Science.gov

Sample records for attenuates liver fibrosis

  1. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    PubMed Central

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  2. Adiponectin Agonist ADP355 Attenuates CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Kumar, Pradeep; Smith, Tekla; Rahman, Khalidur; Thorn, Natalie E.; Anania, Frank A.

    2014-01-01

    Liver fibrosis is a growing global health problem characterized by excess deposition of fibrillar collagen, and activation of hepatic stellate cells (HSCs). Adiponectin is known to possess anti-fibrotic properties; however a high physiological concentration and multiple forms circulating in blood prohibit clinical use. Recently, an adiponectin-like small synthetic peptide agonist (ADP355: H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH2) was synthesized for the treatment of murine breast cancer. The present study was designed to evaluate the efficacy of ADP355 as an anti-fibrotic agent in the in vivo carbon tetrachloride (CCl4)-induced liver fibrosis model. Liver fibrosis was induced in eight-week old male C57BL/6J mice by CCl4-gavage every other day for four weeks before injection of a nanoparticle-conjugated with ADP355 (nano-ADP355). Control gold nanoparticles and nano-ADP355 were administered by intraperitoneal injection for two weeks along with CCl4-gavage. All mice were sacrificed after 6 weeks, and serum and liver tissue were collected for biochemical, histopathologic and molecular analyses. Biochemical studies suggested ADP355 treatment attenuates liver fibrosis, determined by reduction of serum aspartate aminotransferase (AST), alanine aminotransferase ALT) and hydroxyproline. Histopathology revealed chronic CCl4-treatment results in significant fibrosis, while ADP355 treatment induced significantly reversed fibrosis. Key markers for fibrogenesis–α-smooth muscle actin (α-SMA), transforming growth factor-beta1 (TGF-β1), connective tissue growth factor (CTGF), and the tissue inhibitor of metalloproteinase I (TIMP1) were also markedly attenuated. Conversely, liver lysates from ADP355 treated mice increased phosphorylation of both endothelial nitric oxide synthase (eNOS) and AMPK while AKT phosphorylation was diminished. These findings suggest ADP355 is a potent anti-fibrotic agent that can be an effective intervention against liver fibrosis. PMID

  3. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells

    PubMed Central

    Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-01-01

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  4. Oleoylethanolamide, an endogenous PPAR-α ligand, attenuates liver fibrosis targeting hepatic stellate cells.

    PubMed

    Chen, Ling; Li, Long; Chen, Junde; Li, Lei; Zheng, Zihan; Ren, Jie; Qiu, Yan

    2015-12-15

    Oleoylethanolamide (OEA), an endocannabinoid-like molecule, was revealed to modulate lipid metabolism through a peroxisome proliferator-activated receptor-α (PPAR-α) mediated mechanism. In present study, we further investigated the activities and mechanisms of OEA in ameliorating hepatic fibrosis in Sv/129 mice induced by a methionine choline-deficient (MCD) diet or thioacetamide (TAA) treatment. Liver fibrosis development was assessed by Hematoxylin-eosin and Sirius red staining. Treatment with OEA (5 mg/kg/day, intraperitoneal injection, i.p.) significantly attenuated the progress of liver fibrosis in both two experimental animal models by blocking the activation of hepatic stellate cells (HSCs). Gene expression analysis of hepatic tissues indicated that OEA inhibited the expression of α-smooth muscle action (α-SMA) and collagen matrix, fibrosis markers, and genes involved in inflammation and extracellular matrix remodeling. In vitro studies showed that OEA inhibited transforming growth factor β1-stimulated HSCs activation through suppressing Smad2/3 phosphorylation, α-SMA expression and myofibroblast transformation. These improvements could not be observed in PPAR-α knockout mice models with OEA administration, which suggested all the anti-fibrotic effects of OEA in vivo and in vitro were mediated by PPAR-α activation. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating hepatic fibrosis development through the inhibition of HSCs activation in liver and therefore may be a potential therapeutic agent for liver fibrosis. PMID:26729705

  5. Sauchinone attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Lee, Ju-Hee; Jang, Eun Jeong; Seo, Hye Lim; Ku, Sae Kwang; Lee, Jong Rok; Shin, Soon Shik; Park, Sun-Dong; Kim, Sang Chan; Kim, Young Woo

    2014-10-16

    Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-β1 (TGF-β1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-β1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-β1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs. PMID:25451574

  6. Mesenchymal stem cells and Interleukin-6 attenuate liver fibrosis in mice

    PubMed Central

    2013-01-01

    Background Mesenchymal stem cell (MSC) transplantation has emerged as a promising therapy for liver fibrosis. Issues concerning poor MSC survival and engraftment in the fibrotic liver still persist and warrant development of a strategy to increase MSC potency for liver repair. The present study was designed to examine a synergistic role for Interleukin-6 (IL-6) and MSCs therapy in the recovery of carbon tetrachloride (CCl4) induced injured hepatocytes in vitro and in vivo. Methods Injury was induced through 3 mM and 5 mM CCl4 treatment of cultured hepatocytes while fibrotic mouse model was established by injecting 0.5 ml/kg CCl4 followed by treatment with IL-6 and MSCs. Effect of MSCs and IL-6 treatment on injured hepatocytes was determined by lactate dehydrogenase release, RT-PCR for (Bax, Bcl-xl, Caspase3, Cytokeratin 8, NFκB, TNF-α) and annexin V apoptotic detection. Analysis of MSC and IL-6 treatment on liver fibrosis was measured by histopathology, PAS, TUNEL and Sirius red staining, RT-PCR, and liver function tests for Bilirubin and Alkaline Phosphatase (ALP). Results A significant reduction in LDH release and apoptosis was observed in hepatocytes treated with a combination of MSCs and IL-6 concomitant with upregulation of anti-apoptotic gene Bcl-xl expression and down regulation of bax, caspase3, NFκB and TNF-α. Adoptive transfer of MSCs in fibrotic liver pretreated with IL-6 resulted increased MSCs homing and reduced fibrosis and apoptosis. Hepatic functional assessment demonstrated reduced serum levels of Bilirubin and ALP. Conclusion Pretreatment of fibrotic liver with IL-6 improves hepatic microenvironment and primes it for MSC transplantation leading to enhanced reduction of liver injury after fibrosis. Synergistic effect of IL-6 and MSCs seems a favored therapeutic option in attenuation of liver apoptosis and fibrosis accompanied by improved liver function. PMID:23531302

  7. Vitamin K1 attenuates bile duct ligation-induced liver fibrosis in rats.

    PubMed

    Jiao, Kun; Sun, Quan; Chen, Baian; Li, Shengli; Lu, Jing

    2014-06-01

    Vitamin K1 is used as a liver protection drug for cholestasis-induced liver fibrosis in China, but the mechanism of vitamin K1's action in liver fibrosis is unclear. In this study, a model of liver fibrosis was achieved via bile duct ligation in rats. The rats were then injected with vitamin K1, and the levels of serum aspartate aminotransferase, alanine transaminase, total bilirubin and the fibrotic grade score, collagen content, the expressions of α-smooth muscle actin (SMA) and cytokeratin 19 (CK19) were measured on day 28 after ligation. The levels of the biochemical parameters, fibrotic score and collagen content were significantly reduced by treatment with vitamin K1 in bile duct-ligated rats. In addition, α-SMA and CK19 expression was significantly reduced by vitamin K1 treatment in bile duct-ligated rats. These results suggested that vitamin K1 may attenuate liver fibrosis by inhibiting hepatic stellate cell activation in bile duct-ligated rats. PMID:24742111

  8. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice

    PubMed Central

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  9. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice.

    PubMed

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  10. Lack of hepcidin expression attenuates steatosis and causes fibrosis in the liver

    PubMed Central

    Lu, Sizhao; Bennett, Robert G; Kharbanda, Kusum K; Harrison-Findik, Duygu Dee

    2016-01-01

    AIM: To investigate the role of key iron-regulatory protein, hepcidin in non-alcoholic fatty liver disease (NAFLD). METHODS: Hepcidin (Hamp1) knockout and floxed control mice were administered a high fat and high sucrose (HFS) or a regular control diet for 3 or 7 mo. Steatosis, triglycerides, fibrosis, protein and gene expression in mice livers were determined by histological and biochemical techniques, western blotting and real-time polymerase chain reaction. RESULTS: Knockout mice exhibited hepatic iron accumulation. Despite similar weight gains, HFS feeding induced hepatomegaly in floxed, but not knockout, mice. The livers of floxed mice exhibited higher levels of steatosis, triglycerides and c-Jun N-terminal kinase (JNK) phosphorylation than knockout mice. In contrast, a significant increase in fibrosis was observed in knockout mice livers within 3 mo of HFS administration. The hepatic gene expression levels of sterol regulatory element-binding protein-1c and fat-specific protein-27, but not peroxisome proliferator-activated receptor-alpha or microsomal triglyceride transfer protein, were attenuated in HFS-fed knockout mice. Knockout mice fed with regular diet displayed increased carnitine palmitoyltransferase-1a and phosphoenolpyruvate carboxykinase-1 but decreased glucose-6-phosphatase expression in the liver. In summary, attenuated steatosis correlated with decreased expression of lipogenic and lipid storage genes, and JNK phosphorylation. Deletion of Hamp1 alleles per se modulated hepatic expression of beta-oxidation and gluconeogenic genes. CONCLUSION: Lack of hepcidin expression inhibits hepatic lipid accumulation and induces early development of fibrosis following high fat intake. Hepcidin and iron may play a role in the regulation of metabolic pathways in the liver, which has implications for NAFLD pathogenesis. PMID:26855692

  11. Cyclooxygenase-2 expression in hepatocytes attenuates non-alcoholic steatohepatitis and liver fibrosis in mice.

    PubMed

    Motiño, Omar; Agra, Noelia; Brea Contreras, Rocío; Domínguez-Moreno, Marina; García-Monzón, Carmelo; Vargas-Castrillón, Javier; Carnovale, Cristina E; Boscá, Lisardo; Casado, Marta; Mayoral, Rafael; Valdecantos, M Pilar; Valverde, Ángela M; Francés, Daniel E; Martín-Sanz, Paloma

    2016-09-01

    Cyclooxygenase-2 (COX-2) is involved in different liver diseases but little is known about the significance of COX-2 in the development and progression of non-alcoholic steatohepatitis (NASH). This study was designed to elucidate the role of COX-2 expression in hepatocytes in the pathogenesis of steatohepatitis and hepatic fibrosis. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either fed methionine-and-choline deficient (MCD) diet to establish an experimental non-alcoholic steatohepatitis (NASH) model or injected with carbon tetrachloride (CCl4) to induce liver fibrosis. In our animal model, hCOX-2-Tg mice fed MCD diet showed lower grades of steatosis, ballooning and inflammation than Wt mice, in part by reduced recruitment and infiltration of hepatic macrophages, with a corresponding decrease in serum levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice showed a significant attenuation of the MCD diet-induced increase in oxidative stress and hepatic apoptosis observed in Wt mice. Even more, hCOX-2-Tg mice treated with CCl4 had significantly lower stages of fibrosis and less hepatic content of collagen, hydroxyproline and pro-fibrogenic markers than Wt controls. Collectively, our data indicates that constitutive hepatocyte COX-2 expression ameliorates NASH and liver fibrosis development in mice by reducing inflammation, oxidative stress and apoptosis and by modulating activation of hepatic stellate cells, respectively, suggesting a possible protective role for COX-2 induction in NASH/NAFLD progression. PMID:27321932

  12. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    PubMed

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis. PMID:27151496

  13. STAT3-mediated attenuation of CCl4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib.

    PubMed

    Deng, Yan-Ru; Ma, Hong-Di; Tsuneyama, Koichi; Yang, Wei; Wang, Yin-Hu; Lu, Fang-Ting; Liu, Cheng-Hai; Liu, Ping; He, Xiao-Song; Diehl, Anna Mae; Gershwin, M Eric; Lian, Zhe-Xiong

    2013-10-01

    There have been major advances in defining the immunological events associated with fibrosis in various chronic liver diseases. We have taken advantage of this data to focus on the mechanisms of action of a unique multi-kinase inhibitor, coined sorafenib, on CCl4-induced murine liver fibrosis, including the effects of this agent in models of both acute and chronic CCl4-mediated pathology. Importantly, sorafenib significantly attenuated chronic liver injury and fibrosis, including reduction in liver inflammation and histopathology as well as decreased expression of liver fibrosis-related genes, including α-smooth muscle actin, collagen, matrix metalloproteinases and the tissue inhibitor of metalloproteinase-1. Furthermore, sorafenib treatment resulted in translocation of cytoplasmic STAT3 to the nucleus in its active form. Based on this observation, we used hepatocyte-specific STAT3 knockout (STAT3(Hep-/-)) mice to demonstrate that hepatic STAT3 was critical for sorafenib-mediated protection against liver fibrosis, and that the upregulation of STAT3 phosphorylation was dependent on Kupffer cell-derived IL-6. In conclusion, these data reflect the clinical potential of the multi-kinase inhibitor sorafenib for the prevention of fibrosis as well as the treatment of established liver fibrosis and illustrate the immunological mechanisms that underlie the protective effects of sorafenib. PMID:23948302

  14. Biomarkers for liver fibrosis

    SciTech Connect

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  15. Transient Elastography and Controlled Attenuation Parameter for Diagnosing Liver Fibrosis and Steatosis in Ontario: An Economic Analysis

    PubMed Central

    Thavorn, K; Coyle, D

    2015-01-01

    Background Liver fibrosis is characterized by a buildup of connective tissue due to chronic liver damage. Steatosis is the collection of excessive amounts of fat inside liver cells. Liver biopsy remains the gold standard for the diagnosis of liver fibrosis and steatosis, but its use as a diagnostic tool is limited by its invasive nature and high cost. Objectives To evaluate the cost-effectiveness and budget impact of transient elastography (TE) with and without controlled attenuation parameter (CAP) for the diagnosis of liver fibrosis or steatosis in patients with hepatitis B, hepatitis C, alcoholic liver disease, and nonalcoholic fatty liver disease. Data Sources An economic literature search was performed using computerized databases. For primary economic and budget impact analyses, we obtained data from various sources, such as the Health Quality Ontario evidence-based analysis, published literature, and the Institute for Clinical Evaluative Sciences. Review Methods A systematic review of existing TE cost-effectiveness studies was conducted, and a primary economic evaluation was undertaken from the perspective of the Ontario Ministry of Health and Long-Term Care. Decision analytic models were used to compare short-term costs and outcomes of TE compared to liver biopsy. Outcomes were expressed as incremental cost per correctly diagnosed cases gained. A budget impact analysis was also conducted. Results We included 10 relevant studies that evaluated the cost-effectiveness of TE compared to other noninvasive tests and to liver biopsy; no cost-effectiveness studies of TE with CAP were identified. All studies showed that TE was less expensive but associated with a decrease in the number of correctly diagnosed cases. TE also improved quality-adjusted life-years in patients with hepatitis B and hepatitis C. Our primary economic analysis suggested that TE led to cost savings but was less effective than liver biopsy in the diagnosis of liver fibrosis. TE became more

  16. Triplex Forming Oligonucleotides against Type α 1(I) Collagen attenuates Liver Fibrosis induced by Bile Duct ligation

    PubMed Central

    Panakanti, Ravikiran; Pratap, Akshay; Yang, Ningning; Jackson, John S.; Mahato, Ram I.

    2010-01-01

    Liver fibrosis is a consequence of chronic liver disorders which lead to the accumulation of extracellular matrix (ECM). Particularly, there is an increased accumulation of collagen in the fibrotic liver. We have therefore used a triplex forming oligonucleotide (TFO) against the type α 1 (I) collagen and evaluated, whether it can attenuate liver fibrosis induced by common bile duct ligation (CBDL) in rats. There was a significant decrease in hydroxyproline levels and Masson’s trichrome staining for collagen in TFO-treated CBDL groups compared to non-treated CBDL group. There was over expression of type α1(I) collagen, α-smooth muscle actin (α-SMA) and TGF-β1 expression in the CBDL group compared to TFO-treated CBDL group. Also, the serum alanine transaminase (ALT) and aspartate transaminase (AST) concentrations were less in the TFO treated group compared to non-treated CBDL group. There was also less neutrophils accumulation in TFO treated CBDL group assayed by myeloperoxidase (MPO) assay. These results suggests that TFO can be used to downregulate type 1 collagen gene expression and can alleviate liver fibrosis induced by common bile duct ligation. PMID:20816672

  17. Chrysin attenuates liver fibrosis and hepatic stellate cell activation through TGF-β/Smad signaling pathway.

    PubMed

    Balta, Cornel; Herman, Hildegard; Boldura, Oana Maria; Gasca, Ionela; Rosu, Marcel; Ardelean, Aurel; Hermenean, Anca

    2015-10-01

    We investigated the protective effect of chrysin on chronic liver fibrosis in mice and the potential mechanism underlying TGF-β1-mediated hepatic stellate cells (HSCs) activation on fibrogenesis. Experimental fibrosis was established by intraperitoneal injection of mice with 20% v/v, 2 ml/kg CCl4 twice a week, for 7 weeks. Mice were orally treated with 3 doses of chrysin (50, 100 and 200 mg/kg) or with vehicle as control. For the assessment of the spontaneous reversion of fibrosis, CCl4 treated animals were investigated after two weeks of recovery time. Silymarin was used as standard hepatoprotective flavonoid. Histopathological investigations showed that hepatic fibrosis grade was markedly reduced in the chrysin groups compared to the fibrotic one. Moreover, CCl4 activated HSCs induced an upregulation of smooth muscle actin (α-SMA), an increased number of TGF-β1 immunopositive cells and marked up-regulation of TGF-β1. α-SMA and TGF-β1 levels were significantly reduced in all chrysin treated groups in a dose-dependent manner, whereas the level of spontaneous reversal of fibrosis was lower compared to all flavonoid treated groups. Liver mRNA levels of Smad 2 in the 50, 100 and 200 mg/kg chrysin treated groups were significantly reduced by about 88.54%, 92.15% and 95.56% of the corresponding levels in the fibrosis mice group. The results were similar for mRNA levels of Smad 3. The protective response to silymarin was almost similar to that seen with the highest doses of chrysin. In this study, we have shown that chrysin has the efficacy to reverse CCl4-stimulated liver fibrosis by inhibition of HSCs activation and proliferation through TGF-β1/Smad pathway. These results suggest that chrysin may be useful in stopping or reversing the progression of liver fibrosis and might offer the possibility to develop a new therapeutic drug, useful in treatment of chronic liver diseases. PMID:26297989

  18. Attenuating Effect of Ginkgo biloba Leaves Extract on Liver Fibrosis Induced by Thioacetamide in Mice

    PubMed Central

    Al-Attar, Atef M.

    2012-01-01

    The purpose of this study is to investigate the effect of Ginkgo biloba leaves extract on experimental liver fibrosis induced by thioacetamide (TAA) in male albino mice. The experimental mice were divided into four groups. The mice of the first group were served as control. The experimental animals of the second group were given 150 mg/kg body weight of TAA by intraperitoneal injection, twice weekly, for 9 weeks. The mice of the third group were exposed to TAA and supplemented with G. biloba leaves extract. The animals of the fourth group were supplemented with G. biloba leaves extract. The levels of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, triglycerides, cholesterol, and low-density lipoprotein cholesterol were statistically increased while the levels of plasma total protein, albumin, glucose, and high-density lipoprotein cholesterol were significantly decreased. The levels of liver superoxide dismutase, glutathione, glycogen and total protein were notably declined, whereas the level of total lipid was increased in mice of the second group. Furthermore, microscopic examination of liver sections from mice treated with TAA showed an abnormal morphology characterized by nodular transformations in liver parenchyma which surrounded by fibrous septa. Administration of G. biloba leaves extract reduced extent and development of fibrous septa, liver cells change, and biochemical alterations in mice exposed to TAA. This study showed that G. biloba leaves extract has a potential activity against TAA-induced liver fibrosis and suggested that the chemical constituents of G. biloba are effective in modulation of oxidative stress induced by TAA. PMID:23091357

  19. Polyphenols from Camellia sinenesis attenuate experimental cholestasis-induced liver fibrosis in rats.

    PubMed

    Zhong, Zhi; Froh, Matthias; Lehnert, Mark; Schoonhoven, Robert; Yang, Liu; Lind, Henrik; Lemasters, John J; Thurman, Ronald G

    2003-11-01

    Accumulation of hydrophobic bile acids during cholestasis leads to generation of oxygen free radicals in the liver. Accordingly, this study investigated whether polyphenols from green tea Camellia sinenesis, which are potent free radical scavengers, decrease hepatic injury caused by experimental cholestasis. Rats were fed a standard chow or a diet containing 0.1% polyphenolic extracts from C. sinenesis starting 3 days before bile duct ligation. After bile duct ligation, serum alanine transaminase increased to 760 U/l after 1 day in rats fed a control diet. Focal necrosis and bile duct proliferation were also observed after 1-2 days, and fibrosis developed 2-3 wk after bile duct ligation. Additionally, procollagen-alpha1(I) mRNA increased 30-fold 3 wk after bile duct ligation, accompanied by increased expression of alpha-smooth muscle actin and transforming growth factor-beta and the accumulation of 4-hydroxynenonal, an end product of lipid peroxidation. Polyphenol feeding blocked or blunted all of these bile duct ligation-dependent changes by 45-73%. Together, the results indicate that cholestasis due to bile duct ligation causes liver injury by mechanisms involving oxidative stress. Polyphenols from C. sinenesis scavenge oxygen radicals and prevent activation of stellate cells, thereby minimizing liver fibrosis. PMID:12791596

  20. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis.

    PubMed

    Song, Guangqi; Pacher, Martin; Balakrishnan, Asha; Yuan, Qinggong; Tsay, Hsin-Chieh; Yang, Dakai; Reetz, Julia; Brandes, Sabine; Dai, Zhen; Pützer, Brigitte M; Araúzo-Bravo, Marcos J; Steinemann, Doris; Luedde, Tom; Schwabe, Robert F; Manns, Michael P; Schöler, Hans R; Schambach, Axel; Cantz, Tobias; Ott, Michael; Sharma, Amar Deep

    2016-06-01

    Direct induction of induced hepatocytes (iHeps) from fibroblasts holds potential as a strategy for regenerative medicine but until now has only been shown in culture settings. Here, we describe in vivo iHep formation using transcription factor induction and genetic fate tracing in mouse models of chronic liver disease. We show that ectopic expression of the transcription factors FOXA3, GATA4, HNF1A, and HNF4A from a polycistronic lentiviral vector converts mouse myofibroblasts into cells with a hepatocyte phenotype. In vivo expression of the same set of transcription factors from a p75 neurotrophin receptor peptide (p75NTRp)-tagged adenovirus enabled the generation of hepatocyte-like cells from myofibroblasts in fibrotic mouse livers and reduced liver fibrosis. We have therefore been able to convert pro-fibrogenic myofibroblasts in the liver into hepatocyte-like cells with positive functional benefits. This direct in vivo reprogramming approach may open new avenues for the treatment of chronic liver disease. PMID:26923201

  1. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.

    PubMed

    Bai, Ting; Lian, Li-Hua; Wu, Yan-Ling; Wan, Ying; Nan, Ji-Xing

    2013-02-01

    Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HSC/Cl-6 cell viability. TQ significantly attenuated the expression of CD14 and Toll-like receptor 4 (TLR4). TQ also significantly inhibited phosphatidylinositol 3-kinase (PI3K) and serine/threonine kinase-protein kinase B (Akt) phosphorylation. The expression of α-SMA and collagen-I were significantly decreased by TQ. Furthermore, TQ decreased X linked inhibitor of apoptosis (XIAP) and cellular FLIP (c-FLIPL) expression, which are related with the regulation of apoptosis. Furthermore, TQ significantly increased the survival against LPS challenge in d-galactosamine (d-GlaN)-sensitized mice, and decreased the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), which were in line with in vitro results. Our data demonstrated that TQ attenuates liver fibrosis partially via blocking TLR4 expression and PI3K phosphorylation on the activated HSCs. Therefore, TQ may be a potential candidate for the therapy of hepatic fibrosis. PMID:23318601

  2. Angiogenesis and liver fibrosis

    PubMed Central

    Elpek, Gülsüm Özlem

    2015-01-01

    Recent data indicate that hepatic angiogenesis, regardless of the etiology, takes place in chronic liver diseases (CLDs) that are characterized by inflammation and progressive fibrosis. Because anti-angiogenic therapy has been found to be efficient in the prevention of fibrosis in experimental models of CLDs, it is suggested that blocking angiogenesis could be a promising therapeutic option in patients with advanced fibrosis. Consequently, efforts are being directed to revealing the mechanisms involved in angiogenesis during the progression of liver fibrosis. Literature evidences indicate that hepatic angiogenesis and fibrosis are closely related in both clinical and experimental conditions. Hypoxia is a major inducer of angiogenesis together with inflammation and hepatic stellate cells. These profibrogenic cells stand at the intersection between inflammation, angiogenesis and fibrosis and play also a pivotal role in angiogenesis. This review mainly focuses to give a clear view on the relevant features that communicate angiogenesis with progression of fibrosis in CLDs towards the-end point of cirrhosis that may be translated into future therapies. The pathogenesis of hepatic angiogenesis associated with portal hypertension, viral hepatitis, non-alcoholic fatty liver disease and alcoholic liver disease are also discussed to emphasize the various mechanisms involved in angiogenesis during liver fibrogenesis. PMID:25848465

  3. Aquilegia vulgaris extract attenuates carbon tetrachloride-induced liver fibrosis in rats.

    PubMed

    Jodynis-Liebert, Jadwiga; Adamska, Teresa; Ewertowska, Małgorzata; Bylka, Wiesława; Matławska, Irena

    2009-09-01

    Six groups of male Wistar rats were treated as follows: in groups II, III and V liver damage was induced by CCl(4) (per os, 1590 mg/kg b.w.day) given 2 days a week for 6 weeks; group III was treated simultaneously with ethanol extract of Aquilegia vulgaris (100 mg/kg b.w.day) for 6 weeks; group V with silymarin, positive control, at a dose of 100 mg/kg b.w.day for 6 weeks; and groups IV and VI received only the extract or silymarin, respectively. Microsomal lipid peroxidation in the liver increased following CCl(4) treatment by 61-213% and was not changed significantly by the extract. The effect of silymarin was more pronounced, 19-52% decrease in the lipid peroxidation level. Hepatic glutathione was depleted by 22% in CCl(4)-treated rats. The extract tested did not change this parameter. The activity of antioxidant enzymes was significantly reduced after CCl(4) administration, by 42-63%. Co-administration of the extract or silymarin resulted in significant increase in these enzymes activity; however, the basal level was not reached. Hepatic hydroxyproline concentration was elevated over 5-fold in comparison with controls. Co-administration of the extract or silymarin decreased the level of hydroxyproline by 66% and 55%, respectively. Activity of serum hepatic enzymes was elevated in rats treated with CCl(4) by 47-8700%. Both the extract and silymarin reduced significantly these enzymes' activity. The extract caused a fall in bilirubin and cholesterol level in rats treated with CCl(4) by 42% and 17%, respectively. Histopathological examination revealed less-severe fibrosis in rats co-administered the extract or silymarin when compared to animals treated with CCl(4) alone. PMID:19059770

  4. Herbal formula, Scutellariae radix and Rhei rhizoma attenuate dimethylnitrosamine-induced liver fibrosis in a rat model

    PubMed Central

    Pan, Tai-Long; Wang, Pei-Wen; Huang, Chun-Hsun; Leu, Yann-Lii; Wu, Tung-Ho; Wu, Yun-Ru; You, Jyh-Sheng

    2015-01-01

    The bioactive components extracted from Scutellariae radix and Rhei rhizoma (SR) have been commonly used to treat liver diseases. The aim of this study was to verify the underlying mechanisms and antifibrotic effects of ethanol extract from the herbal combinatorial formula (SRE) in a dimethylnitrosamine (DMN)-administered rat model, with functional proteome tools. Our results indicated that the hepatic collagen content and alpha-smooth muscle actin expression were obviously alleviated by treatment with SRE. Comprehensive proteomics revealed global protein changes, and the network analysis implied that SRE application would attenuate oxidative stress and cytoskeleton dysregulation caused by DMN exposure. Next, marked downregulation of antioxidant enzymes mediated by DMN treatment was restored in the presence of SRE, while SRE treatment contributed to decreased MDA content. Moreover, protein carbonylation and DNA adduction induced by oxidative stress finally leading to liver injury were also reduced under SRE administration. These findings demonstrate that SRE could effectively prevent hepatic fibrosis mainly through regulating the redox status, and subsequently modulating the modification of intracellular molecules. Our experiments might help in developing novel therapeutic strategies against oxidation-caused liver diseases. PMID:26133262

  5. Liver fibrosis markers in alcoholic liver disease

    PubMed Central

    Chrostek, Lech; Panasiuk, Anatol

    2014-01-01

    Alcohol is one of the main factors of liver damage. The evaluation of the degree of liver fibrosis is of great value for therapeutic decision making in patients with alcoholic liver disease (ALD). Staging of liver fibrosis is essential to define prognosis and management of the disease. Liver biopsy is a gold standard as it has high sensitivity and specificity in fibrosis diagnostics. Taking into account the limitations of liver biopsy, there is an exigency to introduce non-invasive serum markers for fibrosis that would be able to replace liver biopsy. Ideal serum markers should be specific for the liver, easy to perform and independent to inflammation and fibrosis in other organs. Serum markers of hepatic fibrosis are divided into direct and indirect. Indirect markers reflect alterations in hepatic function, direct markers reflect extracellular matrix turnover. These markers should correlate with dynamic changes in fibrogenesis and fibrosis resolution. The assessment of the degree of liver fibrosis in alcoholic liver disease has diagnostic and prognostic implications, therefore noninvasive assessment of fibrosis remains important. There are only a few studies evaluating the diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with ALD. Several noninvasive laboratory tests have been used to assess liver fibrosis in patients with alcoholic liver disease, including the hyaluronic acid, FibroTest, FibrometerA, Hepascore, Forns and APRI indexes, FIB4, an algorithm combining Prothrombin index (PI), α-2 macroglobulin and hyaluronic acid. Among these tests, Fibrotest, FibrometerA and Hepascore demonstrated excellent diagnostic accuracy in identifying advanced fibrosis and cirrhosis, and additionally, Fibrotest was independently associated with survival. Therefore, the use of biomarkers may reduce the need for liver biopsy and permit an earlier treatment of alcoholic patients. PMID:25009372

  6. Experimental models of liver fibrosis.

    PubMed

    Crespo Yanguas, Sara; Cogliati, Bruno; Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini; Leclercq, Isabelle; Vinken, Mathieu

    2016-05-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research. PMID:26047667

  7. Experimental models of liver fibrosis

    PubMed Central

    Willebrords, Joost; Maes, Michaël; Colle, Isabelle; van den Bossche, Bert; de Oliveira, Claudia Pinto Marques Souza; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Leclercq, Isabelle; Vinken, Mathieu

    2015-01-01

    Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research. PMID:26047667

  8. Transient elastography (FibroScan(®)) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease - Where do we stand?

    PubMed

    Mikolasevic, Ivana; Orlic, Lidija; Franjic, Neven; Hauser, Goran; Stimac, Davor; Milic, Sandra

    2016-08-28

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Currently, the routinely used modalities are unable to adequately determine the levels of steatosis and fibrosis (laboratory tests and ultrasonography) or cannot be applied as a screening procedure (liver biopsy). Among the non-invasive tests, transient elastography (FibroScan(®), TE) with controlled attenuation parameter (CAP) has demonstrated good accuracy in quantifying the levels of liver steatosis and fibrosis in patients with NAFLD, the factors associated with the diagnosis and NAFLD progression. The method is fast, reliable and reproducible, with good intra- and interobserver levels of agreement, thus allowing for population-wide screening and disease follow-up. The initial inability of the procedure to accurately determine fibrosis and steatosis in obese patients has been addressed with the development of the obese-specific XL probe. TE with CAP is a viable alternative to ultrasonography, both as an initial assessment and during follow-up of patients with NAFLD. Its ability to exclude patients with advanced fibrosis may be used to identify low-risk NAFLD patients in whom liver biopsy is not needed, therefore reducing the risk of complications and the financial costs. PMID:27621571

  9. Transient elastography (FibroScan®) with controlled attenuation parameter in the assessment of liver steatosis and fibrosis in patients with nonalcoholic fatty liver disease - Where do we stand?

    PubMed Central

    Mikolasevic, Ivana; Orlic, Lidija; Franjic, Neven; Hauser, Goran; Stimac, Davor; Milic, Sandra

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Currently, the routinely used modalities are unable to adequately determine the levels of steatosis and fibrosis (laboratory tests and ultrasonography) or cannot be applied as a screening procedure (liver biopsy). Among the non-invasive tests, transient elastography (FibroScan®, TE) with controlled attenuation parameter (CAP) has demonstrated good accuracy in quantifying the levels of liver steatosis and fibrosis in patients with NAFLD, the factors associated with the diagnosis and NAFLD progression. The method is fast, reliable and reproducible, with good intra- and interobserver levels of agreement, thus allowing for population-wide screening and disease follow-up. The initial inability of the procedure to accurately determine fibrosis and steatosis in obese patients has been addressed with the development of the obese-specific XL probe. TE with CAP is a viable alternative to ultrasonography, both as an initial assessment and during follow-up of patients with NAFLD. Its ability to exclude patients with advanced fibrosis may be used to identify low-risk NAFLD patients in whom liver biopsy is not needed, therefore reducing the risk of complications and the financial costs. PMID:27621571

  10. Galectin-3 Ablation Enhances Liver Steatosis, but Attenuates Inflammation and IL-33-Dependent Fibrosis in Obesogenic Mouse Model of Nonalcoholic Steatohepatitis.

    PubMed

    Jeftic, Ilija; Jovicic, Nemanja; Pantic, Jelena; Arsenijevic, Nebojsa; Lukic, Miodrag L; Pejnovic, Nada

    2015-01-01

    The importance of Galectin-3 (Gal-3) in obesity-associated liver pathology is incompletely defined. To dissect the role of Gal-3 in fibrotic nonalcoholic steatohepatitis (NASH), Gal-3-deficient (LGALS3(-/-)) and wild-type (LGALS3(+/+)) C57Bl/6 mice were placed on an obesogenic high fat diet (HFD, 60% kcal fat) or standard chow diet for 12 and 24 wks. Compared to WT mice, HFD-fed LGALS3(-/-) mice developed, in addition to increased visceral adiposity and diabetes, marked liver steatosis, which was accompanied with higher expression of hepatic PPAR-γ, Cd36, Abca-1 and FAS. However, as opposed to LGALS3(-/-) mice, hepatocellular damage, inflammation and fibrosis were more extensive in WT mice which had an elevated number of mature myeloid dendritic cells, proinflammatory CD11b(+)Ly6C(hi) monocytes/macrophages in liver, peripheral blood and bone marrow, and increased hepatic CCL2, F4/80, CD11c, TLR4, CD14, NLRP3 inflammasome, IL-1β and NADPH-oxidase enzymes mRNA expression. Thus, obesity-driven greater steatosis was uncoupled with attenuated fibrotic NASH in Gal-3-deficient mice. HFD-fed WT mice had a higher number of hepatocytes that strongly expressed IL-33 and hepatic CD11b(+)IL-13(+) cells, increased levels of IL-33 and IL-13 and up-regulated IL-33, ST2 and IL-13 mRNA in liver compared with LGALS3(-/-) mice. IL-33 failed to induce ST2 upregulation and IL-13 production by LGALS3(-/-) peritoneal macrophages in vitro. Administration of IL-33 in vivo enhanced liver fibrosis in HFD-fed mice in both genotypes, albeit to a significantly lower extent in LGALS3(-/-) mice, which was associated with less numerous hepatic IL-13-expressing CD11b(+) cells. The present study provides evidence of a novel role for Gal-3 in regulating IL-33-dependent liver fibrosis. PMID:26018806

  11. Evolving therapies for liver fibrosis

    PubMed Central

    Schuppan, Detlef; Kim, Yong Ook

    2013-01-01

    Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cirrhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enormous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have a sound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study endpoints, optimal study design, and developments in fibrosis imaging and biomarkers. PMID:23635787

  12. Potent effects of dioscin against liver fibrosis

    PubMed Central

    Zhang, Xiaoling; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Xu, Youwei; Sun, Huijun; Lin, Yuan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, dioscin markedly increased peroxisome proliferator activated receptor-γ (PPAR-γ) expression and significantly reduced a-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen α1 (I) (COL1A1) and collagen α1 (III) (COL3A1) levels in vitro. Notably, dioscin inhibited HSCs activation and induced apoptosis in activated HSCs. In vivo, dioscin significantly improved body weight and hydroxylproline, laminin, α-SMA, TGF-β1, COL1A1 and COL3A1 levels, which were confirmed by histopathological assays. Dioscin facilitated matrix degradation, and exhibited hepatoprotective effects through the attenuation of oxidative stress and inflammation, in addition to exerting anti-fibrotic effects through the modulation of the TGF-β1/Smad, Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and mitochondrial signaling pathways, which triggered the senescence of activated HSCs. In conclusion, dioscin exhibited potent effects against liver fibrosis through the modulation of multiple targets and signaling pathways and should be developed as a novel candidate for the treatment of liver fibrosis in the future. PMID:25853178

  13. Potent effects of dioscin against liver fibrosis.

    PubMed

    Zhang, Xiaoling; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Xu, Youwei; Sun, Huijun; Lin, Yuan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, dioscin markedly increased peroxisome proliferator activated receptor-γ (PPAR-γ) expression and significantly reduced a-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), collagen α1 (I) (COL1A1) and collagen α1 (III) (COL3A1) levels in vitro. Notably, dioscin inhibited HSCs activation and induced apoptosis in activated HSCs. In vivo, dioscin significantly improved body weight and hydroxylproline, laminin, α-SMA, TGF-β1, COL1A1 and COL3A1 levels, which were confirmed by histopathological assays. Dioscin facilitated matrix degradation, and exhibited hepatoprotective effects through the attenuation of oxidative stress and inflammation, in addition to exerting anti-fibrotic effects through the modulation of the TGF-β1/Smad, Wnt/β-catenin, mitogen-activated protein kinase (MAPK) and mitochondrial signaling pathways, which triggered the senescence of activated HSCs. In conclusion, dioscin exhibited potent effects against liver fibrosis through the modulation of multiple targets and signaling pathways and should be developed as a novel candidate for the treatment of liver fibrosis in the future. PMID:25853178

  14. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway

    PubMed Central

    Liu, Min; Xu, Youwei; Han, Xu; Yin, Lianhong; Xu, Lina; Qi, Yan; Zhao, Yanyan; Liu, Kexin; Peng, Jinyong

    2015-01-01

    The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activation, improved collagen accumulation, and attenuated inflammation through down-regulating the levels of myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), interleukin (IL)-1, IL-6 and tumour necrosis factor-α by decreasing Toll-like receptor (TLR)4 expression both in vivo and in vitro. TLR4 overexpression was also decreased by dioscin, leading to the markedly down-regulated levels of MyD88, NF-κB, transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) in cultured HSCs. Suppression of cellular MyD88 by ST2825 or abrogation of NF-κB by pyrrolidine dithiocarbamate eliminated the inhibitory effects of dioscin on the levels of TGF-β1, α-SMA and COL1A1. In a word, dioscin exhibited potent effects against ALF via altering TLR4/MyD88/NF-κB signaling pathway, which provided novel insights into the mechanisms of this compound as an antifibrogenic candidate for the treatment of ALF in the future. PMID:26655640

  15. Doxazosin Treatment Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Hamsters through a Decrease in Transforming Growth Factor β Secretion

    PubMed Central

    Muñoz-Ortega, Martin Humberto; Llamas-Ramírez, Raúl Wiliberto; Romero-Delgadillo, Norma Isabel; Elías-Flores, Tania Guadalupe; de Jesus Tavares-Rodríguez, Edgar; del Rosario Campos-Esparza, María; Cervantes-García, Daniel; Muñoz-Fernández, Luis; Gerardo-Rodríguez, Martin; Ventura-Juárez, Javier

    2016-01-01

    Background/Aims The development of therapeutic strategies for the treatment of cirrhosis has become an important focus for basic and clinical researchers. Adrenergic receptor antagonists have been evaluated as antifibrotic drugs in rodent models of carbon tetrachloride (CCl4)-induced cirrhosis. The aim of the present study was to evaluate the effects of carvedilol and doxazosin on fibrosis/cirrhosis in a hamster animal model. Methods Cirrhotic-induced hamsters were treated by daily administration of carvedilol and doxazosin for 6 weeks. Hepatic function and histological evaluation were conducted by measuring biochemical markers, including total bilirubin, aspartate aminotransferase, alanine aminotransferase and albumin, and liver tissue slices. Additionally, transforming growth factor β (TGF-β) immunohistochemistry was analyzed. Results Biochemical markers revealed that hepatic function was restored after treatment with doxazosin and carvedilol. Histological evaluation showed a decrease in collagen type I deposits and TGF-β-secreting cells. Conclusions Taken together, these results suggest that the decrease in collagen type I following treatment with doxazosin or carvedilol is achieved by decreasing the profibrotic activities of TGF-β via the blockage of α1- and β-adrenergic receptor. Consequently, a diminution of fibrotic tissue in the CCl4-induced model of cirrhosis is achieved. PMID:26573293

  16. [Non-invasive assessment of liver fibrosis].

    PubMed

    Cohen-Ezra, Oranit; Ben-Ari, Ziv

    2015-03-01

    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages. PMID:25962254

  17. α-Lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β.

    PubMed

    Foo, Ning-Ping; Lin, Shu-Huei; Lee, Yu-Hsuan; Wu, Ming-Jiuan; Wang, Ying-Jan

    2011-03-28

    Reactive oxygen species (ROS) have been implicated in hepatic stellate cell activation and liver fibrosis. We previously reported that α-lipoic acid (LA) and its reduced form dihydrolipoic acid (DHLA) inhibited toxicant-induced inflammation and ROS generation. In the present study, we further examined the effects of LA/DHLA on thioacetamide (TAA)-induced liver fibrosis in rats and the possible underlying mechanisms in hepatic stellate cells in vitro. We found that co-administration of LA to rats chronically treated with TAA inhibited the development of liver cirrhosis, as indicated by reductions in cirrhosis incidence, hepatic fibrosis, and AST/ALT activities. We also found that DHLA inhibited TGF-β/PDGF-stimulated HSC-T6 activation and ROS generation. These effects could be mediated by the MAPK and PI3K/Akt pathways. According to our current results, LA may have a beneficial role in the treatment of chronic liver diseases caused by ongoing hepatic damage. PMID:21251946

  18. [Fractal analysis of liver fibrosis].

    PubMed

    Soda, G; Nardoni, S; Bosco, D; Grizzi, F; Dioguardi, N; Melis, M

    2003-04-01

    This study realized by two different study groups use of Fractal geometry to quantify the complex collagen deposition during chronic liver disease. Thirty standard needle liver biopsy specimens were obtained from patients with chronic HCV-related disease. Three mu-thick sections were cut and stained by means of Picrosirius stain, in order to visualise collagen matrix. The degree of fibrosis was measured using a quantitative scoring system based on the computer-assisted evaluation of the fractal dimension of the deposited collagen surface. The obtained results by both study groups, show that the proposed method is reproducible, rapid and inexpensive. The complex distribution of its collagenous components can be quantified using a single numerical score. This study demonstrated that it is possible to quantify the collagen's irregularity in an objective manner, and that the study of the fractal properties of the collagen shapes is likely to reveal more about its structure and the complex behaviour of its development. PMID:12768879

  19. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats

    PubMed Central

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways. PMID:26167476

  20. A Novel Matrine Derivative WM130 Inhibits Activation of Hepatic Stellate Cells and Attenuates Dimethylnitrosamine-Induced Liver Fibrosis in Rats.

    PubMed

    Xu, Yang; Peng, Zhangxiao; Ji, Weidan; Li, Xiang; Lin, Xuejing; Qian, Liqiang; Li, Xiaoya; Chai, Xiaoyun; Wu, Qiuye; Gao, Quangen; Su, Changqing

    2015-01-01

    Activation of hepatic stellate cells (HSCs) is a critical event in process of hepatic fibrogenesis and cirrhosis. Matrine, the active ingredient of Sophora, had been used for clinical treatment of acute/chronic liver disease. However, its potency was low. We prepared a high potency and low toxicity matrine derivate, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities on antihepatic fibrosis. This study demonstrated that WM130 results in a decreased proliferative activity of HSC-T6 cells, with the half inhibitory concentration (IC50) of 68 μM. WM130 can inhibit the migration and induce apoptosis in HSC-T6 cells at both concentrations of 68 μM (IC50) and 34 μM (half IC50). The expression of α-SMA, Collagen I, Collagen III, and TGF-β1 could be downregulated, and the protein phosphorylation levels of EGFR, AKT, ERK, Smad, and Raf (p-EGFR, p-AKT, p-ERK, p-Smad, and p-Raf) were also decreased by WM130. On the DMN-induced rat liver fibrosis model, WM130 can effectively reduce the TGF-β1, AKT, α-SMA, and p-ERK levels, decrease the extracellular matrix (ECM) formation, and inhibit rat liver fibrosis progression. In conclusion, this study demonstrated that WM130 can significantly inhibit the activation of HSC-T6 cells and block the rat liver fibrosis progression by inducing apoptosis, suppressing the deposition of ECM, and inhibiting TGF-β/Smad and Ras/ERK pathways. PMID:26167476

  1. Noninvasive Markers to Assess Liver Fibrosis.

    PubMed

    Czul, Frank; Bhamidimarri, Kalyan R

    2016-07-01

    Chronic liver disease represents a major public health problem, accounting for significant morbidity and mortality worldwide. Their prognosis and management greatly depends on the amount and progression of liver fibrosis with time and the risk of development of cirrhosis. Historically, liver biopsy was considered to be the gold standard for the detection of fibrosis. Nevertheless, liver biopsy is an invasive procedure that has limitations in terms of patient acceptance, risk-benefit ratio, cost-effectiveness, and its availability in various geographic regions. Moreover, it is a questionable gold standard due to significant sampling error and intraobserver and interobserver variability. These limitations have led to the development of noninvasive techniques for assessing the presence and the degree of liver fibrosis. This review aims to revise the most recent data from the literature about noninvasive methods useful in the evaluation of liver fibrosis. PMID:27105176

  2. Chronic hepatitis C and liver fibrosis.

    PubMed

    Sebastiani, Giada; Gkouvatsos, Konstantinos; Pantopoulos, Kostas

    2014-08-28

    Chronic infection with hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide and predisposes to liver fibrosis and end-stage liver complications. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, and is considered as a wound healing response to chronic liver injury. Its staging is critical for the management and prognosis of chronic hepatitis C (CHC) patients, whose number is expected to rise over the next decades, posing a major health care challenge. This review provides a brief update on HCV epidemiology, summarizes basic mechanistic concepts of HCV-dependent liver fibrogenesis, and discusses methods for assessment of liver fibrosis that are routinely used in clinical practice. Liver biopsy was until recently considered as the gold standard to diagnose and stage liver fibrosis. However, its invasiveness and drawbacks led to the development of non-invasive methods, which include serum biomarkers, transient elastography and combination algorithms. Clinical studies with CHC patients demonstrated that non-invasive methods are in most cases accurate for diagnosis and for monitoring liver disease complications. Moreover, they have a high prognostic value and are cost-effective. Non-invasive methods for assessment of liver fibrosis are gradually being incorporated into new guidelines and are becoming standard of care, which significantly reduces the need for liver biopsy. PMID:25170193

  3. Chronic hepatitis C and liver fibrosis

    PubMed Central

    Sebastiani, Giada; Gkouvatsos, Konstantinos; Pantopoulos, Kostas

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is a leading cause of liver-related morbidity and mortality worldwide and predisposes to liver fibrosis and end-stage liver complications. Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, and is considered as a wound healing response to chronic liver injury. Its staging is critical for the management and prognosis of chronic hepatitis C (CHC) patients, whose number is expected to rise over the next decades, posing a major health care challenge. This review provides a brief update on HCV epidemiology, summarizes basic mechanistic concepts of HCV-dependent liver fibrogenesis, and discusses methods for assessment of liver fibrosis that are routinely used in clinical practice. Liver biopsy was until recently considered as the gold standard to diagnose and stage liver fibrosis. However, its invasiveness and drawbacks led to the development of non-invasive methods, which include serum biomarkers, transient elastography and combination algorithms. Clinical studies with CHC patients demonstrated that non-invasive methods are in most cases accurate for diagnosis and for monitoring liver disease complications. Moreover, they have a high prognostic value and are cost-effective. Non-invasive methods for assessment of liver fibrosis are gradually being incorporated into new guidelines and are becoming standard of care, which significantly reduces the need for liver biopsy. PMID:25170193

  4. Epithelial-mesenchymal transition in liver fibrosis

    PubMed Central

    ZHAO, YA-LEI; ZHU, RONG-TAO; SUN, YU-LING

    2016-01-01

    Liver fibrosis is the result of a sustained wound healing response to sustained chronic liver injury, which includes viral, alcoholic and autoimmune hepatitis. Hepatic regeneration is the dominant outcome of liver damage. The outcomes of successful repair are the replacement of dead epithelial cells with healthy epithelial cells, and reconstruction of the normal hepatic structure and function. Prevention of the development of epithelial-mesenchymal transition (EMT) may control and even reverse liver fibrosis. EMT is a critical process for an epithelial cell to undergo a conversion to a mesenchymal phenotype, and is believed to be an inflammation-induced response, which may have a central role in liver fibrosis. The origin of fibrogenic cells in liver fibrosis remains controversial. Numerous studies have investigated the origin of all fibrogenic cells within the liver and the mechanism of the signaling pathways that lead to the activation of EMT programs during numerous chronic liver diseases. The present study aimed to summarize the evidence to explain the possible role of EMT in liver fibrosis. PMID:26998262

  5. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway

    PubMed Central

    Wang, Jia; Chu, Eagle S.H.; Chen, Hai-Yong; Man, Kwan; Go, Minnie Y.Y.; Huang, Xiao Ru; Lan, Hui Yao; Sung, Joseph J.Y.; Yu, Jun

    2015-01-01

    microRNA-29b (miR-29b) is known to be associated with TGF-β-mediated fibrosis, but the mechanistic action of miR-29b in liver fibrosis remains unclear and is warranted for investigation. We found that miR-29b was significantly downregulated in human and mice fibrotic liver tissues and in primary activated HSCs. miR-29b downregulation was directly mediated by Smad3 through binding to the promoter of miR-29b in hepatic stellate cell (HSC) line LX1, whilst miR-29b could in turn suppress Smad3 expression. miR-29b transduction in the liver of mice prevented CCl4 induced-fibrogenesis, concomitant with decreased expression of α-SMA, collagen I and TIMP-1. Ectopic expression of miR-29b in activated HSCs (LX-1, HSC-T6) inhibited cell viability and colony formation, and caused cell cycle arrest in G1 phase by downregulating cyclin D1 and p21cip1. Further, miR-29b induced apoptosis in HSCs mediated by caspase-9 and PARP. miR-29b inhibited its downstream effectors of PIK3R1 and AKT3 through direct targeting their 3′UTR regions. Moreover, knockdown of PIK3R1 or AKT3 suppressed α-SMA and collagen I and induced apoptosis in both HSCs and in mice. In conclusion, miR-29b prevents liver fibrogenesis by inhibiting HSC activation and inducing HSC apoptosis through inhibiting PI3K/AKT pathway. These results provide novel mechanistic insights for the anti-fibrotic effect of miR-29b. PMID:25356754

  6. Clusterin Attenuates the Development of Renal Fibrosis

    PubMed Central

    Jung, Gwon-Soo; Kim, Mi-Kyung; Jung, Yun-A; Kim, Hye-Soon; Park, In-Sun; Min, Bon-Hong; Lee, Ki-Up; Kim, Jung-Guk

    2012-01-01

    Upregulation of clusterin occurs in several renal diseases and models of nephrotoxicity, but whether this promotes injury or is a protective reaction to injury is unknown. Here, in the mouse unilateral ureteral obstruction model, obstruction markedly increased the expression of clusterin, plasminogen activator inhibitor-1 (PAI-1), type I collagen, and fibronectin. Compared with wild-type mice, clusterin-deficient mice exhibited higher levels of PAI-1, type I collagen, and fibronectin and accelerated renal fibrosis in response to obstruction. In cultured rat tubular epithelium-like cells, adenovirus-mediated overexpression of clusterin inhibited the expression of TGF-β–stimulated PAI-1, type I collagen, and fibronectin. Clusterin inhibited TGF-β–stimulated Smad3 activity via inhibition of Smad3 phosphorylation and its nuclear translocation. Moreover, intrarenal delivery of adenovirus-expressing clusterin upregulated expression of clusterin in tubular epithelium-like cells and attenuated obstruction-induced renal fibrosis. In conclusion, clusterin attenuates renal fibrosis in obstructive nephropathy. These results suggest that upregulation of clusterin during renal injury is a protective response against the development of renal fibrosis. PMID:22052058

  7. Targeting the PDGF-B/PDGFR-β Interface with Destruxin A5 to Selectively Block PDGF-BB/PDGFR-ββ Signaling and Attenuate Liver Fibrosis.

    PubMed

    Wang, Xingqi; Wu, Xuefeng; Zhang, Aihua; Wang, Shiyu; Hu, Chunhui; Chen, Wei; Shen, Yan; Tan, Renxiang; Sun, Yang; Xu, Qiang

    2016-05-01

    PDGF-BB/PDGFR-ββ signaling plays very crucial roles in the process of many diseases such as liver fibrosis. However, drug candidates with selective affinities for PDGF-B/PDGFR-β remain deficient. Here, we identified a natural cyclopeptide termed destruxin A5 that effectively inhibits PDGF-BB-induced PDGFR-β signaling. Interestingly and importantly, the inhibitory mechanism is distinct from the mechanism of tyrosine kinase inhibitors because destruxin A5 does not have the ability to bind to the ATP-binding pocket of PDGFR-β. Using Biacore T200 technology, thermal shift technology, microscale thermophoresis technology and computational analysis, we confirmed that destruxin A5 selectively targets the PDGF-B/PDGFR-β interaction interface to block this signaling. Additionally, the inhibitory effect of destruxin A5 on PDGF-BB/PDGFR-ββ signaling was verified using in vitro, ex vivo and in vivo models, in which the extent of liver fibrosis was effectively alleviated by destruxin A5. In summary, destruxin A5 may represent an efficacious and more selective inhibitor of PDGF-BB/PDGFR-ββ signaling. PMID:27322468

  8. [Therapeutical targets for revert liver fibrosis].

    PubMed

    García B, Leonel; Gálvez G, Javier; Armendáriz B, Juan

    2007-06-01

    Liver fibrosis is the common response to chronic liver injury, ultimately leading to cirrhosis and its complications: portal hypertension, liver failure, hepatic encephalopathy, and hepatocellular carcinoma and others. Efficient and well-tolerated antifibrotic drugs are still lacking, and current treatment of hepatic fibrosis is limited to withdrawal of the noxious agent. Efforts over the past decade have mainly focused on fibrogenic cells generating the scarring response, although promising data on inhibition of parenchymal injury or reduction of liver inflammation have also been obtained. A large number of approaches have been validated in culture studies and in animal models, and several clinical trials are underway or anticipated for a growing number of molecules. This review highlight recent advances in the molecular mechanisms of liver fibrosis and discusses mechanistically based strategies that have recently emerged. PMID:17728907

  9. BIOCONJUGATION OF OLIGONUCLEOTIDES FOR TREATING LIVER FIBROSIS

    PubMed Central

    Ye, Zhaoyang; Hajj Houssein, Houssam S.; Mahato, Ram I.

    2009-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is in urgent need to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remains the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of α1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  10. Bioconjugation of oligonucleotides for treating liver fibrosis.

    PubMed

    Ye, Zhaoyang; Houssein, Houssam S Hajj; Mahato, Ram I

    2007-01-01

    Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed. PMID:18154454

  11. Non-invasive assessment of liver fibrosis

    PubMed Central

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K.

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

  12. Non-invasive assessment of liver fibrosis.

    PubMed

    Papastergiou, Vasilios; Tsochatzis, Emmanuel; Burroughs, Andrew K

    2012-01-01

    The presence and degree of hepatic fibrosis is crucial in order to make therapeutic decisions and predict clinical outcomes. Currently, the place of liver biopsy as the standard of reference for assessing liver fibrosis has been challenged by the increasing awareness of a number of drawbacks related to its use (invasiveness, sampling error, inter-/intraobserver variability). In parallel with this, noninvasive assessment of liver fibrosis has experienced explosive growth in recent years and a wide spectrum of noninvasive methods ranging from serum assays to imaging techniques have been developed. Some are validated methods, such as the Fibrotest/ Fibrosure and transient elastography in Europe, and are gaining a growing role in routine clinical practice, especially in chronic hepatitis C. Large-scale validation is awaited in the setting of other chronic liver diseases. However, noninvasive tests used to detect significant fibrosis and cirrhosis, the two major clinical endpoints, are not yet at a level of performance suitable for routine diagnostic tests, and there is still no perfect surrogate or method able to completely replace an optimal liver biopsy. This article aims to review current noninvasive tests for the assessment of liver fibrosis and the perspectives for their rational use in clinical practice. PMID:24714123

  13. Geranylgeranylacetone attenuates hepatic fibrosis by increasing the expression of heat shock protein 70.

    PubMed

    He, Wei; Zhuang, Yun; Wang, Liangzhi; Qi, Lei; Chen, Binfang; Wang, Mei; Shao, Dong; Chen, Jianping

    2015-10-01

    Increasing evidence has demonstrated that the heat shock protein 70 (HSP70) gene may be closely associated with tissue fibrosis; however, the association between HSP70 and liver fibrosis remains to be fully elucidated. The present study hypothesized that geranylgeranylacetone (GGA) exerts beneficial effects on liver fibrosis though upregulation of the expression of HSP70. Liver fibrosis was induced in rats using carbon tetrachloride (CCl4). The rats were subsequently divided into three groups: Control group, CCl4 model group and CCl4 model + GGA group. Liver fibrosis in the rats was evaluated using hematoxylin and eosin staining, Masson's trichrome staining and Sirius red staining. The levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin were determined using an automated biochemistry analyzer. The levels of total hepatic hydroxyproline were also determined. The expression levels of α‑smooth muscle actin (α‑SMA) and transforming growth factor‑β1 (TGF‑β1) were determined using immunofluorescence staining and western blotting, and the protein expression levels of HSP70 were determined using western blotting. The CCl4‑induced rats exhibited liver fibrosis, increased hydroxyproline content, impaired liver function, upregulated expression levels of the α‑SMA and TGF‑β1 pro‑fibrogenic proteins, and increased expression of HSP70, compared with the control group. These changes were attenuated by treatment with GGA. These results demonstrated that GGA exerted beneficial effects in CCl4‑induced liver fibrosis via upregulating the expression of HSP70. PMID:26165998

  14. Mannose Receptor 2 Attenuates Renal Fibrosis

    PubMed Central

    López-Guisa, Jesús M.; Cai, Xiaohe; Collins, Sarah J.; Yamaguchi, Ikuyo; Okamura, Daryl M.; Bugge, Thomas H.; Isacke, Clare M.; Emson, Claire L.; Turner, Scott M.; Shankland, Stuart J.

    2012-01-01

    Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3−/− mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3−/− mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway. PMID:22095946

  15. Noninvasive Measures of Liver Fibrosis and Severity of Liver Disease

    PubMed Central

    Lucero, Catherine; Brown, Robert S.

    2016-01-01

    Determining the degree of fibrosis is an important step in the assessment of disease severity in patients with chronic liver disease. Liver biopsy has been the gold standard for estimating the extent of inflammation and fibrosis, although the procedure has limitations such as sampling error and variability. Noninvasive testing has been shown to be equally predictive in ruling out fibrosis or ruling in advanced fibrosis. Serum biomarkers and imaging-based tests have more limited predictive ability when classifying intermediate stages, but these tools can help identify which patients should receive antiviral treatment sooner and require ongoing cancer surveillance without the need for biopsy. Using a combination of serum markers and imaging tests may also be helpful in providing functional assessment of portal hypertension in patients with chronic liver disease.

  16. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies.

    PubMed

    Martínez, Allyson K; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S

    2014-12-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  17. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies

    PubMed Central

    Martínez, Allyson K.; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T.; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S.

    2014-01-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  18. Fibrosis in autoimmune and cholestatic liver disease.

    PubMed

    Penz-Österreicher, Melitta; Österreicher, Christoph H; Trauner, Michael

    2011-04-01

    Autoimmune and cholestatic liver disease account for a significant part of end-stage liver disease and are leading indications for liver transplantation. Especially cholestatic liver diseases (primary biliary cirrhosis and primary sclerosing cholangitis) appear to be different from other chronic liver diseases with regards to pathogenesis. Portal fibroblasts located in the connective tissue surrounding bile ducts appear to be different from hepatic stellate cells with regards to expression of marker proteins and response the profibrogenic and mitogenic stimuli. In addition there is increasing evidence for a cross talk between activated cholangiocytes and portal myofibroblasts. Several animal models have improved our understanding of the mechanisms underlying these chronic liver diseases. In the present review, we discuss the current concepts and ideas with regards to myofibroblastic cell populations, mechanisms of fibrosis, summarize characteristic histological findings and currently employed animal models of autoimmune and cholestatic liver disease. PMID:21497742

  19. Delivery and targeting of miRNAs for treating liver fibrosis.

    PubMed

    Kumar, Virender; Mahato, Ram I

    2015-02-01

    Liver fibrosis is a pathological condition originating from liver damage that leads to excess accumulation of extracellular matrix (ECM) proteins in the liver. Viral infection, chronic injury, local inflammatory responses and oxidative stress are the major factors contributing to the onset and progression of liver fibrosis. Multiple cell types and various growth factors and inflammatory cytokines are involved in the induction and progression of this disease. Various strategies currently being tried to attenuate liver fibrosis include the inhibition of HSC activation or induction of their apoptosis, reduction of collagen production and deposition, decrease in inflammation, and liver transplantation. Liver fibrosis treatment approaches are mainly based on small drug molecules, antibodies, oligonucleotides (ODNs), siRNA and miRNAs. MicroRNAs (miRNA or miR) are endogenous noncoding RNA of ~22 nucleotides that regulate gene expression at post transcription level. There are several miRNAs having aberrant expressions and play a key role in the pathogenesis of liver fibrosis. Single miRNA can target multiple mRNAs, and we can predict its targets based on seed region pairing, thermodynamic stability of pairing and species conservation. For in vivo delivery, we need some additional chemical modification in their structure, and suitable delivery systems like micelles, liposomes and conjugation with targeting or stabilizing the moiety. Here, we discuss the role of miRNAs in fibrogenesis and current approaches of utilizing these miRNAs for treating liver fibrosis. PMID:25186440

  20. Gene Modulation for Treating Liver Fibrosis

    PubMed Central

    Cheng, Kun; Mahato, Ram I.

    2009-01-01

    Despite tremendous progress in our understanding of fibrogenesis, injury stimuli process, inflammation, and hepatic stellate cells (HSC) activation, there is still no standard treatment for liver fibrosis. Delivery of small molecular weight drug, proteins and nucleic acids to specific liver cell types remains a challenge due to the overexpression of extra cellular matrix (ECM) and consequent closure of sinusoidal gaps. In addition, activation of HSCs and subsequent release of inflammatory cytokines and infiltration of immune cells are other major obstacles to the treatment of liver fibrosis. To overcome these barriers, different therapeutic approaches are being investigated. Among them, modulation of certain aberrant protein production is quite promising for treating liver fibrosis. In this review, we will describe the mechanism of antisense, antigene and RNA interference (RNAi) therapies, and will discuss how the backbone modification of oligonucleotides affects their in vivo stability, biodistribution and bioactivity. Strategies for delivering these nucleic acids to specific cell types will be discussed. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes. PMID:17725523

  1. Promising Therapy Candidates for Liver Fibrosis

    PubMed Central

    Wang, Ping; Koyama, Yukinori; Liu, Xiao; Xu, Jun; Ma, Hsiao-Yen; Liang, Shuang; Kim, In H.; Brenner, David A.; Kisseleva, Tatiana

    2016-01-01

    Liver fibrosis is a wound-healing process in response to repeated and chronic injury to hepatocytes and/or cholangiocytes. Ongoing hepatocyte apoptosis or necrosis lead to increase in ROS production and decrease in antioxidant activity, which recruits inflammatory cells from the blood and activate hepatic stellate cells (HSCs) changing to myofibroblasts. Injury to cholangiocytes also recruits inflammatory cells to the liver and activates portal fibroblasts in the portal area, which release molecules to activate and amplify cholangiocytes. No matter what origin of myofibroblasts, either HSCs or portal fibroblasts, they share similar characteristics, including being positive for α-smooth muscle actin and producing extracellular matrix. Based on the extensive pathogenesis knowledge of liver fibrosis, therapeutic strategies have been designed to target each step of this process, including hepatocyte apoptosis, cholangiocyte proliferation, inflammation, and activation of myofibroblasts to deposit extracellular matrix, yet the current therapies are still in early-phase clinical development. There is an urgent need to translate the molecular mechanism of liver fibrosis to effective and potent reagents or therapies in human. PMID:26909046

  2. Role of NADPH Oxidases in Liver Fibrosis

    PubMed Central

    Paik, Yong-Han; Kim, Jonghwa; Aoyama, Tomonori; De Minicis, Samuele; Bataller, Ramon

    2014-01-01

    Abstract Significance: Hepatic fibrosis is the common pathophysiologic process resulting from chronic liver injury, characterized by the accumulation of an excessive extracellular matrix. Multiple lines of evidence indicate that oxidative stress plays a pivotal role in the pathogenesis of liver fibrosis. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) is a multicomponent enzyme complex that generates reactive oxygen species (ROS) in response to a wide range of stimuli. In addition to phagocytic NOX2, there are six nonphagocytic NOX proteins. Recent Advances: In the liver, NOX is functionally expressed both in the phagocytic form and in the nonphagocytic form. NOX-derived ROS contributes to various kinds of liver disease caused by alcohol, hepatitis C virus, and toxic bile acids. Recent evidence indicates that both phagocytic NOX2 and nonphagocytic NOX isoforms, including NOX1 and NOX4, mediate distinct profibrogenic actions in hepatic stellate cells, the main fibrogenic cell type in the liver. The critical role of NOX in hepatic fibrogenesis provides a rationale to assess pharmacological NOX inhibitors that treat hepatic fibrosis in patients with chronic liver disease. Critical Issues: Although there is compelling evidence indicating a crucial role for NOX-mediated ROS generation in hepatic fibrogenesis, little is known about the expression, subcellular localization, regulation, and redox signaling of NOX isoforms in specific cell types in the liver. Moreover, the exact mechanism of NOX-mediated fibrogenic signaling is still largely unknown. Future Directions: A better understanding through further research about NOX-mediated fibrogenic signaling may enable the development of novel anti-fibrotic therapy using NOX inhibition strategy. Antioxid. Redox Signal. 20, 2854–2872. PMID:24040957

  3. Natural Killer Cells and Liver Fibrosis

    PubMed Central

    Fasbender, Frank; Widera, Agata; Hengstler, Jan G.; Watzl, Carsten

    2016-01-01

    In the 40 years since the discovery of natural killer (NK) cells, it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue-resident NK cells with distinct phenotypical and functional characteristics have been identified. Here, we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects. PMID:26858722

  4. Modeling the mechanical properties of liver fibrosis in rats.

    PubMed

    Zhu, Ying; Chen, Xin; Zhang, Xinyu; Chen, Siping; Shen, Yuanyuan; Song, Liang

    2016-06-14

    The progression of liver fibrosis changes the biomechanical properties of liver tissue. This study characterized and compared different liver fibrosis stages in rats in terms of viscoelasticity. Three viscoelastic models, the Voigt, Maxwell, and Zener models, were applied to experimental data from rheometer tests and then the elasticity and viscosity were estimated for each fibrosis stage. The study found that both elasticity and viscosity are correlated with the various stages of liver fibrosis. The study revealed that the Zener model is the optimal model for describing the mechanical properties of each fibrosis stage, but there is no significant difference between the Zener and Voigt models in their performance on liver fibrosis staging. Therefore the Voigt model can still be effectively used for liver fibrosis grading. PMID:27017300

  5. Human urokinase-type plasminogen activator gene-modified bone marrow-derived mesenchymal stem cells attenuate liver fibrosis in rats by down-regulating the Wnt signaling pathway

    PubMed Central

    Ma, Zhi-Gang; Lv, Xiao-Dan; Zhan, Ling-Ling; Chen, Lan; Zou, Qi-Yuan; Xiang, Ji-Qiao; Qin, Jiao-Li; Zhang, Wei-Wei; Zeng, Zhao-Jing; Jin, Hui; Jiang, Hai-Xing; Lv, Xiao-Ping

    2016-01-01

    AIM: To evaluate the therapeutic effects of bone marrow-derived mesenchymal stem cells (BMSCs) with human urokinase-type plasminogen activator (uPA) on liver fibrosis, and to investigate the mechanism of gene therapy. METHODS: BMSCs transfected with adenovirus-mediated human urokinase plasminogen activator (Ad-uPA) were transplanted into rats with CCl4-induced liver fibrosis. All rats were sacrificed after 8 wk, and their serum and liver tissue were collected for biochemical, histopathologic, and molecular analyzes. The degree of liver fibrosis was assessed by hematoxylin and eosin or Masson’s staining. Western blot and quantitative reverse transcription-polymerase chain reaction were used to determine protein and mRNA expression levels. RESULTS: Serum levels of alanine aminotransferase, aminotransferase, total bilirubin, hyaluronic acid, laminin, and procollagen type III were markedly decreased, whereas the levels of serum albumin were increased by uPA gene modified BMSCs treatment. Histopathology revealed that chronic CCl4-treatment resulted in significant fibrosis while uPA gene modified BMSCs treatment significantly reversed fibrosis. By quantitatively analysing the fibrosis area of liver tissue using Masson staining in different groups of animals, we found that model animals with CCl4-induced liver fibrosis had the largest fibrotic area (16.69% ± 1.30%), while fibrotic area was significantly decreased by BMSCs treatment (12.38% ± 2.27%) and was further reduced by uPA-BMSCs treatment (8.31% ± 1.21%). Both protein and mRNA expression of β-catenin, Wnt4 and Wnt5a was down-regulated in liver tissues following uPA gene modified BMSCs treatment when compared with the model animals. CONCLUSION: Transplantation of uPA gene modified BMSCs suppressed liver fibrosis and ameliorated liver function and may be a new approach to treating liver fibrosis. Furthermore, treatment with uPA gene modified BMSCs also resulted in a decrease in expression of molecules of the Wnt

  6. Sinusoidal communication in liver fibrosis and regeneration.

    PubMed

    Marrone, Giusi; Shah, Vijay H; Gracia-Sancho, Jordi

    2016-09-01

    Cellular crosstalk is a process through which a message is transmitted within an individual cell (intracellular crosstalk) or between different cells (intercellular crosstalk). Intercellular crosstalk within the liver microenvironment is critical for the maintenance of normal hepatic functions and for cells survival. Hepatic cells are closely connected to each other, work in synergy, and produce molecules that modulate their differentiation and activity. This review summarises the current knowledge regarding paracrine communication networks in parenchymal and non-parenchymal cells in liver fibrosis due to chronic injury, and regeneration after partial hepatectomy. PMID:27151183

  7. Recent advancement of molecular mechanisms of liver fibrosis

    PubMed Central

    Brenner, David A.

    2015-01-01

    Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis. PMID:25869468

  8. Liver Fibrosis: From Pathogenesis to Novel Therapies.

    PubMed

    Weiskirchen, Ralf; Tacke, Frank

    2016-01-01

    Chronic liver injury is accompanied by a dysbalanced scarring process, termed fibrosis. This process is mainly driven by chronic inflammation and an altered activity of a multitude of different chemokines and cytokines, resulting in the infiltration by immune cells (especially macrophages) and increase of matrix-expressing cell types. These processes might lead to cirrhosis representing the end-stage of fibrosis. Recent clinical studies comprising patients successfully treated for viral hepatitis showed that liver fibrogenesis and even cirrhosis may be reverted. The hepatic capacity to remodel scar tissue and to revert into a normal liver follows specific mechanistic principles that include the termination of chronic tissue damage, shifting the cellular bias from inflammation to resolution, initiation of myofibroblast apoptosis or senescence and, finally, fibrinolysis of excess scar tissue. The plurality of molecular and cellular triggers involved in initiation, progression and resolution of hepatic fibrogenesis offers an infinite number of therapeutic possibilities. For instance, inflammatory macrophages can be targeted via inhibition of chemokine CCL2 or its receptor CCR2 (e.g., by cenicriviroc) as well as by transfer of restorative macrophage subsets. Another target is galectin-3 that acts at various stages along the continuum from acute to chronic inflammation. Profibrogenic cytokines (e.g., transforming growth factor-β), matricellular proteins (e.g., CCN1/CYR61) or signaling pathways involved in fibrogenesis offer further possible targets. Other options are the application of therapeutic antibodies directed against components involved in biogenesis or remodeling of connective tissue such as lysyl oxidase-like-2 or synthetic bile acids like obeticholic acid that activate the farnesoid X receptor and was antifibrotic in a phase 2 study (FLINT trial). Factors affecting the gut barrier function or the intestinal microbiome further expanded the repertoire of drug

  9. Recent Advances in Molecular Magnetic Resonance Imaging of Liver Fibrosis

    PubMed Central

    Li, Zhiming; Sun, Jihong; Yang, Xiaoming

    2015-01-01

    Liver fibrosis is a life-threatening disease with high morbidity and mortality owing to its diverse causes. Liver biopsy, as the current gold standard for diagnosing and staging liver fibrosis, has a number of limitations, including sample variability, relatively high cost, an invasive nature, and the potential of complications. Most importantly, in clinical practice, patients often reject additional liver biopsies after initiating treatment despite their being necessary for long-term follow-up. To resolve these problems, a number of different noninvasive imaging-based methods have been developed for accurate diagnosis of liver fibrosis. However, these techniques only reflect morphological or perfusion-related alterations in the liver, and thus they are generally only useful for the diagnosis of late-stage liver fibrosis (liver cirrhosis), which is already characterized by “irreversible” anatomic and hemodynamic changes. Thus, it is essential that new approaches are developed for accurately diagnosing early-stage liver fibrosis as at this stage the disease may be “reversed” by active treatment. The development of molecular MR imaging technology has potential in this regard, as it facilitates noninvasive, target-specific imaging of liver fibrosis. We provide an overview of recent advances in molecular MR imaging for the diagnosis and staging of liver fibrosis and we compare novel technologies with conventional MR imaging techniques. PMID:25874221

  10. Dynamics of allograft fibrosis in pediatric liver transplantation.

    PubMed

    Venturi, C; Sempoux, C; Quinones, J A; Bourdeaux, C; Hoyos, S P; Sokal, E; Reding, R

    2014-07-01

    Progressive liver allograft fibrosis (LAF) is well known to occur long term, as shown by its high prevalence in late posttransplant liver biopsies (LBs). To evaluate the influence of clinical variables and immunosuppression on LAF progression, LAF dynamic was assessed in 54 pediatric liver transplantation (LT) recipients at 6 months, 3 and 7 years post-LT, reviewing clinical, biochemical data and protocol LBs using METAVIR and the liver allograft fibrosis score, previously designed and validated specifically for LAF assessment. Scoring evaluations were correlated with fibrosis quantification by morphometric analysis. Progressive LAF was found in 74% of long-term patients, 70% of whom had unaltered liver enzymes. Deceased grafts showed more fibrosis than living-related grafts (p = 0.0001). Portal fibrosis was observed in correlation with prolonged ischemia time, deceased grafts and lymphoproliferative disease (p = 0.001, 0.006 and 0.012, respectively). Sinusoidal fibrosis was correlated with biliary complications (p = 0.01). Centrilobular fibrosis was associated with vascular complications (p = 0.044), positive autoantibodies (p = 0.017) and high gamma-globulins levels (p = 0.028). Steroid therapy was not associated with reduced fibrosis (p = 0.83). LAF could be viewed as a dynamic process with mostly progression along the time. Peri- and post-LT-associated factors may condition fibrosis development in a specific area of the liver parenchyma. PMID:24934832

  11. [Measurement of Liver Fibrosis Marker Targeting Sugar Chain Marker].

    PubMed

    Shibata, Hiroshi; Kakuda, Hirokazu; Morikawa, Takashi; Funakoshi, Kunihiro

    2015-01-01

    The degree of liver fibrosis progression is an important factor in hepatocarcinogenesis, and monitoring liver fibrosis is important for predicting and preventing hepatocellular carcinoma. It is proportional to the appearance of a new hepatitis C therapy, or the expectation of liver fibrosis therapy, and liver fibrosis research is attracting attention. Although the Gold Standard for the diagnosis of liver fibrosis is liver biopsy, various problems, such as in the difficulty of invasive and frequent measurement, exist. The present non-invasive examination methods for the assessment of liver fibrosis also have a problem in the fields of organ specificity and diagnostic performance. Using a fully automated immunoassay system "HISCL", an assay system based on the lectin bound sugar reaction which is not an antigen-bound antibody reaction was developed. Measurements using the fully automated immunoassay system "HISCL" series and HISCL M2BPGi assay kit facilitated rapid assay (17 minutes) with a small sample volume (10 μL). Serum M2BPGi values can be used in various ways, such as for assessment of the risk and treatment associated with hepatocellular carcinoma, reflecting the liver fibrosis stage. Furthermore, many studies are currently in progress. The development of a new assay system for the detection of a cancer production sugar chain marker is expected in the future owing to the advent of a lectin-bound sugar chain reaction system. PMID:26524881

  12. Fibrosis Assessment in Nonalcoholic Fatty Liver Disease (NAFLD) in 2016.

    PubMed

    Kaswala, Dharmesh H; Lai, Michelle; Afdhal, Nezam H

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathologies characterized by hepatic steatosis with a history of little to no alcohol consumption or secondary causes of hepatic steatosis. The prevalence of NAFLD is 20-25 % of the general population in the Western countries and is associated with metabolic risk factors such as obesity, diabetes mellitus, and dyslipidemia. The spectrum of disease ranges from simple steatosis to nonalcoholic steatohepatitis, fibrosis, and cirrhosis. Advanced fibrosis is the most significant predictor of mortality in NAFLD. It is crucial to assess for the presence and degree of hepatic fibrosis in order to make therapeutic decisions and predict clinical outcomes. Liver biopsy, the current gold standard to assess the liver fibrosis, has a number of drawbacks such as invasiveness, sampling error, cost, and inter-/intra-observer variability. There are currently available a number of noninvasive tests as an alternative to liver biopsy for fibrosis staging. These noninvasive fibrosis tests are increasingly used to rule out advanced fibrosis and help guide disease management. While these noninvasive tests perform relatively well for ruling out advanced fibrosis, they also have limitations. Understanding the strengths and limitations of liver biopsy and the noninvasive tests is necessary for deciding when to use the appropriate tests in the evaluation of patients with NAFLD. PMID:27017224

  13. Interleukin-6 Is Associated with Noninvasive Markers of Liver Fibrosis in HIV-Infected Patients with Alcohol Problems

    PubMed Central

    Tsui, Judith I.; Cheng, Debbie M.; Quinn, Emily K.; Armah, Kaku A.; Nunes, David; Freiberg, Matthew S.; Samet, Jeffrey H.

    2013-01-01

    Abstract Both HIV and hepatitis C virus (HCV) cause chronic inflammation and alterations in serum inflammatory cytokines. The impact of inflammatory cytokines on liver fibrosis is not well understood. We studied the association between interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α and liver fibrosis in HIV-infected patients with current or past alcohol problems (CAGE ≥2 or physician investigator diagnosis). Liver fibrosis was estimated with FIB-4 (FIB-4 <1.45 defined the absence of liver fibrosis and FIB-4 >3.25 defined advanced fibrosis). Logistic regression was used to assess the association between cytokines and fibrosis, adjusting for age, sex, CD4, HIV RNA, current antiretroviral therapy, body mass index, and HCV. Secondary analyses explored whether the association between HCV and liver fibrosis was mediated by these cytokines. Participants (n=308) were all HIV-infected; 73% were male with a mean age of 42 years; half had detectable HCV-RNA, 60.7% had an absence of liver fibrosis, and 10.1% had advanced fibrosis. In models that adjusted for each cytokine separately, higher levels of IL-6 were significantly associated with an absence of fibrosis [adjusted OR (95% CI): 0.43 (0.19, 0.98), p=0.05] and were borderline significant for advanced fibrosis [adjusted OR (95% CI): 8.16 (0.96, 69.54), p=0.055]. In the final model, only higher levels of IL-6 remained significantly associated with advanced liver fibrosis [adjusted OR (95% CI): 11.78 (1.17, 118.19), p=0.036]. Adjustment for inflammatory cytokines attenuated the adjusted OR for the association between HCV and fibrosis in the case of IL-6 [for the absence of fibrosis from 0.32 (0.17, 0.57) p<0.01 to 0.47 (0.23, 0.96) p=0.04; and for advanced fibrosis from 7.22 (2.01, 25.96) p<0.01 to 6.62 (1.20, 36.62) p=0.03], suggesting IL-6 may be a partial mediator of the association between HCV and liver fibrosis. IL-6 was strongly and significantly associated with liver fibrosis in a cohort of HIV

  14. Potential Roles of BMP9 in Liver Fibrosis

    PubMed Central

    Bi, Jianjun; Ge, Shengfang

    2014-01-01

    Liver fibrosis is a common phenomenon that is associated with several pathologies and is characterized by excessive extracellular matrix deposition that leads to progressive liver dysfunction. Bone morphogenetic protein 9 (BMP9) is the most recently discovered member of the BMP family. BMP9 bound with high affinity to activin receptor-like kinase 1 (ALK1) and endoglin in non-parenchymal liver cells. In addition, BMP9 activated Smad1/Smad5/Smad8 and induced the expression of the target genes inhibitor of differentiation 1 (Id1), hepcidin, Snail and the co-receptor endoglin in liver cells. Although the role of BMP9 in liver fibrosis is currently poorly understood, the presence of BMP9-activated proteins and its target genes have been reported to be associated with liver fibrosis development. This review summarizes the indirect connection between BMP9 and liver fibrosis, with a focus on the BMP9 signaling pathway members ALK1, endoglin, Id1, hepcidin and Snail. The observations on the role of BMP9 in regulating liver fibrosis may help in understanding the pathology mechanisms of liver disease. Furthermore, BMP9 could be served as a potent biomarker and the target of potential therapeutic drugs to treat hepatocytes fibrosis. PMID:25393508

  15. The pediatric NAFLD fibrosis index: a predictor of liver fibrosis in children with non-alcoholic fatty liver disease

    PubMed Central

    Nobili, Valerio; Alisi, Anna; Vania, Andrea; Tiribelli, Claudio; Pietrobattista, Andrea; Bedogni, Giorgio

    2009-01-01

    Background Liver fibrosis is a stage of non-alcoholic fatty liver disease (NAFLD) which is responsible for liver-related morbidity and mortality in adults. Accordingly, the search for non-invasive markers of liver fibrosis has been the subject of intensive efforts in adults with NAFLD. Here, we developed a simple algorithm for the prediction of liver fibrosis in children with NAFLD followed at a tertiary care center. Methods The study included 136 male and 67 female children with NAFLD aged 3.3 to 18.0 years; 141 (69%) of them had fibrosis at liver biopsy. On the basis of biological plausibility, readily availability and evidence from adult studies, we evaluated the following potential predictors of liver fibrosis at bootstrapped stepwise logistic regression: gender, age, body mass index, waist circumference, alanine transaminase, aspartate transaminase, gamma-glutamyl-transferase, albumin, prothrombin time, glucose, insulin, triglycerides and cholesterol. A final model was developed using bootstrapped logistic regression with bias-correction. We used this model to develop the 'pediatric NAFLD fibrosis index' (PNFI), which varies between 0 and 10. Results The final model was based on age, waist circumference and triglycerides and had a area under the receiver operating characteristic curve of 0.85 (95% bootstrapped confidence interval (CI) with bias correction 0.80 to 0.90) for the prediction of liver fibrosis. A PNFI ≥ 9 (positive likelihood ratio = 28.6, 95% CI 4.0 to 201.0; positive predictive value = 98.5, 95% CI 91.8 to 100.0) could be used to rule in liver fibrosis without performing liver biopsy. Conclusion PNFI may help clinicians to predict liver fibrosis in children with NAFLD, but external validation is needed before it can be employed for this purpose. PMID:19409076

  16. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  17. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition.

    PubMed

    Wang, Shuai; Shi, Xiao-Lei; Feng, Min; Wang, Xun; Zhang, Zhi-Heng; Zhao, Xin; Han, Bing; Ma, Hu-Cheng; Dai, Bo; Ding, Yi-Tao

    2016-09-01

    Liver fibrosis, which is the pathophysiologic process of the liver due to sustained wound healing in response to chronic liver injury, will eventually progress to cirrhosis. Puerarin, a bioactive isoflavone glucoside derived from the traditional Chinese medicine pueraria, has been reported to have many anti-inflammatory and anti-fibrosis properties. However, the detailed mechanisms are not well studied yet. This study aimed to investigate the effects of puerarin on liver function and fibrosis process in mice induced by CCl4. C57BL/6J mice were intraperitoneally injected with 10% CCl4 in olive oil(2mL/kg) with or without puerarin co-administration (100 and 200mg/kg intraperitoneally once daily) for four consecutive weeks. As indicated by the ameliorative serum hepatic enzymes and the reduced histopathologic abnormalities, the data collected showed that puerarin can protect against CCl4-induced chronic liver injury. Moreover, CCl4-induced development of fibrosis, as evidenced by increasing expression of alpha smooth muscle actin(α-SMA), collagen-1, transforming growth factor (TGF)-β and connective tissue growth factor(CTGF) in liver, were suppressed by puerarin. Possible mechanisms related to these suppressive effects were realized by inhibition on NF-κB signaling pathway, reactive oxygen species(ROS) production and mitochondrial dysfunction in vivo. In addition, these protective inhibition mentioned above were driven by down-regulation of PARP-1 due to puerarin because puerarin can attenuate the PARP-1 expression in CCl4-damaged liver and PJ34, a kind of PARP-1 inhibitor, mimicked puerarin's protection. In conclusion, puerarin played a protective role in CCl4-induced liver fibrosis probably through inhibition of PARP-1 and subsequent attenuation of NF-κB, ROS production and mitochondrial dysfunction. PMID:27318789

  18. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice.

    PubMed

    Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T; Wissmueller, Max; Lesley, Scott A; Miyamoto, Yukiko; Eckmann, Lars; Dhungana, Suraj; Pathmasiri, Wimal; Sumner, Susan; Westwater, Caroline; Brenner, David A; Schnabl, Bernd

    2015-03-01

    Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis. PMID:25466902

  19. Staging Liver Fibrosis with Statistical Observers

    NASA Astrophysics Data System (ADS)

    Brand, Jonathan Frieman

    Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.

  20. Contribution and Mobilization of Mesenchymal Stem Cells in a mouse model of carbon tetrachloride-induced liver fibrosis.

    PubMed

    Liu, Yan; Yang, Xue; Jing, Yingying; Zhang, Shanshan; Zong, Chen; Jiang, Jinghua; Sun, Kai; Li, Rong; Gao, Lu; Zhao, Xue; Wu, Dong; Shi, Yufang; Han, Zhipeng; Wei, Lixin

    2015-01-01

    Hepatic fibrosis is associated with bone marrow derived mesenchymal stem cells (BM-MSCs). In this study, we aimed to determine what role MSCs play in the process and how they mobilize from bone marrow (BM). We employed a mouse model of carbon tetrachloride(CCl4)-induced liver fibrosis. Frozen section was used to detect MSCs recruited to mice and human fibrotic liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was detected to assess liver function. It was found that MSCs of both exogenous and endogenous origin could aggravate liver fibrosis and attenuate liver damage as indicated by lower serum ALT and AST levels. Stromal cell-derived factor-1 (SDF-1α)/ CXCR4 was the most important chemotactic axis regulating MSCs migration from BM to fibrotic liver. Frozen section results showed that the migration did not start from the beginning of liver injury but occurred when the expression balance of SDF-1α between liver and BM was disrupted, where SDF-1α expression in liver was higher than that in BM. Our findings provide further evidence to show the role of BM-MSCs in liver fibrosis and to elucidate the mechanism underlying MSCs mobilization in our early liver fibrosis mice model induced by CCl4. PMID:26643997

  1. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis

    PubMed Central

    Liu, Ziyi; Cao, Zongxian; Jourdan, Tony; Erdelyi, Katalin; Godlewski, Grzegorz; Szanda, Gergő; Liu, Jie; Park, Joshua K.; Mukhopadhyay, Bani; Rosenberg, Avi Z.; Liow, Jeih-San; Lorenz, Robin G.; Pacher, Pal; Innis, Robert B.; Kunos, George

    2016-01-01

    Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1−/− but not in nos2−/− mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis. PMID:27525312

  2. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats.

    PubMed

    Hamza, Alaaeldin A

    2010-01-01

    This study was carried out to evaluate the effect of Moringa oleifera Lam (Moringa) seed extract on liver fibrosis. Liver fibrosis was induced by the oral administration of 20% carbon tetrachloride (CCl(4)), twice weekly and for 8 weeks. Simultaneously, M.oleifera Lam seed extract (1g/kg) was orally administered daily. The biochemical and histological results showed that Moringa reduced liver damage as well as symptoms of liver fibrosis. The administration of Moringa seed extract decreased the CCl(4)-induced elevation of serum aminotransferase activities and globulin level. The elevations of hepatic hydroxyproline content and myeloperoxidase activity were also reduced by Moringa treatment. Furthermore, the immunohistochemical study showed that Moringa markedly reduced the numbers of smooth muscle alpha-actin-positive cells and the accumulation of collagens I and III in liver. Moringa seed extract showed significant inhibitory effect on 1,1-diphenyl-2-picrylhydrazyl free radical, as well as strong reducing antioxidant power. The activity of superoxide dismutase as well as the content of both malondialdehyde and protein carbonyl, which are oxidative stress markers, were reversed after treatment with Moringa. Finally, these results suggested that Moringa seed extract can act against CCl(4)-induced liver injury and fibrosis in rats by a mechanism related to its antioxidant properties, anti-inflammatory effect and its ability to attenuate the hepatic stellate cells activation. PMID:19854235

  3. Alleviation of Carbon-Tetrachloride-Induced Liver Injury and Fibrosis by Betaine Supplementation in Chickens

    PubMed Central

    Tsai, Meng-Tsz; Chen, Ching-Yi; Pan, Yu-Hui; Wang, Siou-Huei; Mersmann, Harry J.; Ding, Shih-Torng

    2015-01-01

    Betaine is a food component with well-reported hepatoprotection effects. However, the effects and mechanisms of betaine on liver fibrosis development are still insufficient. Because metabolic functions of chicken and human liver is similar, we established a chicken model with carbon Tetrachloride- (CCl4-) induced fibrosis for studying antifibrotic effect of betaine in vivo and in vitro. Two-week-old male chicks were supplemented with betaine (1%, w/v) in drinking water for 2 weeks prior to the initiation of CCl4 treatment (i.p.) until sacrifice. Primary chicken hepatocytes were treated with CCl4 and betaine to mimic the in vivo supplementation. The supplementation of betaine significantly alleviated liver fibrosis development along with the inhibition of lipid peroxidation, hepatic inflammation cytokine, and transforming growth factor-β1 expression levels. These inhibitive effects were also accompanied with the attenuation of hepatic stellate cell activation. Furthermore, our in vitro studies confirmed that betaine provides antioxidant capacity for attenuating the hepatocyte necrosis by CCl4. Altogether, our results highlight the antioxidant ability of betaine, which alleviates CCl4-induced fibrogenesis process along with the suppression of hepatic stellate cells activation. Since betaine is a natural compound without toxicity, we suggest betaine can be used as a potent nutritional or therapeutic factor for reducing liver fibrosis. PMID:26491462

  4. Hepatic macrophages in liver fibrosis: pathogenesis and potential therapeutic targets

    PubMed Central

    Li, Hai; You, Hong; Fan, Xu; Jia, Jidong

    2016-01-01

    Hepatic macrophages account for the largest non-parenchymal cell population in the liver. Recent studies have found that hepatic macrophages have different functions in different stages of experimental liver fibrosis. Some studies found that there are different types of hepatic macrophages in the liver, although others have suggested that hepatic macrophages could switch to different phenotypes in different environments. Many studies demonstrated that while hepatic macrophages promoted fibrosis through the recruitment of proinflammatory immune cells, and the secretion of proinflammatory cytokines and chemokines in the early stages, these also promoted the resolution of hepatic fibrosis through the secretion of matrix metalloproteinases in the late stages. This article will review the current role played by hepatic macrophages in liver fibrosis and the potential therapeutic targets that modulate hepatic macrophages. PMID:27252881

  5. CUFA algorithm: assessment of liver fibrosis using routine laboratory data.

    PubMed

    Shehab, H; Elattar, I; Elbaz, T; Mohey, M; Esmat, G

    2014-12-01

    Staging of liver fibrosis is an integral part of the management of HCV. Liver biopsy is hampered by its invasiveness and possibility of sampling error. Current noninvasive methods are disadvantaged by their cost and complexity. In this study, we aimed at developing a noninvasive method for the staging of liver fibrosis based only on routine laboratory tests and clinical data. Basic clinical and laboratory data and liver biopsies were collected from 994 patients presenting for the evaluation of HCV. Logistic regression was used to create a model predictive of fibrosis stages. A sequential test was then developed by combining our new model with APRI. In the training set (497) a model was created by logistic regression for the prediction of significant fibrosis (≥F2), it included platelets, AST and age (PLASA). The areas under the curve (AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 0.753, 66.8, 71.4, 69.8, 68.4, respectively, while in the validation set (497), they were 0.777, 66.7, 72.8, 68.6 and 71, respectively. These were the best performance indicators when compared to APRI, FIB-4, King's score, platelets, fibrosis index, age-platelet index and Lok index in the same set of patients. A sequential test was then developed including APRI followed by PLASA [Cairo University Fibrosis Assessment (CUFA) algorithm], this allowed saving 20% and 34% of liver biopsies for patients being tested for significant fibrosis and cirrhosis, respectively. In conclusion, the CUFA algorithms at no cost allow saving a significant proportion of patients from performing a liver biopsy or a more complex costly test. These algorithms could be used as the first step in the assessment of liver fibrosis before embarking on the more costly advanced serum markers, Fibroscan or liver biopsy. PMID:24989248

  6. Collagen immunostains can distinguish capsular fibrous tissue from septal fibrosis and may help stage liver fibrosis.

    PubMed

    Chen, Wei; Rock, Jonathan B; Yearsley, Martha M; Hanje, A James; Frankel, Wendy L

    2014-01-01

    Core-needle biopsy remains essential for diagnosis of cirrhosis; however, evaluation of fibrosis in such biopsies is often challenging due to the fragmented nature of cirrhotic liver specimens. It is also common to see portions of liver capsules present in the biopsy which adds to the diagnostic challenge. The distinction between capsular/subcapsular fibrous tissue and septal fibrosis is critical to avoid potential overstaging of liver fibrosis. We compared the differential immunostaining in liver capsular and septal areas for collagens III, IV, V, VI, vitronectin, laminin, Orcein, and Trichrome in 15 whole sections of explanted cirrhotic livers and 5 simulated liver biopsies. Collagens III, IV, V, VI, Trichrome, and Orcein show distinct staining patterns in capsular fibrous tissue and septal fibrosis. Collagen IV shows strong diffuse septal staining and consistently weak to negative capsular staining. Collagens III and VI stain similar to IV for septal fibrosis, whereas collagen V, Trichrome, and Orcein show strong staining in both areas. Collagen IV, possibly with III or VI in addition to the routine Trichrome and hematoxylin and eosin stain, is useful in differentiating capsular fibrous tissue from septal fibrosis on challenging and fragmented liver biopsies. PMID:25046231

  7. Liver fibrosis in non-alcoholic fatty liver disease - diagnostic challenge with prognostic significance

    PubMed Central

    Stål, Per

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the Western world, with a prevalence of 20%. In a subgroup of patients, inflammation, ballooning degeneration of hepatocytes and a varying degree of fibrosis may develop, a condition named non-alcoholic steatohepatitis. Advanced liver fibrosis (stage F3) and cirrhosis (stage F4) are histologic features that most accurately predict increased mortality in both liver-related and cardiovascular diseases. Patients with advanced fibrosis or cirrhosis are at risk for complications such as hepatocellular carcinoma and esophageal varices and should therefore be included in surveillance programs. However, liver disease and fibrosis are often unrecognized in patients with NAFLD, possibly leading to a delayed diagnosis of complications. The early diagnosis of advanced fibrosis in NAFLD is therefore crucial, and it can be accomplished using serum biomarkers (e.g., the NAFLD Fibrosis Score, Fib-4 Index or BARD) or non-invasive imaging techniques (transient elastography or acoustic radiation force impulse imaging). The screening of risk groups, such as patients with obesity and/or type 2 diabetes mellitus, for NAFLD development with these non-invasive methods may detect advanced fibrosis at an early stage. Additionally, patients with a low risk for advanced fibrosis can be identified, and the need for liver biopsies can be minimized. This review focuses on the diagnostic challenge and prognostic impact of advanced liver fibrosis in NAFLD. PMID:26494963

  8. Treatment with 4-Methylpyrazole Modulated Stellate Cells and Natural Killer Cells and Ameliorated Liver Fibrosis in Mice

    PubMed Central

    Lee, Young-Sun; Jung, Ju Yeon; Park, Seol-Hee; Park, Keun-Gyu; Choi, Hueng-Sik; Suh, Jae Myoung; Jeong, Won-Il

    2015-01-01

    Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis

  9. Quantification of portal-bridging fibrosis area more accurately reflects fibrosis stage and liver stiffness than whole fibrosis or perisinusoidal fibrosis areas in chronic hepatitis C.

    PubMed

    Sandrini, Jérémy; Boursier, Jérôme; Chaigneau, Julien; Sturm, Nathalie; Zarski, Jean-Pierre; Le Bail, Brigitte; de Ledinghen, Victor; Calès, Paul; Rousselet, Marie-Christine

    2014-07-01

    Morphometry provides an objective evaluation of fibrosis in liver diseases. We developed an image analysis algorithm using automated thresholding and segmentation to separately quantify the areas and the fractal dimensions of portal-bridging fibrosis and perisinusoidal fibrosis in chronic hepatitis C liver biopsies. We studied 427 digitized liver biopsies and compared the automated measures of the different fibrosis compartments with (1) the Metavir F (fibrosis) and A (activity) histological scores, (2) the digitally assessed area of steatosis, and (3) the liver stiffness measured by elastography (Fibroscan). The perisinusoidal fibrosis area was higher than that of portal fibrosis in stages ≤F2; it reached its highest value in F2 stage and stabilized thereafter. The F3 stage was characterized by equal proportions of portal-bridging and perisinusoidal fibrosis, whereas portal-bridging area was predominant in cirrhosis. Measurement of portal-bridging fibrosis showed highly significantly different values between contiguous F stages; the ratio of portal-bridging fibrosis/perisinusoidal fibrosis displayed less overlap between Metavir stages than did the whole fibrosis area values. Fractal dimension showed that portal-bridging fibrosis tended to display a homogeneous surface-like spatial organization, whereas perisinusoidal fibrosis appeared more heterogeneous according to stage and curvilinear. The portal-bridging fibrosis area was low in cases with low Metavir activity and little steatosis, and became predominant with increasing activity and steatosis. Using stepwise multiple linear regression analysis, the liver stiffness was independently correlated to the portal-bridging fibrosis area (first step, P<0.001), the steatosis area (second step, P<0.001), and the Metavir A grade (third step, P=0.001), but not to the perisinusoidal fibrosis area. Automated quantification in a large cohort of chronic hepatitis C showed that perisinusoidal fibrosis progressively grew in

  10. Transient Elastography for Assessment of Liver Fibrosis and Steatosis: An Evidence-Based Analysis

    PubMed Central

    Brener, S

    2015-01-01

    Background Liver fibrosis is a sign of advanced liver disease and is often an indication for treatment. The current standard for diagnosing liver fibrosis and steatosis is biopsy, but noninvasive alternatives are available; one of the most common is transient elastography (FibroScan). Objectives The objective of this analysis was to assess the diagnostic accuracy and clinical utility of transient elastography alone for liver fibrosis and with controlled attenuation parameter (CAP) for steatosis in patients with hepatitis C virus, hepatitis B virus, nonalcoholic fatty liver disease, alcoholic liver disease, or cholestatic diseases. The analysis also aimed to compare the diagnostic accuracy of transient elastography with two alternative noninvasive technologies: FibroTest and acoustic force radiation impulse (ARFI). Data Sources Ovid MEDLINE, Ovid MEDLINE In-Process, Ovid Embase, and all EBM databases were searched for all studies published prior to October 2, 2014. Review Methods An overview of reviews was conducted using a systematic search and assessment approach. The results of the included systematic reviews were summarized, analyzed, and reported for outcomes related to diagnostic accuracy and clinical utility as a measure of impact on diagnoses, therapeutic decisions, and patient outcomes. Results Fourteen systematic reviews were included, summarizing more than 150 studies. The reviews demonstrated that transient elastography (with or without CAP) has good diagnostic accuracy compared to biopsy for the assessment of liver fibrosis and steatosis. Acoustic force radiation impulse and FibroTest were not superior to transient elastography. Limitations None of the included systematic reviews reported on the clinical utility of transient elastography. Conclusions Transient elastography (with or without CAP) offers a noninvasive alternative to biopsy for the assessment of liver fibrosis and steatosis, given its comparable diagnostic accuracy. PMID:26664664

  11. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis.

    PubMed

    Kang, Jung-Woo; Hong, Jeong-Min; Lee, Sun-Mee

    2016-05-01

    Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4 ) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4 -mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment. PMID:26882442

  12. Protection Effect of Kallistatin on Carbon Tetrachloride-Induced Liver Fibrosis in Rats via Antioxidative Stress

    PubMed Central

    Huang, Xiaoping; Wang, Xiao; Lv, Yinghui; Xu, Luli; Lin, Junsheng; Diao, Yong

    2014-01-01

    Prolonged inflammation and oxidative stress are emerging as key causes of pathological wound healing and the development of liver fibrosis. We have investigated the effects of recombinant human kallistatin, produced in Pichia. pastoris, on preventing carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Daily administration of kallistatin prevented development of CCl4-induced liver fibrosis, which was evidenced by histological study. In all kallistatin treated rats, activation of hepatic stellate cells (HSC) as assessed by s-smooth muscle actin staining was attenuated, TGF- β1 expression was inhibited, class I serum biomarkers associated with the process of fibrogenesis, such as hyaluronic acid, laminin, and procollagen III, were lowered, compared with that in the model control group. Furthermore, residual hepatic functional reserve was improved by kallistatin treatment. CCl4 induced elevation of malondialdehyde level and reduced superoxide dismutase activity in the liver, while kallistatin reduced these oxidative parameters. We also investigated the effects of kallistatin on rat primary HSC and LX-2, the human HSC cell line. Kallistatin scavenged H2O2-induced ROS in the LX-2 cells, and suppressed the activation of primary HSC. These results suggest recombinant human kallistatin might be a promising drug candidate for therapeutic intervention of liver fibrosis. PMID:24558397

  13. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis.

    PubMed

    Singh, Sudhir; Manson, Scott R; Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J; Austin, Paul F; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  14. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  15. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis

    PubMed Central

    Chu, Po-Yin; Walder, Ken; Horlock, Duncan; Williams, David; Nelson, Erin; Byrne, Melissa; Jandeleit-Dahm, Karin; Zimmet, Paul; Kaye, David M.

    2015-01-01

    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach. PMID:26214690

  16. CXCR4 Antagonism Attenuates the Development of Diabetic Cardiac Fibrosis.

    PubMed

    Chu, Po-Yin; Walder, Ken; Horlock, Duncan; Williams, David; Nelson, Erin; Byrne, Melissa; Jandeleit-Dahm, Karin; Zimmet, Paul; Kaye, David M

    2015-01-01

    Heart failure (HF) is an increasingly recognized complication of diabetes. Cardiac fibrosis is an important causative mechanism of HF associated with diabetes. Recent data indicate that inflammation may be particularly important in the pathogenesis of cardiovascular fibrosis. We sought to determine the mechanism by which cardiac fibrosis develops and to specifically investigate the role of the CXCR4 axis in this process. Animals with type I diabetes (streptozotocin treated mice) or type II diabetes (Israeli Sand-rats) and controls were randomized to treatment with a CXCR4 antagonist, candesartan or vehicle control. Additional groups of mice also underwent bone marrow transplantation (GFP+ donor marrow) to investigate the potential role of bone marrow derived cell mobilization in the pathogenesis of cardiac fibrosis. Both type I and II models of diabetes were accompanied by the development of significant cardiac fibrosis. CXCR4 antagonism markedly reduced cardiac fibrosis in both models of diabetes, similar in magnitude to that seen with candesartan. In contrast to candesartan, the anti-fibrotic actions of CXCR4 antagonism occurred in a blood pressure independent manner. Whilst the induction of diabetes did not increase the overall myocardial burden of GFP+ cells, it was accompanied by an increase in GFP+ cells expressing the fibroblast marker alpha-smooth muscle actin and this was attenuated by CXCR4 antagonism. CXCR4 antagonism was also accompanied by increased levels of circulating regulatory T cells. Taken together the current data indicate that pharmacological inhibition of CXCR4 significantly reduces diabetes induced cardiac fibrosis, providing a potentially important therapeutic approach. PMID:26214690

  17. [Biomarkers for liver fibrosis: advances, advantages and disadvantages].

    PubMed

    Cequera, A; García de León Méndez, M C

    2014-01-01

    Liver cirrhosis in Mexico is one of the most important causes of death in persons between the ages of 25 and 50 years. One of the reasons for therapeutic failure is the lack of knowledge about the molecular mechanisms that cause liver disorder and make it irreversible. One of its prevalent anatomical characteristics is an excessive deposition of fibrous tissue that takes different forms depending on etiology and disease stage. Liver biopsy, traditionally regarded as the gold standard of fibrosis staging, has been brought into question over the past decade, resulting in the proposal for developing non-invasive technologies based on different, but complementary, approaches: a biological one that takes the serum levels of products arising from the fibrosis into account, and a more physical one that evaluates scarring of the liver by methods such as ultrasound and magnetic resonance elastography; some of the methods were originally studied and validated in patients with hepatitis C. There is great interest in determining non-invasive markers for the diagnosis of liver fibrosis, since at present there is no panel or parameter efficient and reliable enough for diagnostic use. In this paper, we describe the biomarkers that are currently being used for studying liver fibrosis in humans, their advantages and disadvantages, as well as the implementation of new-generation technologies and the evaluation of their possible use in the diagnosis of fibrosis. PMID:24954541

  18. Utility of Noninvasive Markers of Fibrosis in Cholestatic Liver Diseases.

    PubMed

    Corpechot, Christophe

    2016-02-01

    Methods of liver fibrosis assessment have changed considerably in the last 20 years, and noninvasive markers now have been recognized as major first-line tools in the management of patients with chronic viral hepatitis infection. But what about the efficiency and utility of these surrogate indices for the more uncommon chronic cholestatic liver diseases, namely primary biliary cirrhosis and primary sclerosing cholangitis? This article provides clinicians with a global overview of what is currently known in the field. Both diagnostic and prognostic aspects of noninvasive markers of fibrosis in cholestatic liver diseases are presented and discussed. PMID:26593296

  19. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation

    PubMed Central

    Lan, Tian; Kisseleva, Tatiana; Brenner, David A.

    2015-01-01

    Reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX) play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs) as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4) to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), or sonic hedgehog (Shh) in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days). Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC. PMID:26222337

  20. Liver and lung transplantation in cystic fibrosis: an adult cystic fibrosis centre's experience.

    PubMed

    Sivam, S; Al-Hindawi, Y; Di Michiel, J; Moriarty, C; Spratt, P; Jansz, P; Malouf, M; Plit, M; Pleass, H; Havryk, A; Bowen, D; Haber, P; Glanville, A R; Bye, P T P

    2016-07-01

    Liver disease develops in one-third of patients with cystic fibrosis (CF). It is rare for liver disease to have its onset after 20 years of age. Lung disease, however, is usually more severe in adulthood. A retrospective analysis was performed on nine patients. Three patients required lung transplantation approximately a decade after liver transplant, and another underwent combined liver and lung transplants. Four additional patients with liver transplants are awaiting assessment for lung transplants. One patient is awaiting combined liver and lung transplants. With increased survival in CF, several patients may require more than single organ transplantation. PMID:27405894

  1. Pathobiology of liver fibrosis: a translational success story

    PubMed Central

    Lee, Youngmin A; Wallace, Michael C; Friedman, Scott L

    2015-01-01

    Reversibility of hepatic fibrosis and cirrhosis following antiviral therapy for hepatitis B or C has advanced the prospect of developing antifibrotic therapies for patients with chronic liver diseases, especially non-alcoholic steatohepatitis. Mechanisms of fibrosis have focused on hepatic stellate cells, which become fibrogenic myofibroblasts during injury through ‘activation’, and are at the nexus of efforts to define novel drug targets. Recent studies have clarified pathways of stellate cell gene regulation and epigenetics, emerging pathways of fibrosis regression through the recruitment and amplification of fibrolytic macrophages, nuanced responses of discrete inflammatory cell subsets and the identification of the ‘ductular reaction’ as a marker of severe injury and repair. Based on our expanded knowledge of fibrosis pathogenesis, attention is now directed towards strategies for antifibrotic therapies and regulatory challenges for conducting clinical trials with these agents. New therapies are attempting to: 1) Control or cure the primary disease or reduce tissue injury; 2) Target receptor-ligand interactions and intracellular signaling; 3) Inhibit fibrogenesis; and 4) Promote resolution of fibrosis. Progress is urgently needed in validating non-invasive markers of fibrosis progression and regression that can supplant biopsy and shorten the duration of clinical trials. Both scientific and clinical challenges remain, however the past three decades of steady progress in understanding liver fibrosis have contributed to an emerging translational success story, with realistic hopes for antifibrotic therapies to treat patients with chronic liver disease in the near future. PMID:25681399

  2. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis

    PubMed Central

    Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio

    2016-01-01

    Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284

  3. Non-invasive Markers of Liver Fibrosis: Adjuncts or Alternatives to Liver Biopsy?

    PubMed Central

    Chin, Jun L.; Pavlides, Michael; Moolla, Ahmad; Ryan, John D.

    2016-01-01

    Liver fibrosis reflects sustained liver injury often from multiple, simultaneous factors. Whilst the presence of mild fibrosis on biopsy can be a reassuring finding, the identification of advanced fibrosis is critical to the management of patients with chronic liver disease. This necessity has lead to a reliance on liver biopsy which itself is an imperfect test and poorly accepted by patients. The development of robust tools to non-invasively assess liver fibrosis has dramatically enhanced clinical decision making in patients with chronic liver disease, allowing a rapid and informed judgment of disease stage and prognosis. Should a liver biopsy be required, the appropriateness is clearer and the diagnostic yield is greater with the use of these adjuncts. While a number of non-invasive liver fibrosis markers are now used in routine practice, a steady stream of innovative approaches exists. With improvement in the reliability, reproducibility and feasibility of these markers, their potential role in disease management is increasing. Moreover, their adoption into clinical trials as outcome measures reflects their validity and dynamic nature. This review will summarize and appraise the current and novel non-invasive markers of liver fibrosis, both blood and imaging based, and look at their prospective application in everyday clinical care. PMID:27378924

  4. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis.

    PubMed

    Martin, Katherine; Pritchett, James; Llewellyn, Jessica; Mullan, Aoibheann F; Athwal, Varinder S; Dobie, Ross; Harvey, Emma; Zeef, Leo; Farrow, Stuart; Streuli, Charles; Henderson, Neil C; Friedman, Scott L; Hanley, Neil A; Piper Hanley, Karen

    2016-01-01

    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis. PMID:27535340

  5. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis

    PubMed Central

    Martin, Katherine; Pritchett, James; Llewellyn, Jessica; Mullan, Aoibheann F.; Athwal, Varinder S.; Dobie, Ross; Harvey, Emma; Zeef, Leo; Farrow, Stuart; Streuli, Charles; Henderson, Neil C.; Friedman, Scott L.; Hanley, Neil A.; Piper Hanley, Karen

    2016-01-01

    Fibrosis due to extracellular matrix (ECM) secretion from myofibroblasts complicates many chronic liver diseases causing scarring and organ failure. Integrin-dependent interaction with scar ECM promotes pro-fibrotic features. However, the pathological intracellular mechanism in liver myofibroblasts is not completely understood, and further insight could enable therapeutic efforts to reverse fibrosis. Here, we show that integrin beta-1, capable of binding integrin alpha-11, regulates the pro-fibrotic phenotype of myofibroblasts. Integrin beta-1 expression is upregulated in pro-fibrotic myofibroblasts in vivo and is required in vitro for production of fibrotic ECM components, myofibroblast proliferation, migration and contraction. Serine/threonine-protein kinase proteins, also known as P21-activated kinase (PAK), and the mechanosensitive factor, Yes-associated protein 1 (YAP-1) are core mediators of pro-fibrotic integrin beta-1 signalling, with YAP-1 capable of perpetuating integrin beta-1 expression. Pharmacological inhibition of either pathway in vivo attenuates liver fibrosis. PAK protein inhibition, in particular, markedly inactivates the pro-fibrotic myofibroblast phenotype, limits scarring from different hepatic insults and represents a new tractable therapeutic target for treating liver fibrosis. PMID:27535340

  6. Antifibrotic effect of heparin on liver fibrosis model in rats

    PubMed Central

    Shah, Binita; Shah, Gaurang

    2012-01-01

    AIM: To evaluate the effect of chronic thrombin inhibition by heparin on experimentally induced chronic liver injury (liver fibrosis) in rats. METHODS: Chronic liver injury (liver fibrosis) was induced in Wistar rats by oral administration of carbon tetrachloride (CCl4) for 7 wk, an animal model with persistent severe hepatic fibrosis. Intravenous administration of the thrombin antagonist (heparin) started 1 wk after the start of CCl4 intoxication for 6 wk. After completion of treatment (7 wk), markers of hepatic dysfunction were measured and changes evaluated histopathologically. RESULTS: Higher serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), total, direct and indirect bilirubin levels, as well as lower fibrinogen levels, were found in CCl4 intoxicated rats. Heparin, silymarin and combination of drug (heparin and silymarin) treatment for 6 wk prevented a rise in SGOT, SGPT, ALP, total, direct and indirect bilirubin levels and improved fibrinogen levels. Deterioration in hepatic function determined by the fibrosis area was retarded, as evident from hepatic histopathology. Total protein levels were not changed in all groups. CONCLUSION: Heparin, a thrombin antagonist, preserved hepatic function and reduced severity of hepatic dysfunction/fibrogenesis. Combination of heparin and silymarin produced additional benefits on liver fibrosis. PMID:23494756

  7. Remission of liver fibrosis by interferon-alpha 2b.

    PubMed

    Moreno, M G; Muriel, P

    1995-08-01

    Fibrosis is a dynamic process associated with the continuous deposition and resorption of connective tissue, mainly collagen. Therapeutic strategies are emerging by which this dynamic process can be modulated. Since interferons are known to inhibit collagen production, the aim of this study was to investigate if the administration of interferon-alpha 2b (IFN-alpha) can restore the normal hepatic content of collagen in rats with established fibrosis. Fibrosis was induced by prolonged bile duct ligation. IFN-alpha (100,000 IU/rat/day; s.c.) was administered to fibrotic rats for 15 days. Bile duct ligation increased liver collagen content 6-fold. In addition, serum and liver markers of hepatic injury increased significantly; liver histology showed an increase in collagen deposition, and the normal architecture was lost, with large zones of necrosis being observed frequently. IFN-alpha administration reversed to normal the values of all the biochemical markers measured and restored the normal architecture of the liver. Our results demonstrated that IFN-alpha is useful in reversing fibrosis and liver damage induced by biliary obstruction in the rat. However, further investigations are required to evaluate the therapeutic relevance of interferons on non-viral fibrosis and cholestasis. PMID:7646558

  8. Senescence of activated stellate cells limits liver fibrosis

    PubMed Central

    Krizhanovsky, Valery; Yon, Monica; Dickins, Ross A.; Hearn, Stephen; Simon, Janelle; Miething, Cornelius; Yee, Herman; Zender, Lars; Lowe, Scott W.

    2011-01-01

    Summary Cellular senescence acts as a potent mechanism of tumor suppression; however, its functional contribution to non-cancer pathologies has not been examined. Here we show that senescent cells accumulate in murine livers treated to produce fibrosis, a precursor pathology to cirrhosis. The senescent cells are derived primarily from activated hepatic stellate cells, which initially proliferate in response to liver damage and produce the extracellular matrix deposited in the fibrotic scar. In mice lacking key senescence regulators, stellate cells continue to proliferate, leading to excessive liver fibrosis. Furthermore, senescent activated stellate cells exhibit gene expression profile consistent with cell cycle exit, reduced secretion of extracellular matrix components, enhanced secretion of extracellular matrix degrading enzymes, and enhanced immune surveillance. Accordingly natural killer cells preferentially kill senescent activated stellate cells in vitro and in vivo, thereby facilitating the resolution of fibrosis. Therefore, the senescence program limits the fibrogenic response to acute tissue damage. PMID:18724938

  9. Nanotechnology applications for the therapy of liver fibrosis

    PubMed Central

    Giannitrapani, Lydia; Soresi, Maurizio; Bondì, Maria Luisa; Montalto, Giuseppe; Cervello, Melchiorre

    2014-01-01

    Chronic liver diseases represent a major global health problem both for their high prevalence worldwide and, in the more advanced stages, for the limited available curative treatment options. In fact, when lesions of different etiologies chronically affect the liver, triggering the fibrogenesis mechanisms, damage has already occurred and the progression of fibrosis will have a major clinical impact entailing severe complications, expensive treatments and death in end-stage liver disease. Despite significant advances in the understanding of the mechanisms of liver fibrinogenesis, the drugs used in liver fibrosis treatment still have a limited therapeutic effect. Many drugs showing potent antifibrotic activities in vitro often exhibit only minor effects in vivo because insufficient concentrations accumulate around the target cell and adverse effects result as other non-target cells are affected. Hepatic stellate cells play a critical role in liver fibrogenesis , thus they are the target cells of antifibrotic therapy. The application of nanoparticles has emerged as a rapidly evolving area for the safe delivery of various therapeutic agents (including drugs and nucleic acid) in the treatment of various pathologies, including liver disease. In this review, we give an overview of the various nanotechnology approaches used in the treatment of liver fibrosis. PMID:24966595

  10. Chronic restraint stress reduces carbon tetrachloride-induced liver fibrosis

    PubMed Central

    LI, MENG; SUN, QUAN; LI, SHENGLI; ZHAI, YANAN; WANG, JINGJING; CHEN, BAIAN; LU, JING

    2016-01-01

    Stress as a cofactor has been reported to affect the progression and severity of liver diseases. The present study investigated the effect of chronic restraint stress on carbon tetrachloride (CCl4)-induced liver fibrosis. A total of 30 male BALB/c mice were randomly divided into three groups: Oil-treated control group; CCl4-treated group; and CCl4 + restraint-treated group. CCl4 was administrated via intraperitoneal injection once every 3 days over a period of 42 days. In the CCl4 + restraint-treated group, mice were immobilized using 50 ml centrifuge tubes for 0.5 h to inflict chronic restraint stress immediately after the injection of CCl4. On day 42, blood and liver tissue samples were collected for analysis. The effect of restraint on CCl4-induced liver fibrosis in mice was evaluated by analyzing the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histopathological examination of liver samples was performed using hematoxylin and eosin (HE), Masson's trichrome, 5-hydroxytryptamine 2B (5-HT2B) receptor and α-smooth muscle actin (α-SMA) immumohistochemical staining. ALT, AST, 5-HT2B receptor and α-SMA expression levels were significantly increased in mice exposed to CCl4 in comparison with those in the oil-treated control mice (P<0.01). However, these increases were significantly reduced by exposure to restraint (P<0.05). HE and Masson's trichrome staining revealed that restraint can alleviate CCl4-induced liver fibrosis. These results suggest that chronic restraint stress reduces the development of liver fibrosis by inhibiting the activation of hepatic stellate cells via 5-HT2B receptor. Therefore, restraint may be a useful therapeutic approach in the management of liver fibrosis. PMID:27284296

  11. Liver Fibrosis Occurs Through Dysregulation of MyD88-dependent Innate B cell Activity

    PubMed Central

    Thapa, Manoj; Chinnadurai, Raghavan; Velazquez, Victoria M.; Tedesco, Dana; Elrod, Elizabeth; Han, Jin-Hwan; Sharma, Prachi; Ibegbu, Chris; Gewirtz, Andrew; Anania, Frank; Pulendran, Bali; Suthar, Mehul S.; Grakoui, Arash

    2015-01-01

    Chronic liver disease mediated by activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Here, we postulated that the immune regulatory properties of HSCs might promote the profibrogenic activity of B cells. Fibrosis is completely attenuated in carbon tetrachloride (CCl4)-treated B cell deficient μMT mice showing that B cells are required. The retinoic acid produced by HSCs augmented B cell survival, plasma cell marker CD138 expression, and IgG production. These activities were reversed following the addition of the retinoic acid inhibitor, LE540. Transcriptional profiling of fibrotic liver B cells revealed an increased expression of genes related to NF-κB activation, proinflammatory cytokine production and CD40 signaling suggesting that these B cells are activated and may be acting as inflammatory cells. Biological validation experiments also revealed increased activation (CD44 and CD86 expressions), constitutive IgG production and secretion of the proinflammatory cytokines TNF-α, MCP-1 and MIP1-α. Likewise targeted deletion of B-cell-intrinsic MyD88 signaling, an innate adaptor with involvement in RA signaling, resulted in reduced infiltration of migratory CD11c+ dendritic cells and Ly6C++ monocytes, and hence reduced liver pathology. Conclusion Our findings demonstrate that liver fibrosis occurs through a mechanism of HSC-mediated augmentation of innate B cell activity and highlight B cells as an important ‘first responders’ of the intrahepatic immune environment. PMID:25711908

  12. Effect of Pressure on Liver Stiffness During the Development of Liver Fibrosis in Rabbits.

    PubMed

    Tang, Wen Bo; Xu, Qing Hua; Jiao, Zi Yu; Wu, Rong; Song, Qing; Luo, Yu Kun

    2016-01-01

    This study was designed to investigate whether hepatic arterial pressure and portal pressure have an effect on liver stiffness during the development of liver fibrosis. Liver fibrosis was induced in 50 healthy New Zealand white rabbits. Laparotomy was performed to measure liver stiffness, and the portal vein and hepatic artery were successively ligated to repeat the measurements. A significant difference was observed among liver stiffness values measured at different time points (F = 22.82, p < 0.001). Differences between original liver stiffness and liver stiffness measured after portal ligation were positively correlated with portal pressure (r = 0.801, p < 0.001). In animals with grade 4 liver fibrosis, the increase in liver stiffness caused by pressure was greater than that caused by extracellular matrix accumulation (p = 0.002). In conclusion, hepatic arterial pressure and portal pressure have a significant effect on liver stiffness during the development of liver fibrosis. PMID:26497767

  13. Endothelial dysfunction correlates with liver fibrosis in chronic HCV infection.

    PubMed

    Barone, Michele; Viggiani, Maria Teresa; Amoruso, Annabianca; Schiraldi, Serafina; Zito, Annapaola; Devito, Fiorella; Cortese, Francesca; Gesualdo, Michele; Brunetti, Natale; Di Leo, Alfredo; Scicchitano, Pietro; Ciccone, Marco Matteo

    2015-01-01

    Background. Hepatitis C virus (HCV) infection can exert proatherogenic activities due to its direct action on vessel walls and/or via the chronic inflammatory process involving the liver. Aims. To clarify the role of HCV in atherosclerosis development in monoinfected HCV patients at different degrees of liver fibrosis and with no risk factors for coronary artery disease. Methods. Forty-five patients were included. Clinical, serological, and anthropometric parameters, liver fibrosis (transient liver elastometry (fibroscan) and aspartate aminotransferase to platelet ratio index (APRI)), carotid intima-media thickness (c-IMT), and brachial artery flow-mediated vasodilatation (FMD) were assessed. Patients were divided into 3 tertiles according to fibroscan values. Results. Patients in the third tertile (fibroscan value >11.5 KPa) showed FMD values were significantly lower than second and first tertiles (4.7 ± 1.7% versus 7.1 ± 2.8%, p = 0.03). FMD values were inversely related to liver elastomeric values. c-IMT values were normal. The risk for endothelial dysfunction development in the third tertile (p = 0.02) was 6.9 higher than the first tertile. A fibroscan value >11.5 KPa had a positive predictive power equal to 79% for endothelial dysfunction. Conclusions. HCV advanced liver fibrosis promotes atherosclerosis by inducing endothelial dysfunction independently of common cardiovascular risk factors. PMID:26000012

  14. Endothelial Dysfunction Correlates with Liver Fibrosis in Chronic HCV Infection

    PubMed Central

    Barone, Michele; Viggiani, Maria Teresa; Amoruso, Annabianca; Schiraldi, Serafina; Devito, Fiorella; Brunetti, Natale; Di Leo, Alfredo; Ciccone, Marco Matteo

    2015-01-01

    Background. Hepatitis C virus (HCV) infection can exert proatherogenic activities due to its direct action on vessel walls and/or via the chronic inflammatory process involving the liver. Aims. To clarify the role of HCV in atherosclerosis development in monoinfected HCV patients at different degrees of liver fibrosis and with no risk factors for coronary artery disease. Methods. Forty-five patients were included. Clinical, serological, and anthropometric parameters, liver fibrosis (transient liver elastometry (fibroscan) and aspartate aminotransferase to platelet ratio index (APRI)), carotid intima-media thickness (c-IMT), and brachial artery flow-mediated vasodilatation (FMD) were assessed. Patients were divided into 3 tertiles according to fibroscan values. Results. Patients in the third tertile (fibroscan value >11.5 KPa) showed FMD values were significantly lower than second and first tertiles (4.7 ± 1.7% versus 7.1 ± 2.8%, p = 0.03). FMD values were inversely related to liver elastomeric values. c-IMT values were normal. The risk for endothelial dysfunction development in the third tertile (p = 0.02) was 6.9 higher than the first tertile. A fibroscan value >11.5 KPa had a positive predictive power equal to 79% for endothelial dysfunction. Conclusions. HCV advanced liver fibrosis promotes atherosclerosis by inducing endothelial dysfunction independently of common cardiovascular risk factors. PMID:26000012

  15. Hepatic apoptosis can modulate liver fibrosis through TIMP1 pathway.

    PubMed

    Wang, Kewei; Lin, Bingliang; Brems, John J; Gamelli, Richard L

    2013-05-01

    Apoptotic injury participates in hepatic fibrosis, but the molecular mechanisms are not well understood. The present study aimed to investigate the role of inducible TIMP1 in the pathogenesis of hepatic apoptosis-fibrosis. Apoptosis was induced with GCDC, LPS, and alcohol in precision-cut liver slices or bile duct ligation (BDL) in rats, as reflected by caspase-3 activity, TUNEL assay, and apoptosis-related gene profiles. The hepatic fibrosis was detected with Picrosirius staining, hydroxyproline determination, and expression profiling of fibrosis-related genes. Levels of TIMP1 were upregulated by the hepatic apoptosis, but downregulated by caspase inhibitor. The inducible TIMP1 was apoptosis-dependent. Once TIMP1 was inhibited with treatment of TIMP1-siRNA, the fibrotic response was reduced as demonstrated by hydroxyproline assay. In addition, the expression of fibrosis-related genes aSMA, CTGF, and TGFb2r were down-regulated subsequent to the treatment of TIMP1-siRNA. TIMP1 could mediate the expression of fibrosis-related genes. TIMP1 was transcriptionally regulated by nuclear factor c-Jun as demonstrated by EMSA and ChIP assay. The treatment of c-Jun siRNA could significantly decrease the expression of TIMP1 induced by alcohol, GCDC, or LPS treatment. Hepatic apoptosis induces the expression of TIMP1. Inducible TIMP1 can modulate the expression of fibrosis-related genes in liver. TIMP1 pathway is a potential target for therapeutic intervention of fibrotic liver diseases. PMID:23456624

  16. Quantification of liver fibrosis in chronic hepatitis B virus infection

    PubMed Central

    Jieanu, CF; Ungureanu, BS; Săndulescu, DL; Gheonea, IA; Tudorașcu, DR; Ciurea, ME; Purcărea, VL

    2015-01-01

    Chronic hepatitis B virus infection (HBV) is considered a global public issue with more than 78.000 people per year dying of its evolution. With liver transplantation as the only viable therapeutic option but only in end-stage disease, hepatitis B progression may generally be influenced by various factors. Assessing fibrosis stage plays an important part in future decisions on the patients’ wealth with available antiviral agents capable of preventing fibrosis passing to an end-stage liver disease. Several methods have been taken into consideration as an alternative for HBV quantification status, such as imaging techniques and serum based biomarkers. Magnetic resonance imaging, ultrasound, and elastography are considered non-invasive imaging techniques frequently used to quantify disease progression as well as patients future prognostic. Consequently, both direct and indirect biomarkers have been studied for differentiating between fibrosis stages. This paper reviews the current standings in HBV non-invasive liver fibrosis quantification, presenting the prognostic factors and available assessment procedures that might eventually replace liver biopsy. PMID:26351528

  17. Dendritic Cell Regulation of Carbon Tetrachloride-induced Murine Liver Fibrosis Regression

    PubMed Central

    Jiao, JingJing; Sastre, David; Isabel Fiel, Maria; Lee, Ursula E.; Ghiassi-Nejad, Zahra; Ginhoux, Florent; Vivier, Eric; Friedman, Scott L.; Merad, Miriam; Aloman, Costica

    2011-01-01

    Although hepatic fibrosis typically follows chronic inflammation, fibrosis will often regress after cessation of liver injury. Here we examined whether liver dendritic cells (DC) play a role in liver fibrosis regression using carbon tetrachloride (CCl4) to induce liver injury. We examined DC dynamics during fibrosis regression and their capacity to modulate liver fibrosis regression upon cessation of injury. We show that conditional DC depletion soon after discontinuation of the liver insult leads to delayed fibrosis regression and reduced clearance of activated hepatic stellate cells, the key fibrogenic cell in liver. Conversely, DC expansion induced either by Flt3L (Fms-like tyrosine kinase-3 ligand) or adoptive transfer of purified DC accelerates liver fibrosis regression. DC modulation of fibrosis was partially dependent on MMP-9, as MMP-9 inhibition abolished Flt3L-mediated effect and the ability of transferred DC to accelerate fibrosis regression. In contrast, transfer of DC from MMP-9 deficient mice failed to improve fibrosis regression. Conclusion Altogether, these results suggest that DC increase fibrosis regression, and that the effect is correlated with their production of MMP-9. These results also suggest that Flt3L treatment during fibrosis resolution merits evaluation to accelerate regression of advanced liver fibrosis. PMID:21898476

  18. Prediction of Post-Operative Liver Dysfunction by Serum Markers of Liver Fibrosis in Hepatocellular Carcinoma

    PubMed Central

    Shen, Yinghao; Shi, Guoming; Huang, Cheng; Zhu, Xiaodong; Chen, Si; Sun, Huichuan; Zhou, Jian; Fan, Jia

    2015-01-01

    Aim To investigate the role of biomarkers in predicting postoperative liver dysfunction in patients with hepatocellular carcinoma (HCC). Methods A total of 200 patients operated from July 2009 to June 2010 at Zhongshan Hospital, Fudan University for pathologically confirmed HCC were retrospectively analyzed for clinical data, HBD DNA level and serum biochemical markers for liver fibrosis. The patients were followed up to observersation end point. Correlation of the monitored parameters with postoperative liver dysfunction and patient survival was statistically analyzed. Results Preoperative hepatitis B virus (HBV) DNA level, serum prealbumin (PA) hyaluronic acid (HA), and laminin (LN) levels correlated with postoperative liver dysfunction. A predictive model was generated using these 4 parameters and validated in 89 HCC patients with sensitivity and specificity of 0.625 and 0.912, respectively. However, no correlation was identified between postoperative liver function and overall survival. Conclusion Liver fibrosis markers could be preoperatively used in predicting postoperative liver dysfunction in HCC patients. PMID:26501145

  19. Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease

    PubMed Central

    Shoji, Hirotaka; Yoshio, Sachiyo; Mano, Yohei; Kumagai, Erina; Sugiyama, Masaya; Korenaga, Masaaki; Arai, Taeang; Itokawa, Norio; Atsukawa, Masanori; Aikata, Hiroshi; Hyogo, Hideyuki; Chayama, Kazuaki; Ohashi, Tomohiko; Ito, Kiyoaki; Yoneda, Masashi; Nozaki, Yuichi; Kawaguchi, Takumi; Torimura, Takuji; Abe, Masanori; Hiasa, Yoichi; Fukai, Moto; Kamiyama, Toshiya; Taketomi, Akinobu; Mizokami, Masashi; Kanto, Tatsuya

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic non-viral liver disease. Activation of macrophages and hepatic stellate cells is a critical step that promotes liver fibrosis. We aimed to explore the feasibility of interleukin-34 (IL-34), a key regulator of macrophages, as a fibrosis marker in patients with NAFLD. We enrolled 197 liver biopsy-proven NAFLD patients. We evaluated the serum levels of IL-34, macrophage-colony stimulating factor (M-CSF), soluble CD163 (sCD163), 40 cytokines/chemokines, hyaluronic acid, type IV collagen 7s, and clinically-approved fibrosis scores. IL-34 increased with the progression of fibrosis and was an independent marker for liver fibrosis. Immunostaining experiments, using resected liver specimens from NAFLD patients, revealed that IL-34 was mainly expressed on liver fibroblasts. IL-34 based fibrosis score (0.0387*IL-34 (pg/ml) + 0.3623*type IV collagen 7s (ng/ml) + 0.0184*age (year)–1.1850) was a practical predictive model of liver fibrosis. Using receiver-operating characteristic analyses, the area under the curve, sensitivity, and specificity of IL-34 based fibrosis score were superior or comparable to the other fibrosis biomarkers and scores. In conclusion, the IL-34 based fibrosis score, including serum IL-34, type IV collagen 7s and age, is a feasible diagnostic marker of liver fibrosis in NAFLD patients. PMID:27363523

  20. Deferoxamine alleviates liver fibrosis induced by CCl4 in rats.

    PubMed

    Mohammed, Aya; Abd Al Haleem, Ekram N; El-Bakly, Wesam M; El-Demerdash, Ebtehal

    2016-08-01

    Several chronic liver diseases can lead to the occurrence of hepatic fibrosis through the accumulation of iron, which causes induction of oxidative stress and consequently activation of fibrogenesis. The present study was designed to investigate the potential antifibrotic and anti-oxidant effects of deferoxamine (DFO), a well-known iron chelator in an experimental rat model of liver injury using carbon tetrachloride (CCl4 ). First, the potential effective dose of DFO was screened against CCl4 -induced acute hepatotoxicity. Then, rats were co-treated with DFO (300 mg/kg, i.p.) for 6 weeks starting from the third week of CCl4 induction of chronic hepatotoxicity. Liver function was assessed in addition to histopathological examination. Furthermore, oxidative stress and fibrosis markers were assessed. It was found that treatment of animals with DFO significantly counteracted the changes in liver function; histopathological lesions and hepatic iron deposition that were induced by CCl4 . DFO also significantly counteracted the CCl4 -induced lipid peroxidation increase and reduction in antioxidant activities of superoxide dismutase and glutathione peroxidase enzymes. In addition, DFO ameliorated significantly liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cells (HSCs) activation marker; alpha smooth muscle actin and transforming growth factor-beta (TGF-β). Together, these findings indicate that DFO possesses a potent antifibrotic effect due to its antioxidant properties that counteracted oxidative stress and lipid peroxidation and restored antioxidant enzymes activities as well as reducing HSCs activation and fibrogenesis. PMID:27168353

  1. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation

    PubMed Central

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  2. ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation.

    PubMed

    Zhang, Kun; Chang, Yanan; Shi, Zhemin; Han, Xiaohui; Han, Yawei; Yao, Qingbin; Hu, Zhimei; Cui, Hongmei; Zheng, Lina; Han, Tao; Hong, Wei

    2016-01-01

    Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis. PMID:27435808

  3. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy.

    PubMed

    Darwish, Samar F; El-Bakly, Wesam M; El-Naga, Reem N; Awad, Azza S; El-Demerdash, Ebtehal

    2015-11-01

    Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response. PMID:26358138

  4. Effective Prevention of Liver Fibrosis by Liver-targeted Hydrodynamic Gene Delivery of Matrix Metalloproteinase-13 in a Rat Liver Fibrosis Model.

    PubMed

    Abe, Hiroyuki; Kamimura, Kenya; Kobayashi, Yuji; Ohtsuka, Masato; Miura, Hiromi; Ohashi, Riuko; Yokoo, Takeshi; Kanefuji, Tsutomu; Suda, Takeshi; Tsuchida, Masanori; Aoyagi, Yutaka; Zhang, Guisheng; Liu, Dexi; Terai, Shuji

    2016-01-01

    Liver fibrosis is the final stage of liver diseases that lead to liver failure and cancer. While various diagnostic methods, including the use of serum marker, have been established, no standard therapy has been developed. The objective of this study was to assess the approach of overexpressing matrix metalloproteinase-13 gene (MMP13) in rat liver to prevent liver fibrosis progression. A rat liver fibrosis model was established by ligating the bile duct, followed by liver-targeted hydrodynamic gene delivery of a MMP13 expression vector, containing a CAG promoter-MMP13-IRES-tdTomato-polyA cassette. After 14 days, the serum level of MMP13 peaked at 71.7 pg/ml in MMP13-treated group, whereas the nontreated group only showed a level of ~5 pg/ml (P < 0.001). These levels were sustained for the next 60 days. The statistically lower level of the hyaluronic acids in treated group versus the nontreated group (P < 0.05) reveals the therapeutic effect of MMP13 overexpression. Quantitative analysis of tissue stained with sirius red showed a statistically larger volume of fibrotic tissue in the nontreated group compared to that of MMP13-treated rats (P < 0.05). These results suggest that the liver-targeted hydrodynamic delivery of MMP13 gene could be effective in the prevention of liver fibrosis. PMID:26730813

  5. Dihydroartemisinin alleviates bile duct ligation-induced liver fibrosis and hepatic stellate cell activation by interfering with the PDGF-βR/ERK signaling pathway.

    PubMed

    Chen, Qin; Chen, Lianyun; Kong, Desong; Shao, Jiangjuan; Wu, Li; Zheng, Shizhong

    2016-05-01

    Liver fibrosis represents a frequent event following chronic insult to trigger wound healing responses in the liver. Activation of hepatic stellate cells (HSCs), which is a pivotal event during liver fibrogenesis, is accompanied by enhanced expressions of a series of marker proteins and pro-fibrogenic signaling molecules. Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb Artemisia annua L., and can inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to attenuate lung injury and fibrosis. However, the effect of DHA on liver fibrosis remains unclear. The aim of this study was to investigate the effect of DHA on bile duct ligation-induced injury and fibrosis in rats. DHA improved the liver histological architecture and attenuated collagen deposition in the fibrotic rat liver. Experiments in vitro showed that DHA inhibited the proliferation of HSCs and arrested the cell cycle at the S checkpoint by altering several cell-cycle regulatory proteins. Moreover, DHA reduced the protein expressions of a-SMA, α1 (I) collagen and fibronectin, being associated with interference of the platelet-derived growth factor β receptor (PDGF-βR)-mediated ERK pathway. These data collectively revealed that DHA relieved liver fibrosis possibly by targeting HSCs via the PDGF-βR/ERK pathway. DHA may be a therapeutic antifibrotic agent for the treatment of hepatic fibrosis. PMID:27038258

  6. Gene Expression Patterns Associated With Histopathology in Toxic Liver Fibrosis.

    PubMed

    Ippolito, Danielle L; AbdulHameed, Mohamed Diwan M; Tawa, Gregory J; Baer, Christine E; Permenter, Matthew G; McDyre, Bonna C; Dennis, William E; Boyle, Molly H; Hobbs, Cheryl A; Streicker, Michael A; Snowden, Bobbi S; Lewis, John A; Wallqvist, Anders; Stallings, Jonathan D

    2016-01-01

    Toxic industrial chemicals induce liver injury, which is difficult to diagnose without invasive procedures. Identifying indicators of end organ injury can complement exposure-based assays and improve predictive power. A multiplexed approach was used to experimentally evaluate a panel of 67 genes predicted to be associated with the fibrosis pathology by computationally mining DrugMatrix, a publicly available repository of gene microarray data. Five-day oral gavage studies in male Sprague Dawley rats dosed with varying concentrations of 3 fibrogenic compounds (allyl alcohol, carbon tetrachloride, and 4,4'-methylenedianiline) and 2 nonfibrogenic compounds (bromobenzene and dexamethasone) were conducted. Fibrosis was definitively diagnosed by histopathology. The 67-plex gene panel accurately diagnosed fibrosis in both microarray and multiplexed-gene expression assays. Necrosis and inflammatory infiltration were comorbid with fibrosis. ANOVA with contrasts identified that 51 of the 67 predicted genes were significantly associated with the fibrosis phenotype, with 24 of these specific to fibrosis alone. The protein product of the gene most strongly correlated with the fibrosis phenotype PCOLCE (Procollagen C-Endopeptidase Enhancer) was dose-dependently elevated in plasma from animals administered fibrogenic chemicals (P < .05). Semiquantitative global mass spectrometry analysis of the plasma identified an additional 5 protein products of the gene panel which increased after fibrogenic toxicant administration: fibronectin, ceruloplasmin, vitronectin, insulin-like growth factor binding protein, and α2-macroglobulin. These results support the data mining approach for identifying gene and/or protein panels for assessing liver injury and may suggest bridging biomarkers for molecular mediators linked to histopathology. PMID:26396155

  7. Common pathway signature in lung and liver fibrosis

    PubMed Central

    Makarev, Eugene; Izumchenko, Evgeny; Aihara, Fumiaki; Wysocki, Piotr T.; Zhu, Qingsong; Buzdin, Anton; Sidransky, David; Zhavoronkov, Alex; Atala, Anthony

    2016-01-01

    ABSTRACT Fibrosis, a progressive accumulation of extracellular matrix components, encompasses a wide spectrum of distinct organs, and accounts for an increasing burden of morbidity and mortality worldwide. Despite the tremendous clinical impact, the mechanisms governing the fibrotic process are not yet understood, and to date, no clinically reliable therapies for fibrosis have been discovered. Here we applied Regeneration Intelligence, a new bioinformatics software suite for qualitative analysis of intracellular signaling pathway activation using transcriptomic data, to assess a network of molecular signaling in lung and liver fibrosis. In both tissues, our analysis detected major conserved signaling pathways strongly associated with fibrosis, suggesting that some of the pathways identified by our algorithm but not yet wet-lab validated as fibrogenesis related, may be attractive targets for future research. While the majority of significantly disrupted pathways were specific to histologically distinct organs, several pathways have been concurrently activated or downregulated among the hepatic and pulmonary fibrosis samples, providing new evidence of evolutionary conserved pathways that may be relevant as possible therapeutic targets. While future confirmatory studies are warranted to validate these observations, our platform proposes a promising new approach for detecting fibrosis-promoting pathways and tailoring the right therapy to prevent fibrogenesis. PMID:27267766

  8. Hepatopulmonary Syndrome in Patients With Cystic Fibrosis and Liver Disease.

    PubMed

    Breuer, Oded; Shteyer, Eyal; Wilschanski, Michael; Perles, Zeev; Cohen-Cymberknoh, Malena; Kerem, Eitan; Shoseyov, David

    2016-02-01

    Hepatopulmonary syndrome (HPS) is a liver-induced lung disorder defined as a triad of liver disease, pulmonary vascular dilatation, and a defect in oxygenation. It can complicate chronic liver disease of any etiology, but is most commonly associated with portal hypertension. Severe liver disease with portal hypertension is present in 2% to 8% of patients with cystic fibrosis (CF), but to date, to our knowledge, only one patient with CF has been reported to suffer from HPS. Here, we describe two patients with CF diagnosed with HPS, one subsequent to unresolved hypoxemia and the other following screening for HPS performed in our center. We speculate that HPS is underdiagnosed in patients with CF because of their coexisting respiratory morbidity, and we advocate routine screening for every patient with CF who has liver disease and portal hypertension. PMID:26867851

  9. Correlation of virtual touch tissue quantification and liver biopsy in a rat liver fibrosis model.

    PubMed

    Hu, Zhiwen; Luo, Jialun; Wei, Hongqin; Ou, Wencai; Xiao, Shuyi; Gan, Man; Ma, Suihong; He, Jingguang; Wu, Daihong; Feng, Guiying; Wei, Jinglu; Liu, Jianhua

    2015-05-01

    Liver fibrosis assessment is very important to the treatment of chronic liver disease. In the present study, Virtual Touch Tissue Quantification (VTQ) and eSie Touch™ elasticity imaging techniques were used to examine the rat liver fibrosis model. Rat liver fibrosis was induced with thioacetamide and the degree of liver fibrosis was determined using pathological diagnosis as a gold standard. The right lobe of the liver was also examined with the VTQ and eSie Touch™ techniques. The VTQ and serological results were correlated and analyzed. The results were compared with those obtained from liver biopsies to investigate the accuracy and diagnostic value of eSie Touch™ and VTQ on the classification of liver fibrosis in rats. A total of 30 successful modeling cases were obtained, with a success rate of 86%. The mean acoustic radiation force impulse (ARFI) elastography‑VTQ values were 1.08, 1.51, 1.88 and 2.50 m/sec for the normal and F1/F2, F3 and F4 fibrosis groups, respectively. A significant correlation (r = 0.969) was identified between the ARFI measurements and the degree of fibrosis assessed by pathological examination (P<0.001). The histological staging results correlated with those of the eSie Touch™ elasticity imaging of the biopsy site (r = 0.913, P<0.001). The predictive values of ARFI for various stages of fibrosis were as follows: F≥1 and 2 ‑ cut‑off >1.250 m/sec (when Vs >1.250 m/sec, the pathological grading was ≥F1/F2) [Area under receiver operating characteristic (AUROC) = 1.00], F≥3 ‑ cut‑off >1.685 m/sec (when Vs >1.685 m/sec, the pathological grading was ≥F3; AUROC = 1.00) and F≥4 ‑ cut‑off >2.166 m/sec (when Vs >2.166 m/sec, the pathological grading is cirrhosis; AUROC = 1.00). In conclusion, the eSie Touch™ elasticity imaging and VTQ techniques may be successfully adopted to assess the extent of liver stiffness. These techniques are expected to replace liver biopsy. PMID:25592825

  10. Correlation analysis between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis

    PubMed Central

    TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI

    2016-01-01

    The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413

  11. Caffeic acid phenethyl ester inhibits liver fibrosis in rats

    PubMed Central

    Li, Mei; Wang, Xiu-Fang; Shi, Juan-Juan; Li, Ya-Ping; Yang, Ning; Zhai, Song; Dang, Shuang-Suo

    2015-01-01

    AIM: To investigate the hepatoprotective effects and antioxidant activity of caffeic acid phenethyl ester (CAPE) in rats with liver fibrosis. METHODS: A total of 75 male Sprague-Dawley rats were randomly assigned to seven experimental groups: a normal group (n = 10), a vehicle group (n = 10), a model group (n = 15), a vitamin E group (n = 10), and three CAPE groups (CAPE 3, 6 and 12 mg/kg, n = 10, respectively). Liver fibrosis was induced in rats by injecting CCl4 subcutaneously, feeding with high fat forage, and administering 30% alcohol orally for 10 wk. Concurrently, CAPE (3, 6 and 12 mg/kg) was intraperitoneally administered daily for 10 wk. After that, serum total bilirubin (TBil), aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured to assess hepatotoxicity. To investigate antioxidant activity of CAPE, malondialdehyde (MDA), glutathione (GSH) levels, catalase (CAT) and superoxide dismutase (SOD) activities in liver tissue were determined. Moreover, the effect of CAPE on α-smooth muscle actin (α-SMA), a characteristic hallmark of activated hepatic stellate cells (HSCs), and NF-E2-related factor 2 (Nrf2), a key transcription factor for antioxidant systems, was investigated by immunohistochemistry. RESULTS: Compared to the model group, intraperitoneal administration of CAPE decreased TBil, ALT, and AST levels in liver fibrosis rats (P < 0.05), while serum TBil was decreased by CAPE in a dose-dependent manner. In addition, the liver hydroxyproline contents in both the 6 and 12 mg/kg CAPE groups were markedly lower than that in the model group (P < 0.05 and P < 0.001, respectively). CAPE markedly decreased MDA levels and, in turn, increased GSH levels, as well as CAT and SOD activities in liver fibrosis rats compared to the model group (P < 0.05). Moreover, CAPE effectively inhibited α-SMA expression while increasing Nrf2 expression compared to the model group (P < 0.01). CONCLUSION: The protective effects of CAPE against liver

  12. A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv⁻/⁻ mice.

    PubMed

    Padda, Ranjit Singh; Gkouvatsos, Konstantinos; Guido, Maria; Mui, Jeannie; Vali, Hojatollah; Pantopoulos, Kostas

    2015-02-15

    Hemojuvelin (Hjv) is a membrane protein that controls body iron metabolism by enhancing signaling to hepcidin. Hjv mutations cause juvenile hemochromatosis, a disease of systemic iron overload. Excessive iron accumulation in the liver progressively leads to inflammation and disease, such as fibrosis, cirrhosis, or hepatocellular cancer. Fatty liver (steatosis) may also progress to inflammation (steatohepatitis) and liver disease, and iron is considered as pathogenic cofactor. The aim of this study was to investigate the pathological implications of parenchymal iron overload due to Hjv ablation in the fatty liver. Wild-type (WT) and Hjv(-/-) mice on C57BL/6 background were fed a standard chow, a high-fat diet (HFD), or a HFD supplemented with 2% carbonyl iron (HFD+Fe) for 12 wk. The animals were analyzed for iron and lipid metabolism. As expected, all Hjv(-/-) mice manifested higher serum and hepatic iron and diminished hepcidin levels compared with WT controls. The HFD reduced iron indexes and promoted liver steatosis in both WT and Hjv(-/-) mice. Notably, steatosis was attenuated in Hjv(-/-) mice on the HFD+Fe regimen. Hjv(-/-) animals gained less body weight and exhibited reduced serum glucose and cholesterol levels. Histological and ultrastructural analysis revealed absence of iron-induced inflammation or liver fibrosis despite early signs of liver injury (expression of α-smooth muscle actin). We conclude that parenchymal hepatic iron overload does not suffice to trigger progression of liver steatosis to steatohepatitis or fibrosis in C57BL/6 mice. PMID:25501544

  13. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine

    PubMed Central

    Warzecha, Klaudia Theresa; Tacke, Frank

    2014-01-01

    Nanomedicine constitutes the emerging field of medical applications for nanotechnology such as nanomaterial-based drug delivery systems. This technology may hold exceptional potential for novel therapeutic approaches to liver diseases. The specific and unspecific targeting of macrophages, hepatic stellate cells (HSC), hepatocytes, and liver sinusoidal endothelial cells (LSEC) using nanomedicine has been developed and tested in preclinical settings. These four major cell types in the liver are crucially involved in the complex sequence of events that occurs during the initiation and maintenance of liver inflammation and fibrosis. Targeting different cell types can be based on their capacity to ingest surrounding material, endocytosis, and specificity for a single cell type can be achieved by targeting characteristic structures such as receptors, sugar moieties or peptide sequences. Macrophages and especially the liver-resident Kupffer cells are in the focus of nanomedicine due to their highly efficient and unspecific uptake of most nanomaterials as well as due to their critical pathogenic functions during inflammation and fibrogenesis. The mannose receptor enables targeting macrophages in liver disease, but macrophages can also become activated by certain nanomaterials, such as peptide-modified gold nanorods (AuNRs) that render them proinflammatory. HSC, the main collagen-producing cells during fibrosis, are currently targeted using nanoconstructs that recognize the mannose 6-phosphate and insulin-like growth factor II, peroxisome proliferator activated receptor 1, platelet-derived growth factor (PDGF) receptor β, or integrins. Targeting of the major liver parenchymal cell, the hepatocyte, has only recently been achieved with high specificity by mimicking apolipoproteins, naturally occurring nanoparticles of the body. LSEC were found to be targeted most efficiently using carboxy-modified micelles and their integrin receptors. This review will summarize important

  14. Therapeutic targeting of liver inflammation and fibrosis by nanomedicine.

    PubMed

    Bartneck, Matthias; Warzecha, Klaudia Theresa; Tacke, Frank

    2014-12-01

    Nanomedicine constitutes the emerging field of medical applications for nanotechnology such as nanomaterial-based drug delivery systems. This technology may hold exceptional potential for novel therapeutic approaches to liver diseases. The specific and unspecific targeting of macrophages, hepatic stellate cells (HSC), hepatocytes, and liver sinusoidal endothelial cells (LSEC) using nanomedicine has been developed and tested in preclinical settings. These four major cell types in the liver are crucially involved in the complex sequence of events that occurs during the initiation and maintenance of liver inflammation and fibrosis. Targeting different cell types can be based on their capacity to ingest surrounding material, endocytosis, and specificity for a single cell type can be achieved by targeting characteristic structures such as receptors, sugar moieties or peptide sequences. Macrophages and especially the liver-resident Kupffer cells are in the focus of nanomedicine due to their highly efficient and unspecific uptake of most nanomaterials as well as due to their critical pathogenic functions during inflammation and fibrogenesis. The mannose receptor enables targeting macrophages in liver disease, but macrophages can also become activated by certain nanomaterials, such as peptide-modified gold nanorods (AuNRs) that render them proinflammatory. HSC, the main collagen-producing cells during fibrosis, are currently targeted using nanoconstructs that recognize the mannose 6-phosphate and insulin-like growth factor II, peroxisome proliferator activated receptor 1, platelet-derived growth factor (PDGF) receptor β, or integrins. Targeting of the major liver parenchymal cell, the hepatocyte, has only recently been achieved with high specificity by mimicking apolipoproteins, naturally occurring nanoparticles of the body. LSEC were found to be targeted most efficiently using carboxy-modified micelles and their integrin receptors. This review will summarize important

  15. The performance of acoustic radiation force impulse imaging in predicting liver fibrosis in chronic liver diseases.

    PubMed

    Lin, Yi-Hung; Yeh, Ming-Lun; Huang, Ching-I; Yang, Jeng-Fu; Liang, Po-Cheng; Huang, Chung-Feng; Dai, Chia-Yen; Lin, Zu-Yau; Chen, Shinn-Cherng; Huang, Jee-Fu; Yu, Ming-Lung; Chuang, Wan-Long

    2016-07-01

    Sonography-based noninvasive liver fibrosis assessment is promising in the prediction of treatment efficacy and prognosis in chronic liver disease (CLD) patients. Acoustic radiation force impulse imaging (ARFI) is a newly-developed transient elastography (TE) method integrated into a conventional ultrasound machine. The study aimed to assess the performance of ARFI imaging in the diagnosis of liver fibrosis in Taiwanese CLD patients. We also aimed to search for the optimal cut-off values in different fibrosis stages. A total of 60 CLD patients (40 males; mean age, 51.8±11 years) were consecutively included. They received standard ARFI measurement within 2 weeks at the time of liver biopsy. There were eight patients with Metavir fibrosis stage 0 (F0), 16 patients with F1, 20 patients with F2, eight patients with F3, and eight patients with F4, respectively. The mean values among patient with F0, F1, F2, F3, and F4 were 1.17±0.13, 1.30±0.17, 1.31±0.24, 2.01±0.45, and 2.69±0.91, respectively (p<0.001). The optimal cut-off ARFI value for significant fibrosis (F≥2) was 1.53 with the accuracy of 0.733, while it was 1.66 for advanced fibrosis (F≥3) with the accuracy of 0.957. Our study demonstrated that ARFI imaging is competent for fibrosis diagnosis, particularly in CLD patients with advanced fibrosis. PMID:27450025

  16. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells.

    PubMed

    Abu-Elsaad, Nashwa M; Elkashef, Wagdi Fawzi

    2016-05-01

    Modified citrus pectin (MCP) is a pH modified form of the dietary soluble citrus peel fiber known as pectin. The current study aims at testing its effect on liver fibrosis progression. Rats were injected with CCl4 (1 mL/kg, 40% v/v, i.p., twice a week for 8 weeks). Concurrently, MCP (400 or 1200 mg/kg) was administered daily in drinking water from the first week in groups I and II (prophylactic model) and in the beginning of week 5 in groups III and IV (therapeutic model). Liver function biomarkers (ATL, AST, and ALP), fibrosis markers (laminin and hyaluronic acid), and antioxidant biomarkers (reduced glutathione (GSH) and superoxide dismutase (SOD)) were measured. Stained liver sections were scored for fibrosis and necroinflammation. Additionally, expression of galectin-3 (Gal-3), α-smooth muscle actin (SMA), tissue inhibitor metalloproteinase (TIMP)-1, collagen (Col)1A1, caspase (Cas)-3, and apoptosis related factor (FAS) were assigned. Modified pectin late administration significantly (p < 0.05) decreased malondialdehyde (MDA), TIMP-1, Col1A1, α-SMA, and Gal-3 levels and increased levels of FAS, Cas-3, GSH, and SOD. It also decreased percentage of fibrosis and necroinflammation significantly (p < 0.05). It can be concluded that MCP can attenuate liver fibrosis through an antioxidant effect, inhibition of Gal-3 mediated hepatic stellate cells activation, and induction of apoptosis. PMID:27010252

  17. Zingiber officinale acts as a nutraceutical agent against liver fibrosis

    PubMed Central

    2011-01-01

    Background/objective Zingiber officinale Roscoe (ginger) (Zingiberaceae) has been cultivated for thousands of years both as a spice and for medicinal purposes. Ginger rhizomes successive extracts (petroleum ether, chloroform and ethanol) were examined against liver fibrosis induced by carbon tetrachloride in rats. Results The evaluation was done through measuring antioxidant parameters; glutathione (GSH), total superoxide dismutase (SOD) and malondialdehyde (MDA). Liver marker enzymes; succinate and lactate dehydrogenases (SDH and LDH), glucose-6-phosphatase (G-6-Pase), acid phosphatase (AP), 5'- nucleotidase (5'NT) and liver function enzymes; aspartate and alanine aminotransferases (AST and ALT) as well as cholestatic markers; alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), total bilirubin were estimated. Liver histopathological analysis and collagen content were also evaluated. Treatments with the selected extracts significantly increased GSH, SOD, SDH, LDH, G-6-Pase, AP and 5'NT. However, MDA, AST, ALT ALP, GGT and total bilirubin were significantly decreased. Conclusions Extracts of ginger, particularly the ethanol one resulted in an attractive candidate for the treatment of liver fibrosis induced by CCl4. Further studies are required in order to identify the molecules responsible of the pharmacological activity. PMID:21689445

  18. The Dimethylnitrosamine Induced Liver Fibrosis Model in the Rat.

    PubMed

    Chooi, Kum Fai; Kuppan Rajendran, Dinesh Babu; Phang, Siew Siang Gary; Toh, Han Hui Alden

    2016-01-01

    Four to six week old, male Wistar rats were used to produce animal models of liver fibrosis. The process requires four weeks of administration of 10 mg/kg dimethylnitrosamine (DMN), given intraperitoneally for three consecutive days per week. Intraperitoneal injections were performed in the fume hood as DMN is a known hepatoxin and carcinogen. The model has several advantages. Firstly, liver changes can be studied sequentially or at particular stages of interest. Secondly, the stage of liver disease can be monitored by measurement of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes. Thirdly, the severity of liver damage at different stages can be confirmed by sacrifice of animals at designated time points, followed by histological examination of Masson's Trichome stained liver tissues. After four weeks of DMN dosing, the typical fibrosis score is 5 to 6 on the Ishak scale. The model can be reproduced consistently and has been widely used to assess the efficacy of potential anti-fibrotic agents. PMID:27340889

  19. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve

    PubMed Central

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-01-01

    AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures

  20. The protective role of natural phytoalexin resveratrol on inflammation, fibrosis and regeneration in cholestatic liver injury.

    PubMed

    Chan, Che-Chang; Cheng, Ling-Yi; Lin, Chin-Lung; Huang, Yi-Hsiang; Lin, Han-Chieh; Lee, Fa-Yauh

    2011-12-01

    Liver injuries can trigger a cascade of inflammatory responses and as a result, initiate the process of hepatic regeneration and fibrogenesis. Resveratrol (RSV) has multiple health-promoting benefits. This study evaluated the potential protective effects and mechanism of RSV as related to cholestatic liver injury. RSV was given (4 mg/kg/day, i.p.) for either 3 days or 7 days after bile duct ligation (BDL) injury. RSV significantly reduced serum ALT, AST but not T-bil on Day 3. At this early stage of injury, RSV significantly reduced TNF-α and IL-6 mRNA and decreased the number of Kupffer cells (CD68(+) ) recruited in the injured liver. RSV decreased hepatic fibrosis and reduced collagen Iα1 and TIMP-1 mRNA on Day 7. At the later stages of injury, RSV increased the number of Ki67(+) hepatocytes indicating that RSV promoted hepatocyte proliferation. Additionally, it resulted in decreased expression of 4-hydroxynonenal and increased expression of the hepatocyte growth factor protein and mRNA in the RSV-treated BDL group. Meanwhile, RSV reduced the mortality rate of BDL mice. In conclusion, RSV attenuated inflammation and reduced Kupffer cells activation. RSV decreased fibrosis and promoted hepatocyte regeneration, which increased the survival of BDL mice. RSV was beneficial for the treatment of cholestatic liver injury. PMID:22086758

  1. Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.

    PubMed

    Li, Hui; Hua, Juan; Guo, Chun-Xia; Wang, Wei-Xian; Wang, Bao-Ju; Yang, Dong-Liang; Wei, Ping; Lu, Yin-Ping

    2016-06-01

    Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway. PMID:27376806

  2. Ultrasound Elastography Used for Preventive Non-Invasive Screening in Early Detection of Liver Fibrosis

    PubMed Central

    Bert, Florian; Stahmeyer, Jona T.; Rossol, Siegbert

    2016-01-01

    Background Early discovery of liver fibrosis is becoming more popular because of enhanced incidence of hepatocellular carcinoma. Ultrasound-based liver elastography is a method used to approve suspected liver fibrosis or cirrhosis. We assessed the clinical usefulness of acoustic radiation force impulse shear wave elasticity imaging (ARFI-SWEI) as a preventive screening method to uncover fibrosis. Methods We screened 382 patients by native routine sonography for abnormal liver results and divided them into six groups: group 1: normal liver, groups 2-4: fatty liver grade I-III, group 5: liver cirrhosis, and group 6: inhomogenic liver tissue. Then ARFI-SWEI was performed and the results were compared with published shear wave velocity cut-off values that were predictive of each fibrosis stage (F0-4). A control group consisted of 20 healthy volunteers. Results The part of liver fibrosis ≥ F2 was in groups 1-4: 20-32%, group 5: 100%, and group 6: 91%. Main causes for fibrosis stage ≥ F2 were (non)-alcoholic steatohepatitis, chronic viral or autoimmune hepatitis and chronic heart failure. Conclusions Screening of the liver tissue in b-mode ultrasound can underestimate possible liver fibrosis; by using ARFI-SWEI, liver fibrosis can be uncovered early. It is a suitable preventive method comparable to colonoscopy for colon cancer. PMID:27540438

  3. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease

    PubMed Central

    Fraquelli, Mirella; Rigamonti, Cristina; Casazza, Giovanni; Conte, Dario; Donato, Maria Francesca; Ronchi, Guido; Colombo, Massimo

    2007-01-01

    Objective Transient elastography (TE) is gaining popularity as a non‐invasive method for predicting liver fibrosis, but intraobserver and interobserver agreement and factors influencing TE reproducibility have not been adequately assessed. This study investigated these aspects. Setting Tertiary referral liver unit. Patients Over a 4‐month period, 200 patients with chronic liver disease (CLD) with varying aetiology consecutively underwent TE and liver biopsy. Interventions TE was performed twice by two different operators either concomitantly or within 3 days of the bioptic procedure (METAVIR classification). Main outcome measures Intraobserver and interobserver agreement were analysed using the intraclass correlation coefficient (ICC) and correlated with different patient‐related and liver disease‐related covariates. Results 800 TE examinations were performed, with an indeterminate result rate of 2.4%. The overall interobserver agreement ICC was 0.98 (95% CI 0.977 to 0.987). Increased body mass index (>25 kg/m2), steatosis, and low staging grades (fibrosis (F) stage <2) were significantly associated with reduced ICC (p<0.05). Intraobserver agreement ICC was 0.98 for both raters. Using receiver operating characteristic curves, three diagnostic TE thresholds were identified: >7.9 kPa for F⩾2, >10.3 for F⩾3 and >11.9 for F = 4. TE values assessed by the two raters fell within the same cut‐off of fibrosis in 88% of the cases for F⩾2, in 92% for F⩾3 and 91% for F = 4. Conclusions TE is a highly reproducible and user‐friendly technique for assessing liver fibrosis in patients with CLD. However, because TE reproducibility is significantly reduced (p<0.05) in patients with steatosis, increased BMI and lower degrees of hepatic fibrosis, caution is warranted in the clinical use of TE as a surrogate for liver biopsy. PMID:17255218

  4. Non-invasive assessment of liver fibrosis in patients with alcoholic liver disease

    PubMed Central

    Lombardi, Rosa; Buzzetti, Elena; Roccarina, Davide; Tsochatzis, Emmanuel A

    2015-01-01

    Alcoholic liver disease (ALD) consists of a broad spectrum of disorders, ranging from simple steatosis to alcoholic steatohepatitis and cirrhosis. Fatty liver develops in more than 90% of heavy drinkers, however only 30%-35% of them develop more advanced forms of ALD. Therefore, even if the current “gold standard” for the assessment of the stage of alcohol-related liver injury is histology, liver biopsy is not reasonable in all patients who present with ALD. Currently, although several non-invasive fibrosis markers have been suggested as alternatives to liver biopsy in patients with ALD, none has been sufficiently validated. As described in other liver disease, the diagnostic accuracy of such tests in ALD is acceptable for the diagnosis of significant fibrosis or cirrhosis but not for lesser fibrosis stages. Existing data suggest that the use of non-invasive tests could be tailored to first tier screening of patients at risk, in order to diagnose early patients with progressive liver disease and offer targeted interventions for the prevention of decompensation. We review these tests and critically appraise the existing evidence. PMID:26494961

  5. Reversibility and heritability of liver fibrosis: Implications for research and therapy

    PubMed Central

    Atta, Hussein M

    2015-01-01

    Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy. If the etiology cannot be eliminated, liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy; both are associated with a fatal outcome. Liver transplantation, the only curative therapy, is still mostly unavailable. Liver fibrosis was shown to be a reversible process; however, complete reversibility remains debatable. Recently, the molecular markers of liver fibrosis were shown to be transmitted across generations. Epigenetic mechanisms including DNA methylation, histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis. Furthermore, epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations. However, the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated. This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers. The fact that epigenetic changes, unlike genetic mutations, are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis, to prevent the development of malignancy and to regulate heritability of fibrosis phenotype. PMID:25954087

  6. T2 relaxation time is related to liver fibrosis severity

    PubMed Central

    Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter

    2016-01-01

    Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi

  7. Spatiotemporal Characterization of the Cellular and Molecular Contributors to Liver Fibrosis in a Murine Hepatotoxic-Injury Model.

    PubMed

    Melino, Michelle; Gadd, Victoria L; Alexander, Kylie A; Beattie, Lynette; Lineburg, Katie E; Martinez, Michelle; Teal, Bianca; Le Texier, Laetitia; Irvine, Katharine M; Miller, Gregory C; Boyle, Glen M; Hill, Geoffrey R; Clouston, Andrew D; Powell, Elizabeth E; MacDonald, Kelli P A

    2016-03-01

    The interplay between the inflammatory infiltrate and tissue resident cell populations invokes fibrogenesis. However, the temporal and mechanistic contributions of these cells to fibrosis are obscure. To address this issue, liver inflammation, ductular reaction (DR), and fibrosis were induced in C57BL/6 mice by thioacetamide administration for up to 12 weeks. Thioacetamide treatment induced two phases of liver fibrosis. A rapid pericentral inflammatory infiltrate enriched in F4/80(+) monocytes co-localized with SMA(+) myofibroblasts resulted in early collagen deposition, marking the start of an initial fibrotic phase (1 to 6 weeks). An expansion of bone marrow-derived macrophages preceded a second phase, characterized by accelerated progression of fibrosis (>6 weeks) after DR migration from the portal tracts to the centrilobular site of injury, in association with an increase in DR/macrophage interactions. Although chemokine (C-C motif) ligand 2 (CCL2) mRNA was induced rapidly in response to thioacetamide, CCL2 deficiency only partially abrogated fibrosis. In contrast, colony-stimulating factor 1 receptor blockade diminished C-C chemokine receptor type 2 [CCR2(neg) (Ly6C(lo))] monocytes, attenuated the DR, and significantly reduced fibrosis, illustrating the critical role of colony-stimulating factor 1-dependent monocyte/macrophage differentiation and linking the two phases of injury. In response to liver injury, colony-stimulating factor 1 drives early monocyte-mediated myofibroblast activation and collagen deposition, subsequent macrophage differentiation, and their association with the advancing DR, the formation of fibrotic septa, and the progression of liver fibrosis to cirrhosis. PMID:26762581

  8. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  9. Aqueous extract of Anoectochilus formosanus attenuate hepatic fibrosis induced by carbon tetrachloride in rats.

    PubMed

    Shih, C C; Wu, Y W; Lin, W C

    2005-06-01

    The aim of this study was to investigate the effects of aqueous extract of Anoectochilus formosanus (AFE) on liver fibrogenesis in carbon tetrachloride (CCl4)-induced cirrhosis. Fibrosis was induced in rats by oral administration of CCl4 (20%, 0.5 ml/rat, p.o.) twice a week for 8 weeks. AFE (0.5 and 2.0 g/kg, p.o., daily for 8 weeks) was administered to rats simultaneously. AFE showed reducing actions on the elevated levels of GOT and GPT caused by CCl4. Liver fibrosis in rats induced by CCl4 led to the drop of serum albumin concentration; the AFE increased the albumin concentration. The CCl4-induced liver fibrosis markedly caused liver atrophy and splenomegalia, while AFE increased the liver weight, and decreased the spleen weight. The CCl4-induced liver fibrosis decreased the protein content, and increased collagen contents in rat's liver. AFE significantly increased the contents of protein and reduced the amount of collagen in the liver. In CCl4-treated rats, glutathione concentrations of liver were not affected. AFE significantly increased liver glutathione concentrations. All these results clearly demonstrate that AFE can reduce the liver fibrogensis in rats induced by CCl4. PMID:16008122

  10. Activation of PPARγ is required for hydroxysafflor yellow A of Carthamus tinctorius to attenuate hepatic fibrosis induced by oxidative stress.

    PubMed

    Wang, C Y; Liu, Q; Huang, Q X; Liu, J T; He, Y H; Lu, J J; Bai, X Y

    2013-05-15

    Oxidative stress caused hepatic fibrosis by activating hepatic stellate cells (HSCs), which were implemented by depressing PPARγ activation. Hydroxysafflor yellow A (HSYA) as a nature active ingredient with antioxidant capacity was able to effectively attenuate oxidative stress mediated injury. So it will be very interesting to study effect of HSYA on HSCs activation and liver fibrosis, and reveal the role of PPARγ·CCl4 and H2O2 were used to mimic oxidative stress mediated hepatic injury in vitro and in vivo respectively. The anti-fibrosis effects of HSYA were evaluated and its mechanisms were disclosed by applying western blot, histopathological analysis, flow cytometry, RT-PCR and ELISA. Our results showed that HSCs activation and proliferation could be induced by oxidative stress, and the expressive levels of TGF-β1 and TIMP-1, the serum levels of ALT, AST, HA, LN, III-C and IV-C were also enhanced by oxidative stress, which is correlated with liver fibrosis (p<0.05 or p<0.01). HSYA was able to effectively inhibit oxidative stress mediated hepatic injury by increasing the activities of antioxidant enzymes, up regulating the expression of PPARγ and MMP-2, and down regulating the expression of TGF-β1 and TIMP-1, and reducing α-SMA level. The protective effect of HSYA can be significantly attenuated by GW9662 via blocking PPARγ (p<0.05 or p<0.01). Taken together, these results demonstrate that HSYA is able to significantly protect the liver from oxidative stress, which requires for HSYA to stimulate PPARγ activity, reduce cell proliferation and suppress ECM synthesis. PMID:23523101

  11. Tetrathiomolybdate Protects against Bile Duct Ligation-Induced Cholestatic Liver Injury and Fibrosis

    PubMed Central

    Song, Ming; Song, Zhenyuan; Barve, Shirish; Zhang, Jingwen; Chen, Theresa; Liu, Marcia; Arteel, Gavin E.; Brewer, George J.; McClain, Craig J.

    2014-01-01

    Tetrathiomolybdate (TM), a potent copper-chelating drug, was initially developed for the treatment of Wilson’s disease. Our working hypothesis is that the fibrotic pathway is copper-dependent. Because biliary excretion is the major pathway for copper elimination, a bile duct ligation (BDL) mouse model was used to test the potential protective effects of TM. TM was given in a daily dose of 0.9 mg/mouse by means of intragastric gavage 5 days before BDL. All the animals were killed 5 days after surgery. Plasma liver enzymes and total bilirubin were markedly decreased in TM-treated BDL mice. TM also inhibited the increase in plasma levels of tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 seen in BDL mice. Cholestatic liver injury was markedly attenuated by TM treatment as shown by histology. Hepatic collagen deposition was significantly decreased, and it was paralleled by a significant suppression of hepatic smooth muscle α-actin and fibrogenic gene expression in TM-treated BDL mice. Although the endogenous antioxidant ability was enhanced, oxidative stress as shown by malondialdehyde and 4-hydroxyalkenals, hepatic glutathione/oxidized glutathione ratio, was not attenuated by TM treatment, suggesting the protective mechanism of TM may be independent of oxidative stress. In summary, TM attenuated BDL-induced cholestatic liver injury and fibrosis in mice, in part by inhibiting TNF-α and TGF-β1 secretion. The protective mechanism seems to be independent of oxidative stress. Our data provide further evidence that TM might be a potential therapy for hepatic fibrosis. PMID:18299419

  12. Fibroscan improves the diagnosis sensitivity of liver fibrosis in patients with chronic hepatitis B

    PubMed Central

    HUANG, RENGANG; JIANG, NAN; YANG, RENGUO; GENG, XIAOXIA; LIN, JIANMEI; XU, GANG; LIU, DANDAN; CHEN, JIDOG; ZHOU, GUO; WANG, SHUQIANG; LUO, TINGTING; WU, JIAZHEN; LIU, XIAOSHU; XU, KAIJU; YANG, XINGXIANG

    2016-01-01

    The aim of the present study was to investigate the diagnostic accuracy of Fibroscan for liver fibrosis in patients with chronic hepatitis B (CHB) with alanine aminotransferase (ALT) levels <2 times the upper normal limit. A total of 263 consecutive patients with CHB and ALT levels <2 times the upper normal limit were enrolled in the present study. Liver biopsies and liver stiffness measurements (LSM) were conducted. Receiver operating characteristic (ROC) analysis was used to determine the predictive ability of LSM for the development of liver fibrosis in patients with stage S1, S2 and S3 liver fibrosis. Bivariate Spearman rank correlation analysis was performed in order to determine the association between liver stiffness value, which was measured by Fibroscan, and liver fibrosis stage, which was measured by liver biopsy. The liver stiffness value was found to be positively correlated with the liver fibrosis stage (r=0.522, P<0.001) and necroinflammatory activity (r=0.461, P<0.001), which was measured by liver biopsy. The optimal cut-off value in the patients with stage S1, S2 and S3 liver fibrosis was 5.5, 8.0 and 10.95 kPa, respectively. The area under the ROC curve for the prediction of the development of liver fibrosis in these patients was 0.696, 0.911 and 0.923, respectively. The threshold of the optimal cut-off value exhibited a high sensitivity and specificity. The results of the present study suggested that Fibroscan may improve the sensitivity of the diagnosis of liver fibrosis in patients with CHB and ALT levels <2 times the upper normal limit, and that this sensitivity may increase with the progression of liver fibrosis. PMID:27168788

  13. Noninvasive investigations for non alcoholic fatty liver disease and liver fibrosis

    PubMed Central

    Fierbinteanu-Braticevici, Carmen; Dina, Ion; Petrisor, Ana; Tribus, Laura; Negreanu, Lucian; Carstoiu, Catalin

    2010-01-01

    Non-alcoholic fatty liver disease (NAFLD) includes a spectrum of diseases that have insulin resistance in common and are associated with metabolic conditions such as obesity, type 2 diabetes mellitus, and dyslipidemia. NAFLD ranges from simple liver steatosis, which follows a benign course, to nonalcoholic steatohepatitis (NASH), a more severe entity, with necroinflammation and fibrosis, which can progress to cryptogenic cirrhosis and end-stage liver disease. Liver biopsy remains the gold standard for evaluating the degree of hepatic necroinflammation and fibrosis; however, several noninvasive investigations, such as serum biomarkers, have been developed to establish the diagnosis and also to evaluate treatment response. These markers are currently neither available in all centers nor validated in extensive studies. Examples include high-sensitivity C reactive protein and plasma pentraxin 3, which are associated with extensive liver fibrosis in NASH. Interleukin-6 correlates with inflammation, and cytokeratin-18 represents a marker of hepatocyte apoptosis (prominent in NASH and absent in simple steatosis). Tissue polypeptide specific antigen seems to have a clinical utility in the follow-up of obese patients with NASH. PMID:20939106

  14. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis

    PubMed Central

    Sombetzki, Martina; Fuchs, Claudia D.; Fickert, Peter; Österreicher, Christoph H.; Mueller, Michaela; Claudel, Thierry; Loebermann, Micha; Engelmann, Robby; Langner, Cord; Sahin, Emine; Schwinge, Dorothee; Guenther, Nina D.; Schramm, Christoph; Mueller-Hilke, Brigitte; Reisinger, Emil C.; Trauner, Michael

    2015-01-01

    Background & Aims Intrahepatic granuloma formation and fibrosis characterize the pathological features of Schistosoma mansoni infection. Based on previously observed substantial anti-fibrotic effects of 24-nor-ursodeoxycholic acid (norUDCA) in Abcb4/Mdr2−/− mice with cholestatic liver injury and biliary fibrosis, we hypothesized that norUDCA improves inflammation-driven liver fibrosis in S. mansoni infection. Methods Adult NMRI mice were infected with 50 S. mansoni cercariae and after 12 weeks received either norUDCA- or ursodeoxycholic acid (UDCA)-enriched diet (0.5% wt/wt) for 4 weeks. Bile acid effects on liver histology, serum biochemistry, key regulatory cytokines, hepatic hydroxyproline content as well as granuloma formation were compared to naive mice and infected controls. In addition, effects of norUDCA on primary T-cell activation/proliferation and maturation of the antigen-presenting-cells (dendritic cells, macrophages) were determined in vitro. Results UDCA as well as norUDCA attenuated the inflammatory response in livers of S. mansoni infected mice, but exclusively norUDCA changed cellular composition and reduced size of hepatic granulomas as well as TH2-mediated hepatic fibrosis in vivo. Moreover, norUDCA affected surface expression level of major histocompatibility complex (MHC) class II of macrophages and dendritic cells as well as activation/proliferation of T-lymphocytes in vitro, whereas UDCA had no effect. Conclusions This study demonstrates pronounced anti-inflammatory and anti-fibrotic effects of norUDCA compared to UDCA in S. mansoni induced liver injury, and indicates that norUDCA directly represses antigen presentation of antigen presenting cells and subsequent T-cell activation in vitro. Therefore, norUDCA represents a promising drug for the treatment of this important cause of liver fibrosis. PMID:25463533

  15. Animal models for the study of liver fibrosis: new insights from knockout mouse models

    PubMed Central

    Hayashi, Hiromitsu

    2011-01-01

    Fibrosis arises as part of a would-healing response that maintains organ structure and integrity following tissue damage but also contributes to a variety of human pathologies such as liver fibrosis. Liver fibrosis is an abnormal response of the liver to persistent injury with the excessive accumulation of collagenous extracellular matrices. Currently there is no effective treatment, and many patients end up with a progressive form of the disease, eventually requiring a liver transplant. The clarification of mechanisms underlying pathogenesis of liver fibrosis and the development of effective therapy are of clinical importance. Experimental animal models, in particular targeted gene knockouts (loss of function) in mice, have become a powerful resource to address the molecular mechanisms or significance of the targeted gene in hepatic functions and diseases. This review will focus on the recent advances in knowledge obtained from genetically engineered mice that provide novel insights into the pathophysiology of liver fibrosis. PMID:21350186

  16. The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    PubMed Central

    Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the

  17. Non-invasive assessment of liver fibrosis in chronic liver diseases: Implementation in clinical practice and decisional algorithms

    PubMed Central

    Sebastiani, Giada

    2009-01-01

    Chronic hepatitis B and C together with alcoholic and non-alcoholic fatty liver diseases represent the major causes of progressive liver disease that can eventually evolve into cirrhosis and its end-stage complications, including decompensation, bleeding and liver cancer. Formation and accumulation of fibrosis in the liver is the common pathway that leads to an evolutive liver disease. Precise definition of liver fibrosis stage is essential for management of the patient in clinical practice since the presence of bridging fibrosis represents a strong indication for antiviral therapy for chronic viral hepatitis, while cirrhosis requires a specific follow-up including screening for esophageal varices and hepatocellular carcinoma. Liver biopsy has always represented the standard of reference for assessment of hepatic fibrosis but it has some limitations being invasive, costly and prone to sampling errors. Recently, blood markers and instrumental methods have been proposed for the non-invasive assessment of liver fibrosis. However, there are still some doubts as to their implementation in clinical practice and a real consensus on how and when to use them is not still available. This is due to an unsatisfactory accuracy for some of them, and to an incomplete validation for others. Some studies suggest that performance of non-invasive methods for liver fibrosis assessment may increase when they are combined. Combination algorithms of non-invasive methods for assessing liver fibrosis may represent a rational and reliable approach to implement non-invasive assessment of liver fibrosis in clinical practice and to reduce rather than abolish liver biopsies. PMID:19437558

  18. Imaging Based Methods of Liver Fibrosis Assessment in Viral Hepatitis: A Practical Approach

    PubMed Central

    Khallafi, Hicham; Qureshi, Kamran

    2015-01-01

    Liver fibrosis represents the repair mechanism in liver injury and is a feature of most chronic liver diseases. The degree of liver fibrosis in chronic viral hepatitis infections has major clinical implications and presence of advanced fibrosis or cirrhosis determines prognosis. Treatment initiation for viral hepatitis is indicated in most cases of advanced liver fibrosis and diagnosis of cirrhosis entails hepatology evaluation for specialized clinical care. Liver biopsy is an invasive technique and has been the standard of care of fibrosis assessment for years; however, it has several limitations and procedure related complications. Recently, several methods of noninvasive assessment of liver fibrosis have been developed which require either serologic testing or imaging of liver. Imaging based noninvasive techniques are reviewed here and their clinical use is described. Some of the imaging based tests are becoming widely available, and collectively they are shown to be superior to liver biopsy in important aspects. Clinical utilization of these methods requires understanding of performance and quality related parameters which can affect the results and provide wrong assessment of the extent of liver fibrosis. Familiarity with the strengths and weaknesses of each modality is needed to correctly interpret the results in appropriate clinical context. PMID:26779260

  19. Lactoferrin Enhanced Apoptosis and Protected Against Thioacetamide-Induced Liver Fibrosis in Rats

    PubMed Central

    Hessin, Alyaa; Hegazy, Rehab; Hassan, Azza; Yassin, Nemat; Kenawy, Sanaa

    2015-01-01

    BACKGROUND: Liver fibrosis is the common pathologic consequence of all chronic liver diseases. AIM: Lactoferrin (Lf) was investigated for its possible hepatoprotective effect against thioacetamide (TAA)-induced liver fibrosis rat model. MATERIAL AND METHODS: Rats received TAA (200 mg/kg/biweekly, ip) for four successive weeks. Lf (200 mg/kg/day, p.o.) or vehicle (VHC) was administered for one month before and another month during TAA injection. Body weight and mortality rate were assessed during the month of TAA-intoxication. Thereafter, serum and liver tissues were analyzed for liver function, oxidative, fibrotic and apoptotic markers. RESULTS: Lf conserved rats against TAA-induced body weight-loss and mortality. Preservation of serum albumin, alkaline phosphatase and total bilirubin levels was also observed. Lf also protected rats against TAA-induced decrease in reduced glutathione and increase in malondialdehyde liver contents. Normal liver contents of hydroxyproline, nuclear factor kappa B and alpha fetoprotein; as markers of fibrosis; were increased with TAA and conserved with Lf-TAA. Lf maintained the normal architecture of the liver and immunohistochemical findings revealed increase in apoptotic bodies compared to TAA that favored necrosis. CONCLUSION: In conclusion, Lf improved liver function, reduced oxidative stress and liver fibrosis, and enhanced apoptosis in rats with liver fibrosis, suggesting it to have useful therapeutic potential in patients with liver fibrosis. PMID:27275221

  20. Staging of liver fibrosis or cirrhosis: The role of hepatic venous pressure gradient measurement

    PubMed Central

    Suk, Ki Tae; Kim, Dong Joon

    2015-01-01

    Liver fibrosis is a common histological change of chronic liver injury and it is closely related with portal hypertension which is hemodynamic complication of chronic liver disease. Currently, liver fibrosis has been known as a reversible dynamic process in previous literatures. Although liver biopsy is a gold standard for assessing the stage of liver fibrosis, it may not completely represent the stage of liver fibrosis because of sampling error or semi-quantative measurement. Recent evidences suggested that histologic, clinical, hemodynamic, and biologic features are closely associated in patients with chronic liver disease. Hepatic venous pressure gradient (HVPG) measurement has been known as a modality to evaluate the portal pressure. The HVPG measurement has been used clinically for fibrosis diagnosis, risk stratification, preoperative screening for liver resection, monitoring the efficacy of medical treatments, and assessing the prognosis of liver fibrosis. Therefore, the HVPG measurement can be used to monitor areas the chronic liver disease but also other important areas of chronic liver disease. PMID:25848485

  1. Liver fibrosis in alcoholics: detection by Fab radioimmunoassay of serum procollagen III peptides

    SciTech Connect

    Sato, S.; Nouchi, T.; Worner, T.M.; Lieber, C.S.

    1986-09-19

    Radioimmunoassays were used to measure serum levels of laminin and of procollagen III peptides, both with the intact antibody and with the Fab fragments, within one week of alcohol withdrawal in 83 alcoholics admitted for detoxification and/or treatment of concomitant medical problems. All patients underwent a diagnostic liver biopsy, which revealed simple fatty liver in 22, perivenular fibrosis in 20, septal fibrosis in 21, and cirrhosis in 20. Although all three serum measurements correlated significantly with the degree of fibrosis, only the Fab radioimmunoassay of procollagen III peptides discriminated between simple fatty liver and perivenular fibrosis in a significant number of subjects.

  2. BM-derived fibrocytes contribute to liver fibrosis

    PubMed Central

    2016-01-01

    Chronic liver injury often leads to hepatic fibrosis, a condition associated with increased levels of circulating TGF-β1 and lipopolysaccharide (LPS), activation of myofibroblasts, and extensive deposition of extracellular matrix, mostly collagen type I. Hepatic stellate cells (HSCs) are considered to be the major [1] but not the only source of myofibroblasts in the injured liver [2]. Hepatic myofibroblasts may also originate from portal fibroblasts, mesenchymal cells and fibrocytes [3]. Since the discovery of fibrocytes in 1994 by Dr. Bucala and colleagues, these bone marrow (BM)-derived collagen Type I-producing CD45+ cells remain the most fascinating cells of the hematopoietic system. Due to the ability to differentiate into collagen Type I producing cells/myofibroblasts, fibrocytes were implicated in the pathogenesis of liver, skin, lung, and kidney fibrosis. However, studies of different organs often contain controversial results on the number of fibrocytes recruited to the site of injury, and their biological function. Furthermore, fibrocytes were implicated in pathogenesis of sepsis, and were shown to possess anti-microbial activity. Finally, in response to specific stimuli, fibrocytes can give rise to fully differentiated macrophages, suggesting that in concurrence with high plasticity of hematopoietic cells, fibrocytes exhibit progenitor properties. Here we summarize our current understanding of the role of CD45+Collagen Type I+ BM-derived cells in response to fibrogenic liver injury and septicemia and discuss the most recent evidence supporting the critical role of fibrocytes in the mediation of pro-fibrogenic and/or pro-inflammatory responses. PMID:25966982

  3. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis.

    PubMed

    Li, Xing; Wu, Xiao-Qin; Xu, Tao; Li, Xiao-Feng; Yang, Yang; Li, Wan-Xia; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2016-09-01

    Liver fibrosis refers to a reversible wound healing process response to chronic liver injuries. Activation of hepatic stellate cells (HSCs) is closely correlated with the development of liver fibrosis. Histone deacetylases(HDACs) determine the acetylation levels of core histones to modulate expression of genes. To demonstrate the link between HDACs and liver fibrosis, CCl4-induced mouse liver fibrosis model and its spontaneous reversal model were established. Results of the current study demonstrated that deregulation of liver HDACs may involved in the development of liver fibrosis. Among 11 HDACs tested in our study (Class I, II, and IV HDACs), expression of HDAC2 was maximally increased in CCl4-induced fibrotic livers but decreased after spontaneous recovery. Moreover, expression of HDAC2 was elevated in human liver fibrotic tissues. In this regard, the potential role of HDAC2 in liver fibrosis was further evaluated. Our results showed that administration of HSC-T6 cells with transforming growth factor-beta1 (TGF-β1) resulted in an increase of HDAC2 protein expression in dose- and time-dependent manners. Moreover, HDAC2 deficiency inhibited HSC-T6 cell proliferation and activation induced by TGF-β1. More importantly, the present study showed HDAC2 may regulate HSCs activation by suppressing expression of Smad7, which is a negative modulator in HSCs activation and liver fibrosis. Collectively, these observations revealed that HDAC2 may play a pivotal role in HSCs activation and liver fibrosis while deregulation of HDACs may serve as a novel mechanism underlying liver fibrosis. PMID:27396813

  4. Relationship between 25-Hydroxyvitamin D Levels and Liver Fibrosis as Assessed by Transient Elastography in Patients with Chronic Liver Disease

    PubMed Central

    Ko, Bong Jin; Kim, Young Seok; Kim, Sang Gyune; Park, Jung Hwan; Lee, Sae Hwan; Jeong, Soung Won; Jang, Jae Young; Kim, Hong Soo; Kim, Boo Sung; Kim, Sun Mi; Kim, Young Don; Cheon, Gab Jin; Lee, Bo Ra

    2016-01-01

    Background/Aims Deficiencies of 25-hydroxyvitamin D (25(OH)D) are prevalent in patients with chronic liver disease (CLD). Liver fibrosis is the main determinant of CLD prognosis. The present study was performed to evaluate the correlation between 25(OH)D levels and liver fibrosis as assessed by transient elastography (TE) in patients with compensated CLD. Methods Serum 25(OH)D levels and liver stiffness were determined in a total of 207 patients who were subjected to the following exclusion criteria: patients with decompensated CLD; patients who had malignancies; patients who were taking medications; and patients who were pregnant. Results The most common etiology was chronic hepatitis B (53.1%). Advanced liver fibrosis (defined by TE [≥9.5 kPa]) was present in 75 patients (36.2%). There was a significant correlation between 25(OH)D deficiency and liver stiffness. Based on the multivariate analysis, the following factors were independently associated with advanced liver fibrosis: 25(OH)D deficiency (odds ratio [OR], 3.46; p=0.004), diabetes mellitus (OR, 3.04; p=0.041), and fibrosis-4 index (OR, 2.01; p<0.001). Conclusions Patients with compensated CLD exhibit a close correlation between vitamin D level and liver stiffness as assessed by TE. Vitamin D deficiency was independently associated with advanced liver fibrosis. PMID:27114415

  5. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis.

    PubMed

    Yang, Jing-Jing; Tao, Hui; Huang, Cheng; Li, Jun

    2013-09-01

    Hepatic stellate cells (HSC) are the key fibrogenic cells of the liver. HSC activation is a process of cellular transdifferentiation that occurs upon liver injury, but the mechanisms underlying liver fibrosis are unknown. Nuclear erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor with a variety of downstream targets aimed at cytoprotection. However, Nrf2 has recently been implicated as a new therapeutic target for the treatment of liver fibrosis. This review focuses on the transcriptional repressors that either control liver injury or regulate specific fibrogenic functions of liver fibrosis. We also show that Nrf2 may reveal significant gene expression changes, suggesting that Nrf2 activation may ameliorate liver fibrosis. PMID:23793039

  6. Hyaluronic acid as a biomarker of fibrosis in chronic liver diseases of different etiologies

    PubMed Central

    ORASAN, OLGA HILDA; CIULEI, GEORGE; COZMA, ANGELA; SAVA, MADALINA; DUMITRASCU, DAN LUCIAN

    2016-01-01

    Chronic liver diseases represent a significant public health problem worldwide. The degree of liver fibrosis secondary to these diseases is important, because it is the main predictor of their evolution and prognosis. Hyaluronic acid is studied as a non-invasive marker of liver fibrosis in chronic liver diseases, in an attempt to avoid the complications of liver puncture biopsy, considered the gold standard in the evaluation of fibrosis. We review the advantages and limitations of hyaluronc acid, a biomarker, used to manage patients with chronic viral hepatitis B or C infection, non-alcoholic fatty liver disease, HIV-HCV coinfection, alcoholic liver disease, primary biliary cirrhosis, biliary atresia, hereditary hemochromatosis and cystic fibrosis. PMID:27004022

  7. BRD4 is a novel therapeutic target for liver fibrosis

    PubMed Central

    Ding, Ning; Hah, Nasun; Yu, Ruth T.; Sherman, Mara H.; Benner, Chris; Leblanc, Mathias; He, Mingxiao; Liddle, Christopher; Downes, Michael; Evans, Ronald M.

    2015-01-01

    Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications. PMID:26644586

  8. Piceatannol increases the expression of hepatocyte growth factor and IL-10 thereby protecting hepatocytes in thioacetamide-induced liver fibrosis.

    PubMed

    Abd-Elgawad, Hazem; Abu-Elsaad, Nashwa; El-Karef, Amr; Ibrahim, Tarek

    2016-07-01

    Piceatannol is a polyphenolic analog of resveratrol that selectively inhibits the non-receptor tyrosine kinase-Syk. This study investigates the potential ability of piceatannol to attenuate liver fibrosis and protect hepatocytes from injury. Thioacetamide was injected in adult male mice (100 mg/kg, i.p., 3 times/week) for 8 weeks. Piceatannol (1 or 5 mg/kg per day) was administered by oral gavage during the last 4 weeks. Liver function biomarkers, tissue malondialdehyde (MDA), cytokeratin-18 (CK18), hepatocyte growth factor (HGF), and interleukin-10 (IL-10) were measured. Necroinflammation, fibrosis, expression of transforming growth factor (TGF)-β1, and α-smooth muscle actin (SMA) were scored by histopathological examination and immunohistochemistry. Obtained results showed ability of piceatannol (1 mg/kg) to restore liver function and reduce inflammation. It significantly (p < 0.001) reduced MDA, CK18, TGF-β1, and α-SMA expression, and increased HGF and IL-10. It can be concluded that piceatannol at low dose can inhibit TGF-β1 induced hepatocytes apoptosis and exerts an anti-inflammatory effect attenuating fibrosis progression. PMID:27186801

  9. Non-invasive diagnosis of liver fibrosis and cirrhosis

    PubMed Central

    Lurie, Yoav; Webb, Muriel; Cytter-Kuint, Ruth; Shteingart, Shimon; Lederkremer, Gerardo Z

    2015-01-01

    The evaluation and follow up of liver fibrosis and cirrhosis have been traditionally performed by liver biopsy. However, during the last 20 years, it has become evident that this “gold-standard” is imperfect; even according to its proponents, it is only “the best” among available methods. Attempts at uncovering non-invasive diagnostic tools have yielded multiple scores, formulae, and imaging modalities. All are better tolerated, safer, more acceptable to the patient, and can be repeated essentially as often as required. Most are much less expensive than liver biopsy. Consequently, their use is growing, and in some countries the number of biopsies performed, at least for routine evaluation of hepatitis B and C, has declined sharply. However, the accuracy and diagnostic value of most, if not all, of these methods remains controversial. In this review for the practicing physician, we analyze established and novel biomarkers and physical techniques. We may be witnessing in recent years the beginning of the end of the first phase for the development of non-invasive markers. Early evidence suggests that they might be at least as good as liver biopsy. Novel experimental markers and imaging techniques could produce a dramatic change in diagnosis in the near future. PMID:26556987

  10. The use of nanoparticles to deliver nitric oxide to hepatic stellate cells for treating liver fibrosis and portal hypertension.

    PubMed

    Duong, Hien T T; Dong, Zhixia; Su, Lin; Boyer, Cyrille; George, Jacob; Davis, Thomas P; Wang, Jianhua

    2015-05-20

    Polymeric nanoparticles are designed to transport and deliver nitric oxide (NO) into hepatic stellate cells (HSCs) for the potential treatment of both liver fibrosis and portal hypertension. The nanoparticles, incorporating NO donor molecules (S-nitrosoglutathione compound), are designed for liver delivery, minimizing systemic delivery of NO. The nanoparticles are decorated with vitamin A to specifically target HSCs. We demonstrate, using in vitro and in vivo experiments, that the targeted nanoparticles are taken up specifically by rat primary HSCs and the human HSC cell line accumulating in the liver. When nanoparticles, coated with vitamin A, release NO in liver cells, we find inhibition of collagen I and α-smooth muscle actin (α-SMA), fibrogenic genes associated with activated HSCs expression in primary rat liver and human activated HSCs without any obvious cytotoxic effects. Finally, NO-releasing nanoparticles targeted with vitamin A not only attenuate endothelin-1 (ET-1) which elicites HSC contraction but also acutely alleviates haemodynamic disorders in bile duct-ligated-induced portal hypertension evidenced by decreasing portal pressure (≈20%) and unchanging mean arterial pressure. This study clearly shows, for the first time, the potential for HSC targeted nanoparticle delivery of NO as a treatment for liver diseases with proven efficacy for alleviating both liver fibrosis and portal hypertension. PMID:25641921

  11. Relevance of activated hepatic stellate cells in predicting the development of pediatric liver allograft fibrosis.

    PubMed

    Venturi, Carla; Reding, Raymond; Quinones, Jorge Abarca; Sokal, Etienne; Rahier, Jacques; Bueno, Javier; Sempoux, Christine

    2016-06-01

    Activated hepatic stellate cells (HSCs) are the main collagen-producing cells in liver fibrogenesis. With the purpose of analyzing their presence and relevance in predicting liver allograft fibrosis development, 162 liver biopsies of 54 pediatric liver transplantation (LT) recipients were assessed at 6 months, 3 years, and 7 years after LT. The proportion of activated HSCs, identified by α-smooth muscle actin (ASMA) immunostaining, and the amount of fibrosis, identified by picrosirius red (PSR%) staining, were determined by computer-based morphometric analysis. Fibrosis was also staged by using the semiquantitative liver allograft fibrosis score (LAFSc), specifically designed to score fibrosis in the pediatric LT population. Liver allograft fibrosis displayed progression over time by PSR% (P < 0.001) and by LAFSc (P < 0.001). The ASMA expression decreased in the long term, with inverse evolution with respect to fibrosis (P < 0.01). Patients with ASMA-positive HSCs area ≥ 8% at 6 months (n = 20) developed a higher fibrosis proportion compared to those with ASMA-positive HSCs area ≤ 8% (n = 34) at the same period of time and in the long term (P = 0.03 and P < 0.01, respectively), but not at 3 years (P = 0.8). ASMA expression ≥ 8% at 6 months was found to be an independent risk factor for 7-year fibrosis development by PSR% (r(2) = 0.5; P < 0.01) and by LAFSc (r(2) = 0.3; P = 0.03). Furthermore, ASMA expression ≥ 8% at 3 years showed an association with the development of fibrosis at 7 years (P = 0.02). In conclusion, there is a high proportion of activated HSCs in pediatric LT recipients. ASMA ≥ 8% at 6 months seems to be a risk factor for early and longterm fibrosis development. In addition, activated HSCs showed inverse evolution with respect to fibrosis in the long term. Liver Transplantation 22 822-829 2016 AASLD. PMID:26851053

  12. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration

    PubMed Central

    Chuang, Hong-Meng; Su, Hong-Lin; Li, Chien; Lin, Shinn-Zong; Yen, Ssu-Yin; Huang, Mao-Hsuan; Ho, Li-Ing; Chiou, Tzyy-Wen; Harn, Horng-Jyh

    2016-01-01

    The treatment of liver fibrosis has clinical limitations because of its multiple etiologies, such as epithelial–mesenchymal transition (EMT) promotion, cell regeneration and remodeling dysfunction, inflammatory cell activation, and scar tissue deposition. These factors might be considered as a new target for the fibrotic microenvironment, leading to increased fibrogenesis and liver fibrosis. Here, we investigate a small molecule named butylidenephthalide (BP) and its multiple effects on liver fibrosis treatment. Thioacetamide was used in vivo to induce chronic liver fibrosis. BP was administered orally in rats for a period of 2 and 4 weeks, which resulted in a significantly reduced fibrosis score (p < 0.05) and (p < 0.001), respectively. The inflammatory reaction of macrophage infiltration were reduced in the administration of BP, which led to the decrease in the transaminase levels. Moreover, we also found liver functions recovering (due to the increased serum albumin and reduced prothrombin time) where liver cells regenerated, which can be seen in the increase of Ki-67 on Oval cell. In addition, the fibrotic scar was also reduced, along with the expression of matrix metalloprotease by hepatic stellate cell. Furthermore, regarding the mechanism/study of EMT reduced by BP, the knockdown of BMP-7, which could reduce α-SMA expression, was mediated by the regulation of TGF-β, which implies its major role on EMT. Finally, in the in vivo study, BP treatment of liver fibrosis was reduced by Bmp7 knockdown in zebrafish, suggesting that BP leads to the reduction of liver fibrosis, which also depends on BMP-7 induction. These results suggest that BP had multiple targets for treating liver fibrosis in the following ways: reduction of EMT, decreasing inflammatory reaction, and liver cell proliferation. This multiple targets approach provided a new mechanism to treat liver injury and fibrosis. PMID:27199755

  13. Controversies over the Epithelial-to-Mesenchymal Transition in Liver Fibrosis

    PubMed Central

    Taura, Kojiro; Iwaisako, Keiko; Hatano, Etsuro; Uemoto, Shinji

    2016-01-01

    Liver fibrosis is a universal consequence of chronic liver diseases. It is accompanied by activation of collagen-producing myofibroblasts, resulting in excessive deposition of extracellular matrix. The origin of myofibroblasts in the fibrotic liver has not been completely resolved and remains a matter of debate. Recently, the epithelial-to-mesenchymal transition (EMT) was proposed as one of the mechanisms that give rise to collagen-producing myofibroblasts in liver fibrosis. However, subsequent studies contradicted this hypothesis, and the EMT theory has become one of the most controversial and debatable issues in the field of liver fibrosis research. This review will summarize the existing literature on EMT in liver fibrosis and will analyze the causes for the contradictory results to draw a reasonable conclusion based on current knowledge in the field. PMID:26784242

  14. Protective effect of fucoidan from Fucus vesiculosus on liver fibrosis via the TGF-β1/Smad pathway-mediated inhibition of extracellular matrix and autophagy

    PubMed Central

    Li, Jingjing; Chen, Kan; Li, Sainan; Feng, Jiao; Liu, Tong; Wang, Fan; Zhang, Rong; Xu, Shizan; Zhou, Yuqing; Zhou, Shunfeng; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2016-01-01

    Liver fibrosis is a dynamic reversible pathological process in the development of chronic liver disease to cirrhosis. However, the current treatments are not administered for a long term due to their various side effects. Autophagy is initiated to decompose damaged or excess organelles, which had been found to alter the progression of liver fibrosis. In this article, we hypothesized that fucoidan from Fucus vesiculosus may attenuate liver fibrosis in mice by inhibition of the extracellular matrix and autophagy in carbon tetrachloride- and bile duct ligation-induced animal models of liver fibrosis. The results were determined using enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemical staining. Fucoidan from F. vesiculosus could inhibit the activation of hepatic stellate cells and the formation of extracellular matrix and autophagosomes, and its effect may be associated with the downregulation of transforming growth factor beta 1/Smads pathways. Fucoidan, as an autophagy and transforming growth factor beta 1 inhibitor, could be a promising potential therapeutic agent for liver fibrosis. PMID:26929597

  15. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice

    SciTech Connect

    Harris, Todd R.; Bettaieb, Ahmed; Kodani, Sean; Dong, Hua; Myers, Richard; Chiamvimonvat, Nipavan; Haj, Fawaz G.; Hammock, Bruce D.

    2015-07-15

    Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl{sub 4})-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl{sub 4}-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl{sub 4}-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl{sub 4}-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-(4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy)-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl{sub 4}, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress. - Highlights: • We administer an inhibitor of sEH in a CCl4 murine model. • sEH inhibition reduces liver collagen deposition and pro-fibrotic gene expression. • sEH inhibition induces MMP-1a activity.

  16. The role of C/EBP-α expression in human liver and liver fibrosis and its relationship with autophagy

    PubMed Central

    Tao, Li-Li; Zhai, Yin-Zhen; Ding, Di; Yin, Wei-Hua; Liu, Xiu-Ping; Yu, Guang-Yin

    2015-01-01

    Aim: To investigate the expression of CCAAT enhancer binding protein-α (C/EBP-α) in normal human liver and liver fibrosis and its probable association with autophagy. Methods: Double label immunohistochemistry was used to detect the location of C/EBP-α in hepatocytes and hepatic stellate cells (HSCs). The expression of C/EBP-α, Atg5, and Atg6 was also evaluated by immunohistochemistry in paraffin sections of human liver. HSC-T6 cells were treated with rapamycin and 3-methyladenine (3MA) to induce or inhibit autophagy, and the expression of C/EBP-α protein was detected by Western blotting. Results: Double label immunohistochemistry showed that C/EBP-α was predominantly located in hepatocytes and that its expression was significantly decreased in fibrosis compared with normal liver. Atg5 expression was increased in fibrosis but was located primarily in liver septa and peri-vascular areas, which was consistent with the distribution of HSCs. In contrast, Atg6 was not expressed in normal or fibrotic liver. Treatment of HSC-T6 cells in culture with rapamycin or 3MA decreased or increased C/EBP-α expression, respectively, as shown by Western blotting. Conclusion: C/EBP-α was primarily expressed in hepatocytes in normal liver, but its expression decreased significantly in liver fibrosis. Autophagy might play a role in liver fibrosis through its association with C/EBP-α, but this hypothesis warrants further investigation. PMID:26722507

  17. Acoustic structure quantification ultrasound software proves imprecise in assessing liver fibrosis or cirrhosis in parenchymal liver diseases.

    PubMed

    Krämer, Christiane; Jaspers, Natalie; Nierhoff, Dirk; Kuhr, Kathrin; Bowe, Andrea; Goeser, Tobias; Michels, Guido

    2014-12-01

    The present study was conducted to assess the diagnostic accuracy of Acoustic Structure Quantification (ASQ) ultrasound software in liver biopsy of patients with liver fibrosis and cirrhosis. Eighty patients (47 ± 14 y, 41 men) with chronic liver diseases underwent ultrasound examination of the liver and liver biopsy. In addition to the standard-care ultrasound examination, three valid gray-scale images were obtained for each patient. With the ASQ software, the average and peak values (Cm(2)) of each ultrasound gray-scale image were calculated and then compared with histologic fibrosis staging (F0-F4). No correlation was found between ASQ values and histologic fibrosis stage (p > 0.05). Areas under the curve for the diagnosis of no or mild fibrosis (F0 and F1), moderate/severe fibrosis (F2 and F3) and cirrhosis (F4) using average/peak Cm(2) values of small regions of interest were 0.46/0.43, 0.62/0.68 and 0.38/0.33. Determination of liver fibrosis with ASQ in its present form as an alternative approach to liver biopsy is too imprecise. PMID:25308947

  18. Magnetization-tagged MRI is a simple method for predicting liver fibrosis

    PubMed Central

    Kim, Kyung-Eun; Park, Mi-Suk; Chung, Sohae; An, Chansik; Axel, Leon; Ergashovna, Rakhmonova Gulbahor

    2016-01-01

    Background/Aims: To assess the usefulness of magnetization-tagged magnetic resonance imaging (MRI) in quantifying cardiac-induced liver motion and deformation in order to predict liver fibrosis. Methods: This retrospective study included 85 patients who underwent liver MRI including magnetization-tagged sequences from April 2010 to August 2010. Tagged images were acquired in three coronal and three sagittal planes encompassing both the liver and heart. A Gabor filter bank was used to measure the maximum value of displacement (MaxDisp) and the maximum and minimum values of principal strains (MaxP1 and MinP2, respectively). Patients were divided into three groups (no fibrosis, mild-to-moderate fibrosis, and significant fibrosis) based on their aspartate-aminotransferase-to-platelet ratio index (APRI) score. Group comparisons were made using ANOVA tests. Results: The patients were divided into three groups according to APRI scores: no fibrosis (≤0.5; n=41), moderate fibrosis (0.5–1.5; n=23), and significant fibrosis (>1.5; n=21). The values of MaxDisp were 2.9±0.9 (mean±SD), 2.3±0.7, and 2.1±0.6 in the no fibrosis, moderate fibrosis, and significant fibrosis groups, respectively (P<0.001); the corresponding values of MaxP1 were 0.05±0.2, 0.04±0.02, and 0.03±0.01, respectively (P=0.002), while those of MinP2 were –0.07±0.02, –0.05±0.02, and –0.04±0.01, respectively (P<0.001). Conclusions: Tagged MRI to quantify cardiac-induced liver motion can be easily incorporated in routine liver MRI and may represent a helpful complementary tool in the diagnosis of early liver fibrosis. PMID:27044764

  19. Noninvasive models for assessment of liver fibrosis in patients with chronic hepatitis B virus infection

    PubMed Central

    Zeng, Da-Wu; Dong, Jing; Liu, Yu-Rui; Jiang, Jia-Ji; Zhu, Yue-Yong

    2016-01-01

    There are approximately 240 million patients with chronic hepatitis B virus (HBV) infection worldwide. Up to 40% of HBV-infected patients can progress to liver cirrhosis, hepatocellular carcinoma or chronic end-stage liver disease during their lifetime. This, in turn, is responsible for around 650000 deaths annually worldwide. Repeated hepatitis flares may increase the progression of liver fibrosis, making the accurate diagnosis of the stage of liver fibrosis critical in order to make antiviral therapeutic decisions for HBV-infected patients. Liver biopsy remains the “gold standard” for diagnosing liver fibrosis. However, this technique has recently been challenged by the development of several novel noninvasive tests to evaluate liver fibrosis, including serum markers, combined models and imaging techniques. In addition, the cost and accessibility of imaging techniques have been suggested as additional limitations for invasive assessment of liver fibrosis in developing countries. Therefore, a noninvasive assessment model has been suggested to evaluate liver fibrosis, specifically in HBV-infected patients, owing to its high applicability, inter-laboratory reproducibility, wide availability for repeated assays and reasonable cost. The current review aims to present the status of knowledge in this new and exciting field, and to highlight the key points in HBV-infected patients for clinicians. PMID:27547009

  20. Noninvasive models for assessment of liver fibrosis in patients with chronic hepatitis B virus infection.

    PubMed

    Zeng, Da-Wu; Dong, Jing; Liu, Yu-Rui; Jiang, Jia-Ji; Zhu, Yue-Yong

    2016-08-01

    There are approximately 240 million patients with chronic hepatitis B virus (HBV) infection worldwide. Up to 40% of HBV-infected patients can progress to liver cirrhosis, hepatocellular carcinoma or chronic end-stage liver disease during their lifetime. This, in turn, is responsible for around 650000 deaths annually worldwide. Repeated hepatitis flares may increase the progression of liver fibrosis, making the accurate diagnosis of the stage of liver fibrosis critical in order to make antiviral therapeutic decisions for HBV-infected patients. Liver biopsy remains the "gold standard" for diagnosing liver fibrosis. However, this technique has recently been challenged by the development of several novel noninvasive tests to evaluate liver fibrosis, including serum markers, combined models and imaging techniques. In addition, the cost and accessibility of imaging techniques have been suggested as additional limitations for invasive assessment of liver fibrosis in developing countries. Therefore, a noninvasive assessment model has been suggested to evaluate liver fibrosis, specifically in HBV-infected patients, owing to its high applicability, inter-laboratory reproducibility, wide availability for repeated assays and reasonable cost. The current review aims to present the status of knowledge in this new and exciting field, and to highlight the key points in HBV-infected patients for clinicians. PMID:27547009

  1. Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis.

    PubMed

    Han, Yuyan; Onori, Paolo; Meng, Fanyin; DeMorrow, Sharon; Venter, Julie; Francis, Heather; Franchitto, Antonio; Ray, Debolina; Kennedy, Lindsey; Greene, John; Renzi, Anastasia; Mancinelli, Romina; Gaudio, Eugenio; Glaser, Shannon; Alpini, Gianfranco

    2014-11-01

    Biliary hyperplasia and liver fibrosis are common features in cholestatic liver disease. Melatonin is synthesized by the pineal gland as well as the liver. Melatonin inhibits biliary hyperplasia of bile duct-ligated (BDL) rats. Since melatonin synthesis (by the enzyme serotonin N-acetyltransferase, AANAT) from the pineal gland increases after dark exposure, we hypothesized that biliary hyperplasia and liver fibrosis are diminished by continuous darkness via increased melatonin synthesis from the pineal gland. Normal or BDL rats (immediately after surgery) were housed with light-dark cycles or complete dark for 1 wk before evaluation of 1) the expression of AANAT in the pineal gland and melatonin levels in pineal gland tissue supernatants and serum; 2) biliary proliferation and intrahepatic bile duct mass, liver histology, and serum chemistry; 3) secretin-stimulated ductal secretion (functional index of biliary growth); 4) collagen deposition, liver fibrosis markers in liver sections, total liver, and cholangiocytes; and 5) expression of clock genes in cholangiocytes. In BDL rats exposed to dark there was 1) enhanced AANAT expression/melatonin secretion in pineal gland and melatonin serum levels; 2) improved liver morphology, serum chemistry and decreased biliary proliferation and secretin-stimulated choleresis; and 4) decreased fibrosis and expression of fibrosis markers in liver sections, total liver and cholangiocytes and reduced biliary expression of the clock genes PER1, BMAL1, CLOCK, and Cry1. Thus prolonged dark exposure may be a beneficial noninvasive therapeutic approach for the management of biliary disorders. PMID:25214401

  2. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling

    PubMed Central

    Hyun, Jeongeun; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis. PMID:27547008

  3. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling.

    PubMed

    Hyun, Jeongeun; Jung, Youngmi

    2016-08-01

    Liver fibrosis is a repair process in response to damage in the liver; however, severe and chronic injury promotes the accumulation of fibrous matrix, destroying the normal functions and architecture of liver. Hepatic stellate cells (HSCs) are quiescent in normal livers, but in damaged livers, they transdifferentiate into myofibroblastic HSCs, which produce extracellular matrix proteins. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged livers and contributes to liver fibrogenesis by regulating HSC activation. MicroRNAs (miRNAs), endogenous small non-coding RNAs interfering with RNA post-transcriptionally, regulate various cellular processes in healthy organisms. The dysregulation of miRNAs is closely associated with diseases, including liver diseases. Thus, miRNAs are good targets in the diagnosis and treatment of various diseases, including liver fibrosis; however, the regulatory mechanisms of miRNAs that interact with Hh signaling in liver fibrosis remain unclear. We review growing evidence showing the association of miRNAs with Hh signaling. Recent studies suggest that Hh-regulating miRNAs induce inactivation of HSCs, leading to decreased hepatic fibrosis. Although miRNA-delivery systems and further knowledge of interacting miRNAs with Hh signaling need to be improved for the clinical usage of miRNAs, recent findings indicate that the miRNAs regulating Hh signaling are promising therapeutic agents for treating liver fibrosis. PMID:27547008

  4. State-of-the-art imaging of liver fibrosis and cirrhosis: A comprehensive review of current applications and future perspectives

    PubMed Central

    Huber, Adrian; Ebner, Lukas; Heverhagen, Johannes T.; Christe, Andreas

    2015-01-01

    Objective The purpose of this article is to provide a comprehensive overview of imaging findings in patients with hepatic fibrosis and cirrhosis; and to describe which radiological/clinical modality is best for staging hepatic fibrosis. Conclusion MR elastography (MRE) appears to be the most reliable method for grading liver fibrosis, although the CT fibrosis score derived from the combination of caudate-to-right-lobe ratio and the diameters of the liver veins significantly correlates with the stage of fibrosis. PMID:26937441

  5. DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches.

    PubMed

    Chen, L; Luo, M; Sun, X; Qin, J; Yu, C; Wen, Y; Zhang, Q; Gu, J; Xia, Q; Kong, X

    2016-01-01

    Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b(+)Gr-1(low) macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches. PMID:27277679

  6. Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes.

    PubMed

    Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun

    2016-07-01

    Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. PMID:27137983

  7. Liver fibrosis grading using multiresolution histogram information in real-time elastography

    NASA Astrophysics Data System (ADS)

    Albouy-Kissi, A.; Sarry, L.; Massoulier, S.; Bonny, C.; Randl, K.; Abergel, A.

    2010-03-01

    Despites many limitations, liver biopsy remains the gold standard method for grading and staging liver biopsy. Several modalities have been developed for a non invasive assessment of liver diseases. Real-time elastography may constitute a true alternative to liver biopsy by providing an image of tissular elasticity distribution correlated to the fibrosis grade. In this paper, we investigate a new approach for the assessment of liver fibrosis by the classification of fibrosis morphometry. Multiresolution histogram, based on a combination of intensity and texture features, has been tested as feature space. Thus, the ability of such multiresolution histograms to discriminate fibrosis grade has been proven. The results have been tested on seventeen patients that underwent a real time elastography and FibroScan examination.

  8. [Options for non-invasive assessment of liver fibrosis based on clinical data].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-01-11

    Liver cirrhosis is one of the leading causes of death worldwide. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Studies have focused on non-invasive markers for liver fibrosis because of the dangers and complications of liver biopsy. The authors review the non-invasive direct as well as indirect methods for liver fibrosis assessment and present the positive and negative predictive value, sensitivity and specificity of those. Clinical utilities of transient elastography (Fibrsocan) is also reviewed. Non-invasive methods are useful in the assessment of liver fibrosis, monitoring disease progression and therapeutic response. Their accuracy can be increased by the combined or sequential use of non-invasive markers. PMID:25563681

  9. Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated senescence in rodents.

    PubMed

    Lv, Xiao-xi; Wang, Xiao-xing; Li, Ke; Wang, Zi-yan; Li, Zhe; Lv, Qi; Fu, Xiao-ming; Hu, Zhuo-wei

    2013-01-01

    A similar immune response is implicated in the pathogenesis of pulmonary fibrosis and allergic disorders. We investigated the potential therapeutic efficacy and mechanism of rupatadine, a dual antagonist of histamine and platelet-activation factor (PAF), in bleomycin- (BLM-) and silica-induced pulmonary fibrosis. The indicated dosages of rupatadine were administered in rodents with bleomycin or silica-induced pulmonary fibrosis. The tissue injury, fibrosis, inflammatory cells and cytokines, and lung function were examined to evaluate the therapeutic efficacy of rupatadine. The anti-fibrosis effect of rupatadine was compared with an H1 or PAF receptor antagonist, and efforts were made to reveal rupatadine's anti-fibrotic mechanism. Rupatadine promoted the resolution of pulmonary inflammation and fibrosis in a dose-dependent manner, as indicated by the reductions in inflammation score, collagen deposition and epithelial-mesenchymal transformation, and infiltration or expression of inflammatory cells or cytokines in the fibrotic lung tissue. Thus, rupatadine treatment improved the declined lung function and significantly decreased animal death. Moreover, rupatadine was able not only to attenuate silica-induced silicosis but also to produce a superior therapeutic efficacy compared to pirfenidone, histamine H1 antagonist loratadine, or PAF antagonist CV-3988. The anti-fibrotic action of rupatadine might relate to its attenuation of BLM- or PAF-induced premature senescence because rupatadine treatment protected against the in vivo and in vitro activation of the p53/p21-dependent senescence pathway. Our studies indicate that rupatadine promotes the resolution of pulmonary inflammation and fibrosis by attenuating the PAF-mediated senescence response. Rupatadine holds promise as a novel drug to treat the devastating disease of pulmonary fibrosis. PMID:23869224

  10. The portal lobule in rat liver fibrosis: a re-evaluation of the liver unit.

    PubMed

    Bhunchet, E; Wake, K

    1998-02-01

    We re-evaluated three schemes of liver organization: the classic lobule, the portal lobule, and Rappaport's liver acinus. The lobular angioarchitecture of normal rat liver and the three-dimensional structure of pseudolubules found in rat livers with fibrosis induced by swine serum were compared with the classic lobule of the pig. Normal and fibrotic rat livers and pig livers were perfused, injected with either India ink or 0.75% OsO4 through the portal and/or hepatic vein, and immersionfixed. Whole lobes and hand-cut thick sections were made transparent with a solution of benzyl benzoate and methyl salicylate. The angioarchitecture of normal rat liver differs from pig liver. In the former, terminal portal branches and central veins interdigitate, and in the latter, numerous terminal portal branches that arise from interlobular portal veins establish a vascular basket surrounding one central vein and forming classic lobule. The structure of liver acinus is never found in the pig liver. The terminal portal branch, together with the terminal hepatic artery and bile duct, are present inside each pseudolobule of fibrotic rat livers. Blood from the terminal portal branch flows through inlet venules into radiating sinusoids, and, at the periphery converges into newly formed septal and angular outlet venules; these venules terminate in fibrotic central veins located at each corner. Pseudolobules are not rugby ball-like as Rappaport's liver acini are but are polyhedron in shape. The rat pseudolobules are comparable with the portal lobule; its structure and microcirculation are the reverse of the pig classic lobule. Rat pseudolobules are different from liver acini, as shown by the following: 1) their three-dimensional shape is different; and 2) they have a reverse relationship to classic lobules while acini are defined to subdivide classic lobules. In normal and fibrotic rat livers, the liver unit is the portal lobule with a terminal portal branch as the axial branch and

  11. Platycodin D attenuates bile duct ligation-induced hepatic injury and fibrosis in mice.

    PubMed

    Kim, Tae-Won; Lee, Hong-Ki; Song, In-Bae; Lim, Jong-Hwan; Cho, Eun-Sang; Son, Hwa-Young; Jung, Ju-Young; Yun, Hyo-In

    2013-01-01

    Platycodin D (PD) is the major triterpene saponin in the root of Platycodon grandiflorum. The aim of the present study was to evaluate the protective effects of PD on bile duct ligation (BDL)-induced cholestasis in mice. Mice were allocated to five groups: sham, BDL alone, and BDL with PD treatment at 1, 2, and 4mg/kg. PD was administered to the mice for 28 consecutive days after the BDL operation. PD treatment of BDL-operated mice decreased serum alanine aminotransferase, serum aspartate aminotransferase, and total bilirubin levels by up to 37%, 31%, and 41%, respectively, in comparison with the levels in mice that underwent BDL alone. PD treatment attenuated oxidative stress, as evidenced by an increase in anti-oxidative enzyme levels glutathione and superoxide dismutase together with a decrease in lipid peroxidation and oxidative stress indices levels of malondialdehyde and nitric oxide. Histopathological studies further confirmed the protective effects of PD on cholestasis-induced hepatic injury and liver fibrosis in mice. In addition, nuclear factor-kappa B and inducible nitric oxide synthase levels significantly decreased after PD treatment, as did the levels of hepatocyte apoptosis. Taken together, these results suggest that PD treatment might be beneficial in cholestasis-induced hepatotoxicity. PMID:23116642

  12. Magnetic resonance imaging of the pediatric liver: imaging of steatosis, iron deposition, and fibrosis.

    PubMed

    Towbin, Alexander J; Serai, Suraj D; Podberesky, Daniel J

    2013-11-01

    Traditionally, many diffuse diseases of the liver could only be diagnosed by liver biopsy. Although still considered the gold standard, liver biopsy is limited by its small sample size, invasive nature, and subjectivity of interpretation. There have been significant advances in functional magnetic resonance (MR) imaging of the liver. These advances now provide radiologists with the tools to evaluate the liver at the molecular level, allowing quantification of hepatic fat and iron, and enabling the identification of liver fibrosis at its earliest stages. These methods provide objective measures of diffuse liver processes and aid hepatologists in the diagnosis and management of liver disease. PMID:24183519

  13. GENETIC MODIFIERS OF LIVER DISEASE IN CYSTIC FIBROSIS

    PubMed Central

    Bartlett, Jaclyn R.; Friedman, Kenneth J.; Ling, Simon C.; Pace, Rhonda G.; Bell, Scott C.; Bourke, Billy; Castaldo, Giuseppe; Castellani, Carlo; Cipolli, Marco; Colombo, Carla; Colombo, John L.; Debray, Dominique; Fernandez, Adriana; Lacaille, Florence; Macek, Milan; Rowland, Marion; Salvatore, Francesco; Taylor, Christopher J.; Wainwright, Claire; Wilschanski, Michael; Zemková, Dana; Hannah, William B.; Phillips, M. James; Corey, Mary; Zielenski, Julian; Dorfman, Ruslan; Wang, Yunfei; Zou, Fei; Silverman, Lawrence M.; Drumm, Mitchell L.; Wright, Fred A.; Lange, Ethan M.; Durie, Peter R.; Knowles, Michael R.

    2013-01-01

    Context A subset (~3–5%) of patients with cystic fibrosis (CF) develops severe liver disease (CFLD) with portal hypertension. Objective To assess whether any of 9 polymorphisms in 5 candidate genes (SERPINA1, ACE, GSTP1, MBL2, and TGFB1) are associated with severe liver disease in CF patients. Design, Setting, and Participants A 2-stage design was used in this case–control study. CFLD subjects were enrolled from 63 U.S., 32 Canadian, and 18 CF centers outside of North America, with the University of North Carolina at Chapel Hill (UNC) as the coordinating site. In the initial study, we studied 124 CFLD patients (enrolled 1/1999–12/2004) and 843 CF controls (patients without CFLD) by genotyping 9 polymorphisms in 5 genes previously implicated as modifiers of liver disease in CF. In the second stage, the SERPINA1 Z allele and TGFB1 codon 10 genotype were tested in an additional 136 CFLD patients (enrolled 1/2005–2/2007) and 1088 CF controls. Main Outcome Measures We compared differences in distribution of genotypes in CF patients with severe liver disease versus CF patients without CFLD. Results The initial study showed CFLD to be associated with the SERPINA1 (also known as α1-antiprotease and α1-antitrypsin) Z allele (P value=3.3×10−6; odds ratio (OR) 4.72, 95% confidence interval (CI) 2.31–9.61), and with transforming growth factor β-1 (TGFB1) codon 10 CC genotype (P=2.8×10−3; OR 1.53, CI 1.16–2.03). In the replication study, CFLD was associated with the SERPINA1 Z allele (P=1.4×10−3; OR 3.42, CI 1.54–7.59), but not with TGFB1 codon 10. A combined analysis of the initial and replication studies by logistic regression showed CFLD to be associated with SERPINA1 Z allele (P=1.5×10−8; OR 5.04, CI 2.88–8.83). Conclusion The SERPINA1 Z allele is a risk factor for liver disease in CF. Patients who carry the Z allele are at greater odds (OR ~5) to develop severe liver disease with portal hypertension. PMID:19738092

  14. [Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].

    PubMed

    Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando

    2003-01-01

    The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited. PMID:14702938

  15. Hepatocyte Growth Factor Mediates the Antifibrogenic Action of Ocimum bacilicum Essential Oil against CCl4-Induced Liver Fibrosis in Rats.

    PubMed

    Ogaly, Hanan A; Eltablawy, Nadia A; El-Behairy, Adel M; El-Hindi, Hatim; Abd-Elsalam, Reham M

    2015-01-01

    The current investigation aimed to evaluate the antifibrogenic potential of Ocimum basilicum essential oil (OBE) and further to explore some of its underlying mechanisms. Three groups of rats were used: group I (control), group II (CCl4 model) and group III (OBE-treated) received CCl4 and OBE 2 weeks after the start of CCl4 administration. Oxidative damage was assessed by the measurement of MDA, NO, SOD, CAT, GSH and total antioxidant capacity (TAC). Liver fibrosis was assessed histopathologically by Masson's trichrome staining and α-smooth muscle actin (α-SMA) immunostaining. Expression of hepatocyte growth factor (HGF) and cytochrome P450 (CYP2EI isoform) was estimated using real-time PCR and immunohistochemistry. OBE successfully attenuated liver injury, as shown by histopathology, decreased serum transaminases and improved oxidative status of the liver. Reduced collagen deposition and α-SMA immuopositive cells indicated an abrogation of hepatic stellate cell activation by OBE. Furthermore, OBE was highly effective in stimulating HGF mRNA and protein expression and inhibiting CCl4-induced CYP2E1 down-regulation. The mechanism of antifibrogenic action of OBE is hypothesized to proceed via scavenging free radicals and activating liver regeneration by induction of HGF. These data suggest the use of OBE as a complementary treatment in liver fibrosis. PMID:26213907

  16. Adenovirus-mediated over-expression of Septin4 ameliorates hepatic fibrosis in mouse livers infected with Schistosoma japonicum.

    PubMed

    He, Xue; Bao, Jing; Chen, Jinling; Sun, Xiaolei; Wang, Jianxin; Zhu, Dandan; Song, Ke; Peng, Wenxia; Xu, Tianhua; Duan, Yinong

    2015-12-01

    Septin4 (Sept4) belongs to Septin family and may be involved in apoptosis, vesicle trafficking and other cell processes. In this study, we attempted to investigate the effect of Sept4 in hepatic fibrosis induced by Schistosoma japonicum. ICR mice infected with S. japonicum for 12weeks were treated with PBS, Ad-ctr and Ad-Sept4, respectively. All mice were killed at 2weeks after injection, and the changes in the fibrotic livers were detected via H&E staining, Sirius red staining, qRT-PCR, western blot and TUNEL analysis. In addition, pcDNA3.1-Sept4 plasmid was transfected into LX-2 cells to observe the effect of Sept4 on apoptosis of HSCs in vitro. Ad-Sept4 could ameliorate liver fibrosis, as detected by H&E staining and Sirius red staining. The number of TUNEL-positive cells was increased in the Ad-Sept4 treated group. The expression of Sept4 and cleaved-caspase-3 were all augmented, while the expression of α-SMA, Col1α1 and IL-13 were reduced in the Ad-Sept4 treated group, compared with that expressed in the Ad-ctr group. Over-expression of Sept4 in LX-2 cells could promote apoptosis of LX-2 cells in vitro. In conclusion, Ad-Sept4 can attenuate the development of liver fibrosis induced by S. japonicum through apoptosis. PMID:26190030

  17. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  18. Protective efficacy and safety of liver stage attenuated malaria parasites

    PubMed Central

    Kumar, Hirdesh; Sattler, Julia Magdalena; Singer, Mirko; Heiss, Kirsten; Reinig, Miriam; Hammerschmidt-Kamper, Christiane; Heussler, Volker; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(–) or uis3(–) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(–) parasites protected better than uis3(–) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy. PMID:27241521

  19. Protective efficacy and safety of liver stage attenuated malaria parasites.

    PubMed

    Kumar, Hirdesh; Sattler, Julia Magdalena; Singer, Mirko; Heiss, Kirsten; Reinig, Miriam; Hammerschmidt-Kamper, Christiane; Heussler, Volker; Mueller, Ann-Kristin; Frischknecht, Friedrich

    2016-01-01

    During the clinically silent liver stage of a Plasmodium infection the parasite replicates from a single sporozoite into thousands of merozoites. Infection of humans and rodents with large numbers of sporozoites that arrest their development within the liver can cause sterile protection from subsequent infections. Disruption of genes essential for liver stage development of rodent malaria parasites has yielded a number of attenuated parasite strains. A key question to this end is how increased attenuation relates to vaccine efficacy. Here, we generated rodent malaria parasite lines that arrest during liver stage development and probed the impact of multiple gene deletions on attenuation and protective efficacy. In contrast to P. berghei strain ANKA LISP2(-) or uis3(-) single knockout parasites, which occasionally caused breakthrough infections, the double mutant lacking both genes was completely attenuated even when high numbers of sporozoites were administered. However, different vaccination protocols showed that LISP2(-) parasites protected better than uis3(-) and double mutants. Hence, deletion of several genes can yield increased safety but might come at the cost of protective efficacy. PMID:27241521

  20. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update

    PubMed Central

    Elpek, Gülsüm Özlem

    2014-01-01

    There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis. PMID:24966597

  1. Liver fibrosis in mice induced by carbon tetrachloride and its reversion by luteolin

    SciTech Connect

    Domitrovic, Robert; Jakovac, Hrvoje; Tomac, Jelena; Sain, Ivana

    2009-12-15

    Hepatic fibrosis is effusive wound healing process in which excessive connective tissue builds up in the liver. Because specific treatments to stop progressive fibrosis of the liver are not available, we have investigated the effects of luteolin on carbon tetrachloride (CCl{sub 4})-induced hepatic fibrosis. Male Balb/C mice were treated with CCl{sub 4} (0.4 ml/kg) intraperitoneally (i.p.), twice a week for 6 weeks. Luteolin was administered i.p. once daily for next 2 weeks, in doses of 10, 25, and 50 mg/kg of body weight. The CCl{sub 4} control group has been observed for spontaneous reversion of fibrosis. CCl{sub 4}-intoxication increased serum aminotransferase and alkaline phosphatase levels and disturbed hepatic antioxidative status. Most of these parameters were spontaneously normalized in the CCl{sub 4} control group, although the progression of liver fibrosis was observed histologically. Luteolin treatment has increased hepatic matrix metalloproteinase-9 levels and metallothionein (MT) I/II expression, eliminated fibrinous deposits and restored architecture of the liver in a dose-dependent manner. Concomitantly, the expression of glial fibrillary acidic protein and alpha-smooth muscle actin indicated deactivation of hepatic stellate cells. Our results suggest the therapeutic effects of luteolin on CCl{sub 4}-induced liver fibrosis by promoting extracellular matrix degradation in the fibrotic liver tissue and the strong enhancement of hepatic regenerative capability, with MTs as a critical mediator of liver regeneration.

  2. Non-invasive diagnosis of liver fibrosis in chronic hepatitis C

    PubMed Central

    Schiavon, Leonardo de Lucca; Narciso-Schiavon, Janaína Luz; de Carvalho-Filho, Roberto José

    2014-01-01

    Assessment of liver fibrosis in chronic hepatitis C virus (HCV) infection is considered a relevant part of patient care and key for decision making. Although liver biopsy has been considered the gold standard for staging liver fibrosis, it is an invasive technique and subject to sampling errors and significant intra- and inter-observer variability. Over the last decade, several noninvasive markers were proposed for liver fibrosis diagnosis in chronic HCV infection, with variable performance. Besides the clear advantage of being noninvasive, a more objective interpretation of test results may overcome the mentioned intra- and inter-observer variability of liver biopsy. In addition, these tests can theoretically offer a more accurate view of fibrogenic events occurring in the entire liver with the advantage of providing frequent fibrosis evaluation without additional risk. However, in general, these tests show low accuracy in discriminating between intermediate stages of fibrosis and may be influenced by several hepatic and extra-hepatic conditions. These methods are either serum markers (usually combined in a mathematical model) or imaging modalities that can be used separately or combined in algorithms to improve accuracy. In this review we will discuss the different noninvasive methods that are currently available for the evaluation of liver fibrosis in chronic hepatitis C, their advantages, limitations and application in clinical practice. PMID:24659877

  3. Non-invasive diagnosis of liver fibrosis in chronic hepatitis C.

    PubMed

    Schiavon, Leonardo de Lucca; Narciso-Schiavon, Janaína Luz; de Carvalho-Filho, Roberto José

    2014-03-21

    Assessment of liver fibrosis in chronic hepatitis C virus (HCV) infection is considered a relevant part of patient care and key for decision making. Although liver biopsy has been considered the gold standard for staging liver fibrosis, it is an invasive technique and subject to sampling errors and significant intra- and inter-observer variability. Over the last decade, several noninvasive markers were proposed for liver fibrosis diagnosis in chronic HCV infection, with variable performance. Besides the clear advantage of being noninvasive, a more objective interpretation of test results may overcome the mentioned intra- and inter-observer variability of liver biopsy. In addition, these tests can theoretically offer a more accurate view of fibrogenic events occurring in the entire liver with the advantage of providing frequent fibrosis evaluation without additional risk. However, in general, these tests show low accuracy in discriminating between intermediate stages of fibrosis and may be influenced by several hepatic and extra-hepatic conditions. These methods are either serum markers (usually combined in a mathematical model) or imaging modalities that can be used separately or combined in algorithms to improve accuracy. In this review we will discuss the different noninvasive methods that are currently available for the evaluation of liver fibrosis in chronic hepatitis C, their advantages, limitations and application in clinical practice. PMID:24659877

  4. Transient elastography compared to liver biopsy and morphometry for predicting fibrosis in pediatric chronic liver disease: Does etiology matter?

    PubMed Central

    Behairy, Behairy El-Sayed; Sira, Mostafa Mohamed; Zalata, Khaled Refat; Salama, El-Sayed Ebrahem; Abd-Allah, Mohamed Ahmed

    2016-01-01

    AIM: To evaluate transient elastography (TE) as a noninvasive tool in staging liver fibrosis compared with liver biopsy and morphometry in children with different chronic liver diseases. METHODS: A total of 90 children [50 with chronic hepatitis C virus (HCV), 20 with autoimmune hepatitis (AIH) and 20 with Wilson disease] were included in the study and underwent liver stiffness measurement (LSM) using TE. Liver biopsies were evaluated for fibrosis, qualitatively, by Ishak score and quantitatively by fibrosis area fraction (FAF) using digital image analysis (morphometry). LSM was correlated with fibrosis and other studied variables using spearman correlation. A stepwise multiple regression analysis was also performed to examine independent factors associated with LSM. Different cut-off values of LSM were calculated for predicting individual fibrosis stages using receiver-operating characteristic curve. Cut-off values with optimal clinical performance (optimal sensitivity and specificity simultaneously) were selected. RESULTS: The majority of HCV group had minimal activity (80%) and no/mild fibrosis (72%). On the other hand, the majority of AIH group had mild to moderate activity (70%) and moderate to severe fibrosis (95%) and all Wilson disease group had mild to moderate activity (100%) and moderate to severe fibrosis (100%). LSM correlated significantly with both FAF and Ishak scores and the correlation appeared better with the latter (r = 0.839 vs 0.879, P < 0.0001 for both). LSM discriminated individual stages of fibrosis with high performance. Sensitivity ranged from 81.4% to 100% and specificity ranged from 75.0% to 97.2%. When we compared LSM values for the same stage of fibrosis, they varied according to the different etiologies. Higher values were in AIH (16.15 ± 7.23 kPa) compared to Wilson disease (8.30 ± 0.84 kPa) and HCV groups (7.43 ± 1.73 kPa). Multiple regression analysis revealed that Ishak fibrosis stage was the only independent variable

  5. Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

    2013-10-01

    We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

  6. Effect of Anoectochilus formosanus on fibrosis and regeneration of the liver in rats.

    PubMed

    Shih, Chun-Ching; Wu, Yueh-Wern; Hsieh, Chang-Chi; Lin, Wen-Chuan

    2004-09-01

    1. The present study examined the effects of an aqueous extract of Anoectochilus formosanus (AFE) on both hepatic fibrosis and regeneration in rats. 2. Fibrosis was induced by intraperitoneal injection of dimethylnitrosamine (DMN) for 3 consecutive days per week for 4 weeks. 3. In DMN-treated rats, liver cirrhosis-associated complications, such as liver atrophy, low concentrations of serum albumin and the accumulation of hepatic collagen, were observed. The AFE protected the liver against DMN-induced fibrosis, as determined by morphological and biochemical observations. 4. In addition, AFE was administered to two-thirds hepatectomized normal and DMN-injured rats. Three and 5 days after hepatectomy, AFE increased the extent of liver weight regeneration and the number of S-phase cells in DMN-injured rats, but not in normal rats. 5. These results show that AFE seems to be useful in the repair of liver injury, improvement of fibrotic changes and promotion of liver regeneration. PMID:15479170

  7. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions

    PubMed Central

    Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.

    2016-01-01

    OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762

  8. Usefulness of non-invasive serum markers for predicting liver fibrosis in Egyptian patients with chronic HCV infection.

    PubMed

    El Guesiry, Dalal; Moez, Pacinte; Hossam, Nermine; Kassem, Mohamed

    2011-01-01

    Accurate monitoring of liver fibrosis changes in patients with hepatitis C virus (HCV) infection would be helpful in defining the need to intervene, implement the appropriate response in treatment and to minimize the use of liver biopsy. We aimed to evaluate the diagnostic utility of the different serum markers and indices in detecting liver fibrosis in study patients. Initial liver biopsy, routine liver function tests, estimation of hyaluronic acid, MMP-1, and PIIINP levels was performed for 30 Egyptian patients with HCV and 15 controls. Marker algorithms based on common laboratory such APRI score, Fibrotest and Actitest. PIIINP and MMP-1 serum markers were combined and entered into a stepwise logistic regression analysis with formulation of a score equation for fibrosis staging. Combined PIIINP and MMP-1 yielded different cut off scores to estimate two clinically relevant fibrosis stages: "significant fibrosis" versus "extensive fibrosis. Apri score also showed AUC of 1.0 with 100 % sensitivity and specificity to exclude the presence of cirrhosis and was significantly correlated to Metavair fibrosis stage in early fibrosis. On the other hand, PIIINP, Fibrotest and acti test were significantly correlated to Metavair fibrosis stage in both early and late fibrosis. In conclusion, integrating PIIINP/MMP-1 score was able to provide reliable information about the degree of liver fibrosis in chronic hepatitis C patients using different cut-offs values. A combination of liver markers as well as its related indices is an emerging tool to differentiate early from advanced liver fibrosis in HCV patients. PMID:23082465

  9. Nanoencapsulated curcumin and praziquantel treatment reduces periductal fibrosis and attenuates bile canalicular abnormalities in Opisthorchis viverrini-infected hamsters.

    PubMed

    Charoensuk, Lakhanawan; Pinlaor, Porntip; Wanichwecharungruang, Supason; Intuyod, Kitti; Vaeteewoottacharn, Kulthida; Chaidee, Apisit; Yongvanit, Puangrat; Pairojkul, Chawalit; Suwannateep, Natthakitta; Pinlaor, Somchai

    2016-01-01

    This study investigated the effects of nanoencapsulated curcumin (NEC) and praziquantel (PZQ) treatment on the resolution of periductal fibrosis (PDF) and bile canalicular (BC) abnormalities in Opisthorchis viverrini infected hamsters. Chronic O. viverrini infection (OV) was initially treated with either PZQ (OP) and subsequently treated with NEC (OP+NEC), curcumin (OP+Cur) or unloaded carriers (OP+carrier) daily for one month. OP+NEC treatment reduced the PDF by suppression of fibrotic markers (hydroxyproline content, α-SMA, CTGF, fibronectin, collagen I and III), cytokines (TGF-β and TNF-α) and TIMP-1, 2, 3 expression and upregulation of MMP-7, 13 genes. Higher activity of NEC in reducing fibrosis compared to curcumin was also demonstrated in in vitro studies. Moreover, OP+NEC also prevented BC abnormalities and upregulated several genes involved in bile acid metabolism. These results demonstrate that NEC and PZQ treatment reduces PDF and attenuates BC defect in experimental opisthorchiasis. From the Clinical Editor: Infection by Opisthorchis viverrini leads to liver fibrosis and affects population in SE Asia. Currently, praziquantel (PZQ) is the drug of choice but this drug has significant side effects. In this study, the authors combined curcumin (NEC) and praziquantel in a nanocarrier to test the anti-oxidative effect of curcumin in an animal model. The encouraging results may pave a way for better treatment in the future. PMID:26542278

  10. Diffusion-Weighted MRI for the Assessment of Liver Fibrosis: Principles and Applications

    PubMed Central

    Attinà, Giancarlo; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ettorre, Giovanni Carlo; Milone, Pietro

    2015-01-01

    The importance of an early identification of hepatic fibrosis has been emphasized, in order to start therapy and obtain fibrosis regression. Biopsy is the gold-standard method for the assessment of liver fibrosis in chronic liver diseases, but it is limited by complications, interobserver variability, and sampling errors. Several noninvasive methods have been recently introduced into clinical routine, in order to detect liver fibrosis early. One of the most diffuse approaches is represented by diffusion-weighted liver MRI. In this review, the main technical principles are briefly reported in order to explain the rationale for clinical applications. In addition, roles of apparent diffusion coefficient, intravoxel incoherent motion, and relative apparent diffusion coefficient are also reported, showing their advantages and limits. PMID:25866819

  11. [Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].

    PubMed

    Shin, Jung Woo; Park, Neung Hwa

    2016-07-25

    The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis. PMID:27443617

  12. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis.

    PubMed

    Park, Ji-Hyun; Kum, Yoon-Seup; Lee, Tae-Im; Kim, Soo-Jung; Lee, Woo-Ram; Kim, Bong-Il; Kim, Hyun-Soo; Kim, Kyung-Hyun; Park, Kwan-Kyu

    2011-11-01

    Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Following injury, an acute inflammation response takes place resulting in moderate cell necrosis and extracellular matrix damage. Melittin, the major bioactive component in the venom of honey bee Apis mellifera, is a 26-residue amphipathic peptide with well-known cytolytic, antimicrobial and proinflammatory properties. However, the molecular mechanisms responsible for the anti-inflammatory activity of melittin have not been elucidated in liver fibrosis. We investigated whether melittin ameliorates liver inflammation and fibrosis in thioacetamide (TAA)-induced liver fibrosis. Two groups of mice were treated with TAA (200 mg/L, in drinking water), one of the groups of mice was co-treated with melittin (0.1 mg/kg) for 12 weeks while the other was not. Hepatic stellate cells (HSCs) were cultured with tumor necrosis factor α in the absence or presence of melittin. Melittin suppresses the expression of proinflammatory cytokines through the nuclear factor (NF)-κB signaling pathway. Moreover, melittin reduces the activity of HSCs in vitro, and decreases the expression of fibrotic gene responses in TAA-induced liver fibrosis. Taken together, melittin prevents TAA-induced liver fibrosis by inhibiting liver inflammation and fibrosis, the mechanism of which is the interruption of the NF-κB signaling pathway. These results suggest that melittin could be an effective agent for preventing liver fibrosis. PMID:21969711

  13. Acoustic radiation force impulse imaging for assessing liver fibrosis in alcoholic liver disease

    PubMed Central

    Kiani, Anita; Brun, Vanessa; Lainé, Fabrice; Turlin, Bruno; Morcet, Jeff; Michalak, Sophie; Le Gruyer, Antonia; Legros, Ludivine; Bardou-Jacquet, Edouard; Gandon, Yves; Moirand, Romain

    2016-01-01

    AIM: To evaluate the performance of elastography by ultrasound with acoustic radiation force impulse (ARFI) in determining fibrosis stage in patients with alcoholic liver disease (ALD) undergoing alcoholic detoxification in relation to biopsy. METHODS: Eighty-three patients with ALD undergoing detoxification were prospectively enrolled. Each patient underwent ARFI imaging and a liver biopsy on the same day. Fibrosis was staged according to the METAVIR scoring system. The median of 10 valid ARFI measurements was calculated for each patient. RESULTS: Sixty-nine males and thirteen females (one patient excluded due to insufficient biopsy size) were assessed with a mean alcohol consumption of 132.4 ± 128.8 standard drinks per week and mean cumulative year duration of 17.6 ± 9.5 years. Sensitivity and specificity were respectively 82.4% (0.70-0.95) and 83.3% (0.73-0.94) (AUROC = 0.87) for F ≥ 2 with a cut-off value of 1.63m/s; 82.4% (0.64-1.00) and 78.5% (0.69-0.89) (AUROC = 0.86) for F ≥ 3 with a cut-off value of 1.84m/s; and 92.3% (0.78-1.00] and 81.6% (0.72-0.90) (AUROC = 0.89) for F = 4 with a cut-off value of 1.94 m/s. CONCLUSION: ARFI is an accurate, non-invasive and easy method for assessing liver fibrosis in patients with ALD undergoing alcoholic detoxification. PMID:27239119

  14. Non invasive assessment of liver fibrosis in chronic hemodialysis patients with viral hepatitis C.

    PubMed

    Arrayhani, Mohamed; Sqalli, Tarik; Tazi, Nada; El Youbi, Randa; Chaouch, Safae; Aqodad, Nourdin; Ibrahimi, Sidi Adil

    2015-01-01

    The liver biopsy has long been the "gold standard" for assessing liver fibrosis in patients with hepatitis C. It's an invasive procedure which is associated with an elevated bleeding, especially in chronic hemodialysis patients. Main goal is to assess liver fibrosis in chronic hemodialysis with HCV by Fibroscan and by biological scores (APRI, Forns and Fib-4), and to measure the correlation between these tests. Cross-sectional study including all chronic hemodialysis patients with hepatitis C virus, in two public hemodialysis centers of Fez. All patients were evaluated for liver fibrosis using noninvasive methods (FibroScan and laboratory tests). Subsequently, the correlation between different tests has been measured. 95 chronic hemodialysis were studied, twenty nine patients (30.5%) with chronic hepatitis C. The average age was 52.38 ± 16.8 years. Nine liver fibrosis cases have been concluded by forns score. Fibroscan has objectified significant fibrosis in 6 cases. On the other side APRI has objectified sgnifivant fibrosis only in 3 cases. The Fib-4 showed severe fibrosis in five cases. The results have been most consistent between APRI and Fib-4, followed by Fibroscan and Forns, then APRI and FibroScan. PMID:26958136

  15. Umbilical cord-derived mesenchymal stem cells alleviate liver fibrosis in rats

    PubMed Central

    Chai, Ning-Li; Zhang, Xiao-Bin; Chen, Si-Wen; Fan, Ke-Xing; Linghu, En-Qiang

    2016-01-01

    AIM: To evaluate the efficacy of umbilical cord-derived mesenchymal stem cells (UC-MSCs) transplantation in the treatment of liver fibrosis. METHODS: Cultured human UC-MSCs were isolated and transfused into rats with liver fibrosis induced by dimethylnitrosamine (DMN). The effects of UC-MSCs transfusion on liver fibrosis were then evaluated by histopathology; serum interleukin (IL)-4 and IL-10 levels were also measured. Furthermore, Kupffer cells (KCs) in fibrotic livers were isolated and cultured to analyze their phenotype. Moreover, UC-MSCs were co-cultured with KCs in vitro to assess the effects of UC-MSCs on KCs’ phenotype, and IL-4 and IL-10 levels were measured in cell culture supernatants. Finally, UC-MSCs and KCs were cultured in the presence of IL-4 antibodies to block the effects of this cytokine, followed by phenotypical analysis of KCs. RESULTS: UC-MSCs transfused into rats were recruited by the injured liver and alleviated liver fibrosis, increasing serum IL-4 and IL-10 levels. Interestingly, UC-MSCs promoted mobilization of KCs not only in fibrotic livers, but also in vitro. Co-culture of UC-MSCs with KCs resulted in increased production of IL-4 and IL-10. The addition of IL-4 antibodies into the co-culture system resulted in decreased KC mobilization. CONCLUSION: UC-MSCs could increase IL-4 and promote mobilization of KCs both in vitro and in vivo, subsequently alleviating the liver fibrosis induced by DMN. PMID:27468195

  16. Dual-Functional Nanoparticles Targeting CXCR4 and Delivering Antiangiogenic siRNA Ameliorate Liver Fibrosis.

    PubMed

    Liu, Chun-Hung; Chan, Kun-Ming; Chiang, Tsaiyu; Liu, Jia-Yu; Chern, Guann-Gen; Hsu, Fu-Fei; Wu, Yu-Hsuan; Liu, Ya-Chi; Chen, Yunching

    2016-07-01

    The progression of liver fibrosis, an intrinsic response to chronic liver injury, is associated with hepatic hypoxia, angiogenesis, abnormal inflammation, and significant matrix deposition, leading to the development of cirrhosis and hepatocellular carcinoma (HCC). Due to the complex pathogenesis of liver fibrosis, antifibrotic drug development has faced the challenge of efficiently and specifically targeting multiple pathogenic mechanisms. Therefore, CXCR4-targeted nanoparticles (NPs) were formulated to deliver siRNAs against vascular endothelial growth factor (VEGF) into fibrotic livers to block angiogenesis during the progression of liver fibrosis. AMD3100, a CXCR4 antagonist that was incorporated into the NPs, served dual functions: it acted as a targeting moiety and suppressed the progression of fibrosis by inhibiting the proliferation and activation of hepatic stellate cells (HSCs). We demonstrated that CXCR4-targeted NPs could deliver VEGF siRNAs to fibrotic livers, decrease VEGF expression, suppress angiogenesis and normalize the distorted vessels in the fibrotic livers in the carbon tetrachloride (CCl4) induced mouse model. Moreover, blocking SDF-1α/CXCR4 by CXCR4-targeted NPs in combination with VEGF siRNA significantly prevented the progression of liver fibrosis in CCl4-treated mice. In conclusion, the multifunctional CXCR4-targeted NPs delivering VEGF siRNAs provide an effective antifibrotic therapeutic strategy. PMID:27224003

  17. Protective effects of curcumin against liver fibrosis through modulating DNA methylation.

    PubMed

    Wu, Peng; Huang, Rui; Xiong, Ya-Li; Wu, Chao

    2016-04-01

    Recent research has demonstrated that advanced liver fibrosis in patients could be reversed, but no approved agents are available for the treatment and prevention of liver fibrosis in humans. Curcumin (CUR) is the principal curcuminoid of turmeric. Inhibitory effects of CUR and its underlying mechanisms in liver fibrogenesis have been explored. In the present study, we hypothesized that epigenetic mechanisms contribute to the protective effects of CUR against liver fibrosis. We used CCl4-induced liver injury in BALB/c mice and the rat hepatic stellate cell line HSC-T6 as experimental models. Genomic DNA methylation was analyzed by MeDIP-chip and verified by real-time PCR on MeDIP-enriched DNA. The mRNA and protein expressions of DNMT1, α-SMA, and Col1α1 were determined by real-time PCR and Western blotting, respectively. The methylation statuses of FGFR3, FZD10, Gpx4, and Hoxd3 were further confirmed by quantitative methylation-specific PCR (qMSP). Our results showed that CUR treatment reversed liver injury in vivo and in vitro, possibly through down regulation of DNMT1, α-SMA, and Col1α1 and by demethylation of the key genes. In conclusion, aberrant methylation is closely associated with liver fibrosis and CUR treatment may reverse liver fibrosis by epigenetic mechanisms. PMID:27114312

  18. Inhibiting miR-21 attenuates experimental hepatic fibrosis by suppressing both the ERK1 pathway in HSC and hepatocyte EMT.

    PubMed

    Wu, Kaiming; Ye, Changhong; Lin, Lin; Chu, Yimin; Ji, Meng; Dai, Weiping; Zeng, Xin; Lin, Yong

    2016-08-01

    MicroRNA-21 (miR-21) has emerged as a critical regulatory molecule and an important serum marker in hepatic fibrogenesis. The aim of the present study was to investigate the role of inhibiting miR-21 on hepatic fibrosis treatment. Serum miR-21 levels in 60 healthy individuals and 180 patients with different stages of liver cirrhosis were examined, miR-21 levels in normal or cirrhotic human liver tissues (n=10 each) were also detected. An adenoviral vector (Ad-TuD-21) carrying the sponging ToughDecoy (TuD)-RNA sequence against miR-21 was constructed to reduce miR-21 expression efficiently in vitro and in vivo Histological and immunohistological examinations were performed to evaluate the inhibitory effects and mechanism of Ad-TuD-21 delivery into carbon tetrachloride (CCl4) induced hepatic fibrosis rats by targeting extracellular signal-regulated kinase 1 (ERK1) signalling in hepatic stellate cells (HSC) and hepatocyte epithelial-mesenchymal transition (EMT). Our results revealed that enhanced miR-21 levels in cirrhotic patients were related to the severity and activity of liver cirrhosis. Ad-TuD-21 administered to liver fibrosis rats could remarkably suppress profibrotic gene expression, cause histological improvements in liver and attenuate hepatic fibrosis significantly. More importantly, after Ad-TuD-21 treatment, inhibition of both the ERK1 signalling pathway in HSC and hepatocyte EMT was confirmed, which paralleled the enhancement of miR-21 target genes-sprouty2 (SPRY2) and hepatocyte nuclear factor 4α (HNF4α)-expression in vivo These data demonstrated that miR-21 is a key regulator to promote hepatic fibrogenesis, and sponging miR-21 expression may present a novel potentially therapeutic option for hepatic fibrosis. PMID:27226339

  19. Quantitative analysis of real-time tissue elastography for evaluation of liver fibrosis

    PubMed Central

    Shi, Ying; Wang, Xing-Hua; Zhang, Huan-Hu; Zhang, Hai-Qing; Tu, Ji-Zheng; Wei, Kun; Li, Juan; Liu, Xiao-Li

    2014-01-01

    The present study aimed to investigate the feasibility of quantitative analysis of liver fibrosis using real-time tissue elastography (RTE) and its pathological and molecule biological basis. Methods: Fifty-four New Zealand rabbits were subcutaneously injected with thioacetamide (TAA) to induce liver fibrosis as the model group, and another eight New Zealand rabbits served as the normal control group. Four rabbits were randomly taken every two weeks for real-time tissue elastography (RTE) and quantitative analysis of tissue diffusion. The obtained twelve characteristic quantities included relative mean value (MEAN), standard deviation (SD), blue area % (% AREA), complexity (COMP), kurtosis (KURT), skewness (SKEW), contrast (CONT), entropy (ENT), inverse different moment (IDM), angular secon moment (ASM), correlation (CORR) and liver fibrosis index (LF Index). Rabbits were executed and liver tissues were taken for pathological staging of liver fibrosis (grouped by pathological stage into S0 group, S1 group, S2 group, S3 group and S4 group). In addition, the collagen I (Col I) and collagen III (Col III) expression levels in liver tissue were detected by Western blot. Results: Except for KURT, there were significant differences among the other eleven characteristic quantities (P < 0.05). LF Index, Col I and Col III expression levels showed a rising trend with increased pathological staging of liver fibrosis, presenting a positive correlation with the pathological staging of liver fibrosis (r = 0.718, r = 0.693, r = 0.611, P < 0.05). Conclusion: RTE quantitative analysis is expected for noninvasive evaluation of the pathological staging of liver fibrosis. PMID:24955175

  20. Association of HIV, HCV and Liver Fibrosis Severity with IL-6 and CRP levels

    PubMed Central

    Shah, Shailja; Ma, Yifei; Scherzer, Rebecca; Huhn, Greg; French, Audrey; Plankey, Michael; Peters, Marion; Grunfeld, Carl; Tien, Phyllis C.

    2015-01-01

    Background Hepatitis C infection (HCV) is associated with chronic inflammation; yet studies show greater IL-6 but lower CRP levels. We determined whether liver fibrosis severity and HCV replication affect the ability of IL-6 to stimulate production of CRP from the liver. Methods We used multivariable generalized linear regression to examine the association of HIV, HCV and transient elastography-measured liver stiffness (LS) with IL-6 and CRP in participants (164 HIV-monoinfected; 10 HCV-monoinfected; 73 HIV/HCV-coinfected; 59 neither infection) of the Women's Interagency HIV Study. Significant fibrosis was defined as LS>7.1 kiloPascals. Results IL-6 was positively correlated with CRP levels in all women, but CRP levels were lower in HCV-infected women (with and without HIV infection) at all levels of IL-6. HCV-infected women with fibrosis had nearly 2.7-fold higher IL-6 levels compared to controls (95% Confidence Interval [CI]:146%, 447%); HCV-infected women without fibrosis had IL-6 levels that were similar to controls. By contrast, CRP was 28% lower in HCV-infected women with fibrosis (95% CI:-55%, 15%) and 47% lower in HCV-infected women without fibrosis (95% CI:-68%,-12%). Among the HCV-infected women, higher HCV RNA levels were associated with 9% lower CRP levels per doubling (95% CI: -18%, 0%). Conclusion Liver fibrosis severity is associated with greater IL-6 levels, but the stimulatory effect of IL-6 on CRP appears to be blunted by HCV replication rather than by liver fibrosis severity. Investigation of the potential CRP rebound after HCV RNA eradication and persistent liver fibrosis on organ injury is needed. PMID:25870985

  1. Epigallocatechin-3-gallate attenuates unilateral ureteral obstruction-induced renal interstitial fibrosis in mice.

    PubMed

    Wang, Yanqiu; Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-04-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition. PMID:25549657

  2. Epigallocatechin-3-Gallate Attenuates Unilateral Ureteral Obstruction-Induced Renal Interstitial Fibrosis in Mice

    PubMed Central

    Wang, Bowen; Du, Feng; Su, Xuesong; Sun, Guangping; Zhou, Guangyu; Bian, Xiaohui; Liu, Na

    2015-01-01

    The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition. PMID:25549657

  3. Homing in on the hepatic scar: recent advances in cell-specific targeting of liver fibrosis

    PubMed Central

    Dobie, Ross; Henderson, Neil C.

    2016-01-01

    Despite the high prevalence of liver disease globally, there are currently no approved anti-fibrotic therapies to treat patients with liver fibrosis. A major goal in anti-fibrotic therapy is the development of drug delivery systems that allow direct targeting of the major pro-scarring cell populations within the liver (hepatic myofibroblasts) whilst not perturbing the homeostatic functions of other mesenchymal cell types present within both the liver and other organ systems. In this review we will outline some of the recent advances in our understanding of myofibroblast biology, discussing both the origin of myofibroblasts and possible myofibroblast fates during hepatic fibrosis progression and resolution. We will then discuss the various strategies currently being employed to increase the precision with which we deliver potential anti-fibrotic therapies to patients with liver fibrosis. PMID:27508067

  4. Improving liver fibrosis diagnosis based on forward and backward second harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Peng, Qiwen; Zhuo, Shuangmu; So, Peter T. C.; Yu, Hanry

    2015-02-01

    The correlation of forward second harmonic generation (SHG) signal and backward SHG signal in different liver fibrosis stages was investigated. We found that three features, including the collagen percentage for forward SHG, the collagen percentage for backward SHG, and the average intensity ratio of two kinds of SHG signals, can quantitatively stage liver fibrosis in thioacetamide-induced rat model. We demonstrated that the combination of all three features by using a support vector machine classification algorithm can provide a more accurate prediction than each feature alone in fibrosis diagnosis.

  5. Attenuation of bleomycin-induced lung fibrosis in rats by mesna.

    PubMed

    El-Medany, Azza; Hagar, Hanan H; Moursi, Mahmoud; At Muhammed, Raeesa; El-Rakhawy, Fatma I; El-Medany, Gamila

    2005-02-10

    Lung fibrosis is a common side effect of the chemotherapeutic agent, bleomycin. Current evidence suggests that reactive oxygen species may play a key role in the development of lung fibrosis. The present study examined the effect of mesna on bleomycin-induced lung fibrosis in rats. Animals were divided into three groups: (1) saline control group; (2) Bleomycin group in which rats were injected with bleomycin (15 mg/kg, i.p.) three times a week for four weeks; (3) Bleomycin and mesna group, in which mesna was given to rats (180 mg/kg/day, i.p.) a week prior to bleomycin and daily during bleomycin injections for 4 weeks until the end of the treatment. Bleomycin treatment resulted in a pronounced fall in the average body weight of animals. Bleomycin-induced pulmonary injury and lung fibrosis was indicated by increased lung hydroxyproline content, and elevated nitric oxide synthase, myeoloperoxidase, platelet activating factor, and tumor necrosis factor-alpha in lung tissues. On the other hand, bleomycin induced a reduction in reduced glutathione concentration and angiotensin converting enzyme activity in lung tissues. Moreover, bleomycin-induced severe histological changes in lung tissues revealed as lymphocytes and neutrophils infiltration, increased collagen deposition and fibrosis. Co-administration of bleomycin and mesna reduced bleomycin-induced weight loss and attenuated lung injury as evaluated by the significant reduction in hydroxyproline content, nitric oxide synthase activity, and concentrations of myeoloperoxidase, platelet activating factor, and tumor necrosis factor-alpha in lung tissues. Furthermore, mesna ameliorated bleomycin-induced reduction in reduced glutathione concentration and angiotensin activity in lung tissues. Finally, histological evidence supported the ability of mesna to attenuate bleomycin-induced lung fibrosis and consolidation. Thus, the findings of the present study provide evidence that mesna may serve as a novel target for

  6. Gene expression profiles of hepatic cell-type specific marker genes in progression of liver fibrosis

    PubMed Central

    Takahara, Yoshiyuki; Takahashi, Mitsuo; Wagatsuma, Hiroki; Yokoya, Fumihiko; Zhang, Qing-Wei; Yamaguchi, Mutsuyo; Aburatani, Hiroyuki; Kawada, Norifumi

    2006-01-01

    AIM: To determine the gene expression profile data for the whole liver during development of dimethylni-trosamine (DMN)-induced hepatic fibrosis. METHODS: Marker genes were identified for different types of hepatic cells, including hepatic stellate cells (HSCs), Kupffer cells (including other inflammatory cells), and hepatocytes, using independent temporal DNA microarray data obtained from isolated hepatic cells. RESULTS: The cell-type analysis of gene expression gave several key results and led to formation of three hypotheses: (1) changes in the expression of HSC-specific marker genes during fibrosis were similar to gene expression data in in vitro cultured HSCs, suggesting a major role of the self-activating characteristics of HSCs in formation of fibrosis; (2) expression of mast cell-specific marker genes reached a peak during liver fibrosis, suggesting a possible role of mast cells in formation of fibrosis; and (3) abnormal expression of hepatocyte-specific marker genes was found across several metabolic pathways during fibrosis, including sulfur-containing amino acid metabolism, fatty acid metabolism, and drug metabolism, suggesting a mechanistic relationship between these abnormalities and symptoms of liver fibrosis. CONCLUSION: Analysis of marker genes for specific hepatic cell types can identify the key aspects of fibrogenesis. Sequential activation of inflammatory cells and the self-supporting properties of HSCs play an important role in development of fibrosis. PMID:17072980

  7. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact.

    PubMed

    Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista

    2015-10-28

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204

  8. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact

    PubMed Central

    Sagnelli, Caterina; Martini, Salvatore; Pisaturo, Mariantonietta; Pasquale, Giuseppe; Macera, Margherita; Zampino, Rosa; Coppola, Nicola; Sagnelli, Evangelista

    2015-01-01

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus (HCV)-monoinfected and human immunodeficiency virus (HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of non-invasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCV-coinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice. PMID:26523204

  9. Role of NADPH oxidases in the redox biology of liver fibrosis

    PubMed Central

    Crosas-Molist, Eva; Fabregat, Isabel

    2015-01-01

    Liver fibrosis is the pathological consequence of chronic liver diseases, where an excessive deposition of extracellular matrix (ECM) proteins occurs, concomitantly with the processes of repair and regeneration. It is characterized by increased production of matrix proteins, in particular collagens, and decreased matrix remodelling. The principal source of ECM accumulation is myofibroblasts (MFB). Most fibrogenic MFB are endogenous to the liver, coming from hepatic stellate cells (HSC) and portal fibroblasts. Dysregulated inflammatory responses have been associated with most (if not all) hepatotoxic insults and chronic oxidative stress play a role during the initial liver inflammatory phase and its progression to fibrosis. Redox-regulated processes are responsible for activation of HSC to MFB, as well as maintenance of the MFB function. Increased oxidative stress also induces hepatocyte apoptosis, which contributes to increase the liver injury and to transdifferentiate HSC to MFB, favouring the fibrogenic process. Mitochondria and other redox-active enzymes can generate superoxide and hydrogen peroxide as a by-product in liver cells. Moreover, accumulating evidence indicates that NADPH oxidases (NOXs), which play a critical role in the inflammatory response, may contribute to reactive oxygen species (ROS) production during liver fibrosis, being important players in HSC activation and hepatocyte apoptosis. Based on the knowledge of the pathogenic role of ROS, different strategies to prevent or reverse the oxidative damage have been developed to be used as therapeutic tools in liver fibrosis. This review will update all these concepts, highlighting the relevance of redox biology in chronic fibrogenic liver pathologies. PMID:26204504

  10. Cannabinoid receptors are involved in the protective effect of a novel curcumin derivative C66 against CCl4-induced liver fibrosis.

    PubMed

    Huang, Si-Si; Chen, Da-Zhi; Wu, He; Chen, Rui-Cong; Du, Shan-Jie; Dong, Jia-Jia; Liang, Guang; Xu, Lan-Man; Wang, Xiao-Dong; Yang, Yong-Ping; Yu, Zhen-Ping; Feng, Wen-Ke; Chen, Yong-Ping

    2016-05-15

    Liver fibrosis is one of the major causes of morbidity and mortality worldwide and lacks efficient therapy. Recent studies suggest the curcumin protects liver from fibrosis. However, curcumin itself is in low bioavailable concentration when administered orally, and the protective mechanism remains poorly understood. The current study aimed to investigate whether a more stable derivative of curcumin, C66, protects against CCl4-inudced liver fibrosis and examine the underlying mechanism involving cannabinoid receptor (CB receptor). At a dose lower than curcumin itself, C66 displayed a superior anti-fibrotic effect. C66 significantly reduced collagen deposition, pro-inflammatory cytokine expression, and liver enzyme activities. Mechanistic study revealed that C66 treatment decreased CCl4-induced cannabinoid receptor 1 (CB1 receptor) expression and increased cannabinoid receptor 2 (CB2 receptor) expression, along with an inhibition of JNK/NF-κB-mediated inflammatory signaling. In conclusion, this curcumin derivative attenuates liver fibrosis likely involving a CB/JNK/NF-κB-mediated pathway. PMID:26945822

  11. Chikusetsusaponin V attenuates lipopolysaccharide-induced liver injury in mice.

    PubMed

    Dai, Yan Wen; Zhang, Chang Cheng; Zhao, Hai Xia; Wan, Jing Zhi; Deng, Li Li; Zhou, Zhi Yong; Dun, Yao Yan; Liu, Chao Qi; Yuan, Ding; Wang, Ting

    2016-06-01

    Chikusetsusaponin V (CsV), a saponin from Panax japonicus, has been reported to inhibit inflammatory responses in lipopolysaccharide (LPS)-induced macrophage cells. However, whether CsV could alleviate LPS-induced liver injury in vivo and the potential mechanisms involved remain unclear. In the present study, we investigated the anti-inflammatory effects of CsV on LPS-induced acute liver injury in mice and further explored the potential mechanisms involved. Our results showed that CsV significantly attenuated elevation of alanine transaminase (ALT) and aspartate aminotransferase (AST) levels and improved liver histopathological changes in LPS-induced mice. In addition, CsV decreased serum tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and inhibited mRNA expressions of inducible nitric oxide synthase (iNOS), TNF-α and IL-1β in LPS challenged mice. Furthermore, CsV inhibited nuclear factor kappa B (NF-κB) activation by downregulating phosphorylated NF-κB, IκB-α, ERK, c-Jun N-terminal kinase (JNK) and p38 levels in the liver tissue, which ultimately decreased nucleus NF-κB protein level. In conclusion, our data suggested that CsV could be a promising drug for preventing LPS challenged liver injury since it attenuated LPS-induced inflammatory responses, partly via inhibiting NF-κB and MAPK signaling pathways. PMID:26981791

  12. A Boswellic Acid-Containing Extract Ameliorates Schistosomiasis Liver Granuloma and Fibrosis through Regulating NF-κB Signaling in Mice

    PubMed Central

    Chen, Peng; Büchele, Berthold; Bian, Maohong; Dong, Shengjian; Huang, Dake; Ren, Cuiping; Zhang, Yuxia; Hou, Xin; Simmet, Thomas; Shen, Jijia

    2014-01-01

    Boswellic acid (BA)-containing extracts such as BSE have anti-inflammatory and immunomodulatory activity. In chronic schistosomiasis, the hepatic granuloma and fibrosis induced by egg deposition in the liver is the most serious pathological manifestations. However, little is known regarding the role of BAs in Schistosoma japonicum (S. japonicum) egg-induced liver granuloma and fibrosis. In order to investigate the effect of a water-soluble complex preparation of BSE, BSE-CD, on S. japonicum egg-induced liver pathology, liver granuloma and fibrosis were induced by infecting C57BL/6 mice with 18–22 cercariae of S. japonicum. S. japonicum cercariae infected mice were injected with BSE-CD at the onset of egg granuloma formation (early phase BSE-CD treatment after 4 weeks infection) or after the formation of liver fibrosis (late phase BSE-CD treatment after 7 weeks infection). Our data show that treatment of infected mice with BSE-CD significantly reduced both the extent of hepatic granuloma and fibrosis. Consistent with an inhibition of NF-κB signaling as evidenced by reduced IκB kinase (IKK) activation, the mRNA expression of VEGF (vascular endothelial growth factor, VEGF), TNF-α (tumor necrosis factor-alpha TNF-α) and MCP-1 (monocyte chemotactic protein 1, MCP-1) was decreased. Moreover, immunohistochemical analysis (IHC) revealed that the content of α-SMA in liver tissue of BSE-CD treated mice was dramatically decreased. Our findings suggest that BSE-CD treatment attenuates S. japonicum egg-induced hepatic granulomas and fibrosis, at least partly due to reduced NF-κB signaling and the subsequently decreased expression of VEGF, TNF-α, and MCP-1. Suppression of the activation of hepatic stellate cells (HSC) may also be involved in the therapeutic efficacy of BSE-CD. PMID:24941000

  13. Myofibroblastic Conversion and Regeneration of Mesothelial Cells in Peritoneal and Liver Fibrosis.

    PubMed

    Lua, Ingrid; Li, Yuchang; Pappoe, Lamioko S; Asahina, Kinji

    2015-12-01

    Mesothelial cells (MCs) form a single epithelial layer and line the surface of body cavities and internal organs. Patients who undergo peritoneal dialysis often develop peritoneal fibrosis that is characterized by the accumulation of myofibroblasts in connective tissue. Although MCs are believed to be the source of myofibroblasts, their contribution has remained obscure. We determined the contribution of peritoneal MCs to myofibroblasts in chlorhexidine gluconate (CG)-induced fibrosis compared with that of phenotypic changes of liver MCs. CG injections resulted in disappearance of MCs from the body wall and the accumulation of myofibroblasts in the connective tissue. Conditional linage tracing with Wilms tumor 1 (Wt1)-CreERT2 and Rosa26 reporter mice found that 17% of myofibroblasts were derived from MCs in peritoneal fibrosis. Conditional deletion of transforming growth factor-β type II receptor in Wt1(+) MCs substantially reduced peritoneal fibrosis. The CG treatment also induced myofibroblastic conversion of MCs in the liver. Lineage tracing with Mesp1-Cre mice revealed that Mesp1(+) mesoderm gave rise to liver MCs but not peritoneal MCs. During recovery from peritoneal fibrosis, peritoneal MCs, but not liver MCs, contribute to the regeneration of the peritoneal mesothelium, indicating an inherent difference between parietal and visceral MCs. In conclusion, MCs partially contribute to myofibroblasts in peritoneal and liver fibrosis, and protection of the MC layer leads to reduced development of fibrous tissue. PMID:26598235

  14. Protective effect of theaflavin-enriched black tea extracts against dimethylnitrosamine-induced liver fibrosis in rats.

    PubMed

    Weerawatanakorn, Monthana; Lee, You-Li; Tsai, Chen-Yu; Lai, Ching-Shu; Wan, Xiaochun; Ho, Chi-Tang; Li, Shiming; Pan, Min-Hsiung

    2015-06-01

    Liver cirrhosis is responsible for hepatic fibrosis resulting in high mortality and is also a risk factor for developing hepatocellular carcinoma (HCC), which is the fifth most common cancer in men and the seventh in women globally. Several studies have found effective anti-cancer activities of theaflavins, the major black tea polyphenols. The objective of this study was to investigate the protective effects of theaflavin-enriched black tea extracts (TF-BTE) on hepatic fibrosis induced by dimethylnitrosamine (DMN) administration in Sprague-Dawley (SD) rats. Treatment of SD rats with DMN (10 mg per kg bw) for 4 weeks produced inflammation and remarkable liver fibrosis assessed by serum biochemistry and histopathological examination. Fibrotic status and the activation of hepatic stellate cells were improved by oral administration of 40% theaflavins in black tea extracts (40% TF-BTE) as evidenced by histopathological examination. Oral administration of 40% TF-BTE at a low dose of 50 mg per kg bw per day and a high dose of 100 mg per kg bw per day attenuated the DMN-induced elevation of serum GOT (glutamate oxaloacetate transaminase) and GPT (glutamic pyruvic transaminase) levels and reduced necrosis, bile duct proliferation, and inflammation. Western blot analyses revealed that TF-BTE inhibited the expression of liver alpha-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) protein. The histochemical examination showed the inhibitory effect of TF-BTE on the p-Smad3 expression. Overall, these data demonstrated that TF-BTE exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1/Smad signaling. PMID:25927469

  15. MicroRNA Expression Profiling in CCl₄-Induced Liver Fibrosis of Mus musculus.

    PubMed

    Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl₄) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl₄-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl₄-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl₄ induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257

  16. MicroRNA Expression Profiling in CCl4-Induced Liver Fibrosis of Mus musculus

    PubMed Central

    Hyun, Jeongeun; Park, Jungwook; Wang, Sihyung; Kim, Jieun; Lee, Hyun-Hee; Seo, Young-Su; Jung, Youngmi

    2016-01-01

    Liver fibrosis is a major pathological feature of chronic liver diseases, including liver cancer. MicroRNAs (miRNAs), small noncoding RNAs, regulate gene expression posttranscriptionally and play important roles in various kinds of diseases; however, miRNA-associated hepatic fibrogenesis and its acting mechanisms are poorly investigated. Therefore, we performed an miRNA microarray in the fibrotic livers of Mus musculus treated with carbon-tetrachloride (CCl4) and analyzed the biological functions engaged by the target genes of differentially-expressed miRNAs through gene ontology (GO) and in-depth pathway enrichment analysis. Herein, we found that four miRNAs were upregulated and four miRNAs were downregulated more than two-fold in CCl4-treated livers compared to a control liver. Eight miRNAs were predicted to target a total of 4079 genes. GO analysis revealed that those target genes were located in various cellular compartments, including cytoplasm, nucleolus and cell surface, and they were involved in protein-protein or protein-DNA bindings, which influence the signal transductions and gene transcription. Furthermore, pathway enrichment analysis demonstrated that the 72 subspecialized signaling pathways were associated with CCl4-induced liver fibrosis and were mostly classified into metabolic function-related pathways. These results suggest that CCl4 induces liver fibrosis by disrupting the metabolic pathways. In conclusion, we presented several miRNAs and their biological processes that might be important in the progression of liver fibrosis; these findings help increase the understanding of liver fibrogenesis and provide novel ideas for further studies of the role of miRNAs in liver fibrosis. PMID:27322257

  17. Elastography Assessment of Liver Fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement.

    PubMed

    Barr, Richard G; Ferraioli, Giovanna; Palmeri, Mark L; Goodman, Zachary D; Garcia-Tsao, Guadalupe; Rubin, Jonathan; Garra, Brian; Myers, Robert P; Wilson, Stephanie R; Rubens, Deborah; Levine, Deborah

    2015-09-01

    The Society of Radiologists in Ultrasound convened a panel of specialists from radiology, hepatology, pathology, and basic science and physics to arrive at a consensus regarding the use of elastography in the assessment of liver fibrosis in chronic liver disease. The panel met in Denver, Colo, on October 21-22, 2014, and drafted this consensus statement. The recommendations in this statement are based on analysis of current literature and common practice strategies and are thought to represent a reasonable approach to the noninvasive assessment of diffuse liver fibrosis. PMID:26079489

  18. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis

    PubMed Central

    Dadrich, Monika; Nicolay, Nils H.; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E.

    2016-01-01

    ABSTRACT Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined

  19. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis.

    PubMed

    Dadrich, Monika; Nicolay, Nils H; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E

    2016-05-01

    Background : Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods : C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results : Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion : Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement : RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of

  20. Optical spectroscopy for differentiation of liver tissue under distinct stages of fibrosis: an ex vivo study

    NASA Astrophysics Data System (ADS)

    Fabila, D. A.; Hernández, L. F.; de la Rosa, J.; Stolik, S.; Arroyo-Camarena, U. D.; López-Vancell, M. D.; Escobedo, G.

    2013-11-01

    Liver fibrosis is the decisive step towards the development of cirrhosis; its early detection affects crucially the diagnosis of liver disease, its prognosis and therapeutic decision making. Nowadays, several techniques are employed to this task. However, they have the limitation in estimating different stages of the pathology. In this paper we present a preliminary study to evaluate if optical spectroscopy can be employed as an auxiliary tool of diagnosis of biopsies of human liver tissue to differentiate the fibrosis stages. Ex vivo fluorescence and diffuse reflectance spectra were acquired from biopsies using a portable fiber-optic system. Empirical discrimination algorithms based on fluorescence intensity ratio at 500 nm and 680 nm as well as diffuse reflectance intensity at 650 nm were developed. Sensitivity and specificity of around 80% and 85% were respectively achieved. The obtained results show that combined use of fluorescence and diffuse reflectance spectroscopy could represent a novel and useful tool in the early evaluation of liver fibrosis.

  1. Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production.

    PubMed

    Yao, Yingying; Wang, Yi; Zhang, Zhijun; He, Long; Zhu, Jianghui; Zhang, Meng; He, Xiaoyu; Cheng, Zhenshun; Ao, Qilin; Cao, Yong; Yang, Ping; Su, Yunchao; Zhao, Jianping; Zhang, Shu; Yu, Qilin; Ning, Qin; Xiang, Xudong; Xiong, Weining; Wang, Cong-Yi; Xu, Yongjian

    2016-05-01

    C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages. PMID:26883801

  2. Serum Liver Fibrosis Markers in the Prognosis of Liver Cirrhosis: A Prospective Observational Study

    PubMed Central

    Qi, Xingshun; Liu, Xu; Zhang, Yongguo; Hou, Yue; Ren, Linan; Wu, Chunyan; Chen, Jiang; Xia, Chunlian; Zhao, Jiajun; Wang, Di; Zhang, Yanlin; Zhang, Xia; Lin, Hao; Wang, Hezhi; Wang, Jinling; Cui, Zhongmin; Li, Xueyan; Deng, Han; Hou, Feifei; Peng, Ying; Wang, Xueying; Shao, Xiaodong; Li, Hongyu; Guo, Xiaozhong

    2016-01-01

    Background The prognostic role of serum liver fibrosis markers in cirrhotic patients remains unclear. We performed a prospective observational study to evaluate the effect of amino-terminal pro-peptide of type III pro-collagen (PIIINP), collagen IV (CIV), laminin (LN), and hyaluronic acid (HA) on the prognosis of liver cirrhosis. Material/Methods All patients who were diagnosed with liver cirrhosis and admitted to our department were prospectively enrolled. PIIINP, CIV, LN, and HA levels were tested. Results Overall, 108 cirrhotic patients were included. Correlation analysis demonstrated that CIV (coefficient r: 0.658, p<0.001; coefficient r: 0.368, p<0.001), LN (coefficient r: 0.450, p<0.001; coefficient r: 0.343, p<0.001), and HA (coefficient r: 0.325, p=0.001; coefficient r: 0.282, p=0.004) levels, but not PIIINP level (coefficient r: 0.081, p=0.414; coefficient r: 0.090, p=0.363), significantly correlated with Child-Pugh and MELD scores. Logistic regression analysis demonstrated that HA (odds ratio=1.00003, 95% confidence interval [CI]=1.000004–1.000056, p=0.022) was significantly associated with the 6-month mortality. Receiver operating characteristics analysis demonstrated that the area under the curve (AUC) of HA for predicting the 6-month mortality was 0.612 (95%CI=0.508–0.709, p=0.1531). Conclusions CIV, LN, and HA levels were significantly associated with the severity of liver dysfunction, but might be inappropriate for the prognostic assessment of liver cirrhosis. PMID:27480906

  3. Serum Liver Fibrosis Markers in the Prognosis of Liver Cirrhosis: A Prospective Observational Study.

    PubMed

    Qi, Xingshun; Liu, Xu; Zhang, Yongguo; Hou, Yue; Ren, Linan; Wu, Chunyan; Chen, Jiang; Xia, Chunlian; Zhao, Jiajun; Wang, Di; Zhang, Yanlin; Zhang, Xia; Lin, Hao; Wang, Hezhi; Wang, Jinling; Cui, Zhongmin; Li, Xueyan; Deng, Han; Hou, Feifei; Peng, Ying; Wang, Xueying; Shao, Xiaodong; Li, Hongyu; Guo, Xiaozhong

    2016-01-01

    BACKGROUND The prognostic role of serum liver fibrosis markers in cirrhotic patients remains unclear. We performed a prospective observational study to evaluate the effect of amino-terminal pro-peptide of type III pro-collagen (PIIINP), collagen IV (CIV), laminin (LN), and hyaluronic acid (HA) on the prognosis of liver cirrhosis. MATERIAL AND METHODS All patients who were diagnosed with liver cirrhosis and admitted to our department were prospectively enrolled. PIIINP, CIV, LN, and HA levels were tested. RESULTS Overall, 108 cirrhotic patients were included. Correlation analysis demonstrated that CIV (coefficient r: 0.658, p<0.001; coefficient r: 0.368, p<0.001), LN (coefficient r: 0.450, p<0.001; coefficient r: 0.343, p<0.001), and HA (coefficient r: 0.325, p=0.001; coefficient r: 0.282, p=0.004) levels, but not PIIINP level (coefficient r: 0.081, p=0.414; coefficient r: 0.090, p=0.363), significantly correlated with Child-Pugh and MELD scores. Logistic regression analysis demonstrated that HA (odds ratio=1.00003, 95% confidence interval [CI]=1.000004-1.000056, p=0.022) was significantly associated with the 6-month mortality. Receiver operating characteristics analysis demonstrated that the area under the curve (AUC) of HA for predicting the 6-month mortality was 0.612 (95%CI=0.508-0.709, p=0.1531). CONCLUSIONS CIV, LN, and HA levels were significantly associated with the severity of liver dysfunction, but might be inappropriate for the prognostic assessment of liver cirrhosis. PMID:27480906

  4. Chlordecone potentiates hepatic fibrosis in chronic liver injury induced by carbon tetrachloride in mice.

    PubMed

    Tabet, Elise; Genet, Valentine; Tiaho, François; Lucas-Clerc, Catherine; Gelu-Simeon, Moana; Piquet-Pellorce, Claire; Samson, Michel

    2016-07-25

    Chronic liver damage due to viral or chemical agents leads to a repair process resulting in hepatic fibrosis. Fibrosis may lead to cirrhosis, which may progress to liver cancer or a loss of liver function, with an associated risk of liver failure and death. Chlordecone is a chlorinated pesticide used in the 1990s. It is not itself hepatotoxic, but its metabolism in the liver triggers hepatomegaly and potentiates hepatotoxic agents. Chlordecone is now banned, but it persists in soil and water, resulting in an ongoing public health problem in the Caribbean area. We assessed the probable impact of chlordecone on the progression of liver fibrosis in the population of contaminated areas, by developing a mouse model of chronic co-exposure to chlordecone and a hepatotoxic agent, carbon tetrachloride (CCl4). After repeated administrations of chlordecone and CCl4 by gavage over a 12-week period, we checked for liver damage in the exposed mice, by determining serum liver transaminase (AST, ALT) levels, histological examinations of the liver and measuring the expression of genes encoding extracellular matrix components. The co-exposure of mice to CCl4 and chlordecone resulted in significant increases in ALT and AST levels. Chlordecone also increased expression of the Col1A2, MMP-2, TIMP-1 and PAI-1 genes in CCl4-treated mice. Finally, we demonstrated, by quantifying areas of collagen deposition and alpha-SMA gene expression, that chlordecone potentiated the hepatic fibrosis induced by CCl4. In conclusion, our data suggest that chlordecone potentiates hepatic fibrosis in mice with CCl4-induced chronic liver injury. PMID:26853152

  5. Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis

    PubMed Central

    2012-01-01

    Background Liver fibrosis is a major health problem worldwide and poses a serious obstacle for cell based therapies. Mesenchymal stem cells (MSCs) are multipotent and important candidate cells for future clinical applications however success of MSC therapy depends upon their homing and survival in recipient organs. This study was designed to improve the repair potential of MSCs by transplanting them in sodium nitroprusside (SNP) pretreated mice with CCl4 induced liver fibrosis. Methods SNP 100 mM, a nitric oxide (NO) donor, was administered twice a week for 4 weeks to CCl4-injured mice. MSCs were isolated from C57BL/6 wild type mice and transplanted in the left lateral lobe of the liver in experimental animals. After 4 weeks, animals were sacrificed and liver improvement was analyzed. Analysis of fibrosis by qRT-PCR and sirius red staining, homing, bilirubin and alkaline phosphatase (ALP) serum levels between different treatment groups were compared to control. Results Liver histology demonstrated enhanced MSCs homing in SNP-MSCs group compared to MSCs group. The gene expression of fibrotic markers; αSMA, collagen 1α1, TIMP, NFκB and iNOS was down regulated while cytokeratin 18, albumin and eNOS was up-regulated in SNP-MSCs group. Combine treatment sequentially reduced fibrosis in SNP-MSCs treated liver compared to the other treatment groups. These results were also comparable with reduced serum levels of bilirubin and ALP observed in SNP-MSCs treated group. Conclusion This study demonstrated that NO effectively augments MSC ability to repair liver fibrosis induced by CCl4 in mice and therefore is a better treatment regimen to reduce liver fibrosis. PMID:22533821

  6. Multi-class SVM model for fMRI-based classification and grading of liver fibrosis

    NASA Astrophysics Data System (ADS)

    Freiman, M.; Sela, Y.; Edrei, Y.; Pappo, O.; Joskowicz, L.; Abramovitch, R.

    2010-03-01

    We present a novel non-invasive automatic method for the classification and grading of liver fibrosis from fMRI maps based on hepatic hemodynamic changes. This method automatically creates a model for liver fibrosis grading based on training datasets. Our supervised learning method evaluates hepatic hemodynamics from an anatomical MRI image and three T2*-W fMRI signal intensity time-course scans acquired during the breathing of air, air-carbon dioxide, and carbogen. It constructs a statistical model of liver fibrosis from these fMRI scans using a binary-based one-against-all multi class Support Vector Machine (SVM) classifier. We evaluated the resulting classification model with the leave-one out technique and compared it to both full multi-class SVM and K-Nearest Neighbor (KNN) classifications. Our experimental study analyzed 57 slice sets from 13 mice, and yielded a 98.2% separation accuracy between healthy and low grade fibrotic subjects, and an overall accuracy of 84.2% for fibrosis grading. These results are better than the existing image-based methods which can only discriminate between healthy and high grade fibrosis subjects. With appropriate extensions, our method may be used for non-invasive classification and progression monitoring of liver fibrosis in human patients instead of more invasive approaches, such as biopsy or contrast-enhanced imaging.

  7. Garlic attenuates histological and histochemical alterations in livers of Schistosoma mansoni infected mice.

    PubMed

    Mahmoud, Y I; Riad, N H; Taha, H

    2016-08-01

    Interest in screening for new anti-schistosomal agents is growing because of increased concerns about resistance to and safety of praziquantel. We investigated the anti-schistosomal action of prophylactic and therapeutic doses of garlic on the histological and histochemical alterations caused by Schistosoma mansoni infection. Livers of infected mice were characterized by granulomas, periportal inflammation and fibrosis, hepatocyte vacuolation, fatty degeneration and necrosis, and hypertrophy and pigmentation of Kupffer cells. Significant depletion of carbohydrates and increased lipid vacuoles also were observed. All garlic regimens caused suppression of granuloma formation and amelioration of histological and histochemical changes; the continuous treatment protocol produced the best results. Garlic appears to be a safe and economical anti-schistosomal adjuvant for attenuating the pathogenicity of schistosomiasis. PMID:27045197

  8. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis.

    PubMed

    Ding, Bi-Sen; Cao, Zhongwei; Lis, Raphael; Nolan, Daniel J; Guo, Peipei; Simons, Michael; Penfold, Mark E; Shido, Koji; Rabbany, Sina Y; Rafii, Shahin

    2014-01-01

    Chemical or traumatic damage to the liver is frequently associated with aberrant healing (fibrosis) that overrides liver regeneration. The mechanism by which hepatic niche cells differentially modulate regeneration and fibrosis during liver repair remains to be defined. Hepatic vascular niche predominantly represented by liver sinusoidal endothelial cells deploys paracrine trophogens, known as angiocrine factors, to stimulate regeneration. Nevertheless, it is not known how pro-regenerative angiocrine signals from liver sinusoidal endothelial cells is subverted to promote fibrosis. Here, by combining an inducible endothelial-cell-specific mouse gene deletion strategy and complementary models of acute and chronic liver injury, we show that divergent angiocrine signals from liver sinusoidal endothelial cells stimulate regeneration after immediate injury and provoke fibrosis after chronic insult. The pro-fibrotic transition of vascular niche results from differential expression of stromal-derived factor-1 receptors, CXCR7 and CXCR4 (refs 18, 19, 20, 21), in liver sinusoidal endothelial cells. After acute injury, CXCR7 upregulation in liver sinusoidal endothelial cells acts with CXCR4 to induce transcription factor Id1, deploying pro-regenerative angiocrine factors and triggering regeneration. Inducible deletion of Cxcr7 in sinusoidal endothelial cells (Cxcr7(iΔEC/iΔEC)) from the adult mouse liver impaired liver regeneration by diminishing Id1-mediated production of angiocrine factors. By contrast, after chronic injury inflicted by iterative hepatotoxin (carbon tetrachloride) injection and bile duct ligation, constitutive FGFR1 signalling in liver sinusoidal endothelial cells counterbalanced CXCR7-dependent pro-regenerative response and augmented CXCR4 expression. This predominance of CXCR4 over CXCR7 expression shifted angiocrine response of liver sinusoidal endothelial cells, stimulating proliferation of desmin(+) hepatic stellate-like cells and enforcing a pro

  9. Non-invasive Diagnosis of Fibrosis in Non-alcoholic Fatty Liver Disease

    PubMed Central

    Arora, Anil; Sharma, Praveen

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in developed as well as in developing countries. Its prevalence continues to rise currently affecting approximately 20-30% of adults and 10% of children in the United States. Non-alcoholic fatty liver disease represents a wide spectrum of conditions ranging from fatty liver, which in general follows a benign non-progressive clinical course, to non-alcoholic steatohepatitis (NASH), a more serious form of NAFLD that may progress to cirrhosis and end-stage liver disease. Liver biopsy remains the gold standard for evaluating the degree of hepatic necroinflammation and fibrosis; however, several non-invasive investigations, such as serum biomarkers, have been developed to establish the diagnosis and also to evaluate treatment response. There has been a substantial development of non-invasive risk scores, biomarker panels, and radiological modalities to identify at risk patients with NAFLD without recourse to liver biopsy on a routine basis. Examples include combination of serum markers like NAFLD fibrosis score (NFS), BARD score, fibrometer, FIB4, and non-invasive tools like fibroscan which assess fibrosis in patients with NAFLD. Other markers of fibrosis that have been evaluated include high-sensitivity C-reactive protein, plasma pentraxin 3, interleukin-6, and cytokeratin-18. This review focuses on the methods currently available in daily clinical practice in hepatology and touches briefly on the potential future markers under investigation. PMID:25755423

  10. Multimodal nonlinear optical imaging of obesity-induced liver steatosis and fibrosis

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Lu, Fake; Zheng, Wei; Tai, Dean C. S.; Yu, Hanry; Sheppard, Colin; Huang, Zhiwei

    2011-03-01

    Liver steatosis/fibrosis represents the major conditions and symptoms for many liver diseases. Nonlinear optical microscopy has emerged as a powerful tool for label-free tissue imaging with high sensitivity and chemical specificity for several typical biochemical compounds. Three nonlinear microscopy imaging modalities are implemented on the sectioned tissues from diseased livers induced by high fat diet (HFD). Coherent anti-Stokes Raman scattering (CARS) imaging visualizes and quantifies the lipid droplets accumulated in the liver, Second harmonic generation (SHG) is used to map the distribution of aggregated collagen fibers, and two-photon excitation fluorescence (TPEF) reveals the morphology of hepatic cells based on the autofluorescence signals from NADH and flavins within the hepatocytes. Our results demonstrate that obesity induces liver steatosis in the beginning stage, which may progress into liver fibrosis with high risk. There is a certain correlation between liver steatosis and fibrosis. This study may provide new insights into the understanding of the mechanisms of steatosis/fibrosis transformations at the cellular and molecular levels.