Science.gov

Sample records for attenuated total reflectance

  1. Attenuated total reflectance spectroscopy with chirped-pulse upconversion.

    PubMed

    Shirai, Hideto; Duchesne, Constance; Furutani, Yuji; Fuji, Takao

    2014-12-01

    Chirped-pulse upconversion technique has been applied to attenuated total reflectance (ATR) infrared spectroscopy. An extremely broadband infrared pulse was sent to an ATR diamond prism and the reflected pulse was converted to the visible by using four-wave mixing in krypton gas. Absorption spectra of liquids in the range from 200 to 5500 cm(-1) were measured with a visible spectrometer on a single-shot basis. The system was applied to observe the dynamics of exchanging process of two solvents, water and acetone, which give clear vibrational spectral contrast. We observed that the exchange was finished within ∼ 10 ms. PMID:25606893

  2. An attenuated total reflectance far-UV spectrometer

    NASA Astrophysics Data System (ADS)

    Higashi, Noboru; Ikehata, Akifumi; Ozaki, Yukihiro

    2007-10-01

    An ultraviolet spectrometer based on attenuated total reflection (ATR) has been developed and tested for liquid water (light and heavy water) in the wavelength range from 140to300nm, which includes the far ultraviolet (FUV) region. One of the principal limitations of FUV transmission spectra is the strong absorption of the solvent itself. High absorptivity of the n →σ* transition in water molecule has thus far prevented meaningful spectral measurements of aqueous solutions in the wavelength region under 170nm. Our technique uses the evanescent wave created through total reflection when light is passed through an internal reflection element (IRE) in contact with the sample. Since the evanescent field is used as an optical path length, the method allows spectral measurements favorably comparable with that of transmittance method with a shorter path length than the wavelength of FUV light. In this study, we have designed an original miniature IRE probe made of sapphire that allows detection of the whole n →σ* transition absorption band of water down to 140nm. The obtained ATR-FUV spectra closely match calculations based on the Fresnel formula. It is also confirmed that this spectrometer is equally effective for spectral measurements of nonaqueous solvents with significant absorptivities in the FUV region.

  3. Infrared reflection and attenuated total reflection spectra in the Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.

    2015-08-01

    Infrared reflection and attenuated total reflection spectra are measured in the (111)Si/Bi2Se3 topological insulator film. The characteristic parameters of plasmons and phonons in the near-surface layers close to the Si-film interface are obtained from the dispersion analysis of the reflection spectra. It is found that the charge carrier density near the interface far exceeds that in the bulk. The dispersion laws for surface polaritons and waveguide modes are determined.

  4. Surface-enhanced, multi-dimensional attenuated total reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraack, Jan Philip; Lotti, Davide; Hamm, Peter

    2015-08-01

    Ultrafast two-dimensional infrared spectroscopy (2D IR) spectroscopy is performed in attenuated total reflectance (ATR) geometry with the Kretschmann configuration in order to measure femtosecond to picosecond dynamics of self-assembled monolayers on gold-coated solid-liquid interfaces. In the monolayers low-absorbing (<200 M-1 cm-1) nitrile functional groups are used as local vibrational probes to monitor vibrational relaxation and spectral diffusion in dependence of different environments of the nitrile group. By comparing spectral diffusion dynamics of the vibrational probe in bulk solution and in the monolayer we find that the dynamics are slowed down by more than a factor of 20 upon immobilization of the sample. Moreover, spectral diffusion dynamics are affected by the local environment within the monolayers as evidenced by 2D ATR IR experiments on mixed monolayers with different aliphatic and aromatic co-adsorbates. The results are interpreted in terms of absent excitation energy-transfer as well as solvation dynamics around the nitrile vibrational probe. Our results demonstrate that 2D ATR IR spectroscopy offers the possibility to obtain ultrafast dynamics from sub-monolayer coverages of even low-absorbing vibrational probes such as nitrile functional groups.

  5. Measurement of Organics Using Three FTIR Techniques: Absorption, Attenuated Total Reflectance, and Diffuse Reflectance

    NASA Astrophysics Data System (ADS)

    Gebel, M. E.; Kaleuati, M. A.; Finlayson-Pitts, B. J.

    2003-06-01

    This paper describes an undergraduate junior- and senior-level instrumental analysis experiment that uses three infrared analysis techniques: conventional transmission spectroscopy, attenuated total reflection (ATR) spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Using transmission spectroscopy, methyl t-butyl ether, MTBE, in a state-supplied certification gasoline was measured to be 11.3 ± 0.4 % (v/v, 2s), in agreement with the stated MTBE content of 10.9% (v/v). Measurements were also carried out on various brands of commercial gasoline and MTBE was found to vary from 9.2 to 12.2% (v/v). ATR was used to measure the ethanol content of different brands of vodka, which ranged from 36 to 40 % (v/v) in agreement with the labeled concentration of 40% (v/v). This part of the experiment highlights the significant advantages of using ATR for the analysis of aqueous solutions that cannot be carried out using normal transmission spectroscopy. Finally, DRIFTS measurements were made of total hydrocarbons in six soil samples. The results ranged from below the detection limit of 120 ppm (w/w) for soil from a path at a residential home to 915 ppm (w/w) for a sample from the center planter of a gas station. This part of the experiment illustrates the advantages of using DRIFTS to analyze solids compared to making pellets or mulls. This experiment is carried out during one seven-hour laboratory period.

  6. Detection of explosives traces on documents by attenuated total reflection method

    NASA Astrophysics Data System (ADS)

    Boreysho, A. S.; Bertseva, E. V.; Korepanov, V. S.; Morosov, A. V.; Savin, A. V.; Strakhov, S. Y.

    2007-06-01

    The technical devices of explosives trace detection are discussed in this work. The attenuated total reflection method (ATR) is considered for detection of explosives traces on different things (documents, clothes, fingers). The results of experiments with Fourier spectrometer and ATR attachment for explosive trace detection are presented. The optical scheme and design of the compact testing device are discussed. The device includes the document information scanner and at the same time - the trace detector of explosives on the document cover.

  7. Local temperature variation measurement by anti-Stokes luminescence in attenuated total reflection geometry.

    PubMed

    Yamamoto, Ken; Togawa, Ryotaro; Fujimura, Ryushi; Kajikawa, Kotaro

    2016-08-22

    Strong temperature dependence of anti-Stokes luminescence intensity from Rhodamine 101 is used to probe local temperature variation at a surface region in the attenuated total reflection geometry (ATR), when heating with laser light. In this method, the measured region can be limited by observing evanescent luminescence. The near-field depth (penetration depth) was changed by the observation angle θout of the evanescent luminescence and the spatial temperature variation was observed. PMID:27557182

  8. Selecting the Right Tool: Comparison of the Analytical Performance of Infrared Attenuated Total Reflection Accessories.

    PubMed

    Schädle, Thomas; Mizaikoff, Boris

    2016-06-01

    The analytical performance of four commercially available infrared attenuated total reflection (IR-ATR) accessories with various ATR waveguide materials has been analyzed and evaluated using acetate, CO2, and CO3 (2-) solutions. Calibration functions have been established to determine and compare analytically relevant parameters such as sensitivity, signal-to-noise ratio (SNR), and efficiency. The obtained parameters were further analyzed to support conclusions on the differences in performance of the individual IR-ATR accessories. PMID:27091901

  9. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Orlov, A. S.; Kiselev, S. A.; Kiseleva, E. A.; Budeeva, A. V.; Mashukov, V. I.

    2013-03-01

    A rapid method for determining the composition of styrene-butadiene rubber using attenuated total internal reflection infrared spectroscopy was proposed. PMR and 13C NMR spectroscopy and infrared transmission spectroscopy were used as absolute techniques for determining the compositions of calibration samples. It was shown that the method was applicable to a wide range of styrene-butadiene rubbers, did not require additional sample preparation, and was easily reproducible.

  10. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    NASA Astrophysics Data System (ADS)

    Grognot, Marianne; Gallot, Guilhem

    2015-09-01

    Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells.

  11. Direct observation of surface plasmons in YBCO by attenuated total reflection of light in the infrared

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.; Smyth, C. C.; Sellai, A.; McCafferty, P. G.; Dawson, P.; Morrow, T.; Graham, W. G.

    1994-02-01

    Surface plasmons have been observed directly in YBCO films in an Otto-geometry attenuated total reflection measurement at a wavelength of 3.392 μm. The laser deposited films are c-axis oriented on an MgO substrate. This observation confirms theoretical deductions from complex dielectric function data. Measured data have been fitted to a theoretical model and are compared with the optical constants determined by Bozovic [1]. The investigations have been extended to films with other orientations to investigate whether material anisotropy is reflected in the results and non-metallic behaviour is found.

  12. An effective medium study of surface plasmon polaritons in nanostructured gratings using attenuated total reflection

    SciTech Connect

    Tyboroski, M. H.; Anderson, N. R.; Camley, R. E.

    2014-01-07

    Recent work studied surface plasmon resonances in structured materials by the method of attenuated total reflection using a prism on top of a metallic grating. That calculation considered Transverse Magnetic polarized radiation, involved an expansion in 121 Fourier modes, and found a number of interesting features. Many of these features were attributed to localized plasmons or other factors, which arise from a discrete structure. We use a simple effective medium theory to address the same problem, and find many of the same reflection features observed in the more complex calculation, indicating that localization is not an important factor. We also evaluate the possibility of using some of the new features in the reflection spectrum for bio-sensing and find that the sensitivity of the system to small changes in relative permittivity is increased compared to some standard methods.

  13. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  14. Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance.

    PubMed

    Krishtop, Victor; Doronin, Ivan; Okishev, Konstantin

    2012-11-01

    Photon correlation spectroscopy is an effective method for measuring nanoparticle sizes and has several advantages over alternative methods. However, this method suffers from a disadvantage in that its measuring accuracy reduces in the presence of convective flows of fluid containing nanoparticles. In this paper, we propose a scheme based on attenuated total reflectance in order to reduce the influence of convection currents. The autocorrelation function for the light-scattering intensity was found for this case, and it was shown that this method afforded a significant decrease in the time required to measure the particle sizes and an increase in the measuring accuracy. PMID:23187387

  15. Multivariate determination of hematocrit in whole blood by attenuated total reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kostrewa, S.; Paarmann, Ch.; Goemann, W.; Heise, H. M.

    1998-06-01

    A spectral analysis of whole blood was undertaken in the mid-infrared spectral range by using the attenuated total reflection technique. The reference hematocrit values of 109 blood samples were measured after centrifugation with a range between 30% and 50%. Multivariate calibration with the partial least-squares (PLS) algorithm was performed using baseline corrected absorbance spectra between 1600 and 1200 cm-1. The relative prediction error achieved was 2.7% based on average hematocrit values. The performance is comparable to that using centrifugation or conductivity measurements. The spectral effects from protein adsorption onto the ATR-crystal, as well as erythrocyte sedimentation have been investigated.

  16. Atomic Scale Flatness of Chemically Cleaned Silicon Surfaces Studied by Infrared Attenuated-Total-Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sawara, Kenichi; Yasaka, Tatsuhiro; Miyazaki, Seiichi; Hirose, Masataka

    1992-07-01

    Hydrogen-terminated Si(111) and Si(100) surfaces obtained by aqueous HF or pH-modified (pH{=}5.3) buffered-HF (BHF) treatments have been characterized by a Fourier transform infrared (FT-IR) attenuated-total-reflection (ATR) technique. The BHF treatment provides better surface flatness than the HF treatment. Pure water rinse is effective for improving the Si(111) surface flatness, while this is not the case for Si(100) because the pure water acts as an alkaline etchant and promotes the formation of (111) microfacets or microdefects on the (100) surface.

  17. [Rapid quantitative analysis of hydrocarbon composition of furfural extract oils using attenuated total reflection infrared spectroscopy].

    PubMed

    Li, Na; Yuan, Hong-Fu; Hu, Ai-Qin; Liu, Wei; Song, Chun-Feng; Li, Xiao-Yu; Song, Yi-Chang; He, Qi-Jun; Liu, Sha; Xu, Xiao-Xuan

    2014-07-01

    A set of rapid analysis system for hydrocarbon composition of heavy oils was designed using attenuated total reflection FTIR spectrometer and chemometrics to determine the hydrocarbon composition of furfural extract oils. Sixty two extract oil samples were collected and their saturates and aromatics content data were determined according to the standard NB/SH/T0509-2010, then the total contents of resins plus asphaltenes were calculated by the subtraction method in the percentage of weight. Based on the partial least squares (PLS), calibration models for saturates, aromatics, and resin+asphaltene contents were established using attenuated total reflection FTIR spectroscopy, with their SEC, 1.43%, 0.91% and 1.61%, SEP, 1.56%, 1.24% and 1.81%, respectively, meeting the accuracy and repeatability required for the standard. Compared to the present standard method, the efficiency of hydrocarbon composition analysis for furfural extract oils is significantly improved by the new method which is rapid and simple. The system could also be used for other heavy oil analysis, with excellent extension and application foreground. PMID:25269288

  18. Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite

    NASA Astrophysics Data System (ADS)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Brouder, Christian; Balan, Etienne

    2016-06-01

    Attenuated total reflectance (ATR) infrared spectra were measured on a synthetic and a natural fluorapatite sample. A modeling approach based on the computation of the Fresnel reflection coefficient between the ATR crystal and the powder sample was used to analyze the line shape of the spectra. The dielectric properties of the samples were related to those of pure fluorapatite using an effective medium approach, based on Maxwell-Garnett and Bruggeman models. The Bruggeman effective medium model leads to a very good agreement with the experimental data recorded on the synthetic fluorapatite sample. The poorer agreement observed on the natural sample suggests a more significant heterogeneity of the sample at a characteristic length scale larger than the mid-infrared characteristic wavelength, i.e., about 10 micrometers. The results demonstrate the prominent role of macroscopic electrostatic effects over fine details of the microscopic structure in determining the line shape of strong ATR bands.

  19. Study of Spectral Modifications in Acidified Ignitable Liquids by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy.

    PubMed

    Martín-Alberca, Carlos; Ojeda, Fernando Ernesto Ortega; García-Ruiz, Carmen

    2016-03-01

    In this work, the spectral characteristics of two types of acidified gasoline and acidified diesel fuel are discussed. Neat and acidified ignitable liquids (ILs) infrared absorption spectra obtained by attenuated total reflection Fourier transform infrared spectroscopy were compared in order to identify the modifications produced by the reaction of the ILs with sulfuric acid. Several bands crucial for gasoline identification were modified, and new bands appeared over the reaction time. In the case of acidified diesel fuel, no significant modifications were observed. Additionally, the neat and acidified ILs spectra were used to perform a principal components analysis in order to confirm objectively the results. The complete discrimination among samples was successfully achieved, including the complete differentiation among gasoline types. Taking into account the results obtained in this work, it is possible to propose spectral fingerprints for the identification of non-burned acidified ILs in forensic investigations related with arson or the use of improvised incendiary devices (IIDs). PMID:26810182

  20. Raman scattering and attenuated-total-reflection studies of surface-plasmon polaritons

    SciTech Connect

    Kurosawa, K.; Pierce, R.M.; Ushioda, S.; Hemminger, J.C.

    1986-01-15

    We have made in situ measurements of attenuated total reflection (ATR) and Raman scattering from a layered structure consisting of a glass prism, a thin silver film, an MgF2 spacer, and a liquid mixture whose refractive index is matched to that of MgF2. When the incident angle of the laser beam coincides with the ATR angle, the surface-plasmon polariton (SPP) of the silver film is excited resonantly and the Raman scattering intensity of the liquid shows a maximum. The same effect is observed at the frequency of the Stokes scattered light. By measuring the decrease of the Raman scattering intensity of the liquid with increase of the thickness of the MgF2 spacer layer, we have determined the decay length (l/sub d/) of the SPP field into the liquid. The measured value of l/sub d/ = 1539 A agrees with the calculated value, 1534 A.

  1. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems.

    PubMed

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Delle Piane, Claudio; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  2. Estimation of blood alcohol concentration by horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2010-06-01

    Numerous methods like distillation followed by iodometric titrations, gas chromatograph (GC)-flame ionization detector, gas chromatograph-mass spectrophotometer, GC-Headspace, Breath analyzer, and biosensors including alcohol dehydrogenase (enzymatic) have been used to determine blood alcohol concentration (BAC). In the present study, horizontal attenuated total reflectance-Fourier transform infrared spectroscopy had been used to determine BAC in whole blood. The asymmetric stretching frequency of C-C-O group of ethanol in water (1,045 cm(-1)) had been used to calculate BAC using Beer's Law. A seven-point calibration curve of ethanol was drawn in the concentration range 24-790 mg dL(-1). The curve showed good linearity over the concentration range used (r(2)=0.999, standard deviation=0.0023). The method is accurate, reproducible, rapid, simple, and nondestructive in nature. PMID:20541351

  3. Analytical model for the excitation of leaky surface plasmon polaritons in the attenuated total reflection configuration

    NASA Astrophysics Data System (ADS)

    Jia, Hongwei; Xie, Yunya; Liu, Haitao; Zhong, Ying

    2016-05-01

    We propose a fully-analytical model for the excitation of leaky surface plasmon polariton (SPP) in the attenuated total reflection (ATR) configuration under illumination by a finite-width beam of electromagnetic wave. The model is built up on the basis of the general unconjugated-form reciprocity theorem and is able to predict the excitation amplitude and phase of the leaky SPP at a quantitative level. The validity of the model is carefully supported through a comparison with the numerical results obtained with the mode orthogonality. With the model a physical understanding of the resonant excitation of the leaky SPP is achieved and the optimal parameters such as the incidence angle and the beam width to ensure an efficient SPP excitation are demonstrated for design tasks.

  4. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis.

    PubMed

    Huck, Christian W

    2016-01-01

    A review with more than 100 references on the principles and recent developments in the solid-phase extraction (SPE) prior and for in situ near and attenuated total reflection (ATR) infrared spectroscopic analysis is presented. New materials, chromatographic modalities, experimental setups and configurations are described. Their advantages for fast sample preparation for distinct classes of compounds containing different functional groups in order to enhance selectivity and sensitivity are discussed and compared. This is the first review highlighting both the fundamentals of SPE, near and ATR spectroscopy with a view to real sample applicability and routine analysis. Most of real sample analyses examples are found in environmental research, followed by food- and bioanalysis. In this contribution a comprehensive overview of the most potent SPE-NIR and SPE-ATR approaches is summarized and provided. PMID:27187347

  5. Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Bothy, J L; Desmedt, B; Courselle, P; De Beer, J O

    2014-09-01

    Cosmetic products containing illegal whitening agents are still found on the European market. They represent a considerable risk to public health, since they are often characterised by severe side effects when used chronically. The detection of such products at customs is not always simple, due to misleading packaging and the existence of products containing only legal components. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. The use of attenuated total reflectance-infrared (ATR-IR) spectroscopy, combined with chemometrics, was evaluated for that purpose. It was found that the combination of ATR-IR with the simple chemometric technique k-nearest neighbours gave good results. A model was obtained in which a minimum of illegal samples was categorised as legal. The correctly classified illegal samples could be attributed to the illegal components present. PMID:24927403

  6. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    NASA Astrophysics Data System (ADS)

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-10-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  7. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    PubMed Central

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  8. Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy.

    PubMed

    Shinzawa, Hideyuki; Morita, Shin-Ich; Awa, Kimie; Okada, Mariko; Noda, Isao; Ozaki, Yukihiro; Sato, Hidetoshi

    2009-05-01

    An extension of the two-dimensional (2D) correlation analysis scheme for multi-dimensional perturbation is described. A simple computational form is provided to construct synchronous correlation and disrelation maps for the analysis of microscopic imaging data based on two independent perturbation variables. Sets of time-dependent attenuated total reflection infrared (ATR-IR) spectra of water and cellulose mixtures were collected during the evaporation of water from finely ground cellulose. The system exhibits complex behaviors in response to two independent perturbations, i.e., evaporation time and grinding time. Multiple perturbation 2D analysis reveals a specific difference in the rate of evaporation of water molecules when accompanied by crystallinity changes of cellulose. It identifies subtle differences in the volatility of water, which is related to the crystalline structure of cellulose. PMID:19470205

  9. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying. PMID:21595211

  10. Attenuated total reflectance powder cell for infrared analysis of hygroscopic samples.

    PubMed

    Lekgoathi, M D S; le Roux, J P

    2011-11-01

    An attenuated total reflectance (ATR) sample cell has been designed, manufactured and subsequently used for the mid-infrared analysis of hygroscopic samples. This sample cell was installed as a simple drop-in replacement for the cell supplied with our commercially available Harrick Mvp-Pro FTIR-ATR accessory. Calcium chloride, a well-known desiccant that has a propensity to absorb water into its crystal lattice, was selected as non-infrared active substrate to accentuate the efficacy of the cell in preserving the anhydrous state of the sample by straightforward monitoring of the water bands. In contrast, mid-infrared spectra are presented that qualitatively demonstrate the rapid rate at which atmospheric moisture is incorporated into the anhydrous sample when analyzed using the conventional ATR cell assembly. PMID:21835688

  11. Attenuated total reflectance powder cell for infrared analysis of hygroscopic samples

    NASA Astrophysics Data System (ADS)

    Lekgoathi, M. D. S.; le Roux, J. P.

    2011-11-01

    An attenuated total reflectance (ATR) sample cell has been designed, manufactured and subsequently used for the mid-infrared analysis of hygroscopic samples. This sample cell was installed as a simple drop-in replacement for the cell supplied with our commercially available Harrick Mvp-Pro FTIR-ATR accessory. Calcium chloride, a well-known desiccant that has a propensity to absorb water into its crystal lattice, was selected as non-infrared active substrate to accentuate the efficacy of the cell in preserving the anhydrous state of the sample by straightforward monitoring of the water bands. In contrast, mid-infrared spectra are presented that qualitatively demonstrate the rapid rate at which atmospheric moisture is incorporated into the anhydrous sample when analyzed using the conventional ATR cell assembly.

  12. Polarized infrared attenuated total reflection study of sapphire crystals with different crystallographic planes

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Ng, S. S.; Hassan, H. Abu; Dumelow, T.

    2015-04-01

    Polarized infrared (IR) attenuated total reflection (ATR) measurements were performed on c- (polar) and r-plane (semi-polar) sapphire crystals. For c-plane sapphire crystal, spectral features due to the surface phonon polariton (SPhP) modes are only observable in the p-polarized ATR spectrum. Calculation of the SPhP dispersion spectra revealed that the SPhP modes of r-plane sapphire crystal are possible to be observed in both the s- and p-polarized ATR spectra. ATR measurements verified that excitation of the SPhP modes are still easier in the p-polarized ATR spectra. Taking into account the effects of anisotropy and the crystal orientation of hexagonal crystal system, the ATR spectra of r-plane sapphire crystal with arbitrary orientations were simulated. Through a best fit of experimental with simulated spectra, information about the crystal orientation of sapphire crystals was deduced.

  13. Unidirectional Excitation of Graphene Plasmon in Attenuated Total Reflection (ATR) Configuration

    NASA Astrophysics Data System (ADS)

    Dai, Wei; Wu, Yue-Chao; Liu, Fang-Li

    2016-04-01

    Graphene plasmon has been attracting interests from both theoretical and experimental research due to its gate tunability and potential applications in the terahertz frequency range. Here, we propose an effective scheme to unidirectionally excite the graphene plasmon by exploiting magneto-optical materials in the famous attenuated total reflection (ATR) configuration. We show that the graphene plasmon dispersion relation in such a device is asymmetric in different exciting directions, thus making it possible to couple the incident light unidirectionally to the propagating plasmon. The split of absorption spectrum of graphene clearly indicates that under a magnetic field for one single frequency, graphene plasmon can only be excited in one direction. The possible gate tunablity of excitation direction and the further application of the proposed scheme, such as optical isolator, also are discussed.

  14. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells.

    PubMed

    Andrew Chan, K L; Kazarian, Sergei G

    2016-03-29

    FTIR spectroscopic imaging is a label-free, non-destructive and chemically specific technique that can be utilised to study a wide range of biomedical applications such as imaging of biopsy tissues, fixed cells and live cells, including cancer cells. In particular, the use of FTIR imaging in attenuated total reflection (ATR) mode has attracted much attention because of the small, but well controlled, depth of penetration and corresponding path length of infrared light into the sample. This has enabled the study of samples containing large amounts of water, as well as achieving an increased spatial resolution provided by the high refractive index of the micro-ATR element. This review is focused on discussing the recent developments in FTIR spectroscopic imaging, particularly in ATR sampling mode, and its applications in the biomedical science field as well as discussing the future opportunities possible as the imaging technology continues to advance. PMID:26488803

  15. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies

    USGS Publications Warehouse

    Ribeiro da Luz, B.

    2006-01-01

    ??? Attenuated total reflectance (ATR) spectra of plant leaves display complex absorption features related to organic constituents of leaf surfaces. The spectra can be recorded rapidly, both in the field and in the laboratory, without special sample preparation. ??? This paper explores sources of ATR spectral variation in leaves, including compositional, positional and temporal variations. Interspecific variations are also examined, including the use of ATR spectra as a tool for species identification. ??? Positional spectral variations generally reflected the abundance of cutin and the epicuticular wax thickness and composition. For example, leaves exposed to full sunlight commonly showed more prominent cutin- and wax-related absorption features compared with shaded leaves. Adaxial vs. abaxial leaf surfaces displayed spectral variations reflecting differences in trichome abundance and wax composition. Mature vs. young leaves showed changes in absorption band position and intensity related to cutin, polysaccharide, and possibly amorphous silica development on and near the leaf surfaces. ??? Provided that similar samples are compared (e.g. adaxial surfaces of mature, sun-exposed leaves) same-species individuals display practically identical ATR spectra. Using spectral matching procedures to analyze an ATR database containing 117 individuals, including 32 different tree species, 83% of the individuals were correctly identified. ?? The Authors (2006).

  16. Non-destructive Inspection of Chloride Ion in Concrete Structures Using Attenuated Total Reflection of Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Tripathi, Saroj R.; Inoue, Hiroo; Hasegawa, Tsuyoshi; Kawase, Kodo

    2013-02-01

    The chloride induced corrosion of reinforcing steel bar is one of the major causes of deterioration of concrete structures. Therefore, it is essential to periodically monitor the level of chloride ion (Cl-) concentration in concrete structures. In this work, we developed millimeter wave attenuated total reflection measurement setup in order to determine the Cl- concentration in concrete structures. We prepared concrete samples with different compositions and varying Cl- concentrations and we measured their attenuated total reflectance at 65 GHz. We observed that the reflectance decreases almost linearly with the increase in Cl- concentration indicating that this technique could be used to inspect the Cl- concentration in concrete structures nondestructively.

  17. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    PubMed

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm. PMID:25587997

  18. Attenuated total internal reflectance infrared microspectroscopy as a detection technique for capillary electrophoresis.

    PubMed

    Patterson, Brian M; Danielson, Neil D; Sommer, André J

    2004-07-01

    A novel detector for capillary electrophoresis (CE) using single-bounce attenuated total internal reflectance (ATR) Fourier transform infrared (FT-IR) microspectroscopy is presented. The terminus of the CE capillary is placed approximately 1 microm from the internal reflectance crystal at the focus of an ATR infrared microscope. Using pressure driven flow injection, concentration and volume detection limits have been determined for 25- and 10-microm-i.d. silica capillaries. Upon injection of 820 pL of succinylcholine chloride in a 10-microm capillary, a concentration detection limit of approximately 0.5 parts per thousand (ppt), or 410 pg, is found. The injection volume detection limit using a 108 ppt solution is 2.0 pL (216 pg). Sample separations using a programmed series of pressure, voltage, and again pressure on 25-, 50-, and 75-microm-i.d. capillaries are shown. CE separations of citrate and nitrate, as well as succinylcholine chloride with sodium salicylate using acetone as a neutral marker, are demonstrated. Several advantages of this CE-FT-IR technique include: (1) minimization of postcolumn broadening as a result of a small detector volume; (2) the ability to signal average spectra of the same aliquot, thereby improving the signal-to-noise in a stopped-flow environment; and (3) simplicity of design. PMID:15228361

  19. Simulation of attenuated total reflection infrared absorbance spectra: applications to automotive clear coat forensic analysis.

    PubMed

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; Nishikida, Koichi; Campbell, Jay

    2014-01-01

    Attenuated total reflection (ATR) is a widely used sampling technique in infrared (IR) spectroscopy because minimal sample preparation is required. Since the penetration depth of the ATR analysis beam is quite shallow, the outer layers of a laminate or multilayered paint sample can be preferentially analyzed with the entire sample intact. For this reason, forensic laboratories are taking advantage of ATR to collect IR spectra of automotive paint systems that may consist of three or more layers. However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, compared with its transmission counterpart. This hinders library searching because most library spectra are measured in transmission mode. Furthermore, the angle of incidence for the internal reflection element, the refractive index of the clear coat, and surface contamination due to inorganic contaminants can profoundly influence the quality of the ATR spectrum obtained for automotive paints. A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the paint data query (PDQ) automotive database is presented. The proposed correction algorithm to convert transmission spectra from the PDQ library to ATR spectra is able to address distortion issues such as the relative intensities and broadening of the bands, and the introduction of wavelength shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR transmission data. PMID:25014606

  20. Characterization of Printing Inks Using DART-Q-TOF-MS and Attenuated Total Reflectance (ATR) FTIR.

    PubMed

    Williamson, Rhett; Raeva, Anna; Almirall, Jose R

    2016-05-01

    The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real-time mass spectrometry (DART-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART-MS was found to characterize the semi-volatile polymeric vehicle components, while ATR-FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks. PMID:27122410

  1. [Quantitative analysis of surface composition of polypropylene blends using attenuated total reflectance FTIR spectroscopy].

    PubMed

    Chen, Han-jia; Zhu, Ya-fei; Zhang, Yi; Xu, Jia-rui

    2008-08-01

    The surface composition and structure of solid organic polymers influence many of their properties and applications. Oligomers such as poly(ethylene glycol) (PEG), poly(methyl methacrylate) (PMMA) poly(butyl methacrylate) (PBMA) and their graft copolymers of polybutadiene and polypropylene were used as the macromolecular surface modifiers of polypropylene. The compositions on surface and in bulk of the polypropylene (PP) blends were determined quantitatively using attenuated total reflectance FTIR spectroscopic (ATR-FTIR) technique with a variable-angle multiple-reflection ATR accessory and FTIR measurements, respectively. By validating by Lambert-Beer law, 1103 and 1733 cm(-1) can be used to represent modifiers characteristic absorbance band to determine quantitatively the surface composition of modifiers including poly(ethylene glycol) and carbonyl segment in PP blends, respectively. The determination error can be effectively eliminated by calibrating wavelength and using absorption peak area ratio as the calibrating basis for the quantitative analysis. To minimize the effect of contact between the polymer film and the internal reflection element on the results of absolute absorbance, the technique of "band ratioing" was developed, and it was testified that the error of the peak area ratios of interest can be reduced to 5% or below, which was suitable for ATR-FTIR used as a determining quantitative tool for surface composition. The working curves were then established and used to calculate the composition of the responding functional groups in the film surface of the PP blends. The depth distribution of modifiers on the surface of blend films also can be determined by changing the incident angle of interest on the basis of the equation of the depth of penetration of the excursion wave in ATR spectra. The results indicated that ATR-FTIR can be used to determine quantitatively the surface composition and distribution of modifiers with reproducible and reliable

  2. Far- and Deep-UV Spectroscopy of Semiconductor Nanoparticles Measured Based on Attenuated Total Reflectance spectroscopy.

    PubMed

    Tanabe, Ichiro; Yamada, Yosuke; Ozaki, Yukihiro

    2016-02-16

    Far- and deep-ultraviolet spectra (150-300 nm) of semiconductor nanoparticles (zinc oxide and zinc sulfide) are successfully measured by using attenuated total reflectance (ATR) spectroscopy, and analyzed using finite-difference time-domain (FDTD) simulations. The obtained spectra show good consistency with earlier synchrotron-radiation spectra and with theoretical calculations. The FDTD simulation results show that the present system collected the correct spectra. In the present system, the obtained spectra are affected by the real part n of the complex refractive index more strongly than the imaginary part k. It is also revealed both experimentally and theoretically that spectral intensities of the semiconductor nanoparticles are approximately one tenth those of liquid samples. These results provide insights into the far- and deep-ultraviolet spectroscopy based on the ATR system, and show the general applicability of our original ATR spectroscopy to semiconductor nanoparticles. The system needs neither high vacuum nor much space, and enables rapid and systematic investigation of the electronic states of various materials. PMID:26691240

  3. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Hands, James R; Clemens, Graeme; Stables, Ryan; Ashton, Katherine; Brodbelt, Andrew; Davis, Charles; Dawson, Timothy P; Jenkinson, Michael D; Lea, Robert W; Walker, Carol; Baker, Matthew J

    2016-05-01

    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection-Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked. PMID:26874961

  4. Attenuated total reflectance Fourier-transform infrared spectroscopic investigation of silicon heterojunction solar cells.

    PubMed

    Holovský, Jakub; De Wolf, Stefaan; Jiříček, Petr; Ballif, Christophe

    2015-07-01

    Silicon heterojunction solar cells critically depend on the detailed properties of their amorphous/crystalline silicon interfaces. We report here on the use of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy to gain precise insight into the vibrational properties of the surfaces and ultrathin layers present in such solar cells. We fabricate ATR prisms from standard silicon wafers similar to those used for device fabrication. In this fashion, we acquire very-high sensitivity FTIR information on device-relevant structures. Our method has no requirement for minimum layer thickness, enabling the study of the impact of the different fabrication process steps on the film microstructure. We discuss the necessary requirements for the method implementation and give a comprehensive overview of all observed vibration modes. In particular, we study vibrational signatures of Si-H(X), Si-H(X)(Si(Y)O(Z)), B-H, hydroxyl groups, and hydrocarbons on the Si(111) surface. We observe subtle effects in the evolution of the chemical state of the surface during sample storage and process-related wafer handling and discuss their effect on the electronic properties of the involved interfaces. PMID:26233357

  5. Detection of sibutramine in adulterated dietary supplements using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Cauwenbergh, T; Bothy, J L; Custers, D; Courselle, P; De Beer, J O

    2014-11-01

    Sibutramine is one of the most occurring adulterants encountered in dietary supplements with slimming as indication. These adulterated dietary supplements often contain a herbal matrix. When customs intercept these kind of supplements it is almost impossible to discriminate between the legal products and the adulterated ones, due to misleading packaging. Therefore in most cases these products are confiscated and send to laboratories for analysis. This results inherently in the confiscation of legal, non-adulterated products. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. Attenuated total reflectance-infrared (ATR-IR) spectroscopy was evaluated for the detection of sibutramine in adulterated dietary supplements. Data interpretation was performed using different basic chemometric techniques. It was found that the use of ATR-IR combined with the k-Nearest Neighbours (k-NN) was able to detect all adulterated dietary supplements in an external test set and this with a minimum of false positive results. This means that a small amount of legal products will still be confiscated and analyzed in a laboratory to be found negative, but no adulterated samples will pass the initial ATR-IR screening. PMID:25173110

  6. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    PubMed

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. PMID:27412186

  7. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    PubMed

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-01

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes. PMID:23745950

  8. Attenuated total reflectance-FT-IR imaging for rapid and automated detection of gunshot residue.

    PubMed

    Bueno, Justin; Lednev, Igor K

    2014-04-01

    An alternative approach for the nondestructive, rapid and selective detection of gunshot residue (GSR) was investigated. A cloth substrate containing GSR particles expelled during a firearm discharge was used as an analog for the clothing of a shooting victim or a suspect discharging a firearm. An established and efficient procedure for GSR collection (tape lifting) was utilized to recover GSR particles from the cloth substrate. Microscopic-attenuated total reflectance (ATR) Fourier transform (FT) infrared (IR) spectroscopic imaging rapidly and automatically scanned large areas of the tape collection substrate and detected varying morphologies (microscopic and macroscopic) and chemical compositions (organic and inorganic) of GSR. The "spectroscopic fingerprint" of each GSR type provided unique virbrational modes, which were not characteristic of the tape collection substrate or the cloth debris which was also recovered. ATR images (maps) targeted the detection of these unique chemical markers over the mapped area. The hues of the ATR images were determined by the intensity of the signal for the chemical marker of each analyte. The spatial resolution of the technique was determined to be 4.7 μm. Therefore, all GSR particles sized 4.7 μm or larger will be resolved and detected on the tape substrate using micro-ATR imaging. PMID:24588255

  9. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  10. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content. PMID:17590027

  11. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils. PMID:27400512

  12. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  13. Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton is one of the most important and widely grown crops in the world. In addition to natural textile fiber production as a primary purpose, it yields a high grade vegetable oil for human consumption and also carbohydrate fiber and protein byproducts for animal feed. In this work, attenuated total...

  14. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  15. Excitation of plasmonic terahertz photovoltaic effects in a periodic two-dimensional electron system by the attenuated total reflection method

    SciTech Connect

    Fateev, D. V. Mashinsky, K. V.; Bagaeva, T. Yu.; Popov, V. V.

    2015-01-15

    The problem of the rectification of terahertz radiation due to plasmonic nonlinearities in a periodic two-dimensional electron system upon the excitation of plasma oscillations by the attenuated total reflection method is solved. This model allows the independent study of different plasmonic rectification mechanisms, i.e., plasmonic electron drag and plasmonic ratchet effects.

  16. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-12-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10-500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm-1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10-50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables.

  17. Attenuated total reflection-Fourier transform infrared spectroscopic imaging of pharmaceuticals in microfluidic devices.

    PubMed

    Ewing, Andrew V; Clarke, Graham S; Kazarian, Sergei G

    2016-03-01

    The poor aqueous solubility of many active pharmaceutical ingredients presents challenges for effective drug delivery. In this study, the combination of attenuated total reflection (ATR)-FTIR spectroscopic imaging with specifically designed polydimethylsiloxane microfluidic devices to study drug release from pharmaceutical formulations has been developed. First, the high-throughput analysis of the dissolution of micro-formulations studied under flowing conditions has been introduced using a model formulation of ibuprofen and polyethylene glycol. The behaviour and release of the drug was monitored in situ under different pH conditions. In contrast to the neutral solution, where both the drug and excipient dissolved at a similar rate, structural change from the molecularly dispersed to a crystalline form of ibuprofen was characterised in the obtained spectroscopic images and the corresponding ATR-FTIR spectra for the experiments carried out in the acidic medium. Further investigations into the behaviour of the drug after its release from formulations (i.e., dissolved drug) were also undertaken. Different solutions of sodium ibuprofen dissolved in a neutral medium were studied upon contact with acidic conditions. The phase transition from a dissolved species of sodium ibuprofen to the formation of solid crystalline ibuprofen was revealed in the microfluidic channels. This innovative approach could offer a promising platform for high-throughput analysis of a range of micro-formulations, which are of current interest due to the advent of 3D printed pharmaceutical and microparticulate delivery systems. Furthermore, the ability to study dissolved drug in solution under flowing conditions can be useful for the studies of the diffusion of drugs into tissues or live cells. PMID:27158293

  18. [Attenuated total reflection-fourier transform infrared spectroscopic study of dried shark fin products].

    PubMed

    Han, Wan-qing; Luo, Hai-ying; Xian, Yan-ping; Luo, Dong-hui; Mu, Torng-na; Guo, Xin-dong

    2015-02-01

    Sixty-four pieces of shark fin dried products (including real, fake and artificial shark fin products) and real products coated with gelatin were rapidly and nondestructively analyzed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The characteristic of IR spectrograms among the above four kinds of samples were systematically studied and comparied, the results showed that the spectrograms of the same kind of samples were repeatable, and different kinds of shark fin products presented significant differences in the spectrograms, which mainly manifested as the specific absorption peaks of amido bonds in protein (1650, 1544 cm(-1)) and skeletal vibration in polysaccharide (1050 cm(-1)). The spectrograms of real shark fins were characterized by the strong absorption peaks of protein characteristic amide I and II absorbent (1650, 1544 cm(-1)) and relatively weak C--O--C vibration absorbent (1050 cm(-1)) owing to the high content of protein and relatively low level of polysaccharide. For fake shark fin products that were molded form by mixing together with the offcut of shark, collagen and other substances, the introduction of non-protein materials leaded to the weaker amido bonds absorbent than real products along with a 30 cm(-1) blue shift of amide I absorbent. Opposite to the real sample, the relatively strong absorption peak of polysaccharide (approximately 1047 cm(-1)) and barely existed amide absorbent were the key features of the spectrogram of artificial samples, which was synthersized by polysaccharide like sodium alginate. Real samples coated with gelatin, the peak strength of protein and polysaccharide were decreased simultaneously when the data collection was taken at the surface of sample, while the spectrogram presented no significant difference to real samples when the data was collected in the section. The results above indicated that by analyzing the characteristic of IR spectrograms and the value range of Apro

  19. Quantification of bovine immunoglobulin G using transmission and attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P

    2016-01-01

    In this study, we evaluated and compared the performance of transmission and attenuated total reflectance (ATR) infrared (IR) spectroscopic methods (in combination with quantification algorithms previously developed using partial least squares regression) for the rapid measurement of bovine serum immunoglobulin G (IgG) concentration, and detection of failure of transfer of passive immunity (FTPI) in dairy calves. Serum samples (n = 200) were collected from Holstein calves 1-11 days of age. Serum IgG concentrations were measured by the reference method of radial immunodiffusion (RID) assay, transmission IR (TIR) and ATR-IR spectroscopy-based assays. The mean IgG concentration measured by RID was 17.22 g/L (SD ±9.60). The mean IgG concentrations predicted by TIR and ATR-IR spectroscopy methods were 15.60 g/L (SD ±8.15) and 15.94 g/L (SD ±8.66), respectively. RID IgG concentrations were positively correlated with IgG levels predicted by TIR (r = 0.94) and ATR-IR (r = 0.92). The correlation between 2 IR spectroscopic methods was 0.94. Using an IgG concentration <10 g/L as the cut-point for FTPI cases, the overall agreement between TIR and ATR-IR methods was 94%, with a corresponding kappa value of 0.84. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for identifying FTPI by TIR were 0.87, 0.97, 0.91, 0.95, and 0.94, respectively. Corresponding values for ATR-IR were 0.87, 0.95, 0.86, 0.95, and 0.93, respectively. Both TIR and ATR-IR spectroscopic approaches can be used for rapid quantification of IgG level in neonatal bovine serum and for diagnosis of FTPI in dairy calves. PMID:26699522

  20. Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems

    SciTech Connect

    Jing, Chengbin; Guo, Hong; Hu, Zhigao; Yang, Pingxiong; Chu, Junhao; Liu, Aiyun; Shi, Yiwei

    2014-07-07

    A durable metallic attenuated total reflection (ATR) hollow fiber (bore size: 1.45 mm, wall thickness: 50 μm) was designed and fabricated based on a nickel capillary tube and hexagonal germanium dioxide (GeO{sub 2}). The anomalous dispersion of the hexagonal GeO{sub 2} layer grown inside a nickel tube achieves low-loss light transmission at two peak-power wavelengths for CO{sub 2} laser devices (10.2 and 10.6 μm). An 11–28 W, 10.2 or 10.6 μm CO{sub 2} laser power was steadily delivered via a fiber elastically bent from 0° to 90° (radius: 45 cm) for over 40 min (transmission loss: 0.22 to 4.2 dB/m). Theoretically fitting the measured temperatures showed that front-end clipping caused greater thermal loading than the distributed mode absorption. The maximum external temperature of a nickel ATR fiber is much lower than that of a silica glass ATR fiber owing to their different heat dissipation abilities. The HE{sub 11} mode purity of the output beam profiles decreased from 90.3% to 44.7% as the bending angle increased from 0° to 90°. Large core sizes and wall roughnesses (scattering loss 0.04 dB/m) contributed to mode mixing and excess losses that were above the value predicted by the classical Marcatili and Schmeltzer equation (0.024–0.037 dB/m).

  1. Attenuated total reflection micro FTIR characterisation of pigment-binder interaction in reconstructed paint films.

    PubMed

    Mazzeo, R; Prati, S; Quaranta, M; Joseph, E; Kendix, E; Galeotti, M

    2008-09-01

    The interaction of pigments and binding media may result in the production of metal soaps on the surface of paintings which modifies their visible appearance and state of conservation. To characterise more fully the metal soaps found on paintings, several historically accurate oil and egg yolk tempera paint reconstructions made with different pigments and naturally aged for 10 years were submitted to attenuated total reflectance Fourier transform infrared (ATR FTIR) microspectroscopic analyses. Standard metal palmitates were synthesised and their ATR spectra recorded in order to help the identification of metal soaps. Among the different lead-based pigments, red lead and litharge seemed to produce a larger amount of carboxylates compared with lead white, Naples yellow and lead tin yellow paints. Oil and egg tempera litharge and red lead paints appeared to be degraded into lead carbonate, a phenomenon which has been observed for the first time. The formation of metal soaps was confirmed on both oil and egg tempera paints based on zinc, manganese and copper and in particular on azurite paints. ATR mapping analyses showed how the areas where copper carboxylates were present coincided with those in which azurite was converted into malachite. Furthermore, the key role played by manganese in the production of metals soaps on burnt and raw sienna and burnt and raw umber paints has been observed for the first time. The formation of copper, lead, manganese, cadmium and zinc metal soaps was also identified on egg tempera paint reconstructions even though, in this case, the overlapping of the spectral region of the amide II band with that of metal carboxylates made their identification difficult. PMID:18454281

  2. Comparative study of Fourier transform infrared spectroscopy in transmission, attenuated total reflection, and total reflection modes for the analysis of plastics in the cultural heritage field.

    PubMed

    Picollo, Marcello; Bartolozzi, Giovanni; Cucci, Costanza; Galeotti, Monica; Marchiafava, Veronica; Pizzo, Benedetto

    2014-01-01

    This study was completed within the framework of two research projects dealing with the conservation of contemporary artworks. The first is the Seventh Framework Project (FP7) of the European Union, Preservation of Plastic ARTefacts in Museum Collections (POPART), spanning years 2008-2012, and the second is the Italian project funded by the Tuscan Region, Preventive Conservation of Contemporary Art (Conservazione Preventiva dell'Arte Contemporanea (COPAC)), spanning 2011-2013. Both of these programs pointed out the great importance of having noninvasive and portable analytical techniques that can be used to investigate and characterize modern and contemporary artworks, especially those consisting of synthetic polymers. Indeed, despite the extensive presence of plastics in museum collections, there is still a lack of analytical tools for identifying, characterizing, and setting up adequate conservation strategies for these materials. In this work, the potentials of in situ and noninvasive Fourier transform infrared (FT-IR) spectroscopy, implemented by means of portable devices that operate in reflection mode, are investigated with a view to applying the results in large-scale surveys of plastic objects in museums. To this end, an essential prerequisite are the reliability of spectral data acquired in situ and the availability of spectral databases acquired from reference materials. A collection of polymeric samples, which are available commercially as ResinKit, was analyzed to create a reference spectral archive. All the spectra were recorded using three FT-IR configurations: transmission (trans), attenuated total reflection (ATR), and total reflection (TR). A comparative evaluation of the data acquired using the three instrumental configurations is presented, together with an evaluation of the similarity percentages and a discussion of the critical cases. PMID:24694694

  3. An attenuated total reflectance IR study of silicic acid adsorbed onto a ferric oxyhydroxide surface

    NASA Astrophysics Data System (ADS)

    Swedlund, Peter J.; Miskelly, Gordon M.; McQuillan, A. James

    2009-07-01

    Silicic acid (H 4SiO 4) can have significant effects on the properties of iron oxide surfaces in both natural and engineered aquatic systems. Understanding the reactions of H 4SiO 4 on these surfaces is therefore necessary to describe the aquatic chemistry of iron oxides and the elements that associate with them. This investigation uses attenuated total reflectance infrared spectroscopy (ATR-IR) to study silicic acid in aqueous solution and the products formed when silicic acid adsorbs onto the surface of a ferrihydrite film in 0.01 M NaCl at pH 4. A spectrum of 1.66 mM H 4SiO 4 at pH 4 (0.01 M NaCl) has an asymmetric Si-O stretch at 939 cm -1 and a weak Si-O-H deformation at 1090 cm -1. ATR-IR spectra were measured over time (for up to 7 days) for a ferrihydrite film (≈1 mg) approaching equilibrium with H 4SiO 4 at concentrations between 0.044 and 0.91 mM. Adsorbed H 4SiO 4 had a broad spectral feature between 750 and 1200 cm -1 but the shape of the spectra changed as the amount of H 4SiO 4 adsorbed on the ferrihydrite increased. When the solid phase Si/Fe mole ratio was less than ≈0.01 the ATR-IR spectra had a maximum intensity at 943 cm -1 and the spectral shape suggests that a monomeric silicate species was formed via a bidentate linkage. As the solid phase Si/Fe mole ratio increased to higher values a discrete oligomeric silicate species was formed which had maximum intensity in the ATR-IR spectra at 1001 cm -1. The spectrum of this species suggests that it is larger than a dimer and it was tentatively identified as a cyclic tetramer. A small amount of a polymeric silica phase with a broad spectral feature centered at ≈1110 cm -1 was also observed at high surface coverage. The surface composition was estimated from the relative contribution of each species to the area of the ATR-IR spectra using multivariate curve resolution with alternating least squares. For a ferrihydrite film approaching equilibrium with 0.044, 0.14, 0.40 and 0.91 mM H 4SiO 4 the

  4. Shining new light on old principles: localization of evanescent field interactions at infrared-attenuated total reflection sensing interfaces.

    PubMed

    Dobbs, Gary T; Mizaikoff, Boris

    2006-06-01

    A combined experimental and spectral ray tracing approach for identifying and evaluating evanescent field interactions with discrete surface deposits along a horizontal attenuated total reflection (HATR) element is presented. By experimentally depositing poly(styrene-co-butadiene) (PSCB) residues at fixed intervals along the measurement surface of a HATR crystal, distinct regions of evanescent field interaction with the surface deposits along the multi-reflection waveguide are visualized via infrared absorption features of PSCB. The infrared-attenuated total reflection (IR-ATR) measurements were confirmed by spectral ray tracing analysis simulating transmission-absorption spectra after modeling the polymeric surface deposits as thin-film IR absorbing cylinders. The presented analytical procedures and simulations provide a generic strategy for identifying and evaluating "active" sensing regions along ATR elements. Additionally, the simulated ATR setup along with the presented spectral ray tracing procedures provide a virtual platform aiding the development, optimization, and integration of deep-sea IR-ATR sensor probes with submersible mid-infrared spectrometers for in situ marine monitoring applications, which was the initial motivation for these studies. PMID:16808857

  5. Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy.

    PubMed

    Fantinel, Fabiana; Rieger, Jens; Molnar, Ferenc; Hübler, Patrick

    2004-03-30

    The attenuated total reflectance Fourier transform infrared dialysis technique is introduced for the time-resolved investigation of the binding processes of Ca2+ to polyacrylates dissolved in water. We observed transient formation of intermediates in water with various types of coordination of the carboxylate group to Ca2+ throughout the complexation steps. Time-resolved changes in the spectra were analyzed with principal component analysis, from which the spectral species were obtained as well as their formation kinetics. We propose a model for the mechanisms of Ca2+ coordination to polyacrylates. The polymer chain length plays an important role in Ca2+ binding. PMID:15835120

  6. Simultaneous Determination of Monoatomic Ions via Infrared Attenuated Total Reflection Spectroscopy in Aqueous Solution at Different Temperatures.

    PubMed

    Rauh, Florian; Mizaikoff, Boris

    2016-07-01

    In this study, monoatomic and thus IR-inactive ions were determined via infrared attenuated total reflection (IR-ATR) spectroscopy including Cl(-), Na(+), Mg(2+), Ca(2+), K(+) and Br(-), next to the IR-active ion [Formula: see text] The determination of IR-inactive ions is enabled, as each ion influences the infrared spectrum of bulk water by organizing the water molecules within the solvation shell around the ionic species in a unique way. Furthermore, the influence of temperature was taken into account for the potential application of this analytical technique in real-world scenarios. Using chemometric data analysis, seven ions could be discriminated at temperatures ranging between 3 ℃ and 45 ℃. Finally, within a sample of seawater, Cl(-), Na(+), Mg(2+) and [Formula: see text] could be simultaneously quantified, while the concentrations of Ca(2+), K(+) and Br(-) remained below the achievable limits of detection. PMID:27340219

  7. Chemometric analysis of attenuated total reflectance infrared spectra of Proteus mirabilis strains with defined structures of LPS.

    PubMed

    Zarnowiec, Paulina; Mizera, Andrzej; Chrapek, Magdalena; Urbaniak, Mariusz; Kaca, Wieslaw

    2016-07-01

    Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research. PMID:27189426

  8. Application of attenuated total reflectance Fourier transform infrared spectroscopy for determination of cefixime in oral pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Kandhro, Aftab A.; Laghari, Abdul Hafeez; Mahesar, Sarfaraz A.; Saleem, Rubina; Nelofar, Aisha; Khan, Salman Tariq; Sherazi, S. T. H.

    2013-11-01

    A quick and reliable analytical method for the quantitative assessment of cefixime in orally administered pharmaceutical formulations is developed by using diamond cell attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy as an easy procedure for quality control laboratories. The standards for calibration were prepared in aqueous medium ranging from 350 to 6000 mg/kg. The calibration model was developed based on partial least square (PLS) using finger print region of FT-IR spectrum in the range from 1485 to 887 cm-1. Excellent coefficient of determination (R2) was achieved as high as 0.99976 with root mean square error of 44.8 for calibration. The application of diamond cell (smart accessory) ATR FT-IR proves a reliable determination of cefixime in pharmaceutical formulations to assess the quality of the final product.

  9. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Approach for Kidney Biopsy Analysis

    PubMed Central

    Gulley-Stahl, Heather J.; Bledsoe, Sharon B.; Evan, Andrew P.; Sommer, André J.

    2011-01-01

    The benefits of an ATR-FTIR imaging approach for kidney biopsy analysis are described. Biopsy sections collected from kidney stone formers are analyzed at the initial stages of stone development to provide insights into stone growth and formation. The majority of tissue analysis currently conducted with IR microspectroscopy is performed with a transflection method. The research presented in this manuscript demonstrates that ATR overcomes many of the disadvantages of transflection or transmission measurements for tissue analysis including an elimination of spectral artifacts. When kidney biopsies with small mineral inclusions are analyzed with a transflection approach, specular reflection, and the Christiansen effect (anomalous dispersion) can occur leading to spectral artifacts. Another effect specific to the analysis of mineral inclusions present in kidney biopsies is known as the reststrahlen effect where the inclusions become strong reflectors near an absorption band. ATR eliminates these effects by immersing the sample in a high index medium. Additionally, the focused beam size for ATR is decreased by a factor of four when a germanium internal reflection element is used, allowing the acquisition of spectra from small mineral inclusions several micrometers in diameter. If quantitative analysis of small mineral inclusions is ultimately desired, ATR provides the photometrically accurate spectra necessary for quantification. PMID:20132593

  10. Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy.

    PubMed

    Hu, Yaxi; Pan, Zhi Jie; Liao, Wen; Li, Jiaqi; Gruget, Pierre; Kitts, David D; Lu, Xiaonan

    2016-07-01

    Antioxidant capacity and phenolic content of chocolate, containing different amounts of cacao (35-100%), were determined using attenuated total reflectance (ATR)-Fourier transformed-infrared (FT-IR) spectroscopy (4000-550cm(-1)). Antioxidant capacities were first characterized using DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) assays. Phenolic contents, including total phenol and procyanidins monomers, were quantified using the Folin-Ciocalteu assay and high performance liquid chromatography coupled with photodiode array detector (HPLC-DAD), respectively. Five partial least-squares regression (PLSR) models were constructed and cross-validated using FT-IR spectra from 18 types of chocolate and corresponding reference values determined using DPPH, ORAC, Folin-Ciocalteu, and HPLC assays. The models were validated using seven unknown samples of chocolate. PLSR models showed good prediction capability for DPPH [R(2)-P (prediction)=0.88, RMSEP (root mean squares error of prediction)=12.62μmol Trolox/g DFW], ORAC (R(2)-P=0.90, RMSEP=37.92), Folin-Ciocalteu (R(2)-P=0.88, RMSEP=5.08), and (+)-catechin (R(2)-P=0.86, RMSEP=0.10), but lacked accuracy in the prediction of (-)-epicatechin (R(2)-P=0.72, RMSEP=0.57). ATR-FT-IR spectroscopy can be used for rapid prediction of antioxidant capacity, total phenolic content, and (+)-catechin in chocolate. PMID:26920292

  11. High-sensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water.

    PubMed

    Lu, Rui; Li, Wen-Wei; Mizaikoff, Boris; Katzir, Abraham; Raichlin, Yosef; Sheng, Guo-Ping; Yu, Han-Qing

    2016-02-01

    In situ detection of volatile organic compounds (VOCs) in aqueous environments is imperative for ensuring the quality and safety of water supplies, yet it remains a challenging analytical task. We present a high-sensitivity method for in situ analysis of multicomponent VOCs at low concentrations based on the use of infrared attenuated total reflection (IR-ATR) spectroscopy. This protocol uses a unique ATR waveguide, which comprises a planar silver halide (AgCl(x)Br(1-x)) fiber with cylindrical extensions at both ends to increase the number of internal reflections, and a polymer coating that traps VOCs and excludes water molecules. Depending on the type of VOC and measurement scenario, IR spectra with specific frequency windows, scan times and spectral resolutions are obtained, from which concentration information is derived. This protocol allows simultaneous detection of multiple VOCs at concentrations around 10 p.p.b., and it enables accurate quantification via a single measurement within 5 min without the need for sample collection or sample pretreatment. This IR-ATR sensor technology will be useful for other applications; we have included a procedure for the analysis of protein conformation changes in Supplementary Methods as an example. PMID:26820794

  12. Analysis of captan on nitrile glove surfaces using a portable attenuated total reflection fourier transform infrared spectrometer.

    PubMed

    Phalen, R N; Que Hee, Shane S

    2005-06-01

    This study developed a method to produce uniform captan surface films on a disposable nitrile glove for quantitation with a portable attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer. A permeation test was performed using aqueous captan formulation. Uniform captan surface films were produced using solvent casting with 2-propanol and a 25 mm filter holder connected to a vacuum manifold to control solvent evaporation. The coefficient of variation of the reflectance at 1735 +/- 5 cm(-1) was minimized by selection of the optimum solvent volume, airflow rate, and evaporation time. At room temperature, the lower to upper quantifiable limits were 0.31-20.7 microg/cm2 (r = 0.9967; p < or = 0.05) for the outer glove surface and 0.55-17.5 microg/cm2 (r = 0.9409; p < or = 0.05) for the inner surface. Relative humidity and temperature did not affect the uncoated gloves at the wavelength of captan analysis. Glove screening using ATR-FTIR was necessary as a control for between-glove variation. Captan permeation, after 8 hours exposure to an aqueous concentration of 217 mg/mL of Captan 50-WP, was detected at 0.8 +/- 0.3 microg/cm2 on the inner glove surface. ATR-FTIR can detect captan permeation and can determine the protectiveness of this glove in the field. PMID:16053538

  13. Nitrogen-doped diamond-like carbon as optically transparent electrode for infrared attenuated total reflection spectroelectrochemistry.

    PubMed

    Menegazzo, Nicola; Kahn, Markus; Berghauser, Roswitha; Waldhauser, Wolfgang; Mizaikoff, Boris

    2011-05-01

    This contribution describes the development of nitrogen-doped diamond-like carbon (N-DLC) thin films for multi-reflection mid-infrared (MIR) attenuated total reflectance (IR-ATR) spectroelectrochemistry. N-DLC coatings were deposited using pulsed laser deposition (PLD) involving the ablation of a high purity graphite target. The DLC matrix was further modified by ablating the target in the presence of nitrogen gas. This technique offers the advantage of depositing thin films at room temperature, thereby enabling coating of temperature-sensitive substrates including e.g., MIR waveguides. The resulting films were analyzed with X-ray photoelectron spectroscopy (XPS), and determined to be composed of carbon, nitrogen, and adventitious oxygen. Raman spectroscopic studies indicate that the addition of nitrogen induces further clustering and ordering of the sp(2)-hybridized carbon phase. The electrochemical activity of PLD fabricated N-DLC films was verified using the Ru(NH(3))(3+/2+) redox couple, and was determined to be comparable with that of other carbon-based electrodes. In situ spectroelectrochemical studies involving N-DLC coated zinc selenide (ZnSe) MIR waveguides provided evidence concerning the oxidation of N-DLC at anodic potentials in 1 M HClO(4) solutions. Finally, the electropolymerization of polyaniline (PAni) was performed at N-DLC-modified waveguide surfaces, which enabled spectroscopic monitoring of the electropolymerization, as well as in situ studying the structural conversion of PAni at different potentials. PMID:21373709

  14. Chemical agent identification by field-based attenuated total reflectance infrared detection and solid-phase microextraction.

    PubMed

    Bryant, Chet K; LaPuma, Peter T; Hook, Gary L; Houser, Eric J

    2007-03-15

    Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy is used to identify liquid and solid-phase chemicals. This research examines the feasibility of identifying vapor-phase chemicals using a field-portable ATR-FT-IR spectrometer (TravelIR) combined with solid-phase microextraction (SPME). Two nerve agent simulants, diisopropyl methylphosphonate (DIMP) and di-methyl methylphosphonate (DMMP), and three sorbent polymers were evaluated. Each polymer was deposited as a thin film on the instrument's sampling interface to partition and concentrate the simulants from air samples prepared in Tedlar bags. The lowest vapor concentrations identified were 50 ppb (v/v) (DIMP) and 250 ppb (v/v) (DMMP). The ATR-FT-IR instrument demonstrated a linear response at concentrations of 1 ppm (v/v) and below. Increasing the sample exposure time, the sample air velocity, and the film thickness was demonstrated to increase the amount of analyte extracted from the air sample. This research demonstrates that it is feasible to use a portable ATR-FT-IR spectrometer with SPME sampling to detect and identify vapor-phase chemicals. PMID:17284014

  15. Attenuated Total Reflection Mid-Infrared (ATR-MIR) Spectroscopy and Chemometrics for the Identification and Classification of Commercial Tannins.

    PubMed

    Ricci, Arianna; Parpinello, Giuseppina P; Olejar, Kenneth J; Kilmartin, Paul A; Versari, Andrea

    2015-11-01

    Attenuated total reflection Fourier transform infrared (FT-IR) spectroscopy was used to characterize 40 commercial tannins, including condensed and hydrolyzable chemical classes, provided as powder extracts from suppliers. Spectral data were processed to detect typical molecular vibrations of tannins bearing different chemical groups and of varying botanical origin (univariate qualitative analysis). The mid-infrared region between 4000 and 520 cm(-1) was analyzed, with a particular emphasis on the vibrational modes in the fingerprint region (1800-520 cm(-1)), which provide detailed information about skeletal structures and specific substituents. The region 1800-1500 cm(-1) contained signals due to hydrolyzable structures, while bands due to condensed tannins appeared at 1300-900 cm(-1) and exhibited specific hydroxylation patterns useful to elucidate the structure of the flavonoid monomeric units. The spectra were investigated further using principal component analysis for discriminative purposes, to enhance the ability of infrared spectroscopy in the classification and quality control of commercial dried extracts and to enhance their industrial exploitation. PMID:26647047

  16. Characterization of pigments used in painting by means of laser-induced plasma and attenuated total reflectance FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mateo, M. P.; Ctvrtnickova, T.; Nicolas, G.

    2009-03-01

    The study of pigments which are found in the works of art is one of the most important tasks in the examination of historic, artistic and archaeological materials since it can provide information about their source, the pictorial technique used or the presence of restoration works. In some studies, the historical, artistic and technical characterization of the artefact is not the final goal but its restoration. In those cases, the knowledge about the chemical composition inferred from the analysis of the artwork is crucial for conservators and restorers in order to ensure that the same pigments that were used in the original work are employed for the restoration. In this work, the analytical characterization of a range of different pigments commonly used in art has been carried out using laser-induced plasma (LIBS) and attenuated total reflectance (ATR)-FTIR spectroscopy. The main purpose of this study is to provide a preliminary database of LIBS and ATR-FTIR spectra in order to supply both elemental and molecular information, respectively.

  17. Attenuated total reflection (ATR) Fourier transform infrared (FT-IR) spectroscopy of oxidized polymer-modified bitumens.

    PubMed

    Yut, Iliya; Zofka, Adam

    2011-07-01

    Oxidative age hardening of bitumen results in increasing fatigue susceptibility of bituminous mixtures, thus reducing the service life of asphalt pavements. Polymer additives to bitumen have been shown to improve its viscoelastic properties and, in some cases, reduce the level of bitumen hardening. Fourier transform infrared (FT-IR) spectroscopy enables evaluation of oxidation levels in bitumen by measuring the concentration of oxygen-containing chemical functionalities. This paper summarizes the results of the investigation of oxidative age hardening of polymer-modified bitumens (PMB) caused by accelerated aging in laboratory conditions. The PMB samples are prepared with different concentrations of styrene-butadiene-based co-polymers. Next, the PMB samples are aged using standard procedures that employ air blowing at 163 °C for 85 min followed by conditioning the samples at 100 °C and 2.1 MPa pressure for 20 to 48 hours. The resultant changes in their chemical composition are evaluated by portable attenuated total reflection (ATR) spectrometer. Measurements of ketone, sulfoxide, and hydroxyl content in PMB samples indicated similar oxidation pathways to those of non-modified bitumens. In addition, no evidence of polymer degradation due to accelerated aging of PMB was found in this study. PMID:21740638

  18. Rapid detection and differentiation of Alicyclobacillus species in fruit juice using hydrophobic grid membranes and attenuated total reflectance infrared microspectroscopy.

    PubMed

    Grasso, Elizabeth M; Yousef, Ahmed E; de Lamo Castellvi, Silvia; Rodriguez-Saona, Luis E

    2009-11-25

    Pasteurized juices may undergo spoilage during normal shelf life due to Alicyclobacillus spp. Metabolic byproducts during germination of these thermoacidiophilic, endospore-forming bacteria impart off-flavors. The objective was to develop a simple, rapid, and sensitive approach for differentiation of Alicyclobacillus spp. by attenuated total reflectance infrared (ATR-IR) microspectroscopy after isolation onto hydrophobic grid membrane (HGM) filters. Dilutions of four different species of Alicyclobacillus were filtered onto HGM, incubated on orange serum agar (50 degrees C, 36-48 h), and dried under vacuum. Spectra were collected using ATR-IR microspectroscopy and analyzed by multivariate analysis. Results indicated that soft independent modeling of class analogy models exhibited clusters that permitted classification at species and strain levels. The methodology was validated by correctly predicting Alicyclobacillus (100%) in blind tests. The proposed procedure permits chemically based classification of intact microbial cells. Implementation provides the juice industry with a rapid screening procedure to detect and monitor Alicyclobacillus that threatens the quality of pasteurized juices. PMID:19860470

  19. Analysis of changes in attenuated total reflection FTIR fingerprints of Pseudomonas fluorescens from planktonic state to nascent biofilm state

    NASA Astrophysics Data System (ADS)

    Quilès, Fabienne; Humbert, François; Delille, Anne

    2010-02-01

    Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is a useful method for monitoring biofilm in situ, non-destructively, in real time, and under fully hydrated conditions. In this work we focused on changes in Pseudomonas fluorescens ATR-FTIR fingerprint accompanying the very early stages of biofilm formation: initial bacterial adhesion and the very beginning of biofilm development in the presence of nutrients. To help interpreting variations in the ATR-FTIR fingerprint of sessile bacteria, ATR-FTIR spectra of planktonic bacteria in different growth phases were also examined, and the average surface coverage and spatial arrangement of bacteria on the ATR crystal were determined by epifluorescence microscopy. The proteins, nucleic acids and polysaccharides ATR-FTIR spectral data recorded during growth of sessile bacteria were shown to be linked to changes in the physiological state of the bacteria, possibly accompanied by extracellular polymeric substances production. This work clearly showed by spectroscopic method how bacteria change drastically their metabolism during the first hours of biofilm formation.

  20. Investigating the secondary structures for long oligonucleotides using attenuated-total-reflection nanoplasmon-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Chiu, K.-C.; Yu, L.-Y.; Lin, C.-Y.; Chen, S.-J.

    2007-09-01

    This study utilizes a nanoplasmon-enhanced Raman scattering based on the attenuated-total-reflection (ATR) method to investigate the secondary structures of long oligonucleotides and their influence on the DNA hybridization. It is found that the ring-breathing modes of adenine, thymine, guanine, and cytosine in Raman fingerprint associated with three 60mer oligonucleotides with prominent secondary structures are lower than those observed for the two oligonucleotides with no obvious secondary structures. It is also determined that increasing the DNA hybridization temperature from 35 °C to 45 °C reduces secondary structure effects. The kinetics of biomolecular interaction analysis can be performed by using surface plasmons resonance biosensor, but the structural information of the oligonucleotides can not observed directly. The ATR-Raman spectrum can provide the structural information of the oligonucleotide monolayer on the sensing surface with the help of a silver patterned nanostructure film based on the finite-difference time-domain simulation and the e-beam lithography fabrication adapted as an ATR-Raman active substrate.

  1. Rapid Quantification of Methamphetamine: Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometrics

    PubMed Central

    Hughes, Juanita; Ayoko, Godwin; Collett, Simon; Golding, Gary

    2013-01-01

    In Australia and increasingly worldwide, methamphetamine is one of the most commonly seized drugs analysed by forensic chemists. The current well-established GC/MS methods used to identify and quantify methamphetamine are lengthy, expensive processes, but often rapid analysis is requested by undercover police leading to an interest in developing this new analytical technique. Ninety six illicit drug seizures containing methamphetamine (0.1%–78.6%) were analysed using Fourier Transform Infrared Spectroscopy with an Attenuated Total Reflectance attachment and Chemometrics. Two Partial Least Squares models were developed, one using the principal Infrared Spectroscopy peaks of methamphetamine and the other a Hierarchical Partial Least Squares model. Both of these models were refined to choose the variables that were most closely associated with the methamphetamine % vector. Both of the models were excellent, with the principal peaks in the Partial Least Squares model having Root Mean Square Error of Prediction 3.8, R2 0.9779 and lower limit of quantification 7% methamphetamine. The Hierarchical Partial Least Squares model had lower limit of quantification 0.3% methamphetamine, Root Mean Square Error of Prediction 5.2 and R2 0.9637. Such models offer rapid and effective methods for screening illicit drug samples to determine the percentage of methamphetamine they contain. PMID:23936058

  2. Investigating the structural changes of β-amyloid peptide aggregation using attenuated-total-reflection surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiu, K.-C.; Yu, L.-Y.; Yih, J.-N.; Chen, S.-J.

    2007-02-01

    This study utilizes a surface-enhanced Raman spectroscopy (SERS) based on the attenuated-total-reflection (ATR) method to investigate that the structural information of the biomolecular monolayer on sensing surface can be dynamically observed with a higher signal-to-noise ratio signal. The secondary structures of long oligonucleotides and their influence on the DNA hybridization on the sensing surface are investigated. The SERS spectrum provides the structural information of the oligonucleotides with the help of a silver colloidal nanoparticle monolayer by control of the size and distribution of the nanoparticles adapted as a Raman active substrate. It is found that the ring-breathing modes of adenine, thymine, guanine, and cytosine in Raman fingerprint associated with three 60mer oligonucleotides with prominent secondary structures are lower than those observed for the two oligonucleotides with no obvious secondary structures. It is also determined that increasing the DNA hybridization temperature from 35°C to 45°C reduces secondary structure effects. The ATR-SERS biosensing technique will be used to provide valuable structural information regarding the short-term reversible interactions and long-term polymerization events in the Aβ aggregates on the sensing surface.

  3. Determination of secondary structural changes in gluten proteins during mixing using Fourier transform horizontal attenuated total reflectance spectroscopy.

    PubMed

    Seabourn, Bradford W; Chung, Okkyung K; Seib, Paul A; Mathewson, Paul R

    2008-06-11

    Fourier transform horizontal attenuated total reflectance (FT-HATR) was used to examine changes in the secondary structure of gluten proteins in a flour-water dough system during mixing. Midinfrared spectra of mixed dough revealed changes in four bands in the amide III region associated with secondary structure in proteins: 1317 (alpha-helix), 1285 (beta-turn), 1265 (random coil), and 1242 cm (-1) (beta-sheet). The largest band, which also showed the greatest change in second derivative band area (SDBA) during mixing, was located at 1242 cm (-1). The bands at 1317 and 1285 cm (-1) also showed an increase in SDBA over time. Conversely, the band at 1265 cm (-1) showed a corresponding decrease over time as the doughs were mixed. All bands reached an optimum corresponding to the minimum mobility of the dough as determined by the mixograph. Increases in alpha-helix, beta-turn, and beta-sheet secondary structures during mixing suggest that the dough proteins assume a more ordered conformation. These results demonstrate that it is possible, using infrared spectroscopic techniques, to relate the rheological behavior of developing dough in a mixograph directly to changes in the structure of the gluten protein system. PMID:18489117

  4. Characterization of nasal paraffinoma following septorhinoplasty by attenuated total reflection--fourier transform infrared spectroscopy (ATR-FTIR).

    PubMed

    Gil-Carcedo, Luis M; Martín-Gil, Jesús; Gil-Carcedo, Elisa S; Vallejo, Luis A; Martín-Gil, Francisco J

    2006-06-01

    Vaseline and paraffin have been injected into various parts of the body. Vaselinoma and paraffinoma are well-described complications, despite which nasal packing with Vaseline gauze is still common in the management of epistaxis, after rhinoplasty, endonasal surgery, to control bleeding and prevent synechiae or restenosis. Our aim is to highlight this complication, propose a safe method for its diagnosis and establish guidelines for its prevention. We report two cases of paraffinoma occurring after rhinoplasty and discuss prevention of this rare but serious complication, and suggest an alternative dressing. Attenuated total reflection (ATR) FI7R spectra have proven to be a definitive characterising tool for surgical extracts, guaranteeing detection of mineral products that histology does not offer. For these lesions we propose the name "petroleum oilomas" which we feel to be more appropriate than the more commonly used paraffinomas. Relevance of the work: a description of an innovative and safe method of diagnosis, and proposal of a procedure for postrhinoplasty packing (without mineral oils) to avoid this complication. PMID:16792177

  5. Influenza hemagglutinin assumes a tilted conformation during membrane fusion as determined by attenuated total reflection FTIR spectroscopy.

    PubMed Central

    Tatulian, S A; Hinterdorfer, P; Baber, G; Tamm, L K

    1995-01-01

    Fusion of influenza virus with target membranes is mediated by an acid-induced conformational change of the viral fusion protein hemagglutinin (HA) involving an extensive reorganization of the alpha-helices. A 'spring-loaded' displacement over at least 100 A provides a mechanism for the insertion of the fusion peptide into the target membrane, but does not explain how the two membranes are brought into fusion contact. Here we examine, by attenuated total reflection Fourier transform infrared spectroscopy, the secondary structure and orientation of HA reconstituted in planar membranes. At neutral pH, the orientation of the HA trimers in planar membranes is approximately perpendicular to the membrane. However, at the pH of fusion, the HA trimers are tilted 55-70 degrees from the membrane normal in the presence or absence of bound target membranes. In the absence of target membranes, the overall secondary structure of HA at the fusion pH is similar to that at neutral pH, but approximately 50-60 additional residues become alpha-helical upon the conformational change in the presence of bound target membranes. These results are discussed in terms of a structural model for the fusion intermediate of influenza HA. Images PMID:8521808

  6. Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods

    NASA Astrophysics Data System (ADS)

    Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud

    2012-01-01

    The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.

  7. Evaluating degradation of silk's fibroin by attenuated total reflectance infrared spectroscopy: Case study of ancient banners from Polish collections

    NASA Astrophysics Data System (ADS)

    Koperska, M. A.; Łojewski, T.; Łojewska, J.

    2015-01-01

    In this study a part of research where artificially aged model samples were used as a guideline to the mechanism of degradation is presented. In previous work Bombyx Mori silk samples were exposed to various environments such as different oxygen, water vapour and volatile organic products content, all at the temperature of 150 °C [11]. Based on those results gathered with by Attenuated Total Reflectance/Fourier Transform Infrared Spectroscopy (ATR-FTIR) the degradation estimators were proposed and classified as follows: Primary functional groups estimators EAmideI/II - intensity ratios of Amide I Cdbnd O stretching vibration to Amide II Nsbnd H in-plane bending and Csbnd N stretching vibrations A1620/A1514. ECOOH - band 1318 cm-1 integral to band integral of CH3 bending vibration band located at 1442 cm-1P1318/P1442. Secondary conformational estimators EcCdbndO2 - intensity ratios within Amide I Cdbnd O stretching vibration of parallel β-sheet to antiparallel β-sheet A1620/A1699. In this work estimators were verified against estimators calculated from spectra of silk samples from 8 museum objects: 3 from 19th, 2 from 18th, 1 from 17th and 2 from 16th century including 3 banners from the storage resources of the Wawel Royal Castle in Cracow, Poland.

  8. Application of multibounce attenuated total reflectance fourier transform infrared spectroscopy and chemometrics for determination of aspartame in soft drinks.

    PubMed

    Khurana, Harpreet Kaur; Cho, Il Kyu; Shim, Jae Yong; Li, Qing X; Jun, Soojin

    2008-02-13

    Aspartame is a low-calorie sweetener commonly used in soft drinks; however, the maximum usage dose is limited by the U.S. Food and Drug Administration. Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance sampling accessory and partial least-squares regression (PLS) was used for rapid determination of aspartame in soft drinks. On the basis of spectral characterization, the highest R2 value, and lowest PRESS value, the spectral region between 1600 and 1900 cm(-1) was selected for quantitative estimation of aspartame. The potential of FTIR spectroscopy for aspartame quantification was examined and validated by the conventional HPLC method. Using the FTIR method, aspartame contents in four selected carbonated diet soft drinks were found to average from 0.43 to 0.50 mg/mL with prediction errors ranging from 2.4 to 5.7% when compared with HPLC measurements. The developed method also showed a high degree of accuracy because real samples were used for calibration, thus minimizing potential interference errors. The FTIR method developed can be suitably used for routine quality control analysis of aspartame in the beverage-manufacturing sector. PMID:18181572

  9. Concept and setup for intraoperative imaging of tumorous tissue via Attenuated Total Reflection spectrosocopy with Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Geiger, Florian B.; Koerdel, Martin; Schick, Anton; Heimann, Axel; Matiasek, Kaspar; Herkommer, Alois M.

    2015-03-01

    A major challenge in tumor surgery is the differentiation between normal and malignant tissue. Since an incompletely resected tumor easily leads to recidivism, the gold standard is to remove malignant tissue with a sufficient safety margin and send it to pathology for examination with patho-histological techniques (rapid section diagnosis). This approach, however, exhibits several disadvantages: The removal of additional tissue (safety margin) means additional stress to the patient; the correct interpretation of proper tumor excision relies on the pathologist's experience and the waiting time between resection and pathological result can be more than 45 minutes. This last aspect implies unnecessary occupation of cost-intensive operating room staff as well as longer anesthesia for the patient. Various research groups state that hyperspectral imaging in the mid-infrared, especially in the so called "fingerprint region", allows spatially resolved discrimination between normal and malignant tissue. All these experiments, though, took place in a laboratory environment and were conducted on dried, ex vivo tissue and on a microscopic scale. It is therefore our aim to develop a system incorporating the following properties: Intraoperatively and in vivo applicable, measurement time shorter than one minute, based on mid infrared spectroscopy, providing both spectral and spatial information and no use of external fluorescence markers. Theoretical assessment of different concepts and experimental studies show that a setup based on a tunable Quantum Cascade Laser and Attenuated Total Reflection seems feasible for in vivo tissue discrimination via imaging. This is confirmed by experiments with a first demonstrator.

  10. Structure and Thermotropic phase Behavior of Fluorinated Phospholipid Bilayers: A combined Attenuated Total Reflection FTIR Spectroscopy and Imaging Ellipsometry Study

    PubMed Central

    Schuy, Steffen; Faiss, Simon; Yoder, Nicholas C.; Kalsani, Venkateshwarlu; Kumar, Krishna; Janshoff, Andreas; Vogel, Reiner

    2008-01-01

    Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39° as compared to 21° for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon–hydrocarbon interactions in the center of the bilayer due to chain staggering. PMID:18563929

  11. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy.

    PubMed

    Hu, Yun; Erxleben, Andrea; Ryder, Alan G; McArdle, Patrick

    2010-11-01

    The simultaneous quantitative analysis of sulfathiazole polymorphs (forms I, III and V) in ternary mixtures by attenuated total reflectance-infrared (ATR-IR), near-infrared (NIR) and Raman spectroscopy combined with multivariate analysis is reported. To reduce the effect of systematic variations, four different data pre-processing methods; multiplicative scatter correction (MSC), standard normal variate (SNV), first and second derivatives, were applied and their performance was evaluated using their prediction errors. It was possible to derive a reliable calibration model for the three polymorphic forms, in powder ternary mixtures, using a partial least squares (PLS) algorithm with SNV pre-processing, which predicted the concentration of polymorphs I, III and V. Root mean square errors of prediction (RMSEP) for ATR-IR spectra were 5.0%, 5.1% and 4.5% for polymorphs I, III and V, respectively, while NIR spectra had a RMSEP of 2.0%, 2.9%, and 2.8% and Raman spectra had a RMSEP of 3.5%, 4.1%, and 3.6% for polymorphs I, III and V, respectively. NIR spectroscopy exhibits the smallest analytical error, higher accuracy and robustness. When these advantages are combined with the greater convenience of NIR's "in glass bottle" sampling method both ATR-IR and Raman methods appear less attractive. PMID:20605386

  12. Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy

    USGS Publications Warehouse

    Lowenstern, Jacob B.; Pitcher, Bradley W.

    2013-01-01

    We present a calibration for attenuated total reflectance (ATR) micro-FTIR for analysis of H2O in hydrous glass. A Ge ATR accessory was used to measure evanescent wave absorption by H2O within hydrous rhyolite and other standards. Absorbance at 3450 cm−1 (representing total H2O or H2Ot) and 1630 cm−1 (molecular H2O or H2Om) showed high correlation with measured H2O in the glasses as determined by transmission FTIR spectroscopy and manometry. For rhyolite, wt%H2O=245(±9)×A3450-0.22(±0.03) and wt%H2Om=235(±11)×A1630-0.20(±0.03) where A3450 and A1630 represent the ATR absorption at the relevant infrared wavelengths. The calibration permits determination of volatiles in singly polished glass samples with spot size down to ~5 μm (for H2O-rich samples) and detection limits of ~0.1 wt% H2O. Basaltic, basaltic andesite and dacitic glasses of known H2O concentrations fall along a density-adjusted calibration, indicating that ATR is relatively insensitive to glass composition, at least for calc-alkaline glasses. The following equation allows quantification of H2O in silicate glasses that range in composition from basalt to rhyolite: wt%H2O=(ω×A3450/ρ)+b where ω = 550 ± 21, b = −0.19 ± 0.03, ρ = density, in g/cm3, and A3450 is the ATR absorbance at 3450 cm−1. The ATR micro-FTIR technique is less sensitive than transmission FTIR, but requires only a singly polished sample for quantitative results, thus minimizing time for sample preparation. Compared with specular reflectance, it is more sensitive and better suited for imaging of H2O variations in heterogeneous samples such as melt inclusions. One drawback is that the technique can damage fragile samples and we therefore recommend mounting of unknowns in epoxy prior to polishing. Our calibration should hold for any Ge ATR crystals with the same incident angle (31°). Use of a different crystal type or geometry would require measurement of several H2O-bearing standards to provide a crystal

  13. Kinetic modeling of dissolution and crystallization of slurries with attenuated total reflectance UV-visible absorbance and near-infrared reflectance measurements.

    PubMed

    Hsieh, Chun H; Billeter, Julien; McNally, Mary Ellen P; Hoffman, Ronald M; Gemperline, Paul J

    2013-06-01

    Slurries are often used in chemical and pharmaceutical manufacturing processes but present challenging online measurement and monitoring problems. In this paper, a novel multivariate kinetic modeling application is described that provides calibration-free estimates of time-resolved profiles of the solid and dissolved fractions of a substance in a model slurry system. The kinetic model of this system achieved data fusion of time-resolved spectroscopic measurements from two different kinds of fiber-optic probes. Attenuated total reflectance UV-vis (ATR UV-vis) and diffuse reflectance near-infrared (NIR) spectra were measured simultaneously in a small-scale semibatch reactor. A simplified comprehensive kinetic model was then fitted to the time-resolved spectroscopic data to determine the kinetics of crystallization and the kinetics of dissolution for online monitoring and quality control purposes. The parameters estimated in the model included dissolution and crystal growth rate constants, as well as the dissolution rate order. The model accurately estimated the degree of supersaturation as a function of time during conditions when crystallization took place and accurately estimated the degree of undersaturation during conditions when dissolution took place. PMID:23565977

  14. In Situ Focused Beam Reflectance Measurement (FBRM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and Raman Characterization of the Polymorphic Transformation of Carbamazepine

    PubMed Central

    Zhao, Yingying; Bao, Ying; Wang, Jingkang; Rohani, Sohrab

    2012-01-01

    The objective of this work was to study the polymorphic transformation of carbamazepine from Form II to Form III in 1-propanol during seeded isothermal batch crystallization. First, the pure Form II and Form III were obtained and characterized. Then their solubilities and metastable zone limits were measured by in-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and focused beam reflectance measurement (FBRM). A transition temperature at about 34.2 °C was deduced suggesting the enantiotropic nature of this compound over the studied temperature range. To quantify the polymorph ratio during the transformation process, a new in-situ quantitative method was developed to measure the fraction of Form II by Raman spectroscopy. Successful tracking of the nucleation of the stable form and the transformation from Form II to Form III during isothermal crystallization was achieved by Raman spectroscopy and FBRM. The results from these three in-situ techniques, FBRM, FTIR and Raman were consistent with each other. The results showed a strong dependency on the amount of seeds added during isothermal crystallization. PMID:24300186

  15. A quantitative study for determination of sugar concentration using attenuated total reflectance terahertz (ATR-THz) spectroscopy

    NASA Astrophysics Data System (ADS)

    Suhandy, Diding; Suzuki, Tetsuhito; Ogawa, Yuichi; Kondo, Naoshi; Ishihara, Takeshi; Takemoto, Yuichiro

    2011-06-01

    The objective of our research was to use ATR-THz spectroscopy together with chemometric for quantitative study in food analysis. Glucose, fructose and sucrose are main component of sugar both in fresh and processed fruits. The use of spectroscopic-based method for sugar determination is well reported especially using visible, near infrared (NIR) and middle infrared (MIR) spectroscopy. However, the use of terahertz spectroscopy for sugar determination in fruits has not yet been reported. In this work, a quantitative study for sugars determination using attenuated total reflectance terahertz (ATR-THz) spectroscopy was conducted. Each samples of glucose, fructose and sucrose solution with different concentrations were prepared respectively and their absorbance spectra between wavenumber 20 and 450 cm-1 (between 0.6 THz and 13.5 THz) were acquired using a terahertz-based Fourier Transform spectrometer (FARIS-1S, JASCO Co., Japan). This spectrometer was equipped with a high pressure of mercury lamp as light source and a pyroelectric sensor made from deuterated L-alanine triglycine sulfate (DLTGS) as detector. Each spectrum was acquired using 16 cm-1 of resolution and 200 scans for averaging. The spectra of water and sugar solutions were compared and discussed. The results showed that increasing sugar concentration caused decreasing absorbance. The correlation between sugar concentration and its spectra was investigated using multivariate analysis. Calibration models for glucose, fructose and sucrose determination were developed using partial least squares (PLS) regression. The calibration model was evaluated using some parameters such as coefficient of determination (R2), standard error of calibration (SEC), standard error of prediction (SEP), bias between actual and predicted sugar concentration value and ratio prediction to deviation (RPD) parameter. The cross validation method was used to validate each calibration model. It is showed that the use of ATR

  16. Exploration of attenuated total reflectance mid-infrared spectroscopy and multivariate calibration to measure immunoglobulin G in human sera.

    PubMed

    Hou, Siyuan; Riley, Christopher B; Mitchell, Cynthia A; Shaw, R Anthony; Bryanton, Janet; Bigsby, Kathryn; McClure, J Trenton

    2015-09-01

    Immunoglobulin G (IgG) is crucial for the protection of the host from invasive pathogens. Due to its importance for human health, tools that enable the monitoring of IgG levels are highly desired. Consequently there is a need for methods to determine the IgG concentration that are simple, rapid, and inexpensive. This work explored the potential of attenuated total reflectance (ATR) infrared spectroscopy as a method to determine IgG concentrations in human serum samples. Venous blood samples were collected from adults and children, and from the umbilical cord of newborns. The serum was harvested and tested using ATR infrared spectroscopy. Partial least squares (PLS) regression provided the basis to develop the new analytical methods. Three PLS calibrations were determined: one for the combined set of the venous and umbilical cord serum samples, the second for only the umbilical cord samples, and the third for only the venous samples. The number of PLS factors was chosen by critical evaluation of Monte Carlo-based cross validation results. The predictive performance for each PLS calibration was evaluated using the Pearson correlation coefficient, scatter plot and Bland-Altman plot, and percent deviations for independent prediction sets. The repeatability was evaluated by standard deviation and relative standard deviation. The results showed that ATR infrared spectroscopy is potentially a simple, quick, and inexpensive method to measure IgG concentrations in human serum samples. The results also showed that it is possible to build a united calibration curve for the umbilical cord and the venous samples. PMID:26003699

  17. Dynamics of layer-by-layer growth of a polyelectrolyte multilayer studied in situ using attenuated total reflectance infrared spectroscopy.

    PubMed

    Owusu-Nkwantabisah, Silas; Gammana, Madhira; Tripp, Carl P

    2014-10-01

    Attenuated total reflectance infrared spectroscopy (ATR-IR) was used to study the dynamic layer-by-layer (LBL) growth of a sodium polyacrylate (NaPA)/poly(diallydimethylammonium) chloride (PDADMAC) multilayer on TiO2 particles. Molecular weights (Mw) used were 30 and 60 kDa for NaPA and 8.5 and 150 kDa for PDADMAC. IR spectra were recorded in situ as a function of time and were used to obtain the dynamic mass adsorbed and bound fraction of the polymers during each deposition step. For 30 kDa NaPA layers, the dynamics of adsorption show an initial rapid rise in mass followed by a slow increase toward a plateau value upon LBL with 150 kDa PDADMAC. In contrast, the 60 kDa NaPA layers achieve a plateau quickly and do not show a slow increase toward a plateau. In the case of LBL with 150 kDa PDADMAC, the dynamics of the bound fraction of polymer per layer suggest that polymer diffusion and conformational rearrangement occur for the layers of 30 kDa NaPA but not for the 60 kDa NaPA layers. Furthermore, PDADMAC adsorption profiles show that there is no diffusion of the PDADMAC layers and that PDADMAC flattens onto the underlying layer. A linear growth in the mass adsorbed per layer was observed for 150 kDa PDADMAC with both molecular weights of NaPA. In the case of 8.5 kDa PDADMAC, smaller growth increments and the desorption of underlying layers were observed. This work demonstrates the use of ATR-IR in obtaining the dynamics of LBL multilayer formation. Furthermore, it provides an example in which polymer diffusion during LBL film formation does not lead to exponential growth. PMID:25203136

  18. Fourier Transform Infrared with Attenuated Total Reflectance Applied to the Discrimination of Freshwater Planktonic Coccoid Green Microalgae

    PubMed Central

    de Moraes, Guilherme Pavan; Vieira, Armando Augusto Henriques

    2014-01-01

    Despite the recent advances on fine taxonomic discrimination in microorganisms, namely using molecular biology tools, some groups remain particularly problematic. Fine taxonomy of green algae, a widely distributed group in freshwater ecosystems, remains a challenge, especially for coccoid forms. In this paper, we propose the use of the Fourier Transform Infrared (FTIR) spectroscopy as part of a polyphasic approach to identify and classify coccoid green microalgae (mainly order Sphaeropleales), using triplicated axenic cultures. The attenuated total reflectance (ATR) technique was tested to reproducibility of IR spectra of the biological material, a primary requirement to achieve good discrimination of microalgal strains. Spectral window selection was also tested, in conjunction with the first derivative treatment of spectra, to determine which regions of the spectrum provided better separation and clustering of strains. The non-metric multidimensional scaling (NMDS), analysis of similarities (ANOSIM) and hierarchical clusters (HCA), demonstrated a correct discrimination and classification of closely related strains of chlorophycean coccoid microalgae, with respect to currently accepted classifications. FTIR-ATR was highly reproducible, and provided an excellent discrimination at the strain level. The best separation was achieved by analyzing the spectral windows of 1500–1200 cm−1 and 900–675 cm−1, which differs from those used in previously studies for the discrimination of broad algal groups, and excluding spectral regions related to storage compounds, which were found to give poor discrimination. Furthermore, hierarchical cluster analyses have positioned the strains tested into clades correctly, reproducing their taxonomic orders and families. This study demonstrates that FTIR-ATR has great potential to complement classical approaches for fine taxonomy of coccoid green microalgae, though a careful spectrum region selection is needed. PMID:25541701

  19. Attenuated total reflection fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces.

    PubMed

    Gopal, Judy; Chun, Sechul; Doble, Mukesh

    2016-08-01

    Titanium is widely used as medical implant material and as condenser material in the nuclear industry where its integrity is questioned due to its susceptibility to bacterial adhesion. A systematic investigation on the influence of thermally (50-800 °C) stabilized titanium (TS-Ti) nano oxide towards bacterial adhesion was carried out. The results showed that below 350 °C significant bacterio-phobicity was observed, while above 500 °C significant affinity towards bacterial cells was recorded. Conventional characterization tools such as HR-TEM and XRD did not provide much insight on the changes occurring on the oxide film with heat treatment, however, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) of the surface showed significant changes in the spectral pattern as a function of increasing heat treatment. It was observed that elevated OH, N-H and C=O groups and rutile titania on the TS-Ti oxide films led to higher affinity for bacterial adhesion. On the other hand low temperature TS-Ti nanooxide films (<350 °C) showed high C-H groups and decreased OH groups on their surface, which possibly contributed towards their bacterio-phobicity. The TS-Ti nanooxide film grown at 50 °C was observed to be the most efficient anti-bacterial adhesion interface, while the 800 °C interface was the one showing highest affinity towards bacterial adhesion. This study confirms the successful application of ATR-FTIR technique for nano-oxide film characterization and towards understanding the variations in bacterial interaction of such nano interfaces. PMID:27412653

  20. Application of the Polynomial-Based Least Squares and Total Least Squares Models for the Attenuated Total Reflection Fourier Transform Infrared Spectra of Binary Mixtures of Hydroxyl Compounds.

    PubMed

    Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang

    2016-03-01

    An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS. PMID:26810185

  1. Potential-modulated attenuated total reflectance (PM-ATR) characterization of charge injection processes in monolayer-tethered CdSe nanocrystals

    SciTech Connect

    Araci, Zeynep Ozkan; Shallcross, Clayton R.; Armstrong, Neal R.; Saavedra, S. Scott

    2010-01-01

    Reversible electron injection into pyridine-capped CdSe nanocrystals (pyr-CdSe NCs), tethered to indium-tin oxide (ITO) substrates using mercaptoalkylcarboxylic acids, is characterized using attenuated total reflectance (ATR) spectroelectrochemistry on a planar waveguide. The sensitivity of this technique provides for characterization of redox processes in submonolayer films of pyr-CdSe NCs. Optically determined onset potentials for electron injection, measured as bleaching/recovery of the exciton absorption band, provide estimates for the conduction band edge (ECB). Potential-modulated attenuated total reflectance (PM-ATR), in which the in-phase and out-of-phase reflectance response is measured as a function of modulation frequency, provides estimates for rates of electron injection. These apparent rate constants are found to be nearly independent of tether chain length, suggesting that communication between tethered NCs and electrochemically less active (i.e., less conductive) regions on the ITO surface is rate-limiting.

  2. Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Morisawa, Yusuke; Yasunaga, Manaka; Fukuda, Ryoichi; Ehara, Masahiro; Ozaki, Yukihiro

    2013-10-01

    Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 140-260 nm region were measured for several types of liquid amides (formamide, FA; N-methylformamide, NMF; N-methylacetamide, NMA; N,N-dimethylformamide, NdMF; and N,N-dimethylacetamide, NdMA) to investigate their electronic transitions in the FUV region. The spectra were compared with the corresponding gas-phase spectra to examine the shift in the major absorption band in the 180-200 nm region going from the gas phase to the liquid phase, and it was found that the peak shift was dependent on the particular amide. FA and NMF, which exhibit intermolecular C=O…H-N hydrogen bonding, show a large shift of ˜0.60 eV to lower energy; however, NMA, which also exhibits hydrogen bonding, shows only a small shift. In NdMF and NdMA, C=O groups seem to be coupled, which results in a small peak shift. Two types of quantum chemical calculations, time-dependent density functional theory (TD-DFT) and symmetry-adapted-cluster configuration interaction (SAC-CI) method, were performed to elucidate the origin of the shifts and the band assignments. The shift estimated by the monomer and dimer models with TD-DFT reproduced well the observed shift from the gas phase to the liquid phase. This suggests that the intermolecular hydrogen-bonding interaction significantly affects the magnitude of the shift. The many-body effects were also considered using the larger cluster models (trimer to pentamer). The energy shift calculated using SAC-CI with the monomer and the state-specific polarizable continuum model was also accurate, indicating that the nonlinear polarization effect appears to be important. As for the band assignments, it was found that though the major band can be mainly attributed to the π-π* transition, several types of Rydberg transitions also exist in its vicinity and mixing of orbitals with the same symmetry occurs. The number and type of Rydberg transitions in the spectra depend upon the type of amide

  3. Electronic transitions in liquid amides studied by using attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations.

    PubMed

    Morisawa, Yusuke; Yasunaga, Manaka; Fukuda, Ryoichi; Ehara, Masahiro; Ozaki, Yukihiro

    2013-10-21

    Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 140-260 nm region were measured for several types of liquid amides (formamide, FA; N-methylformamide, NMF; N-methylacetamide, NMA; N,N-dimethylformamide, NdMF; and N,N-dimethylacetamide, NdMA) to investigate their electronic transitions in the FUV region. The spectra were compared with the corresponding gas-phase spectra to examine the shift in the major absorption band in the 180-200 nm region going from the gas phase to the liquid phase, and it was found that the peak shift was dependent on the particular amide. FA and NMF, which exhibit intermolecular C=O[ellipsis...H-N hydrogen bonding, show a large shift of ~0.60 eV to lower energy; however, NMA, which also exhibits hydrogen bonding, shows only a small shift. In NdMF and NdMA, C=O groups seem to be coupled, which results in a small peak shift. Two types of quantum chemical calculations, time-dependent density functional theory (TD-DFT) and symmetry-adapted-cluster configuration interaction (SAC-CI) method, were performed to elucidate the origin of the shifts and the band assignments. The shift estimated by the monomer and dimer models with TD-DFT reproduced well the observed shift from the gas phase to the liquid phase. This suggests that the intermolecular hydrogen-bonding interaction significantly affects the magnitude of the shift. The many-body effects were also considered using the larger cluster models (trimer to pentamer). The energy shift calculated using SAC-CI with the monomer and the state-specific polarizable continuum model was also accurate, indicating that the nonlinear polarization effect appears to be important. As for the band assignments, it was found that though the major band can be mainly attributed to the π-π* transition, several types of Rydberg transitions also exist in its vicinity and mixing of orbitals with the same symmetry occurs. The number and type of Rydberg transitions in the spectra depend upon the type of

  4. Use of total internal reflection Raman (TIR) and attenuated total reflection infrared (ATR-IR) spectroscopy to analyze component separation in thin offset ink films after setting on coated paper surfaces.

    PubMed

    Kivioja, Antti; Hartus, Timo; Vuorinen, Tapani; Gane, Patrick; Jääskeläinen, Anna-Stiina

    2013-06-01

    The interactive behavior of ink constituents with porous substrates during and after the offset print process has an important effect on the quality of printed products. To help elucidate the distribution of ink components between the retained ink layer and the substrate, a variety of spectroscopic and microscopic analysis techniques have been developed. This paper describes for the first time the use of total internal reflection (TIR) Raman spectroscopy to analyze the penetration behavior of separated offset ink components (linseed oil, solid color pigment) in coated papers providing chemically intrinsic information rapidly, nondestructively, and with minimal sample preparation. In addition, the already widely applied technique of attenuated total reflection infrared spectroscopy (ATR-IR) was evaluated in parallel and compared. The results of the ATR-IR Raman clearly revealed an improvement in uppermost depth resolution compared with values previously published from other nondestructive techniques, and the method is shown to be capable of providing new knowledge of the setting of thin (0.25-2 μm) offset ink films, allowing the spreading and the penetration behavior on physically different paper coating surfaces to be studied. PMID:23735252

  5. An investigation of the applicability of attenuated total reflection infrared spectroscopy for measurement of solubility and supersaturation of aqueous citric acid solutions

    NASA Astrophysics Data System (ADS)

    Dunuwila, Dilum D.; Carroll, Leslie B.; Berglund, Kris A.

    1994-04-01

    Currently applied methods for measurement of solubility and supersaturation based on viscometry, refractometry, interferometry and density require the separation of phases prior to measurement. ATR (attenuated total reflection) infrared spectroscopy provides a unique configuration in which the infrared spectrum of a liquid phase can be obtained in a slurry without phase separation. The applicability of the technique was investigated using a micro Circle ® open boat cell equipped with a ZnSe (zinc selenide) ATR rod. Experiments conducted with aqueous citric acid proved that ATR infrared spectroscopy can be successfully employed to determine solubility and supersaturation.

  6. Characterization of Xenorhabdus and Photorhabdus bacteria by Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR)

    NASA Astrophysics Data System (ADS)

    San-Blas, Ernesto; Cubillán, Néstor; Guerra, Mayamarú; Portillo, Edgar; Esteves, Iván

    The use of Fourier transform mid-infrared spectroscopy with attenuated total reflection for characterizing entomopathogenic bacteria from genera Xenorhabdus and Photorhabdus is evaluated for the first time. The resulting spectra of Xenorhabdus poinarii and Photorhabdus luminiscens were compared with the spectrum of Escherichia coli samples. The absorption spectra generated by the bacteria samples, were very different at the region below 1400 cm-1 which represents the stretching vibrations of phosphate and carbohydrates. Star diagrams of the fingerprint section of nematodes spectra (between 1350 and 1650 cm-1) for separation between spectra was used and showed to be a useful tool for classification purposes.

  7. Origin identification of dried distillers grains with solubles using attenuated total reflection Fourier transform mid-infrared spectroscopy after in situ oil extraction.

    PubMed

    Vermeulen, Ph; Fernández Pierna, J A; Abbas, O; Dardenne, P; Baeten, V

    2015-12-15

    The ban on using processed animal proteins in feedstuffs led the feed sector to look for other sources of protein. Dried distillers grains with solubles (DDGS) could be considered as an important source in this regard. They are imported into Europe mainly for livestock feed. Identifying their origin is essential when labelling is missing and for feed safety, particularly in a crisis situation resulting from contamination. This study investigated applying attenuated total reflection Fourier transform mid-infrared spectroscopy (ATR-FT-MIR) to the oil fraction extracted from samples in situ in order to identify the origin of DDGS. The use of spectroscopic and chemometric tools enabled the botanical and geographical origins of DDGS, as well as the industrial process used to produce them, to be identified. The models developed during the study provided a classification higher than 95% using an external validation set. PMID:26190596

  8. Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy.

    PubMed

    Tamaki, Yukihiro; Mazza, Giuseppe

    2011-06-22

    Analysis of the chemical components of lignocellulosic biomass is essential to understanding its potential for utilization. Mid-infrared spectroscopy and partial least-squares regression were used for rapid measurement of the carbohydrate (total glycans; glucan; xylan; galactan; arabinan; mannan), ash, and extractives content of triticale and wheat straws. Calibration models for total glycans, glucan, and extractives showed good and excellent predictive performance on the basis of slope, r², RPD, and R/SEP criteria. The xylan model showed good and acceptable predictive performance. However, the ash model was evaluated as providing only approximate quantification and screening. The models for galactan, arabinan, and mannan indicated poor and insufficient prediction for application. Most models could predict both triticale and wheat straw samples with the same degree of accuracy. Mid-infrared spectroscopic techniques coupled with partial least-squares regression can be used for rapid prediction of total glycans, glucan, xylan, and extractives in triticale and wheat straw samples. PMID:21545134

  9. Potential and limitation of mid-infrared attenuated total reflectance spectroscopy for real time analysis of raw milk in milking lines.

    PubMed

    Linker, Raphael; Etzion, Yael

    2009-02-01

    Real-time information about milk composition would be very useful for managing the milking process. Mid-infrared spectroscopy, which relies on fundamental modes of molecular vibrations, is routinely used for off-line analysis of milk and the purpose of the present study was to investigate the potential of attenuated total reflectance mid-infrared spectroscopy for real-time analysis of milk in milking lines. The study was conducted with 189 samples from over 70 cows that were collected during an 18 months period. Principal component analysis, wavelets and neural networks were used to develop various models for predicting protein and fat concentration. Although reasonable protein models were obtained for some seasonal sub-datasets (determination errors attenuated total reflectance spectroscopy for in-line milk analysis is indeed quite limited. PMID:18925993

  10. Measurement of drug and macromolecule diffusion across atherosclerotic rabbit aorta ex vivo by attenuated total reflection-Fourier transform infrared imaging

    NASA Astrophysics Data System (ADS)

    Palombo, Francesca; Danoux, Charlène B.; Weinberg, Peter D.; Kazarian, Sergei G.

    2009-07-01

    Diffusion of two model drugs-benzyl nicotinate and ibuprofen-and the plasma macromolecule albumin across atherosclerotic rabbit aorta was studied ex vivo by attenuated total reflection-Fourier transform infrared (ATR-FTIR) imaging. Solutions of these molecules were applied to the endothelial surface of histological sections of the aortic wall that were sandwiched between two impermeable surfaces. An array of spectra, each corresponding to a specific location in the section, was obtained at various times during solute diffusion into the wall and revealed the distribution of the solutes within the tissue. Benzyl nicotinate in Ringer's solution showed higher affinity for atherosclerotic plaque than for apparently healthy tissue. Transmural concentration profiles for albumin demonstrated its permeation across the section and were consistent with a relatively low distribution volume for the macromolecule in the middle of the wall. The ability of albumin to act as a drug carrier for ibuprofen, otherwise undetected within the tissue, was demonstrated by multivariate subtraction image analysis. In conclusion, ATR-FTIR imaging can be used to study transport processes in tissue samples with high spatial and temporal resolution and without the need to label the solutes under study.

  11. Detection and quantification of soymilk in cow-buffalo milk using Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR).

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Borah, Anjan; Gautam, Anuj; Grewal, Manpreet Kaur; Jindal, Gaurav

    2015-02-01

    Milk consumption is steadily increasing, especially in India and China, due to rising income. To bridge the gap between supply and demand, unscrupulous milk vendors add milk-like products from vegetable sources (soymilk) to milk without declaration. A rapid detection technique is required to enforce the safety norms of food regulatory authorities. Fourier Transform Infrared (FTIR) spectroscopy has demonstrated potential as a rapid quality monitoring method and was therefore explored for detection of soymilk in milk. In the present work, spectra of milk, soymilk (SM), and milk adulterated with known quantity of SM were acquired in the wave number range of 4000-500cm(-1) using Attenuated Total Reflectance (ATR)-FTIR. The acquired spectra revealed differences amongst milk, SM and adulterated milk (AM) samples in the wave number range of 1680-1058cm(-1). This region encompasses the absorption frequency of amide-I, amide-II, amide-III, beta-sheet protein, α-tocopherol and Soybean Kunitz Trypsin Inhibitor. Principal component analysis (PCA) showed clustering of samples based on SM concentration at 5% level of significance and thus SM could be detected in milk using ATR-FTIR. The SM was best predicted in the range of 1472-1241cm(-1) using multiple linear regression with coefficient of determination (R(2)) of 0.99 and 0.92 for calibration and validation, respectively. PMID:25172681

  12. Development and validation of an environmentally friendly attenuated total reflectance in the mid-infrared region method for the determination of ethanol content in used engine lubrication oil.

    PubMed

    Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo

    2013-05-15

    Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. PMID:23618159

  13. Simultaneous monitoring of organic acids and sugars in fresh and processed apple juice by Fourier transform infrared-attenuated total reflection spectroscopy.

    PubMed

    Irudayaraj, Joseph; Tewari, Jagdish

    2003-12-01

    A combination of Fourier transform infrared spectroscopy (FT-IR) and chemometrics was used as a screening tool for the determination of sugars and organic acids such as sucrose, glucose, fructose, sorbitol, citric acid, and malic acid in processed commercial and extracted fresh apple juices. Prepared samples of synthetic apple juice in different constituent concentration ranges were scanned by attenuated total reflectance (ATR) accessory and the spectral region in the range between 950 and 1500 cm(-1) was selected for calibration model development using partial least squares (PLS) regression and principal component regression (PCR). The calibration models were successfully validated by high-performance liquid chromatography (HPLC) measurements against several commercial juice varieties as well as juice extracted from different apple varieties to provide an overall R2 correlation of 0.998. The present study demonstrates that Fourier transform infrared spectroscopy could be used for rapid and nondestructive determination of multiple constituents in commercial and fresh apple juices. Results indicate this approach to be a rapid and cost-effective tool for routine monitoring of multiple constituents in a fruit juice production facility. PMID:14686782

  14. Sensing cocaine in saliva with attenuated total reflection infrared (ATR-IR) spectroscopy combined with a one-step extraction method

    NASA Astrophysics Data System (ADS)

    Hans, Kerstin M.-C.; Gianella, Michele; Sigrist, Markus W.

    2012-03-01

    On-site drug tests have gained importance, e.g., for protecting the society from impaired drivers. Since today's drug tests are majorly only positive/negative, there is a great need for a reliable, portable and preferentially quantitative drug test. In the project IrSens we aim to bridge this gap with the development of an optical sensor platform based on infrared spectroscopy and focus on cocaine detection in saliva. We combine a one-step extraction method, a sample drying technique and infrared attenuated total reflection (ATR) spectroscopy. As a first step we have developed an extraction technique that allows us to extract cocaine from saliva to an almost infrared-transparent solvent and to record ATR spectra with a commercially available Fourier Transform-infrared spectrometer. To the best of our knowledge this is the first time that such a simple and easy-to-use one-step extraction method is used to transfer cocaine from saliva into an organic solvent and detect it quantitatively. With this new method we are able to reach a current limit of detection around 10 μg/ml. This new extraction method could also be applied to waste water monitoring and controlling caffeine content in beverages.

  15. Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states.

    PubMed

    Gandolfo, D S; Mortimer, H; Woodhall, J W; Boonham, N

    2016-06-15

    FTIR spectroscopy coupled with an Attenuated Total Reflection (ATR) sampling probe has been demonstrated as a technique for detecting disease in plants. Spectral differences were detected in Japanese Larch (Larix kaempferi) infected with Phytophthora ramorum at 3403cm(-1) and 1730cm(-1), from pine (Pinus spp.) infected with Bursaphelenchus xylophilus at 1070cm(-1), 1425cm(-)1, 1621cm(-1) and 3403cm(-1) and from citrus (Citrus spp.) infected with 'Candidatus liberibacter' at 960cm(-1), 1087cm(-1), 1109cm(-1), 1154cm(-1), 1225cm(-1), 1385cm(-1), 1462cm(-1), 1707cm(-1), 2882cm(-1), 2982cm(-1) and 3650cm(-1). A spectral marker in healthy citrus has been identified as Pentanone but is absent from the diseased sample spectra. This agrees with recent work by Aksenov, 2014. Additionally, the spectral signature of Cutin was identified in the spectra of Pinus spp. and Citrus spp. and is consistent with work by Dubis, 1999 and Heredia-Guerrero, 2014. PMID:27054703

  16. Preparation and transmission characteristics of a mid-infrared attenuated total reflection hollow waveguide based on a stainless steel capillary tube.

    PubMed

    Wang, Xu; Guo, Hong; Wang, Lin; Yue, Fangyu; Jing, Chengbin; Chu, Junhao

    2016-08-10

    Stainless steel (SUS) capillary tubes were examined as a category of structural tube for establishing a metallic attenuated total reflection (ATR) GeO2 hollow waveguide. GeO2 films were grown on the inner wall of SUS tubes by different liquid phase deposition (LPD) cycles. Fourier transform infrared (FTIR) spectra, scanning electronic microscope (SEM) image, and transmission loss for a CO2 laser were measured to investigate the effects of the LPD cycles on the transmission behavior of the hollow waveguide samples. The film thickness and surface roughness increase with every LPD cycle. The two LPD cycle sample has a film thickness equivalent to the CO2 laser wavelength, while the surface roughness is acceptable. This sample has the lowest transmission loss (0.27  dB/m) among these samples. The bending loss, output beam profile, and full divergence angle (FDA) were further studied. Higher-order modes are excited by bending the sample, inducing additional loss, decentralized beam profile, and larger FDA. PMID:27534486

  17. Fourier transform infra-red spectroscopy using an attenuated total reflection probe to distinguish between Japanese larch, pine and citrus plants in healthy and diseased states

    NASA Astrophysics Data System (ADS)

    Gandolfo, D. S.; Mortimer, H.; Woodhall, J. W.; Boonham, N.

    2016-06-01

    FTIR spectroscopy coupled with an Attenuated Total Reflection (ATR) sampling probe has been demonstrated as a technique for detecting disease in plants. Spectral differences were detected in Japanese Larch (Larix kaempferi) infected with Phytophthora ramorum at 3403 cm-1 and 1730 cm-1, from pine (Pinus spp.) infected with Bursaphelenchus xylophilus at 1070 cm-1, 1425 cm-1, 1621 cm-1 and 3403 cm-1 and from citrus (Citrus spp.) infected with 'Candidatus liberibacter' at 960 cm-1, 1087 cm-1, 1109 cm-1, 1154 cm-1, 1225 cm-1, 1385 cm-1, 1462 cm-1, 1707 cm-1, 2882 cm-1, 2982 cm-1 and 3650 cm-1. A spectral marker in healthy citrus has been identified as Pentanone but is absent from the diseased sample spectra. This agrees with recent work by Aksenov, 2014. Additionally, the spectral signature of Cutin was identified in the spectra of Pinus spp. and Citrus spp. and is consistent with work by Dubis, 1999 and Heredia-Guerrero, 2014.

  18. Electrochemical oxidation of 2-propanol over platinum and palladium electrodes in alkaline media studied by in situ attenuated total reflection infrared spectroscopy.

    PubMed

    Okanishi, Takeou; Katayama, Yu; Ito, Ryota; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-04-21

    The electrochemical oxidation of 2-propanol over Pt and Pd electrodes was evaluated in alkaline media. Linear sweep voltammograms (LSVs), chronoamperograms (CAs), and simultaneous time-resolved attenuated total reflection infrared (ATR-IR) spectra of both electrodes were obtained in a 0.25 M KOH solution containing 1 M 2-propanol. The onset potential of 2-propanol oxidation for Pt was lower than that for Pd in LSVs while the degree of performance degradation observed for Pd was significantly smaller than that observed for Pt in CAs. The main product of 2-propanol oxidation was acetone over both electrodes and, over Pt only, acetone produced was catalytically oxidized to the enolate ion, which was accumulated on the Pt surface, leading to significant performance degradation. Carbon dioxide and carbonate species (CO3(2-), HCO3(-)) were not observed during 2-propanol oxidation over both electrodes, indicating that the complete oxidation of 2-propanol to CO2 will be a minor reaction. PMID:27009749

  19. Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia.

    PubMed

    Kazarian, Sergei G; Chan, K L Andrew

    2010-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging has become a very powerful method in chemical analysis. In this review paper we describe a variety of opportunities for obtaining FT-IR images using the attenuated total reflection (ATR) approach and provide an overview of fundamental aspects, accessories, and applications in both micro- and macro-ATR imaging modes. The advantages and versatility of both ATR imaging modes are discussed and the spatial resolution of micro-ATR imaging is demonstrated. Micro-ATR imaging has opened up many new areas of study that were previously precluded by inadequate spatial resolution (polymer blends, pharmaceutical tablets, cross-sections of blood vessels or hair, surface of skin, single live cells, cancerous tissues). Recent applications of ATR imaging in polymer research, biomedical and forensic sciences, objects of cultural heritage, and other complex materials are outlined. The latest advances include obtaining spatially resolved chemical images from different depths within a sample, and surface-enhanced images for macro-ATR imaging have also been presented. Macro-ATR imaging is a valuable approach for high-throughput analysis of materials under controlled environments. Opportunities exist for chemical imaging of dynamic aqueous systems, such as dissolution, diffusion, microfluidics, or imaging of dynamic processes in live cells. PMID:20482963

  20. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy on Intact Dried Leaves of Sage (Salvia officinalis L.): Accelerated Chemotaxonomic Discrimination and Analysis of Essential Oil Composition.

    PubMed

    Gudi, Gennadi; Krähmer, Andrea; Krüger, Hans; Schulz, Hartwig

    2015-10-01

    Sage (Salvia officinalis L.) is cultivated worldwide for its aromatic leaves, which are used as herbal spice, and for phytopharmaceutical applications. Fast analytical strategies for essential oil analysis, performed directly on plant material, would reduce the delay between sampling and analytical results. This would enhance product quality by improving technical control of cultivation. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) method described here provides a reliable calibration model for quantification of essential oil components [EOCs; R(2) = 0.96; root-mean-square error of cross-validation (RMSECV) = 0.249 mL 100 g(-1) of dry matter (DM); and range = 1.115-5.280 mL 100 g(-1) of DM] and main constituents [e.g., α-thujone/β-thujone; R(2) = 0.97/0.86; RMSECV = 0.0581/0.0856 mL 100 g(-1) of DM; and range = 0.010-1.252/0.005-0.893 mL 100 g(-1) of DM] directly on dried intact leaves of sage. Except for drying, no further sample preparation is required for ATR-FTIR, and the measurement time of less than 5 min per sample contrasts with the most common alternative of hydrodistillation followed by gas chromatography analysis, which can take several hours per sample. PMID:26360136

  1. Application of multivariate chemometric techniques for simultaneous determination of five parameters of cottonseed oil by single bounce attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Talpur, M Younis; Kara, Huseyin; Sherazi, S T H; Ayyildiz, H Filiz; Topkafa, Mustafa; Arslan, Fatma Nur; Naz, Saba; Durmaz, Fatih; Sirajuddin

    2014-11-01

    Single bounce attenuated total reflectance (SB-ATR) Fourier transform infrared (FTIR) spectroscopy in conjunction with chemometrics was used for accurate determination of free fatty acid (FFA), peroxide value (PV), iodine value (IV), conjugated diene (CD) and conjugated triene (CT) of cottonseed oil (CSO) during potato chips frying. Partial least square (PLS), stepwise multiple linear regression (SMLR), principal component regression (PCR) and simple Beer׳s law (SBL) were applied to develop the calibrations for simultaneous evaluation of five stated parameters of cottonseed oil (CSO) during frying of French frozen potato chips at 170°C. Good regression coefficients (R(2)) were achieved for FFA, PV, IV, CD and CT with value of >0.992 by PLS, SMLR, PCR, and SBL. Root mean square error of prediction (RMSEP) was found to be less than 1.95% for all determinations. Result of the study indicated that SB-ATR FTIR in combination with multivariate chemometrics could be used for accurate and simultaneous determination of different parameters during the frying process without using any toxic organic solvent. PMID:25127621

  2. Mechanism of formation of humus coatings on mineral surfaces 2. Attenuated total reflectance spectra of hydrophobic and hydrophilic fractions of organic acids from compost leachate on alumina

    USGS Publications Warehouse

    Wershaw, R. L.; Llaguno, E.C.; Leenheer, J.A.; Sperline, R.P.; Song, Y.

    1996-01-01

    Hydrophobic and hydrophilic fractions were isolated from a compost leachate. The adsorption isotherms of both fractions on alumina were measured by attenuated total reflectance infrared spectroscopy. The shapes of the adsorption isotherms of the two fractions were different. The isotherms for the hydrophilic fraction showed little change in surface excess with increasing solution concentration above 4 mg L-1. The isotherms for the hydrophobic fraction, on the other hand, displayed a marked increase in surface excess with increasing solution concentration. This increase is evidence for the formation of aggregates (admicelles or hemimicelles) on the alumina surface. Linear dichroism calculations indicated that more of the carboxylate groups in the adsorbed hydrophobic molecules than in the absorbed hydrophilic fraction were free to rotate. The hindered rotation of the carboxylate groups in the adsorbed hydrophilic-fraction molecules probably indicates that these groups are bound to surface aluminum ions by a bidentate mechanism in which the two oxygen atoms of a single carboxylate group bind to separate aluminum ions.

  3. Mid-infrared attenuated total reflection spectroscopy of human stratum corneum using a silver halide fiber probe of square cross-section and adhesive tape stripping

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Küpper, L.; Butvina, L. N.

    2003-12-01

    Mid-infrared fiber probes allow an extended use of attenuated total reflection (ATR) measurements for topical in vivo skin analysis, which were otherwise not possible with conventional sample compartment accessories. Evanescent wave spectroscopy using a flexible fiber-optic probe from silver halide fibers of square cross-section was employed for stratum corneum characterization and keratinocyte quantification on adhesive tapes. Such a method of quantifying the amount of keratin, which can be repetitively removed from the skin surface by adhesive tape application, is essential for the study of substances topically applied and penetrating into the horny layer. For calibration, the weight of keratinocytes was determined using an ultramicro-balance. Best results were obtained with difference spectroscopy and the evaluation of the amide I absorption band intensity (correlation coefficient r=0.983). Lowest amounts per cm 2 were reached for the range down to 5 μg/cm 2. The heterogeneity in the surface density of keratinocytes clinging to the tape was investigated by microscopy, and the thickness of some individual keratinocytes was tested by ATR-microspectroscopy and atomic force microscopy.

  4. Evaluation of the moisture prediction capability of near-infrared and attenuated total reflectance fourier transform infrared spectroscopy using superdisintegrants as model compounds.

    PubMed

    Uppaluri, Sai G; Bompelliwar, Sai K; Johnson, Paul R; Gupta, Mali R; Al-Achi, Antoine; Stagner, William C; Haware, Rahul V

    2014-12-01

    The superdisintegrants (SDs) moisture content measurement by near-infrared (NIR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been evaluated against thermogravimetric analysis as a reference method. SDs with varying moisture content were used to build calibration and independent model verification data sets. Calibration models were developed based on the water-specific NIR and ATR-FTIR spectral regions using partial least-square regression methods. Because of the NIR water low molar absorptivity, NIR spectroscopy handled higher moisture content (∼81%, w/w) than ATR-FTIR (∼25%, w/w). A two-way ANOVA test was performed to compare R(2) values obtained from measured and predicted moisture content (5%-25%, w/w) of SDs. No statistically significant difference was observed between the predictability of NIR and ATR-FTIR methods (p = 0.3504). However, the interactions between the two independent variables, SDs, and analytical methods were statistically significant (p = 0.0002), indicating that the predictability of the analytical method is material dependent. Thus, it would be important to recognize this highly dependent material and analytical method interaction when using NIR moisture analysis in process analytical technology to analyze and control critical quality and performance attributes of raw materials during processing with the goal of ensuring final product quality attributes. PMID:25332106

  5. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    SciTech Connect

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-15

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  6. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-01

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  7. Minimally invasive identification of degraded polyester-urethane magnetic tape using attenuated total reflection Fourier transform infrared spectroscopy and multivariate statistics.

    PubMed

    Cassidy, Brianna M; Lu, Zhenyu; Fuenffinger, Nathan C; Skelton, Samantha M; Bringley, Eric J; Nguyen, Linhchi; Myrick, Michael L; Breitung, Eric M; Morgan, Stephen L

    2015-09-15

    Audio recordings are a significant component of the world's modern cultural history and are retained for future generations in libraries, archives, and museums. The vast majority of tapes contain polyester-urethane as the magnetic particle binder, the degradation of which threatens the playability and integrity of these often unique recordings. Magnetic tapes with stored historical data are degrading and need to be identified prior to digitization and/or preservation. We demonstrate the successful differentiation of playable and nonplayable quarter-inch audio tapes, allowing the minimally invasive triage of tape collections. Without such a method, recordings are put at risk during playback, which is the current method for identifying degraded tapes. A total of 133 quarter-inch audio tapes were analyzed by attenuated total reflectance Fourier transform-infrared spectroscopy (ATR FT-IR). Classification of IR spectra in regards to tape playability was accomplished using principal component analysis (PCA) followed by quadratic discriminant analysis (QDA) and K-means cluster analysis. The first principal component suggests intensities at the following wavenumbers to be representative of nonplayable tapes: 1730 cm(-1), 1700 cm(-1), 1255 cm(-1), and 1140 cm(-1). QDA and cluster analysis both successfully identified 93.78% of nonplayable tapes in the calibration set and 92.31% of nonplayable tapes in the test set. This application of IR spectra assessed with multivariate statistical analysis offers a path to greatly improve efficiency of audio tape preservation. This rapid, minimally invasive technique shows potential to replace the manual playback test, a potentially destructive technique, ultimately allowing the safe preservation of culturally valuable content. PMID:26275025

  8. In situ evaluation of net nitrification rate in Terra rossa soil using a Fourier transform infrared attenuated total reflection 15N tracing technique.

    PubMed

    Du, Changwen; Linker, Raphael; Shaviv, Avi; Zhou, Jianmin

    2009-10-01

    Nitrification and mineralization of organic nitrogen (N) are important N transformation processes in soil, and mass spectrometry is a suitable technique for tracing changes of (15)N isotopic species of mineral N and estimating the rates of these processes. However, mass spectrometric methods for tracing N dynamics are costly, time consuming, and require long and laborious preparation procedures. This study investigates mid-infrared attenuated total reflection (ATR) spectroscopy as an alternative method for detecting changes in (14)NO(3)-N and (15)NO(3)-N concentrations. There is a significant shift of the nu(3) absorption band of nitrate according to N species, namely from the 1275 to 1460 cm(-1) region for (14)NO(3)(-) to the 1240-1425 cm(-1) region for (15)NO(3). This shift makes it possible to quantify the N isotopes using multivariate calibration methods. Partial least squares regression (PLSR) models with five factors yielded a determination error of 6.7-9.2 mg N L(-1) for aqueous solutions and 5.9-7.8 mg N kg(-1) (dry soil) for pastes of a Terra rossa soil. These PLSR models were used to monitor the changes of (15)NO(3)-N and (14)NO(3)-N content in the same Terra rossa soil during an incubation experiment in which [(15)NH(4)](2)SO(4) was applied to the soil, allowing the estimation of the contributions of applied N and mineralized N to the net nitrification rate, the potential losses of the applied (15)NH(4)-N, and the net mineralization of soil organic N. PMID:19843368

  9. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy.

    PubMed

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  10. Determination of water uptake of polymeric ion-selective membranes with the coulometric Karl Fischer and FT-IR-attenuated total reflection techniques.

    PubMed

    He, Ning; Lindfors, Tom

    2013-01-15

    The water uptake of plasticized poly(vinyl chloride) (PVC) and silicone rubber (SR) based calcium-selective membranes which are commonly used in solid-contact and coated-wire ion-selective electrodes (SC-ISEs and CWEs) was quantified with the oven based coulometric Karl Fischer (KF) technique. Two different membrane types were studied: (1) the plasticized PVC or SR (RTV 3140) membrane matrix without other added membrane components and (2) the full Ca(2+)-selective membrane formulation consisting of the membrane matrixes, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and calcium ionophore IV (ETH 5234) or calcium ionophore I (ETH 1001). The membranes were contacted for 24 h either asymmetrically from one side or symmetrically from both sides with deionized water (DIW) or 0.1 M solutions of CaCl(2), KCl, or NaCl. It was found that the water uptake was higher for symmetrically contacted membranes. The highest water uptake (0.15-0.17 wt %) was obtained for the plasticized PVC based Ca(2+)-selective membranes in DIW, whereas the water uptake was lower in 0.1 M electrolyte solutions. Symmetrically contacted Ca(2+)-selective SR membranes had much lower water uptake in 0.1 M CaCl(2) (0.03 wt %) than their plasticized PVC counterparts (0.1 wt %). However, the (noncontacted) SR membranes contained initially much more water (0.09-0.15 wt %) than the PVC membranes (0.04-0.07 wt %). Furthermore, in good accordance with the KF measurements, it was verified with FT-IR-attenuated total reflection (ATR) spectroscopy that the water content at the substrate/membrane interface and consequently in the whole membrane was influenced by the electrolyte solution. PMID:23249325

  11. Ultrasound-enhanced attenuated total reflection mid-infrared spectroscopy in-line probe: acquisition of cell spectra in a bioreactor.

    PubMed

    Koch, Cosima; Brandstetter, Markus; Wechselberger, Patrick; Lorantfy, Bettina; Plata, Maria Reyes; Radel, Stefan; Herwig, Christoph; Lendl, Bernhard

    2015-02-17

    This article presents a novel method for selective acquisition of Fourier transform infrared (FT-IR) spectra of microorganisms in-line during fermentation, using Saccharomyces cerevisiae as an example. The position of the cells relative to the sensitive region of the attenuated total reflection (ATR) FT-IR probe was controlled by combing a commercially available ATR in-line probe with contact-free, gentle particle manipulation by ultrasonic standing waves. A prototype probe was successfully constructed, assembled, and tested in-line during fed-batch fermentations of S. cerevisiae. Control over the position of the cells was achieved by tuning the ultrasound frequency: 2.41 MHz was used for acquisition of spectra of the cells (pushing frequency f(p)) and 1.87 MHz, for retracting the cells from the ATR element, therefore allowing spectra of the medium to be acquired. Accumulation of storage carbohydrates (trehalose and glycogen) inside the cells was induced by a lack of a nitrogen source in the feed medium. These changes in biochemical composition were visible in the spectra of the cells recorded in-line during the application of f(p) and could be verified by reference spectra of dried cell samples recorded off-line with a FT-IR microscope. Comparison of the cell spectra with spectra of trehalose, glycogen, glucose, and mannan, i.e., the major carbohydrates present in S. cerevisiae, and principal components analysis revealed that the changes observed in the cell spectra correlated well with the bands specific for trehalose and glycogen. This proves the applicability and capability of ultrasound-enhanced in-line ATR mid-IR spectroscopy as a real-time PAT method for the in situ monitoring of cellular biochemistry during fermentation. PMID:25582569

  12. Ultrasound-Enhanced Attenuated Total Reflection Mid-infrared Spectroscopy In-Line Probe: Acquisition of Cell Spectra in a Bioreactor

    PubMed Central

    2015-01-01

    This article presents a novel method for selective acquisition of Fourier transform infrared (FT-IR) spectra of microorganisms in-line during fermentation, using Saccharomyces cerevisiae as an example. The position of the cells relative to the sensitive region of the attenuated total reflection (ATR) FT-IR probe was controlled by combing a commercially available ATR in-line probe with contact-free, gentle particle manipulation by ultrasonic standing waves. A prototype probe was successfully constructed, assembled, and tested in-line during fed-batch fermentations of S. cerevisiae. Control over the position of the cells was achieved by tuning the ultrasound frequency: 2.41 MHz was used for acquisition of spectra of the cells (pushing frequency fp) and 1.87 MHz, for retracting the cells from the ATR element, therefore allowing spectra of the medium to be acquired. Accumulation of storage carbohydrates (trehalose and glycogen) inside the cells was induced by a lack of a nitrogen source in the feed medium. These changes in biochemical composition were visible in the spectra of the cells recorded in-line during the application of fp and could be verified by reference spectra of dried cell samples recorded off-line with a FT-IR microscope. Comparison of the cell spectra with spectra of trehalose, glycogen, glucose, and mannan, i.e., the major carbohydrates present in S. cerevisiae, and principal components analysis revealed that the changes observed in the cell spectra correlated well with the bands specific for trehalose and glycogen. This proves the applicability and capability of ultrasound-enhanced in-line ATR mid-IR spectroscopy as a real-time PAT method for the in situ monitoring of cellular biochemistry during fermentation. PMID:25582569

  13. A simple, sensitive and non-destructive technique for characterizing bovine dental enamel erosion: attenuated total reflection Fourier transform infrared spectroscopy

    PubMed Central

    Kim, In-Hye; Son, Jun Sik; Min, Bong Ki; Kim, Young Kyoung; Kim, Kyo-Han; Kwon, Tae-Yub

    2016-01-01

    Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 °C. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ν1, ν3 phosphate contour: the ratio of the height amplitude of ν3 PO4 to that of ν1 PO4 (Method 1) and the shift of the ν3 PO4 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P<0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR-FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion. PMID:27025266

  14. Optimized data analysis algorithm for on-site chemical identification using a hand-held attenuated total reflection Fourier transform infrared (ATR FT-IR) spectrometer.

    PubMed

    Ron, Izhar; Zaltsman, Amalia; Kendler, Shai

    2013-12-01

    On-site identification of organic compounds in the presence of interfering materials using a field-portable attenuated total reflection Fourier transform infrared (ATR FT-IR) spectrometer is presented. Identification is based on an algorithm that compares the analyte's infrared absorption spectrum with the reference spectra. The comparison is performed at several predetermined frequencies, and a similarity value (distance) between the measured and the reference spectra is calculated either at each frequency individually, or, alternatively, the average distance for all frequencies is calculated. The examined frequencies are selected to give the best contrast between the target materials of interest. In this study, the algorithm was optimized to identify three common chemical warfare agents (CWAs): O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioic acid (VX), sarin (GB), and sulfur mustard (bis(2-chloroethyl) sulfide) (HD), in the presence of field-related interfering materials (fuels, water, and dust). Receiver operating characteristics analysis was performed in order to determine the probabilities for detection (PD) and for false alerts (PF). Challenging the algorithm with a set of data that contains mixtures of CWAs and interfering materials resulted in PD of 90% and PF of 0%, 0%, and 1% for VX, GB, and HD, respectively, using the average distance approach, which was found to be much more effective than analyzing each frequency individually. This finding was validated for all possible combinations of 2-7 peaks per material. It is suggested that this algorithm provides a reliable mean for the identification of a predetermined set of target analytes and interfering materials. PMID:24359653

  15. Development of new in situ observation system for dynamic study of lubricant molecules on metal friction surfaces by two-dimensional fast-imaging Fourier-transform infrared-attenuated total reflection spectrometer.

    PubMed

    Sasaki, Keiji; Inayoshi, Naruhiko; Tashiro, Kohji

    2008-12-01

    To observe the time-dependent two-dimensional (2D) images of spatial distribution of chemically/physically modified lubricant molecules on the metal surface during friction motion, a new in situ technique has been developed by combining the 2D fast-imaging Fourier-transform infrared-attenuated total reflection spectrometer with the temperature-controlled friction equipment containing lubricant agent. Using this new instrument, the time-dependent changes in lubricant molecules, for example, cis-trans isomerization, stress-induced molecular deformation, etc., can be detected successfully. The characteristic features of this instrument have been demonstrated in a detailed and concrete manner by demonstrating the experimental data measured for oleic acid and tricresyl phosphate. PMID:19123564

  16. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR) Mapping Coupled with Multivariate Curve Resolution (MCR) for Studying the Miscibility of Chlorobutyl Rubber/Polyamide-12 Blends.

    PubMed

    Tang, Yongjiao; Jing, Nan; Zhang, Pudun

    2015-11-01

    A series of chlorobutyl rubber/polyamide-12 (CIIR/PA-12) blends compatibilized by different amounts of maleic anhydride (MAH) grafted polypropylene (PP-g-MAH) were investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) mapping. Multivariate curve resolution (MCR) was used to process the FT-IR images. Both the spectra of pure components in the blends and their concentration distributions in a micro-region were acquired. Our results demonstrated that the blend with 15 parts per hundred rubber PP-g-MAH showed the best miscibility. An amide interphase and an imide interphase were inferred by analyzing the spectra of MCR component 3 of the blends with and without PP-g-MAH, respectively. Correspondingly, two different compatibilizing mechanisms were proposed for these blends. PMID:26647055

  17. Label-Free Determination of Protein Binding in Aqueous Solution using Overlayer Enhanced Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (OE-ATR-FTIR)

    NASA Astrophysics Data System (ADS)

    Ruthenburg, Travis; Aweda, Tolulope; Park, Simon; Meares, Claude; Land, Donald

    2009-03-01

    Protein binding/affinity studies are often performed using Surface Plasmon Resonance techniques that don't produce much spectral information. Measurement of protein binding affinity using FTIR is traditionally performed using high protein concentration or deuterated solvent. By immobilizing a protein near the surface of a gold-coated germanium internal reflection element interactions can be measured between an immobilized protein and free proteins or small molecules in aqueous solution. By monitoring the on and off rates of these interactions, the dissociation constant for the system can be determined. The dissociation constant for the molecule Yttrium-DOTA binding to the antibody 2D12.5 system was determined to be 100nM. Results will also be presented from our measurements of Bovine Serum Albumin (BSA) binding to anti-BSA.

  18. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    PubMed

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans. PMID:26725502

  19. A study of surface film formation on LiNi0.8Co0.15Al0.05O2 cathodes u sing attenuated total reflection infrared spectroscopy

    SciTech Connect

    Song, S.-W.; Zhuang, G.V.; Ross Jr., P.N.

    2004-01-19

    The surface films formed on commercial LiNi0.8Co0.15Al0.05O2 cathodes (ATD Gen2) charged from 3.75V to 4.2V vs. Li/Li+ in EC:DEC - 1M LiPF6 were analyzed using ex-situ Fourier transform infrared spectroscopy (FTIR) with the attenuated total reflection (ATR) technique. A surface layer of Li2CO3 is present on the virgin cathode, probably from reaction of the active material with air during the cathode preparation procedure. The Li2CO3 layer disappeared even after soaking in the electrolyte, indicating that the layer dissolved into the electrolyte possibly even before potential cycling of the electrode. IR features only from the binder (PVdF) and a trace of polyamide from the Al current collector were observed on the surfaces of cathodes charged to below 4.2 V, i.e., no surface species from electrolyte oxidation. Some new IR features were, however, found on the cathode charged to 4.2 V and higher. An electrolyte oxidation product was observed that appeared to contain dicarbonyl anhydride and (poly)ester functionalities. The reaction appears to be an indirect electrochemical oxidation with overcharging (removal of > 0.6 Li ions) destabilizing oxygen in the oxide lattice resulting in oxygen transfer to the solvent molecules.

  20. Direct determination of sorbitol and sodium glutamate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) in the thermostabilizer employed in the production of yellow-fever vaccine.

    PubMed

    de Castro, Eduardo da S G; Cassella, Ricardo J

    2016-05-15

    Reference methods for quality control of vaccines usually require treatment of the samples before analysis. These procedures are expensive, time-consuming, unhealthy and require careful manipulation of the sample, making them a potential source of analytical errors. This work proposes a novel method for the quality control of thermostabilizer samples of the yellow fever vaccine employing attenuated total reflectance Fourier transform infrared spectrometry (ATR-FTIR). The main advantage of the proposed method is the possibility of direct determination of the analytes (sodium glutamate and sorbitol) without any pretreatment of the samples. Operational parameters of the FTIR technique, such as the number of accumulated scans and nominal resolution, were evaluated. The best conditions for sodium glutamate were achieved when 64 scans were accumulated using a nominal resolution of 4 cm(-1). The measurements for sodium glutamate were performed at 1347 cm(-1) (baseline correction between 1322 and 1369 cm(-1)). In the case of sorbitol, the measurements were done at 890cm(-1) (baseline correction between 825 and 910 cm(-1)) using a nominal resolution of 2 cm(-1) with 32 accumulated scans. In both cases, the quantitative variable was the band height. Recovery tests were performed in order to evaluate the accuracy of the method and recovery percentages in the range 93-106% were obtained. Also, the methods were compared with reference methods and no statistical differences were observed. The limits of detection and quantification for sodium glutamate were 0.20 and 0.62% (m/v), respectively, whereas for sorbitol they were 1 and 3.3% (m/v), respectively. PMID:26992492

  1. Structural effects of insulin-loading into HII mesophases monitored by electron paramagnetic resonance (EPR), small angle X-ray spectroscopy (SAXS), and attenuated total reflection Fourier transform spectroscopy (ATR-FTIR).

    PubMed

    Mishraki, Tehila; Ottaviani, Maria Francesca; Shames, Alexander I; Aserin, Abraham; Garti, Nissim

    2011-06-30

    Insulin entrapment within a monoolein-based reverse hexagonal (H(II)) mesophase was investigated under temperature-dependent conditions at acidic (pH 3) and basic (pH 8) conditions. Studying the structure of the host H(II) system and the interactions of insulin under temperature-dependent conditions has great impact on the enhancement of its thermal stabilization and controlled release for the purposes of transdermal delivery. Small angle X-ray spectroscopy (SAXS) measurements show that pH variation and/or insulin entrapment preserve the hexagonal structure and do not influence the lattice parameter. Attenuated total reflection Fourier transform spectroscopy (ATR-FTIR) spectra indicate that, although insulin interacts with hydroxyl groups of GMO in the interface region, it is not affected by pH variations. Hence different microenvironments within the H(II) mesophase were monitored by a computer-aided electron paramagnetic resonance (EPR) analysis using 5-doxylstearic acid (5-DSA) as a pH-dependent probe. The microviscosity, micropolarity, order of systems, and distribution of the probes in different microenvironments were influenced by three factors: temperature, pH, and insulin solubilization. When the temperature is increased, microviscosity and order parameters decreased at both pH 3 and 8, presenting different decrease trends. It was found that, at pH 3, the protein perturbs the lipid structure while "pushing aside" the un-ionized 5-DSA probe to fit into the narrow water cylinders. At the interface region (pH 8), the probe was distributed in two differently structured environments that significantly modifies by increasing temperature. Insulin loading within the H(II) mesophase decreased the order and microviscosity of both the microenvironments and increased their micropolarity. Finally, the EPR analysis also provides information about the unfolding/denaturation of insulin within the channel at high temperatures. PMID:21591776

  2. Reflective attenuator for high-energy laser measurements

    SciTech Connect

    Lehman, John H.; Livigni, David; Li Xiaoyu; Cromer, Christopher L.; Dowell, Marla L

    2008-06-20

    A high-energy laser attenuator in the range of 250 mJ (20 ns pulse width, 10 Hz repetition rate, 1064 nm wavelength) is described. The optical elements that constitute the attenuator are mirrors with relatively low reflectance, oriented at a 45 deg. angle of incidence. By combining three pairs of mirrors, the incoming radiation is collinear and has the same polarization orientation as the exit. We present damage testing and polarization-dependent reflectance measurements for 1064 nm laser light at 45 deg. angle of incidence for molybdenum, silicon carbide, and copper mirrors. A six element, 74 times (18 dB) attenuator is presented as an example.

  3. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  4. Quantitative determination of two polymorphic forms of imatinib mesylate in a drug substance and tablet formulation by X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy.

    PubMed

    Bellur Atici, Esen; Karlığa, Bekir

    2015-10-10

    Imatinib has been identified as a tyrosine kinase inhibitor that selectively inhibits the Abl tyrosine kinases, including Bcr-Abl. The active substance used in drug product is the mesylate salt form of imatinib, a phenylaminopyrimidine derivative and chemically named as N-(3-(4-(pyridin-3-yl) pyrimidin-2-ylamino)-4-methylphenyl)-4-((4-methylpiperazin-1-yl) methyl)-benzamide methanesulfonic acid salt. It exhibits many polymorphic forms and most stable and commercialized polymorphs are known as α and β forms. Molecules in α and β polymorphic forms exhibit significant conformational differences due to their different intra- and intermolecular interactions, which stabilize their molecular conformations and affect their physicochemical properties such as bulk density, melting point, solubility, stability, and processability. The manufacturing process of a drug tablet included granulation, compression, coating, and drying may cause polymorphic conversions. Therefore, polymorphic content of the drug substance should be controlled during quality control and stability testing. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) methods were evaluated for determination of the polymorphic content of the drug substance and drug product; and PXRD was the most accurate technique and selected as preferred method and validated. Prior to development of a quantification method, pure α and β polymorphs were characterized and used throughout the method development and validation studies. Mixtures with different ratios of α and β forms were scanned using X-ray diffractometer with a scan rate of 0.250°/min over an angular range of 19.5-21.0° 2θ and the peak heights for characteristic peak of β form at 20.5 ± 0.2° 2θ diffraction angle were used to generate a calibration curve. The detection limit of β polymorph in α form imatinib mesylate tablets was found as 4% and

  5. Total internal reflection laser tools and methods

    DOEpatents

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  6. Total Internal Reflection Fluorescence (TIRF) Microscopy

    PubMed Central

    Fish, Kenneth N.

    2015-01-01

    Total internal reflection fluorescence (TIRF) microscopy (TIRFM) is an elegant optical technique that provides for the excitation of fluorophores in an extremely thin axial region (‘optical section’). The method is based on the principle that when excitation light is totally internally reflected in a transparent solid (e.g., coverglass) at its interface with liquid an electromagnetic field, called the evanescent wave, is generated in the liquid at the solid-liquid interface and is the same frequency as the excitation light. Since the intensity of the evanescent wave exponentially decays with distance from the surface of the solid, only fluorescent molecules within a few hundred nanometers of the solid are efficiently excited. This unit will briefly review the history, optical theory, and the different hardware configurations used in TIRFM. In addition, it will provide experimental details and methodological considerations for studying receptors at the plasma membrane in neurons. PMID:19816922

  7. Oriented 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding.

    PubMed Central

    Müller, E; Giehl, A; Schwarzmann, G; Sandhoff, K; Blume, A

    1996-01-01

    Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was

  8. Potential Modulation on Total Internal Reflection Ellipsometry.

    PubMed

    Liu, Wei; Niu, Yu; Viana, A S; Correia, Jorge P; Jin, Gang

    2016-03-15

    Electrochemical-total internal reflection ellipsometry (EC-TIRE) has been proposed as a technique to observe the redox reactions on the electrode surface due to its high phase sensitivity to the electrolyte/electrode interface. In this paper, we mainly focus on the influence of the potential modulation on the TIRE response. The analysis suggests that both dielectric constant variation of gold and the electric double layer transformation would modulate the reflection polarization of the surface. For a nonfaradaic process, the signal of TIRE would be proportional to the potential modulation. To testify the analysis, linear sweep voltammetry and open circuit measurement have been performed. The results strongly support the system analysis. PMID:26889871

  9. Power law relationships for rain attenuation and reflectivity

    NASA Technical Reports Server (NTRS)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1978-01-01

    The equivalent reflectivity, specific attenuation and volumetric backscatter cross section of rain are calculated and tabulated at a number of frequencies from 1 to 500 GHz using classical Mie theory. The first two parameters are shown to be closely approximated as functions of rain rate by the power law aR to the b power. The a's and b's are also tabulated and plotted for convenient reference.

  10. Prisms with total internal reflection as solar reflectors

    DOEpatents

    Rabl, Arnulf; Rabl, Veronika

    1978-01-01

    An improved reflective wall for radiant energy collection and concentration devices is provided. The wall is comprised of a plurality of prisms whose frontal faces are adjacent and which reflect the desired radiation by total internal reflection.

  11. Frustrated Total Internal Reflection: A Simple Application and Demonstration.

    ERIC Educational Resources Information Center

    Zanella, F. P.; Magalhaes, D. V.; Oliveira, M. M.; Bianchi, R. F.; Misoguti, L.; Mendonca, C. R.

    2003-01-01

    Describes the total internal reflection process that occurs when the internal angle of incidence is equal to or greater than the critical angle. Presents a demonstration of the effect of frustrated total internal reflection (FTIR). (YDS)

  12. Approximating the detection limit of an infrared spectroscopic imaging microscope operating in an attenuated total reflection (ATR) modality: theoretical and empirical results for an instrument using a linear array detector and a 1.5 millimeter germanium hemisphere internal reflection element.

    PubMed

    Lanzarotta, Adam

    2015-01-01

    Theoretical and empirical detection limits have been estimated for aripiprazole (analyte) in alpha lactose monohydrate (matrix model pharmaceutical formulation) using a micro-attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic imaging instrument equipped with a linear array detector and a 1.5 mm germanium hemisphere internal reflection element (IRE). The instrument yielded a theoretical detection limit of 0.0035% (35 parts per million (ppm)) when operating under diffraction-limited conditions, which was 49 times lower than what was achieved with a traditional macro-ATR instrument operating under practical conditions (0.17%, 1700 ppm). However, these results may not be achievable for most analyses because the detection limits will be particle size limited, rather than diffraction limited, for mixtures with average particle diameters greater than 8.3 μm (most pharmaceutical samples). For example, a theoretical detection limit of 0.028% (280 ppm) was calculated for an experiment operating under particle size-limited conditions where the average particle size was 23.4 μm. These conditions yielded a detection limit of 0.022% (220 ppm) when measured empirically, which was close to the theoretical value and only eight times lower than that of a faster, more simplistic macro-ATR instrument. Considering the longer data acquisition and processing times characteristic of the micro-ATR imaging approach (minutes or even hours versus seconds), the cost-benefit ratio may not often be favorable for the analysis of analytes in matrices that exhibit only a few overlapping absorptions (low-interfering matrices such as alpha lactose monohydrate) using this technique compared to what can be achieved using macro-ATR. However, the advantage was significant for detecting analytes in more complex matrices (those that exhibited several overlapping absorptions with the analyte) because the detection limit of the macro-ATR approach was highly formulation

  13. Attenuation (1/Q) estimation in reflection seismic records

    NASA Astrophysics Data System (ADS)

    Raji, Wasiu; Rietbrock, Andreas

    2013-08-01

    Despite its numerous potential applications, the lack of a reliable method for determining attenuation (1/Q) in seismic data is an issue when utilizing attenuation for hydrocarbon exploration. In this paper, a new method for measuring attenuation in reflection seismic data is presented. The inversion process involves two key stages: computation of the centroid frequency for the individual signal using a variable window length and fast Fourier transform; and estimation of the difference in the centroid frequency and travel time for paired incident and transmitted signals. The new method introduces a shape factor and a constant which allows several spectral shapes to be used to represent a real seismic signal without altering the mathematical model. Application of the new method to synthetic data shows that it can provide reliable estimates of Q using any of the spectral shapes commonly assumed for real seismic signals. Tested against two published methods of Q measurement, the new method shows less sensitivity to interference from noise and change of frequency bandwidth. The method is also applied to a 3D data set from the Gullfaks field, North Sea, Norway. The trace length is divided into four intervals: AB, BC, CD, and DE. Results show that interval AB has the lowest 1/Q value, and that interval BC has the highest 1/Q value. The values of 1/Q measured in the CDP stack using the new method are consistent with those measured using the classical spectral ratio method.

  14. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.

    PubMed

    Hageneder, Simone; Bauch, Martin; Dostalek, Jakub

    2016-08-15

    This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout. PMID:27260457

  15. Uranium soft x-ray total attenuation coefficients

    SciTech Connect

    Del Grande, N.K.; Oliver, A.J.

    1981-01-01

    Uranium total attenuation coefficients were measured continuously from 0.84 to 6.0 keV and at selected higher energies using a vacuum single crystal diffractometer and flow-proportional counter. Statistical fluctuations ranged from 0.5% to 2%. The overall accuracy was 3%. Prominent structure was measured within 20 eV of the M/sub 5/ (3.552 keV) and M/sub 4/ (3.728 keV) edges. Jump ratios were determined from log-log polynomial fits to data at energies apart from the near-edge regions. These data were compared with calculations based on a relativistic HFS central potential model and with previously tabulated data.

  16. Seismic random noise attenuation using shearlet and total generalized variation

    NASA Astrophysics Data System (ADS)

    Kong, Dehui; Peng, Zhenming

    2015-12-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  17. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    SciTech Connect

    Erlangga, Mokhammad Puput

    2015-04-16

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, in case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.

  18. Nondestructive Determination of the Age of 20th-Century Oil-Binder Ink Prints Using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FT-IR): A Case Study with Postage Stamps from the Łódź Ghetto.

    PubMed

    Bower, Nathan W; Blanchet, Conor J K; Epstein, Michael S

    2016-01-01

    The ability to determine the production date for a painting or print would be of great benefit in the forensic detection of fakes and forgeries as well as in art history and conservation. Changes in the pigments used at different times have been invaluable in detecting incongruities that suggest fraud, but relatively little work has been published that uses the chemical changes in oil binders as they dry to determine when an ink print or an oil painting was made. Using attenuated total reflectance-Fourier transform infrared (ATR FT-IR) spectroscopy and samples with known dates, we calibrate the drying of oil binders in inks and paints and cross-validate the paints with pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We apply the ink calibration to a case study involving the age determination of possible philatelic counterfeits from a World War II Jewish Ghetto in Occupied Poland, obtaining a date of 1946 ± 6 (1 s, n = 9) for the genuine stamps, and 1963 ± 16 (1 s, n = 19) for the various reproductions. PMID:26767642

  19. Method of determining ultrasonic attenuation of tissue using reflective tomographic reconstruction

    SciTech Connect

    Flax, S. W.; Glover, G. H.

    1984-10-09

    Ultrasonic wave attenuation is determined for a plurality of limited volumes of tissue comprising a body under examination by directing ultrasonic waves through each limited volume along a plurality of vectors, determining a measure of attenuation of the limited volume by detecting the frequency shift of reflections of the ultrasonic wave along each vector, and averaging the attenuation of each limited volume from each vector intersecting the limited volume.

  20. Total omnidirectional reflection by sub-wavelength gradient metallic gratings

    NASA Astrophysics Data System (ADS)

    Qian, Erting; Fu, Yangyang; Xu, Yadong; Chen, Huanyang

    2016-05-01

    In this letter, we find that nearly total omnidirectional reflection could be achieved in a metallic grating structure with gradient index materials, regardless of the polarization of the incident wave. By bending the straight structure into a metallic grating ring, we design a metacage that can well shield the electromagnetic wave. All the phenomena are well demonstrated from theoretical analysis and numerical simulations.

  1. Broad Band Intra-Cavity Total Reflection Chemical Sensor

    DOEpatents

    Pipino, Andrew C. R.

    1998-11-10

    A broadband, ultrahigh-sensitivity chemical sensor is provided that allows etection through utilization of a small, extremely low-loss, monolithic optical cavity. The cavity is fabricated from highly transparent optical material in the shape of a regular polygon with one or more convex facets to form a stable resonator for ray trajectories sustained by total internal reflection. Optical radiation enters and exits the monolithic cavity by photon tunneling in which two totally reflecting surfaces are brought into close proximity. In the presence of absorbing material, the loss per pass is increased since the evanescent waves that exist exterior to the cavity at points where the circulating pulse is totally reflected, are absorbed. The decay rate of an injected pulse is determined by coupling out an infinitesimal fraction of the pulse to produce an intensity-versus-time decay curve. Since the change in the decay rate resulting from absorption is inversely proportional to the magnitude of absorption, a quantitative sensor of concentration or absorption cross-section with 1 part-per-million/pass or better sensitivity is obtained. The broadband nature of total internal reflection permits a single device to be used over a broad wavelength range. The absorption spectrum of the surrounding medium can thereby be obtained as a measurement of inverse decay time as a function of wavelength.

  2. Gaining Insight into Antibubbles via Frustrated Total Internal Reflection

    ERIC Educational Resources Information Center

    Suhr, Wilfried

    2012-01-01

    The interest in the phenomenon of frustrated total internal reflection dates back to the time of Newton. Because of its technological relevance, it has become a standard topic covered by advanced courses in physics. In practical courses optical setups especially designed to demonstrate the phenomenon are commonly used. As an alternative, this…

  3. Rydberg and π-π* transitions in film surfaces of various kinds of nylons studied by attenuated total reflection far-ultraviolet spectroscopy and quantum chemical calculations: peak shifts in the spectra and their relation to nylon structure and hydrogen bondings.

    PubMed

    Morisawa, Yusuke; Yasunaga, Manaka; Sato, Harumi; Fukuda, Ryoichi; Ehara, Masahiro; Ozaki, Yukihiro

    2014-10-01

    Attenuated total reflection far-ultraviolet (ATR-FUV) spectra in the 145-260 nm region were measured for surfaces (thickness 50-200 nm) of various kinds of nylons in cast films to explore their electronic transitions in the FUV region. ATR-FUV spectra show two major bands near 150 and 200 nm in the surface condensed phase of nylons. Transmittance (Tr) spectra were also observed in particular for the analysis of valence excitations. Time-dependent density functional theory (TD-DFT/CAM-B3LYP) calculations were carried out using the model systems to provide the definitive assignments of their absorption spectra and to elucidate their peak shifts in several nylons, in particular, focusing on their crystal alignment structures and intermolecular hydrogen bondings. Two major bands of nylon films near 150 and 200 nm are characterized as σ-Rydberg 3p and π-π* transitions of nylons, respectively. These assignments are also coherent with those of liquid n-alkanes (n = 5-14) and liquid amides observed previously. The Rydberg transitions are delocalized over the hydrocarbon chains, while the π-π* transitions are relatively localized at the amide group. Differences in the peak positions and intensity were found in both ATR- and Tr-FUV spectra for different nylons. A red-shift of the π-π* amide band in the FUV spectra of nylon-6 and nylon-6/6 models in α-form is attributed to the crystal structure pattern and the intermolecular hydrogen bondings, which result in the different delocalization character of the π-π* transitions and transition dipole coupling. PMID:25203613

  4. Atmospheric Attenuation Of Total Solar Flux By Clouds At Six Amazonian Sites: 1999-2001

    NASA Astrophysics Data System (ADS)

    Schafer, J.; Holben, B.; Eck, T.; Artaxo, P.; Yamasoe, M.; Procopio, A.

    2002-12-01

    In Brazil, we now have a data set of pyranometer measurements at several sites distributed across the Amazon basin, with a record spanning more than 3 years at some locations. This network represents one of the few such long-term flux data bases available for this region, and provides an opportunity to characterize the nature of atmospheric effects on surface, broadband irradiance. Sufficient data are now available to assess trends in cloud attenuation on a range of timescales (diurnally, seasonally, and interannually). Cloud-induced fractional and absolute total flux reductions at the surface were evaluated for all years and sites. The fractional reduction, fB was computed as the ratio of received irradiance to the modeled clear-sky irradiance for background (low) aerosol conditions. A distinct difference was found between cloud attenuation in the wet and dry seasons, particularly in the southern Amazon. Histograms of fB for typical wet season months reveal a bi-modal distribution with a reduction peak (when the solar beam is obstructed) and an enhancement peak (produced by edge reflections from broken cloud cover). This phenomenon has been noted previously at the Abracos Hill sites during a 2 month study in 1999 (Gu et al., 2001). Our multi-year, multi-site data now suggest this is a fairly consistent feature of wet season months in the southern sites in Rondonia and northern Mato Grosso, and of most or all months at the equatorial sites (Balbina, Belterra) in Para and Amazonas.

  5. Experimental observation of total-internal-reflection rainbows.

    PubMed

    Adler, Charles L; Lock, James A; Mulholland, Jonathon; Keating, Brian; Ekelman, Diana

    2003-01-20

    A new class of rainbows is created when a droplet is illuminated from the inside by a point light source. The position of the rainbow depends on both the index of refraction of the droplet and the position of the light source, and the rainbow vanishes when the point source is too close to the center of the droplet. Here we experimentally measure the position of the transmission and one-internal-reflection total-internal-reflection rainbows, and the standard (primary) rainbow, as a function of light-source position. PMID:12570261

  6. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, D.M.; Downing, R.G.

    1997-02-18

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence. 11 figs.

  7. Multiple-channel, total-reflection optic with controllable divergence

    DOEpatents

    Gibson, David M.; Downing, Robert G.

    1997-01-01

    An apparatus and method for providing focused x-ray, gamma-ray, charged particle and neutral particle, including neutron, radiation beams with a controllable amount of divergence are disclosed. The apparatus features a novel use of a radiation blocking structure, which, when combined with multiple-channel total reflection optics, increases the versatility of the optics by providing user-controlled output-beam divergence.

  8. Removing attenuation effects in reflectivity images at 33 and 95 GHz

    NASA Astrophysics Data System (ADS)

    Lohmeier, Stephen P.; Sekelsky, Stephen M.; Firda, John M.

    1997-09-01

    Reflectivity is a fundamental parameter for sensing the morphology and composition of clouds and precipitation. However, attenuation due to varying amounts of precipitation, clouds, and water vapor along the propagation path corrupts reflectivity estimates. In this paper, an algorithm to correct for these effects at 33 and 95 GHz is proposed. This algorithm is then applied to corrupted reflectivity images collected with the University of Massachusetts Microwave Remote Sensing Laboratory (MIRSL) Cloud Profiling Radar System (CPRS), which is a dual-frequency (33 and 95 GHz) , fully-polarimetric, pulse-Doppler, ground-based radar. The attenuation correction algorithm consists of two steps. First, different sources of attenuation along the propagation path are identified by classifying each image into regions of: air, ice particles, liquid droplets, rain, mixed-phase particles, and insects. This is accomplished with a rule-based classifier that relies on collocated measurements of velocity, linear depolarization ratio, and height to make classification decisions. The second step is correcting attenuation along the propagation path in a region appropriate manner. By starting at the ground with the assumption that the reflectivity estimate is unattenuated, and working away from the radar adding a region-appropriate amount to the reflectivity estimate at each range gate, attenuation effects in the image can be largely removed. However, if a mixed-phase region where the rate of attenuation is unknown is encountered along the propagation path, the correction is suspended and an alternative approach that corrects attenuation from the top of the cloud down is used. The complete algorithm was applied to the CPRS data and significantly improved reflectivity estimates.

  9. The role of the reflection coefficient in precision measurement of ultrasonic attenuation

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1984-01-01

    Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.

  10. The role of the reflection coefficient in precision measurement of ultrasonic attenuation

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1985-01-01

    Ultrasonic attenuation measurements using contact, pulse-echo techniques are sensitive to surface roughness and couplant thickness variations. This can reduce considerable inaccuracies in the measurement of the attenuation coefficient for broadband pulses. Inaccuracies arise from variations in the reflection coefficient at the buffer-couplant-sample interface. The reflection coefficient is examined as a function of the surface roughness and corresponding couplant thickness variations. Interrelations with ultrasonic frequency are illustrated. Reliable attenuation measurements are obtained only when the frequency dependence of the reflection coefficient is incorporated in signal analysis. Data are given for nickel 200 samples and a silicon nitride ceramic bar having surface roughness variations in the 0.3 to 3.0 microns range for signal bandwidths in the 50 to 100 MHz range.

  11. Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant

    PubMed Central

    Aron, Serge

    2016-01-01

    The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant’s dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant’s body. PMID:27073923

  12. Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant.

    PubMed

    Willot, Quentin; Simonis, Priscilla; Vigneron, Jean-Pol; Aron, Serge

    2016-01-01

    The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant's dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant's body. PMID:27073923

  13. Transmission and total internal reflection integrated digital holographic microscopy.

    PubMed

    Zhang, Jiwei; Ma, Chaojie; Dai, Siqing; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2016-08-15

    We develop a transmission and total internal reflection (TIR) integrated digital holographic microscopy (DHM) by introducing a home-made Dove prism with a polished short side. With the help of angular and polarization multiplexing techniques, the 2D refractive index distribution of a specimen adhered on the prism surface is determined using TIR-DHM. Meanwhile, the thickness profile is unambiguously calculated from the phase information using transmission DHM. This integrated microscopy is nondestructive and dynamic and can be used to simultaneously measure the index distribution and thickness profile of transparent or semi-transparent liquid or solid samples. PMID:27519104

  14. Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope.

    PubMed

    Ohsugi, Yu; Kinjo, Masataka

    2009-01-01

    We report simultaneous determination of diffusion coefficients at different points of a cell membrane using a multipoint fluorescence correlation spectroscopy (FCS) system. A system carrying seven detection areas in the evanescent field is achieved by using seven optical fibers on the image plane in the detection port of an objective-type total internal reflection FCS (TIR-FCS) system. Fluctuation of fluorescence intensity is monitored and evaluated using seven photomultiplier tubes (PMTs) and a newly constructed multichannel correlator. We demonstrate simultaneous-multipoint FCS, with a 3-mus time resolution, to investigate heterogeneous structures such as cell membranes and membrane-binding molecular dynamics near glass surfaces in live cells. PMID:19256718

  15. Total Transmission and Total Reflection by Zero Index Metamaterials with Defects

    NASA Astrophysics Data System (ADS)

    Nguyen, Viet Cuong; Chen, Lang; Halterman, Klaus

    2010-12-01

    We theoretically investigate microwave transmission through a zero-index metamaterial loaded with dielectric defects. The metamaterial is impedance matched to free space, with the permittivity and permeability tending towards zero over a given frequency range. By simply varying the radii and permittivities of the defects, total transmission or reflection of the impinging electromagnetic wave can be achieved. The proposed defect structure can offer advances in shielding or cloaking technologies without restricting the object’s viewpoint. Active control of the observed exotic transmission and reflection signatures can occur by incorporating tunable refractive index materials such as liquid crystals and BaSrTiO3.

  16. TRASER - Total Reflection Amplification of Spontaneous Emission of Radiation

    PubMed Central

    Zachary, Christopher B.; Gustavsson, Morgan

    2012-01-01

    Background and Objective Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single ‘tunable’ device. Study Design/Material and Methods This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER. Results Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate. Conclusion Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems. PMID:22558261

  17. Ground-roll attenuation using modified common-offset-common-reflection-surface stacking

    NASA Astrophysics Data System (ADS)

    Rastegar, Seyyed Ali Fa'al; Javaherian, Abdolrahim; Farajkhah, Naser Keshavarz; Monfared, Mehrdad Soleimani; Zarei, Abbas

    2016-06-01

    We modified the common-offset-common-reflection-surface (COCRS) method to attenuate ground roll, the coherent noise typically generated by a low-velocity, low-frequency, and high-amplitude Rayleigh wave. The COCRS operator is based on hyperbolas, thus it fits events with hyperbolic traveltimes such as reflection events in prestack data. Conversely, ground roll is linear in the common-midpoint (CMP) and common-shot gathers and can be distinguished and attenuated by the COCRS operator. Thus, we search for the dip and curvature of the reflections in the common-shot gathers prior to the common-offset section. Because it is desirable to minimize the damage to the reflection amplitudes, we only stack the multicoverage data in the ground-roll areas. Searching the CS gathers before the CO section is another modification of the conventional COCRS stacking. We tested the proposed method using synthetic and real data sets from western Iran. The results of the ground-roll attenuation with the proposed method were compared with results of the f-k filtering and conventional COCRS stacking after f-k filtering. The results show that the proposed method attenuates the aliased and nonaliased ground roll better than the f-k filtering and conventional CRS stacking. However, the computation time was higher than other common methods such as f-k filtering.

  18. ATTENUATION OF REFLECTED WAVES IN MAN DURING RETROGRADE PROPAGATION FROM FEMORAL ARTERY TO PROXIMAL AORTA

    PubMed Central

    Baksi, A John; Davies, Justin E; Hadjiloizou, Nearchos; Baruah, Resham; Unsworth, Beth; Foale, Rodney A; Korolkova, Olga; Siggers, Jennifer H; Francis, Darrel P; Mayet, Jamil; Parker, Kim H; Hughes, Alun D

    2015-01-01

    Background Wave reflection may be an important influence on blood pressure, but the extent to which reflections undergo attenuation during retrograde propagation has not been studied. We quantified retrograde transmission of a reflected wave created by occlusion of the left femoral artery in man. Methods 20 subjects (age 31-83 y; 14 male) underwent invasive measurement of pressure and flow velocity with a sensor-tipped intra-arterial wire at multiple locations distal to the proximal aorta before, during and following occlusion of the left femoral artery by thigh cuff inflation. A numerical model of the circulation was also used to predict reflected wave transmission. Wave reflection was measured as the ratio of backward to forward wave energy (WRI) and the ratio of peak backward to forward pressure (Pb/Pf). Results Cuff inflation caused a marked reflection which was largest 5-10cm from the cuff (change (Δ) in WRI = 0.50 (95% CI 0.38, 0.62); p<0.001, ΔPb/Pf = 0.23 (0.18 - 0.29); p<0.001). The magnitude of the cuff-induced reflection decreased progressively at more proximal locations and was barely discernible at sites >40cm from the cuff including in the proximal aorta. Numerical modelling gave similar predictions to those observed experimentally. Conclusions Reflections due to femoral artery occlusion are markedly attenuated by the time they reach the proximal aorta. This is due to impedance mismatches of bifurcations traversed in the backward direction. This degree of attenuation is inconsistent with the idea of a large discrete reflected wave arising from the lower limb and propagating back into the aorta. PMID:26436672

  19. Single-Molecule Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Kudalkar, Emily M; Davis, Trisha N; Asbury, Charles L

    2016-01-01

    The advent of total internal reflection fluorescence (TIRF) microscopy has permitted visualization of biological events on an unprecedented scale: the single-molecule level. Using TIRF, it is now possible to view complex biological interactions such as cargo transport by a single molecular motor or DNA replication in real time. TIRF allows for visualization of single molecules by eliminating out-of-focus fluorescence and enhancing the signal-to-noise ratio. TIRF has been instrumental for studying in vitro interactions and has also been successfully implemented in live-cell imaging. Visualization of cytoskeletal structures and dynamics at the plasma membrane, such as endocytosis, exocytosis, and adhesion, has become much clearer using TIRF microscopy. Thanks to recent advances in optics and commercial availability, TIRF microscopy is becoming an increasingly popular and user-friendly technique. In this introduction, we describe the fundamental properties of TIRF microscopy and the advantages of using TIRF for single-molecule investigation. PMID:27140922

  20. Coverslip Cleaning and Functionalization for Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Kudalkar, Emily M; Deng, Yi; Davis, Trisha N; Asbury, Charles L

    2016-01-01

    Total internal reflection fluorescence (TIRF) microscopy allows visualization of biological events at the single-molecule level by restricting excitation to a precise focal plane near the coverslip and eliminating out-of-focus fluorescence. The quality of TIRF imaging relies on a high signal-to-noise ratio and therefore it is imperative to prevent adherence of molecules to the glass coverslip. Nonspecific interactions can make it difficult to distinguish true binding events and may also interfere with accurate quantification of background noise. In addition, nonspecific binding of the fluorescently tagged protein will lower the effective working concentration, thereby altering values used to calculate affinity constants. To prevent spurious interactions, we thoroughly clean the surface of the coverslip and then functionalize the glass either by applying a layer of silane or by coating with a lipid bilayer. PMID:27140911

  1. A 'pocket guide' to total internal reflection fluorescence.

    PubMed

    Martin-Fernandez, M L; Tynan, C J; Webb, S E D

    2013-10-01

    The phenomenon of total internal reflection fluorescence (TIRF) was placed in the context of optical microscopy by Daniel Axelrod over three decades ago. TIRF microscopy exploits the properties of an evanescent electromagnetic field to optically section sample regions in the close vicinity of the substrate where the field is induced. The first applications in cell biology targeted investigation of phenomena at the basolateral plasma membrane. The most notable application of TIRF is single-molecule experiments, which can provide information on fluctuation distributions and rare events, yielding novel insights on the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell. This short review intends to provide a 'one stop shop' explanation of the electromagnetic theory behind the remarkable properties of the evanescent field, guide the reader through the principles behind building or choosing your own TIRF system and consider how the most popular applications of the method exploit the evanescent field properties. PMID:23889125

  2. Total Internal Reflection Fluorescence Quantification of Receptor Pharmacology

    PubMed Central

    Fang, Ye

    2015-01-01

    Total internal reflection fluorescence (TIRF) microscopy has been widely used as a single molecule imaging technique to study various fundamental aspects of cell biology, owing to its ability to selectively excite a very thin fluorescent volume immediately above the substrate on which the cells are grown. However, TIRF microscopy has found little use in high content screening due to its complexity in instrumental setup and experimental procedures. Inspired by the recent demonstration of label-free evanescent wave biosensors for cell phenotypic profiling and drug screening with high throughput, we had hypothesized and demonstrated that TIRF imaging is also amenable to receptor pharmacology profiling. This paper reviews key considerations and recent applications of TIRF imaging for pharmacology profiling. PMID:25922915

  3. High performance, LED powered, waveguide based total internal reflection microscopy

    NASA Astrophysics Data System (ADS)

    Ramachandran, Srinivasan; Cohen, Daniel A.; Quist, Arjan P.; Lal, Ratnesh

    2013-07-01

    Total internal reflection fluorescence (TIRF) microscopy is a rapidly expanding optical technique with excellent surface sensitivity and limited background fluorescence. Commercially available TIRF systems are either objective based that employ expensive special high numerical aperture (NA) objectives or prism based that restrict integrating other modalities of investigation for structure-function analysis. Both techniques result in uneven illumination of the field of view and require training and experience in optics. Here we describe a novel, inexpensive, LED powered, waveguide based TIRF system that could be used as an add-on module to any standard fluorescence microscope even with low NA objectives. This system requires no alignment, illuminates the entire field evenly, and allows switching between epifluorescence/TIRF/bright field modes without adjustments or objective replacements. The simple design allows integration with other imaging systems, including atomic force microscopy (AFM), for probing complex biological systems at their native nanoscale regimes.

  4. A ‘pocket guide’ to total internal reflection fluorescence

    PubMed Central

    Martin-Fernandez, ML; Tynan, CJ; Webb, SED

    2013-01-01

    The phenomenon of total internal reflection fluorescence (TIRF) was placed in the context of optical microscopy by Daniel Axelrod over three decades ago. TIRF microscopy exploits the properties of an evanescent electromagnetic field to optically section sample regions in the close vicinity of the substrate where the field is induced. The first applications in cell biology targeted investigation of phenomena at the basolateral plasma membrane. The most notable application of TIRF is single-molecule experiments, which can provide information on fluctuation distributions and rare events, yielding novel insights on the mechanisms governing the molecular interactions that underpin many fundamental processes within the cell. This short review intends to provide a ‘one stop shop’ explanation of the electromagnetic theory behind the remarkable properties of the evanescent field, guide the reader through the principles behind building or choosing your own TIRF system and consider how the most popular applications of the method exploit the evanescent field properties. PMID:23889125

  5. Development of a scanning angle total internal reflection Raman spectrometer.

    PubMed

    McKee, Kristopher J; Smith, Emily A

    2010-04-01

    A scanning angle total internal reflection (SATIR) Raman spectrometer has been developed for measuring interfacial phenomena with chemical specificity and high axial resolution perpendicular to the interface. The instrument platform is an inverted optical microscope with added automated variable angle optics to control the angle of an incident laser on a prism/sample interface. These optics include two motorized translation stages, the first containing a focusing lens and the second a variable angle galvanometer mirror. The movement of all instrument components is coordinated to ensure that the same sample location and area are probed at each angle. At angles greater than the critical angle, an evanescent wave capable of producing Raman scatter is generated in the sample. The Raman scatter is collected by a microscope objective and directed to a dispersive spectrometer and charge-coupled device detector. In addition to the collected Raman scatter, light reflected from the prism/sample interface is collected to provide calibration parameters that enable modeling the distance over which the Raman scatter is collected for depth profiling measurements. The developed instrument has an incident angle range of 25.5 degrees-75.5 degrees, with a 0.05 degrees angle resolution. Raman scatter can be collected from a ZnSe/organic interface over a range of roughly 35-180 nm. Far from the critical angle, the achieved axial resolution perpendicular to the focal plane is approximately 34 nm. This is roughly a 30-fold improvement relative to confocal Raman microscopy. PMID:20441324

  6. Variable optical attenuator based on a reflective Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Sitao; Shi, Yaocheng; He, Sailing; Dai, Daoxin

    2016-02-01

    A low power-consuming variable optical attenuator (VOA) on silicon is demonstrated by using a reflective Mach-Zehnder interferometer (MZI), which consists of broadband highly-efficient Bragg-grating reflectors at the ends of the MZI arms. The present reflective-MZI VOA enables an ultra-high extinction ratio intrinsically even when the 2×2 3 dB coupler is not balanced perfectly, which make it very robust to realize a VOA array. The power consumption is reduced by half in comparison with the regular MZI-type VOA. For the fabricated reflective MZI-type VOA with 125 μm-long heaters, the power consumption is only about 10.8 mW for a high attenuation of 35.5 dB.

  7. Attenuation of front-end reflections in an impulse radar using high-speed switching

    NASA Astrophysics Data System (ADS)

    Mazzaro, Gregory J.; Ressler, Marc A.; Smith, Gregory D.

    2011-06-01

    Pulse reflection between front-end components is a common problem for impulse radar systems. Such reflections arise because radio frequency components are rarely impedance-matched over an ultra-wide bandwidth. Any mismatch between components causes a portion of the impulse to reflect within the radar front-end. If the reflection couples into the transmit antenna, the radar emits an unintended, delayed and distorted replica of the intended radar transmission. These undesired transmissions reflect from the radar environment, produce echoes in the radar image, and generate false alarms in the vicinity of actual targets. The proposed solution for eliminating these echoes, without redesigning the transmit antenna, is to dissipate pulse reflections in a matched load before they are emitted. A high-speed switch directs the desired pulse to the antenna and redirects the undesired reflection from the antenna to a matched load. The Synchronous Impulse Reconstruction (SIRE) radar developed by the Army Research Laboratory (ARL) is the case-study. This paper reviews the current front-end design, provides a recent radar image which displays the aforementioned echoes, and describes the switch-cable-load circuit solution for eliminating the echoes. The consequences of inserting each portion of the new hardware into the radar front-end are explained. Measurements on the front-end with the high-speed switch show an attenuation of the undesired pulse transmissions of more than 18 dB and an attenuation in the desired pulse transmission of less than 3 dB.

  8. Simulations of an etched spiral axial attenuation scheme for an on-axis reflecting telescope

    NASA Astrophysics Data System (ADS)

    Spector, Aaron; Mueller, Guido

    2015-05-01

    The current generation of proposed space based interferometric gravitational wave detectors all use a reflecting telescope to transfer the laser signals between the space- craft. One of the proposed telescope designs is an on-axis classical Cassegrain with the secondary mirror axially aligned to the primary mirror. Since the outgoing beam will be incident normal to the secondary, some of the light will be reflected directly back to the optical bench. Length changes between the telescope structure and the optical bench will cause this back-reflected light to introduce phase noise to the measurement signal. The phase noise from this process must be suppressed below 0.1 μcycles / √Hz to meet the LISA requirements. We have presented simulations that demonstrate that the back-reflected power can be sufficiently attenuated by using a specifically patterned Anti-Reflective (AR) region, in the shape of a spiral, at the center of the secondary mirror.

  9. Diffuse Reflectance Spectroscopy for Total Carbon Analysis of Hawaiian Soils

    NASA Astrophysics Data System (ADS)

    McDowell, M. L.; Bruland, G. L.; Deenik, J. L.; Grunwald, S.; Uchida, R.

    2010-12-01

    Accurate assessment of total carbon (Ct) content is important for fertility and nutrient management of soils, as well as for carbon sequestration studies. The non-destructive analysis of soils by diffuse reflectance spectroscopy (DRS) is a potential supplement or alternative to the traditional time-consuming and costly combustion method of Ct analysis, especially in spatial or temporal studies where sample numbers are large. We investigate the use of the visible to near-infrared (VNIR) and mid-infrared (MIR) spectra of soils coupled with chemometric analysis to determine their Ct content. Our specific focus is on Hawaiian soils of agricultural importance. Though this technique has been introduced to the soil community, it has yet to be fully tested and used in practical applications for all soil types, and this is especially true for Hawaii. In short, DRS characterizes and differentiates materials based on the variation of the light reflected by a material at certain wavelengths. This spectrum is dependent on the material’s composition, structure, and physical state. Multivariate chemometric analysis unravels the information in a set of spectra that can help predict a property such as Ct. This study benefits from the remarkably diverse soils of Hawaii. Our sample set includes 216 soil samples from 145 pedons from the main Hawaiian Islands archived at the National Soil Survey Center in Lincoln, NE, along with more than 50 newly-collected samples from Kauai, Oahu, Molokai, and Maui. In total, over 90 series from 10 of the 12 soil orders are represented. The Ct values of these samples range from < 1% - 55%. We anticipate that the diverse nature of our sample set will ensure a model with applicability to a wide variety of soils, both in Hawaii and globally. We have measured the VNIR and MIR spectra of these samples and obtained their Ct values by dry combustion. Our initial analyses are conducted using only samples obtained from the Lincoln archive. In this

  10. Measurement uncertainty in Total Reflection X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Floor, G. H.; Queralt, I.; Hidalgo, M.; Marguí, E.

    2015-09-01

    Total Reflection X-ray Fluorescence (TXRF) spectrometry is a multi-elemental technique using micro-volumes of sample. This work assessed the components contributing to the combined uncertainty budget associated with TXRF measurements using Cu and Fe concentrations in different spiked and natural water samples as an example. The results showed that an uncertainty estimation based solely on the count statistics of the analyte is not a realistic estimation of the overall uncertainty, since the depositional repeatability and the relative sensitivity between the analyte and the internal standard are important contributions to the uncertainty budget. The uncertainty on the instrumental repeatability and sensitivity factor could be estimated and as such, potentially relatively straightforward implemented in the TXRF instrument software. However, the depositional repeatability varied significantly from sample to sample and between elemental ratios and the controlling factors are not well understood. By a lack of theoretical prediction of the depositional repeatability, the uncertainty budget can be based on repeat measurements using different reflectors. A simple approach to estimate the uncertainty was presented. The measurement procedure implemented and the uncertainty estimation processes developed were validated from the agreement with results obtained by inductively coupled plasma - optical emission spectrometry (ICP-OES) and/or reference/calculated values.

  11. Absolute position total internal reflection microscopy with an optical tweezer

    PubMed Central

    Liu, Lulu; Woolf, Alexander; Rodriguez, Alejandro W.; Capasso, Federico

    2014-01-01

    A noninvasive, in situ calibration method for total internal reflection microscopy (TIRM) based on optical tweezing is presented, which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle’s absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 μm from the surface. This represents an approximate 10× improvement in error and 3× improvement in measurement range over conventional TIRM methods. The technique’s advantage is in the direct measurement of the probe particle’s scattering intensity vs. height profile in situ, rather than relying on assumptions, inexact system analogs, or detailed knowledge of system parameters for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle. PMID:25512542

  12. Data Analysis for Total Internal Reflection Fluorescence Microscopy.

    PubMed

    Asbury, Charles L

    2016-01-01

    In the microscopes we use to analyze total internal reflection fluorescence (TIRF), the emitted fluorescence is split chromatically, using dichroic filters, into either two or three different colors ("channels"). In our two-color instrument, the green emission wavelengths (405-488 nm; for imaging green fluorescent protein [GFP]-tagged proteins) and far-red emission wavelengths (650-800 nm; for imaging Alexa-647-labeled microtubules) are projected onto the upper and lower halves, respectively, of a single camera. A single filter can be swapped to collect near-red wavelengths (561-640 nm; for imaging mCherry, or Alexa-568-labeled microtubules) instead of far-red. Our three-color instrument is very similar except that the green, near-red, and far-red color ranges are projected onto three separate cameras. In either case, the different colors can be imaged simultaneously. Typically, we collect images at 10 frames/sec for ∼200 sec. We have developed a series of semiautomated image analysis programs, written in LabView, to obtain the brightness, residence time, and mobility of individual particles bound to single microtubules. The basic analysis steps are straightforward and could also be implemented using ImageJ or Matlab. For convenience, this protocol describes the analysis of a single microtubule. Data from many microtubules across many experimental trials are needed to obtain robust conclusions that are independent of stochastic and trial-to-trial variability. PMID:27140913

  13. Attenuator design for organs at risk in total body irradiation using a translation technique

    SciTech Connect

    Lavallee, Marie-Claude; Aubin, Sylviane; Chretien, Mario; Larochelle, Marie; Beaulieu, Luc

    2008-05-15

    Total body irradiation (TBI) is an efficient part of the treatment for malignant hematological diseases. Dynamic TBI techniques provide great advantages (e.g., dose homogeneity, patient comfort) while overcoming treatment room space restrictions. However, with dynamic techniques come additional organs at risk (OAR) protection challenges. In most dynamic TBI techniques, lead attenuators are used to diminish the dose received by the OARs. The purpose of this study was to characterize the dose deposition under various shapes of attenuators in static and dynamic treatments. This characterization allows for the development of a correction method to improve attenuator design in dynamic treatments. The dose deposition under attenuators at different depths in dynamic treatment was compared with the static situation based on two definitions: the coverage areas and the penumbra regions. The coverage area decreases with depth in dynamic treatment while it is stable for the static situation. The penumbra increases with depth in both treatment modes, but the increasing rate is higher in the dynamic situation. Since the attenuator coverage is deficient in the dynamic treatment mode, a correction method was developed to modify the attenuator design in order to improve the OAR protection. The correction method is divided in two steps. The first step is based on the use of elongation charts, which provide appropriate attenuator coverage and acceptable penumbra for a specific depth. The second point is a correction method for the thoracic inclination, which can introduce an orientation problem in both static and dynamic treatments. This two steps correction method is simple to use and personalized to each patient's anatomy. It can easily be adapted to any dynamic TBI techniques.

  14. Quo Vadis total reflection X-ray fluorescence?

    NASA Astrophysics Data System (ADS)

    Pahlke, Siegfried

    2003-12-01

    The multielement trace analytical method 'total reflection X-ray fluorescence' (TXRF) has become a successfully established method in the semiconductor industry, particularly, in the ultra trace element analysis of silicon wafer surfaces. TXRF applications can fulfill general industrial requirements on daily routine of monitoring wafer cleanliness up to 300 mm diameter under cleanroom conditions. Nowadays, TXRF and hyphenated TXRF methods such as 'vapor phase decomposition (VPD)-TXRF', i.e. TXRF with a preceding surface and acid digestion and preconcentration procedure, are automated routine techniques ('wafer surface preparation system', WSPS). A linear range from 10 8 to 10 14 [atoms/cm 2] for some elements is regularly controlled. Instrument uptime is higher than 90%. The method is not tedious and can automatically be operated for 24 h/7 days. Elements such as S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sn, Sb, Ba and Pb are included in the software for standard peak search. The detection limits of recovered elements are between 1×10 11 and 1×10 7 [atoms/cm 2] depending upon X-ray excitation energy and the element of interest. For the determination of low Z elements, i.e. Na, Al and Mg, TXRF has also been extended but its implementation for routine analysis needs further research. At present, VPD-TXRF determination of light elements is viable in a range of 10 9 [atoms/cm 2]. Novel detectors such as silicon drift detectors (SDD) with an active area of 5 mm 2, 10 mm 2 or 20 mm 2, respectively, and multi-array detectors forming up to 70 mm 2 are commercially available. The first SDD with 100 mm 2 (!) area and integrated backside FET is working under laboratory conditions. Applications of and comparison with ICP-MS, HR-ICP-MS and SR-TXRF, an extension of TXRF capabilities with an extremely powerful energy source, are also reported.

  15. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  16. Transmission, attenuation and reflection of shear waves in the human brain.

    PubMed

    Clayton, Erik H; Genin, Guy M; Bayly, Philip V

    2012-11-01

    Traumatic brain injuries (TBIs) are caused by acceleration of the skull or exposure to explosive blast, but the processes by which mechanical loads lead to neurological injury remain poorly understood. We adapted motion-sensitive magnetic resonance imaging methods to measure the motion of the human brain in vivo as the skull was exposed to harmonic pressure excitation (45, 60 and 80 Hz). We analysed displacement fields to quantify the transmission, attenuation and reflection of distortional (shear) waves as well as viscoelastic material properties. Results suggest that internal membranes, such as the falx cerebri and the tentorium cerebelli, play a key role in reflecting and focusing shear waves within the brain. The skull acts as a low-pass filter over the range of frequencies studied. Transmissibility of pressure waves through the skull decreases and shear wave attenuation increases with increasing frequency. The skull and brain function mechanically as an integral structure that insulates internal anatomic features; these results are valuable for building and validating mathematical models of this complex and important structural system. PMID:22675163

  17. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H.

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  18. Total reflection X-ray photoelectron spectroscopy as a semiconductor lubricant elemental analysis method

    NASA Astrophysics Data System (ADS)

    Alshehabi, Abbas; Sasaki, Nobuharu; Kawai, Jun

    2015-12-01

    Photoelectron spectra from a typical hard disk storage media device (HDD) were measured at total reflection and non-total reflection at unburnished, acetone-cleaned, and argon-sputtered conditions. F, O, N, and C usually making the upper layer of a typical hard disk medium were detected. Enhancement of the photoelectron emission of the fluorocarbon lubricant was observed at total reflection. Pt and Co were only found by non-total X-ray photoelectron spectroscopy (XPS) because they are constituents of a deeper region than the top and interface regions. Argon-sputtered, ultrasonic acetone-cleaned, and unburnished top layers were compared at total and non-total reflection conditions. Total reflection X-ray photoelectron spectroscopy (TRXPS) is demonstrated to be a powerful tool for storage media lubrication layer chemical state analysis, reliable for industrial quality control application , and reproducible.

  19. A visual classroom demonstration of frustrated total internal reflection as an analogue to optical tunnelling

    NASA Astrophysics Data System (ADS)

    Salman, Rabiya; Rashid, Shama; Sabieh Anwar, Muhammad

    2013-11-01

    Frustrated total internal reflection is presented as a visually attractive and convenient classroom demonstration. Optical evanescent waves penetrating through a dielectric barrier is a classical analogue to quantum mechanical tunnelling. We use the traditional double prism arrangement to demonstrate the pickup and relaunching of the evanescent wave. Total internal reflection could be completely frustrated by the insertion of an index matching fluid.

  20. Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance.

    PubMed

    Qiu, Zhongfeng; Wu, Tingting; Su, Yuanyuan

    2013-07-01

    Accurate estimation of the diffuse attenuation coefficient is important for our understanding the availability of light to underwater communities, which provide critical information for the China seas ecosystem. However, algorithm developments and validations of the diffuse attenuation coefficient in the China seas have been seldom performed before and therefore our knowledge on the quality of retrieval of the diffuse attenuate coefficient is poor. In this paper optical data at 306 sites collected in coastal waters of the China seas between July 2000 and February 2004 are used to evaluate three typical existing Kd(490) models. The in situ Kd(490) varied greatly among different sites from 0.029 m(-1) to 10.3 m(-1), with a mean of 0.92 ± 1.59 m(-1). Results show that the empirical model and the semi-analytical model significantly underestimate the Kd(490) value, with estimated mean values of 0.24 m(-1) and 0.5 m(-1), respectively. The combined model also shows significant differences when the in situ Kd(490) range from 0.2 m(-1) to 1 m(-1). Thus, the present study proposes that the three algorithms cannot be directly used to appropriately estimate Kd(490) in the turbid coastal waters of the China seas without a fine tuning for regional applications. In this paper, new Kd(490) algorithms are developed based on the semi-analytical retrieval of the absorption coefficient a(m(-1)) and the backscattering coefficient bb(m(-1)) from the reflectance at two wavelengths, 488 and 667 nm for the Moderate Resolution Imaging Spectroradiometer (MODIS) and 490 and 705 nm for the Medium Resolution Imaging Spectrometer (MERIS) applications, respectively. With the new approaches, the mean ratio and the relative percentage difference are 1.05 and 4.6%, respectively, based on an independent in situ data set. Furthermore, the estimates are reliable within a factor of 1.9 (95% confidence interval). Comparisons also show that the Kd(490) derived with the new algorithms are well correlated

  1. An ice-sheet wide framework for englacial attenuation and basal reflection from ice penetrating radar data

    NASA Astrophysics Data System (ADS)

    Jordan, Thomas; Bamber, Jonathan; Williams, Chris; Paden, John; Siegert, Martin; Huybrechts, Philippe; Gagliardini, Olivier; Gillet-Chaulet, Fabien

    2016-04-01

    Radar-inference of the bulk material properties of glacier beds, most notably identifying basal melting, is, in general, derived from the basal reflection coefficient. Unambiguous determination of basal reflection is primarily limited by uncertainty in the spatial variation of the englacial attenuation of the radio wave. Arrhenius temperature models predict that, over the extent of an ice-sheet, the depth-averaged attenuation rate can vary by a factor of ~ 6-8. However, existing `bed-returned power' radar algorithms for basal reflection assume stationarity in the depth-averaged attenuation rate. These radar algorithms are therefore only applicable to local regions of ice-sheets, and are suspected to yield erroneous values for basal reflection. Here we introduce an automated, Greenland wide, framework for radar-inference of englacial attenuation and basal reflection. To demonstrate its efficacy we apply it to recent, (2011-2014), Operation Ice Bridge data. A central feature is the use of a prior Arrhenius temperature model to estimate the spatial variation in radar attenuation as a first guess input for the radar algorithm. Specifically, this estimate is used to test for sample regions where the assumption of stationarity is valid within some specified tolerance, and to modify the bed-returned power method for local attenuation variation within each sample region. The radar algorithm is validated in a number of different ways. Firstly, we demonstrate regions of solution convergence for two different input temperature fields; the steady-state temperature fields for the SICOPOLIS and GISM ice-sheet models. Secondly, we show that, for regions of data coverage overlap, the algorithm is repeatable for different field campaign years. Thirdly, we illustrate that, for the coverage achieved, the predicted range for the basal reflection coefficient is ~ 20 dB, which is consistent with the predicted range for the basal material interface (~15 dB) and our uncertainty estimate

  2. Total reflection of waves propagating from a rare isotropic medium to a dense anisotropic medium

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Cheng, Yan-Ru

    2004-04-01

    The distribution diagram and the boundary conditions of wave vectors are used here to study the propagation of light between anisotropic media. Reflectance and transmittance are calculated according to the non-symmetric internal reflection phenomenon. Total reflection of light propagating from a rare medium to a dense medium may occur. Castillo and Ballinas' challenge of the correctness of Lin and Wu is adequate only in a particular case, and this study resolves both analyses by considering a more general case.

  3. Amplitude Variation of Bottom Simulating Reflection with Respect to Frequency - Transitional Base or Attenuation?

    USGS Publications Warehouse

    Lee, Myung W.

    2007-01-01

    The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.

  4. Electro-optical field sensor using single total internal reflection in electro-optical crystals

    NASA Astrophysics Data System (ADS)

    Kijima, K.; Abe, O.; Shimizu, A.; Nakamura, T.; Kono, H.; Hagihara, S.; Torikai, E.; Hori, H.

    2015-08-01

    A novel electro-optical radio frequency field sensor with simple structure and high sensitivity is realized using single total internal reflection in electro-optical crystals. Without employing any waveguide structures, the minimum detectable electric field strength of the total internal reflection electro-optical-sensor is estimated to 86.52 dB μV/m (21.18 mV/m) at a resolution band width of 100 Hz for a short interaction length.

  5. Quantitative Total and Diffuse Reflectance Laboratory Measurements for Remote, Standoff, and Point Sensing

    SciTech Connect

    Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong

    2014-06-10

    Methods for making total and diffuse directional/hemispherical reflectance measurements in the shortwave to longwave infrared using an integrating sphere are described. The sphere is a commercial, off-the-shelf optical device with its sample port at the bottom, which is essential for examining powdered samples without using a cover glass. The reflectance spectra of recently-developed National Institute of Standards and Technology (NIST, USA) infrared reflectance standards have been measured using the sphere. Reflectance spectra of other materials such as Spectralon and Infragold were also measured. The relative systematic error for the total reflectance measurements is estimated to be on the order of 3%, and random measurement error for multiple samples of each material is on the order of 0.5%.

  6. Reflective variable optical attenuators and fibre ring lasers for wavelength-division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Liu, He Liang

    Wavelength division multiplexing (WDM) optical fibre system is an important enabling technology to fulfill the demands for bandwidth in the modern information age. The main objective of this project is to study novel devices with the potential to enhance the performance of WDM systems. In particular, a novel reflective variable optical attenuator (RVOA) used for dynamic gain equalization (DGE) and fibre lasers based on an entirely new type of erbium-doped fibres with ultrawide tuning range were investigated theoretically and experimentally. We proposed a new type of RVOA device which could be potentially integrated with arrayed waveguide grating (AWG) to reduce the cost of DGE substantially. Initially, fibre-based RVOAs, fabricated with optical fibre components such as fibre coupler and Faraday rotator mirror, were investigated theoretically and experimentally. Larger attenuation range up to 22 dB was realized for fibre coupler-based ROVA with a Faraday rotator mirror and its polarization-dependent loss is about 0.5 dB. Then polymeric waveguide-based RVOAs were investigated theoretically and experimentally. Using an epoxy Novolak resin as core material and an UV-cured resin (Norland's NOA61) as cladding material, a polymeric waveguide RVOA was successfully fabricated. The dynamic 15 dB attenuation range was achieved and the PDL was less than 0.2 dB. The measured insertion loss of the polymeric waveguide RVOA was too large (about 18 dB) and was mainly induced by coupling loss, material loss and poor alignment. In the second part of the study, fibre ring lasers with continuous wavelength tuning over wide wavelength range and fibre ring lasers with discrete wavelength tuning were investigated. Tunable lasers are important devices in WDM systems because they could be employed as reserved sources and therefore avoiding the need to stock large inventory of lasers to cover the ITU-wavelength grid. In this project, erbium ions doped bismuth oxide glass fibres instead of

  7. Attenuation of fission neutrons by some hydrogeneous shield materials and the exponential dependence of the attenuated total neutron dose rate on the shield thickness.

    PubMed

    Ibrahim, M A

    2000-01-01

    This work deals with the attenuation of fission neutrons by some hydrogeneous shield materials. The attenuated fission neutrons are described by the energy groups (fast, epithermal and thermal). The exponential decrease in the fast flux is represented by the removal cross section concept. Each of the epithermal and thermal fluxes is expressed using the diffusion equation including a pair of arbitrary constants to be determined using the corresponding boundary conditions. The solution obtained for the required arbitrary constants is then approximated in a simplified form such that it may easily replace the corresponding exact solution. The attenuation values, by which the neutron dose rate distributions are exponentially decreased through certain thicknesses are also determined for the given materials. They are compared to the corresponding experimental and theoretical data. The results obtained for the total neutron dose rate distributions in terms of a suitable range of layer thicknesses are then used to determine--for each material--an average value for the total neutron dose rate representing the exponential decrease during passage through the considered range of layer thicknesses. PMID:10670922

  8. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    PubMed

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes. PMID:26480394

  9. Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics.

    PubMed

    Furuse, Hiroaki; Kawanaka, Junji; Takeshita, Kenji; Miyanaga, Noriaki; Saiki, Taku; Imasaki, Kazuo; Fujita, Masayuki; Ishii, Shinya

    2009-11-01

    An efficient high-power laser operation has been demonstrated by using a cryogenic Yb:YAG composite ceramic with a total-reflection active-mirror arrangement. The composite ceramic, which had no high-reflection coating and was cooled with liquid nitrogen directly, showed four-level operation even at 67 kW/cm(3) of high pump density. A 273 W cw output power was obtained with 65% optical efficiency and 72% slope efficiency. PMID:19881620

  10. Monte Carlo simulation applied in total reflection x-ray fluorescence: Preliminary results

    SciTech Connect

    Meira, Luiza L. C.; Inocente, Guilherme F.; Vieira, Leticia D.; Mesa, Joel

    2013-05-06

    The X-ray Fluorescence (XRF) analysis is a technique for the qualitative and quantitative determination of chemical constituents in a sample. This method is based on detection of the characteristic radiation intensities emitted by the elements of the sample, when properly excited. A variant of this technique is the Total Reflection X-ray Fluorescence (TXRF) that utilizes electromagnetic radiation as excitation source. In total reflection of X-ray, the angle of refraction of the incident beam tends to zero and the refracted beam is tangent to the sample support interface. Thus, there is a minimum angle of incidence at which no refracted beam exists and all incident radiation undergoes total reflection. In this study, we evaluated the influence of the energy variation of the beam of incident x-rays, using the MCNPX code (Monte Carlo NParticle) based on Monte Carlo method.

  11. Calibration of a turbidity meter for making estimates of total suspended solids concentrations and beam attenuation coefficients in field experiments

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Whitlock, C. H.

    1981-01-01

    Management of water resources such as a reservoir requires using analytical models which describe such parameters as the suspended sediment field. To select or develop an appropriate model requires making many measurements to describe the distribution of this parameter in the water column. One potential method for making those measurements expeditiously is to measure light transmission or turbidity and relate that parameter to total suspended solids concentrations. An instrument which may be used for this purpose was calibrated by generating curves of transmission measurements plotted against measured values of total suspended solids concentrations and beam attenuation coefficients. Results of these experiments indicate that field measurements made with this instrument using curves generated in this study should correlate with total suspended solids concentrations and beam attenuation coefficients in the water column within 20 percent.

  12. Magneto-optical effects in multilayers illuminated by total internal reflection

    NASA Astrophysics Data System (ADS)

    Richard, N.; Dereux, A.; David, T.; Bourillot, E.; Goudonnet, J. P.; Scheurer, F.; Beaurepaire, E.; Garreau, G.

    1999-02-01

    This paper describes the magneto-optical effects of metallic multilayers under the condition of total internal reflection. In the framework of Green's dyadic technique, we detail a practical and at time-consuming scheme to compute accurately the optical properties of anisotropic multilayers deposited on a substrate. We present numerical simulations which account for the variation of the angle of incidence at a fixed wavelength and for the variation of the wavelength at fixed angle of incidence. The Kerr rotation is found to increase significantly around the critical angle for total reflection. We also discuss the importance of plasmon effects in the structure of the Kerr rotation spectra.

  13. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Kazarain, Sergei G.; Alves, Marco A. V.; Blay, Alberto; Correa, Luciana; Zezell, Denise M.

    2014-03-01

    The cutting of bone is routinely required in medical procedures, especially in dental applications. In such cases, bone regeneration and new bone quality can determine the success of the treatment. This study investigated the main spectral differences of undamaged and healed bone using the ATR-FTIR spectroscopy technique. Three rabbits were submitted to a surgical procedure; a small piece of bone (3x3 mm2) was removed from both sides of their jaws using a high speed drill. After 15 days, the rabbits were euthanized and the jaws were removed. A bone slice was cut from each side of the jaw containing regions of undamaged and newly formed bone, resulting in six samples which were polished for spectroscopic comparison. The samples were analyzed by FTIR spectroscopy using a diamond ATR accessory. Spectral characteristics were compared and particular attention was paid to the proportion of phosphate to amide I bands and the width of the phosphate band. The results show that the ratio of phosphate to amide I is smaller in new bone tissue than in the undamaged bone, indicating a higher organic content in the newly formed bone. The analysis of the width of the phosphate band suggests a crystallinity difference between both tissues, since the width was higher in the new bone than in the natural bone. These results suggest that the differences observed in bone aging processes by FTIR spectroscopic can be applied to the study of healing processes.

  14. Detection of Citrus Huanglongbing by Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR) Spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus Huanglongbing (HLB, also known as citrus greening disease) was discovered in Florida in 2005 and is spreading rapidly amongst the citrus growing regions of the state. Detection via visual symptoms of the disease is not a long term viable option. New techniques are being developed to test fo...

  15. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  16. Rapid identification and classification of Staphylococcus aureus by attenuated total reflectance fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus is an important bacterium that can cause serious infections in humans such as pneumonia and bacteremia. Rapid detection of this pathogen is crucial in food industries and clinical laboratories to control S. aureus food poisoning and human infections. In this study, fourier tran...

  17. Determination of cholesterol concentration in human milk samples using attenuated total reflectance Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamelska, A. M.; Pietrzak-Fiećko, R.; Bryl, K.

    2013-03-01

    Results of an inexpensive and rapid evaluation of the cholesterol concentration in human milk using ATR-FTIR techniques are presented. The FTIR spectrum of pure cholesterol was characterized and quantitatively estimated in the region between 2800 and 3200 cm-1. 125 samples at different stages of lactation were analyzed. There were no differences between the cholesterol concentrations in the samples of early (1-3 months), medium (4-6 months), and late (> 6 months) lactation stages ( p = 0.096968). The cholesterol concentration ranged from 4.30 to 21.77 mg/100 cm3. Such a broad range was due to the differences between the samples from different women ( p = 0.000184). The results indicate that ATR-FTIR has potential for rapid estimation of cholesterol concentration in human milk.

  18. Resonant tunneling effect in one-dimensional twinned lattice photonic crystal under total reflection conditions

    NASA Astrophysics Data System (ADS)

    Feng, Xi; Li, Hu; Yuxia, Tang

    2016-07-01

    Under total reflection conditions, it typically seems as though light waves will be reflected completely on the interface; in actuality, the waves can penetrate the medium as evanescent waves. In this paper, we present a twinned lattice photonic crystal with a unit cell composed of AB layers and their mirror. We assume that the refractive index n 0 of the input and output end is equal to n B and larger than n A . We first demonstrate the dependence of band structure on the incidence angle and normalized wavelength, in which the resonant tunneling bands are exposed. We then draw a comparison of bands between ABBA and AB. To conclude, we discuss the resonant tunneling effect in the twinned lattice photonic crystal under the total reflection conditions. As incidence angle increases, the resonant tunneling band ultimately vanishes completely.

  19. Determination of rain rate from a spaceborne radar using measurements of total attenuation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Eckerman, J.; Atlas, D.

    1981-01-01

    Studies shows that path-integrated rain rates can be determined by means of a direct measurement of attenuation. For ground based radars this is done by measuring the backscattering cross section of a fixed target in the presence and absence of rain along the radar beam. A ratio of the two measurements yields a factor proportional to the attenuation from which the average rain rate is deduced. The technique is extended to spaceborne radars by choosing the ground as reference target. The technique is also generalized so that both the average and range-profiled rain rates are determined. The accuracies of the resulting estimates are evaluated for a narrow beam radar located on a low earth orbiting satellite.

  20. Measurement and accuracy analysis of refractive index using a specular reflectivity close to the total internal reflection

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lu, Zukang; Xie, Shusen; Lin, Lei

    1998-08-01

    A new method to measure refractive index and the accuracy analysis as well is presented. The characteristic includes that the direction of incident light is not perpendicular to the interface but close to the critical angle of total internal reflection. That the specular reflectivity changes sharply near the critical angle implies that a high measuring sensitivity be reached easily. A narrow p- polarized laser beam and a prism or a quasi-semi-cylindrical lens in contact with a sample are applied in the apparatus. In order to match a high accuracy, a photoelectronic receiver with dual-channel divider is designed to compensate the stability of output of laser. One of the advantages of the method is its high accuracy. The uncertainty in the refractive index measurement is in the fourth decimal place at least. The exact direction of incident laser beam depends on the accuracy of result expected. Another outstanding advantage is its particularly straightforward in use experimental techniques. The method will be the most promising tool to study the response of refractive index to subtle changes of different conditions.

  1. Super hydrophobic surface of polytetrafluoroethylene fabricated by picosecond laser and phenomenon of total internal reflection underwater

    NASA Astrophysics Data System (ADS)

    Jiang, Yijian; Cao, Wenshen; Zhao, Yan; Wu, Yan; Ji, Lingfei

    2015-03-01

    A groove-shaped array with average 25 μm interval, 25 μm wall thickness, 75 μm depth and a columnar array with average 30 μm side length, 25 μm interval, 43 μm depth are processed by 1064 nm picosecond laser on polytetrafluoroethylene (PTFE) surface at room temperature. The water contact angle of modified PTFE surface can reach 167°, which show super hydrophobic surface of PTFE is prepared. It is observed super hydrophobic surface reflects metal luster underwater through the glassware when super hydrophobic PTFE entirely immerses in pure water. The experiment conducts super hydrophobic surface will enhance intensity of reflection of visible light underwater, which is due to total internal reflection of super hydrophobic surface und erwater.

  2. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  3. Total-Internal-Reflection-Fluorescence Microscopy for the Study of Nanobubble Dynamics

    NASA Astrophysics Data System (ADS)

    Chan, Chon U.; Ohl, Claus-Dieter

    2012-10-01

    Nanobubbles can be observed with optical microscopy using the total-internal-reflection-fluorescence excitation. We report on total-internal-reflection-fluorescence visualization using rhodamine 6G at 5μM concentration which results in strongly contrasting pictures. The preferential absorption and the high spatial resolution allow us to detect nanobubbles with diameters of 230 nm and above. We resolve the nucleation dynamics during the water-ethanol-water exchange: within 4 min after exchange the bubbles nucleate and form a stable population. Additionally, we demonstrate that tracer particles near to the nanobubbles are following Brownian motion: the remaining drift flow is weaker than a few micrometers per second at a distance of 400 nm from the nanobubble’s center.

  4. Raman study on surface layers and thin films by using total reflection experiments

    NASA Astrophysics Data System (ADS)

    Hölzer, W.; Schröter, O.; Richter, A.

    1990-03-01

    An access to Raman spectroscopic investigations of phenomena of boundary layers is given through the excitation by means of the evanescent wave in total reflection (Total Reflection Raman Spectroscopy - TRRS). The TRRS scattering unit contains a semicylinder as TR-element and the sample placed on the planar face of it. This equipment permits the variation of the incident angle in the full range from 0° to 90°. The general theory of the TRRS is specialized for our experimental setup. The TRRS-method allows two possibilities of application: i) the investigation of surface layers by excitation above the critical angle and ii) the investigation of thin films by excitation at the critical angle. Any examples were discussed for demonstrating these applications.

  5. Design of plasmonic nano-antenna for total internal reflection fluorescence microscopy.

    PubMed

    Lee, Eun-Khwang; Song, Jung-Hwan; Jeong, Kwang-Yong; Seo, Min-Kyo

    2013-10-01

    We propose a gold modified bow-tie plasmonic nano-antenna, which can be suitably used in combination with total internal reflection fluorescence microscopy. The plasmonic nano-antenna, supporting well-separated multiple resonances, not only concentrates the total internal reflection evanescent field at the deep subwavelength scale, but also enhances fluorescence emission by the Purcell effect. Finite-difference time-domain computations show that the enhancement of the excitation light strongly correlates with the far-field radiation pattern radiated from the antenna. Depending on the antenna geometry, the resonant modes are widely tuned and their wavelengths can be easily matched to the diverse emission or excitation wavelengths of fluorophores. PMID:24104219

  6. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew Charles Rule

    1999-11-16

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  7. Intra-Cavity Total Reflection For High Sensitivity Measurement Of Optical Properties

    DOEpatents

    Pipino, Andrew C. R.; Hudgens, Jeffrey W.

    1999-08-24

    An optical cavity resonator device is provided for conducting sensitive murement of optical absorption by matter in any state with diffraction-limited spatial resolution through utilization of total internal reflection within a high-Q (high quality, low loss) optical cavity. Intracavity total reflection generates an evanescent wave that decays exponentially in space at a point external to the cavity, thereby providing a localized region where absorbing materials can be sensitively probed through alteration of the Q-factor of the otherwise isolated cavity. When a laser pulse is injected into the cavity and passes through the evanescent state, an amplitude loss resulting from absorption is incurred that reduces the lifetime of the pulse in the cavity. By monitoring the decay of the injected pulse, the absorption coefficient of manner within the evanescent wave region is accurately obtained from the decay time measurement.

  8. X-ray polaroids based on the total external reflection in anomalous-dispersion regions

    NASA Astrophysics Data System (ADS)

    Machavariani, V. Sh

    1996-12-01

    A new method of development of x-ray polaroids is suggested. The idea is based on the effect of total external reflection from an anisotropic crystal in the anomalous-dispersion region. The polarization coefficient for hexagonal BN crystal near the boron K absorption edge is calculated for different glancing angles and thicknesses of sample. It is shown that the method treated provides a simple way of constructing an effective x-ray polaroid.

  9. Experimental observation of the Imbert-Fedorov transverse displacement after a single total reflection.

    PubMed

    Pillon, Frank; Gilles, Hervé; Girard, Sylvain

    2004-03-20

    We describe a simple experimental setup with which to observe the transverse shift--also known as the Imbert-Fedorov effect-that circularly or elliptically polarized optical beams undergo after a single total internal reflection on a dielectric plane. A comparison between a theoretical model based on the conservation of energy and experimental measurements shows good agreement simultaneously for longitudinal (Goos-Hänchen) and transverse (Imbert-Fedorov) displacements. PMID:15072036

  10. Application of total internal reflection microscopy for laser damage studies on fused silica

    SciTech Connect

    Sheehan, L. M., LLNL

    1997-12-01

    Damage studies show that the majority of damage on ultraviolet grade fused silica initiates at the front or rear surface. The grinding and polishing processes used to produce the optical surfaces of transparent optics play a key role in the development of defects which can ultimately initiate damage. These defects can be on or breaking through the surface or can be sub-surface damage. Total Internal Reflection Microscopy has been documented as a tool for revealing both sub-surface and surface defects in transparent materials. Images taken which compare both Total Internal Reflection Microscopy and Atomic Force Microscopy show that the observed defects can be less than one micron in size. Total Internal Reflection Microscopy has the added benefit of being able to observe large areas (1 square millimeter) with sub-micron detection. Both off-line and in-situ systems have been applied in the Lawrence Livermore National Laboratory`s damage laboratory in order to understand defects in the surface and subsurface of polished fused silica. There is a preliminary indication that TIRM quality can be related to the damage resistance. The in-situ microscope is coupled into a 355 run, 7.5 ns, 10 Hz Nd:YAG laser system in order to study damage occurring at localized scatter sites revealed with the Total Internal Reflection Microscopy method. The tests indicate damage initiating at observed artifacts which have many different morphologies and damage behaviors. Some of the scatter sites and damage morphologies revealed have been related back to the finishing process.

  11. TOTAL INTERNAL REFLECTION WITH FLUORESCENCE CORRELATION SPECTROSCOPY: APPLICATIONS TO SUBSTRATE-SUPPORTED PLANAR MEMBRANES

    PubMed Central

    Thompson, Nancy L.; Wang, Xiang; Navaratnarajah, Punya

    2009-01-01

    In this review paper, the conceptual basis and experimental design of total internal reflection with fluorescence correlation spectroscopy (TIR-FCS) is described. The few applications to date of TIR-FCS to supported membranes are discussed, in addition to a variety of applications not directly involving supported membranes. Methods related, but not technically equivalent, to TIR-FCS are also summarized. Future directions for TIR-FCS are outlined. PMID:19269331

  12. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses

    NASA Astrophysics Data System (ADS)

    Techavipoo, U.; Varghese, T.; Chen, Q.; Stiles, T. A.; Zagzebski, J. A.; Frank, G. R.

    2004-06-01

    Previous reported data from our laboratory demonstrated the temperature dependence of propagation speed and attenuation of canine tissue in vitro at discrete temperatures ranging from 25 to 95 °C. However, concerns were raised regarding heating the same tissue specimen over the entire temperature range, a process that may introduce irreversible and, presumably, cumulative tissue degradation. In this paper propagation speed and attenuation vs temperature are measured using multiple groups of samples, each group heated to a different temperature. Sample thicknesses are measured directly using a technique that uses both transmitted and reflected ultrasound pulses. Results obtained using 3 and 5 MHz center frequencies demonstrate a propagation speed elevation of around 20 m/s in the 22-60 °C range, and a decrease of 15 m/s in the 60-90 °C range, in agreement with previous results where the same specimens were subjected to the entire temperature range. However, sound speed results reported here are slightly higher than those reported previously, probably due to more accurate measurements of sample thickness in the present experiments. Results also demonstrate that while the propagation speed varies with temperature, it is not a function of tissue coagulation. In contrast, the attenuation coefficient depends on both tissue coagulation effects and temperature elevation.

  13. Fast determination of total ginsenosides content in ginseng powder by near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.

  14. Design of an fMRI-compatible optical touch stripe based on frustrated total internal reflection.

    PubMed

    Jarrahi, Behnaz; Wanek, Johann

    2014-01-01

    Previously we developed a low-cost, multi-configurable handheld response system, using a reflective-type intensity modulated fiber-optic sensor (FOS) to accurately gather participants' behavioral responses during functional magnetic resonance imaging (fMRI). Inspired by the popularity and omnipresence of the fingertip-based touch sensing user interface devices, in this paper we present the design of a prototype fMRI-compatible optical touch stripe (OTS) as an alternative configuration. The prototype device takes advantage of a proven frustrated total internal reflection (FTIR) technique. By using a custom-built wedge-shaped optically transparent acrylic prism as an optical waveguide, and a plano-concave lens to provide the required light beam profile, the position of a fingertip touching the surface of the wedge prism can be determined from the deflected light beams that become trapped within the prism by total internal reflection. To achieve maximum sensitivity, the optical design of the wedge prism and lens were optimized through a series of light beam simulations using WinLens 3D Basic software suite. Furthermore, OTS performance and MRI-compatibility were assessed on a 3.0 Tesla MRI scanner running echo planar imaging (EPI) sequences. The results show that the OTS can detect a touch signal at high spatial resolution (about 0.5 cm), and is well suited for use within the MRI environment with average time-variant signal-to-noise ratio (tSNR) loss < 3%. PMID:25571103

  15. Development of thin-film total-reflection mirrors for the XUV FEL

    NASA Astrophysics Data System (ADS)

    Jacobi, Sandra; Wiesmann, Joerg; Steeg, Barbara; Feldhaus, Josef; Michaelsen, Carsten

    2001-12-01

    A free electron laser for the XUV spectral range is currently under test at the TESLA Test Facility at DESY. High gain has been demonstrated below 100nm wavelength, and it is expected that the FEL will provide intense, sub-picosecond radiation pulses with photon energies up to 200eV. Thin film optical elements required for this facility are currently being developed by the X-ray optics group of the GKSS research center near Hamburg. Sputter-deposited coatings have been prepared for the use as total reflection X-ray mirrors for FEL beam optics. Coatings of low Z elements with the lowest possible absorption and high reflectivity have been investigated. Silicon substrates have been coated with carbon using different deposition conditions. The films were investigated using the soft X-ray reflectometer at the HASYLAB beamline G1. The measurements show that the reflectivity of the films is typically 90% at energies below 200eV and a grazing incidence angle of 4 degrees. The optical constants of these coatings obtained from the reflectivity measurements and are in agreement with tabulated values. The deposition parameters have been optimized resulting in argon contamination free films with near-theoretical performance. Preliminary investigations concerning the heat resistance of the films were also carried out.

  16. Total-internal-reflection-based photomask for large-area photolithography

    NASA Astrophysics Data System (ADS)

    Hung, Shao-Kang; Lin, Kung-Hsuan; Chen, Cheng-Lung; Chou, Chen-Hsun; Lin, You-Chuan

    2016-05-01

    Photolithography has been widely implemented with a photomask in contact or in close proximity to the photoresist layer. The flatness of the substrates is a crucial factor to guarantee the quality of the entire patterned photoresist (PR) layer especially for large-area photolithography. However, some substrates, such as sapphire wafers, do not possess highly uniform thickness as silicon wafer does. In this work, we demonstrate that a flexible polydimethylsiloxane (PDMS) photomask with optical total-internal-reflection structure can effectively circumvent this problem for mass production. Different from conventional photomask that the light is blocked by the patterned reflective/absorbing materials, the distributions of light intensity on the PR is engineered by the geometric structure of the transparent PDMS photomask. We demonstrate that 4 in. patterned sapphire wafers can be successfully fabricated by using this PDMS photomask, which can be easily integrated into the present techniques in industry for mass production of substrates for GaN-based optoelectronic devices.

  17. Processing and attenuation of noise in deep seismic-reflection data from the Gulf of Maine

    USGS Publications Warehouse

    Hutchinson, D.R.; Lee, M.W.

    1989-01-01

    The U.S. Geological Survey deep crustal studies reflection profile across the Gulf of Maine off southeastern New England was affected by three sources of noise: side-scattered noise, multiples, and 20-Hz whale sounds. The special processing most effective in minimizing this noise consisted of a combination of frequency-wavenumber (F-K) filtering, predictive deconvolution, and spectral whitening, each applied in the shot domain (prestack). Application of the F-K filter to remove side-scatter noise in the poststack domain resulted in a much poorer quality profile. The prestack noise suppression processing techniques resulted in a reflection profile with good signal-to-noise ratios and reliable strong reflections, especially at depths equivalent to the lower crust (24-34 km). Certain geologic features, such as a buried rift basin and a crustal fault are resolved much better within the upper crust after this processing. Finite difference migration of these data using realistic velocities produced excellent results. Migration was essential to distinguish between abundant dipping and subhorizontal reflections in the lower crust as well as to show an essentially transparent upper mantle. ?? 1989 Kluwer Academic Publishers.

  18. Innovative light collimator with afocal lens and total internal reflection lens for daylighting system.

    PubMed

    Chen, Bo-Jian; Chen, Yin-Ti; Ullah, Irfan; Chou, Chun-Han; Chan, Kai-Cyuan; Lai, Yi-Lung; Lin, Chia-Ming; Chang, Cheng-Ming; Whang, Allen Jong-Woei

    2015-10-01

    This research presents a novel design of the collimator, which uses total internal reflection (TIR), convex, and concave lenses for the natural light illumination system (NLIS). The concept of the NLIS is to illuminate building interiors with natural light, which saves energy consumption. The TIR lens is used to collimate the light, and convex and concave lenses are used to converge the light to the required area. The results have shown that the efficiency in terms of achieving collimated light using the proposed collimator at the output of the light collector is better than that of a previous system without a collimator. PMID:26479648

  19. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    NASA Astrophysics Data System (ADS)

    Tiwari, M. K.; Singh, A. K.; Das, Gangadhar; Chowdhury, Anupam; Lodha, G. S.

    2014-04-01

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  20. Total Internal Reflection Tomography (TIRT) for Three-Dimensional Sub-Wavelength Imaging

    NASA Technical Reports Server (NTRS)

    Fischer, David G.; Carney, P. Scott

    2002-01-01

    We will present a novel new form of near-field microscopy known as total internal reflection tomography (TIRT), which allows for true three-dimensional sub-wavelength imaging. It is based on recent theoretical advances regarding the fundamental interaction of light with sub-wavelength structures, as well as stable algorithms for the near-field inverse problem. We will discuss its theoretical underpinnings, as well describe current efforts at the NASA Glenn Research Center to implement a TIRT system for biofluid research.

  1. Study of the interaction between HSA and oligo-DNA using total internal reflection ellipsometry

    NASA Astrophysics Data System (ADS)

    Jung, Y. W.; Byun, J. S.; Kim, Y. D.; Hemzal, D.; Humliček, J.

    2012-04-01

    Techniques of quantitative analysis are very important for studies of the interactions between bio-molecules in the field of biotechnology and drug development. The total internal reflection ellipsometry system (TIRE) is an attractive label-free procedure for the quantitative analysis of biomolecules because it combines the analytic ability of ellipsometry and the high surface sensitivity of surface plasmon resonance. In this work, we have used TIRE to study the optical properties of an aquatic monolayer of human serum albumin (HSA) and oligo-DNA. Also, we have monitored the adsorption and the interaction processes of protein layers.

  2. Three-dimensional characterization of tethered microspheres by total internal reflection fluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Blumberg, Seth; Gajraj, Arivalagan; Pennington, Matthew W.; Meiners, Jens-Christian

    2005-01-01

    Tethered particle microscopy is a powerful tool to study the dynamics of DNA molecules and DNA-protein complexes in single-molecule experiments. We demonstrate that stroboscopic total internal reflection microscopy can be used to characterize the three-dimensional spatiotemporal motion of DNA-tethered particles. By calculating characteristic measures such as symmetry and time constants of the motion, well-formed tethers can be distinguished from defective ones for which the motion is dominated by aberrant surface effects. This improves the reliability of measurements on tether dynamics. For instance, in observations of protein-mediated DNA looping, loop formation is distinguished from adsorption and other nonspecific events.

  3. Microanalysis of old violin varnishes by total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    von Bohlen, Alex; Meyer, Friedrich

    1997-07-01

    Total reflection X-ray fluorescence was used to characterize elements (with Z>13) contained in varnishes applied by prominent violin makers during the last five centuries. Direct analyses of small flakes with masses <20 μg show a variety of elements. Some of these elements could be related to key elements of inorganic pigments and additives used to control some of the properties of a varnish. Higher amounts of Fe, As and Pb were found in old products, Mn, Co, Cu, Zn and Pb were used in more recent varnishes.

  4. Integrated optic polarization splitter based on total internal reflection from a birefringent polymer.

    PubMed

    Huang, Guanghao; Park, Tae-Hyun; Chu, Woo-Sung; Oh, Min-Cheol

    2016-09-01

    An integrated optic polarization splitter with large fabrication tolerance and high reliability is required for optical signal processing in quantum-encrypted communication systems. A polarization splitter based on total internal reflection from a highly birefringent polymer-reactive mesogen-is proposed and demonstrated in this work. The device consists of a mode expander for reducing the wave vector distribution of the guided mode, and an interface with a large birefringence. Several polymers with suitable refractive indexes were used for fabricating the device. We obtained a polarization splitter with a low crosstalk (less than -30 dB), and a large fabrication tolerance. PMID:27607704

  5. Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology

    NASA Astrophysics Data System (ADS)

    Chen, Minghan; Zaytseva, Natalya V.; Wu, Qi; Li, Min; Fang, Ye

    2013-05-01

    We report the use of total internal reflection fluorescence (TIRF) microscopy for analyzing receptor pharmacology and the development of a microplate-compatible TIRF imaging system. Using stably expressed green fluorescence protein tagged β2-adrenergic receptor as the reporter, we found that the activation of different receptors results in distinct kinetic signatures of the TIRF intensity of cells. These TIRF signatures closely resemble the characteristics of their respective label-free dynamic mass redistribution signals in the same cells. This suggests that TIRF in microplate can be used for profiling and screening drugs.

  6. Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.

    PubMed

    Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero

    2016-07-01

    We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams. PMID:27367071

  7. Synchrotron total reflection X-ray fluorescence at BL-16 microfocus beamline of Indus-2

    SciTech Connect

    Tiwari, M. K. Singh, A. K. Das, Gangadhar Chowdhury, Anupam Lodha, G. S.

    2014-04-24

    Determination of ultra trace elements is important in many disciplines both in basic and applied sciences. Numerous applications show their importance in medical science, environmental science, materials science, food processing and semiconductor industries and in maintaining the quality control of ultra pure chemicals and reagents. We report commissioning of a synchrotron based total reflection x-ray fluorescence (TXRF) facility on the BL-16 microfocus beamline of Indus-2. This paper describes the performance of the BL-16 TXRF spectrometer and the detailed description of its capabilities through examples of measured results.

  8. Frustrated total internal reflection and critical coupling in a thick plasmonic grating with narrow slits

    SciTech Connect

    Mattiucci, N.; D'Aguanno, G. E-mail: giuseppe.daguanno@us.army.mil; Bloemer, M. J.; Alù, A.

    2014-06-02

    We demonstrate the possibility of critical coupling through frustrated total internal reflection in a thick plasmonic grating below the first diffraction order. Differently from conventional approaches relying on the excitation of surface plasmon-polaritons, here we exploit the light coupling with the leaky modes supported by the grating. This mechanism entails a wide-angle coupling and effectively access spectral bands that would otherwise be difficult to probe using conventional plasmonic critical coupling techniques, such as the Otto configuration. Our finding may pave the way to efficient plasmonic bio-sensor devices.

  9. Total internal reflection ellipsometry and SPR detection of low molecular weight environmental toxins

    NASA Astrophysics Data System (ADS)

    Nabok, A. V.; Tsargorodskaya, A.; Hassan, A. K.; Starodub, N. F.

    2005-06-01

    The environmental toxins, such as herbicides simazine and atrazine, and T2 mycotoxin were registered with the optical methods of surface plasmon resonance (SPR) and recently developed total internal reflection ellipsometry (TIRE). The immune assay approach was exploited for in situ registration of the above low molecular weight toxins with specific antibodies immobilised onto the gold surface via (poly)allylamine hydrochloride layer using electrostatic self-assembly (ESA) technique. The comparison of two methods of SPR and TIRE shows a higher sensitivity of the latter.

  10. Modeling total and polarized reflectances of ice clouds: evaluation by means of POLDER and ATSR-2 measurements.

    PubMed

    Knap, Wouter H; Labonnote, Laurent C; Brogniez, Gérard; Stammes, Piet

    2005-07-01

    Four ice-crystal models are tested by use of ice-cloud reflectances derived from Along Track Scanning Radiometer-2 (ATSR-2) and Polarization and Directionality of Earth's Reflectances (POLDER) radiance measurements. The analysis is based on dual-view ATSR-2 total reflectances of tropical cirrus and POLDER global-scale total and polarized reflectances of ice clouds at as many as 14 viewing directions. Adequate simulations of ATSR-2 total reflectances at 0.865 microm are obtained with model clouds consisting of moderately distorted imperfect hexagonal monocrystals (IMPs). The optically thickest clouds (tau > approximately 16) in the selected case tend to be better simulated by use of pure hexagonal monocrystals (PHMs). POLDER total reflectances at 0.670 microm are best simulated with columnar or platelike IMPs or columnar inhomogeneous hexagonal monocrystals (IHMs). Less-favorable simulations are obtained for platelike IHMs and polycrystals (POLYs). Inadequate simulations of POLDER total and polarized reflectances are obtained for model clouds consisting of PHMs. Better simulations of the POLDER polarized reflectances at 0.865 microm are obtained with IMPs, IHMs, or POLYs, although POLYs produce polarized reflectances that are systematically lower than most of the measurements. The best simulations of the polarized reflectance for the ice-crystal models assumed in this study are obtained for model clouds consisting of columnar IMPs or IHMs. PMID:16004054