astrophysics: Dark Matter, Gamma-Ray Bursts, and the Origin of Ultra-High-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Calvez, Antoine

    the electrons gives rise to a signal that could also be detectable by future X-ray telescope experiments. Besides being one of the preferred explanation for the high-energy electron and positron excess suggested by ATIC, PAMELA, and Fermi, Gamma-Ray Bursts (GRBs) have also been invoked to explain the 511 keV emission from the galactic bulge. While independent explanations can be responsible for these phenomena, we explore the possibility of their common GRB-related origin, by modeling the GRB distribution and estimating their rates. For an expected long GRB rate in the Milky Way, neither of the two signals is generic; the local electron excess requires a 2% coincidence while the signal from the galactic center requires a 20% coincidence with respect to the timing of the latest GRB. The simultaneous explanation requires a 0.4% coincidence. Considering the large number of statistical "trials" created by multiple searches for new physics, the coincidences of a few per cent cannot be dismissed as unlikely. Alternatively, both phenomena can be explained by GRBs if the galactic rate is higher than expected. We also show that a similar result is difficult to obtain assuming a simplified short GRB distribution. Recent results from the Pierre Auger Observatory ( PAO), showing energy-dependent chemical composition of Ultra-High-Energy Cosmic Rays (UHECRs) with a growing fraction of heavy elements at high energies, suggest a possible non-negligible contribution to the spectrum from galactic sources. We show that in the case of UHECRs produced by gamma-ray bursts, or by rare types of supernova explosions that took place in the Milky Way in the past, the change in composition of the UHECR, spectrum can result from the difference in diffusion times for different species. The anisotropy in the direction of the galactic center is expected to be a few percent on average, but the locations of the most recent/closest bursts can be associated with the possible observed clustering of

  14. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  15. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires.

    PubMed

    Tang, Haixiong; Sodano, Henry A

    2013-04-10

    Nanocomposites combining a high breakdown strength polymer and high dielectric permittivity ceramic filler have shown great potential for pulsed power applications. However, while current nanocomposites improve the dielectric permittivity of the capacitor, the gains come at the expense of the breakdown strength, which limits the ultimate performance of the capacitor. Here, we develop a new synthesis method for the growth of barium strontium titanate nanowires and demonstrate their use in ultra high energy density nanocomposites. This new synthesis process provides a facile approach to the growth of high aspect ratio nanowires with high yield and control over the stoichiometry of the solid solution. The nanowires are grown in the cubic phase with a Ba0.2Sr0.8TiO3 composition and have not been demonstrated prior to this report. The poly(vinylidene fluoride) nanocomposites resulting from this approach have high breakdown strength and high dielectric permittivity which results from the use of high aspect ratio fillers rather than equiaxial particles. The nanocomposites are shown to have an ultra high energy density of 14.86 J/cc at 450 MV/m and provide microsecond discharge time quicker than commercial biaxial oriented polypropylene capacitors. The energy density of our nanocomposites exceeds those reported in the literature for ceramic/polymer composites and is 1138% greater than the reported commercial capacitor with energy density of 1.2 J/cc at 640 MV/m for the current state of the art biaxial oriented polypropylene. PMID:23464509

  16. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2015-02-01

    We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  17. A search for sources of ultra high energy gamma rays at air shower energies with Ooty EAS array

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, N. V.; Sreekantan, B. V.; Tonwar, S. C.

    1985-01-01

    A 24 detector extensive air shower array is being operated at Ootacamund (2200 m altitude, 11.4 deg N latitude) in southern India to search for sources of Cosmic gamma rays of energies greater then 5 x 10 to the 13th power eV. The angular resolution of the array has been experimentally estimated to be better than about 2 deg. Since June '84, nearly 2.5 million showers have been collected and their arrival directions determined. These showers are being studied to search for very high energy gamma ray emission from interesting astrophysical objects such as Cygnus X-3, Crab pulsar and Geminga.

  18. Mass composition studies of Ultra High Energy cosmic rays through the measurement of the Muon Production Depths at the Pierre Auger Observatory

    SciTech Connect

    Collica, Laura

    2014-01-01

    The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyond the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.

  19. The expected high-energy to ultra-high-energy gamma-ray spectrum of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    De Jager, O. C.; Harding, A. K.

    1992-01-01

    The inverse Compton scattering model for the unpulsed TeV emission from the Crab Nebula is reexamined using the magnetic field distribution derived from MHD flow models of the nebula. It is shown that the observed flux can be explained if the average nebular field is indeed about 0.0003, as is predicted by the spectral break between radio and optical. The brightness distribution of the TeV gamma-ray signal is expected to extend out to about 1.5 arcmin from the pulsar. The present estimates predict a steady flux of unpulsed ultrahigh-energy gamma-rays due to the inverse Compton scattering of soft photons by shock-accelerated electrons and/or positrons in the vicinity of the shock.

  20. Comprehensive metabolite profiling of Plantaginis Semen using ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique.

    PubMed

    Wang, Dandan; Qi, Meng; Yang, Qiming; Tong, Renchao; Wang, Rui; Bligh, S W Annie; Yang, Li; Wang, Zhengtao

    2016-05-01

    Plantaginis Semen is commonly used in traditional medicine to treat edema, hypertension, and diabetes. The commercially available Plantaginis Semen in China mainly comes from three species. To clarify the chemical composition and distinct different species of Plantaginis Semen, we established a metabolite profiling method based on ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. A total of 108 compounds, including phenylethanoid glycosides, flavonoids, guanidine derivatives, terpenoids, organic acids, and fatty acids, were identified from Plantago asiatica L., P. depressa Willd., and P. major L. Results showed significant differences in chemical components among the three species, particularly flavonoids. This study is the first to provide a comprehensive chemical profile of Plantaginis Semen, which could be involved into the quality control, medication guide, and developing new drug of Plantago seeds. PMID:27030316

  1. Estimating Ultra-High Energy Cosmic Ray Data as seen from the JEM-EUSO Fluorescence Detector for the planned space based JEM-EUSO detector

    NASA Astrophysics Data System (ADS)

    Fenn, Jeremy; Wiencke, Lawrence

    2014-03-01

    Ultra-high energy cosmic rays (UHECRs) are subatomic particles with energies above 1018 eV. UHECRs are of interest because they are the highest energy particles known to exist. Their source(s), compositions, and the acceleration mechanisms to produce them with energies beyond 1020 eV remain unknown. The Pierre Auger Observatory, located in Argentina, is the world's largest UHECR observatory. It is one of the few a hybrid detectors in the world that combines surface (SD) and fluorescence (FD) detectors. The hybrid detection system is advantageous as it provides a more accurate reconstruction of the incoming cosmic ray's energy and trajectory as it travels through the atmosphere. However, even with the advantage of a hybrid detector, the Pierre Auger has limitations being a ground based observatory. The next generation in UHECR detection is the planned JEM-EUSO mission. The JEM-EUSO mission will consist of a fluorescence detector telescope attached to the International Space Station (ISS). The JEM-EUSO detector is expected to receive an exposure level to UHECRs many times that of the Pierre Auger Observatory by viewing a much larger volume of the atmosphere. In this presentation, I will discuss how data from specific UHECRs collected by the Pierre Auger Observatory is analyzed and altered to estimate what their signatures would look like from space at the planned JEM-EUSO detector. Research advisor

  2. CORRELATIONS OF THE ARRIVAL DIRECTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS WITH EXTRAGALACTIC OBJECTS AS OBSERVED BY THE TELESCOPE ARRAY EXPERIMENT

    SciTech Connect

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W.; Aida, R.; Azuma, R.; Fukuda, T.; Cheon, B. G.; Cho, E. J.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukushima, M.; and others

    2013-11-10

    We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E ≥ 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account.

  3. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    DOE PAGESBeta

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrativemore » values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.« less

  4. Ultra High Energy Cosmic Rays in the North: Measurement of UHE Cosmic Rays with the High Resolution Fly's Eye (HiRes) Detector

    SciTech Connect

    Matthews, J. N.

    2006-11-17

    The High Resolution Fly's Eye (HiRes) observatory has been collecting Ultra High Energy Cosmic Ray (UHECR) data since 1997. The experiment observes cosmic ray air showers via the air fluorescence technique and consists of two observatory sites separated by 12.6 km in the western Utah desert. The two stations can each measure the cosmic rays in monocular mode. In addition, the data from the two stations can also be combined to form a stereo measurement of the air showers. The experiment measures such properties as the energy spectrum, chemical composition, and p-air cross-section of these cosmic rays. It also searches for point sources and other anisotropy. The spectrum is measured above {approx}3 x 1017 eV and shows significant structure including the 'ankle' and a steep fall off which is consistent with the expectation of the GZK. threshold. The spectrum is inconsistent with a continuing spectrum at the 5{sigma} level. The composition is measured using the Xmax technique. It was found to be predominantly light and unchanging over the range from 1018 to 3 x 1019 eV. Finally, several different styles of searches for anisotropy in the data were performed. There are some tantalizing hints including potential correlation with BL Lac objects and the 'AGASA triplet', however these will need to be confirmed with an independent data set.

  5. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  6. Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ya; Guo, Jinxin; Zhang, Jun; Su, Qingmei; Du, Gaohui

    2015-01-01

    Lithium-sulfur (Li-S) battery with high theoretical energy density is one of the most promising energy storage systems for electric vehicles and intermittent renewable energy. However, due to the poor conductivity of the active material, considerable weight of the electrode is occupied by the conductive additives. Here we report a graphene-wrapped sulfur nanospheres composite (S-nanosphere@G) with sulfur content up to 91 wt% as the high energy density cathode material for Li-S battery. The sulfur nanospheres with diameter of 400-500 nm are synthesized through a solution-based approach with the existence of polyvinylpyrrolidone (PVP). Then the sulfur nanospheres are uniformly wrapped by conductive graphene sheets through the electrostatic interaction between graphene oxide and PVP, followed by reducing of graphene oxide with hydrazine. The design of graphene wrapped sulfur nanoarchitecture provides flexible conductive graphene coating with void space to accommodate the volume expansion of sulfur and to minimize polysulfide dissolution. As a result, the S-nanosphere@G nanocomposite with 91 wt% sulfur shows a reversible initial capacity of 970 mA h g-1 and an average columbic efficiency > 96% over 100 cycles at a rate of 0.2 C. Taking the total mass of electrode into account, the S-nanosphere@G composite is a promising cathode material for high energy density Li-S batteries.

  7. Cosmic Ray Origin: Lessons from Ultra-High-Energy Cosmic Rays and the Galactic/Extragalactic Transition

    NASA Astrophysics Data System (ADS)

    Parizot, Etienne

    2014-11-01

    We examine the question of the origin of the Galactic cosmic-rays (GCRs) in the light of the data available at the highest energy end of the spectrum. We argue that the data of the Pierre Auger Observatory and of the KASCADE-Grande experiment suggest that the transition between the Galactic and the extragalactic components takes place at the energy of the ankle in the all-particle cosmic-ray spectrum, and at an energy of the order of 1017 eV for protons. Such a high energy for Galactic protons appears difficult to reconcile with the general view that GCRs are accelerated by the standard diffusive shock acceleration process at the forward shock of individual supernova remnants (SNRs). We also review various difficulties of the standard SNR-GCR connection, related to the evolution of the light element abundances and to significant isotopic anomalies. We point out that most of the power injected by the supernovæ in the Galaxy is actually released inside superbubbles, which may thus play an important role in the origin of cosmic-rays, and could solve some persistent problems of the standard SNR-GCR scenario in a rather natural way.

  8. Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P

    2011-06-17

    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > Eth = 5.5 x 1019 eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > Eth are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above Eth/Z (for illustrative values of Z = 6,13,26). If the anisotropies above Eth are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.

  9. On the Possibility of Radar Detection of Ultra-high Energy Cosmic Ray- and Neutrino-induced Air Showers

    NASA Technical Reports Server (NTRS)

    Gorham, P.

    1999-01-01

    We show that cosmic rays air showers resulting from primaries with energies above 10(sup 19) eV should be straightforward to detect with radar ranging techniques, where the radar echoes are produced by scattering from the column of ionized air produced by the shower.

  10. Trap-Based Beam Formation Mechanisms and the Development of an Ultra-High-Energy-Resolution Cryogenic Positron Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Michael Ryan

    The focus of this dissertation is the development of a positron beam with significantly improved energy resolution over any beam resolution previously available. While positron interactions with matter are important in a variety of contexts, the range of experimental data available regarding fundamental positron-matter interactions is severely limited as compared to analogous electron-matter processes. This difference is due largely to the difficulties encountered in creating positron beams with narrow energy spreads. Described here is a detailed investigation into the physical processes operative during positron cooling and beam formation in state-of-the-art, trap-based beam systems. These beams rely on buffer gas traps (BGTs), in which positrons are trapped and cooled to the ambient temperature (300 K) through interactions with a molecular gas, and subsequently ejected as a high resolution pulsed beam. Experimental measurements, analytic models, and simulation results are used to understand the creation and characterization of these beams, with a focus on the mechanisms responsible for setting beam energy resolution. The information gained from these experimental and theoretical studies was then used to design, construct, and operate a next-generation high-energy-resolution beam system. In this new system, the pulsed beam from the BGT is magnetically guided into a new apparatus which re-traps the positrons, cools them to 50 K, and re-emits them as a pulsed beam with superior beam characteristics. Using these techniques, positron beams with total energy spreads as low as 6.9 meV FWHM are produced. This represents a factor of ˜ 5 improvement over the previous state-of-the-art, making it the largest increase in positron beam energy resolution since the development of advanced moderator techniques in the early 1980's. These beams also have temporal spreads of 0.9 mus FWHM and radial spreads of 1 mm FWHM. This represents improvements by factors of ˜2 and 10

  11. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    SciTech Connect

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  12. A METHOD TO SEARCH FOR CORRELATIONS OF ULTRA-HIGH ENERGY COSMIC-RAY MASSES WITH THE LARGE-SCALE STRUCTURES IN THE LOCAL GALAXY DENSITY FIELD

    SciTech Connect

    Ivanov, A. A.

    2013-02-15

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test-the Wilcoxon signed-rank routine-which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  13. A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory

    DOE PAGESBeta

    Abreu, P

    2011-12-30

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associatedmore » systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE < 1.74 x 10-7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV < E < 1 x 1020 eV.« less

  14. A Search for Ultra-High Energy Neutrinos in Highly Inclined Events at the Pierre Auger Observatory

    SciTech Connect

    Abreu, P

    2011-12-30

    The Surface Detector of the Pierre Auger Observatory is sensitive to neutrinos of all flavors above 0.1 EeV. These interact through charged and neutral currents in the atmosphere giving rise to extensive air showers. When interacting deeply in the atmosphere at nearly horizontal incidence, neutrinos can be distinguished from regular hadronic cosmic rays by the broad time structure of their shower signals in the water-Cherenkov detectors. In this paper we present for the first time an analysis based on down-going neutrinos. We describe the search procedure, the possible sources of background, the method to compute the exposure and the associated systematic uncertainties. No candidate neutrinos have been found in data collected from 1 January 2004 to 31 May 2010. Assuming an E-2 differential energy spectrum the limit on the single-flavor neutrino is E2dN/dE < 1.74 x 10-7 GeV cm-2s-1sr-1 at 90% C.L. in the energy range 1 x 1017eV < E < 1 x 1020 eV.

  15. ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA

    SciTech Connect

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Gray, R. C.; Hanlon, W. F.; Amann, J. F.; Hoffman, C. M.; Finley, C. B.

    2010-04-10

    Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s} > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.

  16. Ultra-high energy collisions in static space-times: single versus multi-black hole cases

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2015-04-01

    We consider collision of two particles near static electrically charged extremal black holes and elucidate the conditions under which the energy in the centre of mass frame grows unbounded. For a single black hole, we generalize the results obtained earlier for the Reissner-Nordström metric, to distorted black holes. In the multi-black hole space-time, qualitatively new features appear. If the point of collision is close to at least two horizons simultaneously, unbounded are possible (i) without fine-tuning of particles' parameters, (ii) for an arbitrary mutual orientation of two velocities. Such a combination of properties (i) and (ii) has no analogues in the single black hole case and facilitates the condition of getting unbounded . Collisions in the electro-vacuum Majumdar-Papapetrou metric (several extremal black holes in equilibrium) is analyzed explicitly.

  17. Ultra high vacuum seal arrangement

    SciTech Connect

    Flaherty, R.

    1981-08-11

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation is claimed. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  18. Ultra high vacuum seal arrangement

    DOEpatents

    Flaherty, Robert

    1981-01-01

    Arrangement for demountably sealing two concentric metallic tubes in an ultra high vacuum system which facilitates remote actuation. A tubular seal includes integral spaced lips which circumferentially engage the metallic tubes. The lips plastically deform the metallic tubes by mechanical forces resulting from a martensite to austenite transformation of the tubular seal upon application of a predetermined temperature. The sealing force is released upon application of another temperature which causes a transformation from the stronger austenite to the weaker martensite. Use of a dual acting sealing ring and driving ring circumferentially contacting the sealing ring is particularly applicable to sealing larger diameter concentric metallic members.

  19. Bimodal solar system based on a ultra-high-temperature TEC

    NASA Astrophysics Data System (ADS)

    Ogloblin, B. G.; Kirillov, E. Ya.; Klimov, A. V.; Shalaev, A. I.; Shumov, D. P.; Ender, A. Ya.; Kuznetsov, V. I.; Sitnov, V. I.

    1996-03-01

    The paper considers an ecological, solar, bimodal system with ultra-high temperature thermionic energy converter (TEC). The solar bimodal Space Electric Propulsion System (SEPS) characteristics are presented.

  20. Ultra-High-Pressure Water

    NASA Astrophysics Data System (ADS)

    French, Martin; Redmer, Ronald; Mattsson, Thomas R.

    2008-03-01

    We present the first all-electron QMD simulations of water in the ultra-high-pressure regime up to conditions typical for the deep interior of Jupiter and Saturn. We calculate the equation of state and the Hugoniot curve and study the structural properties via pair correlation functions and self-diffusion coefficients. In the ultra-dense superionic phase, we find a continuous transition in the protonic structure. Water at conditions of Jupiter's core (i.e. 20000 K, 50 Mbar, 11 g/cm^3) forms a fluid dense plasma. Supported by the DFG within SFB 652. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument. PMID:26429486

  2. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. Waste heat recovery with ultra high-speed turbomachinery

    SciTech Connect

    Vakkilainen, E.; Larjola, J.; Lindgren, O.

    1984-08-01

    A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.

  4. Ultra-high energy cosmic rays: 40 years retrospective of continuous observations at the Yakutsk array: Part 1. Cosmic ray spectrum in the energy range 1015-1018 eV and its interpretation

    NASA Astrophysics Data System (ADS)

    Knurenko, Stanislav; Petrov, Igor; Petrov, Zim; Sleptsov, Ivan

    2015-08-01

    The experimental data on the cosmic ray energy spectrum obtained from the Small Cherenkov Array in Yakutsk on the measurement of Cherenkov radiation in showers with energy 1015-1018 eV are discussed. The data were obtained by means of continuous array operation since 1994. The all particle spectrum in this energy region was found to have a complex shape and cannot be described by a simple exponential function with a single slope indicator, g. After the first kink at energy 3 · 1015 eV (knee), the spectrum becomes steeper at Δγ = 0.4 up to energy <2 · 1016 eV, then part of the spectrum becomes flat to >8 · 1016 eV, the slope of the spectrum is 2.92 ± 0.03 and then again changes slope by Δγ = 0.32 ± 0.05 from about ˜2· 1017 eV. The second kink in the spectrum observed at the Yakutsk EAS array at ˜2·1017 eV, or also called second knee, is a significant result for space astrophysics of ultra-high cosmic rays. In this paper we discuss possible scenarios for spectrum formation of cosmic rays by galactic sources to energies <1017 eV, mainly supernovae remnants (SNR) and Metagalactic origins in the energy range 1017-1018 eV. Most likely, that measurement of the second knee is related with the transitional region, galactic to extragalactic origin of cosmic rays.

  5. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2016-05-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  6. Radiation protection for an ultra-high intensity laser.

    PubMed

    Borne, F; Delacroix, D; Gelé, J M; Massé, D; Amiranoff, F

    2002-01-01

    Radiological characterisation of an experimental chamber and other areas of an ultra-high intensity laser facility (-terawatt) revealed significant levels of X ray, gamma and neutron radiation. Different techniques were used to detect and measure this radiation: TLD. photographic film, bubble detectors and germanium spectrometry. A test series of radiological measurements was made for 150 laser shots (300 femtoseconds) with energies in the 1 to 20 J range and a target illuminance of 10(19) W.cm2. Gamma dose equivalents in the vicinity of the chamber varied between 0.7 and 73 mSv. The dose equivalent due to the neutron component was evaluated to be 1% of the gamma dose equivalent. The amount of radiation generated depends on the laser energy and the nature of the target. No activation or contamination of the chamber or target holder were observed. Ultra-high intensity lasers are being extensively developed at the present time and the investigations performed demonstrate that it is necessary to take radiological risks into consideration in the design of ultra-high intensity laser facilities and to define personnel access conditions. PMID:12212903

  7. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  8. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    SciTech Connect

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in the $E\\gt 8$ EeV energy bin, with an amplitude for the first harmonic in right ascension $r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$, that has a chance probability $P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$, reinforcing the hint previously reported with vertical events alone.

  9. Large scale distribution of ultra high energy cosmic rays detected at the Pierre Auger Observatory with zenith angles up to 80°

    DOE PAGESBeta

    Aab, Alexander

    2015-03-30

    In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less

  10. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, Isidoro E.

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  11. Wide band cryogenic ultra-high vacuum microwave absorber

    DOEpatents

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  12. Is the ultra-high energy cosmic-ray excess observed by the telescope array correlated with IceCube neutrinos?

    SciTech Connect

    Fang, Ke; Fujii, Toshihiro; Linden, Tim; Olinto, Angela V.

    2014-10-20

    The Telescope Array (TA) has observed a statistically significant excess in cosmic rays with energies above 57 EeV in a region of approximately 1150 deg{sup 2} centered on coordinates R.A. = 146.7, decl. = 43.2. We note that the location of this excess correlates with 2 of the 28 extraterrestrial neutrinos recently observed by IceCube. The overlap between the two IceCube neutrinos and the TA excess is statistically significant at the 2σ level. Furthermore, the spectrum and intensity of the IceCube neutrinos is consistent with a single source which would also produce the TA excess. Finally, we discuss possible source classes with the correct characteristics to explain the cosmic-ray and neutrino fluxes with a single source.

  13. Ultra-high intensity laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Langdon, A. Bruce; Hinkel, D. E.; Lasinski, Barbara F.; Still, C. H.

    1997-11-01

    In current studies of plasma interactions relevant to the fast ignitor concept,footnote M. Tabak, et al., Phys. Plasmas 1, 1626 (1994). an ultra-high intensity beam propagates through underdense, relativistically transparent, and then near solid density plasmas to create a channel. The ultra-high intensity beam propagates through this channel toward the compressed core where it creates hot electrons as it is absorbed. Three-dimensional fluid simulation(R. L. Berger et al), Phys. Fluids B, 2243 (1993). (with relativistic enhancements) studies of self-focusing in the underdense plasma will be reported and compared to PIC simulations in the same parameter regime. Beam structure near focus detracts from channel formation. Modeling in support of upcoming 100TW will be presented.

  14. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  15. Springback analysis of ultra high strength steel

    NASA Astrophysics Data System (ADS)

    Tenma, Kenji; Kina, Futoshi; Suzuki, Wataru

    2013-12-01

    It is an inevitable trend in the automotive industry to apply more and more high strength steels and even ultra-high strength steels. Even though these materials are more difficult to process the development time of forming tools must be reduced. In order to keep the development time under control, simulation tools are used to verify the forming process in advance. At Aoi Machine Industry a project has been executed to accurately simulate springback of ultra-high strength steels in order to reduce the tool tryout time. In the first phase of the project the simulation settings were optimized based on B-Pillar model A made of Dual Phase 980. In the second phase, it was verified with B-Pillar model B whether these simulation settings were usable as general setting. Results showed that with the right settings it is very well possible to accurately simulate springback of ultra-high strength steels. In the third phase the project the stamping of a B-Pillar of Dual Phase 1180 was studied.

  16. Accuracy of 131I Tumor Quantification in Radioimmunotherapy Using SPECT Imaging with an Ultra-High-Energy Collimator: Monte Carlo Study

    PubMed Central

    Dewaraja, Yuni K.; Ljungberg, Michael; Koral, Kenneth F.

    2010-01-01

    Accuracy of 131I tumor quantification after radioimmunotherapy (RIT) was investigated for SPECT imaging with an ultra-highenergy (UHE) collimator designed for imaging 511-keV photons. Methods First, measurements and Monte Carlo simulations were carried out to compare the UHE collimator with a conventionally used, high-energy collimator. On the basis of this comparison, the UHE collimator was selected for this investigation, which was carried out by simulation of spherical tumors in a phantom. Reconstruction was by an expectation–maximization algorithm that included scatter and attenuation correction. Keeping the tumor activity constant, simulations were carried out to assess how volume-of-interest (VOI) counts vary with background activity, radius of rotation (ROR), tumor location, and size. The constant calibration factor for quantification was determined from VOI counts corresponding to a 3.63-cm-radius sphere of known activity. Tight VOIs corresponding to the physical size of the spheres or tumors were used. Results Use of the UHE collimator resulted in a large reduction in 131I penetration, which is especially significant in RIT where background uptake is high. With the UHE collimator, typical patient images showed an improvement in contrast. Considering the desired geometric events, sensitivity was reduced, but only by a factor of 1.6. Simulation results for a 3.63-cm-radius tumor showed that VOI counts vary with background, location, and ROR by less than 3.2%, 3%, and 5.3%, respectively. The variation with tumor size was more significant and was a function of the background. Good quantification accuracy (<6.5% error) was achieved when tumor size was the same as the sphere size used in the calibration, irrespective of the other parameters. For smaller tumors, activities were underestimated by up to −15% for the 2.88-cm-radius sphere, −23% for the 2.29-cm-radius sphere, and −47% for the 1.68-cm-radius sphere. Conclusion Reasonable accuracy can be

  17. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  18. Ultra high vacuum broad band high power microwave window

    DOEpatents

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  19. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  20. BAKABLE ULTRA-HIGH VACUUM VALVE

    DOEpatents

    Mark, J.T.; Gantz, I.H.

    1962-07-10

    S>This patent relates to a valve useful in applications involving successively closing and opening a communication between a chamber evacuated to an ultra-high vacuum condition of the order of 10/sup -10/ millimeters of mercury and another chamber or the ambient. The valve is capable of withstanding extended baking at 450 deg C and repeated opening and closing without repiacement of the valve seat (approximately 200 cycle limit). The seal is formed by mutual interdiffusion weld, coerced by a pneumatic actuator. (AEC)

  1. Ultra-high vacuum compatible image furnace

    NASA Astrophysics Data System (ADS)

    Neubauer, A.; BÅ`uf, J.; Bauer, A.; Russ, B.; Löhneysen, H. v.; Pfleiderer, C.

    2011-01-01

    We report the design of an optical floating-zone furnace for single-crystal growth under ultra-high vacuum (UHV) compatible conditions. The system is based on a commercial image furnace, which has been refurbished to be all-metal sealed. Major changes concern the use of UHV rotary feedthroughs and bespoke quartz-metal seals with metal-O-rings at the lamp stage. As a consequence, the procedure of assembling the furnace for crystal growth is changed completely. Bespoke heating jackets permit to bake the system. For compounds with elevated vapor pressures, the ultra-high vacuum serves as a precondition for the use of a high-purity argon atmosphere up to 10 bar. In the ferromagnetic Heusler compound Cu _2MnAl, the improvements of purity result in an improved stability of the molten zone, grain selection, and, hence, single-crystal growth. Similar improvements are observed in traveling-solvent floating-zone growth of the antiferromagnetic Heusler compound Mn _3Si. These improvements underscore the great potential of optical float-zoning for the growth of high-purity single crystals of intermetallic compounds.

  2. Ultra-high wear resistance of ultra-nanocrystalline diamond film: Correlation with microstructure and morphology

    NASA Astrophysics Data System (ADS)

    Rani, R.; Kumar, N.; Lin, I.-Nan

    2016-05-01

    Nanostructured diamond films are having numerous unique properties including superior tribological behavior which is promising for enhancing energy efficiency and life time of the sliding devices. High wear resistance is the principal criterion for the smooth functioning of any sliding device. Such properties are achievable by tailoring the grain size and grain boundary volume fraction in nanodiamond film. Ultra-nanocrystalline diamond (UNCD) film was attainable using optimized gas plasma condition in a microwave plasma enhanced chemical vapor deposition (MPECVD) system. Crystalline phase of ultra-nanodiamond grains with matrix phase of amorphous carbon and short range ordered graphite are encapsulated in nanowire shaped morphology. Film showed ultra-high wear resistance and frictional stability in micro-tribological contact conditions. The negligible wear of film at the beginning of the tribological contact was later transformed into the wearless regime for prolonged sliding cycles. Both surface roughness and high contact stress were the main reasons of wear at the beginning of sliding cycles. However, the interface gets smoothened due to continuous sliding, finally leaded to the wearless regime.

  3. Multilayer ultra-high-temperature ceramic coatings

    DOEpatents

    Loehman, Ronald E.; Corral, Erica L.

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  4. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  5. Design Studies for an Ultra High Field K80 Cyclotron

    NASA Astrophysics Data System (ADS)

    Schubert, Jeff; Blosser, Henry

    1996-05-01

    We are investigating the use of a wide-bore, 8 T magnet as a component of an ultra high field cyclotron. Such a machine would use the highest magnetic field of any cyclotron, to date. The K80 `Eight Tesla Cyclotron' would have roughly the same magnetic rigidity (Bρ) as the Oak Ridge Isochronous Cyclotron in a package of only one fourth the radius, with a corresponding reduction in cost. This cyclotron could accelerate particles with a charge state Q/A = 1/4 to a final energy of between 5 and 6 MeV/nucleon, the energy range currently being used to study superdeformed, high angular momentum nuclei that result from glancing collisions. Studies thus far have stressed achieving sufficient vertical focusing (ν_z) despite the high magnetic field level. The high field also reduces the space available for central region structures, which complicates early-turn focusing, orbit centering and the design of the spiral inflector.

  6. Attaining the Photometric Precision Required by Future Dark Energy Projects

    SciTech Connect

    Stubbs, Christopher

    2013-01-21

    This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.

  7. Alternative Processing Methods for Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Gusman, Michael; Beckman, Sarah; Gasch, Matthew; Ellerby, Don; Lau, Kai-Hung; Sanjurjo, Angel; Johnson, Sylvia M.; Venkatapathy, Ethiras (Technical Monitor)

    2002-01-01

    Ultra High Temperature Ceramics (UHTCs) are being developed for possible use in a number of structural applications including hypersonic vehicles, engines, plasma arc electrodes and high temperature shielding. Alternative methods of processing Ultra High Temperature Ceramics (UHTCs) will be discussed. Techniques that may improve oxidation resistance, strength, and reduce the processing temperature of the UHTCs will be presented. Hot-pressed UHTCs made using either milled/uncoated powders or non-milled coated powders will be compared.

  8. Analysis of trace halocarbon contaminants in ultra high purity helium

    NASA Technical Reports Server (NTRS)

    Fewell, Larry L.

    1994-01-01

    This study describes the analysis of ultra high purity helium. Purification studies were conducted and containment removal was effected by the utilization of solid adsorbent purge-trap systems at cryogenic temperatures. Volatile organic compounds in ultra high purity helium were adsorbed on a solid adsorbent-cryogenic trap, and thermally desorbed trace halocarbon and other contaminants were analyzed by combined gas chromatography-mass spectrometry.

  9. Fibrous Fillers to Manufacture Ultra High Ash/Performance Paper

    SciTech Connect

    Dr. VIjay K. Mathur

    2009-04-30

    The paper industry is one of the largest users of energy and emitters of CO2 in the US manufacturing industry. In addition to that, it is facing tremendous financial pressure due to lower cost imports. The fine paper industry has shrunk from 15 million tons per year production to 10 million tons per year in the last 5 years. This has resulted in mill closures and job loses. The AF&PA and the DOE formed a program called Agenda 2020 to help in funding to develop breakthrough technologies to provide help in meeting these challenges. The objectives of this project were to optimize and scale-up Fibrous Fillers technology, ready for commercial deployment and to develop ultra high ash/high performance paper using Fibrous Fillers. The goal was to reduce energy consumption, carbon footprint, and cost of manufacturing paper and related industries. GRI International (GRI) has been able to demonstrate the techno - economic feasibility and economic advantages of using its various products in both handsheets as well as in commercial paper mills. GRI has also been able to develop sophisticated models that demonstrate the effect of combinations of GRI's fillers at multiple filler levels. GRI has also been able to develop, optimize, and successfully scale-up new products for use in commercial paper mills.

  10. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travis, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.

    2006-11-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}z = 20 {mu}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {mu}m / OD = 325 {mu}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  11. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    NASA Astrophysics Data System (ADS)

    Thompson, M. C.; Badakov, H.; Rosenzweig, J. B.; Travis, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.

    2006-11-01

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., σz = 20 μm at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 μm / OD = 325 μm). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  12. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Hogan, M.; Ischebeck, R.; Kirby, N.; Siemann, R.; Walz, D.; Muggli, P.; Scott, A.; Yoder, R.; /LLNL, Livermore /UCLA /SLAC /Southern California U. /UC, Santa Barbara /Manhattan Coll., Riverdale

    2007-03-27

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  13. Ultra-High Gradient Dielectric Wakefield Accelerator Experiments

    SciTech Connect

    Thompson, M C; Badakov, H; Rosenzweig, J B; Travish, G; Hogan, M; Ischebeck, R; Kirby, N; Siemann, R; Walz, D; Muggli, P; Scott, A; Yoder, R

    2006-08-04

    Ultra-high gradient dielectric wakefield accelerators are a potential option for a linear collider afterburner since they are immune to the ion collapse and electron/positron asymmetry problems implicit in a plasma based afterburner. The first phase of an experiment to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range has been completed. The experiment took advantage of the unique SLAC FFTB electron beam and its ultra-short pulse lengths and high currents (e.g., {sigma}{sub z} = 20 {micro}m at Q = 3 nC). The FFTB electron beam was successfully focused down and sent through short lengths of fused silica capillary tubing (ID = 200 {micro}m/OD = 325 {micro}m). The pulse length of the electron beam was varied to produce a range of electric fields between 2 and 20 GV/m at the inner surface of the dielectric tubes. We observed a sharp increase in optical emissions from the capillaries in the middle part of this surface field range which we believe indicates the transition between sustainable field levels and breakdown. If this initial interpretation is correct, the surfaced fields that were sustained equate to on axis accelerating field of several GV/m. In future experiments being developed for the SLAC SABER and BNL ATF we plan to use the coherent Cerenkov radiation emitted from the capillary tube as a field strength diagnostic and demonstrate GV/m range particle energy gain.

  14. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect

    Yakovlev, I V

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  15. Shock characterization of an ultra-high strength concrete

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-05-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete.

  16. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    NASA Astrophysics Data System (ADS)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  17. Ultra-high-strength boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.; Dicarlo, J. A.; Grimes, H. H.; Smith, R. J.

    1978-01-01

    Boron-on-tungsten fibers with tensile strength and strain-to-failure values increased by fifty percent over commercial grades are produced by controlled chemical-etching process. Improved fibers have potential applications as lightweight composites in ground vehicles, spacecraft, and rotors for energy storage.

  18. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGESBeta

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  19. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    SciTech Connect

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guiding structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.

  20. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  1. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  2. Super Boiler: First Generation, Ultra-High Efficiency Firetube Boiler

    SciTech Connect

    2006-06-01

    This factsheet describes a research project whose goal is to develop and demonstrate a first-generation ultra-high-efficiency, ultra-low emissions, compact gas-fired package boiler (Super Boiler), and formulate a long-range RD&D plan for advanced boiler technology out to the year 2020.

  3. Ultra-high-speed bionanoscope for cell and microbe imaging

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Vo Le, Cuong; Kawano, Hiroyuki; Ishikawa, Ikuko; Miyawaki, Atshushi; Dao, Vu T. S.; Nguyen, Hoang Dung; Yokoi, Sayoko; Yoshida, Shigeru; Nakano, Hitoshi; Takehara, Kohsei; Saito, Yoshiharu

    2008-11-01

    We are developing an ultra-high-sensitivity and ultra-high-speed imaging system for bioscience, mainly for imaging of microbes with visible light and cells with fluorescence emission. Scarcity of photons is the most serious problem in applications of high-speed imaging to the scientific field. To overcome the problem, the system integrates new technologies consisting of (1) an ultra-high-speed video camera with sub-ten-photon sensitivity with the frame rate of more than 1 mega frames per second, (2) a microscope with highly efficient use of light applicable to various unstained and fluorescence cell observations, and (3) very powerful long-pulse-strobe Xenon lights and lasers for microscopes. Various auxiliary technologies to support utilization of the system are also being developed. One example of them is an efficient video trigger system, which detects a weak signal of a sudden change in a frame under ultra-high-speed imaging by canceling high-frequency fluctuation of illumination light. This paper outlines the system with its preliminary evaluation results.

  4. Ultra-high Temperature Emittance Measurements for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Crandall, David

    2009-01-01

    Advanced modeling and design efforts for many aerospace components require high temperature emittance data. Applications requiring emittance data include propulsion systems, radiators, aeroshells, heatshields/thermal protection systems, and leading edge surfaces. The objective of this work is to provide emittance data at ultra-high temperatures. MSFC has a new instrument for the measurement of emittance at ultra-high temperatures, the Ultra-High Temperature Emissometer System (Ultra-HITEMS). AZ Technology Inc. developed the instrument, designed to provide emittance measurements over the temperature range 700-3500K. The Ultra-HITEMS instrument measures the emittance of samples, heated by lasers, in vacuum, using a blackbody source and a Fourier Transform Spectrometer. Detectors in a Nicolet 6700 FT-IR spectrometer measure emittance over the spectral range of 0.4-25 microns. Emitted energy from the specimen and output from a Mikron M390S blackbody source at the same temperature with matched collection geometry are measured. Integrating emittance over the spectral range yields the total emittance. The ratio provides a direct measure of total hemispherical emittance. Samples are heated using lasers. Optical pyrometry provides temperature data. Optical filters prevent interference from the heating lasers. Data for Inconel 718 show excellent agreement with results from literature and ASTM 835. Measurements taken from levitated spherical specimens provide total hemispherical emittance data; measurements taken from flat specimens mounted in the chamber provide near-normal emittance data. Data from selected characterization studies will be presented. The Ultra-HITEMS technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials.

  5. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  6. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  7. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  8. Ztek`s ultra high efficiency fuel cell/gas turbine combination

    SciTech Connect

    Hsu, M.; Nathanson, D.

    1995-10-19

    Ztek is proceeding on development of an ultra-high efficiency hybrid system of its Planar SOFC with a gas turbine, realizing shared cost and performance benefits. The gas turbine as the Balance-of-Plant was a logical selection from a fuel cell system perspective because of (1) the high-power-density energy conversion of gas turbines; (2) the unique compatibility of the Ztek Planar SOFC with gas turbines, and (3) the availability of low-cost commercial gas turbine systems. A Tennessee Valley Authority/Ztek program is ongoing, which addresses operation of the advanced Planar SOFC stacks and design scale-up for utility power generation applications.

  9. Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings

    SciTech Connect

    Voronov,, Dmitriy; Anderson, Erik; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric; Salmassi, Farhad; Yashchuk, Tony; Padmore, Howard

    2011-07-26

    Multilayer coated blazed gratings with high groove density are the most promising candidate for ultra-high resolution soft x-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft x-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on successful fabrication and testing of ultra-dense saw-tooth substrates with 5,000 and 10,000 lines/mm.

  10. Generation of Ultra-high Intensity Laser Pulses

    SciTech Connect

    N.J. Fisch; V.M. Malkin

    2003-06-10

    Mainly due to the method of chirped pulse amplification, laser intensities have grown remarkably during recent years. However, the attaining of very much higher powers is limited by the material properties of gratings. These limitations might be overcome through the use of plasma, which is an ideal medium for processing very high power and very high total energy. A plasma can be irradiated by a long pump laser pulse, carrying significant energy, which is then quickly depleted in the plasma by a short counterpropagating pulse. This counterpropagating wave effect has already been employed in Raman amplifiers using gases or plasmas at low laser power. Of particular interest here are the new effects which enter in high power regimes. These new effects can be employed so that one high-energy optical system can be used like a flashlamp in what amounts to pumping the plasma, and a second low-power optical system can be used to extract quickly the energy from the plasma and focus it precisely. The combined system can be very compact. Thus, focused intensities more than 10{sup 25} W/cm{sup 2} can be contemplated using existing optical elements. These intensities are several orders of magnitude higher than what is currently available through chirped pump amplifiers.

  11. Design Strategies for Ultra-high Efficiency Photovoltaics

    NASA Astrophysics Data System (ADS)

    Warmann, Emily Cathryn

    While concentrator photovoltaic cells have shown significant improvements in efficiency in the past ten years, once these cells are integrated into concentrating optics, connected to a power conditioning system and deployed in the field, the overall module efficiency drops to only 34 to 36%. This efficiency is impressive compared to conventional flat plate modules, but it is far short of the theoretical limits for solar energy conversion. Designing a system capable of achieving ultra high efficiency of 50% or greater cannot be achieved by refinement and iteration of current design approaches. This thesis takes a systems approach to designing a photovoltaic system capable of 50% efficient performance using conventional diode-based solar cells. The effort began with an exploration of the limiting efficiency of spectrum splitting ensembles with 2 to 20 sub cells in different electrical configurations. Incorporating realistic non-ideal performance with the computationally simple detailed balance approach resulted in practical limits that are useful to identify specific cell performance requirements. This effort quantified the relative benefit of additional cells and concentration for system efficiency, which will help in designing practical optical systems. Efforts to improve the quality of the solar cells themselves focused on the development of tunable lattice constant epitaxial templates. Initially intended to enable lattice matched multijunction solar cells, these templates would enable increased flexibility in band gap selection for spectrum splitting ensembles and enhanced radiative quality relative to metamorphic growth. The III-V material family is commonly used for multijunction solar cells both for its high radiative quality and for the ease of integrating multiple band gaps into one monolithic growth. The band gap flexibility is limited by the lattice constant of available growth templates. The virtual substrate consists of a thin III-V film with the desired

  12. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    SciTech Connect

    Higginson, Drew Pitney

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  13. Fusion: ultra-high-speed and IR image sensors

    NASA Astrophysics Data System (ADS)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  14. Epitaxial design of ultra high power tunable laser gain section

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Benson, Trevor M.

    2005-09-01

    High power widely tunable lasers are extremely desirable for telecom applications as a replacement for distributed feedback (DFB) lasers in wavelength division multiplexing (WDM) systems, due to their dynamic provision properties. They are also sought after for many other applications, such as phased radar systems, optical switching and routing. This paper introduces novel design ideas and approaches on how to achieve ultra high power in the design of an InGaAsP-InP based widely tunable laser gain section. The inventive ideas are basically composed of two parts. Firstly, to increase the facet optical output power by the inclusion of an InP spacer layer below the ridge and above the multiple quantum wells (MQWs) stack, in order to have extra freedom in the control of widening the single mode ridge width. Secondly, to reduce the free-carrier absorption loss by the inclusion of a bulk balance layer structure below the MQWs stack and above the buffer layer, so as to largely shift the optical mode distribution to the intrinsic and n-doped side of the epilayer structure where the free-carrier absorption loss is lower than that of the p-doped side. Simulation results show that the proposed epilayer designs of the ultra high power gain sections would greatly increase the facet optical output power of a tunable laser, by up to about 80%. It should be noted that these novel epilayer design ideas and approaches developed for the gain section are applicable to the designs of ultra high power DFB lasers and other InGaAsP-InP based lasers.

  15. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds.

    PubMed

    Grand-Guillaume Perrenoud, Alexandre; Veuthey, Jean-Luc; Guillarme, Davy

    2012-11-30

    Currently, columns packed with sub-2 μm particles are widely employed in liquid chromatography but are scarcely used in supercritical fluid chromatography. The goal of the present study was to compare the performance, possibilities and limitations of both ultra-high performance liquid chromatography (UHPLC) and ultra-high performance supercritical fluid chromatography (UHPSFC) using columns packed with sub-2 μm particles. For this purpose, a kinetic evaluation was first performed, and van Deemter curves and pressure plots were constructed and compared for columns packed with hybrid silica stationary phases composed of 1.7 and 3.5 μm particles. As expected, the kinetic performance of the UHPSFC method was significantly better than that of the UHPLC. Indeed, the h(min) values were in the same range with both strategies and were between 2.2 and 2.8, but u(opt) was increased by a factor of >4 in UHPSFC conditions. Another obvious advantage of UHPSFC over UHPLC is related to the generated backpressure, which is significantly lower in the presence of a supercritical or subcritical fluid. However, the upper pressure limit of the UHPSFC system was only ∼400 bar vs. ∼1000 bar in the UHPLC system, which prevents the use of highly organic mobile phases at high flow rates in UHPSFC. Second, the impact of reducing the particle size (from 3.5 to 1.7 μm) was evaluated in both UHPLC and UHPSFC conditions. The effect of frictional heating on the selectivity was demonstrated in UHPLC and that of fluid density or decompression cooling was highlighted in UHPSFC. However, in both cases, a change in selectivity was observed for only a limited number of compounds. Third, various types of column chemistries packed with 1.7 μm particles were evaluated in both UHPLC and UHPSFC conditions using a model mixture of acidic, neutral and basic compounds. It has been shown that more drastic changes in selectivity were obtained using UHPSFC columns compared to those obtained by changing

  16. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  17. Line-shapes analysis with ultra-high accuracy

    NASA Astrophysics Data System (ADS)

    Wcisło, Piotr; Cygan, Agata; Lisak, Daniel; Ciuryło, Roman

    2014-11-01

    We present analysis of the R7 Q8 O2 B-band rovibronic transition measured with ultra-high signal-to-noise ratio by Pound-Drever-Hall-locked frequency-stabilized cavity-ring- down spectroscopy. For line-shape calculations ab intio in spirt approach was used based on numerical solution of the proper transport/relaxation equation. Consequences for spectroscopic determination of the Boltzmann constant as well as precise determination of the line position in the Doppler limited spectroscopy are indicated.

  18. POWERWALL: International Workshop on Interactive, Ultra-High-Resolution Displays

    SciTech Connect

    Rooney, Chris; Endert, Alexander; Fekete, Jean-Daniel; Hornbaek, Kasper; North, Chris

    2013-04-27

    Ultra-high-resolution (Powerwall) displays are becoming increasingly popular due to the ever decreasing cost of hardware. As a result they are appearing more frequently in research institutes, and making the jump out of the lab and into industry. Due to the amount of work in this research area that has been published in CHI over the last few years, we felt that this confernece would be the ideal host for the first opportunity for both academics and practitioners in this field to get together.

  19. [Clinical trials of ultra-high-dose methylcobalamin in ALS].

    PubMed

    Izumi, Yuishin; Kaji, Ryuji

    2007-10-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting both upper and lower motor neurons. Weakness may begin in the legs, hands, proximal arms, or pharynx. The course is relentless and progressive without remissions, relapses, or even stable plateaus. There is no effective drug therapy for ALS, although riluzole has been shown to prolong life in sufferers, without tracheostomy. A vitamin B12 analog, methylcobalamin, has a protective effect on cultured cortical neurons against glutamate-induced cytotoxicity. We have shown the ultra-high-dose methylcobalamin (25 mg/day i.m.) slows down the progressive reduction of the CMAP (compound muscle action potential) amplitudes in ALS in the short term (4 weeks). The latencies of SSR (sympathetic skin response) were shorter after treatment (50 mg/day i.v., 2 weeks). In the long-term effect of methylcobalamin (50 mg/day i.m., twice a week), the survival time (or the period to become respirator-bound) was significantly longer in the treated group than in the untreated. Larger-scale randomized double blind trial was started in Japan in order to evaluate the long-term efficacy and the safety of ultra-high-dose methylcobalamin for sporadic or familial cases of ALS. PMID:17969354

  20. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units

    PubMed Central

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-01-01

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10−6°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs. PMID:27338408

  1. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-01-01

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs. PMID:27338408

  2. Ultra-high pressure water jet: Baseline report

    SciTech Connect

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  3. Ultra-High-Speed Image Signal Accumulation Sensor

    PubMed Central

    Etoh, Takeharu Goji; Son, Dao Vu Truong; Akino, Toshiaki Koike; Akino, Toshiro; Nishi, Kenji; Kureta, Masatoshi; Arai, Masatoshi

    2010-01-01

    Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR), such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS). PMID:22319344

  4. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  5. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    PubMed

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment. PMID:26295438

  6. An improved classification of stationary phases for ultra-high performance supercritical fluid chromatography.

    PubMed

    West, Caroline; Lemasson, Elise; Bertin, Sophie; Hennig, Philippe; Lesellier, Eric

    2016-04-01

    Supercritical fluid chromatography (SFC) has recently benefited of new instrumentation, together with the availability of many ultra-high performance columns (sub -2μm fully porous particles or sub -3μm superficially porous particles), rendering it more attractive than ever. Most of these columns commonly used in SFC were initially developed for HPLC use, with an increasing number of stationary phases specifically designed for SFC. While the availability of different stationary phase chemistries is an advantage to achieve successful SFC separations, selecting a column for method development remains difficult. For this reason, we have previously developed a classification of stationary phases dedicated to SFC use. It is based on linear solvation energy relationships (LSER) with Abraham descriptors (for neutral species). While current interest in SFC is strong in the pharmaceutical industry, the need to take account of interactions occurring with ionisable species is pressing. We have previously shown how a modified version of the solvation parameter model, adapted to take account of ionic and ionizable species, could be applied to the characterization of SFC systems. In the present paper, based on this modified LSER model, and on the analysis of 109 neutral and ionisable species, we propose an improved classification of 31 ultra-high performance stationary phases to facilitate method development with SFC. PMID:26920664

  7. An Ultra-High Pressure Proportional Counter for Hard X-Ray Astronomy.

    NASA Astrophysics Data System (ADS)

    Ye, Zongnan

    1992-01-01

    This thesis describes the successful development of ultra-high pressure proportional counters for balloon -borne hard X-ray astronomy. The proportional counters were filled with argon/xenon at pressures up to {~}30atm. The properties of proportional counters filled at such pressures have been studied by the author in the laboratory. The spatial response of these counters to X-rays and charged particles, and the energy response to X-rays up to 1MeV have been analysed. Gas gain measurements using the charge collection technique and analysis of the subsequent data show that simple extrapolation from low pressures cannot explain the observed behaviour (e.g. the mobility of positive ions and quenching efficiency) of these counters at high pressures. A hard X-ray telescope consisting of 32 such proportional counters filled at ultra-high pressures is being constructed, details of which are described. The sensitivity of this telescope for both continuum and narrow-line spectra is superb compared to contemporary balloon-and satellite-borne hard X-ray detectors. Together with an imaging phoswich Anger camera, it is scheduled for launch from Alice Springs in November 1992. An anticoincidence system for an X-ray detector, consisting of a combined passive and active shield, has been designed and constructed by the author, and flown on a balloon. The active shield, made of a plastic scintillator, has resulted in an additional reduction of 25% in the background registered at balloon altitudes.

  8. Nanocomposites of TiO2/cyanoethylated cellulose with ultra high dielectric constants

    NASA Astrophysics Data System (ADS)

    Madusanka, Nadeesh; Shivareddy, Sai G.; Hiralal, Pritesh; Eddleston, Mark D.; Choi, Youngjin; Oliver, Rachel A.; Amaratunga, Gehan A. J.

    2016-05-01

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal–insulator–metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz–1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10‑6–10‑7 A cm‑2). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported.

  9. Nanocomposites of TiO₂/cyanoethylated cellulose with ultra high dielectric constants.

    PubMed

    Madusanka, Nadeesh; Shivareddy, Sai G; Hiralal, Pritesh; Eddleston, Mark D; Choi, Youngjin; Oliver, Rachel A; Amaratunga, Gehan A J

    2016-05-13

    A novel dielectric nanocomposite containing a high permittivity polymer, cyanoethylated cellulose (CRS) and TiO2 nanoparticles was successfully prepared with different weight percentages (10%, 20% and 30%) of TiO2. The intermolecular interactions and morphology within the polymer nanocomposites were analysed. TiO2/CRS nanofilms on SiO2/Si wafers were used to form metal-insulator-metal type capacitors. Capacitances and loss factors in the frequency range of 1 kHz-1 MHz were measured. At 1 kHz CRS-TiO2 nanocomposites exhibited ultra high dielectric constants of 118, 176 and 207 for nanocomposites with 10%, 20% and 30% weight of TiO2 respectively, significantly higher than reported values of pure CRS (21), TiO2 (41) and other dielectric polymer-TiO2 nanocomposite films. Furthermore, all three CRS-TiO2 nanocomposites show a loss factor <0.3 at 1 kHz and low leakage current densities (10(-6)-10(-7) A cm(-2)). Leakage was studied using conductive atomic force microscopy and it was observed that the leakage is associated with TiO2 nanoparticles embedded in the CRS polymer matrix. A new class of ultra high dielectric constant hybrids using nanoscale inorganic dielectrics dispersed in a high permittivity polymer suitable for energy management applications is reported. PMID:27040504

  10. Inhibited rotational quenching in oriented ultra-high rotational states of CO2

    NASA Astrophysics Data System (ADS)

    Toro, Carlos; Liu, Qingnan; Echebiri, Geraldine O.; Mullin, Amy S.

    2013-07-01

    We demonstrate long-lived rotational orientation of CO2 molecules originally prepared in an optical centrifuge. The optical centrifuge traps molecules in a strong optical field and spins them to high rotational states by angular acceleration of the optical field. In the case of CO2, the optical centrifuge creates ultra-high rotational states with J ≥ 220. Polarisation-dependent, high-resolution transient infrared (IR) absorption was used to measure the spatial orientation of CO2 molecules in the (0000, J = 76) state following the optical centrifuge pulse and subsequent collisional energy transfer. Transient Doppler-broadened line profiles show that CO2 molecules in J = 76 probed with an IR transition dipole parallel to the initial plane of rotation are more plentiful and have higher translational temperatures than molecules with an IR transition dipole perpendicular to this plane. Time-dependent data show that the initial angular momentum orientation persists even after thousands of collisions, indicating that molecules in an optical centrifuge behave as quantum gyroscopes. These observations demonstrate that the optical centrifuge prepares an anisotropic rotational distribution and that molecules in oriented, ultra-high angular momentum states require many more collisions to randomise their orientation than do those in low rotational states.

  11. Characterization of an Ultra-High Temperature Ceramic Composite

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Opila, Elizabeth J.; Robinson, Raymond C.; Lorincz, Jonathan A.

    2004-01-01

    Ultra-high temperature ceramics (UHTC) are of interest for hypersonic vehicle leading edge applications. Monolithic UHTCs are of concern because of their low fracture toughness and brittle behavior. UHTC composites (UHTCC) are being investigated as a possible approach to overcome these deficiencies. In this study a small sample of a UHTCC was evaluated by limited mechanical property tests, furnace oxidation exposures, and oxidation exposures in a flowing environment generated by an oxy-acetylene torch. The composite was prepared from a carbon fiber perform using ceramic particulates and a pre-cerns about microcracking due to thermal expansion mismatch between the matrix and the carbon fiber reinforcements, and about the oxidation resistance of the HfB2-SiC coating layer and the composite constituents. However, positive performance in the torch test warrants further study of this concept.

  12. Holographic memory module with ultra-high capacity and throughput

    SciTech Connect

    Vladimir A. Markov, Ph.D.

    2000-06-04

    High capacity, high transfer rate, random access memory systems are needed to archive and distribute the tremendous volume of digital information being generated, for example, the human genome mapping and online libraries. The development of multi-gigabit per second networks underscores the need for next-generation archival memory systems. During Phase I we conducted the theoretical analysis and accomplished experimental tests that validated the key aspects of the ultra-high density holographic data storage module with high transfer rate. We also inspected the secure nature of the encoding method and estimated the performance of full-scale system. Two basic architectures were considered, allowing for reversible compact solid-state configuration with limited capacity, and very large capacity write once read many memory system.

  13. Ultra-high-ohmic microstripline resistors for Coulomb blockade devices.

    PubMed

    Lotkhov, Sergey V

    2013-06-14

    In this paper, we report on the fabrication and low-temperature characterization of ultra-high-ohmic microstripline resistors made of a thin film of weakly oxidized titanium. Nearly linear voltage-current characteristics were measured at temperatures down to T ~ 20 mK for films with sheet resistivities as high as ~7 kΩ, i.e. about an order of magnitude higher than our previous findings for weakly oxidized Cr. Our analysis indicates that such an improvement can help to create an advantageous high-impedance environment for different Coulomb blockade devices. Further properties of the Ti film addressed in this work show the promise of low-noise behavior of the resistors when applied in different realizations of the quantum standard of current. PMID:23670293

  14. Ultra-high pressure water jet: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Husky{trademark} is an ultra high pressure waterjet cutting tool system. The pump is mounted on a steel tube frame which includes slots for transport by a forklift. The Husky{trademark} features an automatic shutdown for several conditions such as low oil pressure and high oil temperature. Placement of the Husky{trademark} must allow for a three foot clearance on all sides for operation and service access. At maximum continuous operation, the output volume is 7.2 gallons per minute with an output pressure of 40,000 psi. A diesel engine provides power for the system. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  15. Demonstration of ultra high resolution soft x-ray tomography

    NASA Astrophysics Data System (ADS)

    Haddad, W. S.; McNulty, I.; Trebes, J. E.; Anderson, E. H.; Yang, L.; Brase, J. M.

    1995-05-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows which were separated by ˜ 5μm. Depth resolution comparable to the transverse resolution was achieved by recording nine 2-D images of the object at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image using an algebraic reconstruction technique (ART) algorithm. We observed a transverse resolution of ˜1000 Å. Artifacts in the reconstruction limited the overall depth resolution to ˜6000 Å, however some features were clearly reconstructed with a depth resolution of ˜1000 Å.

  16. Bufferless Ultra-High Speed All-Optical Packet Routing

    NASA Astrophysics Data System (ADS)

    Muttagi, Shrihari; Prince, Shanthi

    2011-10-01

    All-Optical network is still in adolescence to cope up with steep rise in data traffic at the backbone network. Routing of packets in optical network depends on the processing speed of the All-Optical routers, thus there is a need to enhance optical processing to curb the delay in packet forwarding unit. In the proposed scheme, the header processing takes place on fly, therefore processing delay is at its lower limit. The objective is to propose a framework which establishes high data rate transmission with least latency in data routing from source to destination. The Routing table and optical header pulses are converted into Pulse Position (PP) format, thus reducing the complexity and in turn the processing delay. Optical pulse matching is exercised which results in multi-output transmission. This results in ultra-high speed packet forwarding unit. In addition, this proposed scheme includes dispersion compensation unit, which makes the data reliable.

  17. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  18. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynGiao N.; Robinson, Raymond C.; Opila, Elizabeth J.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20% SiC (HS), and ZrB2 + 20% SiC (ZC), and ZrB2 + 30% C + 14% SiC (ZCS) have been investigated for use as potential aeropropolsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperature of 1200, 1300, and 1400 C. CVD SiC was also evaluate as a baseline for comparison. Weight change, X-ray diffraction analysis, surface and cross-sectional SEM and EDS were performed. These results are compared with tests conducted in a stagnant air furnace at temperatures of 1327 C for 100 minutes, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Total recession measurements are also reported for the two tests environments.

  19. Ultra-high-speed optical and electronic distributed devices

    SciTech Connect

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  20. Ultra High Bypass Ratio Low Noise Engine Study

    NASA Technical Reports Server (NTRS)

    Dalton, W. N., III

    2003-01-01

    A study was conducted to identify engine cycle and technologies needed for a regional aircraft which could be capable of achieving a 10 EPNdB reduction in community noise level relative to current FAR36 Stage 3 limits. The study was directed toward 100-passenger regional aircraft with engine configurations in the 15,000 pound thrust class. The study focused on Ultra High Bypass Ratio (UHBR) cycles due to low exhaust jet velocities and reduced fan tip speeds. The baseline engine for this study employed a gear-driven, 1000 ft/sec tip speed fan and had a cruise bypass ratio of 14:1. A revised engine configuration employing fan and turbine design improvements are predicted to be 9.2 dB below current takeoff limits and 12.8 dB below current approach limits. An economic analysis was also done by estimating Direct Operating Cost (DOC).

  1. Ultra-High-Definition Mapping of Atrial Arrhythmias.

    PubMed

    Bun, Sok-Sithikun; Latcu, Decebal Gabriel; Delassi, Tahar; Jamili, Mohammed El; Amoura, Alaa Al; Saoudi, Nadir

    2016-02-25

    The advantages of ultra-high-definition (UHD) mapping are presented in the context of different atrial arrhythmias, whether focal or macroreentrant. Not only are these sophisticated systems time-saving, but they also allow accurate identification of the substrate (scar quantification), as well as a more precise characterization of the critical isthmuses or focal sources of the atrial circuits. UHD mapping may become a standard approach for their curative treatment. This new technology allows automatic acquisition and accurate annotation of the electrograms, without the need for manual correction. Owing to better resolution, critical isthmuses and low-voltage regions of interest may now be successfully targeted without the need for entrainment maneuvers. Finally, the system also allows rapid assessment of the completeness of the lesions once delivered. (Circ J 2016; 80: 579-586). PMID:26853721

  2. Ultra-High Spin Spectroscopy In Er Nuclei

    NASA Astrophysics Data System (ADS)

    Simpson, J.

    2008-11-01

    The discoveries observed in the ongoing conflict between collective and single-particle nuclear behaviour with increasing angular momentum have driven the field of nuclear spectroscopy for many decades and have given rise to new nuclear phenomena. Recently a new frontier of γ spectroscopy at ultra-high spin has been opened in the rare-earth region with rotational bands that bypass the classic band-terminating states that appear at spin 45ℏ in the N 90 Er nuclei. These weakly populated rotational structures have characteristics of triaxial strongly-deformed bands. Such structures have been observed in 157,158,160Er, following a series of experiments using the Gammasphere spectrometer. These observations herald a return to collective excitations at spins of about 50 to 65ℏ. This talk reviews the status of the spectroscopy and understanding of the observed structures in these Er and neighbouring nuclei.

  3. Ultra-High Spin Spectroscopy In Er Nuclei

    SciTech Connect

    Simpson, J.

    2008-11-11

    The discoveries observed in the ongoing conflict between collective and single-particle nuclear behaviour with increasing angular momentum have driven the field of nuclear spectroscopy for many decades and have given rise to new nuclear phenomena. Recently a new frontier of {gamma} spectroscopy at ultra-high spin has been opened in the rare-earth region with rotational bands that bypass the classic band-terminating states that appear at spin 45({Dirac_h}/2{pi}) in the N 90 Er nuclei. These weakly populated rotational structures have characteristics of triaxial strongly-deformed bands. Such structures have been observed in {sup 157,158,160}Er, following a series of experiments using the Gammasphere spectrometer. These observations herald a return to collective excitations at spins of about 50 to 65({Dirac_h}/2{pi}). This talk reviews the status of the spectroscopy and understanding of the observed structures in these Er and neighbouring nuclei.

  4. Ultra-high speed communications based on solitons in fibers

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira

    2000-10-01

    The citation of the Maxwell prize reads: ``For innovative discoveries and seminal contributions to the theories of nonlinear drift wave turbulence, Alfvén wave propagation in laboratory and space plasmas, and optical solitons and their application to high speed communication". The prize is given to three somewhat unrelated contributions made during the course of my career as a plasma physicist. Traditionally an award talk summarizes works related to the citation. However, because of the diversified contents of the citations, I prepared my talk with the focus only on the last topic because some of the audience may be of more expertise on the other subjects. I apologize for the fact that the talk may be worth only one third of the prize. Multi-Terabits’s, ultra-high speed optical transmissions over several thousand kilometers on fibers are becoming reality and are expected to serve as the trunk line for highly demanded Internet traffics. Most of them use soliton or soliton-like RZ (Return to Zero) format in fibers with properly managed (group velocity) dispersion. These formats are the only stable envelope waveforms of light waves in fibers in the presence of Kerr (cubic) nonlineariy and dispersion with loss compensated by periodic optical amplifications. In practice, the transmission systems utilize the all-optical transmission concept and the nonlinear Schrodinger equation assisted by the split step numerical solutions as the master equation to describe the information transfer in fibers. All these facts are the outcome of research on optical solitons in fibers. The talk presents a brief historical development of the soliton based high-speed communications followed by current status of ultra-high speed communications by means of solitons as well as by other formats. Although the talk may not be of a core interest of plasma physics community, it presents an interesting example of a useful by-product of plasma physics research.

  5. Ultra-high sensitivity moment magnetometry of geological samples

    NASA Astrophysics Data System (ADS)

    Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    Scanning SQUID microscopy offers a unique combination of high spatial resolution and magnetic field sensitivity that allows for the detection of magnetic moments as weak as 10^-16 Am2. This opens the possibility of extending paleomagnetic analyses to samples that have not been accessible to standard moment magnetometry, for which the detection limit is 10^-12 Am2. Of particular interest are individual terrestrial and extraterrestrial particles of small size (< 500 μm) that may preserve records of planetary dynamos and early nebular magnetic fields. Example targets include impact melt spherules, zircon and other silicate crystals, micrometeorites, cosmic dust, chondrules and refractory inclusions. These grains may be adequately modeled as small uniformly magnetized volumes, such that retrieving their magnetic moments from measured magnetic field maps does not require solving non-unique inverse problems. As a consequence, SQUID microscopes can be utilized as ultra-high sensitivity moment magnetometers. We show alternating field and thermal demagnetization data for several grains that demonstrate the performance of this technique. In addition, we compare scanning SQUID microscopy data with net moment measurements of the same samples performed by a commercial superconducting rock magnetometer. The results agree for stronger moments, as expected, but rapidly diverge as net moments fall below the lower 10^-10 Am2 range. These studies underscore the inability of conventional instruments not only to detect very weak moments but also to isolate contamination originating from background sources such as sample holders and mounts. We expect ultra-high sensitivity moment magnetometry using scanning SQUID microscopy will be a powerful tool in helping elucidate the formation of the solar system and planetary history.

  6. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high

  7. Rapid brain MRI acquisition techniques at ultra-high fields.

    PubMed

    Setsompop, Kawin; Feinberg, David A; Polimeni, Jonathan R

    2016-09-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26835884

  8. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chang, Hao; Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Rosenmann, Daniel; Preissner, Curt; Freeland, John W.; Kersell, Heath; Hla, Saw-Wai; Rose, Volker

    2016-01-01

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  9. Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field

    SciTech Connect

    Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

    2008-07-15

    Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

  10. An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments

    SciTech Connect

    Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; Hahn, Robert von; Klinkhamer, Vincent; Vogel, Stephen; Wolf, Andreas; Krantz, Claude; Novotný, Oldřich; Schippers, Stefan

    2015-02-15

    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK’s Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  11. Ultra-High Gradient S-Band Linac for Laboratory And Industrial Applications

    SciTech Connect

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.; /Brookhaven

    2012-06-11

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the {pi}-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  12. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    SciTech Connect

    Faillace, L.; Agustsson, R.; Frigola, P.; Murokh, A.; Dolgashev, V.; Rosenzweig, J.; Yakimenko, V.

    2010-11-04

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the {pi}-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  13. Electron heating mode transition induced by ultra-high frequency in atmospheric microplasmas for biomedical applications

    SciTech Connect

    Kwon, H. C.; Won, I. H.; Lee, J. K.

    2012-04-30

    The electron heating mode transition induced by ultra-high frequency in atmospheric-pressure microplasmas was investigated using particle-in-cell simulation with a Monte Carlo collision. Interestingly, this discharge mode transition is accompanied by non-monotonic evolution of electron kinetics such as effective electron temperature, plasma density, and electron energy on the electrode. In this study, the highest flux of energetic electrons ({epsilon} > 4 eV) usable for tailoring the surface chemistry in atmospheric microplasmas is obtained at the specific frequency (400 MHz), where an optimal trade-off is established between the amplitude of sheath oscillations and the power coupled to electrons for sub-millimeter dimensions (200 {mu}m).

  14. An Ultra-High Gradient Cherenkov Wakefield Acceleration Experiment at SLAC FFTB

    SciTech Connect

    Rosenzweig, J.B.; Hoover, S.; Hogan, M.J.; Muggli, P.; Thompson, M.; Travish, G.; Yoder, R.; /UCLA /SLAC /Southern California U.

    2005-08-02

    The creation of ultra-high current, ultra-short pulse beams Q=3 nC, {sigma}{sub z} = 20{micro}m at the SLAC FFTB has opened the way for very high gradient plasma wakefield acceleration experiments. We study here the use of these beams in a proposed Cherenkov wakefield experiment, where one may excite electromagnetic wakes in a simple dielectric tube with inner diameter of few 100 microns that exceed the GV/m level. We discuss the scaling of the fields with design geometric design parameters, and choice of dielectric. We also examine measurable aspects of the experiment, such as the total coherent Cerenkov radiation energy one may collect, and the expected aspects of dielectric breakdown at high fields.

  15. Application of a nanosecond laser pulse to evaluate dynamic hardness under ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Radziejewska, Joanna

    2016-04-01

    The paper presents results of experimental tests of plastic metals deformation generated by a shock wave induced by laser pulse. Tests were carried out on the Nd:YAG laser with a wavelength of 1064 nm and the laser pulse of 10 ns duration. The shock wave generate by the laser pulse was used to induced local plastic deformation of the material surface. The study examined the possibility of application the process to develop a new method of measuring the dynamic hardness of materials under ultra-high strain rate. It has been shown that the shock wave induced by the laser pulse with an energy of 0.35-1.22 J causes a repeatable plastic deformation of surface of commercially available metals and alloys without thermal effects on the surfaces. Based on the knowledge of an imprint geometry, it is possible to evaluate the dynamic hardness of materials at strain rate in the range of 107 s-1.

  16. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  17. Ultra-high-resolution alpha spectrometry for nuclear forensics and safeguards applications

    SciTech Connect

    Bacrania, Minesh K; Croce, Mark; Bond, Evelyn; Dry, Donald; Moody, W. Allen; Lamont, Stephen; Rabin, Michael; Rim, Jung; Smith, Audrey; Beall, James; Bennett, Douglas; Kotsubo, Vincent; Horansky, Robert; Hilton, Gene; Schmidt, Daniel; Ullom, Joel; Cantor, Robin

    2010-01-01

    We will present our work on the development of ultra-high-resolution detectors for alpha particle spectrometry. These detectors, based on superconducting transition-edge sensors, offer energy resolution that is five to ten times better than conventional silicon detectors. Using these microcalorimeter detectors, the isotopic composition of mixed-actinide samples can be determined rapidly without the need for actinide separation chemistry to isolate each element, or mass spectrometry to separate isotopic signatures that can not be resolved using traditional alpha spectrometry (e.g. Pu-239/Pu-240, or Pu-238/Am-241). This paper will cover the detector and measurement system, actinide source preparation, and the quantitative isotopic analysis of a number of forensics- and safeguards-relevant radioactive sources.

  18. Ultra-high power capabilities in amorphous FePO4 thin films

    NASA Astrophysics Data System (ADS)

    Gandrud, Knut B.; Nilsen, Ola; Fjellvåg, Helmer

    2016-02-01

    Record breaking electrochemical properties of FePO4 have been found through investigation of the thickness dependent electrochemical properties of amorphous thin film electrodes. Atomic layer deposition was used for production of thin films of amorphous FePO4 with highly accurate thickness and topography. Electrochemical characterization of these thin film electrodes revealed that the thinner electrodes behave in a pseudocapacitive manner even at high rates of Li+ de/intercalation, which enabled specific powers above 1 MW kg-1 FePO4 to be obtained with minimal capacity loss. In addition, a self-enhancing kinetic effect was observed during cycling enabling more than 10,000 cycles at current rates approaching that of a supercapacitor (11s charge/discharge). The current findings may open for construction of ultra-high power battery electrodes that combines the energy density of batteries with the power capabilities of supercapacitors.

  19. Dimmable sunlight-like organic light emitting diodes with ultra-high color rendering index

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Han; Chi, Chien-An; Chiang, Chang-Lin; Chen, Guan-Yu; Lin, Yi-Ping; Chen, Cheng-Chang; Ho, Shu-Yi; Chen, Shih-Pu; Li, Jung-Yu

    2016-05-01

    We propose novel dimmable sunlight-like white organic light-emitting diodes that were fabricated using three luminophores to form an emitting spectrum similar to black body radiation at 2250 K with ultra-high color rendering index (CRI) value of 91, which nearly remained the constant at various luminance values ranging from 100 to more than 2500 cd/m2 at Commission Internationale de l'Eclairage chromaticity coordinates of (0.51, 0.41). Introducing charge modification layers suppressed the energy transfer between the emitting material layers and increased the probability of carrier recombination. Moreover, we reveal that covering long-wavelength ranges played a vital role in achieving high CRI values; the CRI values of a spectrum artificially shifted toward a long-wavelength direction (from 610 to 620 nm) remained constant, whereas those of a spectrum shifted toward a short-wavelength direction (from 610 to 600 nm) dropped to 79.

  20. Ultra-high Burst Strength of CVD Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  1. Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared

    NASA Technical Reports Server (NTRS)

    Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.

  2. MHD Modeling of Conductors at Ultra-High Current Density

    SciTech Connect

    ROSENTHAL,STEPHEN E.; DESJARLAIS,MICHAEL P.; SPIELMAN,RICK B.; STYGAR,WILLIAM A.; ASAY,JAMES R.; DOUGLAS,M.R.; HALL,C.A.; FRESE,M.H.; MORSE,R.L.; REISMAN,D.B.

    2000-08-29

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model.

  3. Ultra high resolution soft x-ray tomography

    SciTech Connect

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-07-19

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by {approximately}5{mu}m. A series of nine 2-D images of the object were recorded at angles between {minus}50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of {approximately}1000 {Angstrom} was observed. Artifacts in the reconstruction limited the overall depth resolution to {approximately}6000 {Angstrom}, however some features were clearly reconstructed with a depth resolution of {approximately}1000 {Angstrom}. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to {approximately}1200 {Angstrom} overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range.

  4. Generation of ultra-high magnetic fields for AGEX

    NASA Astrophysics Data System (ADS)

    Sheppard, M. G.; Fowler, C. M.; Freeman, B. L.

    1994-08-01

    Generation of ultra-high magnetic fields of 10-25 MG (0.4-2.5 MJ/cm(sup 3)) using high-explosive-driven magnetic flux-compression is one approach which could enhance the US Above Ground EXperimental (AGEX) capability. The beginnings of a US-Russian collaboration to generate 20 MG by extending flux-compression technology are described. The first joint experiments, planned for November 1993 at Los Alamos, will test the Russian MC-1 10 MG generator and will be followed by several high-temperature superconductor experiments. Equation-of-state experiments involving isentropic compression at pressures of several megabars are being considered as follow-on joint experiments. Magnetohydrodynamic (MHD) calculations of the MC-1 experiments using the ID MHD code RAVEN are presented, including comparisons and benchmarks against previous Russian experiments and calculations. The first joint experiments will use Russian hardware and US high-explosive. Gaining practical experience with the MC-1 and benchmarking the RAVEN predictions for the performance of the modified generator are important first steps towards reaching the 20 MG goal.

  5. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  6. Nanoporous ultra-high specific surface inorganic fibres

    NASA Astrophysics Data System (ADS)

    Kanehata, Masaki; Ding, Bin; Shiratori, Seimei

    2007-08-01

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m2 g-1 and total pore volume of 0.66 cm3 g-1. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  7. SLC polarized beam source ultra-high-vacuum design

    SciTech Connect

    Lavine, T.L.; Clendenin, J.E.; Garwin, E.L.; Hoyt, E.W.; Hoyt, M.W.; Miller, R.H.; Nuttall, J.A.; Schultz, D.C.; Wright, D.

    1991-05-01

    This paper describes the design of the ultra-high vacuum system for the beam-line from the 160-kV polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photo-cathode is illuminated by 3-nsec-long laser pulses. Photo-cathode maintenance and improvements require occasional substitution of guns with rapid restoration of UHV conditions. Differential pumping is crucial since the pressure in the injector is more than 10 times greater than the photocathode can tolerate, and since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line contains a differential pumping region isolated by a pair of valves. Exchange of guns requires venting only this isolated region which can be restored to UHV rapidly by baking. The differential pumping is performed by non-evaporable getters (NEGs) and an ion pump. 3 refs., 3 figs.

  8. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. PMID:24275347

  9. Ultra High Bit-Rate Communications for Future Space Missions

    NASA Astrophysics Data System (ADS)

    Dudelzak, A. E.; Jha, V. K.; Pasmanik, G. A.

    2002-01-01

    systems. Needs of applications such as real-time surveillance of dynamic situations on the ground or in near space, video data on event scenes in search and rescue, real-time video communications with spacecraft, etc. can only be provided with signal carrying frequencies in the optical wavelength range. Today's optical free-space communication technologies promise to reach the performance quality of the ground optical fiber networks. Recent developments based on using the optical phase conjugation and photo- dynamic holography phenomena allow transmission of high data volumes (such as dynamic imagery and real-time video communications) between moving communication terminals. surveillance and communications with spacecraft (both within and beyond solar system) using non-linear optical systems. The advantage of the discussed concept is that it may not require lasers (as sources of the signal-carrying electromagnetic waves) on both communicating terminals. A combination of a limited number of ground-based laser stations with compact, light-weight passive non-linear optical systems on high and low orbits or on long-range spacecraft provides for reliable, ultra-high rate, economic systems for voice, data and video communications as well as real-time observations of Earth, near and deep space. presented.

  10. Microscopic Evaluation of Contaminants in Ultra-High Purity Copper

    SciTech Connect

    Hoppe, Eric W.; Mintzer, Esther E.; Aalseth, Craig E.; Edwards, Danny J.; Farmer, Orville T.; Fast, James E.; Gerlach, David C.; Liezers, Martin; Miley, Harry S.

    2009-10-08

    Copper is one of the very few elements having no relatively long-lived radioisotopes and which can be electrodeposited to ultra-high levels of purity. Next generation experiments probing neutrino properties and searching for direct evidence of Dark Matter require ultra-clean materials, such as copper, containing the smallest quantities obtainable of naturally occurring radioactive contaminants. Copper is also of interest in the material science field for applications requiring low-activity materials, such as in electronics and semi-conductors, an example of which is reduced alpha activity, low-fault integrated circuits. Determining the purity of the copper is of great interest, but even more important is establishing the location of any contamination and its dispersion within the bulk material. Co-deposition of contaminants during copper electrodeposition and its relationship to nucleation and growth processes were investigated using a variety of analytical methods including scanning electron microscopy (SEM), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and secondary ionization mass spectrometry (SIMS).

  11. Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Opila, Elizabeth J.; Halbig, Michael C.; Kiser, James D.; Singh, Mrityunjay; Salem, Jonathan A.

    2001-01-01

    Among the ultra-high temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride or hafnium diboride plus silicon carbide, and in some instances, carbon. These materials offer a good combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTC perform well in the environment for such applications, i.e., air at low pressure. The purpose of this study was to examine three of these materials under conditions more representative of a propulsion environment, i.e., higher oxygen partial pressure and total pressure. Results of strength and fracture toughness measurements, furnace oxidation and high velocity thermal shock exposures are presented for ZrB2 plus 20 volume % SiC, ZrB2 plus 14 volume % SiC plus 30 volume % C, and SCS-9a SiC fiber reinforced ZrB2 plus 20 volume % SiC. The poor oxidation resistance of UHTCs is the predominant factor limiting their applicability to propulsion applications.

  12. Ultra High Molecular Weight Polyethylene: Mechanics, Morphology, and Clinical Behavior

    PubMed Central

    Sobieraj, MC; Rimnac, CM

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared to the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties. PMID:19627849

  13. Advanced Ultra-High Speed Motor for Drilling

    SciTech Connect

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10

  14. Diffuse Axonal Injury at Ultra-High Field MRI

    PubMed Central

    Moenninghoff, Christoph; Kraff, Oliver; Maderwald, Stefan; Umutlu, Lale; Theysohn, Jens M.; Ringelstein, Adrian; Wrede, Karsten H.; Deuschl, Cornelius; Altmeppen, Jan; Ladd, Mark E.; Forsting, Michael; Quick, Harald H.; Schlamann, Marc

    2015-01-01

    Objective Diffuse axonal injury (DAI) is a specific type of traumatic brain injury caused by shearing forces leading to widespread tearing of axons and small vessels. Traumatic microbleeds (TMBs) are regarded as a radiological marker for DAI. This study aims to compare DAI-associated TMBs at 3 Tesla (T) and 7 T susceptibility weighted imaging (SWI) to evaluate possible diagnostic benefits of ultra-high field (UHF) MRI. Material and Methods 10 study participants (4 male, 6 female, age range 20-74 years) with known DAI were included. All MR exams were performed with a 3 T MR system (Magnetom Skyra) and a 7 T MR research system (Magnetom 7 T, Siemens AG, Healthcare Sector, Erlangen, Germany) each in combination with a 32-channel-receive coil. The average time interval between trauma and imaging was 22 months. Location and count of TMBs were independently evaluated by two neuroradiologists on 3 T and 7 T SWI images with similar and additionally increased spatial resolution at 7 T. Inter- and intraobserver reliability was assessed using the interclass correlation coefficient (ICC). Count and diameter of TMB were evaluated with Wilcoxon signed rank test. Results Susceptibility weighted imaging revealed a total of 485 TMBs (range 1-190, median 25) at 3 T, 584 TMBs (plus 20%, range 1-262, median 30.5) at 7 T with similar spatial resolution, and 684 TMBs (plus 41%, range 1-288, median 39.5) at 7 T with 10-times higher spatial resolution. Hemorrhagic DAI appeared significantly larger at 7 T compared to 3 T (p = 0.005). Inter- and intraobserver correlation regarding the counted TMB was high and almost equal 3 T and 7 T. Conclusion 7 T SWI improves the depiction of small hemorrhagic DAI compared to 3 T and may be supplementary to lower field strengths for diagnostic in inconclusive or medicolegal cases. PMID:25793614

  15. Fabrication of silica ultra high quality factor microresonators.

    PubMed

    Maker, Ashley J; Armani, Andrea M

    2012-01-01

    Whispering gallery resonant cavities confine light in circular orbits at their periphery. The photon storage lifetime in the cavity, quantified by the quality factor (Q) of the cavity, can be in excess of 500ns for cavities with Q factors above 100 million. As a result of their low material losses, silica microcavities have demonstrated some of the longest photon lifetimes to date. Since a portion of the circulating light extends outside the resonator, these devices can also be used to probe the surroundings. This interaction has enabled numerous experiments in biology, such as single molecule biodetection and antibody-antigen kinetics, as well as discoveries in other fields, such as development of ultra-low-threshold microlasers, characterization of thin films, and cavity quantum electrodynamics studies.(3-7) The two primary silica resonant cavity geometries are the microsphere and the microtoroid. Both devices rely on a carbon dioxide laser reflow step to achieve their ultra-high-Q factors (Q>100 million). However, there are several notable differences between the two structures. Silica microspheres are free-standing, supported by a single optical fiber, whereas silica microtoroids can be fabricated on a silicon wafer in large arrays using a combination of lithography and etching steps. These differences influence which device is optimal for a given experiment. Here, we present detailed fabrication protocols for both types of resonant cavities. While the fabrication of microsphere resonant cavities is fairly straightforward, the fabrication of microtoroid resonant cavities requires additional specialized equipment and facilities (cleanroom). Therefore, this additional requirement may also influence which device is selected for a given experiment. PMID:22805153

  16. Ultra high barrier materials for encapsulation of flexible organic electronics

    NASA Astrophysics Data System (ADS)

    Logothetidis, S.; Laskarakis, A.; Georgiou, D.; Amberg-Schwab, S.; Weber, U.; Noller, K.; Schmidt, M.; Küçükpinar-Niarchos, E.; Lohwasser, W.

    2010-09-01

    The encapsulation of the active layers (organic semiconductors, electrodes, transparent conductive oxides, etc.) of organic electronic devices developed onto flexible polymeric substrates is one of the most challenging issues in the rapidly emerging area of organic electronics. The importance for the protection of the active layers arises from the fact that these are very sensitive when they are subjected to the atmosphere, since the permeation of the atmosphere's water vapour (H2O) and oxygen (O2) gases induces corrosion effects, film delamination and finally, failure of the organic electronic device. In addition, the encapsulation layers contribute to the long-term stability of the whole device enabling its use in outdoor environments (e.g. in the case of flexible photovoltaic cells-OPVs). A promising approach for the encapsulation of flexible organic electronics includes the development of multilayers that consist of hybrid polymer materials and inorganic layers onto flexible polymeric substrates, such as poly(ethylene terephthalate) (PET). This approach leads to a significant improvement of the barrier performance of the whole structure, due to the synergetic effect of the confinement of the permeation to the defect zones of the inorganic layer, and the formation of chemical bonds between the hybrid polymer and the inorganic layer. The knowledge of their optical properties and their correlation with their barrier performance are of major importance since it will contribute towards the optimization of their functionality. In this work, we provide an overview on the results concerning the use of hybrid polymers as ultra high barrier materials and moreover we discuss on the effect of inclusion of SiO2 nano-particles on their optical properties and barrier performance.

  17. Ultra-high resolution and high-brightness AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Ghosh, Amal; Prache, Olivier; Draper, Russ; Fellowes, Dave

    2012-06-01

    As part of its continuing effort to improve both the resolution and optical performance of AMOLED microdisplays, eMagin has recently developed an SXGA (1280×3×1024) microdisplay under a US Army RDECOM CERDEC NVESD contract that combines the world's smallest OLED pixel pitch with an ultra-high brightness green OLED emitter. This development is aimed at next-generation HMD systems with "see-through" and daylight imaging requirements. The OLED pixel array is built on a 0.18-micron CMOS backplane and contains over 4 million individually addressable pixels with a pixel pitch of 2.7 × 8.1 microns, resulting in an active area of 0.52 inches diagonal. Using both spatial and temporal enhancement, the display can provide over 10-bits of gray-level control for high dynamic range applications. The new pixel design also enables the future implementation of a full-color QSXGA (2560 × RGB × 2048) microdisplay in an active area of only 1.05 inch diagonal. A low-power serialized low-voltage-differential-signaling (LVDS) interface is integrated into the display for use as a remote video link for tethered systems. The new SXGA backplane has been combined with the high-brightness green OLED device developed by eMagin under an NVESD contract. This OLED device has produced an output brightness of more than 8000fL with all pixels on; lifetime measurements are currently underway and will presented at the meeting. This paper will describe the operational features and first optical and electrical test results of the new SXGA demonstrator microdisplay.

  18. Ultra high magnification endoscopy: Is seeing really believing?

    PubMed

    Arya, Aman V; Yan, Brian M

    2012-10-16

    Endoscopy is an indispensible diagnostic and therapeutic instrument for gastrointestinal diseases. Endocytoscopy and confocal endomicroscopy are two types of ultra high magnification endoscopy techniques. Standard endoscopy allows for 50 × magnification, whereas endocytoscopy can magnify up to 1400 × and confocal endomicroscopy can magnify up to 1000 ×. These methods open the realm of real time microscopic evaluation of the GI tract, including cellular and subcellular structures. Confocal endomicroscopy has the additional advantage of being able to visualize subsurface structures. The use of high magnification endoscopy in conjunction with standard endoscopy allows for a real-time microscopic assessment of areas with macroscopic abnormalities, providing "virtual biopsies" with valuable information about cellular and subcellular changes. This can minimize the number of biopsies taken at the time of endoscopy. The use of this technology may assist in detecting pre-malignant or malignant changes at an earlier state, allowing for earlier intervention and treatment. High magnification endoscopy has shown promising results in clinical trials for Barrett's esophagus, esophageal adenocarcinoma, esophageal squamous cell cancer, gastric cancer, celiac disease, colorectal cancer, and inflammatory bowel disease. As the use of high magnification endoscopy techniques increases, the clinical applications will increase as well. Of the two systems, only confocal endomicroscopy is currently commercially available. Like all new technologies there will be an initial learning curve before operators become proficient in obtaining high quality images and discerning abnormal from normal pathology. Validated criteria for the diagnosis of the various gastrointestinal diseases will need to be developed for each method. In this review, the basic principles of both modalities are discussed, along with their clinical applicability and limitations. PMID:23189217

  19. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200–870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000–20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  20. Oxidation of Ultra High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2004-01-01

    Ultra High Temperature Ceramics (UHTCs) including HfB2 + 20v/0 SiC (HS), ZrB2 + 20v/0 SiC (ZS), and ZrB2 + 30v/0 C + 14v/0 SiC (ZCS) have been investigated for use as potential aeropropulsion engine materials. These materials were oxidized in water vapor (90 percent) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 h at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline for comparison. Weight change, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results are compared with tests ran in a stagnant air furnace at temperatures of 1327 C for 100 min, and with high pressure burner rig (HPBR) results at 1100 and 1300 C at 6 atm for 50 h. Low velocity water vapor does not make a significant contribution to the oxidation rates of UHTCs when compared to stagnant air. The parabolic rate constants at 1300 C, range from 0.29 to 16.0 mg(sup 2)cm(sup 4)/h for HS and ZCS, respectively, with ZS results between these two values. Comparison of results for UHTCs tested in the furnace in 90 percent water vapor with HPBR results was difficult due to significant sample loss caused by spallation in the increased velocity of the HPBR. Total recession measurements are also reported for the two test environments.

  1. Ultra-high density standard cell library using multi-height cell structure

    NASA Astrophysics Data System (ADS)

    Baek, Sang-Hoon; Kim, Ha-Young; Lee, Young-Keun; Jin, Duck-Yang; Park, Se-Chang; Cho, Jun-Dong

    2008-12-01

    As the market size of mobile products is enlarged, low power and high density design in integrated chips are demanding. To meet these market demands, "ultra high density" (UHD) standard cell library becomes essential to further reduce the chip size. Furthermore, to enhance the density of standard cell library especially at 90nm and below, the conventional methods of reducing cell height is not sufficient to meet the density constraints. Motivated by the fact, in this paper, we devise a flexible design technique of UHD library with the multi-height cell structure. Each cell of conventional standard cell libraries with one-layer metal routing has the same cell height. However, multi-height cell library with two-layer metal routing has two types of cell structure: 1) Simple cells (e.g. inverter, nand, nor, etc.) are structured with single height; 2) Complex cells (e.g. flip-flop, latch, mux, etc.) are structured with double height. In this double height cell structure, Metal2 layer is used for power line. Therefore, Metal1 and G-ploy are routed vertically, gaining more Metal1 routing space, and thus we can attain more effective design for manufacturability (DFM). Also, by doing so, design time is reduced while achieving better layout efficiency. We tested logic circuits with 700,000 gates using 90nm technology to compare our new UHD library with existing high density library. Our experimental results show that each of 26 cells (frequently used) is shrunk by 14.29 ~ 26.98%. Furthermore, chip size is shrunk by 13.90 ~ 15.65% compared with high density library.

  2. Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator.

    PubMed

    Long, Yun; Wang, Jian

    2015-07-13

    We propose a simple scheme to realize ultra-high peak rejection notch microwave photonic filter (MPF) based on a single silicon microring resonator (MRR). Using the combination of a conventional phase modulator (PM), a tunable bandpass filter (TBF), and a silicon MRR to manipulate the phase and amplitude of optical sidebands resulting in a signal cancellation at the RF notch filter frequency, we experimentally demonstrate a notch MPF with an ultra-high peak rejection beyond 60 dB. The frequency tunability of the proposed ultra-high peak rejection MPF is also demonstrated in the experiment. PMID:26191836

  3. Photoionization study of doubly-excited helium at ultra-high resolution

    SciTech Connect

    Kaindl, G.; Schulz, K.; Domke, M.

    1997-04-01

    Ever since the pioneering work of Madden & Codling and Cooper, Fano & Prats on doubly-excited helium in the early sixties, this system may be considered as prototypical for the study of electron-electron correlations. More detailed insight into these states could be reached only much later, when improved theoretical calculations of the optically-excited {sup 1}P{sup 0} double-excitation states became available and sufficiently high energy resolution ({delta}E=4.0 meV) was achieved. This allowed a systematic investigation of the double-excitation resonances of He up to excitation energies close to the double-ionization threshold, I{sub infinity}=79.003 eV, which stimulated renewed theoretical interest into these correlated electron states. The authors report here on striking progress in energy resolution in this grazing-incidence photon-energy range of grating monochromators and its application to hitherto unobservable states of doubly-excited He. By monitoring an extremely narrow double-excitation resonance of He, with a theoretical lifetime width of less than or equal to 5 {mu}eV, a resolution of {delta}E=1.0 meV (FWHM) at 64.1 eV could be achieved. This ultra-high spectral resolution, combined with high photon flux, allowed the investigation of new Rydberg resonances below the N=3 ionization threshold, I{sub 3}, as well as a detailed comparison with ab-initio calculations.

  4. Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms

    NASA Astrophysics Data System (ADS)

    Warren, C. J.

    2013-02-01

    The formation and exhumation of high and ultra-high-pressure, (U)HP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (U)HP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (U)HP assemblages, to be subducted to (U)HP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction) or a reversal in motion of the entire plate (eduction) following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust all affect

  5. Ultra-high strain rate behavior of FCC nanostructures

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Scott

    This work addresses the influence of ultra-high strain rates loading observed in our world today via ballistics, explosions and astrophysical collisions on well-defined metal structures. There is a plentiful amount of research examining metals at a macroscopic level that are subjected to ballistics and explosions but observing the microstructure is difficult as those procedures are fairly destructive testing mechanisms. Therefore, to understand the true mechanisms that occur in these loading situations a more novel technique is necessary. Modifications were made to the Laser Spallation Technique in order to load structures under a single transient wave pulse. This study characterized FCC nanostructures shock loaded at extreme pressures, strain rates and temperatures. By utilizing nanostructures, extremely large values of stain could be produced within the structure. It was first observed that at lower laser fluence levels and subsequently low stress states that there was a chemical activation of the surface of Cu nanopillars. This occurred due to nanofacet formation on the surface of the nanopillars which left pristine Cu surfaces to recombine with the environment. Dislocation motion was also observed and clearly identified in Cu nanopillars, Cu nanobenches and Al nanopillars. Further studies analyzed Cu nanopillars subjected to higher laser fluence generated stress waves, which led to bending and axial shortening deformation. These deformations were observed at laser fluence values of 144 kJ/m2 for bending and 300 kJ/m 2 for bulging similar to that of Taylor Impact experiments. To explore an even more extreme loading environment, a specialized test setup was employed to cryogenically cool the copper nanopillars to a temperature of 83K in an attempt to elucidate brittle behavior. Under these loading conditions the nanopillars continued to deform in a ductile manner but with delayed onset of both bending deformation and bulging deformation compared to the room

  6. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT Si

  7. Oxidation of Ultra-High Temperature Ceramics in Water Vapor

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao N.; Opila, Elizabeth J.; Robinson, Raymond C.

    2003-01-01

    Ultra high temperature ceramics (UHTCs) including HfB2 + SiC (20% by volume), ZrB2 + SiC (20% by volume) and ZrB2 + SiC (14% by volume) + C (30% by volume) have historically been evaluated as reusable thermal protection systems for hypersonic vehicles. This study investigates UHTCs for use as potential combustion and aeropropulsion engine materials. These materials were oxidized in water vapor (90%) using a cyclic vertical furnace at 1 atm. The total exposure time was 10 hours at temperatures of 1200, 1300, and 1400 C. CVD SiC was also evaluated as a baseline comparison. Weight change measurements, X-ray diffraction analyses, surface and cross-sectional SEM and EDS were performed. These results will be compared with tests ran in static air at temperatures of 1327, 1627, and 1927 C. Oxidation comparisons will also be made to the study by Tripp. A small number of high pressure burner rig (HPBR) results at 1100 and 1300 C will also be discussed. Specific weight changes at all three temperatures along with the SIC results are shown. SiC weight change is negligible at such short duration times. HB2 + SiC (HS) performed the best out of all the tested UHTCS for all exposure temperatures. ZrB2 + Sic (ZS) results indicate a slightly lower oxidation rate than that of ZrBl + SiC + C (ZCS) at 1200 and 1400 C, but a clear distinction can not be made based on the limited number of tested samples. Scanning electron micrographs of the cross-sections of all the UHTCs were evaluated. A representative area for HS is presented at 1400 C for 26 hours which was the composition with the least amount of oxidation. A continuous SiO2 scale is present in the outer most edge of the surface. An image of ZCS is presented at 1400 C for 10 hours, which shows the most degradation of all the compositions studied. Here, the oxide surface is a mixture of ZrSiO4, ZrO2 and SO2.

  8. Press and Dryer Roll Surgaces and Web Transfer Systems for Ultra High Paper Maching Speeds

    SciTech Connect

    T. F. Patterson

    2004-03-15

    The objective of the project was to provide fundamental knowledge and diagnostic tools needed to design new technologies that will allow ultra high speed web transfer from press rolls and dryer cylinders.

  9. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    SciTech Connect

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  10. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been

  11. Ultra-High-Temperature Ceramics Evaluated for Aeropropulsion Use

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.; Opila, Elizabeth J.; Halbig, Michael C.; Kiser, James D.; Singh, Mrityunjay; Salem, Jonathan A.

    2003-01-01

    Ultra-high-temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride (ZrB2) or hafnium diboride (HfB2) plus silicon carbide (SiC), and in some instances, carbon (C). They offer a combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTCs perform well in the environment for such applications (i.e., air at low pressures). The purpose of this study at the NASA Glenn Research Center was to examine three of these materials under conditions more representative of a propulsion environment: that is, higher oxygen partial pressure and total pressure. Relatively long, multiple-exposure cycles were emphasized. We completed an in-house study of ZrB2 plus 20 vol% SiC (abbreviated as ZS), ZrB2 plus 14 vol% SiC and 30 vol% C (ZSC), and SCS-9a SiC fiber-reinforced ZrB2 plus 20 vol% SiC (ZSS). HfB2-based compositions were not included in the study because of their high cost. The capability of UHTC for propulsion applications must be compared with that of mature, available, and commercially used ceramics such as silicon nitride (e.g., AS-800) to put things in proper perspective. In terms of mechanical properties, UHTCs fall short in terms of strength and fracture toughness. At about 1300 C, the creep resistance of ZS appears to be superior to the creep resistance reported for AS-800. However, the stress rupture life for Si3N4 under stress and temperature conditions similar to those used in this study is measured in hundreds of hours. Because of oxidation, ZS could not achieve such lives. In terms of oxidation resistance, acceptable amounts of material recession in 1 hour to thousands of hours, depending on the specific propulsion application, are on the order of 100 to 300 mm. This converts to an acceptable range of parabolic recession rate constants kp" of approximately less than or equal to 10(exp -1) to 10(exp -2) square millimeters per hour for a 1-hr application. For a 100-hr

  12. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.

    PubMed

    Kim, Kyeongtae; Jeong, Wonho; Lee, Woochul; Reddy, Pramod

    2012-05-22

    Understanding energy dissipation at the nanoscale requires the ability to probe temperature fields with nanometer resolution. Here, we describe an ultra-high vacuum (UHV)-based scanning thermal microscope (SThM) technique that is capable of quantitatively mapping temperature fields with ∼15 mK temperature resolution and ∼10 nm spatial resolution. In this technique, a custom fabricated atomic force microscope (AFM) cantilever, with a nanoscale Au-Cr thermocouple integrated into the tip of the probe, is used to measure temperature fields of surfaces. Operation in an UHV environment eliminates parasitic heat transport between the tip and the sample enabling quantitative measurement of temperature fields on metal and dielectric surfaces with nanoscale resolution. We demonstrate the capabilities of this technique by directly imaging thermal fields in the vicinity of a 200 nm wide, self-heated, Pt line. Our measurements are in excellent agreement with computational results-unambiguously demonstrating the quantitative capabilities of the technique. UHV-SThM techniques will play an important role in the study of energy dissipation in nanometer-sized electronic and photonic devices and the study of phonon and electron transport at the nanoscale. PMID:22530657

  13. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Benner, W. Henry

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  14. Seismic performance of steel reinforced ultra high-strength concrete composite frame joints

    NASA Astrophysics Data System (ADS)

    Yan, Changwang; Jia, Jinqing

    2010-09-01

    To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.

  15. Wormhole geometries supported by quark matter at ultra-high densities

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2015-11-01

    A fundamental ingredient in wormhole physics is the presence of exotic matter, which involves the violation of the null energy condition (NEC). In this context, we investigate the possibility that wormholes could be supported by quark matter at extreme densities. Theoretical and experimental investigations of the structure of baryons show that strange quark matter, consisting of the u, d and s quarks, is the most energetically favorable state of baryonic matter. Moreover, at ultra-high densities, quark matter may exist in a variety of superconducting states, namely, the Color-Flavor-Locked (CFL) phase. Motivated by these theoretical models, we explore the conditions under which wormhole geometries may be supported by the equations of state (EOS) considered in the theoretical investigations of quark-gluon interactions. For the description of the normal quark matter, we adopt the Massachusetts Institute of Technology (MIT) bag model EOS, while the color superconducting quark phases are described by a first-order approximation of the free energy. By assuming specific forms for the bag and gap functions, several wormhole models are obtained for both normal and superconducting quark matter. The effects of the presence of an electrical charge are also taken into account.

  16. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    SciTech Connect

    Frank, M.; Mears, C.A.; Labov, S.E.; Benner, W.H.

    1999-11-30

    An ultra-high-mass time-of-flight mass spectrometer is described which uses a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as ``stop'' detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al{sub 2}O{sub 3}-Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  17. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  18. Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk.

    PubMed

    Zhang, Yan; Chang, Sam K C

    2016-03-01

    Isoflavone profile is greatly affected by heating process. However, kinetic analyses of isoflavone conversion and degradation using a continuous industry processing method have never been characterized. In this study, Proto soybean was soaked and blanched at 80 °C for 2 min and then processed into soymilk, which underwent UHT (ultra-high temperature) at 135 to 150 °C for 10 to 50 s with a pilot plant-scale Microthermics processor. The isoflavone profile was determined at different time/temperature combinations. The results showed that all isoflavone forms exhibited distinct changing patterns over time. In the soymilk under UHT conditions, the degradation (disappearance) of malonyldaizin and malonylgenistin exhibited first-order kinetics with activation energies of 59 and 84 kj/mole, respectively. At all UHT temperatures, malonylgenistin showed higher rate constants than malonyldaidzin. However, malonylglycitin changed irregularly under these UHT temperatures. The increase of genistin, daidzin, glycitein and acetlydaidzin during heating demonstrated zero-order kinetics and the rate constants increased with temperature except for the conditions of 145 to 150 °C for 50 s. Overall, genistein series exhibited higher stability than daidzein series. Under all UHT conditions, total isoflavone decreased from 12% to 24%. PMID:26814612

  19. Diffusion of Vitamin E in Ultra-high Molecular Weight Polyethylene

    PubMed Central

    Oral, Ebru; Wannomae, Keith K.; Rowell, Shannon L.; Muratoglu, Orhun K.

    2007-01-01

    Vitamin E-doped, radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) is developed as an alternate oxidation and wear resistant bearing surface in joint arthroplasty. We analyzed the diffusion behavior of vitamin E through UHMWPE and predicted penetration depth following doping with vitamin E and subsequent homogenization in inert gas used to penetrate implant components with vitamin E. Cross-linked UHMWPE (65- and 100-kGy irradiation) had higher activation energy and lower diffusion coefficients than uncross-linked UHMWPE, but there were only slight differences in vitamin E profiles and penetration depth between the two doses. By using homogenization in inert gas below the melting point of the polymer following doping in pure vitamin E, the surface concentration of vitamin E was decreased and vitamin E stabilization was achieved throughout a desired thickness. We developed an analytical model based on Fickian theory that closely predicted vitamin E concentration as a function of depth following doping and homogenization. PMID:17881049

  20. Ion implantation on ultra high molecular weight polyethylene (UHMWPE) for medical prosthesis

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Visco, A. M.; Valenza, A.

    2003-09-01

    In order to improve the wear resistance of ultra high molecular weight polyethylene (UHMWPE). a surface modification is induced by ion implantation of different ions at 300 keV energy with doses ranging between 10(14)-10(17) ions/cm(2). Wear measurements, in terms of weight loss, are performed with a "pin on disc" friction machine, these tests measure the wear property of the UHMWPE against a metallic probe before and after the ion implantation treatment, Results demonstrate that in the implanted samples the wear resistance increases by about 76% with respect to the non-irradiated samples. The irradiated polymeric layer was characterized with the mass quadrupole spectrometry. Raman spectroscopy, infrared absorption analysis, scanning electron microscopy, atomic force microscopy and calorimetric analysis. The results suggest that wear decrease effect can be attributed to the ion bombardment inducing a high carbon surface concentration and cross-linking effects in the irradiated polymeric layer. The irradiated UHMWPE surfaces find special applications in the field of the mobile prosthesis such as hip joints.

  1. Role of geometry in optothermal response of toroidal ultra-high-Q cavities

    NASA Astrophysics Data System (ADS)

    Soltani, Soheil; Armani, Andrea M.

    2015-03-01

    Ultra-high quality factor (UHQ) resonant cavities are able to store light for long periods of time, resulting in high circulating intensities. As a result, numerous nonlinear optical phenomena appear, such as radiation pressure oscillations and lasing. However, deleterious behaviors also occur, such as optothermal broadening of the resonant linewidth. The degree of distortion is directly related to the circulating power in the cavity, the material absorption, and the thermo-optic coefficient of the cavity material. Specifically, a portion of the circulating power is absorbed by the material and converted to heat. This thermal energy is able to induce a refractive index change in the cavity which is experimentally observed as a resonant wavelength change. This behavior has been observed in numerous cavities, but one interesting case is the toroidal cavity, as it has a particularly complex geometry providing multiple thermal transport pathways. To accurately capture this complex behavior, we have developed a COMSOL Multiphysics model which combines the thermal and optical components. The model uses the non-uniform optical mode profile as the heat source. As such, changes in device geometry and wavelength are inherently captured. To verify the modeling, we characterize the optothermal threshold for a series of toroidal cavities across a range of wavelengths and device geometries. Additionally, the thermal time constant of the structure is explored. Of note, the membrane thickness is shown to play a critical role in the optothermal behaviors.

  2. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling

  3. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling

  4. A hadronic origin for ultra-high-frequency-peaked BL Lac objects

    NASA Astrophysics Data System (ADS)

    Cerruti, M.; Zech, A.; Boisson, C.; Inoue, S.

    2015-03-01

    Current Cherenkov telescopes have identified a population of ultra-high-frequency peaked BL Lac objects (UHBLs), also known as extreme blazars, that exhibit exceptionally hard TeV spectra, including 1ES 0229+200, 1ES 0347-121, RGB J0710+591, 1ES 1101-232, and 1ES 1218+304. Although one-zone synchrotron-self-Compton (SSC) models have been generally successful in interpreting the high-energy emission observed in other BL Lac objects, they are problematic for UHBLs, necessitating very large Doppler factors and/or extremely high minimum Lorentz factors of the emitting leptonic population. In this context, we have investigated alternative scenarios where hadronic emission processes are important, using a newly developed (lepto-)hadronic numerical code to systematically explore the physical parameters of the emission region that reproduces the observed spectra while avoiding the extreme values encountered in pure SSC models. Assuming a fixed Doppler factor δ = 30, two principal parameter regimes are identified, where the high-energy emission is due to: (1) proton-synchrotron radiation, with magnetic fields B ˜ 1-100 G and maximum proton energies Ep; max ≲ 1019 eV; and (2) synchrotron emission from p-γ-induced cascades as well as SSC emission from primary leptons, with B ˜ 0.1-1 G and Ep; max ≲ 1017 eV. This can be realized with plausible, sub-Eddington values for the total (kinetic plus magnetic) power of the emitting plasma, in contrast to hadronic interpretations for other blazar classes that often warrant highly super-Eddington values.

  5. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  6. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump

    DOEpatents

    Jostlein, Hans

    2006-04-04

    An ultra-high speed vacuum pump evacuation system includes a first stage ultra-high speed turbofan and a second stage conventional turbomolecular pump. The turbofan is either connected in series to a chamber to be evacuated, or is optionally disposed entirely within the chamber. The turbofan employs large diameter rotor blades operating at high linear blade velocity to impart an ultra-high pumping speed to a fluid. The second stage turbomolecular pump is fluidly connected downstream from the first stage turbofan. In operation, the first stage turbofan operates in a pre-existing vacuum, with the fluid asserting only small axial forces upon the rotor blades. The turbofan imparts a velocity to fluid particles towards an outlet at a high volume rate, but moderate compression ratio. The second stage conventional turbomolecular pump then compresses the fluid to pressures for evacuation by a roughing pump.

  7. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    SciTech Connect

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  8. Sound Velocities and Validity of Birch's Law for Ultra-High Pressure Metals and Ionic Solids

    NASA Astrophysics Data System (ADS)

    Ware, L.; Boness, D. A.

    2014-12-01

    Recent detection of super-Earths has expanded interest in ultra-high pressure, temperature minerals and elements to help constrain the composition and physical properties of the interiors of these large planets. To understand Earth's interior, Birch's Law and velocity-density systematics has long been important. Recent published DAC experimental measurements of sound velocities in iron are inconsistent with each other with regard to the validity of Birch's Law. We examine the range of validity of Birch's Law for several metallic elements, including iron, and ionic solids shocked into the ultra-high pressure, temperature fluid state and make comparisons to the recent DAC data.

  9. Ultra-High Temperature Metallic Seal/Energizer Development for Aero Propulsion and Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    Cornett, Ken; Newman, Jesse; Datta, Amit

    2009-01-01

    The industry is requiring seals to operate at higher and higher temperatures. Traditional static seal designs and materials experience stress relaxation, losing their ability to maintain contact with moving flanges. Ultra High Temperature seal development program is a multiphase program with incremental increases in seal operating temperatures.

  10. Case study: dairies utilizing ultra-high stock density grazing in the northeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultra-high stock density (UHSD) grazing (also loosely referred to as ‘mob grazing’) has attracted a lot of attention and press in the forage industry. Numerous anecdotal articles can be found in trade magazines that promote the perceived benefits of UHSD grazing. However, there is little credible re...

  11. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  12. Manganese oxide micro-supercapacitors with ultra-high areal capacitance.

    PubMed

    Wang, Xu; Myers, Benjamin D; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-21

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm(-2) at a current density of 27.2 μA cm(-2). PMID:23563785

  13. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride

    NASA Astrophysics Data System (ADS)

    Rey, Louis

    2003-05-01

    Ultra-high dilutions of lithium chloride and sodium chloride (10 -30 g cm -3) have been irradiated by X- and γ-rays at 77 K, then progressively rewarmed to room temperature. During that phase, their thermoluminescence has been studied and it was found that, despite their dilution beyond the Avogadro number, the emitted light was specific of the original salts dissolved initially.

  14. Caveats when Analyzing Ultra-high Molar Mass Polymers by SEC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analysis of ultra-high molar mass (M > 1 million g/mol) polymers via size-exclusion chromatography (SEC) presents a number of non-trivial challenges. Dissolution and full solvation may take days, as is the case for cellulose dissolution in non-complexing non degrading solvents; very low concent...

  15. Case study: dairies utilizing ultra-high stock density grazing in the Northeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultra-high stock density (UHSD) grazing has gained interest in the forage industry. However, little credible research exists to support anecdotal claims that forage and soil improvement occur through trampling high proportions (75+%) of mature forage into the soil by grazing dense groups of cattle o...

  16. An (ultra) high-vacuum compatible sputter source for oxide thin film growth

    SciTech Connect

    Mayr, Lukas; Köpfle, Norbert; Auer, Andrea; Klötzer, Bernhard; Penner, Simon

    2013-09-15

    A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important – yet hardly volatile – materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO{sub 2} and yttrium-stabilized ZrO{sub 2}, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems.

  17. An (ultra) high-vacuum compatible sputter source for oxide thin film growth.

    PubMed

    Mayr, Lukas; Köpfle, Norbert; Auer, Andrea; Klötzer, Bernhard; Penner, Simon

    2013-09-01

    A miniaturised CF-38 mountable sputter source for oxide and metal thin film preparation with enhanced high-vacuum and ultra-high-vacuum compatibility is described. The all home-built sputtering deposition device allows a high flexibility also in oxidic sputter materials, suitable deposition rates for preparation of films in the nm- and the sub-monolayer regime and excellent reliability and enhanced cleanliness for usage in UHV chambers. For a number of technologically important--yet hardly volatile--materials, the described source represents a significant improvement over thermal deposition techniques like electron-beam- or thermal evaporation, as especially the latter are no adequate tool to prepare atomically clean layers of refractory oxide materials. Furthermore, it is superior to commercially available magnetron sputter devices, especially for applications, where highly reproducible sub-monolayer thin film preparation under very clean UHV conditions is required (e.g., for studying phase boundary effects in catalysis). The device in turn offers the usage of a wide selection of evaporation materials and special target preparation procedures also allow the usage of pressed oxide powder targets. To prove the performance of the sputter-source, test preparations with technologically relevant oxide components, comprising ZrO2 and yttrium-stabilized ZrO2, have been carried out. A wide range of characterization methods (electron microscopy, X-ray photoelectron spectroscopy, low-energy ion scattering, atomic force microscopy, and catalytic testing) were applied to demonstrate the properties of the sputter-deposited thin film systems. PMID:24089841

  18. Ultra high voltage MOS controlled 4H-SiC power switching devices

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Capell, C.; Van Brunt, E.; Jonas, C.; O'Loughlin, M.; Clayton, J.; Lam, K.; Pala, V.; Hull, B.; Lemma, Y.; Lichtenwalner, D.; Zhang, Q. J.; Richmond, J.; Butler, P.; Grider, D.; Casady, J.; Allen, S.; Palmour, J.; Hinojosa, M.; Tipton, C. W.; Scozzie, C.

    2015-08-01

    Ultra high voltage (UHV, >15 kV) 4H-silicon carbide (SiC) power devices have the potential to significantly improve the system performance, reliability, and cost of energy conversion systems by providing reduced part count, simplified circuit topology, and reduced switching losses. In this paper, we compare the two MOS based UHV 4H-SiC power switching devices; 15 kV 4H-SiC MOSFETs and 15 kV 4H-SiC n-IGBTs. The 15 kV 4H-SiC MOSFET shows a specific on-resistance of 204 mΩ cm2 at 25 °C, which increased to 570 mΩ cm2 at 150 °C. The 15 kV 4H-SiC MOSFET provides low, temperature-independent, switching losses which makes the device more attractive for applications that require higher switching frequencies. The 15 kV 4H-SiC n-IGBT shows a significantly lower forward voltage drop (VF), along with reasonable switching performance, which make it a very attractive device for high voltage applications with lower switching frequency requirements. An electrothermal analysis showed that the 15 kV 4H-SiC n-IGBT outperforms the 15 kV 4H-SiC MOSFET for applications with switching frequencies of less than 5 kHz. It was also shown that the use of a carrier storage layer (CSL) can significantly improve the conduction performance of the 15 kV 4H-SiC n-IGBTs.

  19. Ultra-high electrochemical catalytic activity of MXenes

    PubMed Central

    Pan, Hui

    2016-01-01

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies. PMID:27604848

  20. Ultra-high electrochemical catalytic activity of MXenes.

    PubMed

    Pan, Hui

    2016-01-01

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies. PMID:27604848

  1. Ultra-High Speed Observations of the Mechanism of Sonoporation

    NASA Astrophysics Data System (ADS)

    Campbell, Paul

    2005-03-01

    Cells that are exposed to varying amounts of ultrasound energy may undergo either permanent cell membrane damage (lethal sonoporation) or a transient enhancement of membrane permeability (reversable or non lethal sonoporation). The merits of each mode are clear: lethal sonoporation constitutes a significant tumour therapy weapon, whilst its less intrusive counterpart, reversible sonoporation, makes for an effective non-invasive and targeted drug delivery approach. Until now, the mechanism of these interactions has remained unknown. We will demonstrate, for the first time, how an innovative hybridization of hologram based optical trapping technology, together with the application of millisecond pulsed ultrasound energy and parallel observation at MHz frame-rates using microscope objectives, has been used to elucidate the fundamental microscopic mechanism behind sonoporation. We will demonstrate the dependence of the permeabilisation mechanism on both the ultrasound field characteristics and the controlled displacement between individual microbubbles and single cells. High speed movies will be used to illustrate each category, whilst parallel fluorescence microscopy allows bioeffect to be quantified. Strategies for sonoporation optimisation are also illustrated.

  2. Toward nanofluids of ultra-high thermal conductivity

    PubMed Central

    2011-01-01

    The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofluids with conductivity of upper Hashin-Shtrikman (H-S) bound can be obtained by manipulating particles into an interconnected configuration that disperses the base fluid and thus significantly enhancing the particle-fluid interfacial energy transport. Nanofluids with conductivity higher than the upper H-S bound could also be developed by manipulating the coupled transport among various transport processes, and thus the nature of heat conduction in nanofluids. While the direct contributions of ordered liquid layer and particle Brownian motion to the nanofluid conductivity are negligible, their indirect effects can be significant via their influence on the particle morphology and/or the coupled transport. PMID:21711677

  3. Research and Development for Ultra-High Gradient Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Dolgashev, Valery; Higashi, Yasuo; Spataro, Bruno

    2010-11-01

    Research on the basic physics of high-gradient, high frequency accelerator structures and the associated RF/microwave technology are essential for the future of discovery science, medicine and biology, energy and environment, and national security. We will review the state-of-the-art for the development of high gradient linear accelerators. We will present the research activities aimed at exploring the basic physics phenomenon of RF breakdown. We present the experimental results of a true systematic study in which the surface processing, geometry, and materials of the structures have been varied, one parameter at a time. The breakdown rate or alternatively, the probability of breakdown/pulse/meter has been recorded for different operating parameters. These statistical data reveal a strong dependence of breakdown probability on surface magnetic field, or alternatively on surface pulsed heating. This is in contrast to the classical view of electric field dependence.

  4. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    PubMed Central

    Plantinga, Birgit R.; Temel, Yasin; Roebroeck, Alard; Uludağ, Kâmil; Ivanov, Dimo; Kuijf, Mark L.; ter Haar Romenij, Bart M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target structures on routine clinical MR images, direct targeting of structures can be challenging. Non-clinical MR scanners with ultra-high magnetic field (7T or higher) have the potential to improve the quality of these images. This technology report provides an overview of the current possibilities of visualizing deep brain stimulation targets and their related structures with the aid of ultra-high field MRI. Reviewed studies showed improved resolution, contrast- and signal-to-noise ratios at ultra-high field. Sequences sensitive to magnetic susceptibility such as T2* and susceptibility weighted imaging and their maps in general showed the best visualization of target structures, including a separation between the subthalamic nucleus and the substantia nigra, the lamina pallidi medialis and lamina pallidi incompleta within the globus pallidus and substructures of the thalamus, including the ventral intermediate nucleus (Vim). This shows that the visibility, identification, and even subdivision of the small deep brain stimulation targets benefit from increased field strength. Although ultra-high field MR imaging is associated with increased risk of geometrical distortions, it has been shown that these distortions can be avoided or corrected to the extent where the effects are limited. The availability of ultra-high field MR scanners for humans seems to provide opportunities for a more accurate targeting for deep brain stimulation in patients with Parkinson's disease and related disorders. PMID:25414656

  5. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  6. Constitutive modeling of ultra-high molecular weight polyethylene under large-deformation and cyclic loading conditions.

    PubMed

    Bergström, J S; Kurtz, S M; Rimnac, C M; Edidin, A A

    2002-06-01

    When subjected to a monotonically increasing deformation state, the mechanical behavior of UHMWPE is characterized by a linear elastic response followed by distributed yielding and strain hardening at large deformations. During the unloading phases of an applied cyclic deformation process, the response is characterized by nonlinear recovery driven by the release of stored internal energy. A number of different constitutive theories can be used to model these experimentally observed events. We compare the ability of the J2-plasticity theory, the "Arruda-Boyce" model, the "Hasan-Boyce" model, and the "Bergström-Boyce" model to reproduce the observed mechanical behavior of ultra-high molecular weight polyethylene (UHMWPE). In addition a new hybrid model is proposed, which incorporates many features of the previous theories. This hybrid model is shown to most effectively predict the experimentally observed mechanical behavior of UHMWPE. PMID:12013180

  7. Numerical and experimental evaluation of laser forming process for the shape correction in ultra high strength steels

    SciTech Connect

    Song, J. H.; Lee, J.; Lee, S.; Kim, E. Z.; Lee, N. K.; Lee, G. A.; Park, S. J.; Chu, A.

    2013-12-16

    In this paper, laser forming characteristics in ultra high strength steel with ultimate strength of 1200MPa are investigated numerically and experimentally. FE simulation is conducted to identify the response related to deformation and characterize the effect of laser power, beam diameter and scanning speed with respect to the bending angle for a square sheet part. The thermo-mechanical behaviors during the straight-line heating process are presented in terms of temperature, stress and strain. An experimental setup including a fiber laser with maximum mean power of 3.0 KW is used in the experiments. From the results in this work, it would be easily adjustment the laser power and the scanning speed by controlling the line energy for a bending operation of CP1180 steel sheets.

  8. Theoretical Predictions of Phase Transitions at Ultra-high Pressures

    NASA Astrophysics Data System (ADS)

    Boates, Brian

    2013-06-01

    We present ab initio calculations of the high-pressure phase diagrams of important planetary materials such as CO2, MgSiO3, and MgO. For CO2, we predict a series of distinct liquid phases over a wide pressure (P) and temperature (T) range, including a first-order transition to a dense polymer liquid. We have computed finite-temperature free energies of liquid and solid CO2 phases to determine the melting curve beyond existing measurements and investigate possible phase separation transitions. The interaction of these phase boundaries with the mantle geotherm will also be discussed. Furthermore, we find evidence for a vast pressure-temperature regime where molten MgSiO3 decomposes into liquid SiO2 and solid MgO, with a volume change of approximately 1.2 percent. The demixing transition is driven by the crystallization of MgO ? the reaction only occurs below the high-pressure MgO melting curve. The predicted transition pressure at 10,000 K is in close proximity to an anomaly reported in recent laser-driven shock experiments of MgSiO3. We also present new results for the high-pressure melting curve of MgO and its B1-B2 solid phase transition, with a triple point near 364 GPa and 12,000 K.

  9. Advanced Production Surface Preparation Technology Development for Ultra-High Pressure Diesel Injection

    SciTech Connect

    Grant, Marion B.

    2012-04-30

    In 2007, An Ultra High Injection Pressure (UHIP) fueling method has been demonstrated by Caterpillar Fuel Systems - Product Development, demonstrating ability to deliver U.S. Environment Protection Agency (EPA) Tier 4 Final diesel engine emission performance with greatly reduced emissions handling components on the engine, such as without NOx reduction after-treatment and with only a through-flow 50% effective diesel particulate trap (DPT). They have shown this capability using multiple multi-cylinder engine tests of an Ultra High Pressure Common Rail (UHPCR) fuel system with higher than traditional levels of CEGR and an advanced injector nozzle design. The system delivered better atomization of the fuel, for more complete burn, to greatly reduce diesel particulates, while CEGR or high efficiency NOx reduction after-treatment handles the NOx. With the reduced back pressure of a traditional DPT, and with the more complete fuel burn, the system reduced levels of fuel consumption by 2.4% for similar delivery of torque and horsepower over the best Tier 4 Interim levels of fuel consumption in the diesel power industry. The challenge is to manufacture the components in high-volume production that can withstand the required higher pressure injection. Production processes must be developed to increase the toughness of the injector steel to withstand the UHIP pulsations and generate near perfect form and finish in the sub-millimeter size geometries within the injector. This project resulted in two developments in 2011. The first development was a process and a machine specification by which a high target of compressive residual stress (CRS) can be consistently imparted to key surfaces of the fuel system to increase the toughness of the steel, and a demonstration of the feasibility of further refinement of the process for use in volume production. The second development was the demonstration of the feasibility of a process for imparting near perfect, durable geometry to

  10. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent

  11. Spectroscopic and sub optical band gap properties of e-beam irradiated ultra-high molecular weight polyethylene

    NASA Astrophysics Data System (ADS)

    Khan, Hamna; Gahfoor, Bilal; Mehmood, Malik Sajjad; Ahmad, Manzoor; Yasin, Tariq; Ikram, Masroor

    2015-12-01

    Muller matrix spectro-polarimeter has been used to study the absorption behavior of pristine and e-beam irradiated (30, 65,100 kGy) ultra-high molecular weight polyethylene (UHMWPE) over the visible spectral range i.e. 400-800 nm. As a result, significant changes occur in the absorption behavior of irradiated samples due to radiation induced physical and chemical changes. To analyze these (radiation induced) changes in polymer matrix, Urbach edge method is employed for the calculation of optical activation energy. In addition to this, direct and indirect energy band gaps along the number of carbon atoms in C=C unsaturation have been determined by using modified Urbach formula and Tauc's equation, respectively. The results obtained during study reveal that Urbach energy decreases with radiation treatment and has a lower value for 100 kGy sample i.e. Eu=71.63 meV. The values of direct and indirect energy band gaps are also following the decreasing trend with e-beam irradiation. Moreover, indirect energy gaps are found to have lower values as compared to direct energy gaps. The number of carbon atoms in clusters (as estimated from modified Tauc's equation) has been found to vary from ∼6 to 8 for direct energy band gaps and from ∼9 to 11 for indirect energy band gaps.

  12. Low-noise ultra-high-speed dc SQUID readout electronics

    NASA Astrophysics Data System (ADS)

    Drung, Dietmar; Hinnrichs, Colmar; Barthelmess, Henry-Jobes

    2006-05-01

    User-friendly ultra-high-speed readout electronics for dc superconducting quantum interference devices (SQUIDs) are presented. To maximize the system bandwidth, the SQUID is directly read out without flux modulation. A composite preamplifier is used consisting of a slow dc amplifier in parallel with a fast ac amplifier. In this way, excellent dc precision and a high amplifier bandwidth of 50 MHz are achieved, simultaneously. A virtual 50 Ω amplifier input resistance with negligible excess noise is realized by active shunting, i.e., by applying feedback from preamplifier output to input via a high resistance. The white voltage and current noise levels are 0.33 nV Hz-1 and 2.6 pA Hz-1/2, respectively. The electronics is fully computer controlled via a microcontroller integrated into the flux-locked loop (FLL) board. Easy-to-use software makes the various electronic settings accessible. A wide bias voltage range of 1.3 mV enables the readout of series SQUID arrays. Furthermore, additional current sources allow the operation of two-stage SQUIDs or transition edge sensors. The electronics was tested using various SQUIDs with input inductances between 30 nH and 1.5 µH. Typically, the maximum FLL bandwidth was 20 MHz, which is close to the theoretical limit given by transmission line delay within the FLL. Slew rates of up to 4.6 Φ0 µs-1 were achieved with series SQUID arrays. Current noise levels as low as 0.47 pA Hz-1/2 and coupled energy sensitivities between 90 h and 500 h were measured at 4.2 K, where h is the Planck constant. The noise did not degrade when the system bandwidth was increased to the maximum value of about 20 MHz. With a two-stage set-up, intrinsic white energy sensitivities of 30 h and 2.3 h were measured at 4.2 and 0.3 K, respectively.

  13. Sterilization of liquid foods by pulsed electric fields–an innovative ultra-high temperature process

    PubMed Central

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm−1), skim milk (0.3% fat; 5.3 mS cm−1) and fresh prepared carrot juice (7.73 mS cm−1). The combination of moderate preheating (70–90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105–140°C (measured above the PEF chamber) within 92.2–368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h−1, a frequency of 150 Hz and an energy input of 226.5 kJ kg−1, resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg−1 resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature

  14. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process.

    PubMed

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich

    2015-01-01

    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields

  15. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  16. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks

    SciTech Connect

    Micheli, Leonardo Mallick, Tapas K.; Fernandez, Eduardo F.; Almonacid, Florencia; Reddy, K. S.

    2015-09-28

    Ultra-high concentrating photovoltaic (CPV) systems aim to increase the cost-competiveness of CPV by increasing the concentrations over 2000 suns. In this work, the design of a heat sink for ultra-high concentrating photovoltaic (CPV) applications is presented. For the first time, the least-material approach, widely used in electronics to maximize the thermal dissipation while minimizing the weight of the heat sink, has been applied in CPV. This method has the potential to further decrease the cost of this technology and to keep the multijunction cell within the operative temperature range. The designing procedure is described in the paper and the results of a thermal simulation are shown to prove the reliability of the solution. A prediction of the costs is also reported: a cost of 0.151$/W{sub p} is expected for a passive least-material heat sink developed for 4000x applications.

  17. Development of ultra-high-density screening tools for microbial "omics".

    PubMed

    Bean, Gordon J; Jaeger, Philipp A; Bahr, Sondra; Ideker, Trey

    2014-01-01

    High-throughput genetic screens in model microbial organisms are a primary means of interrogating biological systems. In numerous cases, such screens have identified the genes that underlie a particular phenotype or a set of gene-gene, gene-environment or protein-protein interactions, which are then used to construct highly informative network maps for biological research. However, the potential test space of genes, proteins, or interactions is typically much larger than current screening systems can address. To push the limits of screening technology, we developed an ultra-high-density, 6144-colony arraying system and analysis toolbox. Using budding yeast as a benchmark, we find that these tools boost genetic screening throughput 4-fold and yield significant cost and time reductions at quality levels equal to or better than current methods. Thus, the new ultra-high-density screening tools enable researchers to significantly increase the size and scope of their genetic screens. PMID:24465499

  18. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  19. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  20. Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III

    2001-01-01

    After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.

  1. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  2. Design of Ultra-High-Power-Density Machine Optimized for Future Aircraft

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.

    2004-01-01

    The NASA Glenn Research Center's Structural Mechanics and Dynamics Branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more-electric" aircraft with specific power in the projected range of 50 hp/lb, whereas conventional electric machines generate usually 0.2 hp/lb. The use of such electric drives for propulsive fans or propellers depends on the successful development of ultra-high-power-density machines. One possible candidate for such ultra-high-power-density machines, a round-rotor synchronous machine with an engineering current density as high as 20,000 A/sq cm, was selected to investigate how much torque and power can be produced.

  3. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  4. Application of an electromagnetic accelerator to ultra-high-speed plastic deformation experiments

    NASA Astrophysics Data System (ADS)

    Okada, A.; Kiritani, M.

    2002-01-01

    An electromagnetic accelerator (railgun) is briefly introduced, and several examples of experimental results obtained from test runs of this facility are shown and merits of the application of the railgun to high-speed deformation experiments are emphasized. On applying this facility to high-speed deformation experiments, several specific adapters should be designed, such as a jig for applying a designed amount of deformation to a specimen, A specimen cooling system is also important, as a measure against severe temperature rise occurring during extraordinarily rapid deformation. Although application of the railgun involves many difficulties, the railgun is expected to be a very attractive tool for ultra-high-speed deformation research. The railgun can realize the ultra-high-speed deformation via the collision of a projectile and a target material at a speed comparable to the sonic wave velocity Such high speeds cannot be obtainable by other methods.

  5. Computational Performance of Ultra-High-Resolution Capability in the Community Earth System Model

    SciTech Connect

    Dennis, John; Vertenstein, Mariana; Worley, Patrick H; Mirin, Arthur A.; Craig, Anthony; Jacob, Robert L.; Mickelson, Sheri A.

    2012-01-01

    With the fourth release of the Community Climate System Model, the ability to perform ultra-high resolution climate simulations is now possible, enabling eddy-resolving ocean and sea ice models to be coupled to a finite-volume atmosphere model for a range of atmospheric resolutions. This capability was made possible by enabling the model to use large scale parallelism, which required a significant refactoring of the software infrastructure. We describe the scalability of two ultra-high-resolution coupled configurations on leadership class computing platforms. We demonstrate the ability to utilize over 30,000 processor cores on a Cray XT5 system and over 60,000 cores on an IBM Blue Gene/P system to obtain climatologically relevant simulation rates for these configurations.

  6. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements.

    PubMed

    McKellop, H; Shen, F W; Lu, B; Campbell, P; Salovey, R

    1999-03-01

    Osteolysis induced by ultra high molecular weight polyethylene wear debris is one of the primary factors limiting the lifespan of total hip replacements. Crosslinking polyethylene is known to improve its wear resistance in certain industrial applications, and crosslinked polyethylene acetabular cups have shown improved wear resistance in two clinical studies. In the present study, crosslinked polyethylene cups were produced by two methods. Chemically crosslinked cups were produced by mixing a peroxide with ultra high molecular weight polyethylene powder and then molding the cups directly to shape. Radiation-crosslinked cups were produced by exposing conventional extruded ultra high molecular weight polyethylene bar stock to gamma radiation at various doses from 3.3 to 100 Mrad (1 Mrad = 10 kGy), remelting the bars to extinguish residual free radicals (i.e., to minimize long-term oxidation), and then machining the cups by conventional techniques. In hip-joint simulator tests lasting as long as 5 million cycles, both types of cross-linked cups exhibited dramatically improved resistance to wear. Artificial aging of the cups by heating for 30 days in air at 80 degrees C induced oxidation of the chemically crosslinked cups. However, a chemically crosslinked cup that was aged 2.7 years at room temperature had very little oxidation. Thus, whether substantial oxidation of chemically crosslinked polyethylene would occur at body temperature remains unclear. The radiation-crosslinked remelted cups exhibited excellent resistance to oxidation. Because crosslinking can reduce the ultimate tensile strength, fatigue strength, and elongation to failure of ultra high molecular weight polyethylene, the optimal crosslinking dose provides a balance between these physical properties and the wear resistance of the implant and might substantially reduce the incidence of wear-induced osteolysis with total hip replacements. PMID:10221831

  7. Free space optical communications for ultra high-capacity PON system

    NASA Astrophysics Data System (ADS)

    Shahpari, Ali; Sousa, Artur N.; Ferreira, Ricardo; Lima, Mário; Teixeira, António

    2014-08-01

    We experimentally demonstrate a set of ultra-high capacity free space passive optical networks (PONs) using quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM) Nyquist pulse shaped and orthogonal frequency-division multiplexing (OFDM) modulations. Moreover, these technologies support up to 10 Gb/s services per user and allow a smooth and full integration between fiber and optical wireless access networks.

  8. RECENT ADVANCES IN ULTRA-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE ANALYSIS OF TRADITIONAL CHINESE MEDICINE

    PubMed Central

    Huang, Huilian; Liu, Min; Chen, Pei

    2014-01-01

    Traditional Chinese medicine has been widely used for the prevention and treatment of various diseases for thousands of years in China. Ultra-high performance liquid chromatography (UHPLC) is a relatively new technique offering new possibilities. This paper reviews recent developments in UHPLC in the separation and identification, fingerprinting, quantification, and metabolism of traditional Chinese medicine. Recently, the combination of UHPLC with MS has improved the efficiency of the analysis of these materials. PMID:25045170

  9. Ultra-high degree spectral modelling of Earth and planetary topography

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian

    2016-04-01

    New methods for ultra-high degree spherical harmonic analyses and syntheses have been developed and studied over the past years. The focus group "High-resolution Gravity Modelling", established in 2013 at TU Munich, has implemented ultra-high degree spectral modelling techniques and used successfully to transform high-resolution topography grids of Earth, Moon and Mars into spherical harmonics. For Earth, a new set of 1 arc-min topography models, developed by our group and released under the name Earth2014, was expanded into a spherical harmonic series to degree 10,800. For the 15 arc-sec resolution SRTM15_plus topography and bathymetry, a spectral resolution of degree 43,200 was achieved. For Moon and Mars, topography grids from laser altimetry were harmonically analysed up to degree ~46,000. The spectral representations of the topography grids presented in this contribution are required in the context of spectral gravity forward modelling with ultra-high degree, where the topographic potential is computed as a function of the spherical harmonic series of the topography and its integer powers. References: Hirt, C., and M. Rexer (2015) Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics, International Journal of Applied Earth Observation and Geoinformation 39, 103-112, doi:10.1016/j.jag.2015.03.001. Rexer, M. and C. Hirt (2015), Ultra-high degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Moon and Mars. Surveys in Geophysics 36(6), 803-830, doi: 10.1007/s10712-015-9345-z.

  10. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    SciTech Connect

    Panin, S. V.; Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R.; Suan, T. Nguen

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  11. Ultra High Bypass Ratio Engine Research for Reducing Noise, Emissions, and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Schweitzer, Jeff

    2007-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to 2000s is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are discussed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program.

  12. A Novel Method for Electroplating Ultra-High-Strength Glassy Metals

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.

  13. Inactivation of Bacillus spores inoculated in milk by Ultra High Pressure Homogenization.

    PubMed

    Amador Espejo, Genaro Gustavo; Hernández-Herrero, M M; Juan, B; Trujillo, A J

    2014-12-01

    Ultra High-Pressure Homogenization treatments at 300 MPa with inlet temperatures (Ti) of 55, 65, 75 and 85 °C were applied to commercial Ultra High Temperature treated whole milk inoculated with Bacillus cereus, Bacillus licheniformis, Bacillus sporothermodurans, Bacillus coagulans, Geobacillus stearothermophilus and Bacillus subtilis spores in order to evaluate the inactivation level achieved. Ultra High-Pressure Homogenization conditions at 300 MPa with Ti = 75 and 85 °C were capable of a spore inactivation of ∼5 log CFU/mL. Furthermore, under these processing conditions, commercial sterility (evaluated as the complete inactivation of the inoculated spores) was obtained in milk, with the exception of G. stearothermophilus and B. subtilis treated at 300 MPa with Ti = 75 °C. The results showed that G. stearothermophilus and B. subtilis have higher resistance to the Ultra High-Pressure Homogenization treatments applied than the other microorganisms inoculated and that a treatment performed at 300 MPa with Ti = 85 °C was necessary to completely inactivate these microorganisms at the spore level inoculated (∼1 × 10(6) CFU/mL). Besides, a change in the resistance of B. licheniformis, B. sporothermodurans, G. stearothermophilus and B. subtilis spores was observed as the inactivation obtained increased remarkably in treatments performed with Ti between 65 and 75 °C. This study provides important evidence of the suitability of UHPH technology for the inactivation of spores in high numbers, leading to the possibility of obtaining commercially sterile milk. PMID:25084664

  14. NASA Partnerships and Collaborative Research on Ultra High Bypass Cycle Propulsion Concepts

    NASA Technical Reports Server (NTRS)

    Hughes, Chris

    2009-01-01

    Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives.

  15. Properties and Microstructural Characteristic of Kaolin Geopolymer Ceramics with Addition of Ultra High Molecular Weight Polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmad, Romisuhani; Bakri Abdullah, Mohd Mustafa Al; Hussin, Kamarudin; Sandu, Andrei Victor; Binhussain, Mohammed; Ain Jaya, Nur

    2016-06-01

    In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

  16. In Situ Visualization of Tears on Contact Lens Using Ultra High Resolution Optical Coherence Tomography

    PubMed Central

    Wang, Jianhua; Jiao, Shuliang; Ruggeri, Marco; Shousha, Mohammed Abou; Chen, Qi

    2012-01-01

    Objective To demonstrate the capability of directly visualizing the tear film on contact lenses using optical coherence tomography (OCT). Methods Six eyes of three healthy subjects wearing PureVision and ACUVUE Advance soft and Boston RGP hard contact lenses were imaged with a custom built, high speed, ultra-high resolution spectral domain optical coherence tomograph. Refresh Liquigel was used to demonstrate the effect of artificial tears on the tear film. Results Ultra high resolution images of the pre- and post-lens films were directly visualized when each lens was inserted onto the eye. After the instillation of artificial tears during lens wear, the tear film was thicker. The post-lens tear film underneath the lens edge was clearly shown. Interactions between the lens edges and the ocular surface were obtained for each of the lens types and base curves. With a contrast enhancement agent, tear menisci on the contact lenses around the upper and lower eyelids were highlighted. With hard contact lenses, the tear film was visualized clearly and changed after a blink when the lens was pulled up by the lid. Conclusions Ultra-high resolution OCT is a potentially promising technique for imaging tears around contact lenses. This successful demonstration of in situ post-lens tear film imaging suggests that OCT could open a new era in studying tear dynamics during contact lens wear. The novel method may lead to new ways of evaluating contact lens fitting. PMID:19265323

  17. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    SciTech Connect

    Grinner, F. J.; Schroeder, C. B.; Maier, A. R.; Becker, S.; Mikhailova, J. M.

    2009-02-11

    Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron-laser (FEL). Significant reduction in size of the FEL is facilitated by the expected ultra-high peak beam currents (10-100 kA) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultra-compact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution), which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  18. Surface texture and micromechanics of ultra high molecular weight polyethylene (UHMWPE) orthopaedic implant bearings

    NASA Astrophysics Data System (ADS)

    Schmidt, Monica A.

    2001-07-01

    Tibial bearings of ultra-high molecular weight polyethylene (UHMWPE) were characterized to identify differences in morphology, surface texture (roughness and skewness), and micro-scale mechanical behavior. These orthopaedic implant components were fabricated by direct molding or by machining after isostatic compression molding. Sterilization was by gamma irradiation (3.3 Mrad) in air, followed by shelf aging for 2 years. Comparisons were made between unsterile and sterile bearings to identify differences in structure and properties related to wear debris. Characterization methods included confocal optical microscopy, nanoindentation, small angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and polarized light microscopy. Morphology was compared between bulk and surface (top and bottom) specimens of the bearings. Cryo-microtomy was used to prepare thin specimens transverse to the top surface for polarized microscopy. Nanoindentation was performed on the top bearing surfaces, near areas examined by confocal microscopy. Processing methods affected both small- and large-scale morphology of UHMWPE. Direct molding produced thinner lamellae, thicker long periods, and slightly lower crystallinity than isostatic compression molding. Both bearing types contained a thick interface between the crystalline and amorphous phases. Interfacial free energy varied with interface thickness. Resin particles were consolidated better in direct molded bearings than in machined bearings. Segregated amorphous regions were observed in the machined bearings. Sterilization and shelf aging affected nanometer-scale morphology. Chain scission significantly decreased the interface thickness, causing an increase in lamellar thickness and a small increase in crystallinity. Only a small decrease in the amorphous thickness resulted. Heterogeneous oxidation increased these changes in interface

  19. Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the separation of spirostanol saponins.

    PubMed

    Zhu, Ling-Ling; Zhao, Yang; Xu, Yong-Wei; Sun, Qing-Long; Sun, Xin-Guang; Kang, Li-Ping; Yan, Ren-Yi; Zhang, Jie; Liu, Chao; Ma, Bai-Ping

    2016-02-20

    Spirostanol saponins are important active components of some herb medicines, and their isolation and purification are crucial for the research and development of traditional Chinese medicines. We aimed to compare the separation of spirostanol saponins by ultra-high performance supercritical fluid chromatography (UHPSFC) and ultra-high performance liquid chromatography (UHPLC). Four groups of spirostanol saponins were separated respectively by UHPSFC and UHPLC. After optimization, UHPSFC was performed with a HSS C18 SB column or a Diol column and with methanol as the co-solvent. A BEH C18 column and mobile phase containing water (with 0.1% formic acid) and acetonitrile were used in UHPLC. We found that UHPSFC could be performed automatically and quickly. It is effective in separating the spirostanol saponins which share the same aglycone and vary in sugar chains, and is very sensitive to the number and the position of hydroxyl groups in aglycones. However, the resolution of spirostanol saponins with different aglycones and the same sugar moiety by UHPSFC was not ideal and could be resolved by UHPLC instead. UHPLC is good at differentiating the variation in aglycones, and is influenced by double bonds in aglycones. Therefore, UHPLC and UHPSFC are complementary in separating spirostanol saponins. Considering the naturally produced spirostanol saponins in herb medicines are different both in aglycones and in sugar chains, a better separation can be achieved by combination of UHPLC and UHPSFC. UHPSFC is a powerful technique for improving the resolution when UHPLC cannot resolve a mixture of spirostanol saponins and vice versa. PMID:26707085

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data

  1. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites

  2. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  3. Insulation degradation behavior of multilayer ceramic capacitors clarified by Kelvin probe force microscopy under ultra-high vacuum

    NASA Astrophysics Data System (ADS)

    Suzuki, Keigo; Okamoto, Takafumi; Kondo, Hiroyuki; Tanaka, Nobuhiko; Ando, Akira

    2013-02-01

    We investigated surface potential images on the cross section of degraded multilayer ceramic capacitors (MLCCs) by Kelvin probe force microscopy measured under a dc bias voltage in ultra-high vacuum. A highly accelerated lifetime test (HALT) was conducted to obtain degraded MLCCs. The high energy resolution of the present measurement allows us to observe the step-like voltage drops on dielectric layers of as-fired MLCCs. The step-like voltage drops disappear on the dielectric layers of degraded MLCCs, indicating that the resistance at grain boundaries declines with the progress of insulation degradation. Furthermore, the electric field concentrations near the electrodes are clearly observed under forward and backward bias. The discussion based on energy band diagrams suggests that the electric field concentrations near electrodes are attributable to energy barrier formed at the interface between electrode and dielectrics. In particular, the electric field concentration at cathode in HALT measured under backward bias is much higher than that at anode in HALT measured under forward bias. This implies that oxygen vacancies accumulated during HALT cause band bending near the cathode in HALT. We propose that the initial decline of resistance at grain boundaries and following electric-field concentrations at anode in HALT is essential to the insulation degradation on dielectric layers of MLCCs under dc bias voltage.

  4. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  5. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect

    Atreya, Arvind

    2013-04-15

    -dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  6. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2013-05-01

    biomass would improve soil-moisture retrieval by avoiding the need for auxiliary vegetation information. This multivariable water-cycle observation system must be integrated with high-resolution, application relevant prediction systems to optimize their information content and utility is addressing critical water cycle issues. One such vision is a real-time ultra-high resolution locally-moasiced global land modeling and assimilation system, that overlays regional high-fidelity information over a baseline global land prediction system. Such a system would provide the best possible local information for use in applications, while integrating and sharing information globally for diagnosing larger water cycle variability. In a sense, this would constitute a hydrologic telecommunication system, where the best local in-situ gage, Doppler radar, and weather station can be shared internationally, and integrated in a consistent manner with global observation platforms like the multivariable water cycle mission. To realize such a vision, large issues must be addressed, such as international data sharing policy, model-observation integration approaches that maintain local extremes while achieving global consistency, and methods for establishing error estimates and uncertainty.

  7. The global lambda visualization facility: An international ultra-high-definition wide-area visualization collaboratory

    USGS Publications Warehouse

    Leigh, J.; Renambot, L.; Johnson, Aaron H.; Jeong, B.; Jagodic, R.; Schwarz, N.; Svistula, D.; Singh, R.; Aguilera, J.; Wang, X.; Vishwanath, V.; Lopez, B.; Sandin, D.; Peterka, T.; Girado, J.; Kooima, R.; Ge, J.; Long, L.; Verlo, A.; DeFanti, T.A.; Brown, M.; Cox, D.; Patterson, R.; Dorn, P.; Wefel, P.; Levy, S.; Talandis, J.; Reitzer, J.; Prudhomme, T.; Coffin, T.; Davis, B.; Wielinga, P.; Stolk, B.; Bum, Koo G.; Kim, J.; Han, S.; Corrie, B.; Zimmerman, T.; Boulanger, P.; Garcia, M.

    2006-01-01

    The research outlined in this paper marks an initial global cooperative effort between visualization and collaboration researchers to build a persistent virtual visualization facility linked by ultra-high-speed optical networks. The goal is to enable the comprehensive and synergistic research and development of the necessary hardware, software and interaction techniques to realize the next generation of end-user tools for scientists to collaborate on the global Lambda Grid. This paper outlines some of the visualization research projects that were demonstrated at the iGrid 2005 workshop in San Diego, California. ?? 2006 Elsevier Ltd. All rights reserved.

  8. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    SciTech Connect

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  9. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Gratz, Marcel; Galvosas, Petrik

    2008-12-01

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  10. The ultra high resolution XUV spectroheliograph: An attached payload for the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Hoover, Richard B.; Barbee, Troy W., Jr.; Tandberg-Hanssen, Einar; Timothy, J. Gethyn; Lindblom, Joakim F.

    1990-01-01

    The principle goal of the ultra high resolution XUV spectroheliograph (UHRXS) is to improve the ability to identify and understand the fundamental physical processes that shape the structure and dynamics of the solar chromosphere and corona. The ability of the UHRXS imaging telescope and spectrographs to resolve fine scale structures over a broad wavelength (and hence temperature) range is critical to this mission. The scientific objectives and instrumental capabilities of the UHRXS investigation are reviewed before proceeding to a discussion of the expected performance of the UHRXS observatory.

  11. O-ring sealing arrangements for ultra-high vacuum systems

    SciTech Connect

    Flaherty, R.; Kim, C.

    1981-08-04

    An all metal reusable o-ring sealing arrangement is disclosed for sealing two concentric tubes in an ultra-high vacuum system. An o-ring of a heat recoverable alloy such as nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The o-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the o-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  12. Ultra-high CPV system development and deployment in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Khonkar, Hussam; Wacaser, Brent; Martin, Yves; Kirchner, Peter; Alyahya, Abdulaziz; Aljouad, Mazen; Halawani, Mohamed; van Kessel, Theodor

    2013-09-01

    This paper discusses the development and deployment of an ultra-high concentrating PV module that utilizes concentration above 1400X on multijunction solar cells. The development process included the selection of cell assemblies, primary and secondary optics, and focal distance. The systems were deployed in Saudi Arabia inside the Solar Village near Riyadh and in Khafji near the border of Saudi and Kuwait, following the deployment of first prototype in Yorktown, NY. Data from operation in those areas are shown here, and next steps of optimizing the module performance are discussed.

  13. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed “KIZUNA”

    PubMed Central

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R.; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    Background: Recent advances in information technology have allowed the development of a telepathology system involving high-speed transfer of high-volume histological figures via fiber optic landlines. However, at present there are geographical limits to landlines. The Japan Aerospace Exploration Agency (JAXA) has developed the “Kizuna” ultra-high speed internet satellite and has pursued its various applications. In this study we experimented with telepathology in collaboration with JAXA using Kizuna. To measure the functionality of the Wideband InterNet working engineering test and Demonstration Satellite (WINDS) ultra-high speed internet satellite in remote pathological diagnosis and consultation, we examined the adequate data transfer speed and stability to conduct telepathology (both diagnosis and conferencing) with functionality, and ease similar or equal to telepathology using fiber-optic landlines. Materials and Methods: We performed experiments for 2 years. In year 1, we tested the usability of the WINDS for telepathology with real-time video and virtual slide systems. These are state-of-the-art technologies requiring massive volumes of data transfer. In year 2, we tested the usability of the WINDS for three-way teleconferencing with virtual slides. Facilities in Iwate (northern Japan), Tokyo, and Okinawa were connected via the WINDS and voice conferenced while remotely examining and manipulating virtual slides. Results: Network function parameters measured using ping and Iperf were within acceptable limits. However; stage movement, zoom, and conversation suffered a lag of approximately 0.8 s when using real-time video, and a delay of 60-90 s was experienced when accessing the first virtual slide in a session. No significant lag or inconvenience was experienced during diagnosis and conferencing, and the results were satisfactory. Our hypothesis was confirmed for both remote diagnosis using real-time video and virtual slide systems, and also for

  14. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    PubMed Central

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory. PMID:19050735

  15. Development of ultra high power, valve-regulated lead-acid batteries for industrial applications

    NASA Astrophysics Data System (ADS)

    Soria, M. Luisa; Valenciano, Jesús; Ojeda, Araceli

    There is a recent market trend towards industrial battery powered products that demand occasionally very high discharge rates. This fact is today solved by oversizing the battery or by using more expensive high power nickel-cadmium batteries. Within an EC funded project, ultra high power lead-acid batteries for UPS applications are being developed. The batteries are characterised by a thin electrode design linked to the use of novel separator materials to increase the battery life under floating and deep cycling conditions. Battery performance under different working conditions is presented, in comparison to standard products, and the battery improvements and failure mechanisms are also discussed.

  16. Ultra-high-resolution seismic stratigraphy of Martha Brae delta-reef complex, Falmouth, Jamaica

    SciTech Connect

    Pigott, J.D; Skinner, J.D.; Roberts, S.M.

    1989-03-01

    Ultra-high-resolution seismic stratigraphy was conducted on a 10-km/sup 2/ area of the Martha Brae delta-reef complex of Falmouth, Jamaica. The acquisition involved a 120-MHz ground-penetrating radar, zero source-receiver offset, 0.2 m SP interval, 15 km of total line, and 20 walk-away noise tests of grid intersections. Post-acquisition processing involved only stacking and analog filtering. Subsurface penetration was in excess of 50 m, with minimum thin-bed resolution of less than 1 m. Ground truth was provided by shallow (<25 m) boreholes with nine radiocarbon dates.

  17. O-Ring sealing arrangements for ultra-high vacuum systems

    DOEpatents

    Kim, Chang-Kyo; Flaherty, Robert

    1981-01-01

    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  18. Performance analysis of InSb based QWFET for ultra high speed applications

    NASA Astrophysics Data System (ADS)

    Subash, T. D.; Gnanasekaran, T.; Divya, C.

    2015-01-01

    An indium antimonide based QWFET (quantum well field effect transistor) with the gate length down to 50 nm has been designed and investigated for the first time for L-band radar applications at 230 GHz. QWFETs are designed at the high performance node of the International Technology Road Map for Semiconductors (ITRS) requirements of drive current (Semiconductor Industry Association 2010). The performance of the device is investigated using the SYNOPSYS CAD (TCAD) software. InSb based QWFET could be a promising device technology for very low power and ultra-high speed performance with 5-10 times low DC power dissipation.

  19. Note: Simple leak sealing technique for ultra-high vacuum cryostat by using freezable liquid.

    PubMed

    Kim, Min-Seong; Kim, Ji-Ho; Lyo, In-Whan

    2015-05-01

    Here we introduce a simple, low-cost, contamination-free, and highly reliable technique for sealing an ultra-high vacuum (UHV) cryostat by using cryogenically freezable liquid. We demonstrate it by sealing an UHV cryostat with dry leaks in the high vacuum range; ethanol was utilized to fill and block the leakage pathways through the subsequent in situ solidification by LN2. The seal is reversible and can be maintained as long as the cryostat is kept at cryogenic temperature. PMID:26026566

  20. Ultra-high-power plasma switch INPIS for pulse power systems

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Choi, En H.; Venable, Demetrius D.; Han, Kwang S.

    1990-01-01

    A novel plasma switch, the inverse pinch switch (IN-PIS), with a combination geometry based on an inverse-pinch mechanism, has been tested and shown to alleviate the shortcomings of conventional spark gaps. The INPIS switch or INPIStron is currently being upscaled for high-voltage (approximately 1 MV) operation with a multigap arrangement similar to Sandia's rimfire electrodes used for ultra-high-voltage hold off. Preliminary results of the multigap INPIS tests at 230 kV and plasma-puff initiation methods are presented, and an application to compact pulser systems is discussed.

  1. Assessment of the State of the Art of Ultra High Temperature Ceramics

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  2. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  3. The Design of an Ultra High Capacity Long Range Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Weisshaar, Terrence A.; Bucci, Gregory; Hare, Angela; Szolwinski, Matthew

    1993-01-01

    This paper examines the design of a 650 passenger aircraft with 8000 nautical mile range to reduce seat mile cost and to reduce airport and airway congestion. This design effort involves the usual issues that require trades between technologies, but must also include consideration of: airport terminal facilities; passenger loading and unloading; and, defeating the 'square-cube' law to design large structures. This paper will review the long range ultra high capacity or megatransport design problem and the variety of solutions developed by senior student design teams at Purdue University.

  4. Optical Bragg grating sensor fibers for ultra-high temperature applications

    NASA Astrophysics Data System (ADS)

    Bartelt, Hartmut; Elsmann, Tino; Habisreuther, Tobias; Schuster, Kay; Rothhardt, Manfred

    2015-07-01

    Sapphire based optical fibers provide an attractive basis for ultra-high temperature stable optical sensor elements. Fiber Bragg gratings can be inscribed in such fibers by means of femtosecond-laser pulses with a wavelength of 400 nm in combination with a two-beam phase mask interferometer. We have investigated crystalline optical fibers as well as structured sapphire-derived all glass optical fibers with aluminum content in the core of up to 50 mol%. The reflection properties, the index modulation and the attenuation effects will be discussed. Results concerning the temperature and strain sensitivity for use as sensor elements at high temperatures will be presented.

  5. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum

    SciTech Connect

    Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C.; Russell, P. St. J.; Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen

    2013-12-23

    A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

  6. Internal friction and dynamic modulus in Ru-50Nb ultra-high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Dirand, L.; Nó, M. L.; Chastaing, K.; Denquin, A.; San Juan, J.

    2012-10-01

    The martensitic transformations in ultra-high temperature Ru-50Nb shape memory alloys have been studied by internal friction and dynamic modulus measurements. Two successive transformations from the high temperature cubic β phase to a tetragonal β' martensite and then to another monoclinic β″ martensite have been found. Both transformations exhibit a sharp internal friction peak and a clear softening of the dynamic modulus, being a signature of the thermo-elastic martensitic transformations. In addition, a pseudo relaxation peak strongly dependent on time has been found and analyzed, concluding that it is linked to a pinning effect of martensite interfaces by point defects.

  7. Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography

    PubMed Central

    Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry

    2015-01-01

    We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka’s close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans. PMID:25780725

  8. Presence of aflatoxin M1 in commercial ultra-high-temperature-treated milk.

    PubMed Central

    Blanco, J L; Domínguez, L; Gómez-Lucía, E; Garayzabal, J F; García, J A; Suárez, G

    1988-01-01

    Forty-seven samples of commercial ultra-high-temperature-treated milk from a dairy facility in the northwest part of Spain were analyzed for the presence of aflatoxin M1. A total of 14 samples (29.8%) were positive for aflatoxin M1 (4 in May, 3 in November, 3 in December, 1 in January, 1 in April, 1 in July, and 1 in August), 29 (61.7%) were negative, and 4 (8.5%) were doubtful, i.e., they showed trace quantities of aflatoxin M1. The range of aflatoxin M1 content was 0.02 to 0.1 ng/ml. PMID:3137868

  9. A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields.

    PubMed

    Assig, Maximilian; Etzkorn, Markus; Enders, Axel; Stiepany, Wolfgang; Ast, Christian R; Kern, Klaus

    2013-03-01

    We present design and performance of a scanning tunneling microscope (STM) that operates at temperatures down to 10 mK providing ultimate energy resolution on the atomic scale. The STM is attached to a dilution refrigerator with direct access to an ultra high vacuum chamber allowing in situ sample preparation. High magnetic fields of up to 14 T perpendicular and up to 0.5 T parallel to the sample surface can be applied. Temperature sensors mounted directly at the tip and sample position verified the base temperature within a small error margin. Using a superconducting Al tip and a metallic Cu(111) sample, we determined an effective temperature of 38 ± 1 mK from the thermal broadening observed in the tunneling spectra. This results in an upper limit for the energy resolution of ΔE = 3.5 kBT = 11.4 ± 0.3 μeV. The stability between tip and sample is 4 pm at a temperature of 15 mK as demonstrated by topography measurements on a Cu(111) surface. PMID:23556826

  10. Noise source detection and measurement in a supersonic air jet using Ultra-high Speed Rainbow Schlieren Deflectometry

    NASA Astrophysics Data System (ADS)

    Rajora, Manik; Agrawal, Ajay; Mitchell, William; Kolhe, Pankaj

    2012-11-01

    Supersonic jets emit noise from various regions including the shear layer containing vortical structures, various shock cell structures in the near field and the downstream jet core breakdown region. Sound waves emitted from these various regions interact with each other and produce distinct noise spectra away from the jet, which depends upon the measurement location. Typically sound is detected by intrusive probes that provide measurements at a specific location, which makes it difficult to identify the origination point of such noise in a supersonic jet. In this study, an ultra-high speed Rainbow Schlieren Deflectometry (RSD) technique has been developed to optically visualize not only the supersonic jet flow but also the sound waves emanating from it in real time. Color schlieren images are acquired at up to 250,000 frames per second to capture the sound wave propagation with adequate spatial resolution. Optical components of the system were optimized to improve the spatial and temporal resolutions and hence, the schlieren video quality. To the best of our knowledge, this is the first time sound wave propagation from supersonic jets has been recorded in real time on a schlieren video. Acquired color schlieren images are amenable to quantitative analysis, and can provide data on sound power and sound wave frequency across the whole field. This project was funded by NSF REU 1062611 and Department of Energy for Institue for Sustainable Energy EE003134.

  11. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  12. An evaluation of an ultra-high-volume airborne particulate sampler, the LEAP.

    PubMed

    Tu, K W

    1984-06-01

    A modified ultra-high-volume liquid electrostatic aerosol precipitator sampler (LEAP) was calibrated with near monodisperse aerosols of water-soluble and insoluble materials in the size range of 0.02 to 4 microns diameter. The water-soluble materials were ammonium sulfate and ammonium hydrogen sulfate. The insoluble materials included carnauba wax, stearic acid, silver chloride and Y(THD)3. The particulate collection efficiency of the unit ranged from 40 to 98%, depending on particle size, sampling air flow and also on particle material. Tests with water-soluble aerosols showed higher collection efficiency than those with the insoluble aerosols by about 2 to 10%. A sharp decline in the collection efficiency for the particles smaller than 0.1 micron was observed. A comparison with the available manufacturer's data for the particle diameters of 0.1 to 3 microns suggests that the manufacturer overestimated the collection efficiency by 6 to 20% for an air flow of 10 m3/min. We consider the LEAP to be a useful ultra-high volume sampler, especially suited for low-level or short-term sampling. PMID:6741789

  13. Evaluation of an ultra-high-volume airborne particulate sampler, the LEAP

    SciTech Connect

    Tu, K.W.

    1984-06-01

    A modified ultra-high-volume liquid electrostatic aerosol precipitator sampler (LEAP) was calibrated with near monodisperse aerosols of water-soluble and insoluble materials in the size range of 0.02 to 4 ..mu..m diameter. The water-soluble materials were ammonium sulfate and ammonium hydrogen sulfate. The insoluble materials included carnauba wax, stearic acid, silver chloride and Y(THD)/sub 3/. The particulate collection efficiency of the unit ranged from 40 to 98%, depending on particle size, sampling air flow and also on particle material. Tests with water-soluble aerosols showed higher collection efficiency than those with the insoluble aerosols by about 2 to 10%. A sharp decline in the collection efficiency for the particles smaller than 0.1 ..mu..m was observed. A comparison with the available manufacturer's data for the particle diameters of 0.1 to 3 ..mu..m suggests that the manufacturer overestimated the collection efficiency by 6 to 20% for an air flow of 10 m/sup 3//min. The LEAP is considered to be a useful ultra-high volume sampler, especially suited for low-level or short-term sampling.

  14. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    SciTech Connect

    Tran, Ngoc Thanh; Tran, Tuan Kiet; Kim, Dong Joo

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  15. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    NASA Astrophysics Data System (ADS)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, Sanghyeon; Choi, Won Jun

    2016-02-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  16. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction.

    PubMed

    Prasad, K Nagendra; Yang, Bao; Shi, John; Yu, Chunyan; Zhao, Mouming; Xue, Sophia; Jiang, Yueming

    2010-01-20

    The health benefits of fruits acting against chronic diseases are ascribed to their antioxidant activities which are mainly responsible due to the presence of phenolic compounds. The use of ultra-high-pressure-assisted extraction (UHPE) has shown great advantages for the extraction of these phenolic compounds from longan fruit pericarp (LFP). Studies were carried out to investigate the effects of UHPE at pressures of 200, 300, 400 and 500 MPa on total phenolic contents, extraction yield, antioxidant and antityrosinase activities from LFP. The antioxidant activities of these extracts were analyzed, using various antioxidant models like 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, total antioxidant capacity and superoxide anion radical scavenging activity. Extract from ultra-high-pressure-assisted extraction at 500MPa (UHPE-500) showed the highest antioxidant activities of all the tested models. In addition, it also showed moderate tyrosinase inhibitory activity. Three phenolic acids, namely gallic acid, ellagic acid, and corilagin were identified and quantified by HPLC. Corilagin content was the highest compared to other phenolic acids identified. UHPE-500 obtained the higher phenolic acid contents compared to other high pressure processing and conventional extractions (CE). Compared with CE, UHPE-500 exhibited good extraction effectiveness in terms of higher extraction yields with high phenolic contents and also with higher antioxidant and antityrosinase activities. PMID:19345542

  17. Aspects of ultra-high-precision diamond machining of RSA 443 optical aluminium

    NASA Astrophysics Data System (ADS)

    Mkoko, Z.; Abou-El-Hossein, K.

    2015-08-01

    Optical aluminium alloys such as 6061-T6 are traditionally used in ultra-high precision manufacturing for making optical mirrors for aerospace and other applications. However, the optics industry has recently witnessed the development of more advanced optical aluminium grades that are capable of addressing some of the issues encountered when turning with single-point natural monocrystalline diamond cutters. The advent of rapidly solidified aluminium (RSA) grades has generally opened up new possibilities for ultra-high precision manufacturing of optical components. In this study, experiments were conducted with single-point diamond cutters on rapidly solidified aluminium RSA 443 material. The objective of this study is to observe the effects of depth of cut and feed rate at a fixed rotational speed on the tool wear rate and resulting surface roughness of diamond turned specimens. This is done to gain further understanding of the rate of wear on the diamond cutters versus the surface texture generated on the RSA 443 material. The diamond machining experiments yielded machined surfaces which are less reflective but with consistent surface roughness values. Cutting tools were observed for wear through scanning microscopy; relatively low wear pattern was evident on the diamond tool edge. The highest tool wear were obtained at higher depth of cut and increased feed rate.

  18. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  19. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb. PMID:27370472

  20. Processing and evaluation of the AGS Booster ultra-high vaccum system

    SciTech Connect

    Hseuh, H.C.; Mapes, M.; Schnitzenbaumer, P.; Shen, B.; Sikora, R.; Stattel, P.

    1991-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. To minimize the beam loss due to charge exchange of the partially stripped, low {Beta} very heavy ions with the residual gas molecules, pressure of low 10{sup {minus}11} Torr is required for the 200 m booster ring. To achieve this ultra high vacuum, chemical cleaning, vacuum furnace degassing and insitu bake were employed for all chambers and beam components. Using these procedures, vacuums of low 10{sup {minus}11} Torr have been routinely achieved during the testing of individual half cells and beam components, and during the commissioning of the vacuum sectors. In this paper, the design and layout of chambers, flanges and bakeout hardware is briefly described. The vacuum processing of different components and the results of bakeout and evaluation are summarized. The experience gained during the construction and commissioning of this ultra-high vacuum system is also given. 3 refs., 3 figs., 1 tab.

  1. Repeated Strike Process During Disconnector Operation in Ultra-High Voltage Gas-Insulated Switchgear

    NASA Astrophysics Data System (ADS)

    Guan, Yonggang; Cai, Yuanji; Chen, Weijiang; Liu, Weidong; Li, Zhibing; Yue, Gongchang; Zhang, Junmin

    2016-03-01

    Very fast transient over-voltage (VFTO), induced by disconnector operations in gas-insulated switchgears, has become the limiting dielectric stress at ultra-high voltage levels. Much work has been done to investigate single-strike waveforms of VFTO. However, little study has been carried out investigating the repeated strike process, which would influence VFTO significantly. In this paper, we carried out 450 effective experiments in an ultra-high voltage test circuit, and conducted calculations through the Monte Carlo simulation method, to investigate the repeated strike process. Firstly, the mechanism of the repeated strike process is proposed, based on the experimental results. Afterwards, statistical breakdown characteristics of disconnectors are obtained and analyzed. Finally, simulations of the repeated strike process are conducted, which indicate that the dielectric strength recovery speed and polarity effect factor have a joint effect on VFTO. This study enhances the understanding of the nature of VFTO, and may help to optimize the disconnector designed to minimize VFTO. supported in part by National Natural Science Foundation of China (No. 51277106) and in part by the National Basic Research Program of China (973 Program) (No. 2011CB209405)

  2. A novel multichannel nonintensified ultra-high-speed camera using multiwavelength illumination

    NASA Astrophysics Data System (ADS)

    Hijazi, Ala; Madhavan, Vis

    2006-08-01

    Multi-channel gated-intensified cameras are commonly used for capturing images at ultra-high frame rates. However, the image intensifier reduces the image resolution to such an extent that the images are often unsuitable for applications requiring high quality images, such as digital image correlation. We report on the development of a new type of non-intensified multi-channel camera system that permits recording of image sequences at ultra-high frame rates at the native resolution afforded by the imaging optics and the cameras used. This camera system is based upon the use of short duration light pulses of different wavelengths for illumination of the target and the use of wavelength selective elements in the imaging system to route each particular wavelength of light to a particular camera. A prototype of this camera system comprising four dual-frame cameras synchronized with four dual-cavity lasers producing laser pulses of four different wavelengths is described. The camera is built around a stereo microscope such that it can capture image sequences usable for 2D or 3D digital image correlation. The camera described herein is capable of capturing images at frame rates exceeding 100 MHz. The camera was used for capturing microscopic images of the chip-workpiece interface area during high speed machining. Digital image correlation was performed on the obtained images to map the shear strain rate in the primary-shear-zone during high speed machining.

  3. Widespread inflammation in CLIPPERS syndrome indicated by autopsy and ultra-high-field 7T MRI

    PubMed Central

    Blaabjerg, Morten; Ruprecht, Klemens; Sinnecker, Tim; Kondziella, Daniel; Niendorf, Thoralf; Kerrn-Jespersen, Bjørg Morell; Lindelof, Mette; Lassmann, Hans; Kristensen, Bjarne Winther; Paul, Friedemann

    2016-01-01

    Objective: To examine if there is widespread inflammation in the brain of patients with chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) syndrome by using histology and ultra-high-field MRI at 7.0T. Methods: We performed a detailed neuropathologic examination in 4 cases, including 1 autopsy case, and studied 2 additional patients by MRI at 7.0T to examine (1) extension of inflammation to areas appearing normal on 3.0T MRI, (2) potential advantages of 7.0T MRI compared to 3.0T MRI in reflecting widespread inflammation, perivascular pathology, and axonal damage, and (3) the possibility of lymphoma. Results: In the autopsy case, perivascular inflammation dominated by CD4+ T cells was not only detected in the brainstem and cerebellum but also in brain areas with normal appearance on 3.0T MRI, including supratentorial regions and cranial nerve roots. There was no evidence of lymphoma in any of the 4 patients. The 7.0T MRI in clinical remission also revealed supratentorial lesions and perivascular pathology in vivo with contrast-enhancing lesions centered around a small venous vessel. Ultra-high-field MRI at 7.0T disclosed prominent T1 hypointensities in the brainstem, which were not seen on 3.0T MRI. This corresponded to neuropathologic detection of axonal injury in the autopsy case. Conclusion: Our findings suggest more widespread perivascular inflammation and postinflammatory axonal injury in patients with CLIPPERS. PMID:27144217

  4. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  5. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    SciTech Connect

    Shilton, Richie J.; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-18

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754 MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w ≳ 10 λ, where λ is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  6. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  7. High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems

    SciTech Connect

    Hendricks, T.J.; Huang, C.

    1999-07-01

    Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversion efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.

  8. Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet

    SciTech Connect

    Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I.; Manuilov, V. N.; Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K.

    2006-01-03

    An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

  9. Ultra High Quality Factor Microtoroid for Chemical and Biomedical Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kim, Woosung

    Optical whispering gallery mode (WGM) microcavities have drawn attentions in various types of sensing, such as chemical- and bio-sensing. Even though various types of microcavity geometries have been investigated, research about on-chip WGM toroidal resonator has been discontinued for the sensing applications in aquatic environment. The strong benefits of the microtoroid are ultra-high-Q and small mode volume leading to high sensitivity to small change of environment, surrounding media refractive index change or light scatterer induced effective refractive index change. By using this ultra high-Q WGM resonator, radius >75nm polystyrene nanoparticle are detected in aquatic environment. In addition to polystyrene nanoparticle sensing, individual synthetic hemozoin crystals are detected and its size is measured. The hemozoin crystal sensing ultimately leads to malaria infection diagnose. A sol-gel method fabricated microlaser, co-work with Lina He, extended the sensing capability, detecting >30nm radius polystyrene nanoparticle. Since the water experiment is challenging and tackling the difficulty is main task, theoretical investigations are performed about WGM resonance quality factor, resonator mode volume, and noise to minimum detectable particle size. The research described in this dissertation will shed light on advanced chemical- and bio-sensor developments.

  10. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications.

    PubMed

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called "Si photonics"). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  11. Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi

    2016-04-01

    An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.

  12. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator

    PubMed Central

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-01-01

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g−1cathode capacity after 50 cycles, which is equivalent to 800 mAh g−1S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved. PMID:27573528

  13. Design and analysis of a direct-drive wind power generator with ultra-high torque density

    NASA Astrophysics Data System (ADS)

    Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong

    2015-05-01

    In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.

  14. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator.

    PubMed

    Kim, Kwi Ryong; Lee, Kug-Seung; Ahn, Chi-Yeong; Yu, Seung-Ho; Sung, Yung-Eun

    2016-01-01

    Lithium-sulphur batteries are under intense research due to the high specific capacity and low cost. However, several problems limit their commercialization. One of them is the insulating nature of sulphur, which necessitates a large amount of conductive agent and binder in the cathode, reducing the effective sulphur load as well as the energy density. Here we introduce a redox mediator, cobaltocene, which acts as an electron transfer agent between the conductive surface and the polysulphides in the electrolyte. We confirmed that cobaltocene could effectively convert polysulphides to Li2S using scanning electron microscope, X-ray absorption near-edge structure and in-situ X-ray diffraction studies. This redox mediator enabled excellent electrochemical performance in a cathode with ultra-high sulphur content (80 wt%). It delivered 400 mAh g(-1)cathode capacity after 50 cycles, which is equivalent to 800 mAh g(-1)S in a typical cathode with 50 wt% sulphur. Furthermore, the volumetric capacity was also dramatically improved. PMID:27573528

  15. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform.

    PubMed

    Mo, Xiu-Lei; Luo, Yin; Ivanov, Andrei A; Su, Rina; Havel, Jonathan J; Li, Zenggang; Khuri, Fadlo R; Du, Yuhong; Fu, Haian

    2016-06-01

    Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery. PMID:26578655

  16. PREFACE: Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Haozhe; Wenk, Hans-Rudolf; Duffy, Thomas S.

    2006-06-01

    One of the major goals of geophysical research is to understand deformation in the deep Earth. The COMPRES (Consortium for Materials Properties Research in Earth Sciences) workshop on `Rheology and Elasticity Studies at Ultra-High Pressures and Temperatures' was held on 21-23 October 2005 at the Advanced Photon Source, Argonne National Laboratory, organized by Haozhe Liu, Hans-Rudolf Wenk and Thomas S Duffy, and provided an opportunity to assemble more than 50 scientists from six countries. Experts in diamond anvil cell (DAC) design, large-volume high-pressure apparatus and data analysis defined the current state of ultra-high pressure deformation studies and explored initiatives to push the technological frontier. The DAC, when used in radial diffraction geometry, emerges as a powerful tool for investigation of plasticity and elasticity of materials at high pressures. More information regarding this workshop can be found at the website: http://www.hpcat.aps.anl.gov/Hliu/Workshop/Index1.htm. In this special issue of Journal of Physics: Condensed Matter, 17 manuscripts review the state-of-the-art and we hope they will stimulate researchers to participate in this field and take it forward to a new level. A major incentive for high-pressure research has been the need of geophysicists to understand composition, physical properties and deformation in the deep Earth in order to interpret the macroscopically observed seismic anisotropy. In the mantle and core, materials deform largely in a ductile manner at low stresses and strain rates. From observational inferences and experiments at lower pressures, it is considered plausible that deformation occurs in the field of dislocation creep or diffusion creep and deformation mechanisms depend in a complex way on stress, strain rate, pressure, temperature, grain size and hydration state. With novel apparatus such as the rotational Drickamer press or deformation DIA (D-DIA) multianvil apparatus, large volumes (approximately 10

  17. Social Cognition in Individuals at Ultra-High Risk for Psychosis: A Meta-Analysis

    PubMed Central

    van Donkersgoed, R. J. M.; Wunderink, L.; Nieboer, R.; Aleman, A.; Pijnenborg, G. H. M.

    2015-01-01

    Objective Treatment in the ultra-high risk stage for a psychotic episode is critical to the course of symptoms. Markers for the development of psychosis have been studied, to optimize the detection of people at risk of psychosis. One possible marker for the transition to psychosis is social cognition. To estimate effect sizes for social cognition based on a quantitative integration of the published evidence, we conducted a meta-analysis of social cognitive performance in people at ultra high risk (UHR). Methods A literature search (1970-July 2015) was performed in PubMed, PsychINFO, Medline, Embase, and ISI Web of Science, using the search terms ‘social cognition’, ‘theory of mind’, ‘emotion recognition’, ‘attributional style’, ‘social knowledge’, ‘social perception’, ‘empathy’, ‘at risk mental state’, ‘clinical high risk’, ‘psychosis prodrome’, and ‘ultra high risk’. The pooled effect size (Cohen’s D) and the effect sizes for each domain of social cognition were calculated. A random effects model with 95% confidence intervals was used. Results Seventeen studies were included in the analysis. The overall significant effect was of medium magnitude (d = 0.52, 95% Cl = 0.38–0.65). No moderator effects were found for age, gender and sample size. Sub-analyses demonstrated that individuals in the UHR phase show significant moderate deficits in affect recognition and affect discrimination in faces as well as in voices and in verbal Theory of Mind (TOM). Due to an insufficient amount of studies, we did not calculate an effect size for attributional bias and social perception/ knowledge. A majority of studies did not find a correlation between social cognition deficits and transition to psychosis, which may suggest that social cognition in general is not a useful marker for the development of psychosis. However some studies suggest the possible predictive value of verbal TOM and the recognition of specific emotions in faces

  18. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  19. Examination of the vocal fold activity using ultra high speed filming: archival recordings by Paul Moore and Hans von Leden

    NASA Astrophysics Data System (ADS)

    Izdebski, Krzysztof; Vaughan, Laura

    2012-02-01

    We present excerpts from three archival ultra high-speed films on the function of the human larynx by Paul Moore, Ph. D. and Hans von Leden, M.D. The films received two awards for best scientific cinematography from two different international film festivals in Italy in 1957. These films present ultra high-speed cinematographic accounts on the workings of the human vocal folds during various phonatory and ventilatory activities. These films were captured at speeds of 2000 to 5000 frames-per-second via an ingeniously arranged laryngeal mirror viewing device. Such speeds were revolutionary six decades ago. Technology currently allows us to film laryngeal behavior at speeds of up to 16,000 frames-per-second using digital recordings. However, the ultra high-speed films by Paul and Hans remain a beacon for anyone sincerely interested in how the smallest instrument of sound production works, and how it is subjected to failure by intrinsic or extrinsic factors.

  20. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. PMID:26993530

  1. Simultaneous trace determination of acidic non-steroidal anti-inflammatory drugs in purified water, tap water, juice, soda and energy drink by hollow fiber-based liquid-phase microextraction and ultra-high pressure liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Zhang, Haojie; Du, Zhenxia; Ji, Yu; Mei, Mei

    2013-05-15

    In this study, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) coupling with ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for determination of four non-steroidal anti-inflammatory (NSAIDs)-salicylic acid, ibuprofen, naproxen and diclofenac in real water samples. The influencing parameters of HF-LPME sample preparation method, such as organic solvents (acceptor phase), pH of sample solution (donor phase), extraction time, stirring speed, extraction temperature and ionic strength were systematically optimized. Through the developed determination method, high enrichment factors (195-346) were achieved for the four drugs. The instrumental calibration curves of salicylic acid, naproxen, diclofenac, and ibuprofen show good linear relations (R>0.998) in the concentration range of 1-500, 5-2500, 10-5000 and 5-2500 μg L(-1), respectively. The average recoveries of the four drugs in the low, medium and high spiked concentration levels (20-200, 50-500 and 100-1000 μg L(-1)) were between 98-115% with relative standard deviation (RSD) values were less than 12% (n=6). Limits of detection (LOD) of salicylic acid, naproxen, diclofenac, and ibuprofen in water were 0.5, 0.5, 1.0, and 1.25 μg L(-1), respectively. The determination method has been applied for the real samples (purified water, tap water, juice, soda and energy drinks), and the results show that salicylic acid was detected in tap water and soda, the concentrations were 2.85 μg L(-1) and 61.22 μg L(-1) separately, the RSD values were less than 9% (n=6). Salicylic acid and diclofenac were detected in energy drink, the concentrations were 44.62 μg L(-1) and 8.31 μg L(-1), the RSD values were less than 11% (n=6). PMID:23618157

  2. Friction, wear, transfer and wear surface morphology of ultra-high-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1983-01-01

    Tribological studies at 25 C in a 50-percent-relative-humidity air atmosphere were conducted using hemispherically tipped 440 C HT (high temperature) stainless steel pins sliding against ultra-high-molecular-weight polyethylene (UHMWPE) disks. The results indicate that sliding speed, sliding distance, contact stress and specimen geometry can markedly affect friction, UHMWPE wear, UHMWPE transfer and the type of wear mechanisms that occur. Adhesion appears to be the predominant wear mechanism; but after long sliding distances at slow speeds, heavy ridges of transfer result which can induce fatigue-like wear on the UHMWPE disk wear track. In one instance, abrasive wear to the metallic pin was observed. This was caused by a hard particle embedded in the UHMWPE disk wear track.

  3. Review of 2H-tetraphenylporphyrins metalation in ultra-high vacuum on metal surfaces

    NASA Astrophysics Data System (ADS)

    Panighel, M.; Di Santo, G.; Caputo, M.; Lal, C.; Taleatu, B.; Goldoni, A.

    2013-12-01

    The formation and conformational adaptation of self-assembled monolayer of 2H-tetraphenylporphyrins (2H-TPPs) on metal surfaces, as well as their metalation processes in ultra-high vacuum (UHV), are reviewed. By means of XPS, NEXAFS and STM measurements we demonstrate that, after the annealing at 550 K, a temperature-induced chemical modification of 2H-TPP monolayer on Ag(111) occurs, resulting in the rotation of the phenyl rings parallel to the substrate plane. Moreover, independently of the conformation, we report three different methods to metalate 2H-TPP monolayers in UHV. Experimental evidence indicates that the presence of a metal atom in the TPP macrocycle influences both the conformation of the molecule and its adsorption distance.

  4. Native defects in ultra-high vacuum grown graphene islands on Cu(1 1 1).

    PubMed

    Hollen, S M; Tjung, S J; Mattioli, K R; Gambrel, G A; Santagata, N M; Johnston-Halperin, E; Gupta, J A

    2016-01-27

    We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum decomposition of ethylene on Cu(1 1 1). We characterize these defects through a survey of their apparent heights, atomic-resolution imaging, and detailed tunneling spectroscopy. Bright defects that occur only in graphene regions are identified as C site point defects in the graphene lattice and are most likely single C vacancies. Dark defect types are observed in both graphene and Cu regions, and are likely point defects in the Cu surface. We also present data showing the importance of bias and tip termination to the appearance of the defects in STM images and the ability to achieve atomic resolution. Finally, we present tunneling spectroscopy measurements probing the influence of point defects on the local electronic landscape of graphene islands. PMID:26704193

  5. Influence of amorphous silica on the hydration in ultra-high performance concrete

    SciTech Connect

    Oertel, Tina; Helbig, Uta; Hutter, Frank; Kletti, Holger; Sextl, Gerhard

    2014-04-01

    Amorphous silica particles (silica) are used in ultra-high performance concretes to densify the microstructure and accelerate the clinker hydration. It is still unclear whether silica predominantly increases the surface for the nucleation of C–S–H phases or dissolves and reacts pozzolanically. Furthermore, varying types of silica may have different and time dependent effects on the clinker hydration. The effects of different silica types were compared in this study by calorimetric analysis, scanning and transmission electron microscopy, in situ X-ray diffraction and compressive strength measurements. The silica component was silica fume, pyrogenic silica or silica synthesized by a wet-chemical route (Stoeber particles). Water-to-cement ratios were 0.23. Differences are observed between the silica for short reaction times (up to 3 days). Results indicate that silica fume and pyrogenic silica accelerate alite hydration by increasing the surface for nucleation of C–S–H phases whereas Stoeber particles show no accelerating effect.

  6. The nano-mechanical signature of Ultra High Performance Concrete by statistical nanoindentation techniques

    SciTech Connect

    Sorelli, Luca Constantinides, Georgios; Ulm, Franz-Josef; Toutlemonde, Francois

    2008-12-15

    Advances in engineering the microstructure of cementitious composites have led to the development of fiber reinforced Ultra High Performance Concretes (UHPC). The scope of this paper is twofold, first to characterize the nano-mechanical properties of the phases governing the UHPC microstructure by means of a novel statistical nanoindentation technique; then to upscale those nanoscale properties, by means of continuum micromechanics, to the macroscopic scale of engineering applications. In particular, a combined investigation of nanoindentation, scanning electron microscope (SEM) and X-ray Diffraction (XRD) indicates that the fiber-matrix transition zone is relatively defect free. On this basis, a four-level multiscale model with defect free interfaces allows to accurately determine the composite stiffness from the measured nano-mechanical properties. Besides evidencing the dominant role of high density calcium silicate hydrates and the stiffening effect of residual clinker, the suggested model may become a useful tool for further optimizing cement-based engineered composites.

  7. High frequency ultrasound detection with ultra-high-Q silica microspheres

    NASA Astrophysics Data System (ADS)

    Chistiakova, Maria V.; Armani, Andrea M.

    2015-03-01

    Due to the nondestructive and noninvasive nature of ultrasound imaging, the technique has a variety of applications in many fields, most notably in healthcare and electronics. Ultrasound detection based on optical microcavities has emerged as one accurate and sensitive method. While previous research using polymer microring cavities showed detection based on device deformation, the approach presented here relied on the photoelastic effect. In this effect, the ultrasound wave induces a strain in the medium leading to a refractive index change. This effect was shown experimentally and in a COMSOL simulation with the use of ultra high quality factor silica microspheres. With an increase in quality factor and input power from previous research, the device response is increased and the noise equivalent pressure is decreased. The simulations presented use the finite element method and integrate acoustic and optics components of the system. The predictive accuracy of the simulation is also presented.

  8. Mechanical flip-chip for ultra-high electron mobility devices

    SciTech Connect

    Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; Laroche, Dominique; Lilly, Michael P.; Reno, John L.; West, Ken W.; Pfeiffer, Loren N.; Gervais, Guillaume

    2015-09-22

    In this study, electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility.

  9. Note: A simple sample transfer alignment for ultra-high vacuum systems

    NASA Astrophysics Data System (ADS)

    Tamtögl, A.; Carter, E. A.; Ward, D. J.; Avidor, N.; Kole, P. R.; Jardine, A. P.; Allison, W.

    2016-06-01

    The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.

  10. Mechanical Flip-Chip for Ultra-High Electron Mobility Devices

    PubMed Central

    Bennaceur, Keyan; Schmidt, Benjamin A.; Gaucher, Samuel; Laroche, Dominique; Lilly, Michael P.; Reno, John L.; West, Ken W.; Pfeiffer, Loren N.; Gervais, Guillaume

    2015-01-01

    Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility. PMID:26391400

  11. Detection of peroxy species in ultra-high-molecular-weight polyethylene by Raman spectroscopy.

    PubMed

    Chenery, D H

    1997-03-01

    Samples of gamma-sterilized ultra-high-molecular-weight polyethylene (UHMWPE) have been examined using infrared and Raman spectroscopies. Infrared spectra of microtomed sections of a thick segment of material exhibited carbonyl bands whose intensity was consistent with published data. Raman spectroscopy has been used for the first time to detect oxidized precursors to the commonly found carbonyl species. Gamma-sterilized plates examined as soon as possible after sterilization exhibited bands consistent with epoxide, alcohol and three different peroxy-containing species. The detection of these species in irradiated UHMWPE is reported for the first time and demonstrates that oxidation of this material proceeds via a gamma-induced free radical mechanism, as has been widely assumed. PMID:9061182

  12. Evaluation of Quantum Scattering Time in Ultra-High Quality GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Qian, Qi; Mondal, Sumit; Gardner, Geoffrey C.; Watson, John D.; Manfra, Michael J.

    2015-03-01

    We present a critical analysis of the extraction of quantum scattering time from Shubnikov-de Haas oscillations in ultra-high quality GaAs quantum wells. In the regime of temperature and magnetic field study here (T ~0.3K, B <=0.3T) we find the canonical method for determination of quantum scattering time yields unreliable results (cf.). We elaborate a formalism that allows extraction of the quantum scattering time in a regime in which the normalized modulation of the density of states Δg /g0 is greater than unity. This approach describes well low-field data for samples that display very large excitation gaps for fragile fractional quantum Hall states at large magnetic field.

  13. Feasibility of ultra high performance supercritical neat carbon dioxide chromatography at conventional pressures.

    PubMed

    Sarazin, Cédric; Thiébaut, Didier; Sassiat, Patrick; Vial, Jérôme

    2011-10-01

    The implementation of columns packed with sub-2 μm particles in supercritical fluid chromatography (SFC) is described using neat carbon dioxide as the mobile phase. A conventional supercritical fluid chromatograph was slightly modified to reduce extra column band broadening. Performances of a column packed with 1.8 μm C18-bonded silica particles in SFC using neat carbon dioxide as the mobile phase were compared with results obtained in ultra high performance liquid chromatography (UHPLC) using a dedicated chromatograph. As expected and usual in SFC, higher linear velocities than in UHPLC must be applied in order to reach optimal efficiency owing to higher diffusion coefficient of solutes in the mobile phase; similar numbers of theoretical plates were obtained with both techniques. Very fast separations of hydrocarbons are presented using two different alkyl-bonded silica columns. PMID:21898804

  14. Viscoelasticity of glycerol at ultra-high frequencies investigated via molecular dynamics simulations.

    PubMed

    Lacevic, Naida M; Sader, John E

    2016-02-01

    We present a calculation of the shear and longitudinal moduli of glycerol in the gigahertz frequency regime and temperature range between 273 K and 323 K using classical molecular dynamics simulations. The full frequency spectra of shear and longitudinal moduli of glycerol between 0.5 GHz and 100 GHz at room temperature are computed, which was not previously available from experiments or simulations. We also demonstrate that the temperature dependence of the real parts of the shear and longitudinal moduli agrees well with available experimental counterparts obtained via time-domain Brillouin scattering. This work provides new insights into the response of molecular liquids to ultra-high frequency excitation and opens a new pathway for studying simple liquids at high frequencies and strain rates. PMID:26851926

  15. Equal channel angular extrusion of ultra-high molecular weight polyethylene.

    PubMed

    Reinitz, Steven D; Engler, Alexander J; Carlson, Evan M; Van Citters, Douglas W

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. PMID:27287161

  16. Open Science CBS Neuroimaging Repository: Sharing ultra-high-field MR images of the brain.

    PubMed

    Tardif, Christine Lucas; Schäfer, Andreas; Trampel, Robert; Villringer, Arno; Turner, Robert; Bazin, Pierre-Louis

    2016-01-01

    Magnetic resonance imaging at ultra high field opens the door to quantitative brain imaging at sub-millimeter isotropic resolutions. However, novel image processing tools to analyze these new rich datasets are lacking. In this article, we introduce the Open Science CBS Neuroimaging Repository: a unique repository of high-resolution and quantitative images acquired at 7 T. The motivation for this project is to increase interest for high-resolution and quantitative imaging and stimulate the development of image processing tools developed specifically for high-field data. Our growing repository currently includes datasets from MP2RAGE and multi-echo FLASH sequences from 28 and 20 healthy subjects respectively. These datasets represent the current state-of-the-art in in-vivo relaxometry at 7 T, and are now fully available to the entire neuroimaging community. PMID:26318051

  17. Mechanical Flip-Chip for Ultra-High Electron Mobility Devices.

    PubMed

    Bennaceur, Keyan; Schmidt, Benjamin A; Gaucher, Samuel; Laroche, Dominique; Lilly, Michael P; Reno, John L; West, Ken W; Pfeiffer, Loren N; Gervais, Guillaume

    2015-01-01

    Electrostatic gates are of paramount importance for the physics of devices based on high-mobility two-dimensional electron gas (2DEG) since they allow depletion of electrons in selected areas. This field-effect gating enables the fabrication of a wide range of devices such as, for example, quantum point contacts (QPC), electron interferometers and quantum dots. To fabricate these gates, processing is usually performed on the 2DEG material, which is in many cases detrimental to its electron mobility. Here we propose an alternative process which does not require any processing of the 2DEG material other than for the ohmic contacts. This approach relies on processing a separate wafer that is then mechanically mounted on the 2DEG material in a flip-chip fashion. This technique proved successful to fabricate quantum point contacts on both GaAs/AlGaAs materials with both moderate and ultra-high electron mobility. PMID:26391400

  18. Ultra-high crystallinity millimeter long multiwall carbon nanotubes fabricated by mechanothermal method

    NASA Astrophysics Data System (ADS)

    Manafi, S. A.; Rahimipour, M. R.; Soltanmoradi, A.

    2012-09-01

    In this work, multi-walled carbon nanotubes (MWCNTs) with ultra-high crystalline structure have been prepared by mechanothermal (MT) method. The novel super nanostructure is introduced for the first time as an extraordinary fullerene-carbon based material which, due to its special electronic and mechanical properties, can be used to construct unique building blocks for nanoengineering. Initially, high ultra-active graphite powder has been obtained by mechanical activation under Ar atmosphere. Finally, the mechanically activated product is heat-treated at 1350 °C for 3-4 h under an Ar gas flow. However, the crystallite size and crystallinity degree of the MWCNTs increased with the increase in annealing temperature.

  19. Ultra-high resolution optical trap with single fluorophore sensitivity”

    PubMed Central

    Comstock, Matthew J; Ha, Taekjip; Chemla, Yann R

    2013-01-01

    We present a single-molecule instrument that combines a timeshared ultra-high resolution dual optical trap interlaced with a confocal fluorescence microscope. In a demonstration experiment, individual single-fluorophore labeled DNA oligonucleotides were observed to bind and unbind to complementary DNA suspended between two trapped beads. Simultaneous with the single-fluorophore detection, coincident angstrom-scale changes in tether extension could be clearly observed. Fluorescence readout allowed us to determine the duplex melting rate as a function of force. The new instrument will enable the simultaneous measurement of angstrom-scale mechanical motion of individual DNA-binding proteins (e.g., single base pair stepping of DNA translocases) along with the detection of fluorescently labeled protein properties (e.g., internal configuration). PMID:21336286

  20. Gas and RRR distribution in high purity Niobium EB welded in Ultra-High Vacuum

    SciTech Connect

    Anakhov, S.; Singer, X.; Singer, W.; Wen, H.

    2006-05-24

    Electron beam (EB) welding in UHV (ultra-high vacuum, 10-5 divide 10-8 mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H2, O2, N2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1 divide 3 wt. ppm hydrogen and 5 divide 7 ppm oxygen and nitrogen), essential for high values of RRR - 350 divide 400 units. Gas content redistribution in the electron beam welded and heat affected region take place in the welding process. Correlation between gas solubility parameters, RRR and thermal conductivity are presented. Mechanisms of gas solubility in EB welding process are discussed.

  1. Tribological behavior of ultra-high molecular weight polyethylene in a hip joint simulator

    NASA Astrophysics Data System (ADS)

    Mohamad Raffi, N.; Kanagarajan, D.; Srinivasan, V.

    2012-12-01

    In this paper effects of various injection molding parameters on tribological properties of ultra-high molecular weight polyethylene (UHMWPE) were investigated. The tribological properties like coefficient of friction and wear rate were obtained from the experimental results of hip simulator which was designed and fabricated in the laboratory. Bovine serum was used as a lubricant in this study. In addition, the hardness of the specimen was also investigated as well. The injection molding parameters that varied for this study are melt temperature, injection velocity and compaction time. The results show that contact loads and melt temperature were mostly influenced the tribological behavior of UHMWPE. A wear mechanism map was developed to study the dominant wear mechanism that influences the wear behavior of UHMWPE. SEM was employed to study the worn out morphologies of UHMWPE. The dominant wear mechanisms that are dominated through our study are ironing, scratching, ploughing, plastic deformation, and fatigue wear.

  2. New-type steel plate with ultra high crack-arrestability

    SciTech Connect

    Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.; Yoshikawa, H.; Oshita, S.; Mabuchi, H.

    1995-12-31

    A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class for shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.

  3. Laser-machined ultra-high-Q microrod resonators for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Del'Haye, Pascal; Diddams, Scott A.; Papp, Scott B.

    2013-06-01

    Optical whispering-gallery microresonators are useful tools in microphotonics and non-linear optics at very low threshold powers. Here, we present details about the fabrication of ultra-high-Q whispering-gallery-mode resonators made by CO2-laser lathe machining of fused-quartz rods. The resonators can be fabricated in less than 1 min and the obtained optical quality factors exceed Q = 1 × 109. Demonstrated resonator diameters are in the range between 170 μm and 8 mm (free spectral ranges between 390 GHz and 8 GHz). Using these microresonators, a variety of optical nonlinearities are observed, including Raman scattering, Brillouin scattering, and four-wave mixing.

  4. FUNDAMENTAL PROPERTIES OF ULTRA HIGH PERFORMANCE-STRAIN HARDENING CEMENTITIOUS COMPOSITES AND USAGE FOR REPAIR

    NASA Astrophysics Data System (ADS)

    Kunieda, Minoru; Shimizu, Kosuke; Eguchi, Teruyuki; Ueda, Naoshi; Nakamura, Hikaru

    This paper presents the fundamental properties of Ultra High Performance-Strain Hardening Cementitious Composites (UHP-SHCC), which were depeloped for repair applications. In particular, mechanical properties such as tensile response, shrinkage and bond strength were investigated experimentally. Protective performance of the material such as air permeability, water permeability and penetration of chloride ion was also confirmed comparing to that of ordinary concrete. This paper also introduces the usage of the material in repair of concrete st ructures. Laboratory tests concerining the deterioration induced by corrosion were conducted. The UHP-SHCC that coverd the RC beam resisted not only crack opening along the rebar due to corrosion but also crack opening due to loading tests.

  5. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency.

    PubMed

    Cheben, Pavel; Schmid, Jens H; Wang, Shurui; Xu, Dan-Xia; Vachon, Martin; Janz, Siegfried; Lapointe, Jean; Painchaud, Yves; Picard, Marie-Josée

    2015-08-24

    Coupling of light to and from integrated optical circuits has been recognized as a major practical challenge since the early years of photonics. The coupling is particularly difficult for high index contrast waveguides such as silicon-on-insulator, since the cross-sectional area of silicon wire waveguides is more than two orders of magnitude smaller than that of a standard single-mode fiber. Here, we experimentally demonstrate unprecedented control over the light coupling between the optical fiber and silicon chip by constructing the nanophotonic coupler with ultra-high coupling efficiency simultaneously for both transverse electric and transverse magnetic polarizations. We specifically demonstrate a subwavelength refractive index engineered nanostructure to mitigate loss and wavelength resonances by suppressing diffraction effects, enabling a coupling efficiency over 92% (0.32 dB) and polarization independent operation for a broad spectral range exceeding 100 nm. PMID:26368222

  6. Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports

    NASA Astrophysics Data System (ADS)

    Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Oliver, Rachel A.; Bhardwaj, Sunil; Cepek, Cinzia; Robertson, John

    2013-08-01

    We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm-3. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ˜22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

  7. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  8. Isotopic Analysis of Spent Nuclear Fuel with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect

    Fast, James E.; Glasgow, Brian D.; Rodriguez, Douglas C.; VanDevender, Brent A.; Wood, Lynn S.

    2014-06-06

    A longstanding challenge is the assay of spent nuclear fuel (SNF). Determining the isotopic content of SNF requires gamma-ray spectroscopy. PNNL has developed new digital filtering and analysis techniques to produce an ultra high-rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This ~40% efficient detector has been operated for SNF measurements at a throughput of about 400k gamma-ray counts per second (kcps) at an input rate of 1.3 Mcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This talk will present the results of a SNF measurement with aged SNF pellets at PNNL’s Radiochemical Processing Laboratory, first results with a FPGA front end processor capable of processing the data in real time, and the development path toward a multi-element system to assay fuel assemblies.

  9. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James

    2016-06-01

    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  10. Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project

    SciTech Connect

    Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

    2011-09-01

    High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

  11. Native defects in ultra-high vacuum grown graphene islands on Cu(1 1 1)

    NASA Astrophysics Data System (ADS)

    Hollen, S. M.; Tjung, S. J.; Mattioli, K. R.; Gambrel, G. A.; Santagata, N. M.; Johnston-Halperin, E.; Gupta, J. A.

    2016-01-01

    We present a scanning tunneling microscopy (STM) study of native defects in graphene islands grown by ultra-high vacuum decomposition of ethylene on Cu(1 1 1). We characterize these defects through a survey of their apparent heights, atomic-resolution imaging, and detailed tunneling spectroscopy. Bright defects that occur only in graphene regions are identified as C site point defects in the graphene lattice and are most likely single C vacancies. Dark defect types are observed in both graphene and Cu regions, and are likely point defects in the Cu surface. We also present data showing the importance of bias and tip termination to the appearance of the defects in STM images and the ability to achieve atomic resolution. Finally, we present tunneling spectroscopy measurements probing the influence of point defects on the local electronic landscape of graphene islands.

  12. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators.

    PubMed

    Lin, Guoping; Diallo, Souleymane; Dudley, John M; Chembo, Yanne K

    2016-06-27

    Universal nonlinear scattering processes such as Brillouin, Raman, and Kerr effects are fundamental light-matter interactions of particular theoretical and experimental importance. They originate from the interaction of a laser field with an optical medium at the lattice, molecular, and electronic scale, respectively. These nonlinear effects are generally observed and analyzed separately, because they do not often occur concomitantly. In this article, we report the simultaneous excitation of these three fundamental interactions in mm-size ultra-high Q whispering gallery mode resonators under continuous wave pumping. Universal nonlinear scattering is demonstrated in barium fluoride and strontium fluoride, separately. We further propose a unified theory based on a spatiotemporal formalism for the understanding of this phenomenology. PMID:27410640

  13. Microwave photoresistance in an ultra-high-quality GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Studenikin, S. Â. A.; Zudov, M. A.; Baldwin, K. Â. W.; Pfeiffer, L. Â. N.; West, K. Â. W.

    2016-03-01

    The temperature dependence of microwave-induced resistance oscillations (MIRO), according to the theory, originates from electron-electron scattering. This scattering affects both the quantum lifetime, or the density of states, and the inelastic lifetime, which governs the relaxation of the nonequilibrium distribution function. Here, we report on MIRO in an ultra-high-mobility (μ >3 ×107cm2/ V s) two-dimensional electron gas at T between 0.3 and 1.8 K. In contrast to theoretical predictions, the quantum lifetime is found to be T independent in the whole temperature range studied. At the same time, the T dependence of the inelastic lifetime is much stronger than can be expected from electron-electron interactions.

  14. Ultra-high resolution filter and optical field modulator based on a surface plasmon polariton.

    PubMed

    Wu, Wenjun; Yang, Junbo; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Wang, Hongqing

    2016-05-15

    A new filter structure and optical field modulator with ultra-high resolution based on plasmonic nano-cavity resonators is proposed and numerically investigated. The structure consists of a square nano-cavity resonator connected with several waveguides. All waveguides and cavity are etched on a silver film whose size is 1.1×0.75  μm. Compared with traditional filters, the FWHM (full width at half-maximum) of this structure's spectrum curve can be less than 7 nm; namely, the resolution has been greatly improved. The structure also presents the feature of an optical field modulator when both inputs are working simultaneously, and it provides a promising way to design and manufacture future optical logical device. PMID:27176990

  15. Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of >99% ee

    PubMed Central

    NEGISHI, Ei-ichi; XU, Shiqing

    2015-01-01

    Shortly after the discovery of Zr-catalyzed carboalumination of alkynes in 1978, we sought expansion of the scope of this reaction so as to develop its alkene version for catalytic asymmetric C–C bond formation, namely the ZACA (Zr-catalyzed asymmetric carboalumination of alkenes). However, this seemingly easy task proved to be quite challenging. The ZACA reaction was finally discovered in 1995 by suppressing three competitive side reactions, i.e., (i) cyclic carbometalation, (ii) β-H transfer hydrometalation, and (iii) alkene polymerization. The ZACA reaction has been used to significantly modernize and improve syntheses of various natural products including deoxypolypropionates and isoprenoids. This review focuses on our recent progress on the development of ZACA–lipase-catalyzed acetylation–transition metal-catalyzed cross-coupling processes for highly efficient and enantioselective syntheses of a wide range of chiral organic compounds with ultra-high enantiomeric purities. PMID:26460317

  16. Application of porcelain enamel as an ultra-high-vacuum-compatible electrical insulator

    SciTech Connect

    Biscardi, C.; Hseuh, H.; Mapes, M.

    2000-07-01

    Many accelerator vacuum system components require electrical insulation internal to the vacuum system. Some accelerator components at Brookhaven National Laboratory are installed in ultra-high-vacuum systems which require the insulation to have excellent vacuum characteristics, be radiation resistant, and be able to withstand high temperatures when used on baked systems. Porcelain enamel satisfies all these requirements. This article describes the process and application of coating metal parts with porcelain enamel to provide electrical insulation. The mechanical and vacuum testing of Marman flanges coated with porcelain and using metal Helicoflex seals to form a zero-length electrical break are detailed. The use of porcelain enameled parts is attractive since it can be done quickly, is inexpensive and environmentally safe, and most of all satisfies stringent vacuum system requirements. (c) 2000 American Vacuum Society.

  17. A novel ultra-high speed camera for digital image processing applications

    NASA Astrophysics Data System (ADS)

    Hijazi, A.; Madhavan, V.

    2008-08-01

    Multi-channel gated-intensified cameras are commonly used for capturing images at ultra-high frame rates. The use of image intensifiers reduces the image resolution and increases the error in applications requiring high-quality images, such as digital image correlation. We report the development of a new type of non-intensified multi-channel camera system that permits recording of image sequences at ultra-high frame rates at the native resolution afforded by the imaging optics and the cameras used. This camera system is based upon the concept of using a sequence of short-duration light pulses of different wavelengths for illumination and using wavelength selective elements in the imaging system to route each particular wavelength of light to a particular camera. As such, the duration of the light pulses controls the exposure time and the timing of the light pulses controls the interframe time. A prototype camera system built according to this concept comprises four dual-frame cameras synchronized with four dual-cavity pulsed lasers producing 5 ns pulses in four different wavelengths. The prototype is capable of recording four-frame full-resolution image sequences at frame rates up to 200 MHz and eight-frame image sequences at frame rates up to 8 MHz. This system is built around a stereo microscope to capture stereoscopic image sequences usable for 3D digital image correlation. The camera system is used for imaging the chip-workpiece interface area during high speed machining, and the images are used to map the strain rate in the primary shear zone.

  18. Urban Stormwater Modeling: Ultra-High-Resolution Evaluation of Best Management Practices

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Maxwell, R. M.

    2013-12-01

    Urban infrastructures affect drainage networks, alter flow paths, change feedbacks to the atmosphere and enhance contaminant transport. Urban stormwater either floods a system due to poor drainage and impervious surfaces, or is quickly transported out of the system in channels that then carry contaminants to downstream ecosystems with potentially harmful impacts. To mitigate these impacts, developers often use best management practices (BMPs) such as pervious pavement, infiltration basins, rain gardens or engineered wetlands. BMPs are typically represented using conceptually-based, coarse resolution hydrologic models; however, to effectively capture the flow dynamics, trace non-source pollutants and test BMP types and distributions, a high-resolution hydrologic model is needed. The goal of this work is to develop a novel approach to evaluate BMP implementation using an ultra-high-resolution hydrologic model. This study domain is located in Aurora, CO, in an area characterized by growing urban development. The ultra-high-resolution domain was constructed using LIDAR imagery and consisted of 1m x 1m horizontal resolution over a ~12 km by 4.5 km lateral extent up to 1m in the subsurface, with a domain totaling more than 108 unknowns. This analysis was performed using ParFlow, a physically-based, parallel hydrologic model that simulates surface and subsurface water interactions. Extreme wet, dry and normal storms events were coupled with three types of pervious pavement, amounting to 9 simulation scenarios. We investigated changes to stormwater routing and infiltration with and without BMP implementation. Contaminant transport is also included in this analysis via a Lagrangian, particle tracking approach, that allows for complex, contaminant-loading scenarios common in the urban environment. Future work includes investigating implications of alternate BMPs also used within urban developments.

  19. Particle-Tracking within an Ultra-High-Resolution Urban Domain Integrated with Best Management Practices

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Maxwell, R. M.

    2014-12-01

    Best management practices (BMPs) are used to offset the impacts of urban developments known to decrease aquifer recharge, alter drainage networks, change feedbacks to the atmosphere and enhance contaminant transport. To evaluate the effectiveness of BMPs (i.e. engineered wetlands, grass swales, permeable pavements, etc.), a high-resolution study of these processes can be performed in the field using timely monitored instruments, or conceptually-based hydrologic models. However, this approach requires advancing stormwater modeling techniques using high performance computing. The goal of this work is to develop a novel approach to evaluate BMP implementation using an ultra-high-resolution domain and ParFlow, a physically-based hydrologic model that simulates surface and subsurface water interactions. This study domain is located in Aurora, CO, an area that experienced over 200% urban growth over the last 30 years. The ultra-high-resolution domain was constructed using LIDAR imagery and consisted of 1m x 1m horizontal resolution over a ~7.7 km by 2.1 km lateral extent up to 2 m in the subsurface, with a domain totaling more than 3x106unknowns. Three storm events (wet, dry and normal) were simulated with two pavement types, permeable (K=0.18 mhr-1,Φ=0.1) and impermeable (K=0.0018 mhr-1, Φ=0.06), amounting to 6 simulation scenarios. We investigated changes to stormwater routing and infiltration with and without BMP implementation. Contaminant transport was performed using SLIM-FAST, a Lagrangian, particle tracking approach that allows for complex, contaminant-loading scenarios common in the urban environment. Preliminary results show delayed particle movement within impermeable pavement scenarios and particle trapping along the gutters and rooftop locations. This approach is useful for evaluating the effectiveness of BMPs in trapping and reducing concentrations of emerging contaminants of concern within urban environments.

  20. Ultra-High Temperature Materials Characterization for Space and Missile Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Numerous advanced space and missile technologies including propulsion systems require operations at high temperatures. Some very high-temperature materials are being developed to meet these needs, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available at the desired operating temperatures for many materials of interest. The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic Levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, emissivity, density and thermal expansion. ESL uses electrostatic fields to position samples between electrodes during processing and characterization experiments. Samples float between the electrodes during studies and are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. A system for the determination of total hemispherical emissivity is being developed for the MSFC ESL facility by AZ Technology Inc. The instrument has been designed to provide emissivity measurements for samples during ESL experiments over the temperature range 700-3400K. A novel non-contact technique for the determination of high-temperature creep strength has been developed. Data from selected ESL-based characterization studies will be presented. The ESL technique could advance space and missile technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature alloys for turbines and structures.

  1. Ultra-high field NMR studies of antibody binding and site-specific phosphorylation of {alpha}-synuclein

    SciTech Connect

    Sasakawa, Hiroaki |; Sakata, Eri; Yamaguchi, Yoshiki; Masuda, Masami |; Mori, Tetsuya; Kurimoto, Eiji; Iguchi, Takeshi; Hisanaga, Shin-ichi; Iwatsubo, Takeshi; Hasegawa, Masato; Kato, Koichi |

    2007-11-23

    Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of {alpha}-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-{alpha}-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of {alpha}-synuclein.

  2. Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovoltaics module with a central receiver.

    PubMed

    Ferrer-Rodríguez, Juan P; Fernández, Eduardo F; Almonacid, Florencia; Pérez-Higueras, Pedro

    2016-05-01

    Ultra-high concentrator photovoltaics (UHCPV), with concentrations higher than 1000 suns, have been pointed out by different authors as having great potential for being a cost-effective PV technology. This Letter presents a UHCPV Cassegrain-based optical design in which the sunrays are concentrated and sent from four different and independent paraboloid-hyperboloid pairs optical units onto a single central receiver. The optical design proposed has the main advantage of the achievement of ultra-high concentration ratios using relative small mirrors with similar performance values of efficiency, acceptance angle, and irradiance uniformity to other designs. PMID:27128055

  3. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    SciTech Connect

    Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ∼ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.

  4. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Rosiński, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.

    2015-03-01

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ˜ Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.

  5. Development and validation of ultra-high performance supercritical fluid chromatography method for determination of illegal dyes and comparison to ultra-high performance liquid chromatography method.

    PubMed

    Khalikova, Maria A; Šatínský, Dalibor; Solich, Petr; Nováková, Lucie

    2015-05-18

    A novel simple, fast and efficient ultra-high performance supercritical fluid chromatography (UHPSFC) method was developed and validated for the separation and quantitative determination of eleven illegal dyes in chili-containing spices. The method involved a simple ultrasound-assisted liquid extraction of illegal compounds with tetrahydrofuran. The separation was performed using a supercritical fluid chromatography system and CSH Fluoro-Phenyl stationary phase at 70°C. The mobile phase was carbon dioxide and the mixture of methanol:acetonitrile (1:1, v/v) with 2.5% formic acid as an additive at the flow rate 2.0 mL min(-1). The UV-vis detection was accomplished at 500 nm for seven compounds and at 420 nm for Sudan Orange G, Butter Yellow, Fast Garnet GBC and Methyl Red due to their maximum of absorbance. All eleven compounds were separated in less than 5 min. The method was successfully validated and applied using three commercial samples of chili-containing spices - Chili sauce (Indonesia), Feferony sauce (Slovakia) and Mojo sauce (Spain). The linearity range of proposed method was 0.50-9.09 mg kg(-1) (r ≥ 0.995). The detection limits were determined as signal to noise ratio of 3 and were ranged from 0.15 mg kg(-1) to 0.60 mg kg(-1) (1.80 mg kg(-1) for Fast Garnet) for standard solution and from 0.25 mg kg(-1) to 1.00 mg kg(-1) (2.50 mg kg(-1) for Fast Garnet, 1.50 mg kg(-1) for Sudan Red 7B) for chili-containing samples. The recovery values were in the range of 73.5-107.2% and relative standard deviation ranging from 0.1% to 8.2% for within-day precision and from 0.5% to 8.8% for between-day precision. The method showed potential for being used to monitor forbidden dyes in food constituents. The developed UHPSFC method was compared to the UHPLC-UV method. The orthogonality of Sudan dyes separation by these two methods was demonstrated. Benefits and drawbacks were discussed showing the reliability of both methods for monitoring of studied illegal dyes in real

  6. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  7. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  8. ASBESTOS EXPOSURES DURING ROUTINE FLOOR TILE MAINTENANCE. PART 2: ULTRA HIGH SPEED BURNISHING AND WET-STRIPPING

    EPA Science Inventory

    This study was conducted to evaluate airborne asbestos concentrations during ultra high speed (UHS) burnishing and wet-stripping of asbestos-containing resilient floor tile under two levels of floor care condition (poor and good). Airborne asbestos concentrations were measured by...

  9. Optical Method for Detecting Displacements and Strains at Ultra-High Temperatures During Thermo-Mechanical Testing

    NASA Technical Reports Server (NTRS)

    Smith, Russell W. (Inventor); Rivers, H. Kevin (Inventor); Sikora, Joseph G. (Inventor); Roth, Mark C. (Inventor); Johnston, William M. (Inventor)

    2016-01-01

    An ultra-high temperature optical method incorporates speckle optics for sensing displacement and strain measurements well above conventional measurement techniques. High temperature pattern materials are used which can endure experimental high temperature environments while simultaneously having a minimum optical aberration. A purge medium is used to reduce or eliminate optical distortions and to reduce, and/or eliminate oxidation of the target specimen.

  10. Increased Saccadic Rate during Smooth Pursuit Eye Movements in Patients at Ultra High Risk for Developing a Psychosis

    ERIC Educational Resources Information Center

    van Tricht, M. J.; Nieman, D. H.; Bour, L. J.; Boeree, T.; Koelman, J. H. T. M.; de Haan, L.; Linszen, D. H.

    2010-01-01

    Abnormalities in eye tracking are consistently observed in schizophrenia patients and their relatives and have been proposed as an endophenotype of the disease. The aim of this study was to investigate the performance of patients at Ultra High Risk (UHR) for developing psychosis on a task of smooth pursuit eye movement (SPEM). Forty-six UHR…

  11. Observations of ultra-high-energy photons from Cygnus X-3

    SciTech Connect

    Muraki, Y.; Shibata, S.; Aoki, T.; Mitsui, K.; Okada, A. Tokyo, University )

    1991-06-01

    Extensive air showers coming from the Cygnus X-3 region are analyzed using the van der Klis and Bonnet-Bidaud ephemeris. A 4.7 sigma excess has been observed in the phase bin 0.25-0.3. The maximum excess is seen when a muon cut is applied to the showers, which indicates a slightly muon poor property. The flux is estimated to be (2.7 + or {minus} 0.5) {times} 10 to the -14th/sq cm s for the showers Ne greater than 200,000. DC excesses are observed at the time of the radio burst of Cygnus X-3 in June 1989. 21 refs.

  12. Detection techniques of radio emission from ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Morris, Chad M.

    We discuss recent and future efforts to detect radio signals from extended air showers at the Pierre Auger Observatory in Malargue, Argentina. With the advent of low-cost, high-performance digitizers and robust digital signal processing software techniques, radio detection of cosmic rays has resurfaced as a promising measurement system. The inexpensive nature of the detector media (metallic wires, rods or parabolic dishes) and economies of scale working in our favor (inexpensive high-quality C-band amplifiers and receivers) make an array of radio antennas an appealing alternative to the expense of deploying an array of Cherenkov detector water tanks or 'fly's eye' optical telescopes for fluorescence detection. The calorimetric nature of the detection and the near 100% duty cycle gives the best of both traditional detection techniques. The history of cosmic ray detection detection will be discussed. A short review on the astrophysical properties of cosmic rays and atmospheric interactions will lead into a discussion of two radio emission channels that are currently being investigated.

  13. Ultra High Energy Cosmic Ray, Neutrino, and Photon Propagation and the Multi-Messenger Approach

    SciTech Connect

    Taylor, Andrew; De Castro, Alexandra; Castillo-Ruiz, Edith

    2009-04-30

    The propagation of UHECR nuclei for A = 1(protons) to A = 56(iron) from cosmological sources through extragalactic space is discussed in the first lecture. This is followed in the second and third lectures by a consideration of the generation and propagation of secondary particles produced via the UHECR loss interactions. In the second lecture we focus on the generation of the diffuse cosmogenic UHE-neutrino flux. In the third lecture we investigate the arriving flux of UHE-photon flux at Earth. In the final lecture the results of the previous lectures are put together in order to provide new insights into UHECR sources. The first of these providing a means with which to investigate the local population of UHECR sources through the measurement of the UHECR spectrum and their photon fraction at Earth. The second of these providing contraints on the UHECR source radiation fields through the possible observation at Earth of UHECR nuclei.

  14. Relation between hadronic interactions and ultra-high energy extensive air showers

    NASA Astrophysics Data System (ADS)

    Ulrich, Ralf; Baus, Colin; Engel, Ralph

    2015-08-01

    The simulation of hadronic interactions is of fundamental importance for the analysis of extensive air showers. The details of the relation between the measurement of hadronic interactions at accelerators and the impact on the air shower development is very difficult to evaluate. Several possibilities to study this relation are presented here.

  15. A new array for the study of ultra high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Lambert, A.; Ogden, P. A.; Reid, R. J. O.; Patel, M.; Ferrett, J. C.; Watson, A. A.; West, A. A.

    1985-01-01

    The design and operation of a 32 x 1 10 to the 15th power sq m array of scintillation detectors for the detection of 10 to the 15th power eV cosmic rays is described with an expected angular resolution of 1 deg, thus improving the present signal/background ratio for gamma ray sources. Data are recorded on a hybrid CAMAC, an in-house system which uses a laser and Pockel-Cell arrangement to routinely calibrate the timing stability of the detectors.

  16. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.

    PubMed

    Jorge, João; Grouiller, Frédéric; Ipek, Özlem; Stoermer, Robert; Michel, Christoph M; Figueiredo, Patrícia; van der Zwaag, Wietske; Gruetter, Rolf

    2015-01-15

    The simultaneous recording of scalp electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can provide unique insights into the dynamics of human brain function, and the increased functional sensitivity offered by ultra-high field fMRI opens exciting perspectives for the future of this multimodal approach. However, simultaneous recordings are susceptible to various types of artifacts, many of which scale with magnetic field strength and can seriously compromise both EEG and fMRI data quality in recordings above 3T. The aim of the present study was to implement and characterize an optimized setup for simultaneous EEG-fMRI in humans at 7 T. The effects of EEG cable length and geometry for signal transmission between the cap and amplifiers were assessed in a phantom model, with specific attention to noise contributions from the MR scanner coldheads. Cable shortening (down to 12 cm from cap to amplifiers) and bundling effectively reduced environment noise by up to 84% in average power and 91% in inter-channel power variability. Subject safety was assessed and confirmed via numerical simulations of RF power distribution and temperature measurements on a phantom model, building on the limited existing literature at ultra-high field. MRI data degradation effects due to the EEG system were characterized via B0 and B1(+) field mapping on a human volunteer, demonstrating important, although not prohibitive, B1 disruption effects. With the optimized setup, simultaneous EEG-fMRI acquisitions were performed on 5 healthy volunteers undergoing two visual paradigms: an eyes-open/eyes-closed task, and a visual evoked potential (VEP) paradigm using reversing-checkerboard stimulation. EEG data exhibited clear occipital alpha modulation and average VEPs, respectively, with concomitant BOLD signal changes. On a single-trial level, alpha power variations could be observed with relative confidence on all trials; VEP detection was more limited, although

  17. Ab initio Computations of the Electronic, Mechanical, and Thermal Properties of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray

    2011-01-01

    Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.

  18. Direct growth of Ge1-xSnx films on Si using a cold-wall ultra-high-vacuum chemical-vapor-deposition system

    NASA Astrophysics Data System (ADS)

    Mosleh, Aboozar; Alher, Murtadha; Cousar, Larry; Du, Wei; Ghetmiri, Seyed Amir; Pham, Thach; Grant, Joshua; Sun, Greg; Soref, Richard; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2015-04-01

    Germanium tin alloys were grown directly on Si substrate at low temperatures using a cold-wall ultra-high vacuum chemical vapor deposition system. Epitaxial growth was achieved by adopting commercial gas precursors of germane and stannic chloride without any carrier gases. The X-ray diffraction analysis showed the incorporation of Sn and that the Ge1-xSnx films are fully epitaxial and strain relaxed. Tin incorporation in the Ge matrix was found to vary from 1% to 7%. The scanning electron microscopy images and energy dispersive X-ray spectra maps show uniform Sn incorporation and continuous film growth. Investigation of deposition parameters shows that at high flow rates of stannic chloride the films were etched due to the production of HCl. The photoluminescence study shows the reduction of bandgap from 0.8 eV to 0.55 eV as a result of Sn incorporation.

  19. Preparation and Characterization of Ti-Zr-V Non-Evaporable Getter Films to Be Used in Ultra-High Vacuum

    SciTech Connect

    Ferreira, Marcelo J.; Tallarico, Denise A.; Nascente, Pedro A. P.

    2009-01-29

    An appealing procedure to obtain operating pressures in the 10{sup -8} Pa range, which is necessary for the insertion devices elements of synchrotron sources, is to coat the inner ultra-high vacuum chamber walls with a thin film of non-evaporable getter (NEG) metals. Titanium, zirconium, vanadium, and their alloys are used as NEG materials due to their low activation temperature, high chemical activity, large solubility, and high diffusivity for gases. In this work, magnetron sputtering was employed to deposit thin films of Ti-Zr-V on a Si(111) substrate. The morphological, structural, and chemical analyses were carried out by atomic force microscopy (AFM), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS)

  20. Structure and magnetic properties of low-temperature phase Mn-Bi nanosheets with ultra-high coercivity and significant anisotropy

    SciTech Connect

    Liu, Rongming E-mail: shenbg@iphy.ac.cn; Zhang, Ming; Niu, E; Li, Zhubai; Zheng, Xinqi; Wu, Rongrong; Zuo, Wenliang; Shen, Baogen; Hu, Fengxia; Sun, Jirong

    2014-05-07

    The microstructure, crystal structure, and magnetic properties of low-temperature phase (LTP) Mn-Bi nanosheets, prepared by surfactant assistant high-energy ball milling (SA-HEBM) with oleylamine and oleic acid as the surfactant, were examined with scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometer, respectively. Effect of ball-milling time on the coercivity of LTP Mn-Bi nanosheets was systematically investigated. Results show that the high energy ball milling time from tens of minutes to several hours results in the coercivity increase of Mn-Bi powders and peak values of 14.3 kOe around 10 h. LTP Mn-Bi nanosheets are characterized by an average thickness of tens of nanometers, an average diameter of ∼1.5 μm, and possess a relatively large aspect ratio, an ultra-high room temperature coercivity of 22.3 kOe, a significant geometrical and magnetic anisotropy, and a strong (00l) crystal texture. Magnetization and demagnetization behaviors reveal that wall pinning is the dominant coercivity mechanism in these LTP Mn-Bi nanosheets. The ultrafine grain refinement introduced by the SA-HEBM process contribute to the ultra-high coercivity of LTP Mn-Bi nanosheets and a large number of defects put a powerful pinning effect on the magnetic domain movement, simultaneously. Further magnetic measurement at 437 K shows that a high coercivity of 17.8 kOe and a strong positive temperature coefficient of coercivity existed in the bonded permanent magnet made by LTP Mn-Bi nanosheets.